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ABSTRACT OF THE DISSERTATION

Self-Organizing and Optimal Control for Nonlinear Systems

by

Wenjie Dong

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2009

Professor Jay A. Farrell, Chairperson

Vehicle formation control is one of important research topics in transportation. Control

of uncertain nonlinear systems is one of fundamental problems in vehicle control. In this

dissertation, we consider this fundamental control problem. Specially, we considered self-

organizing based tracking control of uncertain nonaffine systems and optimal control of

uncertain nonlinear systems. In tracking control of nonaffine systems, a self-organizing on-

line approximation based controller is proposed to achieve a prespecified tracking accuracy,

without using high-gain control nor large magnitude switching. For optimal control of un-

certain nonlinear systems, we considered point-wise min-norm optimal control of uncertain

nonlinear systems and approximately optimal control of uncertain nonlinear systems. In

point-wise non-norm optimal control, optimal regulation and optimal tracking controllers

were proposed with the aid of locally weighted learning observers. By introducing control

Lyapunov functions and redefining the optimal criterions, analytic controllers were pro-

posed and were optimal in the sense of min-norm. In approximately optimal control of

uncertain nonlinear systems, adaptive optimal controllers were proposed with the aid of

vi



iterative approximation techniques and adaptive control. By iteratively learning, the dif-

ficulty of solving Hamilton-Jacobian-Bellman (HJB) equation is overcome. The proposed

adaptive optimal algorithms can be applied to solve optimal control problem of a large class

of nonlinear systems. To show effectiveness of the proposed controllers for above problems,

simulations were done in computers.
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Chapter 1

Introduction

This thesis consider self-organizing and optimal control of nonlinear systems that

have model error significant enough to affect the achievable performance of the closed-loop

system. As motivation, one example is presented in Section 1.1.

1.1 Uncertainty in Vehicle Formation Control

With the development of economy and population growth, an increasing number

of vehicles are on highways. Transportation issues such as roadway capacity, traffic conges-

tion, and highway safety have arisen in the past decades. One method to deal with these

issues is to develop Intelligent Vehicle Highway Systems (IVHS). As an enabling technol-

ogy, increasing attention has been paid to the development of Advanced Vehicle Control

Systems (AVCs) to increase lane utilization without sacrificing safety requirements. For

example, AVCs can be designed such that vehicles automatically travel in closely spaced

platoons proposed [65]. It has been estimated that the close formation of vehicles could
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increase highway capacity by a factor or two or three with automatic control [66]. To study

the stability of vehicle platoons, the “string stability” problem has been studied as early as

1977 [11]. String-stability ensures that range errors do not increase as they propagate along

the vehicle stream.

Vehicle formation stability is a more general concept than the string stability and

includes string stability as a special case. In recent years, formation control has been

an active research area. Several methods for formation control have been proposed. In

[2, 5, 31, 36], behavior-based control methods were proposed. In [7, 58], virtual structure

based method was proposed by implementing decentralized trajectory-following controllers

on each vehicle. In [16, 72], leader-follower approach was proposed by designating one agent

as a leader and the others as followers. In [37, 46], artificial potentials were applied to solve

the cooperative control problem with the aid of other techniques, such as graph theory,

virtual bodies/leaders, etc. In [23, 29, 34, 40, 43, 47, 59, 71], results from graph theory were

applied to cooperative control of multiple systems. The author has studied the vehicle

formation based on kinematics of each vehicle. Decentralized feedback control laws were

proposed for a group of vehicles such that they converge to a desired stationary formation

or a desired formation which moves along a desired trajectory with the aid of results from

graph theory [17–20]. However, all vehicles have dynamics. It is important to study the

control problem of vehicles with dynamics. For a vehicle, its dynamics are nonlinear and

are hard to be obtained due to the complicated structure of vehicles and varying loads for

different missions. In this thesis, we consider several fundamental control problems applica-

ble to uncertain nonlinear systems. Solutions to these fundamental problems have extensive
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applications in vehicle formation control applications and other practical applications such

as color printing systems, autonomous vehicles, etc.

For nonlinear systems [32, 33, 41, 63, 67], there are two main categories of methods

to address model error: (1) domination of the error with high gain and switching; and,

(2) adaptation or learning. Methods such as Lyapunov redesign and sliding mode control

are applicable when a known bound on the model uncertainty is available. These methods

can retain convergence of solutions to a desired trajectory. Nonlinear damping methods

guarantee boundedness of solutions and are applicable when a priori bounds on the model

uncertainty are not known. Backstepping allows such methods to be extended to some

applications where the model uncertainty does not satisfy a matching condition. When

model error bounds are not known at the design stage, such bounds can be estimated on-

line [30, 52]. Lyapunov redesign, sliding mode, and nonlinear damping use (potentially)

large magnitude, high frequency switching of the control signal to dominate the model

error. Successful implementation of such controllers requires high bandwidth actuators

and uses significant control energy. In addition, high-frequency switching can excite high-

frequency unmodeled effects. Those methods may not result in comfortable rides if applied

to passenger vehicles. Alternatively, adaptive and learning based methods address the model

error by learning either the model error or the control law during the system operation. To

minimize the required on-line learning, such methods should capitalize on the known design

model to the greatest extent possible. In particular, when the model error has a parametric

form (i.e., θ⊤φ(x) with θ unknown and φ(x) of a known form determined by the physics of

the problem) then standard nonlinear adaptive methods are applicable [33, 67]. When the
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model error does not have a known parametric form, then more general on-line function

approximation-based techniques are required, e.g., [22, 26].

In this thesis, we will consider several control problems related to uncertain nonlin-

ear systems with the aid of on-line learning techniques. Solutions to these control problems

have many applications in vehicle control. These problems and their current states are

discussed in the following several sections.

1.2 Self-organizing Online Learning

In the past decades, on-line approximation based control has been considered ex-

tensively in e.g., [4, 9, 10, 12, 13, 21, 25, 30, 35, 38, 39, 49–51, 60, 76, 77]. The design and anal-

ysis of adaptive controllers involving on-line approximation to achieve stability and accurate

trajectory tracking in the presence of unknown or partially unknown nonlinear dynamics

have been well developed.

In general, on-line approximation based controllers cannot achieve an exact mod-

eling of unknown nonlinearities, inherent approximation errors could arise even if optimal

approximator parameters were selected. Under reasonable assumption on the basis func-

tion and the function to be approximated, for any given ǫ > 0, if the network approximator

has a sufficiently large number of nodes, then ǫ approximation accuracy can be achieved

by proper selection of the approximator parameters [27, 48]. Thus, to meet ǫ approxima-

tion accuracy, one approach is to allocate a sufficient large number of learning parameters.

However, allocating too many learning parameters bears the danger of over-parameterizing

the approximation. This may have computation and performance penalties. Another ap-
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proach is to define the approximator structure automatically during operation. With these

motivations, nonlinear adaptive control with function approximation employing automatic

structure adaptation has been discussed in a few articles [4, 10, 13, 21, 44, 45, 60, 64, 76, 77].

Articles [10, 60] used wavelet networks and adapted the structure of the network in response

to the evaluation of the magnitude of the output weights by “hard-thresholding”. Smoothly

interpolated linear models were considered in [13].

In [4, 64], local approximators within localized receptive field were defined and the

on-line approximation was tuned in a local region without affecting the approximation accu-

racy previously achieved in other regions. Therefore, the function approximation structure

is able to retain approximation accuracy as a function of the operating point. As in [13],

the structure adaptation is based on exploration: if none of the existing basis functions is

excited, then a new node is allocated. These articles also use gradient descent to adjust the

distance metric of each local approximator so that each receptive field is tuned according

to the local curvature properties of the unknown function. In [13, 44, 45], linearly param-

eterized local models were used, which is a special case of the Receptive Field Weighted

Regression (RFWR) approach. No stability results are given in [4, 64]. The common short-

coming of the approaches in [10, 13, 44, 45, 60] is that (i) they only address the stability

analysis for the state and the approximator parameters, not the change in the number of

basis functions, and (ii) the structure adaptation algorithms are defined by the trajectory,

not by the performance. New approximator nodes are added when the current state is suffi-

ciently far from all existing receptive field centers, whether or not additional approximation

accuracy is required. Recent articles [21, 77] developed an approach where the approxi-
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mation structure is adjusted during system operation, based on the observed trajectory

tracking performance. A self-organized state estimation approach is developed in [76] and

organizes the approximator structure based on estimation error. Article [21, 76, 77] focus

on models that are affine in the control variable.

In Chapter 2, we consider the tracking control of a n-th order nonaffine system.

The goal is to design a self-organizing on-line approximation based controller to achieve a

prespecified tracking accuracy, without using high-gain control nor large magnitude switch-

ing. For non-affine system control, article [75] proposed a high gain controller.

1.3 Point-wise Min-norm Optimal Control of Uncertain Non-

linear Systems

Optimal control theory was formally developed about fifty years ago in the seminal

works of L. S. Pontryagin [53] in the former Soviet Union and R. Bellman [8] in the United

States. While Pontryagin introduced the minimum principle, which gave necessary condi-

tions for the existence of optimal trajectories, Bellman introduced the concept of dynamic

programming. The development of dynamic programming led to the notion of the cele-

brated Hamilton-Jacobi Bellman (HJB) partial differential equation, which had the value

function as its solution. For the Linear Quadratic Gaussian (LQG) problem [3], i.e., the

H2 optimal control problem, the HJB partial differential equation becomes two separate

Riccati equations, which could be solved very efficiently by several algorithms. For optimal

control of general nonlinear systems, it is hard to obtain the optimal controllers. One reason
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is that the HJB equation is extremely hard to solve for nonlinear systems. Also, there is no

efficient numeric algorithm to solve it.

For the optimal control of uncertain nonlinear systems, one approach is to learn

the unknown system model offline and then design optimal controllers based on the esti-

mate models. Another approach is to apply nonlinear H∞ control theory and the optimal

controllers are obtained based on the Hamilton-Jacobi-Isaac (HJI) equations [15, 28], which

are hard to solve. Neural network based controllers were proposed in [1] to optimize both

H2 and H∞ norms of performances for uncertain nonlinear systems.

In Chapter 3, we consider optimal regulation and optimal tracking control of un-

certain nonlinear systems. To deal with the uncertain terms, we first propose a locally

weighted learning observer (LWLO) to estimate the unknown nonlinear system. Based on

the approximators that result from locally weighted learning observer, point-wise min-norm

problems are defined. For the defined optimal problems, analytic controllers are proposed

based on selected Lyapunov functions.

1.4 Approximately Optimal Control of Uncertain Nonlinear

Systems

For the methods derived in Chapter 3, the proposed controllers are optimal in

the sense of point-wise min-norm of the control input subject to a constraint on the state.

To solve the optimal control of nonlinear systems with respect to a cost function of the

state and the input, many techniques have been developed. For example, receding horizon
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control [42], approximate dynamic programming [54], approximating the HJB equation,

approximation of value functions [6, 62], etc.

For approximate dynamic programming, there are many methods [54]. For ex-

ample, value iteration, policy iteration, Q-learning, value function approximation, adaptive

critic design, etc. Adaptive critic design (ACD) is derived from approximate dynamic pro-

gramming [57]. Adaptive critic designs are based on an algorithm that cycles between a

policy improvement routine and a value-determination operation. At each optimizing cycle,

the algorithm approximates the optimal control law and the value function based on the

state. In ACD, the optimal control problem is solved without backforward iteration in time.

For continuous nonlinear systems, approximately optimal controllers for regulation

were proposed for continuous dynamic systems in [62]. By the proposed method, a series of

controllers were proposed based on a series of value functions. It was shown that the series

of value functions decreased and converged to the minimal value function corresponding to

the optimal control. The series of controllers derived from the series of value functions con-

verged to the optimal controller. In [6], in order to solve the optimal regulation problem the

Galerkin approximation method was applied to approximate the Hamilton-Jacobi-Bellman

(HJB) equation over a compact set containing the origin. It was shown that the Galerkin ap-

proximation converged to the solution of the generalized Hamilton-Jacobi-Bellman (GHJB)

equation and that the resulting approximate control was stabilizing on the same region as

the initial control under some assumptions. However, both controller design methods are

offline and require exact knowledge of the system dynamics. To make the design procedure

online, an adaptive optimal controller was proposed for regulation in [73]. The proposed

8



optimal controller converged to the optimal controller. In this design procedure, the value

functions were approximated by a neural network. In order to solve the weight parameters

a non-singularity condition was required at each step.

In Chapter 4, we consider the optimal control of the uncertain nonlinear system

shown in (4.1). By combining the results in adaptive critic design and the approximately

optimal control algorithms in [6, 62] we propose adaptive approximately optimal control

algorithms for optimal regulation.

1.5 Contributions of This Dissertation

The results in this dissertation make the following contributions.

• Self-organizing online learning: Tracking control of an n-th order nonaffine sys-

tem was considered. Self-organizing on-line approximation based controller was pro-

posed to achieve a prespecified tracking accuracy, without using high-gain control nor

large magnitude switching. It was shown that our proposed controllers can achieve

the prespecified tracking performance and require less computation during control.

Compared with the existing results, the contribution of this part is that the track-

ing control of high-order nonaffine systems is solved with the aid of a self-organizing

approximation and a low gain computationally efficient controller.

• Optimal control of uncertain nonlinear systems: Optimal regulation and opti-

mal tracking control of uncertain nonlinear systems were considered. Locally weighted

learning observers (LWLOs) were proposed to estimate the unknown nonlinear sys-
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tems. Based on the approximators that result from locally weighted learning observers,

point-wise min-norm problems were defined. For the defined optimal problems, an-

alytic controllers were proposed based on selected Lyapunov functions. The contri-

bution of this part is that the optimal regulation and the optimal tracking control of

uncertain nonlinear systems were solved by integrating local learning algorithms to

point-wise min-norm controllers.

• Approximately optimal control of uncertain nonlinear systems: Optimal

control of the uncertain nonlinear systems was considered. By combining the results

in adaptive critic design and the approximately optimal control algorithms in [62,

73, 74] adaptive approximately optimal control algorithms were proposed. In the

proposed algorithms the controllers are updated according to the information of the

value functions and converge to the optimal controllers. Compared with the offline

optimal controller design algorithms in [6, 62], the proposed algorithms work online

and for unknown systems.
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Chapter 2

Tracking Control of Nonaffine

Systems: A Self-organizing

Approximation Approach

In this chapter we consider the tracking control of a n-th order nonaffine system.

Our goal is to design a self-organizing on-line approximation based controller to achieve a

prespecified tracking accuracy, without using high-gain control nor large magnitude switch-

ing. Towards this end, in the operational region we propose an adaptive controller based

on the self-organizing idea in [77] and approximation ideas in [25, 49]. To make sure the

state of the system comes into the operational region a sliding mode control is proposed as

a supervisory control. Once the state of the system comes into the operational region the

adaptive controller takes over the control. We will show that our proposed controllers will

achieve the prespecified tracking performance and require less computation during control.
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The remainder of this chapter is organized as follows. In Section 2.1, the problem

considered in this article is defined. In Section 2.2, the basic controller structure is presented.

In Section 2.3, a local weighted learning algorithm and a structure adaption are proposed.

Section 2.4 proves the stability of the proposed controller. Section 2.5 shows the effectiveness

of the proposed controller by a numerical example. The last section concludes this chapter.

2.1 Problem Statement

Consider single-input single-output (SISO), input-state feedback linearizable sys-

tems of the form

ẋi = xi+1, 1 ≤ i ≤ n − 1 (2.1)

ẋn = h(x, u) (2.2)

y = x1 (2.3)

where x = [x1, · · · , xn]⊤ ∈ Rn is the state vector, y ∈ R is the output, and u ∈ R is the

control signal. The function h(x, u) represents nonlinear effects that are unknown at the

design stage. The function h is assumed to be differentiable with respect to u.

Given a desired bounded trajectory xd(t) with derivatives x
(i)
d (t), i = 1, . . . , n,

each of which is available and bounded ∀t ≥ 0. For convenience, we denote

xc(t) = [x1c, x2c, . . . , xnc]
⊤ = [xd, x

(1)
d , . . . , x

(n−1)
d ]⊤.

Control Problem: Design the control signal u to steer x1(t) to track the desired

trajectory xd(t) and to achieve boundedness for the states xi for i = 2, . . . , n.
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Assumption 2.1.1 For any x ∈ Rn and u ∈ R,

ǫ0(x) <
∂h(x, u)

∂u
< 2c(x) (2.4)

|h(x, 0)| ≤ b(x) (2.5)

where ǫ0(x), c(x), and b(x) are known positive functions.

Remark 2.1.2 In Assumption 2.1.1, the first inequality in (2.4) makes sure that the system

is controllable at any time. The second inequality in (2.4) will ensure that f(x) defined in

eqn. (2.16) is unique and continuous (see Lemma 2.2.3). The bound b(x) in (2.5) will be

used by the supervisory controllers to ensure that the tracking error comes into and stays in

a bounded operational region which is chosen by the designer.

2.2 Tracking Errors and Basic Control Structure

Throughout the article the tracking error components are defined as

x̃i = xi − xic, 1 ≤ i ≤ n

where x̃ is the tracking error vector defined as

x̃ = x − xc = [x̃1, . . . , x̃n]⊤.

Note that

˙̃xi = x̃i+1, 1 ≤ i ≤ n − 1.

Following the derivation in [67], let

e(t) = L⊤x̃(t) (2.6)
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where L = [l1, l2, . . . , ln−1, 1]
⊤ is a constant vector. Note that L⊤x̃ = 0 defines an (n − 1)-

dimensional hyperplane in ℜn. The absolute value of e(t) represents the distance of x̃(t)

from this hyperplane. On the hyperplane e(t) = 0, the dynamics of x̃1 are defined by

x̃n + ln−1x̃n−1 + . . . + l3x̃3 + l2x̃2 + l1x̃1 = 0

˙̃xn−1 + ln−1
˙̃xn−2 + . . . + l3 ˙̃x2 + l2 ˙̃x1 + l1x̃1 = 0

...

(sn−1 + ln−1s
n−2 + · · · + l3s

2 + l2s + l1)x̃1 = 0

where s is the Laplace variable; therefore, L is selected so that

(sn−1 + ln−1s
n−2 + · · · + l3s

2 + l2s + l1) = 0

is a Hurwitz polynomial. In this case, the transfer function

x̃1(s)

e(s)
=

1

sn−1 + ln−1sn−2 + · · · + l3s2 + l2s + l1

is Bounded-Input-Bounded-Output (BIBO) stable. If e(t) can be shown to be bounded for

all t ≥ 0, then each x̃i, 1 ≤ i ≤ n is bounded.

To allow the bounds to be easily expressed, we choose L such that

e(t) =

(

d

dt
+ λ

)n−1

x̃1 =

n
∑

i=1

Ci−1
n−1

[

di−1

dti−1
x̃1

]

λn−i

= [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]x̃

for some constant λ > 0. This implies that the vector L in (2.6) is defined as

li = Ci−1
n−1λ

n−i, 1 ≤ i ≤ n
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where

Ci−1
n−1 =

(n − 1)!

(n − i)!(i − 1)!

is the binomial coefficient. The transfer functions to x̃i from e are

x̃i(s)

e(s)
=

x̃1(s)

e(s)
si−1 =

si−1

(s + λ)n−1

=
1

(s + λ)n−i
·
(

1 − λ

s + λ

)i−1

, 1 ≤ i ≤ n.

The advantage of defining e(t) in this manner is that if there exists a constant µe > 0 such

that the magnitude of e is bounded as |e(t)| ≤ µe, ∀t ≥ 0, then the tracking errors are

asymptotically bounded by

|x̃i(t)| ≤ 2i−1λi−nµe, 1 ≤ i ≤ n, (2.7)

which yields

‖x̃(t)‖2 ≤ ‖λv‖2µe as t → ∞ (2.8)

with

λ⊤
v = [λ1−n, 2λ2−n, . . . , 2n−2λ, 2n−1]

and ‖ · ‖2 being the 2-norm of a vector. See page 279-280 of [67] for additional detail.

The self-organizing on-line approximation based controller developed in the sub-

sequent sections is designed to maintain stability and to achieve a tracking accuracy of

|e(t)| < µe with µe prespecified at the design stage. If L is selected as in the previous

paragraph, then |e(t)| < µe ensures that

|x̃1| <
1

λn−1
µe

.
= µx
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as t → ∞. Given a positive constant σ > 0, let

Dn = {x ∈ Rn| |x̃i| ≤ 2i−1λi−nσ, 1 ≤ i ≤ n}.

It is obvious that Dn is bounded since xc and σ are bounded. Noting (2.7), if |e| ≤ σ, then

x ∈ Dn. We call the region Dn the operational region. It can be adjusted by the choice of

σ.

With the definition of e in (2.6),

ė = Λ + h(x, u) = Λ + cu + (h(x, u) − cu) (2.9)

where c is the bounded function in eqn. (2.4), and

Λ = λn−1x̃2 + C1
n−1λ

n−2x̃3 + · · · + Cn−2
n−1λx̃n − x

(n)
d . (2.10)

We choose the control law

u =



















1

c

(

−Ke − Λ − uad − ǫf sat

(

e

µe

))

, |e| ≤ σ

− 1

ǫ0
[Ke + (|Λ| + b(x))sign(e)], |e| > σ

(2.11)

where constant K > 0, σ(> µe) is a positive constant, ǫf (> 0) will be defined later,

sat(y) =















sign(y), if |y| > 1

y, otherwise

and uad is defined later in (2.28).

Remark 2.2.1 If |e| > σ, the controller is a sliding mode control [61, 67]. If |e| ≤ σ, the

controller is self-organizing in a manner that will be defined in the following section. We

choose the control law (2.11) to be a switching controller because we want to use a high gain
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control to steer the state of the system to the bounded operational region Dn. Within this

operational region an adaptive learning controller is in charge of the control. Hence, in the

operational region the control does not use large magnitude high gain switching even though

the system model is unknown (see Fig. 2.1 and Remark 2.4.2 for more details).

Lemma 2.2.2 If |e| > σ, with the control in (2.11), the tracking error e exponentially

decreases.

Proof: By the intermediate value theorem, there exists β ∈ [0, u] such that eqn. (2.9)

can be written as

ė = Λ + h(x, 0) +
∂h(x, β)

∂u
u. (2.12)

For |e| > σ, select the Lyapunov function

V =
1

2
e2. (2.13)

Differentiating V along the solution of (2.12) with the control (2.11) yields

V̇ = e[Λ + h(x, 0)] − e

ǫ0

∂h(x, β)

∂u
[Ke + |Λ|sign(e) + b sign(e)]

≤ −Ke2

ǫ0

∂h(x, β)

∂u
−

[

1

ǫ0

∂h(x, β)

∂u
− 1

]

|e|(|Λ| + b)

≤ −Ke2

ǫ0

∂h(x, β)

∂u
≤ −Ke2. (2.14)

Therefore, e exponentially decreases if |e| > σ.

Due to the exponential decrease proved in Lemma 2.2.2, from any initial condition

e(0), the condition |e(t)| ≤ σ is achieved in finite time. Once the condition |e(t)| ≤ σ is

achieved, it will be maintained for all future times. In the following, we mainly discuss the

case that |e| ≤ σ.
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If |e| ≤ σ, substituting (2.11) into (2.9) yields

ė = −Ke + (∆(x, u) − uad) − ǫf sat

(

e

µe

)

(2.15)

where

∆(x, u) = h(x, u) − cu.

If

∆(x, u) − uad = 0,

it is easy to prove that e converges to zero. Lemma 2.2.3 shows that under suitable assump-

tions there indeed exists a unique uad = f(x) such that

∆(x, u) − f(x) = 0. (2.16)

Lemma 2.2.3 For eqn. (2.16) with u defined by the first equation in (2.11) and uad = f(x),

under Assumption 2.1.1, there exits a unique continuous f(x) such that f(x) satisfies (2.16)

for all x ∈ Dn.

Proof: Noting Assumption 2.1.1, Lemma 2.2.3 can be proved by following the proof of

Lemma 1 in [9, 49].

It should be noted that in (2.16) u is defined by the first equation in (2.11) with

uad = f(x). The existence of f(x) is guaranteed by the inequalities in (2.4). However,

we cannot obtain the explicit expression of f because h(x, u) is unknown. In the sequel,

we apply a self-organized locally weighted learning algorithm (LWL) to develop a basis for

and an approximation to f(x). The importance of Lemma 2.2.3 is that f is not a explicit

function of u. This allows (2.11) to be written as an explicit function of x because uad will

only be a function of x not u.
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2.3 LWL Algorithm and Structure Adaptation

In LWL [4, 21, 64, 76], the approximation to f(x) at a point x is formed from the

normalized weighted average of local approximators f̂k(x) such that

f̂(x) =

∑

k ωk(x)f̂k(x)
∑

k ωk(x)
(2.17)

where each ωk is nonzero only on a set denoted by Sk (defined below in eqn. (2.18)) over

which f̂k will be adapted to improve its accuracy relative to f .

2.3.1 Weighting Functions

We define a continuous, non-negative and locally supported weighting function

ωk(x) for the k-th local approximator. Denote the support of ωk(x) by

Sk =
{

x ∈ Dn | ωk(x) 6= 0
}

. (2.18)

Let S̄k denote the closure of Sk. Note that S̄k is a compact set. An example of a weighting

function satisfying the above conditions is the biquadratic kernel defined as

ωk(x) =















(

1 −
(

||x−ck||
µ

)2
)2

, if ||x − ck|| < µ

0, otherwise.

(2.19)

where ck is the center location of the k-th weighting function and µ is a constant which

represents the radius of the region of support. In this example, the region of support is

Sk =
{

x ∈ Dn | ‖x − ck‖ < µ
}

. (2.20)

Since the approximator is self-organizing, the number of local approximators N(t)

is not constant. Conditions for increasing N at discrete instants of time are presented in
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Section 2.3.3. Since N is time varying, the region over which the approximator defined in

eqn. (2.17) can have a nonzero value is also time varying. This region is defined as

AN(t) =
⋃

1≤k≤N(t)

Sk.

When x(t) ∈ AN(t), there exists at least one k such that ωk(x) 6= 0. The normalized

weighting functions are defined as

ω̄k(x) =
ωk(x)

∑N(t)
k=1 ωk(x)

.

The set of non-negative functions {ω̄k(x)}N(t)
k=1 forms a partition of unity on AN(t):

N(t)
∑

k=1

ω̄k(x) = 1, for all x ∈ AN(t).

Note that the support of ωk(x) is exactly the same as the support of ω̄k(x).

When x(t) /∈ AN(t), all ωk(x) for 1 ≤ k ≤ N(t) are zero. Therefore, to complete

the approximator definition of eqn. (2.17) to be valid for any x ∈ ℜn:

f̂(x) =



















N(t)
∑

k=1

ω̄k(x)f̂k(x) if x ∈ AN(t)

0 if x ∈ ℜn −AN(t).

(2.21)

In the reminder of this section, we will only consider the case when x(t) ∈ AN(t) to give all

definitions for the LWL algorithm.

2.3.2 Local Approximators

We define

f̂k(x) = ΦT
k θ̂fk

(2.22)
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where Φk is a prespecified vector of continuous basis functions. For the function f(x), the

vector θ∗fk
denotes the unknown optimal parameter estimates for x ∈ S̄k:

θ∗fk
= arg min

θ̂fk

(
∫

S̄k

ωk(x)
∣

∣

∣
f(x) − f̂k(x)

∣

∣

∣

2
dx

)

. (2.23)

Note that θ∗fk
is well defined for each k because f and f̂k are smooth on compact S̄k.

Therefore,

f∗
k = Φ⊤

k θ∗fk

will be referred to as the optimal local approximator to f on S̄k.

Let the optimal approximation error to f on S̄k be denoted as ǫfk
:

ǫfk
(x) = f(x) − f∗

k (x). (2.24)

Since in subsequent expressions ǫfk
only appears as a product with ωk(x), the value of ǫfk

(x)

is immaterial outside S̄k. In order for ǫfk
to be defined everywhere, let

ǫfk
(x) =















f(x) − f∗
k (x), on S̄k,

0, otherwise.

The controller will use a known design constant ǫf > 0. We make the following assumption.

Assumption 2.3.1 The basis set Φk and µ are selected such that |ǫfk
(x)| ≤ ǭf for x ∈ S̄k

for some (unknown) positive constant ǭf < ǫf .

For a linear basis set Φ⊤
k = [1, x − ck] for k ∈ [1, N ] when the region of supports

are chosen as (2.20), this assumption is satisfied if

|f ′′(x)| <
ǫ

2µ2
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for x ∈ Sk. Note that the boundedness of maxx∈S̄k
(|ǫfk

(x)|) comes from the fact that |ǫfk
|

is continuous on compact S̄k.

For any x ∈ AN(t), f(x) can be represented as the weighted sum of the local

optimal approximators:

f(x) =
∑

k

ω̄k(x)f∗
k (x) + δf (x). (2.25)

This expression defines the optimal approximation error δf (x) on AN(t) which satisfies

|δf (x)| ≤ ǭf , since

|δf | =

∣

∣

∣

∣

∣

f(x) −
∑

k

ω̄k(x)f∗
k (x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k

ω̄k(x)(f(x) − f∗
k (x))

∣

∣

∣

∣

∣

≤
∑

k

ω̄k(x)|ǫfk
(x)| (2.26)

|δf | ≤ max
k

(|ǫfk
|)

∑

k

ω̄k(x) = ǭf . (2.27)

Therefore, if each local optimal model fk(x) has accuracy ǭf on S̄k, then the global accuracy

of
∑

k ω̄k(x)fk(x) on AN(t) also achieves at least accuracy ǭf . The δf term in (2.25) is the

inherent approximation error of f̂(x) for f(x).

For the adaptive portion of the control law we choose

uad = f̂ . (2.28)

To obtain f̂ , we need to estimate θfk
. For x ∈ Ai, we choose the adaptive law

˙̂
θfk

=















Γfk
ω̄keΦk if |e| > µe

0 otherwise

(2.29)

where µe(< σ) is a positive constant. The parameter adaptation will turn off when either

x /∈ Ai or |e| ≤ µe. This choice of adaption law is justified in eqn. (2.37).
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2.3.3 Structure Adaptation

We initialize f̂ , the approximation to f in (2.21), with no local approximators,

i.e., N(0) = 0; therefore, the set A0 is initially empty. We define the following criteria for

adding a new local approximator to the approximation structure. A local approximator f̂k

is added and N(t) is increased by one:

1. if |e| ≤ σ and the present operating point x(t) does not activate any of the existing

local approximators (i.e., max1≤k≤N(t)(ωk(x)) = 0); and

2. the function V̇0(t) ≥ 0 (V0 is defined in (2.34)) while µe < |e(t)| ≤ σ.

With the above criterions, N(t) is non-decreasing. AN(t) changes as N(t) increases.

Therefore, the structure of f̂ in (2.21) changes as N(t) increases. This criteria is motivated

following eqn. (2.36).

2.4 Self-organizing Control and Stability Analysis

For the controller described in Sections 2.2-2.3, we have the following result.

Theorem 2.4.1 The system described by eqn. (2.1–2.2) with control law

u =



















1

c

(

−Ke − Λ − f̂ − ǫf sat

(

e

µe

))

, |e| ≤ σ

− 1

ǫ0
[Ke + (|Λ| + b(x))sign(e)], |e| > σ

(2.30)

using the self-organizing function approximation (2.21) with update laws (2.29) and struc-

ture adaptive criterion in Subsection 2.3.3 has the following properties:

1. x̃, e, θ̃fk
, θ̂fk

, N(t) ∈ L∞;
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2. e(t) = L⊤x̃ is ultimately bounded by |e(t)| ≤ µe;

3. each x̃i is ultimately bounded by |x̃i| ≤ 2i−1λi−nµe, for i = 1, . . . , n, with λ being a

constant selected for designing the L vector,

where θ̃fk
= θ̂fk

− θ∗fk
.

In the proof, we will use the following notation. For i ≥ 1, we denote the time at

which the i-th local model is added as Ti (i.e., N(Ti) = i and limǫ→0 N(Ti − ǫ) = i − 1).

With this notation, N(t) is constant with value i for t ∈ [Ti, Ti+1). The center location of

the new local approximator ci is defined such that x(Ti) ∈ Si and cj 6∈ Si for j ∈ [1, i). It is

possible that for some i, the approximator has sufficient approximation capability, in which

case Ti+1 = ∞. In the proof, the analysis will be concerned with bounding the duration of

time for which |e(t)| > µe > 0. Therefore, to decrease redundancy later, we introduce the

function µ̄(e, µe, t1, t2) which measures the amount of time in the interval [t1, t2] for which

|e(t)| > µe. For example, this function could be computed as

µ̄(e, µe, t1, t2) =

∫ t2

t1

1 (|e(t)| − µe) dt, (2.31)

where the function 1(λ) is defined as

1(λ) =















1 if λ > 0

0 otherwise.

Proof: If |e| > σ, with control law (2.30) we have proven that e will exponentially

decrease. In the following, we only consider the case that |e| ≤ σ. With the control law

defined in eqn. (2.11), for x ∈ Dn, the closed-loop dynamic equation derived from (2.6),

24



using (2.15), (2.16), and (2.28), is

ė = −Ke + (f − f̂) − ǫf sat

(

e

µe

)

. (2.32)

The proof is completed in three steps.

A. Analysis for x /∈ AN(t)

We will first consider the tracking performance for x /∈ AN(t) (i.e., f̂ = 0). In this

case, the closed-loop dynamic equation for e defined in (2.32) becomes

ė = −Ke + f − ǫf sat

(

e

µe

)

. (2.33)

For x(t) /∈ AN(t), define the Lyapunov function as

V0(t) = V0(e(t)) =
1

2
e2. (2.34)

Then the derivative of V0 along solutions of (2.33) is

V̇0 = −Ke2 + e
(

f − ǫf sat

(

e

µe

)

)

. (2.35)

When |e(t)| > µe and |f(x)| ≤ ǫf , then

e
(

f − ǫf sat

(

e

µe

)

)

≤ 0.

The derivative of V0(t) is reduced to

V̇0 ≤ −Ke2 = −2KV0 < 0. (2.36)

Therefore, if |f(x)| ≤ ǫf while |e(t)| > µe, then the Lyapunov function V0 must decrease.

If V0 increases while |e(t)| > µe, then it must be true that |f(x)| > ǫf . This motivates the

structure adaptation criteria defined in Section 2.3.3.
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B. Analysis for t ∈ [Ti, Ti+1)

The goal of this section is to prove that for t ∈ [Ti, Ti+1) (i.e., the number of local

regions over this time interval is fixed to i), then x̃, e, θ̃fk
, θ̂fk

∈ L∞ for k = 1, . . . , i and

that the total time is bounded for which |e(t)| > µe. To simplify the notation, we use the

fact that i = N(Ti) and define T−
i+1 = limǫ→0(Ti+1 − ǫ).

As shown in Section 2.3.2, the approximation

f∗(x) =
∑

k

ω̄k(x)f∗
k (x)

achieves at least accuracy ǫf on Ai (i.e., |f(x)− f∗(x)| ≤ ǫf for any x ∈ Ai). The following

analysis considers the adaptation of f̂ to achieve the tracking specification for x ∈ Ai.

For x(t) ∈ Ai, we consider the Lyapunov function

Vi(t) =
1

2
e2 +

1

2

i
∑

k=1

θ̃⊤fk
Γ−1

fk
θ̃fk

= V0 + V i
θ

where

V i
θ =

1

2

i
∑

k=1

θ̃⊤fk
Γ−1

fk
θ̃fk

and the positive definite matrices Γfk
, k = 1, · · · , i represent learning rates.

Let t ∈ [t1, t2] ⊂ [Ti, Ti+1) denote a time interval for which e(t) is outside the

deadzone (i.e., |e(t)| ≥ µe). Over this time interval, the state x(t) could be either outside

Ai or inside Ai.

1. For any subinterval t ∈ [τ1, τ2] ⊂ [t1, t2] for which x(t) /∈ Ai, the parameter adaptation

will automatically stop because ω̄k(x) = 0 ∀k = 1, . . . , i. V i
θ (t) is constant over this

time interval. Therefore, according to (2.36),

V̇i(t) = V̇0(t) ≤ −Ke2
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and Vi decreases for t ∈ [τ1, τ2], such that Vi(τ2) ≤ Vi(τ1).

2. For any subinterval t ∈ [τ2, τ3] ⊂ [t1, t2] for which x(t) ∈ Ai, the time derivative of

Vi(t) along the solution of (2.32) is:

V̇i(t) = e
(

f − f̂ − ǫf sat

(

e

µe

)

)

+
i

∑

k=1

θ̃⊤fk
Γ−1

fk
θ̇fk

− Ke2

= e

i
∑

k=1

ωkΦ
⊤
k (θ∗fk

− θfk
) + eδf − eǫf sat

(

e

µe

)

+

i
∑

k=1

(

θ̃⊤fk
Γ−1

fk
θ̇fk

)

− Ke2

= −Ke2 + eδf − eǫf sat

(

e

µe

)

+

i
∑

k=1

θ̃⊤fk
Γ−1

fk

(

˙̂
θfk

− Γfk
eωkΦk

)

. (2.37)

Substituting (2.29) into (2.37), we obtain

V̇i(t) ≤ −Ke2 (2.38)

for any t ∈ [τ2, τ3].

Therefore, ∀t ∈ [t1, t2] with |e(t)| > µe, we have shown that

V̇i(t) ≤ −Ke2 < −Kµ2
e < 0. (2.39)

From this, it is straightforward to show that for µ̄ defined in eqn. (2.31)

Vi(t2) − Vi(t1) ≤ −Kµ2
e(t2 − t1) = −Kµ2

eµ̄(e, µe, t1, t2)

which implies

µ̄(e, µe, t1, t2) ≤ Vi(t1) − Vi(t2)

Kµ2
e

≤ Vi(t1)

Kµ2
e

.

Next, we consider the case where e(t) enters the deadzone at time t2, stay in-

side the deadzone until t3 ≥ t2, and leaves the deadzone at t3. Therefore, t ∈ [t2, t3] ⊂
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[Ti, Ti+1) denotes a time interval for which |e(t)| ≤ µe and N(t) is constant. Therefore,

µ̄(e, µe, t2, t3) = 0. In addition, the following facts are true: (1) on the interval [t2, t3], the

approximator parameters are constant (i.e., adaptation is off); (2) |e(t2)| = |e(t3)| = µe;

and, (3) |e(t)| ≤ |e(t3)|, ∀t ∈ [t2, t3]. Using these facts, it is straightforward to show that

Vi(t2) = Vi(t3) and Vi(t) ≤ Vi(t3), ∀t ∈ [t2, t3]. Note that these facts are independent of

whether x(t) enters or leaves the region Ai(t) over the time interval [t2, t3].

This paragraph will consider the stability properties for any t ∈ [Ti, Ti+1). Ac-

cording to the criteria given in Section 2.3.3 for adding the ith local region, |e(t)| > µe at

t = Ti. Let t1 = Ti. Note that e(t1) is outside the deadzone. Assume that e(t) enters the

deadzone at t2j , leaves at t2j+1, for j ≥ 1, and eventually stays outside the deadzone until

T−
i+1. Let t̄ ∈ [Ti, Ti+1) be the last time in this interval such that |e(t̄)| ≤ µe. Therefore, the

total time outside the deadzone for t ∈ [Ti, Ti+1) is

µ̄(e, µe, Ti, T
−
i+1) =

∑

j≥1

(t2j − t2j−1) + (T−
i+1 − t̄)

≤ 1

Kµ2
e

[

∑

j≥1

(

Vi(t2j−1) − Vi(t2j)
)

+
(

Vi(t̄) − Vi(T
−
i+1)

)

]

=
1

Kµ2
e

(

Vi(Ti) − Vi(T
−
i+1)

)

. (2.40)

Eqn. (2.40) together with the facts that Vi(Ti) is finite and Vi(T
−
i+1) < Vi(Ti) proves that

on each interval [Ti, Ti+1), the total time outside the deadzone is finite. Therefore, either

Ti+1 is infinite with |e(t)| ultimately bounded by µe, or Ti+1 is finite with N(t) increased

by one at t = Ti+1.

The fact that ∀ t ∈ [Ti, Ti+1), Vi(t) ≤ Vi(Ti) follows directly from previous analysis

whether |e(t)| > µe or |e(t)| ≤ µe. Therefore, x̃, e, θ̃fk
, θ̂fk

∈ L∞(Ti, T
−
i+1). Note that
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these properties hold even if the state enters or leaves the region Ai an infinite number of

times, or if the combined tracking error e enters or leaves the deadzone an infinite number

of times.

Since Dn is compact, x is bounded. Assume N tends to infinity, then there exists

a bounded sequence of center locations {ci}∞i=1 with each ci ∈ Dn. Any bounded infinite

sequence on a compact set has a convergent subsequence. Let {cik}∞k=1 be a convergent

subsequence of {ci}∞i=1, then there exists an integer L such that for ik > L, ‖cik −cik−1
‖ < µ.

But ‖ci − cj‖ > µ (∀i, j) by the structure adaptation. There is a contradiction. Therefore,

N must be finite.

C. Analysis for t ∈ [0,∞)

Let the time interval of operation be specified as [T0, Tf ], where Tf can be infinite.

We initialize the approximator structure with N(T0) = 0. Denote the times at which N(t)

increases as Ti as discussed above.

When t ∈ [T0, T1), N(t) = 0 and f̂ = 0. Either the total time such that |e(t)| > µe

is less than 1
K

ln
(

|e(T0)|
µe

)

, T1 = ∞, and the theorem is proved; or, T1 is finite. In either

case,

V0(T
−
1 ) ≤ max

(

V0(T0),
1

2
µ2

e

)

.

For i ≥ 1 the i-th local region is added at t = Ti. Next, we prove the boundedness

of each Vi(Ti) during the transition from Vi−1(T
−
i ) to Vi(Ti), i.e., we want to show that each

Vi(Ti) has a finite value. The Lyapunov function at t = Ti is

Vi(Ti) =
1

2
e2(Ti) +

1

2

i
∑

k=1

θ̃⊤fk
(Ti)Γ

−1
fk

θ̃fk
(Ti)
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Note that e(Ti) = e(T−
i ), because e(t) is continuous during the transition from T−

i to

Ti. Since x(Ti) does not activate the first (i − 1) local approximators when the ith local

approximator is added at t = Ti, the parameter estimates θ̂fk
, k = 1, · · · , i−1 are unchanged

from t = T−
i to t = Ti. Thus,

Vi(Ti) =
1

2
e2(T−

i ) +
1

2

i−1
∑

k=1

θ̃⊤fk
(T−

i )Γ−1
fk

θ̃fk
(T−

i ) +
1

2
θ̃⊤fi

(Ti)Γ
−1
fi

θ̃fi
(Ti)

= Vi−1(T
−
i ) +

1

2
θ̃⊤fi

(Ti)Γ
−1
fi

θ̃fi
(Ti)

For any t ∈ [Ti−1, T
−
i ], Vi−1(t) ≤ Vi−1(Ti−1). Then we proceed to attain

Vi(Ti) ≤ Vi−1(Ti−1) +
1

2
θ̃⊤fi

(Ti)Γ
−1
fi

θ̃fi
(Ti)

≤ 1

2
e(T1)

2 +
1

2

i
∑

k=1

θ̃⊤fk
(Tk)Γ

−1
fk

θ̃fk
(Tk). (2.41)

For k = 1, · · · , i, each θ̃fk
(Tk) = θ̂fk

(Tk) − θ∗fk
has a finite value as long as the initial

parameter estimate θ̂fk
(Tk) at t = Tk is finite. Since only a finite number of increments

of N can occur (i.e., N(Ti) = i < ∞), the summation term on the right of the inequality

(2.41) has a finite value. The e(T1) term is also a finite value. This directly yields that

Vi(Ti) < ∞, which implies that x̃, e, θ̃fk
, θ̂fk

∈ L∞.

The ultimate bound on each x̃i comes directly from (2.7), which is guaranteed by

the selection of L as discussed in [67].

Remark 2.4.2 In Theorem 2.4.1, the proposed control law consists of two parts. When

|e| > σ, the control law is a sliding mode control. The magnitude of the control depends on

the bound function b(x). When |e| ≤ σ, the control law is a self-organizing control. The

self-organizing control learns the unknown system and improves the tracking performance
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gradually based on the structure adaptation scheme. In the self-organizing control the mag-

nitude of the self-organizing control does not depend on the bound function b(x). Fig. 2.1

shows as a solid line a sketch of the magnitude of the switching term in the control law in

Theorem 2.4.1. At the switching hyperplane |e| = σ, the controller (2.30) is discontinuous.

During the control, at some finite time the controller may be switching. The proof of Theo-

rem 1 shows that |e| ≤ µe as time tends to infinity. Therefore, as time tends to infinity the

controller is not switching. In the control, several control parameters play important roles.

Constant σ determines the size of the operational region Dn to which the self-organizing

control applies. If σ is large, the size of the region Dn will be large. Constant µe(< σ)

determines the ultimate bound on the tracking error. During the control, µ determines the

size of the locally learning region. If µ is small, ǫf can be chosen small. But small µ means

that there will potentially be a large number of local learning regions. In practical control,

the control parameters should be chosen according to the tradeoff of different factors.

                             -e    e                           s

-s

(|L|+b(x))

-(|L|+b(x))

Figure 2.1: Sketch of the magnitude of the switching term in the control laws of eqns. (2.43)
(dotted) and (2.30) (solid) vs e.
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Remark 2.4.3 The tracking control problem could also be solved by

u = − 1

ǫ0
(Ke + (|Λ| + b(x))sign(e)) (2.42)

with e and Λ defined in (2.6) and (2.10), respectively; or by

u = − 1

ǫ0
(Ke + (|Λ| + b(x))sat(e/ε)) (2.43)

where ε is a positive constant. The control of (2.42) achieves finite time convergence of

e to zero and asymptotic convergence of x(t) to xc(t), but requires control with magnitude

|Λ|+b(x) switching at very high rates. The control of (2.43) achieves finite time convergence

to |e| ≤ ε and ‖x − xc‖ < γε where γ is a constant determined by the choice of L in (2.6).

The control of (2.43) still requires control with magnitude |Λ| + b(x) and within the region

of the sat function the effective gain is (‖Λ‖+b)/ε which can be quite large when the desired

accuracy ε is small. A magnitude of the switching term in the u from (2.43) as a function

of e is shown as the dotted line in Fig. 2.1. In this paper we have proposed a new approach.

We introduce a new parameter σ > 0 which is finite, but can be significantly larger than

µe. A large magnitude sliding mode term will be designed (see eqn. (2.11)) to ensure that

|e(t)| ≤ σ is achieved in finite time and maintained for all future times. When |e(t)| ≤ σ

a self-organizing approximation based controller is designed to ultimately achieve |e| ≤ µe.

Due to the inclusion of the self-organizing approximator, the control is able to achieve this

same tracking accuracy using a term of magnitude ǫf which is small in comparison to the

switching term in control law (2.42). Fig. 2.1 shows as a solid line a sketch of the magnitude

of the switching term from the proposed approach of (2.11).
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2.5 Simulation

We consider the following example for illustrative purpose.

ẋ1 = x2

ẋ2 = h(x, u)

where x = [x1, x2]
⊤, h(x, u) is unknown during the control. For simulation, we assume that

h(x, u) = sin(0.4(x1 + x2)) + 2u + sin(u).

Obviously, h(x, u) satisfies Assumption 2.1.1 with ǫ0 = 1, c(x) = 2, and b(x) = 2.

Given a desired trajectory [xd(t), x
(1)
d (t), x

(2)
d (t)] = [z1, z2, z3] which is generated

by the third order system

ż1 = z2

ż2 = z3

ż3 = a1(r − z1) − a2z2 − a3z3

where [a1, a2, a3] = [27, 27, 9] such that the transfer functions

x
(i)
d

r
=

27si

s3 + 9s2 + 27s + 27
, i = 0, 1, 2

are BIBO stable. As long as r(t) is bounded, signals xd, x
(1)
d , x

(2)
d will be continuous and

bounded. The main idea of such a prefilter approach to generating the reference trajectory is

that the user specifies an arbitrary signal r. The prefilter computes the necessary derivatives

and ensures that Assumption 2.1.1 is satisfied. Theoretically, r can be any bounded signal.

For the purpose of this simulation r is selected to be 3 sin(0.1πt).
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The tracking accuracy we specify to be achieved is that as t → ∞, |x̃1| ≤ µx = 0.02

with control gain K = 1. The linearly combined tracking error is defined as e = L⊤x̃ =

[λ, 1]x̃ with λ selected to be 1. The desired tracking accuracy for e(t) is selected to be

|e| ≤ µe = 0.02 so that we can ensure that |x̃1| ≤ 1
λ
µe

.
= µx = 0.02 ultimately. The sliding

mode control is in charge if |e| > σ = 1. The function approximation accuracies are specified

as ǫf = 0.03.

The weighting function is the biquadratic kernel of the form

ωk(x) =















(

1 − R2
)2

, if R < 1

0, otherwise.

(2.44)

where

R =

∥

∥

∥

∥

|x1 − ck,1|
µ

,
|x2 − ck,2|

µ

∥

∥

∥

∥

∞

.

For this example, as done by the authors of [4, 21, 45, 76, 77], we specify the local basis

function as x̄k = [1, x1 − ck,1, x2 − ck,2]
⊤ with ck being the center of the S̄k. Therefore, f∗

k

is the optimal local affine approximation to f on S̄k. We select µ = 0.4. The parameter

estimate on the first allocated region, θ̂f1
, will be initialized at t = T1 as θ̂f1

(T1) = [0, 0, 0]⊤.

When the k-th (k ≥ 2) center is allocated at t = Tk, the initial parameter estimate θ̂fk
(Tk)

is selected either to be zero vector or based on θ̂fj
(Tk), where j (j < k) is the index of the

closest existing center to the k-th center. The logic for the parameter initialization is as

follows:
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if (|ck,1 − cj,1| < 1.5µ) and (|ck,2 − cj,2| < 1.5µ),

θ̂fk,1(Tk) = x̄⊤
j θ̂fj

(Tk)

θ̂fk,2(Tk) = θ̂fj ,2(Tk)

θ̂fk,3(Tk) = θ̂fj ,3(Tk)

else,

θ̂fk
(Tk) = [0, 0, 0]⊤.

This initialization forces the k-th approximator to have the same value as the j-th approx-

imator would have at the center of Sk. This is a means of “boot strapping” the learning

process. The adaptation rate matrix is set to Γfk
= diag([1, 1, 1]) where diag(v) is the

square diagonal matrix with diagonal component equal to the vector v.
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Figure 2.2: The combined tracking error e(t) in the time interval of [0, 20] (dotted), [20, 40]
(dash-dot), [40, 60] (dashed) and [60, 80] (solid).
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Fig. 2.2 shows the performance of e = x̃1 + x̃2 for t ∈ [0, 80]. Since the period of

the reference input is T = 20s, we have plotted e(t) for t ∈ [0, 20] (dotted), t ∈ [20, 40] (dash-

dot), t ∈ [40, 60] (dashed) and t ∈ [60, 80] (solid) along the same time axis. The time axis

of each plot has been shifted by a multiple of the period T = 20 to increase the resolution

of the time axis and to facilitate the comparison over repetitions of the trajectory. Note

that with online approximation, since the local regions are being revisited periodically with

T = 20, the tracking performance improves (i.e., e(t) tends to decrease) with each repetition

of the trajectory. This indicates the local approximators are learning to achieve increasingly

more accurate approximation to the actual function. It is particularly important to note

that the learning is a function of state. Therefore, the performance improvement will extend

to different trajectories to the extent that the new trajectories utilize the same regions in

state space. The improvement in tracking performance s shown in a different manner in

Fig. 2.3, which plots the tracking errors x̃1 and x̃2 over the first four repetitions of the

reference trajectory.

The number of local regions is depicted in Fig. 2.4. It can be seen that N

increases with time and reaches its maximum at time t ≈ 19s. After that N does not

increase. Therefore, after t = 19s no new local region is added.

The allocated center locations for t ∈ [0, 21] are indicated on a phase plane plot

of x1 versus x2 in Fig. 2.5. During the first 19 seconds, 17 centers are allocated. For the

remaining simulation time, no more centers are added. Each ‘×’ indicates an allocated

center location. The small square around each center indicates the support Sk of the

corresponding local approximator. Fig. 2.5 also depicts the desired (dotted) and actual
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Figure 2.3: Plots of the tracking errors versus time t: (a) x̃1 versus t; (b) x̃2 versus t. Note
that the horizontal axes are identical and that the caption is only applied to the (b) graph.
The dotted lines are tracking errors in the time interval of [0, 20].The dash-dot lines are
tracking errors in the time interval of [20, 40]. The dashed lines are tracking errors in the
time interval of [40, 60]. The solid lines are tracking errors in the time interval of [60, 80].

(solid) trajectories over the time interval [0, 80].

Fig. 2.6(a) plots the time outside the deadzone µ̄(e, 0.02, t − 20, t) at 20 second

intervals, which is also the period of the commanded state xd(t). For example, consider

t = 20, Fig. 2.6(a) shows that the time outside the deadzone in the interval [t−20, t] = [0, 20]

is approximately 16s. Prior to t = 400s, the combined tracking error e enters the deadzone

and remains therein for the remainder of the simulation. Therefore, as shown in Fig. 2.6(b)

the total time outside the deadzone is finite as t goes to infinity. This demonstrates that

the tracking error is ultimately achieved using a self-organizing controller on Dn that does

not include large gains or large-amplitude high-frequency switching.
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Figure 2.4: Number of local regions along time

2.6 Conclusion

This chapter considers tracking control for nonaffine systems (2.1)-(2.3). In the

operational region a self-organizing controller is proposed with the aid of a lemma from

[9, 49] and the self-organizing approach proposed in [77]. The proposed controller has the

ability to adjust the structure of approximators and will make the tracking error smaller

than a given positive constant. The approach can be directly extended to case where

ẋn = f(x) + g(x)u + h(x, u) where f(x) and g(x) are known, and h(x, u) represents model
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Figure 2.5: Phase plane plot of x1 versus x2 for t ∈ [0, 80]s. The dotted line is the desired
trajectory for t ∈ [0, 80]s. The solid line shows the actual trajectory. The ×’s indicate the
assigned center locations and the small square around each center location represents the
associated region of support.

error. The approach can also be extended to case where

ẋ1 = x2 + ρ1(x1)

ẋ3 = x3 + ρ2(x1, x2)

...

ẋn−1 = xn + ρn−1(x1, . . . , xn−1)

ẋn = f(x) + g(x)u + h(x, u)

where ρi and h(x, u) are unknown, f(x) and g(x) are known. The simulation assumed

a periodic input to simplify the presentation, but Theorem 2.4.1 makes no assumption

regarding the periodicity of xc(t).
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Figure 2.6: Graphs indicating the incremental and cumulative time that the tracking error
e is outside the deadzone. (a) Each circle indicates the total time during the previous 20
second interval that the combined tracking error e was outside the deadzone (i.e., |e| > 0.02).
(b) Cumulative time outside the deadzone. Note that the horizontal axes are identical and
that the caption is only applied to the (b) graph.
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Chapter 3

Point-wise Min-norm Optimal

Control of Unknown Nonlinear

Systems Based on Locally

Weighted Learning

In this chapter, we consider optimal regulation and optimal tracking control of

uncertain nonlinear systems. To deal with the uncertain terms, we propose locally weighted

learning observers (LWLOs) to estimate the unknown nonlinear systems. Based on the

approximators that result from locally weighted learning observers, point-wise min-norm

optimal problems are defined for optimal regulation and optimal tracking control, respec-

tively. Based on the defined optimal control problems, analytic controllers are proposed
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with the aid of control Lyapunov functions. Simulation results show effectiveness of the

proposed control laws.

The organization of this chapter is as follows. In Sections 3.1 and 3.2, we discuss

optimal regulation and tracking control problems and propose optimal controllers based on

local weighted learning observers. In both sections, numerical examples are presented to

show effectiveness of the proposed controllers.

3.1 Point-wise Min-norm Optimal Regulation

In this section, we consider the optimal regulation problem of the uncertain non-

linear system shown in (3.1).

3.1.1 Problem Statement

Consider an n-th order nonlinear system

ẋi = xi+1, 1 ≤ i ≤ n − 1

ẋn = f0(x) + f(x) + g0(x)u (3.1)

where x = [x1 . . . , xn]⊤ ∈ Rn is the state, and u ∈ R is the input. Functions f0 and g0

are known continuous functions. Function f(x) is continuous in x and unknown. For a

given bounded compact operational region Dn which includes the origin, f(x) satisfies the

following assumption.

Assumption 3.1.1 The unknown function f(x) satisfies |f(x)| ≤ h(x) for x ∈ Rn − Dn,

where h(x) is a known function.
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Furthermore, function g0(x) satisfies the following standard controllability assumption.

Assumption 3.1.2 Function g0(x) is bounded below, i.e.,

g0(x) > gl(x) > cg > 0

where cg is a positive constant.

The problem discussed in this section is to design an optimal controller u such

that the cost function

J∞ =

∫ ∞

0
[q(x) + u2]dτ (3.2)

achieves its minimum, where q(x) is continuously differentiable and positive semi-definite.

If f(x) is known, a standard dynamic programming argument reduces the above

optimal control problem to finding the value function V ∗ solving the Hamilton-Jacobi-

Bellman partial differential equation (HJB)

V ∗
x fe −

1

4

(

V ∗
x geg

⊤
e V ∗

x
⊤
)

+ q(x) = 0 (3.3)

where fe = [x2, x3, . . . , xn, f0(x) + f(x)]⊤, and ge = [0, . . . , 0, g0(x)]⊤. If there exists a

continuously differentiable positive definite solution V ∗(x) to eqn. (3.3), then the optimal

controller is

u = −1

2
g⊤e V ∗

x
⊤. (3.4)

There are two obstacles which prevent us from finding the optimal controller. The first one

is that f(x) is unknown. The second one is that it is extremely difficult to solve the HJB

partial differential equation (3.3) even if f(x) is known. To overcome the first obstacle, we
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propose a locally weighted learning observer (LWLO) to estimate f(x). To deal with the

second obstacle, we modify the optimal problem to a new one such that analytic controllers

can be proposed.

3.1.2 Locally Weighted Learning Observer

Let the observer be defined as follows.

˙̂xi = x̂i+1, 1 ≤ i ≤ n − 1

˙̂xn = f0(x) + f̂(x) + g0(x)u + v (3.5)

where x̂ = [x̂1, . . . , x̂n]⊤ is the estimate of x, v is a stabilizing observer signal, f̂(x) is the

estimate of f(x) based on a locally weighted learning (LWL) algorithm [44, 45]. In LWL,

the approximation to f(x) at a point x are formed from the normalized weighted average

of local approximators f̂k(x) as last chapter such that

f̂(x) =

∑

k ωk(x)f̂k(x)
∑

k ωk(x)
(3.6)

where each ωk is nonzero only on a set denoted by Sk (defined in Chapter 2) over which f̂k

will be adapted to improve its accuracy relative to f .

Let z = [z1, . . . , zn]⊤ = x − x̂, we have

żi = zi+1, 1 ≤ i ≤ n − 1

żn = f(x) − f̂(x) − v. (3.7)

Let

e(t) = L⊤z(t) (3.8)
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where

L = [l1, l2, . . . , ln−1, ln]⊤ = [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]⊤ (3.9)

λ is a positive constant, and Cm
n = n!

m!(n−m)! for 1 ≤ m ≤ n − 2. We have the following

lemma.

Lemma 3.1.3 ([77]) If limt→∞ |e(t)| ≤ µe, then limt→∞ |zi| ≤ 2i−1

λn−i µe for 1 ≤ i ≤ n,

where µe is a positive constant. Furthermore, if limt→∞ e(t) = 0, then limt→∞ zi = 0 for

1 ≤ i ≤ n.

By Lemma 3.1.3, to make the estimate x̂ asymptotically converge to x, it is suffi-

cient to choose suitable v and f̂k such that e converges to zero. We estimate f̂k as in Section

2.3, where f̂k is defined in (2.22).

3.1.3 Update Laws

Since we assume that f is unknown, the parameter vector θ∗fk
is unknown for each

k. We update θfk
using the following adaptive laws.

˙̂
θfk

= Γfk
ω̄keΦk (3.10)

where Γfk
are positive constant matrices. The motivation for this update law is almost the

same as that in the last chapter.
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3.1.4 Stabilizing Observer Signal

To make the state x̂ of the locally weighted learning observer (3.5) asymptotically

converge to the state x, the stabilizing observer signal is chosen as

v = l1z2 + · · · + ln−1zn + Ke + ǫf sign(e) (3.11)

where L is defined in (3.9), K is a positive constant, and

ǫf =















max{|ǫfk
|}, if x ∈ Dn

h(x), if x ∈ Rn −Dn.

(3.12)

Lemma 3.1.4 For system (3.5), with the stabilizing observer signal v defined in (3.11),

locally weighted learning (2.21), update algorithm (3.10), we have

lim
t→∞

(x − x̂) = 0. (3.13)

Proof: By eqn. (3.8), for x ∈ Rn −Dn we have

ė = l1z2 + · · · + ln−1zn + f(x) − v = −Ke + f(x) − ǫf sign(e). (3.14)

noting the definition of ǫf , it is easy to show that e is exponentially converging, which means

that (x − x̂) is exponentially converging. For x ∈ Dn we have

ė = l1z2 + · · · + ln−1zn +
∑

k

ω̄k(x)xT
k θ̃fk

+ δf (x) − v (3.15)

where θ̃fk
= θ∗fk

− θfk
. Define the positive Lyapunov function as

V =
1

2
e2 +

∑

k

θ̃⊤fk
Γ−1

fk
θ̃fk

.
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Differentiating it along the solution of (3.15), we have

V̇ = −Ke2 + eδf − ǫf |e| ≤ −Ke2.

So, e asymptotically converges to zero and θfk
are bounded. By Lemma 3.1.3, we can prove

that limt→∞(x − x̂) = 0.

Remark 3.1.5 The approximator parameter µ is a control parameter. It affects the number

of local regions (N) and the magnitude of v through ǫf . If µ increased, N will decrease but

the magnitude of ǫf will increase. So, there is a trade-off between the control magnitude

and computation burden when we choose µ. Besides LWL observer, other observers can be

proposed. The proposed LWL observer has the virtue of simplicity in structure.

Remark 3.1.6 To deal with the uncertainty, in this section we proposed a LWL observer.

There are many other ways to deal with the uncertainty. One motivation for the presented

approach is that with the proposed observer, the pointwise min-norm problem defined later

is easily solved.

With the aid of Lemma 3.1.4, we can design optimal controllers based on system

(3.5), i.e., we can design an optimal controller u such that

J̄∞ =

∫ ∞

0
(q(x̂) + u2)dτ (3.16)

achieves its minimum. Since x̂ asymptotically converges to x, x will converge to zero when

x̂ converges to zero.
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3.1.5 Point-wise Min-norm Controller

With the aid of the locally weighted learning observer, it may seem that the optimal

control problem of (3.16) can be solved by using the dynamic programming technique. In

fact, the optimal control problem (3.16) is not generally solvable because the dynamics

of x̂ are nonlinear. To obtain an analytical control law, we consider the pointwise min-

norm problem proposed in [24, 56] instead. Before defining the problem, we need some

preparation.

A control Lyapunov function (CLF) of system (3.5) is a continuously differentiable,

positive definite function V (y): Rn → R+ such that

inf
u

[Vx̂f̄ + Vx̂ḡu] < 0 (3.17)

for all x̂ 6= 0 [69, 70], where

f̄ = [x̂2, . . . , x̂n, f0(x) + f̂(x) + v]⊤

ḡ = [0, . . . , 0, g0(x)]⊤.

If there is a CLF such that eqn. (3.17) is satisfied, the control input u obtained at each

point from eqn. (3.17) can make the state of system (3.5) converge to zero. This can be

seen when we choose V as a Lyapunov function under those control actions. For a general

nonlinear system, it may be difficult to find a CLF or even to determine whether one exists.

However, for system (3.5) there exists a CLF. In fact, the function

V = x̂⊤Px̂ (3.18)

is one of the CLFs of system (3.5), where P is a positive definite matrix that satisfies

PΛ + Λ⊤P = −Q
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for a given positive definite matrix Q,

Λ =

































0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

α1 α2 α3 · · · αn

































,

and the constants αi (1 ≤ i ≤ n) are chosen such that matrix Λ is Hurwitz.

Given a control Lyapunov function V for system (3.5), the pointwise min-norm

problem is defined as follows.

Pointwise Min-norm Problem: At each time, select u as

minu u2 (3.19)

such that

Vx̂(f̄ + ḡu) ≤ −σ(x̂) (3.20)

where σ is a positive definite function of x̂ which is chosen according to the trade-off between

control effort and stabilizing x̂ and such that Vx̂(f̄ + ḡu) + σ ≤ 0.

Remark 3.1.7 In the point-wise min-norm problem, V can be any CLF of system (3.5).

With different CLF V and σ, different optimal control u can be obtained.

For the pointwise min-norm problem, we have the following closed form solution

which is an extension of the approaches discussed in [55].
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Lemma 3.1.8 For the pointwise min-norm problem (3.19)-(3.20), the optimal control is

u =















−Vx̂f̄ + σ

Vx̂ḡ
, Vx̂ḡ 6= 0

0, Vx̂ḡ = 0

(3.21)

Proof: If Vx̂ḡ = 0, the constraint (3.20) holds automatically by (3.17). So u = 0 is the

optimal control. If Vx̂ḡ 6= 0, the constraint (3.20) is active. We solve the optimal problem:

minu u2 such that Vx̂(f̄ + ḡu) + σ = 0. By the Lagrange multiplier method, we can obtain

u = −Vx̂f̄+σ
Vx̂ḡ

.

From Lemma 3.1.8, we can see that the optimal controller u depends on V and σ.

Carefully Choosing V and σ may lead to the optimal controller which we are interested in.

Sontag’s formula [70] provides a choice for σ as

σ =
√

(Vx̂f̄)2 + q(x̂)(Vx̂ḡḡ⊤V ⊤
x̂ ). (3.22)

It should be noted that if the control Lyapunov function V is chosen as a value

function of the HJB equation corresponding to the cost function (3.16) and σ is chosen

as (3.22), the optimal control (3.21) would be the solution to the optimal control problem

(3.16). This fact lead us to choose σ as in (3.22). In [24], it was shown that every CLF

is the value function of some meaningful cost function which means that it solves the HJB

equation associated with a meaningful cost. This is referred to “inverse optimal control”.

Combining the results in this subsection and the last subsection, we have the

following result.

Theorem 3.1.9 For system (3.1) with the locally weighted learning observer defined in

(3.5) with update law (3.10) and stabilizing observer signal (3.11), the optimal control (3.21)
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solves the point-wise min-norm problem (3.19)-(3.20) with a given CLF V (x̂) and a suitable

positive definite function σ that makes x converge to zero.

Proof: By Lemma 3.1.8, the optimal control (3.21) solves the pointwise min-norm

problem (3.19)-(3.20). Choose V in (3.20) as a Lyapunov function, x̂ converges to zero

since eqn. (3.20) holds for every point x̂. By Lemma 3.1.4, x also converges to zero.

In Theorem 3.1.9, there are several control parameters. Constant µ determines the

number of the local regions and the magnitude of the control input as time tends to infinity

(see Remark 3.1.5). The matrix P in control Lyapunov function V is an important control

parameter. By suitably choosing V the performance of the closed-loop system with the

controller (3.21) will be close to the performance of the closed-loop system with the optimal

controller of the optimal control problem (3.16). Unfortunately, there is no prior knowledge

of how to choose CLF V . In practice, one can choose a control Lyapunov function V as in

(3.18).

3.1.6 Numerical Example

We consider for illustrative purpose a second order system given by

ẋ1 = x2

ẋ2 = sin(0.4(x1 + x2)) + 2x1 + 3x2 + 0.2 sin x1 +
(

2 + sin(0.4(x1 + x2))
)

u.

For the example, x ∈ ℜ2, u ∈ ℜ and we assume that there is only partial priori knowledge

of the system nonlinearity. The known ‘design models’ are f0(x1, x2) = sin(0.4(x1 + x2))

and g0(x1, x2) = 2 + sin(0.4(x1 + x2); therefore, the unknown design model error is f(x) =
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2x1 +3x2 +0.2 sin x1. We also assume that the system is designed to operate over the region

(x1, x2) ∈ D2 = [−5, 5] × [−5, 5].

Following the results in the previous sections, the locally weighted learning observer

is

˙̂x1 = x̂2 (3.23)

˙̂x2 = f0(x) + f̂ + g(x)u + v (3.24)

where f̂ is an approximation to f with locally weighted learning algorithm (3.10) and v is

defined in (3.11). In the locally weighted learning observer, we choose µ = 0.5, λ = 1. The

function approximation accuracies are specified as ǫf = 0.05.

The weighting function is the biquadratic kernel of the form as

ωk(x) =















(

1 − R2
)2

, if R < 1

0, otherwise.

(3.25)

where

R =

∥

∥

∥

∥

|x1 − ck,1|
µ

,
|x2 − ck,2|

µ

∥

∥

∥

∥

2

. (3.26)

The local basis function is x̄k = [1, x1 − ck,1, x2 − ck,2]
⊤ with ck being the center of the

S̄k. Therefore, each fk is the optimal local affine approximation to f on S̄k. We select

ck,1 = ck,2 = kµ
2 for −20 ≤ k ≤ 20. For simplicity, we choose the initial conditions of

θfk
(0) = 0 The adaptation rate matrices are set to Γfk

= diag([1, 1, 1]) where diag(v) is

the square diagonal matrix with diagonal component equal to the vector v. We choose

Q = I2×2. The Lyapunov function V is obtained from (3.18). The function σ is chosen as

in (3.22). So, the control law is as in (3.21).
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Figs. 3.1 and Fig. 3.2 show the responses of x̂ and x. It can be seen that x̂

and x converge to zero. Fig. 3.3 shows the response of the intermediate variable e, which

converges to zero. The control input converges to zero as x converges to zero. The responses

of θfk
are not shown here. However, they are bounded.

If there is no learning, i.e. f̂ = 0, the control law cannot make the state converge

to zero. Fig. 3.4 shows the response of the state without learning. It can be seen that x

does not converge to zero.

3.2 Pointwise Min-norm Optimal Tracking Control

In this section, we consider the optimal tracking control of the uncertain nonlinear

system shown in (3.1).

3.2.1 Problem Statement

Given a desired bounded trajectory xd = [xd
1, x

d
2, . . . , x

d
n]⊤ which satisfies

ẋd
1 = xd

2, ẋd
2 = xd

3, . . . , ẋd
n−1 = xd

n. (3.27)

The problem discussed in this section is to design an optimal controller u such that the cost

function

J∞ =

∫ ∞

0
[(x − xd)⊤Q(x − xd) + u2]dτ (3.28)

achieves its minimum, where Q is a positive definite matrix.

If f(x) is known, a standard dynamic programming argument reduces the above

optimal control problem to finding the value function V ∗ solving the Hamilton-Jacobi-
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Figure 3.1: Response of x̂ (x̂1: solid,
x̂2: dashed)

Figure 3.2: Response of x (x1: solid,
x2: dashed)
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Bellman partial differential equation (HJB)

V ∗
x fe −

1

4

(

V ∗
x geg

⊤
e V ∗

x
⊤
)

+ (x − xd)⊤Q(x − xd) = 0 (3.29)

where V ∗
x denotes ∂V ∗

∂x
, fe = [x2, x3, . . . , xn, f0(x) + f(x)]⊤, and ge = [0, . . . , 0, g0(x)]⊤. If

there exists a continuously differentiable positive definite solution V ∗(x) to eqn. (3.29),

then the optimal controller is

u = −1

2
g⊤e V ∗

x
⊤. (3.30)

Since f(x) is unknown, we propose a locally weighted learning observer (LWLO) to estimate

f(x) as discussed in the last section. Then, we solve a modified optimal control problem.

3.2.2 Locally Weighted Learning Observer

Let the observer be defined as in (3.5), where x̂ = [x̂1, . . . , x̂n]⊤ is the estimate of

x, v is a stabilizing observer signal, f̂(x) is the estimate of f(x) based on a locally weighted

learning (LWL) algorithm defined in (2.21) with adaptive laws (3.10). Define

z = [z1, . . . , zn]⊤ = x − x̂ (3.31)

e = L⊤z (3.32)

where L is defined in (3.9). We have Lemma 3.1.3 which means to make the estimate x̂

asymptotically converge to x, it is sufficient to choose suitable v and f̂k such that e converges

to zero.

To make the state of the locally weighted learning observer (3.5) asymptotically

converge to the state x, the stabilizing observer signal is chosen as

v = l1z2 + · · · + ln−1zn + Ke +
ǫfe√

e2 + e−t
(3.33)
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where K is a positive constant, ǫf is a constant and is defined in (3.12). The introduction

of the term e−t in (3.12) is to make v differentiable.

Lemma 3.2.1 For system (3.5), with the stabilizing observer signal v defined in (3.33),

locally weighted learning (2.21), update algorithm (3.10), then (x− x̂) converges to zero and

θ̂fk
are bounded.

Proof: By eqn. (3.32), we have

ė = l1z2 + · · · + ln−1zn +
∑

k

ω̄k(x)x̄T
k θ̃fk

+ δf (x) − v (3.34)

where θ̃fk
= θ∗fk

− θfk
. Define the positive Lyapunov function

V1 =
1

2
e2 +

∑

k

θ̃⊤fk
Γ−1

fk
θ̃fk

.

Differentiating it along the solution of (3.34), we have

V̇1 = −Ke2 + eδf − ǫfe2

√

e2 + exp(−t)
≤ −Ke2 + ǫf exp(−t/2).

Therefore, V1 is bounded by integrating both sides, which means that θfk
and e are bounded.

By integrating both sides, it can be shown that e2 is integrable. Therefore, e converges to

zero. By Lemma 3.1.3, we can prove that (x − x̂) converges to zero.

Remark 3.2.2 In the observer, we apply the locally weighted learning idea. The advantages

of the locally weighted learning are two fold. First of all, the approximation errors are

functions of local approximators. Secondly, the burden of the computation for learning is

relieved.
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Remark 3.2.3 In the observer, µ is a control parameter. It affects the number of local

regions (N) and the magnitude of v through ǫf . If µ is large, in general N will be small

but the magnitude of the last term in v may be large. Alternatively, as N is increased,

the magnitude of the last term in v will decrease. So, the choice of µ involves a trade-off

between the control magnitude and computation burden.

With the aid of Lemma 3.2.1, we can design optimal controllers for system (3.5)

theoretically, i.e., we can design an optimal controller u such that

J̄∞ =

∫ ∞

0

(

(x̂ − xd)⊤Q(x̂ − xd) + u2
)

dτ (3.35)

achieves its minimum. Since x̂ is close to x as time converges to infinity, x will converge to

a small neighborhood of xd if x̂ converges to a small neighborhood of xd.

3.2.3 Point-wise Min-norm Controller

In practice, the optimal control problem (3.35) is not generally solvable because the

dynamics of x̂ is nonlinear. To obtain an analytical control law, we consider the point-wise

min-norm problem as in Section 3.2.2. Let q = [q1, . . . , qn]⊤ and

qi = x̂i − xd
i , 1 ≤ i ≤ n,

then

q̇i = qi+1, 1 ≤ i ≤ n − 1

q̇n = f0(x) + f̂(x) + g0(x)u + v − ẋd
n. (3.36)

Given a control Lyapunov function V (q) for system (3.36), the point-wise min-

norm problem is defined as follows.
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Point-wise Min-norm Problem:

minu u2 (3.37)

such that

Vq(f̄ + ḡu) ≤ −σ(q) (3.38)

where σ is a positive definite function of q which is chosen by the designer.

For the point-wise min-norm problem, we have the following closed form solution.

Lemma 3.2.4 For the point-wise min-norm problem (3.37)-(3.38), the optimal control is

u =















−Vqf̄ + σ

Vq ḡ
, Vq ḡ 6= 0

0, Vq ḡ = 0

(3.39)

Proof: The proof is the same as the proof of Lemma 3.1.8.

An example min-norm optimal controller is given by Sontag’s formula [70] as fol-

lows.

Lemma 3.2.5 For the point-wise min-norm problem (3.37)-(3.38), if

σ =
√

(Vqf̄)2 + q⊤Qq(Vq ḡḡ⊤V ⊤
q ) (3.40)

then the optimal control law is

u =















−
[

Vq f̄+
√

(Vq f̄)2+q⊤Qq(Vq ḡḡ⊤V ⊤
q )

Vq ḡḡ⊤V ⊤
q

]

ḡ⊤V ⊤
q , Vq ḡ 6= 0

0, Vq ḡ = 0

(3.41)
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Combining the results in this subsection and Subsection 3.2.2, we have the follow-

ing result.

Theorem 3.2.6 For system (3.1) with the locally weighted learning observer defined in

(3.5) with update laws (3.10) and stabilizing observer signal (3.33), the optimal control

(3.41) solves the point-wise min-norm problem (3.37)-(3.38) with a given CLF V (q) and

make (x − xd) converges to zero.

Proof: The proof is almost the same as the proof of Theorem 3.1.9.

3.2.4 Numerical Example

We consider for illustrative purpose a second order system given by

ẋ1 = x2

ẋ2 = sin(0.4(x1 + x2)) +
(

2 + sin(0.4(x1 + x2))
)

u.

For the example, x ∈ ℜ2, u ∈ ℜ and we assume that there is only partial priori knowledge

of the system nonlinearities. The known ‘design model’ has f0(x1, x2) = 0.4(x1 + x2) and

g0(x1, x2) = 2 + sin(0.4(x1 + x2); therefore, the unknown design model error is f(x) =

sin(0.4(x1 + x2)) − 0.4(x1 + x2).

Given a desired trajectory xd, we want to design an optimal control in the sense

of point-wise min-norm such that (x − xd) converges to zero.

The locally weighted learning observer is (3.23)-(3.24) where f̂ is an online approx-

imation to f with locally weighted learning algorithm (3.10) and v is defined in (3.33). In the
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locally weighted learning observer, we choose µ = 0.5, λ = 1. The function approximation

accuracies are specified as ǫf = 0.03.

The weighting function is the biquadratic kernel of the form as (3.25) where R is

defined in (3.26). The local basis function is x̄k = [1, x1 − ck,1, x2 − ck,2]
⊤ with ck being the

center of the S̄k. Therefore, fk is the optimal local affine approximation to f on S̄k. We

select ck,1 = ck,2 = kµ
2 for −20 ≤ k ≤ 20. For simplicity, we choose the initial conditions of

θfk
(0) = 0 The adaptation rate matrices are set to Γfk

= diag([1, 1, 1]) where diag(v) is the

square diagonal matrix with diagonal component equal to the vector v.

For xd = [sin t, cos t]⊤, Fig. 3.5 and Fig. 3.6 show the responses of x̂ and x

with/without learning. Fig. 3.7 shows the tracking errors x−xd with and without learning.

3.3 Conclusion

This chapter considers the optimal regulation and optimal tracking control of un-

certain nonlinear systems. Optimal regulation and optimal tracking controllers are proposed

for the observers in the sense of point-wise min-norm, respectively. The advantage of the

proposed methods is that analytic optimal controllers are proposed and the stability of the

closed-loop system is guaranteed. Furthermore, if the control Lyapunov functions V are

the value functions of the HJB equations corresponding to the cost functions (3.16) and

(3.35) when σ are chosen as (3.22) and (3.40). The optimal regulation controller (3.21) and

the optimal tracking controller (3.41) will be the solutions to the optimal regulation control

problem (3.16) and the optimal tracking control problem (3.35), respectively.
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Figure 3.5: Response of x̂1 and x1

with and without learning (x1 with
learning: solid, x̂1 with learning:
dashed, x1 without learning: dot-
ted, x̂1 without learning: dashdot)

Figure 3.6: Response of x̂2 and x2

with and without learning (x2 with
learning: solid, x̂2 with learning:
dashed, x2 without learning: dot-
ted, x̂2 without learning: dashdot)
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Figure 3.7: Response of the tracking errors x− xd with and without learning (x1 − xd
1 with

learning: solid, x2 − xd
2 with learning: dashed, x1 − xd

1 without learning: dotted, x2 − xd
2

without learning: dashdot)
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Chapter 4

Approximately Optimal Control of

Uncertain Nonlinear Systems

In this chapter, we consider the optimal control of the uncertain nonlinear system

shown in (4.1). Adaptive approximately optimal controllers are proposed by considering

the ideas in adaptive critic design and the approximately optimal control algorithms in [6,

62, 73]. In the proposed algorithms the controllers are updated according to the information

of the value function.

This chapter is organized as follows. Section 4.1 defines the problem. Section 4.2

contains some preliminary results in approximately optimal control. The approximately

optimal controllers are presented in Sections 4.3-4.4. The effectiveness of the proposed

controllers is shown in Section 4.5. The last section concludes this chapter.
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4.1 Problem Statement

Consider an n-th order nonlinear system

ẋi = xi+1, 1 ≤ i ≤ n − 1 (4.1)

ẋn = f(x) + g(x)u (4.2)

where x = [x1 . . . , xn]⊤ ∈ Rn is the state, and u ∈ R is the input. We assume that the

system is Lipschitz continuous on a compact set Dn ⊂ Rn that contains the origin and

that the system is stabilizable on Dn. During the control, we assume f(x) is unknown for

x ∈ Dn, while g(x) is known.

The problem discussed in this section is to design an optimal controller u such that

the cost function (3.2) There are two obstacles which prevent us from finding the optimal

controller. The first one is that f(x) is unknown. The second one is that it is extremely

difficult to solve the HJB partial differential equation even if f(x) is known. To overcome

the two obstacles, in the last chapter we proposed an locally weighted observer and defined a

point-wise min-norm problem. In this chapter, to overcome the first obstacle, we introduce

a dynamic equation to estimate the value function so that the information about f(x) is

not directly required in the controller as in [73]. To deal with the second obstacle, we use

learning algorithms to approximate the value function. To propose a control law, we make

the following additional assumptions.

Assumption 4.1.1 The unknown function f(x) satisfies |f(x)| ≤ ξ(x) for x ∈ Rn − Dn,

where ξ(x) is a known function.

Assumption 4.1.2 The function g(x) 6= 0 for any x.
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Assumption 4.1.1 is useful for controller design when x is outside Dn. For x ∈

Rn−Dn, we design a slide mode controller such that x enters Dn quickly [68]. Once x ∈ Dn,

we design an adaptive approximately optimal controller based on the cost function (3.2).

The focus of this chapter is on how to design adaptive approximately optimal controllers

for x ∈ Dn.

4.2 An Approximation Theory for Optimal Regulation

Since it is hard to obtain an optimal controller by solving HJB partial differential

equations, many methods have been proposed to approximate the optimal controller. For

example, approximate dynamic programming, model predictive control, etc. For optimal

control with finite horizon, approximately optimal controllers were proposed in paper [62]

with offline calculation. Next, we give some results from [62, 73, 74] on how to approximate

the optimal controller under the condition that f(x) is known.

Define the pre-Hamiltonian function for some control law u and an associated

V (x, t;u1):

H

(

x,
∂V

∂x
, u, t

)

= x⊤Qx + u2 +
∂V ⊤

∂x
F (x) +

∂V ⊤

∂x
G(x)u (4.3)

where

F (x) =

























x2

...

xn

f(x)

























, G(x) =

























0

...

0

g(x)

























.

Lemma 4.2.1 ([62]) Assume u1 is an asymptotically stabilizing controller of (4.1). If
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there exists a positive definite continuously differentiable function V (x, t;u1) satisfying the

following properties

∂V

∂t
+

∂V ⊤

∂x
F (x) +

∂V ⊤

∂x
G(x)u1 + x⊤Qx + u2

1 = 0 (4.4)

V (0,∞;u1) = 0 (4.5)

then V (x, t;u1) is the value function of the system (4.1) for all t, and

V (x(t0), t0;u1) = J(u1;x(t0), t0) =

∫ ∞

t0

(x⊤Qx + u2
1)dτ. (4.6)

Corollary 4.2.2 ([62]) The optimal control law u∗ and the optimal value function V ∗(x, t;u∗),

if they exist, satisfy Lemma 4.2.1 and

0 < V ∗(x, t;u∗) ≤ V (x, t;u), u∗ 6= u. (4.7)

Lemma 4.2.3 ([62]) If a sequence of pairs {ui, Vi} satisfying Lemma 4.2.1 is generated

by selecting the control ui to minimize the pre-Hamiltonian function (4.3) with the previous

value function Vi−1, e.g.,

ui+1 = −1

2
G⊤∂Vi

∂x
, (4.8)

then the corresponding value function Vi satisfies the inequality

Vi ≥ Vi+1.

Moreover, limi→∞ Vi = V ∗(x, t;u∗) where V ∗ is the cost function corresponding to the

optimal cost.
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Lemma 4.2.3 provides a systematic method to calculate the optimal controller for

system (4.1) with known f(x) and g(x). In [62], two procedures for design of approximately

optimal controllers were presented, e.g., exact design procedure and approximate design

procedure. In each procedure, it needs to find analytic expression of Vi. However, for a

general nonlinear system it is hard to find the solution V from equation (4.5) because it is a

partial differential equation. Therefore, it is hard to find the optimal controller or a nearly

optimal controller for system (4.1) with the aid of the results in Lemma 4.2.1 and Lemma

4.2.3. In this paper, we assume f(x) is unknown. So, it is impossible to solve the partial

differential equations in each step with unknown f(x). However, we can obtain a numerical

solution for a period of time with the aid of Lemma 4.2.1. In fact, by Lemma 4.2.1,

Vi(x(t), t;ui) =

∫ ∞

t

(x⊤Qx + u2
i )dτ.

Then

Vi(x(t), t;ui) =

∫ t+T

t

(x⊤Qx + u2
i )dτ + Vi(x(t + T ), t + T ;ui), Vi(0,∞;ui) = 0. (4.9)

Therefore, if ui is known, the numerical solution of Vi(x(t), t;ui) can be obtained by solving

(4.9) for a given time interval T [73, 74]. If T is small, Vi obtained from (4.9) is close to

the optimal value function. It should be noted that in (4.9) f(x) does not appear. Which

means f(x) is not necessary for solving Vi.

In order to calculate ui+1 with the aid of Lemma 4.2.3, it needs an analytic form of

Vi(x(t), t;ui. However, by equation (4.9) we can only get a numerical solution of Vi(x(t), t;ui.

To overcome it, we assume Vi is in a special form and is updated by (4.9). With the aid of

this known form, we can calculate ui+1.
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4.3 An Adaptive Approximately Optimal Controller

We assume Vi has a special form as follows

Vi =
m

∑

j=1

φj(x)θji + ǫi(x) = Φ⊤(x)θi + ǫi(x) (4.10)

where φj(x) is a known basis function, θji is unknown constant parameter, ǫi is the ap-

proximation error, Φ(x) = [φ1(x), . . . , φm(x)]⊤ and θi = [θ1i, . . . , θmi]
⊤. By the well-known

approximation results in neural networks, for a compact domain D and a given µ > 0, there

exists a sufficient large number m such that |ǫi(x)| < µ [14].

Substitute (4.10) into (4.9), we have

∫ t+T

t

(x⊤Qx + u2
i )dτ = [Φ(x(t)) − Φ(x(t + T ))]⊤θi + ǭi(t) (4.11)

or in short

yi(t) = α⊤
i (t)θ∗i + ǭi(t) (4.12)

where

yi(t) =

∫ t+T

t

(x⊤Qx + u2
i )dτ

αi(t) = Φ(x(t)) − Φ(x(t + T ))

ǭi(t) = ǫi(x(t)) − ǫi(x(t + T )).

Let θ̂i be an estimate of θi, then

yi = α⊤
i θ̂i + ei (4.13)

where ei is the approximation error.
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To derive an adaptation law, we minimize the individual weighted squared error

ei,

J̄i(θ) =

∫

Ωi

(

yi − α⊤θ̂i

)2
dτ (4.14)

where Ωi denotes the time interval over which control ui is applying to the system. Let

∂J̄i

∂θ̂ i

= 0,

we obtain

∫

Ωi

αiyi dτ =

∫

Ωi

αiα
⊤
i dτ θ̂i (4.15)

for yi ∈ ℜ. Theoretically, it can be derived that

θ̂i =

(
∫

Ωi

αiα
⊤
i dt

)−1 ∫

Ωi

αiyidt = Γ−1
i

∫

Ωi

αiyidt (4.16)

where

Γi =

∫

Ωi

αiα
⊤
i dt. (4.17)

In (4.16), Γi should be invertible. In [73], Γi is assumed to be non-singular every-

where and choose the following controller.

ui+1 = −1

2
G⊤

[

∂Φ

∂x

]⊤

θ̂i. (4.18)

In (4.18), in order to calculate θ̂i it needs to calculate the inverse of Γi. It is hard to

make Γi non-singular everywhere. Also, if there are many basis functions, the dimension of

Γi may be large. The computation of the inverse of Γi needs lots of resources. To overcome

this problem, we derive another version of adaptive approximately optimal controller. Let

P−1(t) =

∫ t

0
αiα

⊤
i dτ. (4.19)

68



Taking the time derivative of (4.19), we obtain the derivative of P−1(t) as

d

dt
P−1(t) = αi(t)α

⊤
i (t). (4.20)

Note that the identity P (t)P−1(t) = I yields

d

dt
P (t)P−1(t) = Ṗ (t)P−1(t) + P (t)Ṗ−1(t) = 0

which implies that

Ṗ (t) = −P (t)Ṗ−1(t)P (t).

After substitution of (4.20), we can write the update law for P (t) as

Ṗ (t) = −P (t)αi(t)α
⊤
i (t)P (t). (4.21)

Finally, taking the time derivative on both sides of (4.15), we solve for
˙̂
θi as

αiyi = (αiα
⊤
i )θ̂i + P−1 ˙̂

θi

which yields the value function parameter update based on the prediction error (yi −α⊤
i θ̂i)

as

˙̂
θi(t) = P (t)

[

αi(t)(yi(t) − α⊤
i (t)θ̂i(t))

]

. (4.22)

According to (4.8), we choose the control law

u =



















−1

2
g⊤

[

∂Φ

∂x

]⊤

θ̂i, if x ∈ Dn

g−1

[

−ke −
n−1
∑

s=1

lsxs+1 − ξsign(e)

]

, if x 6∈ Dn,

(4.23)

where k > 0,

e = L⊤x =
n

∑

s=1

lsxs (4.24)

L = [l1, l2, . . . , ln−1, ln]⊤ = [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]⊤, λ > 0. (4.25)
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We summarize the above results as follows.

Control Algorithm 4.1: For system (4.1), an approximately optimal control law

is (4.23) with adaptive law (4.22) and (4.21).

Remark 4.3.1 In Control Algorithm 4.1, for x ∈ Rn −Dn the controller is a sliding mode

control. It will make the state of the system come into Dn in finite time. For x ∈ Dn,

the controller is adaptive. The update laws (4.21)-(4.22) play the role of estimating Vi

iteratively. With the aid of the special structure of the value function, the value function

at each step is approximated with θ̂ updated online. Therefore, with the aid of the learning

algorithm, the solutions to partial differential equations can be obtained. Fig. 4.1 shows the

diagram of the adaptive approximately optimal control, where yi, αi, and θ̂∗i are replaced

with y, α, and θ̂ for convenience.

Remark 4.3.2 To calculate Vi numerically, T should be chosen carefully. Small T is good

for the closed-loop system performance. However, if T is too small other problems may

arise. In the adaptive approximately optimal control, T can be considered as time delay (see

Fig. 4.1).

Remark 4.3.3 In [73], Vi is approximated by a neural network. The weights are calculated

by standard least square. To solve the weights, a non-singularity condition is required on the

matrix Γi, which is difficult to satisfy. In this paper, the unknown parameters are updated by

adaptive laws. No non-singularity condition is not required for adaptation of the parameters.
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Figure 4.1: Diagram of the adaptive approximately optimal control

4.4 Locally Weighted Learning Optimal Controller

In the last section, the value function Vi is approximated by a set of base func-

tions for x ∈ Dn. In this section, we apply locally weighted learning (LWL) techniques to

approximate the value function Vi.

In locally weighted learning, the approximation of h(x) (h(x) = Vi for notation

simplicity) at a point x are formed from the normalized weighted average of local approxi-

mators ĥk(x) such that

ĥ(x) =

∑

k ωk(x)ĥk(x)
∑

l ωl(x)
(4.26)

where each ωk is nonzero only on a set denoted by Sk and

Sk =
{

x ∈ Dn | ωk(x) 6= 0
}

. (4.27)
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ωk is chosen such that

Dn =
⋃

1≤k≤N

Sk

and

Sk ∩ Sj = ∅, ∀k 6= j

for convenience. We choose the function ĥk to be an approximation of h(x) for x ∈ Sk that

is defined as

ĥk(x) = Φ⊤(x)θ̂k (4.28)

where Φ(x) is a base function vector for x ∈ Sk. Since Sk is a subset of Dn, the number of

the base functions in Φ(x) is smaller than that in the last subsection. Let

ω̄k(x) =
ωk(x)

∑N
k=1 ωk(x)

.

For any x ∈ Dn, h(x) can be represented as the weighted sum of the local approximators:

h(x) =
∑

k

ω̄k(x)hk(x) + δ(x) =
∑

k

ω̄k(x)Φ⊤(x)θk + δ(x) (4.29)

where δ(x) is the approximation error. For x ∈ S̄k where S̄k denotes the closure of Sk,

h(x) = ω̄kΦ
⊤(x)θk + ǫk(x). (4.30)

Since Vi(x, ui) = h(x), substitute (4.30) into (4.9), we have

∫ t+T

t

(x⊤Qx + ‖ui‖2)dτ = [ω̄k(x(t))Φ(x(t))

−ω̄k(x(t + T ))Φ(x(t + T ))]⊤θk + ek(t + T ) (4.31)

or in short

y(t + T ) = α⊤
k (t + T )θk + ǭk(t + T ) (4.32)
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where

y(t + T ) =

∫ t+T

0
(x⊤Qx + ‖ui‖2)dτ

αk(t + T ) = ω̄k(x(t))Φ(x(t)) − ω̄k(x(t + T ))Φ(x(t + T ))

ǭk(t + T ) = ǫk(x(t)) − ǫk(x(t + T )).

Let θ̂k be an estimate of θk, then

y = α⊤
k θ̂k + ek (4.33)

where ek is the approximation error.

To derive the LWL parameter adaptation laws, we minimize the individual weighted

squared error ek for each local model,

J̄k(θk) =

∫ t

0
e−

∫ t

τ
λωk(x(r))drωk

(

y − α⊤
k θ̂k

)2
dτ. (4.34)

Let

∂J̄k

∂θ̂k

= 0,

we obtain

∫ t

0
e−

∫ t

τ
λωk(x(r))drωkαky dτ =

∫ t

0
e−

∫ t

τ
λωk(x(r))drωkαkα

⊤
k dτ θ̂k. (4.35)

Define

P−1
k (t) =

∫ t

0
e−

∫ t

τ
λωk(x(r))drωkαkα

⊤
k dτ. (4.36)

Taking the time derivative of (4.36), we obtain the derivative of P−1
k (t) as

d

dt
P−1

k = ωkαkα
⊤
k − λωkP

−1
k . (4.37)
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Note that the identity PkP
−1
k = I, we can obtain that the update law for Pk as

Ṗk = ωkλPk − Pkωkαkα
⊤
k Pk. (4.38)

Finally, taking the time derivative on both sides of (4.35), we solve for
˙̂
θk as

˙̂
θk = Pk

[

ωkαk(y − α⊤
k θ̂k)

]

. (4.39)

We choose the control law

u =























−1

2

∑

k

ω̄kg
⊤

[

∂Φk

∂x

]⊤

θ̂k, if x ∈ Dn

g−1

[

−ke −
n−1
∑

s=1

lsxs+1 − ξsign(e)

]

, if x 6∈ Dn

(4.40)

The results are summarized as follows.

Control Algorithm 4.2: For system (4.1), an approximately optimal control law

is (4.40) with adaptive law (4.38)-(4.39).

Remark 4.4.1 In Control Algorithm 4.2, for x ∈ Dn, the controller is adaptive for each

local region. Since the approximators are localized, the number of updated parameters is

smaller than that in Control Algorithm 4.2. The parameter update in one local region does

not affect the values of the parameters in the other regions because the learning algorithms

are localized. Therefore, the computation burden is reduced. If the size of each local region

is small, the inherent approximation error can be made smaller than that in Section 4.2.

So, the performance of the closed-loop system with the control law (4.40) will be better than

that of the closed-loop system with the control law (4.23).
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Figure 4.2: Response of x with con-
troller (4.23)

Figure 4.3: Response of θ̂i with con-
troller (4.23)

4.5 Numerical Example

We consider for illustrative purpose a second order system by

ẋ1 = x2

ẋ2 = x1 + x2 + x3
1 + u.

This system is unstable without control. For simplicity, we choose D2 = {x ∈ R2| ‖x‖ ≤ 3}.

For x ∈ D2, we choose Φ(x) = [x2
1, x1x2, x

2
2, x

4
1, x1x

3
2, x

2
1x

2
2, x

3
1x2, x

4
2] and θ = [θ1, θ2, θ3,

θ4, θ5, θ6, θ7, θ8]
⊤. Applying Control Algorithm 4.1, the system state converges to the

neighborhood of the origin. Fig. 4.2 shows the response of the state x. Fig. 4.3 shows

the response of θi. It can be seen that the state of the closed-loop system converges to a

neighborhood of the origin and θ̂i converges to a constant.

For locally weighted learning controller (4.40), we have the similar simulation

results.
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4.6 Conclusion

This chapter considered the optimal control of uncertain nonlinear systems. By

applying learning algorithms, adaptive approximately optimal controllers were proposed.

The proposed adaptive controllers can update themselves according to estimates of the

value functions. In this chapter, we did not consider optimal tracking control problem.

How to solve the optimal tracking control problem based on the idea of approximately

optimal control will be one of future research topics.
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Chapter 5

Conclusions and Future Work

5.1 Summary of the Research

In this dissertation, we considered self-organizing based control of uncertain non-

affine systems and optimal control of uncertain nonlinear systems. In tracking control of

nonaffine systems, a self-organizing on-line approximation based controller is proposed to

achieve a prespecified tracking accuracy, without using high-gain control nor large magni-

tude switching. It was shown that our proposed controllers can achieve the prespecified

tracking performance and require less computation during control. Compared with the

existing results, the contribution of this part is that the tracking control of high-order

nonaffine systems is solved with the aid of a self-organizing approximation and a low gain

computationally efficient controller. For optimal control of uncertain nonlinear systems,

we considered point-wise min-norm optimal control of uncertain nonlinear systems and

approximately optimal control of uncertain nonlinear systems. Locally weighted learning
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observers (LWLOs) were proposed to estimate the unknown nonlinear systems. Based on

the approximators that result from locally weighted learning observers, point-wise min-

norm problems were defined. For the defined optimal problems, analytic controllers were

proposed based on selected Lyapunov functions. The contribution of this part is that the

optimal regulation and the optimal tracking control of uncertain nonlinear systems were

solved by integrating locally learning algorithms to point-wise min-norm controllers. In ap-

proximately optimal control of uncertain nonlinear systems, we considered approximately

optimal control of uncertain nonlinear systems. By combining the results in adaptive critic

design and the approximately optimal control algorithms in [6, 62] adaptive approximately

optimal control algorithms were proposed. In the proposed algorithms the controllers are

updated according to the information of the value functions and converge to the optimal

controllers. Compared with the offline optimal controller design algorithms in [6, 62], the

proposed algorithms work online and for unknown systems.

5.2 Future Research Work

Following is a short list of possible future research topics.

• In self-organizing control of uncertain nonlinear systems, we assume the system is in
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the form of (2.1)-(2.3). If the uncertain nonlinear system is in the form

ẋ1 = f1(x1) + g1(x1)x2

...

ẋn−1 = fn−1(x1, . . . , xn−1) + gn−1(x1, . . . , xn−1)xn

ẋn = fn(x, u)

how do we design a tracking control law?

• In point-wise min-norm control of uncertain nonlinear system, we choose the Lyapunov

function to be V = x̂⊤Px̂. Obviously, this type of control Lyapunov function is not

enough for a general uncertain nonlinear system. How to choose the control Lyapunov

function is important open research topic.

• In point-wise min-norm control of uncertain nonlinear systems, if the model of the

considered system is a more general nonlinear system, how to solve the control prob-

lem?

• In approximately optimal control of uncertain nonlinear systems, if the model is more

general than that considered in Chapter 4 how can the optimal control problem be

solved?

• In approximately optimal control of uncertain nonlinear systems, we do not consider

the optimal tracking control problem. Can the proposed method be applied to solve

the optimal tracking problem? If yes, how to design approximately optimal tracking

controllers?
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