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Mechanical design and analysis of an eight-pole
superconducting vector magnet for soft x-ray

magnetic dichroism measurements
D. Arbelaez, A. Black, S.O. Prestemon, S. Wang, J. Chen, and E. Arenholz,Senior Member, IEEE

Abstract—An eight-pole superconducting magnet is being de-
veloped for soft x-ray magnetic dichroism (XMD) experiments
at the Advanced Light Source, Lawrence Berkley National
Laboratory (LBNL). Eight conical Nb 3Sn coils with Holmium
poles are arranged in octahedral symmetry to form four dipole
pairs that provide magnetic fields of up to 5 T in any direction
relative to the incoming x-ray beam. The dimensions of the
magnet yoke as well as pole taper, diameter, and length were
optimized for maximum peak field in the magnet center using the
software package TOSCA. The structural analysis of the magnet
is performed using ANSYS with the coil properties derived using
a numerical homogenization scheme. It is found that the use of
orthotropic material properties for the coil has an important
influence in the design of the magnet.

Index Terms—soft x-rays, magnetic dichroism, superconduct-
ing magnet.

I. I NTRODUCTION

I N order to take full advantage of soft x-ray magnetic
dichroism (XMD) measurements, magnetic fields that can

be oriented in any direction relative to the incoming x-ray
beam in an x-ray absorption experiment are required. A resis-
tive eight pole magnet that is currently installed at beamline
4.0.2 of the Advanced Light Source (ALS), Lawrence Berkley
National Laboratory (LBNL), has been used to demonstrate
that the combination of x-ray magnetic circular and linear
dichroism measurements as well as the XMD angular de-
pendence provide information not accessible by other means
[1]. While this device has been successfully used to study
many materials, its peak magnetic field of 0.9 T is limiting
the systems that can be investigated. In order to align the
magnetic moments along the hard magnetization direction in
many oxide hetero- and nanostructures, magnetic fields near
5 T are required. An eight-pole superconducting magnet is
being developed at LBNL and Wang NMR Inc. to overcome
the limitations of the resitive magnet device. The planned
superconducting magnet is composed of eight conical Nb3Sn
coils with Holmium poles that are arranged in an octahedral
pattern to form four dipole pairs. Figure 1 shows a CAD model
of the magnets central set up including the internal support
structure, the Nb3Sn coils, the poles, and the magnet yokes.
The internal monolithic structure contains eight pockets to
support the Nb3Sn coils. A Holmium pole is inserted into each
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coil. The magnet yoke consists of eight parts that are attached
to the Ho poles . These pieces are bolted onto the monolithic
central magnet structure. Figure 2 shows a cross-section ofthe
magnet which contains a six-way cross that allows access for
the sample, the x-ray beam, as well as detectors.

Fig. 1. CAD model of the magnet’s central structure including the internal
monolithic support piece, the Nb3Sn coils, the Holmium poles, and the yoke
pieces.

Fig. 2. Cross-section of the magnet showing the six-way cross that
allows access to the sample from different directions for magnetic dichroism
measurements.

In this paper the structural analysis of the magnet is dis-
cussed. The mechanical analysis of the magnet is performed
with ANSYS with applied magnetic forces that are computed
using TOSCA. The effective material properties for the wire
wound coils are computed with a computational homogeniza-
tion scheme. In [2], a similar scheme was used for coils
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composed of Rutherford cables. Using the computed proper-
ties, analytical and computational models for the deformation
and stress state in the coil are presented. The effect of the
orthotropic properties of the coil on the contact state between
the coil and the support structure and poles is also discussed.

II. EFFECTIVE COIL PROPERTIES

In this section, a computational homogenization scheme
that is used to determine the effective properties of the “coil
material” is presented. Figure 3 shows an example of a
calculation over the periodic unit cell that is used to determine
the effective properties. The unit cell includes the strand
(inner circle), the strand insulation (outer ring surrounding
the strand), and the interstitial epoxy. The “coil material” is

Fig. 3. Example of a unit cell calculation for the coil material. The unit cell
includes the strand (inner circle), the strand insulation (outer ring), and the
interstitial epoxy. The colors indicate different strain states.

created by superimposing unit cells in an infinite space, which
is expected to be a good approximation for a coil with a
large number of windings. For this model, periodic boundary
conditions are appropriate. The periodic boundary condition
is described by

u
+ − u

− = E(X+ − X
−), (1)

whereu
+ andu

− represent the displacements of two points
directly opposite to one another on the periodic surfaces,X

+

andX
− are their corresponding positions, andE is the average

strain imposed over the unit cell. In order to compute the effec-
tive properties, six different appropriate loading conditions can
be applied to determine the effective elasticity tensor. Writing
the stress strain linear elastic relation in engineering notation:
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This equations shows that if only one non-zero value of the
strain components is chosen, then the corresponding column

of the elasticity matrix can be determined by computing
the stress tensor for that applied strain state. To extract the
effective properties of the unit cell, six different average strain
states (imposed byE in equation 1) over the defined domain
are applied, and the corresponding average stress states are
calculated. For example, to compute the first column of the
average elasticity matrix, a value of〈εx〉Ω is imposed with
the other strain components set to zero and the average stress
〈σ〉Ω is computed. The operator〈·〉Ω denotes the average over
the domainΩ which corresponds to the unit cell.

Table I shows the material properties that are used to
calculate the effective coil properties, where the abbreviations
Str., Ep., and Ins. stand for strand, epoxy, and insulation
respectively. For the insulation, the subscripts for the Young’s
moduli,E, the Poisson’s ratios,ν, the shear moduli,G, and the
total thermal strain from 295 K to 4.2 K,εth, correspond to
the three principal directions. For the epoxy and the strand,
the materials are assumed to be isotropic; therefore, only
two elastic constants are needed. The Poisson’s ratios,νij

are defined as the negative of the transverse strain in the
j-direction over the strain in thei-direction, when stress is
applied only in thei-direction. The remaining Poisson’s ratios
can be found using the relation

νji = νij

Ej

Ei

. (3)

The strand properties are determined using a rule of mix-
tures approach with the individual material properties forCu
and Nb3Sn obtained from the work by Mitchell [3]. The epoxy
properties are obtained from the CTD-101 data sheet [4] where
the shear modulus is given at 77 K and 295 K. Assuming a
Poisson’s ratio of 0.3, the Young’s modulus is determined.
Note that the 77 K shear modulus is used at 4.2 K since
no measured value is given for this temperature. The value
for the thermal expansion of epoxy was obtained from the
program CRYOCOMP. For the insulation layer, properties for
glass fiber and epoxy composites, which are obtained from
two different sources, are used. For the shear moduli and the
Young’s modulus in the3 direction, data was taken from the
CTD-101 data sheet for a combination of 50% and 60% s-glass
reinforced epoxies. Unfortunately, data is not provided for the
Young’s moduli in the fiber directions. Therefore, for the1
and 2 directions, data for G10 is used. The Young’s moduli
are taken to be equal to the average of the moduli in the fill
and warp directions, where this data was obtained from the
USPAS 2001 notes on superconducting accelerator magnets by
Goodzeit [5]. The data for thermal expansion of the insulation
layer is taken from CRYOCOMP using G10 as the material.
Clearly the accuracy of the individual material propertieswill
have a large impact on the calculated homogenized properties.

Using the properties in Table I, the effective properties
of the coil can be determined. Since the insulation layer is
anisotropic, the principal directions have to be specified within
an element. In this case the3 direction corresponds to the
radial direction from the center of the strand on which the
insulation lies. Since the properties are taken as transversely
isotropic, defining only one direction is sufficient. Table II
shows the calculated effective properties for the coil. These
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TABLE I
ASSUMED PROPERTIES FOR THE CONSTITUENT MATERIALS IN THE COIL

295 K 4.2 K

Str. Ep. Ins. Str. Ep. Ins.

E1 (GPa) 130 3.6 25 130 6.2 32
E2 (GPa) - - 25 - - 32
E3 (GPa) - - 13 - - 16
ν12 0.34 0.30 0.30 0.34 0.30 0.30
ν23 - - 0.30 - - 0.30
ν31 - - 0.16 - - 0.16
G12 (GPa) - - 23 - - 29
G23 (GPa) - - 5.2 - - 6.6
G31 (GPa) - - 5.2 - - 6.6
εth

1
(%) 0.25 1.4 0.27

εth

2
(%) - - 0.27

εth

3
(%) - - 0.76

TABLE II
CALCULATED PROPERTIES FOR THE COIL MATERIAL

295 K 4.2 K

EL (GPa) 88 90
ET (GPa) 31 40
ν12 0.28 0.29
ν31 0.33 0.33
G31 (GPa) 13 17
εth

L
(%) 0.26

εth

T
(%) 0.41

properties are transversely isotropic; therefore, only longitudi-
nal (L or 3) and transverse (T or 1-2 plane) components are
necessary to fully describe the material behavior.

III. F REE THERMAL CONTRACTION OF THE ORTHOTROPIC

COIL

The Nb3Sn coil has orthotropic properties in a cylindrical
coordinate system defined by the three directionsr, θ, and
z. After cool down, due to the different thermal expansion
coefficients in ther and θ directions, the coil is no longer
in a stress free state even if there are no loads applied on the
boundaries. This is due to the geometry of the coil which only
allows radial displacements due to its axisymmetric nature.
The solution for the displacement and stress in an orthotropic
coil with negligible axial stress can be determined analytically
by using the strain displacement relations, the stress strain
relation, and enforcing that the stress tensor is divergence free.
The radial displacement in the orthotropic coil, as a function
of radial position, is determined to be

u(r) = D1r
k−D2r

−k+
(1 − νθr)ε

th
r + (νθr − k2)εth

θ

1 − k2
r, (4)

whereD1 andD2 are constants determined from the boundary
conditions andk2 = Eθ/Er. For the coil geometry, the
properties in theθ andz directions in equation 4 correspond to
the properties in the3 and1 directions in table II respectively.
The stress state in the coil is given by

σr(r) = Eθ

[

D1

k−νθr

rk−1 + D2

k+νθr

r−k−1 +
εth

r
−εth

θ

1−k2

]

σθ(r) = kEθ

[

D1

k−νθr
rk−1 − D2

k+νθr
r−k−1 +

εth

r
−εth

θ

k(1−k2)

]

,

(5)

For a free thermal contraction, the constantsD1 and D2 are
found by enforcing that the radial stress vanish at the inner
and outer dimensions of the coil. For a detailed analysis of
orthotropic coils in solenoids, the reader is referred to work
by Markiewicz [6] and Gray [7].

Figure 4 shows the radial displacement of the coil base due
to cooling from 295 K to 4.2 K with zero applied external
loads. For this example the dimensions of the plane stress coil
are chosen to be those at the top of the vector magnet coil
where the inner radius is 22 mm and the outer radius is 71.5
mm. For an isotropic material, if the radial displacement curve
is extrapolated to zero radial distance, the radial displacement
should vanish. For the orthotropic material considered here,
this is not the case. The dashed line in figure 4 represents
the effective slope of the radial displacement curve for the
inner surface of the coil, which is considerably smaller than
the slope of the displacement curve inside of the coil. In the
inner surface the thermal contraction corresponds to that of an
isotropic material with a thermal contraction of0.15% between
295 K and 4.2 K. On the outer surface the thermal contraction
corresponds to that of an isotropic material with a thermal
contraction of0.31% between 295 K and 4.2 K. This result
is important for the design of magnet since it is desirable
to have the coil remain in contact with the surrounding
structure after the magnet is cold. The thermal deformation
of the orthotropic coil is clearly different that that of a coil
with assumed isotropic properties (where either the radialor
azimuthal thermal strain is assumed). Figure 5 shows the stress
in the radial and azimuthal directions due to the cool down of
the coil under the plane stress assumption. The radial stress is
tensile throughout the coil with a peak value of 19 MPa while
the azimuthal stress has a maximum tensile value (95 MPa) at
the inner radius and a maximum compressive value (-46 MPa)
at the outer radius.
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Fig. 4. Radial displacement of the coil base due to for cool down with zero
applied external loads. The dashed line represents the effective slope of the
radial displacement curve for the inner surface of the coil.

For comparison, figure 6 shows the FEM solution for the
radial and azimuthal stress in the coil where the plane stress
and cylindrical shape assumptions are removed. The FEM and
analytical plane stress calculations are seen to match closely
near the top of the coil where the inner and outer radius match
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Fig. 5. Radial and azimuthal stress due to the cooling of the orthotropic coil
under the plane stress assumption.

those used in the analytical result. As the coil becomes thinner
towards the bottom the effect of the residual stress due to the
orthotropic nature of the coil diminishes. With respect to the
design and structural analysis of the magnet, this effect will
lead to a shape change between the coil and the pocket in the
monolithic structure during cool down.

Fig. 6. Radial (left) and azimuthal (right) components of stress in the coil
due to cool down from 295 K to 4.2 K with zero tractions on all boundaries.

IV. STRUCTURAL MAGNET MODEL

For the structural analysis of the vector magnet the fol-
lowing components are considered: the coil, the pole, the
yoke, as well as the internal monolithic structure. In the
finite element model, all material interfaces are meshed with
contact elements. The contact pairs that are modeled are: coil-
support structure, coil-pole, coil-yoke, pole-yoke, pole-support
structure, and yoke-support structure. The behavior of the
elements can be specified as either a stick-slip interface, anon-
separating interface (i.e. only motion in the tangential direction
is allowed), or a fully glued interface. For the case where the
magnetic field is oriented in one of the principal directions, a
one-eighth model can be used due to symmetry considerations.
A zero normal displacement boundary condition on the three

flat lateral surfaces (x, y, and z planes) of the one-eighth model
is used. The magnetic forces are calculated using TOSCA
and applied to the structural ANSYS model on the pole and
coil elements. A homogeneous temperature load is applied on
every element in the model to simulate the cool down from
room temperature to 4.2K. Figure 7 shows the results obtained
for the contact pressure on the coil due to both the cool down
and energization of the magnet. For this case, the entire base of
the coil is in compression from the differential thermal strain
between the Aluminum support structure and the coil. Only
certain regions of the conical face of the coil remain in contact
with the support structure after cool down and energization.
The region of highest pressure on the coil is normal to the
direction in which the field is oriented. This occurs since the
coils are pulled towards each other in this direction.

Fig. 7. Finite element solution for the contact pressure between the coil
and the monolithic support structure after cool down and energization of the
magnet. The units for pressure in the figure are in MPa.

V. CONCLUSION

In this paper, the structural analysis for an eight pole
superconducting magnet was presented. Calculations were
performed to determine the orthotropic material properties
of the coil. Through the plane stress analysis it was shown
that the thermal deformation of the inner and outer radii
of the coil does not correspond to that seen in an isotropic
material where the thermal strain state is equivalent in both
locations. Therefore, the inclusion of the orthotropic behavior
is a critical component in order to determine the contact
behavior of the coil-structure and coil-pole interfaces. The
ANSYS model of the magnet allows for different contact
scenarios at these interfaces. The optimal choice for having
certain interfaces glued or allowed to slip is currently being
investigated. The accuracy of the model is clearly dependent
on the material properties of all of the components of the
magnet. This includes the constituent materials in the coil.
Since there is a fair amount of uncertainty in these properties,
accurate measurements over the temperature range of interest
are necessary.
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