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ABSTRACT OF THE DISSERTATION

The Composite Endpoint Protocol (CEP): High-Performaraxgid Content Distribution

by

Eric Haynes Weigle

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Andrew A. Chien, Chair

This dissertation introduces the Composite Endpoint Rat(CEP) which solves
two related problems: large-scale high performance teagsaind partial content distribu-
tion. Achieving high performance in large-scale networkih speeds above 1Gbps and
latency up to 200ms, is difficult; individual machines car fudly exploit overall system
capacity, and existing protocols (e.g. TCP) have well-kmgroblems. Similarly, while
whole-file content distribution is well studied, when inidival clients each desidifferent
parts of a file new techniques are required. The core algosiéind abstractions needed to
exploit large scale networks or provide sub-file distribntsemantics do not exist.

The underlying problem is fundamentéiansfer schedulingGiven a set of hetero-

geneous nodes whidilvedata and nodes whiameedsome subset of that data, perform

Xvii



transfers to best satisfy all nodes’ demands. No strongiseécsare implied here; subsets
of this data may be replicated, missing, not fall on blockieoundaries, etc. The solution
is atransfer schedulewhich implicitly or explicitly specifiesvhich nodes transfewhat
data andvhen

CEP solves the transfer scheduling problem using minimatakzation for meta-
data/scheduling and infrastructure for fully distributtata transmission. Hybrid central-
ized/distributed algorithms and heuristics dynamicaéipgrate the most desirable transfers
as system state evolves. In this way, CEP enables both $agje-high performance trans-
fers and provides rich partial content distribution sentantThe dissertation includes the

following contributions:

1. An efficientmechanism for multiple heterogeneous nodes/processesn{posite
endpoint) to take part in a single logical connection, whaee algorithms run in

O(n log n) for the common case;

2. Simple flexibleinterfaces for describing data layouts and composite entlpom-

munication, backed by generalmathematical abstraction;

3. Multiple transfer scheduling algorithms which produggh performancgover 10
Gbps), high resolution and when possible provabbptimal output, with detailed

analysis of each;

4. A scalableandrobustcomposite endpoint architecture which supports tens af-tho

sands of participants and transparently survives seriarda.

We describe the theoretical and real-world underpinnifigisi® problem, including
in-depth analysis of the algorithms involved, discuss twplementations of the Composite
Endpoint Protocol, as provide an empirical evaluation shgwuhe benefits of CEP under a
variety of conditions: ovet(x faster than Apache, BitTorrent, DHTSs, or uniform striping

techniques.

XVili



Chapter 1. Introduction

This dissertation introduces techniques enablindgfe-scale, high performance
transfers with (2) partial content distribution semanticdarge scale means transfers in-
volving up to tens of thousands of participants. High perfance means close to underly-
ing hardware limitations, providing tens of gigabits of damdth with millisecond latency
in LAN environments. Partial content distribution mearatthach participant may supply
or demand arbitrary parts of a logical data set.

In other words, the Composite Endpoint Protocol (CEP) mlesia rich model al-
lowing thousands of machines to specify their individuasides, which CEP then effi-
ciently satisfies. Providing any one of these features @fithfficult problem. Providing
all of them together is even more difficult; no existing afgmio does so.

First, “large scale” entails coordinating large numbersnaichines in a distributed
system, where machines may have heterogeneous hardwaseykeonnectivity, be in
different administrative domains, etc. Some may even faiind) the transfer. We must de-
terminecapacityof individual transfer participants amttect failuresExisting approaches
have problems exploiting heterogeneity, tolerating faif) or with scalability.

Second, “partial content distribution” entails allowingol individual machine to
supply or demand any arbitrary set of bytes; not necesdatligg on block/word bound-
aries, nor necessarily in a contiguous range. Arbitrarysstsof data may be replicated
on multiple machines, and there may be no machines servimg siata. Machines may
simultaneously serve some data and want other data. We retegstrdne whchaswhat
data, whowantswhat data. Existing approaches do not capture these richrdérs; data
is instead assumed to be in fixed-size blocks and all machmeesssumed to want the same

data. They do not provide the infrastructure necessarylteatahis information.



Third, “high performance” in such a large, complex systetaiéna similarly large,
complex optimization problem. We call this ttransfer scheduling problenGiven infor-
mation on system state— who has/wants which data and ci&sa@s above— the system
must determine how to satisfy all participants. That meaterchining aransfer schedute
who communicateswhatdata they send, and at whatte, such that everyone get exactly
what they want as quickly as possible. Existing approacloesdl attempt to optimize
globally. Instead they focus on individual transfer pap@nts and provide minimal global
functionality.

Transfer scheduling is a fundamental distributed systemisl@m encountered in
a variety of situations. Any large scale data transfer, hghitsics, biology, or geology
data sets, 1ISO images for Linux distributions, off-siteasifories for system backups, or
media/content distribution networks (CDNSs), etc., is savan instance of the transfer
scheduling problem. Peer-to-peer file sharing is a didkeitbinstance of the problem, typi-
cally optimizing for robustness. Distributed file systemd distributed memory implicitly
solve instances of the transfer scheduling problem, piogiblock or whole-file semantics.

A more concrete example is cluster-to-cluster file trans¥arch initially motivated
this work. Here, individual cluster nodes’ capacity (e.dsbps Ethernet links) is small
relative to total system capacity. To utilize high bandWwi@t.g. 10Gbps) links we must
exploit multiple nodes. This means determining which naaesmunicate, what data they
send, and at what rates: a straightforward instance of Hresfier scheduling problem.
Since total system performance is more important than th& iwmdividual nodes perform,
there is flexibility to optimize by, e.g., placing load on ragrowerful, lightly loaded, or
well-connected nodes. Section 2.2 discusses these exampiere depth.

While prior work focused on special cases, CEP solves the gerseral form of
the transfer scheduling problem. We capture a more com@erfdransfer constraints,

providing richer partial-content transfer semantics. VWgknon a larger range of systems,



including transfers on heterogeneous nodes and transigrsnany participants. We pro-
vide higher performance in many environments, achievigbdi bandwidth, lower latency,
and more robust transfers.

Specifically, we claim that CEP, the Composite Endpointdtrol, provides aref-
ficientmechanism for multiple heterogeneous nodes (a composifgoént) to take part in
a single logical connection; hasmple flexibleinterfaces for describing data layouts and
communication constraints, backed bgeneralmathematical abstraction; provides mul-
tiple transfer scheduling algorithms which prodimgh performancghigh resolutionand
(when possible) provably optimal output; and hasalableandrobustarchitecture which
supports large numbers of participants and toleratesréslu

We achieve these features using graph-structured trassfeduling algorithms,
heuristics, and partially centralized metadata managemieastructure. Transfer schedul-
ing is an optimization optimization problem which can beaelted with linear program-
ming, greedy algorithms, implicit scheduling, or othertteicjues; together these form the
core of our approach. Similarly, efficient detection, rejgrgation, and management of
metadata is necessary to enable transfers with complicagggrements.

The rest of this chapter discusses high-level motivatimtpfs for this work, our
new contributions, and gives the actual thesis statememtcaficlude with an outline of

the dissertation.
1.1 Motivation

CEP targets high performance and rich transfer semanticgivding the former
are historical trends in hardware and software- these have led to a world where ca-
pacity is available but underutilized. User demands anciacks in distributed systems

motivate the latter. This section discusses these treraisstevant background.



1.1.1 Exploiting Hardware Trends

Over the last several decades, computer technology hagetianamatically. To-
day we are entering a world where such incredible amountsref lbandwidth are poten-
tially available that end node capacity is a bottleneck sTéieven true given the oft-cited
Moore’s Law [79], which as commonly phrased states that adatpnal power doubles
every 18 months. A similar law exists for network capacit§][2out network speeds are
growing even faster than computational speeds [105].

Networking technology is shifting from electric to opticgignals, which provide
two main benefits. First, optical fiber can carry high spegdals much farther without re-
peaters. Second, multiple wavelengths of light can bezetilion a single fiber with almost
no interference. Thus both signal fidelity and density ang Vegh. In practical terms,
6.4Tbhps/fiber was demonstrated by NEC in the year 2000 ugifgchannels at 40Gbps
each [33]; and more recently over 1000 wavelengths per fiagblkeen demonstrated [58].
That leads to a potential capacity of over 40 Terabits peorsdger fiber This kind of
capability has driven large companies to snap up sparel(*dtioer [51].

The problem in this environment is that end nodes run at mimhes speeds—
typically less than 1Gbps— a fraction of available bandkid exploit available capacity,
we must use nodes in parallel. Beowulf clusters [16, 102]adtractive for this purpose:
built from commodity components, they provide low cost)abke infrastructure. They are
commonly used for physics simulations [24], biology/bformatics [12, 80], data mining,
and even supercomputing [115]- all tasks that may have krgle transfer requirements.

A final hardware problem is heterogeneity. Even in “homogeisé clusters, nodes
have heterogeneous features due to failures, transiesht Wgeng limitations, or config-
uration issues. Given rapid change in technology, nodeshpsed even a few months
apart may differ in CPU speeds, memory, etc. The problemteirbgeneity is exacerbated

when including peers on the Internet- nodes with DSL or cablzess are slower by or-



ders of magnitude. While hardware technology and physifedstructure exists, transfer

scheduling software to effectively utilize complex hetggneous environments does not.

1.1.2 Providing Rich Software Semantics

Systems with multiple nodes have a variety of communicatiptions- the com-
bination of which nodes communicate, what they send, howtfes send provides a
large space in which to make decisions. While prior work nsakevariety of simplify-
ing assumptions to manage this complexity, we show it isiptesto capture arbitrary user
constraints and act upon them efficiently. This allows usrtwige a unified framework
encompassing a variety of use models with a single scheglalil optimization engine.
We support communication patterns that are impossible tefficiently in block-based
systems; for example handling combinations of small, odiited pieces and bulk data in
a single transfer.

Put another way, we capture and solve a superset of the prstgeor work can
even represent. This includes problems such as stripeddiisfer, where peers each send
disjoint portions of a file, distributed editing, where ividiual peers work on small pieces
of a file, or data scatter/gather, where some peers have thie ke while others need
only portions of it, or vice versa. Our unified framework ateeans that improvements to
the underlying algorithms or software improve performaacess all environments. Our
simple interfaces (see Section 5.2) enable users to expkse features without concern
for the underlying model.

Another important example is traditional whole-file coritdistribution— “get iden-
tical copies of a data set to every machine.” There is a laogly bf work focusing on such
replication [3,29,65,81]. We support this and also let sispiecify arbitrary data demand/-
constraints, not necessarily a whole file or block-alignest@s of one. This captures a
wider variety of situations. It provides new challengessas byte-range-based metadata

management, and optimization opportunities, such as @nsstructure we can exploit.



The distinguishing feature between use models is the ldveharing For tra-
ditional content distribution, all peers want tkamedata: they share demand. For par-
tial content distribution, peers may each desgliferentdata: lower sharing of demand.
Low-sharing environments have limited opportunities tplei peer-to-peer transfers. To
achieve good performance it is critical to efficiently (13abver data supply/demand con-

straints, and (2) allocate capacity satisfying peerskediifig constraints.

1.1.3 Limitations of Current Approaches

Given the differences between traditional whole-file andigecontent distribution,
traditional techniques do not provide a good solution. imdosharing environments peers
at best download useless extra data; the smaller the frastidata desired, the worse the
overhead. At worst, they fail entirely: nodes are unabletoave desired data (see Section
7.10.3). Traditional distribution approaches are mosttg@gonal to this work.

Peer-to-peer networks provide the most common example menwporary dis-
tributed systems where multiple peers cooperatively femrdata. Examples include Bit-
Torrent [29], KaZaA [59], LionShare [74], or the Logistidalesystem [10]; BitTorrent is
the most popular. Peers in such systems can dowiilmedttsfrom multiple peers, eventu-
ally reconstructing avhole file This differs from the byte range and partial file semantics
we offer. Their metadata management features can not sypgotial content distribution—
information on rare data does not “trickle through” the natiky leading to partitions and
inaccessible data. We show this experimentally in Sectitf.3 (page 137).

BitTorrent [29], the most well-known and popular tool forda peer-to-peer down-
loads, is worth discussing further. BitTorrent supports/avhole-file traditional content
distribution. It uses a centralized “tracker” node to maintglobal information on (1) par-
ticipating peers and (2) a rough measure of their progreseen/ new peer wishes to
download a file, it asks the tracker for a list of existing gagho have or are downloading

that file. Peers trade information on their progress pagwand each peer uses heuris-



tics to weight block upload/download from others in patalBitTorrent does not support
downloading only portions of a file. It is also slower and haghbr latency than CEP. We
discuss this further in Section 6.2.2 and the second halhaipter 7.

Work on Distributed Hash Tables (DHTs) and overlay netwaskalso a popular
research area. There is a large body of literature and ingaéations such as Pastry [23]
or Chord [108] are available. These have been used as hyildotks for peer-to-peer
metadata management or file transfer mechanisms. But dbase systems support only
block-based transfers and whole-file semantics. We dis@essf and problems with DHTs
in more detail in later sections; e.g. 5.3.3 (page 90) an@{dage 118).

Multicast trees/meshes [64,65], erasure coding [18, 19an@l network coding [73]
techniques are also popular. They similarly support onbckibased whole-file transfers.
The whole-file assumption (in multicast trees, childreraltgtshare demand) and inter-
block dependencies (in erasure codes, multi-block engddmean these can not be used
in partial-sharing environments. We discuss this furthesection 4.4 (page 64).

Our final example comes from the high performance computimgnounity, where
data striping is commonly used to improve performance. §sokch as GridFTP [4] or
RFT [92] and messaging systems such as MPI or PVM [6, 78, 1108} geers to col-
lectively transfer data. These systems require uniformiégeneous nodes, are limited to
simple data constraints (i.e. striping) and have limitedtfelerance. CEP supports a more
general environment. We show this experimentally in Secti®.1 (page 120).

In summary, recent trends in hardware performance haveecream opportunity
for very high performance distributed transfers. Currdotk-based whole-file transfer
approaches can neither provide the rich semantic featwsised nor offer high perfor-
mance in widely varied environments. Naive work-arounds\apg existing technology—
such as creating a separate CDN for each subset of desimed gtform poorly and have

unacceptable overhead. This and other related work is edwemore detail in Chapter 9.



1.2 Thesis Statement and Contributions

Here we provide the thesis statement and a brief explanaibapter 2 discusses

the problem in detail, as well as clearly defining the solutiequirements.

1.2.1 Thesis Statement

Fully utilizing high speed links for large, complex transfeequires metadata man-
agement infrastructure and simultaneous transfers batwastiple nodes. Composite
endpoints using hybrid centralized/decentralized temstheduling, via graph-structured
algorithms and feedback heuristics, provide a generah-pgrformance and robust ap-
proach.

Subsidiary theses required to substantiate this thedisdec

e Generality: produce desirable results in a wide variety of environmemtd user

constraints. This also requires:

e high resolution nodes can transfer any arbitrary set of bytes, not nedbsgar

blocks, not necessarily a whole file, and
o simplicity/flexibility good interfaces exist for describing user and system cainss.

e High performance: converge to bandwidth and latency near hardware/dataalimi

tions. This also requires:

e efficiency computation time amortized over all nodes commanly: log n), worst-

caseO(n?), with query response i®(1); and

e scalability: system works for transfers involving tens of thousands ades and

10Gbps+ links.

e Robustness: failures which do not totally eliminate desired data atertated.



1.2.2 Dissertation Contributions

CEP, the Composite Endpoint Protocol, provides all theatufes. It composes
up to tens of thousands of senders and receivers by way of& setple, flexible user
APIs. We provide rigorous analysis of the problem and atbors involved, as well as
experiments to show functionality in a variety of enviromtseand optimality under cer-
tain conditions. Our implementation is efficient, high sghe@nd tolerates server failures.
It allows nodes of any speed with any subset of data to ppatieiin the transfer. This

dissertation provides the following contributions to treddi

e Rigorous mathematical definition of the transfer schedutiroblem, also known as

the the partial content distribution problem.

¢ In-depth analysis of the transfer scheduling problem uidiclg complexity and vari-

ous sub-problems, and development of a useful graph-atedctanonical form.

e A set of new algorithms which (1) efficiently solve the traars$cheduling problem—
commonlyO(n log n), worst-casé)(n?), with query response i®(1) and (2) pro-
duce high performance transfer schedules— typically edgmt to an optimal linear

programming solution— that exploit heterogeneous nodenatwork performance.

e A set of simple, flexible interfaces for integration with Mars types of applications,

and which allow expression of arbitrary data layout and nmmestraints.

e Multiple implementations of CEP using different underlyimetwork stacks and pro-

tocols, which have been used in real world situations.

e Side-by-side comparisons with other approaches showiadehtures and perfor-
mance of CEP, improving bandwidth/latency by an order of mitage as compared
to BitTorrent: over & higher bandwidth for low-sharing configurationsg figher

bandwidth for high-sharing configurations, aq%(? the latency for small transfers.
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e Empirical evaluation showing the above features in a warétenvironments: (1)
functionality— composition of hundreds of real-world nedand tens of thousands in
simulation, (2) high performance— achieving over 30Gbphélocal area, 10Gbps
in the WAN, and 1Tbps in simulation, and (3) fault toleranseviving failure of%

the servers with only a 2% decrease in performance.

1.3 Dissertation Outline

This chapter covered the motivating factors for the dissgien, the thesis statement,
and our claims. This section gives an overview of the reneinéthis document.

Chapter 2 discusses the problem in more detail. We walk gir@everal increas-
ingly complex use cases, outline the desired solutionspaoré rigorously define the terms
and sub-problems discussed at a high level in this chapter.

Chapter 3 provides analysis of the transfer schedulinglenobWe cover reduc-
tions and simplifications to the general transfer schedydioblem which are worthwhile
in real-world environments, conversion to the canonicalpyrform of the problem, and
discuss which forms of the problem can be solved efficienityahich are NP-complete.

Chapter 4 discusses the main scheduling algorithms wea@eirethis work. While
the prior chapter provided basic analysis and backgrourtdnmbrelevant to all environ-
ments, this chapter covers specific algorithms for genmegdtansfer schedules. We cover
three primary algorithms, extensions to them, and discess Yarious performance char-
acteristics. Together with Chapter 3, this addresses aimslof high resolution, efficiency,
scalability, and high performance from a theoretical pectipe.

Chapter 5 discusses the system design. It covers the “glh&hwcombines the
scheduling algorithms, network communication, and othecgs into a cohesive whole.
This includes the state machine for control of the protoseljeral core algorithms not

directly related to scheduling, and the various applicapoogrammer interfaces (APIS)
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used to interact with the system. This chapter addressaedaiors of simplicity/flexibility
and robustness.

Chapter 6 discusses the two main implementations of CEPhadvariants. We
include information on the network infrastructure, Unixkets [106] and Globus XIO [5]
stacks, and relevant engineering issues encountered @togenent.

Chapter 7 is our core empirical evaluation. In various reatly emulated, and
simulated environments, we determine the performanceefkytistem under the criteria
discussed above. It covers the test configurations, andda®vesults supporting our
claims of high performance, efficiency, scalability, andustness from an experimental
perspective.

Chapter 8 departs slightly from the rest of this documenbtk lat a specific con-
tent distribution problem— traditional content distrilaut on hybrid satellite/terrestrial net-
works. We show that a simple transfer scheduling mechananpcovide excellent per-
formance in this special case. This chapter speaks mairthetgenerality of the transfer
scheduling approach, but also shows efficient, scalabbeistand fair performance in this
special-case environment.

Finally, Chapter 10 summarizes the claims and evidencasrithsertation, as well

as providing some concluding remarks and discussion ofdéutork.



Chapter 2: The Transfer Scheduling Problem

This chapter discusses the central problem of the dissmrtatansfer scheduling.
We show that the problem is interesting, difficult, and hdali@ open research questions.
We provide an overview of the issues in many-to-many comugatitn, make these is-
sues concrete with several use cases, and then show hovettivefty represent problem
constraints. We conclude with a more rigorous definitiorhef inderlying computational
problem, which we solve in Chapters 3 and 4.

We will use the following terminology: aoderefers to a physical machine, while
apeerrefers to the machine and any associated software. We tlypinave only one peer
per node, so the two are roughly interchangeableliéntis a peer that wants data, while
aserveris a peer that provides data. A client peer may simultangdaesh server, or vice
versa. Ascheduleris a peer or set of peers which determines a transfer schémiullee
global transfer. Typically the scheduler is alsmatadata servemhich collects and serves

information on data location, host capacity, and systerfop@ance.

2.1 Overview

Transfer scheduling solves a generalization of the cordesttibution problem—
what we call the partial content distribution problem. Gielogical set of data and some
number of distributed peers, where each peer which may havevant different subsets
of that data, how to best transfer data such that each peewtet they desire?

This isnotjust whole file transfer to all participating peers. In castrto traditional
content distribution, each client may watifferentsubsets of the data. Similarly, this is
notjust one-to-many multicast. Multiple servers may haveioagl of different parts of the
data. Finally, this is1otjust many-to-one download, as in GTP [126]. There can be many

clients/servers acting in parallel. Peers may be both saneclient concurrently.

12
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The partial content distribution problem includes all oé$k earlier problems as
special cases. Given the large class of problems this caverocus on the subset without
known solutions: where peers require less than whole-8lesfiers and there are nontrivial
mappings between clients and servers. However, the tasbsige develop in this disser-
tation are sufficiently general so as to be usefuldibdistribution problems.

A good solution would include several features. We have forapeting goals:

1. High Performance (i.e. high capacity): high aggregate system bandwidth and |

response latency.

2. High Efficiency (i.e. low cost): do not waste system resources, exploitpragive

hardware, be efficient.

3. Simplicity (i.e. low complexity): provide a straightforward API, supplegacy

code, minimize system “knobs.”

4. Robustness(i.e. tolerate crashes): survive faults, failures, errarsd inaccurate

metadata.

5. Generality (i.e. be comprehensive): work on a variety of hardwarefgaie plat-

forms, with different input constraints and goals.

The first goal, performance, generally resolves to high taatith. \While typically
only aggregatebandwidth matters, we also try to keep latency low and enfaireess
when possible. High performance is difficult when availaidees may be relatively slow,
heterogeneous, or have limited access to the data. Therenaay nodes, meaning that
we must have good scalability properties— our target is enotider of 10,000 peers per
logical transfer. We project that the largest “common” comepclusters will be around
that size in the coming years; even today’s largest supgvaters only use a few thousand

Input/Output (I0) nodes.
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The second goal, efficiency, is minimizing resource expeneli Many approaches
can achieve high bandwidth but are very inefficient- e.g. dlog or whole-file transfers.
We must minimize overhead from metadata transfer, comipatéime for scheduling al-
gorithms, and ensure peers do not receive extraneous data.

The third goal, simplicity, is how to make a powerful systewaikable without
painful configuration or manual tuning. This resolves tovidng the right Application
Programmer Interface (API) and suitable tools for the tatge model, and an internal
transfer mechanism that transparently manages low-letalld.

The fourth goal, robustness, is how to tolerate variousifed. Aggregating de-
vices causes capacity to grow linearly but failure probighib grow exponentially. In a
distributed transfer, node or link failure should not catleeentire transfer to fail if another
data replica is available. This is a particularly bad probfer high performance systems,
which tend to use bleeding-edge hardware. As anecdota¢mewé] it took over 30 runs
of the LINPACK benchmark [67] for a successful result durihg burn-in period for Los
Alamos National Laboratory’s ASCI Q supercomputer.

The final goal, generality, is simply that solutions shoulddtion in all cases.
There is a unifying thread between the different use modetsrely the idea of trans-
fer scheduling— and we can exploit this to produce a more cehgmsive approach than

those currently taken.
2.2 Use Models

This section makes the issues described above concretgthiitustrative exam-
ples. We go through several specific use cases and show h@rothlems encountered are
interesting and not adequately solved by existing workviBtesly, we defined the problem

negatively— by explaining what it was not— while this sectitefines what it is.
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Our first example, high speed cluster-to-cluster commuiicavas the initial mo-
tivation for this work. Next we look at remote visualizatjomhere data constraints may
change and latency is more important. Finally we look at eondistribution, and the

problems traditional approaches have when applied ingdastiaring environments.

2.2.1 Cluster-to-Cluster Bulk Transfer

Consider a transfer between two homogeneous clusters @sndgach node has
access to a local shared file system, and we wish to transfler fdim one cluster’s file
system to the other. The naive approach is a one-to-ondérdmstween a single server
node and a single client cluster node. This will be limitedHy capacity of a single node

and have problems in the wide area due to TCP limitations$seton 7.2.1).

Servers Data Clients

( Server 1) >( Client1 )

(Server2) >( Client2 )

(ServerN ) >(_ClientN )

Figure 2.1: A Simple Striped Transfer

The next obvious approach is a striped transfer from sewssalers to several
clients as in Figure 2.1. Each client/server pair transdaissjoint piece of the file. This is
useful to avoid TCP’s problems in the wide area, to disteludta for analysis on a cluster
of nodes, or to logically collect otherwise disparate tfarssfor management purposes.

In an ideal world, this would be enough; but we wish to solve @ermrealistic
problem. Nodes may not be homogeneous; equally sharing waoukd limit performance
to the speed of the slowest node. Clients may want arbitracyians of the file; e.g.
tiled simulations require some overlapping data at the dgervers may provide arbitrary
sections of the file, due to caching, load balancing, etallimodes may host both a client
and server simultaneously, e.g. during a distributed cdatjmn. Figure 2.2 illustrates

some of these features.
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g Demand
Hole in S4
Supply Hole in

Demand

Figure 2.2: Sample Problem

NodessS; to S, (the Servers) have access to overlapping subsets of a lagitza
collection, e.g. a file or database. Nodesto R4 (the Receivers) want subsets of that
data. Nodes have different capabilities, indicated by tiekhess of their oval. The data
logically exists in a linear name spatélote the overlap in supply and demand for given
ranges, and ranges which no node supplies or demands. Tdegseek distinguish our
problem from the related/ x N problem (a.k.a. the N-to-M problem, the M-by-N problem,
and so forth) defined by Sussman [71] and others [36]: ourBogtkpallows replication,
holes, and failures, dynamic behavior, and nodes may bedlietit and server.

In the general case, clients mugtate servers providing desired data, aselect
the best one(s) from which to download their data. The raptication and selection tasks
provide new challenges and opportunities for optimizatjpeer-to-peer transfers, locality

detection, load balancing, etc.

1This was a parallel creation of a linearization mechanigstubsed in depth in [125] by Sussman.
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2.2.2 Remote Visualization

This use model considers visualizing a large data set, suitioae found in research
on physics, geology [24], climate change, or medical imaf#0]. Consider data currently
on a storage cluster’s distributed file system, to be andlyrea second cluster, and the
analysis rendered for display (perhaps on a third clustéme user wants to interact with
the visualization. While the prior use model was for latetmgrant bulk data transfer,
here response time and dynamic behavior are important.

The networking portion of this application is complicatdetame rendering time
varies depending on complexity and data location, so eanttereng node will have a differ-
ent amount of data belonging in differing logical locatiom$he video stream. Presentation
on a tiled display provides no 1-to-1 mapping between disptal rendering nodes.

Similarly, we may have source and destination replicatiatha file system or ap-
plication level as the user steers back and forth througldéte. There will be holes in
supply and demand for the same reason, and it may be diff@cuolip a complex data set
into a linear range without empty sections.

We may have heterogeneity. Nodes may have imperfect loahtialy for render-
ing tasks or different performance depending on which ithisted data is physically on
their local disk. We may also have dynamic behavior. Transfquirements will change
as the user interacts with the system.

Work flow tools such as Kepler [7] are increasingly being usedapture the sep-
arate pieces in such a process. Some of these operationlsmeot@ment of massive
amounts of data, and that is where we come in to the pictureeXample, consider the

simple work flow graph in Figure 2.3; our work (CEP) fits natlyranto this structure.
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Figure 2.3: Sample Work Flow

2.2.3 Content Distribution

The distinction between traditional and partial conteistribution is that the lat-
ter allows different users to request or provide differarisets of the data. For example,
consider a small Internet TV station. Some users want alsiosvs, some only a favorite
show, some want to skip commercials, some want only the comate (e.g. the Super-
bowl), some want adult content included, some a version feafehildren, and so forth.
All users may want data at different bit rates or frame sizes.

As discussed in Chapter 1, traditional approaches usinggast, caching, peer-
to-peer transfers, or erasure coding work poorly for pbactatent distribution. Enabling
this use model would requires the server predict user istteceeate and store multiple
versions of the data, and support hundreds of transfera ten each transfer would be
independent, unable to exploit data in others. We show thigrgcally in Chapter 7.

This brings us back to the concept of demand overlap, or ddrslaaring. Tradi-
tional content distribution is total sharing: all nodes wHre same data. Partial content
distribution sees this a spectrum of possibilities from Inargg (nodes want disjoint data),
to low-sharing (nodes’ data has minimal overlap), to highatal sharing. Section 2.3.1

provides an explicit definition of a sharing metric.
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While this work focuses on high-speed wired networks, aoingéstribution prob-
lems arise in nearly every network imaginable. As speaakcextension, Chapter 8 con-
siders traditional content distribution on a network whosedes have satellite capabilities
as well as physical Internet connections. Due to the madeiti changes required to best

support this environment, it is discussed separately ftzamtain flow of this dissertation.
2.3 Problem Specification

This section covers the next obvious question: how to efftgrecapture all the
user’s constraints, and in such a way that processing thésasshle? We do so by distin-
guishing between the physical and logical constraintsskayconstraints are the structure
and characteristics of the network. Logical constrainéscanstraints on the data. Each set

is input as a simple list of known information, as describebbw.

2.3.1 Logical Constraints: Data

We make no assumptions regarding data location, eithenghu {current) or output
(desired) structure. Either may have arbitrary overlapplicated data areas), holes (data
for which no sender/receiver exists) and be of any size. \Aleras no special data encoding
(e.g. erasure coding).

We capture these constraints as two sets of contiguous aytes for each node.
That is, each node provides a list (dtart byte, end bytetuples which is the data they
require (are a client for) and provide (are a server for).sThRpresentation is inexpensive
for most environments. The only inefficient common caserided access over small data.
This can be handled with a simple extensipstart byte, block size, stride lengthuples,

but this is left to future work. Alternatively the user camap their data.



20

Given the lack of assumptions on data layout, we can captuidevariety of sit-
uations at high resolution: two of our goals. Performandéativiously vary depending
on the constraints. The most important predictor of trartsédavior and appropriate tech-
nique is the level of sharing. We will talk about the corresgence more in Section 2.5

discussing the solution space, but for now we quantify tlea Mith the following metric:

Sharing = avgyi(avgw; (([{di} N {d;})/H{d:}])

For each node; and reachable peer;, the overlapping proportion of datg has or wants
thatn; wants, aggregated over all nod¢s;} and{b,} are the set of data that nodesand
n; have, and| takes the size of the set. Effectively this is a measure cfisgtarity.

Put another way: For each node, calculate the average ledat@ shared with its
peers; then average that across all nodes to get the shagagsune. When all nodes want
the same data, this is 1. When all nodes want different dais0i When half want one
set of data and half another, it is 1/2. For the special cabéook input, this metric can be

calculated particularly efficiently by ORing block bitmaps
2.3.2 Physical Constraints: Nodes and Networks

We make somewhat stronger assumptions about the netwalasCEP trans-
fers: that they are IP-based and well connected. That i gratket from any node can
reach any other; firewall/NAT traversal is not supported. &¥sume all devices can run
TCP and a minimal amount of user-level code. Weak or pragyadevices, such as sen-
Sors or microscopes, can participate through a gateway.

We assume nothing about the number or location of peers. Warasnothing
about pairwise network properties (bandwidth, latencyg.assume nothing about pairwise
node properties, i.e. homogeneity. We will make strongsuiptions to perform specific
experiments. Our motivating environment, for example, higs core bandwidth (10+

Gbps) and hundreds of endpoint nodes with Gigabit Ethernet.
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Similar to the logical constraints, we capture network $iragls part of a tuple space:
( source node, destination node, bandwidth, latenéynsurprisingly these tuple spaces
can be transformed efficiently into a graph structure, asiBpd in our thesis statement.
We do not currently use metadata such as a link’s loss rat¢éher dynamic behavior as
part of our scheduling algorithms. Input data should regmethe current net goodput and

be updated as behavior changes.
2.4 Rigorous Definition of Transfer Scheduling Problem

This section gives an abstract specification of the probledoar desired solution.
First we discuss capturing an instance of the problem, theet & valid solution entails,
and finally the objective function to maximize- the goal. Thext chapter shows how to
simplify the problem without loss of generality.

A problem instanceis a complete specification of constraints as describedegbov
A set of nodes, with the data each node has and needs, and &rdet,avith the bandwidth
and delay of each link. We use the termasgefor an arbitrary set of integers specified as
disjointsegmert [b;...e;] (begin toend, inclusive). These ranges are the bytes that a given
node stores or wants, in no particular order. Segments meslapy These terms were

chosen to bring to mind line segments and the range of a famcti

Set of Nodes { Nodey ... Node, }
Node; = {
Range of datarequired := { (bo,eq) ... (b e.) }
Range of dataprovided := { (by,eq) ... (bp,e,) }
}
Set of Links { Linky ... Link, }
Link; := (Source, Destination, Bandwidth , Latency)

Listing 2.1: Problem Instance
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An element of thesolution spaces a transmission mapping: a set of 6-tuples. This
is just a list of which nodes communicate, what they send,velneh they start and stop

sending. Transfer rate is constant over that period.
( source, destination, byte begin, byte end, start, stop )

To be a valid solution, the set must satisfy severlstraints. Each tuple must
be well-formed: receivers must get the data they have reéegieservers may only provide
data they have, and link capacities must not be violated.ckuity, we treat ranges as a
simple sets — enumerating every byte in every segment iratigeer Set notation simplifies
the expression. See Listing 2.2. This specification assanseyle physical path between

pairs of nodes and that routes do not change while the traissfeprogress.

# Constraint tuples must be welformed
Ve €T : Coource € Nodes and ciestination € Nodes and
Cstart 20 and Cstop 20 and Cbegin 2 0 and CendZO

# Senders can send only data they have;
# originally or from another transfer
Ve €T, Yo € {Coegin, -+ Cend} © T € Csourcepronigea OF
i eT |, <x<c,, and ¢y, =c and
C;top + latency(TOUte<C;ource7 cgest)) < Cstart

# Receivers can only receive data they want
Ve € T, V& € {Coeginy -+ Cend} © T € Cdestyoquired
# Receivers must get their data
VN; € Nodes, Vz € N;_ ...

deeT ‘ Cdestination — Nz and Chyte_begin S €T S Chyte_end

# Can not send faster than link capacity.
V times t € {minyeer(Cstart)...MaZyveer (Cstop) }
Vi € Links, YceT
E(lstop — Ustart) / (Cend — Coegin + 1) < leapacity Where
l c TOUte(Csourcey Cdestination) and lstart S t S lstop

Listing 2.2: Linear Program Problem Constraints
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This specification explicitly allows peer-to-peer sharinghe second sender data
constraint clause, which states that they may send bytesdgraent already received from
another nodelatency(route()) refers to the network delay sending from the source to the
destination. It explicitly denies optimistic receiver ogtons— no downloading extra data.

The primaryobjective here is speed: minimize the time at which the last node
finishes receiving data. We are interested in the total cetigpl or termination time, not
that of any individual node. Thus, we minimize the completiione of thelast node.

Our evaluation uses other metrics to show system charsiotsti With equivalent
aggregate termination times, we wish to maximize fairneggaming performance, or
system utilization (depending on the enviroment). Fomiaés we use Jain’s measure [55].
Streaming bandwidth measures the rate at which nodes cantdtaing data they receive:
the largest run of data with no holes. Table 2.1 shows thefgetles.

Table 2.1: CEP Primary and Secondary Objectives

Primary Objectives (equivalent)
Termination time: minimiz&'c € T : cyoptlatency(route(Csources Cdest));
Bandwidth: maximize&>_ ., data(c))/time
Secondary ObjectivegdMay have trade-offs)
Fairness: maximizé€>” z;)?/(n - 3 x?)
Link utilization: maximizecapacity /bandwidth
Streaming bandwidth: maximiZéighest contiguous byte)/time

2.5 Solution Space

While the prior section discussed the solution space framearetical point of view,
this section gives a high-level overview of different waysgeanight solve the problem.
Stepping back for a moment, we show how current researclogjester.

All transfer schedulers fall into two rough categoriesplicitschedulers plan an full
transfer and subsequently implement it, whifgolicit schedulers use node/block selection
heuristics, forwarding semantics, or special data engpitirget receivers their data. Most

current approaches fall into the latter category; CEP iskaitlymechanism.
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Along the same lines, metadata transfer and scheduling @aur locally or glob-
ally.? This is a measure of coordination, but need not mean ceziitidin; decentralized
approaches often communicate heavily to maintain invésianch as DHT structure. In-
creased coordination enables partial-file sharing; witlitauodes cannot efficiently locate
a source for a desired piece of data.

Peer-to-peer systems typically have only local metadateoptimize locally with
an implicit scheduler; global behavior is an emergent priypeerived from local actions.
This approach makes sense for dynamic, heterogeneousk ‘ide” networks: long-term
plans in such environments are inappropriate. In contrégh, performance and research
networks [20, 31,69, 117] tend to be less heterogeneousdiggmic (some even include
bandwidth reservation features) and their structure sndihown. CEP can exploit these
features to improve performance via explicit planning aludbgl information.

Figure 2.4 gives a graphical view of some current approaichiesms of coordina-
tion and performance. The level of coordination is how mu@htadata is shared among
peers: their local/global-ness. Most approaches heresaicblicit schedulers; e.g. net-

work coding can be applied to create explicit scheduleshattis not its intended use.

A
Ide:; | K Transfer
S etwor A Schedulers
é Coding mmtlt::ast (CEP or
eshes -
S Erasure Circuit Based)
E_’ Codes
o (Digital P2P block
% | Fountain) Sharing
g (BitTorrent)
2 Epidemic -
Flooding ol

Increasing Coordination

Figure 2.4: Coordination & Performance

2While metadata propogation and scheduling are logicalphasste, it only makes sense that better-
informed peers make the decisions. This is not a democracy.
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2.6 Summary and Conclusion

This chapter has shown that the general transfer schedidmgquivalently, the
partial content distribution) problem is interestingfidifilt, and unsolved. We have given
concrete examples, a rigorous problem definition, and a riidge @otential solution space.
This lays the groundwork for the analysis of Chapter 3 andrétlygms developed in Chapter
4, which solve the problem from a theoretical perspectivdaper 5 and 6 then take
those algorithms to produce a real-world implementatiom all the desired features and
performance characteristics.

Acknowledgements Material from this chapter, in part, appeared in “The Com-
posite Endpoint Protocol (CEP): Scalable Endpoints foalbgr-lows,” Eric Weigle and
Andrew A. Chien, Proceedings of IEEE Conference on Clustan@uting and the Grid
(CCGRID), 2005. The dissertation author was the primargstigator and author of this

paper.



Chapter 3: Analysis of Transfer Scheduling

This chapter focuses on analysis of the transfer schedptisiglem from a theoret-
ical perspective. It provides a more rigorous foundatiantiie core algorithms proposed
in Chapter 4. Together, these chapters target our goaldioieet processing; similarly
the quality of these algorithms are what produce a highgpernce transfer. Subsequent
chapters address design of systems using these algoritithtbeir implementation.

Here we first discuss the implications of the weakly strusdunput described in
Chapter 2. We assumed no specific structure on input datdraoris and nodes had no
particular capabilities. As for the network, we assumed éhét it was well-connected.
Now we walk through several preprocessing steps showingwwh input can be pro-
cessed efficiently- in time commonty(n log n). These simplify the problem and add
useful structure without loss of generality. This leadsdostruction of the desired canon-
ical form: a segment graph structure, which supports gs@mnieonstant time. The transfer
scheduling algorithms in Chapter 4 take this as input.

We conclude the chapter with a discussion of the run-timeptexity of algorithms

using such data and an example illustrating typical protdealysis/solution.

3.1 Input Specification

Our input specification allows applications to efficientlgfide transfer require-
ments with arbitrary constraints on data and network stinectin particular, applications
specify byte ranges instead of fixed-sized blocks for temgdthis captures a more general
class of problem, but to exploit such structure more comalgarithms are required. This
section discusses the tradeoffs between ranges and blodksa to perform efficient op-
erations on ranges. This chapter uses such operationsdegsrthe unstructured input into

more useful forms.

26
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3.1.1 Data Ranges and Data Blocks

Essentially all current approaches use block-based igiEeange-based mecha-
nisms. They split data into equally sized chunks, typicsdigne power of two, for schedul-
ing and transfer; this simplifies their algorithms. Rangsddl mechanisms effectively turn
a special case for block mechanisms— partial block tragsfi@to the common case. Con-
versely, blocks can be seen as a special-case optimizatioarfge-based systems.

Ideally one system could provide the best features of bgpincgzhes: general but
able to use special-case optimizations. To do so we need tovatermine when and how
to apply block scheduling techniques in the context of a edpgsed system, or vice versa.
This can be accomplished by a few simple heuristics. “Whenthenever there are large
overlapping ranges or range endpoints naturally termiaategularly-sized boundaries.
“How” is just to select the correct block size.

First, we look for large overlapping ranges. These are higihisg areas; when they
exist, using block-based algorithms is desirable. Deataadf such overlap can be done by
building a sorted list of byte range, count of instancetuples. This requires one iteration
over all byte ranges. Running this after the segmentatgoréhm from Section 3.3 allows
us to detect ranges which have significant overlap but arédeatical. As a side benefit
the relevant metadata will be fresh, local, and warm in tlehea

Next, we simply look for ranges in the list which have suffitlg high sharing
and are sufficiently large. These two thresholds can bermeated experimentally. Results
from BitTorrent [29] have shown that sharing on the order @f3® peers is required for
the algorithms to be most effective, with 30-50 preferre@][3The overhead of these
algorithms requires that the ranges be at least hundreds@gdlnytes in size.

Then we determine the best block size. For large overlappinges we can choose
any block size that is small enough to transfer quickly brgdaenough to minimize costs

of metadata management. Again, this is determined expptaihg see Section 7.8.
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Finally, even if we found no large ranges, it may still be us& use block based
mechanism given a natural block structure to the data. Sgy,39% of the ranges fall on
a 16KB boundary. Then blocks of 16KB would be a rational choiDetecting this can
be done quickly (constant time to any fixed degree of cestainy random sampling and
modular arithmetic using the tuples list.

Together these allow us to determine when to apply blockddirey techniques,
and what parameters to use with them. Unfortunately, thilsnwt improve performance
if we already have good range-based techniques. Worse, direlbranefit of block-based
transfers is simplicity, but applying these techniquessdeeactly the opposite— adding
more complexity to a range-based system.

In practice we need only half this approach: determine a dppack size as above,
and set it as a maximum transfer size. The performance gt¢aising blocks resolves pri-
marily to (1) dynamic per-block replica selection and (2)ed@plication growing quickly
as blocks propagate through the network. A maximum trarssterset to the correct block

size achieves these benefits.

3.1.2 Efficient Range Matching

Range matching is the first step to transfer scheduling:rbdjeing able to opti-
mize, one must be able to firmeserver for the desired data. This means finding ranges
that overlap a search range. At its core, any schedulingitiigo must be able to do this
efficiently.

Our problem statement assumed nothing about the structunput ranges, e.g.
they need not be disjoint or in sorted order. If we need steosgmantics, we must build
any structure required. One useful tool is the “IntervaleTrdata structure described in

Section 14.3 of [32].
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By augmenting nodes in a red-black tree with a “max valuetlfiah interval tree
supports range insertion, deletion, and search for an aweirig range in tim& (log n).

If we wish to findall overlapping ranges it takes tinimin(n, k log n)), wherek is the
number of overlapping ranges output.

Unfortunately, the worst-case search performanae(is), which is unacceptable.
This occurs when a request matches every node in a treer adiigh-sharing environment
where many different peers serve the same byte range. gitkdénbest peer to serve a
request becomes computationally more difficult when thezereore options.

We would like a stronger bound: logarithmic time range maigh By using the
techniques described in the following sections, we caneaxehihis: first, sort and make
ranges disjoint (tim&(n log n)). Then insert them into an interval tree (tirén log n))
where each node is augmented with a priority queue/healpe Hange already exists in the
tree, push the peer onto the priority queue (tith@og n)). The priority queue is keyed by
e.g. available peepeerpacity. In this way, peer lookupstakdy logarithmic time: look up
the node inD(log n) time, then pop off the queue W (log n) time.

There are two problems with this approach. First, the “bessttilt depends upon the
client (querying) node- which this approach does not take account. Second, peers are
placed in multiple priority queues. Changing data in oneugusnrrupts the heap structure
in others. In practice we pay a higher up-front cost (worse¢sn?)) to convert to a graph-

structured canonical form (Section 3.3), which then alledswer cost query@(1)).
3.2 Preprocessing: Simplifications and Reductions

This section discusses a series of transformations todhsfer scheduling problem
that move it towards the canonical form. All are made withiogs of generality unless
otherwise stated. These transformations let us avoidgesumptions on input: whatever

it may be, we can quickly transform it into the form desired.
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3.2.1 Disjoint, Sorted Ranges

Converting arbitrary input ranges to a set of disjoint rangerted in increasing
order is straightforward. We only need to sort the list anchioime overlapping ranges.
That is, we convert lists lik¢[3,5], [7,10], [2,4]} to just{[2,5], [7,10]}. This conversion

takes timeD(n log n) using the following algorithm.

Given an arbitrary range in an appropriate encoding:
Sort in increasing order by begin value,
then by end value# to break ties.
Iterate through each rangé;:
If  (Sit1(begin) < Si(end)): # There is overlap
Remove both ranges.
Insert combined range S(begin), max(S;(end), S;y1(end))]
Reconsider rangeS; # May need to merge again

Listing 3.1: Creating Disjoint, Sorted Ranges

First we sort using any of the well-know@d(n log n) sorting algorithms. Then
we walk through the list, aW(n) operation, checking to see if adjacent entries need to
be merged. We know that ranges which overlap or touch mustjaeent due to the sort.
Together these are at most@fin log n) operation.

This naive algorithm can be improved given knowledge of thecsure of the data.
In particular, Section 3.1.2 shows how red-black trees eawsled for efficient range match-
ing. Therefore another approach is to simply insert all @alinto such a red-black tree,
and check for overlap during the insert procedure. If therevierlap simply remove the
existing node and insert a merged value instead.

Finally, an important subset of the problems we encountee lpaedefined struc-
ture, such as blocks. Section 3.1.1 showed how this can betddtwith high probability in
constant time. In such cases, we can use a hash-based bortkeg algorithm to perform

this conversion in linear time.
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3.2.2 One-Segment Ranges

The original problem description allows peers to have aitrarly range of bytes,
not necessarily contiguous, but this does not actuallye@se the generality of the problem.
If instead peers were treated as having only a single comtigidata range it simplifies the

problem statement greatly. Consider the following tramsfation algorithm:

For all nodes# all senders and receivers
If the node has more than one segment in their range:
# Sum the total bytes in the entire range:
Let o = Z( bi,ei>ER<€i_bi+1)
For each segment{;,e;):
Add a node:
Speed r - 4=b

Edge to only that segment
Remove the original node

Listing 3.2: One-Segment-Per-Peer Transformation

A solution to this new problem is a solution to the originabiplem; satisfying each
“sub-receiver” means the original receiver gets its data.adted no new data to the range,
so it receives no extra data. Dividing the node’s speed arfguigreceivers” means we can
not exceed the original speed. Nothing else changed; thoisiaos to this new problem is
a solution to the original.

As all data must be received before a node is considered ;dthreebest way to
split the network capability of a node is proportional to giee of data transferred. If we
were to splitin a non-proportional way, some segment(s)ldvoomplete sooner but others
would complete later. In other words, the total completiomet for any non-proportional
allocation is at least as large as for the proportional ood¢hs proportional one provides
the optimal solution for the simplified problem. Thus an ozt solution here is an optimal

solution for the original problem.
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This transformation assumes independence in the transéach segment, which
is not quite true. Multiple transfers between a pair of pae¥ed not go over separate
connections; re-using a single socket improves perforemagavoiding TCP handshaking
and slow start behavior. In the same way, this creates higeeiormance and failure
correlations among these newly-created nodes (e.g. @&betk link or competing load).

Luckily, we can both use this simplification and maintain tieerect structure. By
representing this using weightedigesin a graph rather than nemodes we capture the

right semantics. This is shown in Section 3.3.

3.2.3 Transfers Starting at Time Zero

The last transformation normalizes over time. The origprablem description
allows for a solution where transfers start and completengitine. However, this gains
us nothing in generality. Network speeds are almost infinidévisible, and it is almost
always better to immediately request data rather thanngg4i8]. In other words, implicit
space-sharing of a link is just as good as explicit time-igigahe link.

Therefore, we remove the start/stop times as part of theriitor a solution. In its
place we assume that a node transmits/receives data aprapestional to the size of data
sent to/from each peer. Put another way, a node dividesad@ibandwidth among flows
such that their expected termination times are all equaleMdtherwise limited, it simply
sends as fast as possible; the excess bandwidth may betetldoather flows. This does
not change total aggregate completion time— which is aMiayited by the slowest node.
Rate mismatches are quickly detected in practice and a sldvaran address it by shifting
load between replicas.

A solution to this new problem will be a solution to the origirproblem. This
transformation does not change the set of data transfeamnégdyhen it is done. Therefore

we can not violate any of the original data or network coristsa
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An optimal solution to this problem will be at least as goodhaoptimal solution
to the original problem. Our new constraint ensures that eacle either (a) fully utilizes
its link for the entire transmission, or (b) one of its peara bottleneck for some data.

In case (a), we have 100% link utilization so there is no way solution to the
original problem could do better. Similarly in case (b), we &ransferring as fast as pos-
sible to/from the bottleneck node. The only possible reagloynit is not handling data at
the speed we wish it to is when that node handles a larger anobdiata proportional to
its speed. In other words, there is no way to improve the divesenpletion time because
that peer node is in case (a), perhaps due to problems in tverke

Counterintuitively, local reallocation of “excess” bandth to other flows when
some peer is bottlenecked will not necessarily improve abeerformance. This is be-
cause that “excess” is due to another peer not using itshallesof bandwidth— i.e. going
slower than expected. Local reallocation of flow will not irape that peer’s performance.
It is other nodes from which that peer can fetch data that need to do #lecation. We
locally experience their bottleneck, but they need to saleedround it. This second-order
dependency is one reason the transfer scheduling probleomiplex.

Again, there are some potential problems with this tramsé&tion in practice. First,
it relies on adequate congestion control at the networl.I&lsing stock TCP as a catrrier,
this is only true in the long term, without link errors or ralitrip-time differences across
competing flows. Second, it assumes the peer OS can avoghthga Starting all flows
concurrently may lead to high load and poor locality of refere. Fortunately, our experi-

ments in Chapter 7 show no noticeable problems degradatanguch problems.
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3.3 Conversion to Canonical Form

This section describes the segment graph, our canonicafaahat, and input for
the algorithms in Chapter 4. A segment graph is a set of wertand directed edges.
Vertices represent segments or nodes, with any associattatata (e.g. an filename).
Edges linkfrom segments to nodes thagedthat data (clients), aio segments from nodes
thathavethat data (servers). This captures the input data contdraiatwork constraints
can be captured in the same way, with edges mirroring phiyteigalogy and capacity.

This structure is sufficiently general to allow many differéypes of processing.
The simplest transfer scheduler consists of receiversrgck random linked sender for
each segment they need; as a first approximation this howrshkke BitTorrent work.

To construct this graph we turn once again to an augmenteahbsearch tree
whose entries represent segments. We maintain a sepataté peers. Segments are
doubly linked to senders providing them and to receiversirewy them.

The structure is filled with a sorted list of known segmentdadisws: for each
peer, add their requested or supplied segments individt@althe tree. If the segment
totally overlaps a pre-existing segment, link the node oetkisting segment. If it does not
overlap, add the segment and then link. If it partially oapd, split the segments to create
total a region of total overlap and a disjoint region, thecureon the pieces. Listing 3.3
(page 35) captures this process, wheegnment Ranges is the main function.

WhenSegnent Ranges is complete, each node has two sets of links: one for the
‘have’ relationship and one for the ‘need’ relationshipedink to segments they have or
need, segments link back to nodes that have or need themedkiients are disjoint.

The input and output structures are equivalent: walkingdeisdinks in the output
and applying the merge algorithm from Section 3.2.1 repcediexactly the original in-
put. Any solution over this structure can likewise be tratesl to the prior format in time

O(nk log k) wheren is the number of nodes arids the number of edges per node.
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SegmentRange¢ Senders , Receivers):
For each noden in SendersU Receivers:
Let b,e be n’s beginning and ending bytes.
AddRange(b, e, n)
Walk the segment structure; for each edge:

Backlink node to segment and tag sender/receiver

Split (Ranger, p):
Create a new range:
Sbeginzp
Send=Tend
Snodes <~ Tnodes
’I“end:p—l.
Insert s into range structure.

AddRange(b, e, n):
Find b in the range structure.
If b falls outside any segment:
Let s be the next segment to start.
If no segment is next, letsy,,=o0c.
Add b as the start of a new segmentr,.
T'nodes <~ T
| f € < Spegin - Tend = €
Else: reud = Spegin; AddRange(re,q, e, n)
If b is the start of some segment
If e<req: Split(r, e—1); AddRange(b,e,n)
Else If e=reua: Thodes < (Thodes Un); return;
Else: AddRange(b, r..q,n); AddRange(re.q, €, n)
If b falls inside some segment:
Split(r, b)
AddRange(b, e,n)

Listing 3.3: Segment Graph Conversion Pseudocode
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The problem is that th8egnent Ranges algorithm has worst-case running time
of O(n?) wheren is the number of nodes (or equivalently the number of segsnenten
the one-segment-per-node transformation). Each time @a adgment, we induce at most
two new splits, one for the begin byte and one for the end laytegrtized over the entire
run of the algorithm. That is, givemnodes with a begin and an end byte, we have at most
2n points on a line, which creates at m@st— 1 segments.

The creation of each segment requires finding the begin/emahg pre-existing
segments; these lookups take tiMé@og n). Each of these segments will link to at most
2n sender/receiver nodes. This term dominates, so the tokahg time will beO(n).

Together, this gives a total time for the creation of theggrants and mapping
to their respective sender/receivers(fn?). This upper bound is tight, as shown by the
following worst-case example; the simple input specifamatireates many graph edges.

Considem nodes in two classes. The first class, nadesl ... have range3i, 3i+
1]. The second class, nodgs+1)...n have rangeg0, 2n]. All nodes in the first class create
a disjoint segment all their own, that i§,segments. All nodes in the second class force
the creation of a link for all nodes in the first class and aficgs between them. That is, at
leastn links per range.

Thus, we are forced to crea}e n links, giving a lower bound of2(n?). Enumerat-
ing them in this algorithm will take tim&(n?). Figure 3.1 illustrates this for = 8; note

the rats-nest of links the second class of nodes must build.

(6)

}\\:325}\\\\..

Second Class:
range [0,2n]

XSS

S— " —_— €
G PP L 8 =7 A
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First Class:
range [3i,3i+1]

Figure 3.1: Worst-Case Input to Segment Ranges
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That said, the worst-case time is certainly not the avecage-time. Most real-
world uses of this algorithm run in tim@(n). Such cases include total data replication
(one segment; links), data striping across nodesgegments, one link each), or any fixed
combination of the twor(/k segmentsk links each).

Similarly, this worst case only occurs with unboundedlgésegments. Given an
upper bound on the length of a linked segment, the algoritihms m linear time. Given a
lower bound on the minimal segment split, we also get linieae (both with large constant
factor). In the limit, the latter case is equivalent to a klbased scheme.

Finally, should the cost of creating this structure be tamtor large problem sizes,
an useful related structure can be created in tinte log n). By extending the graph with
virtual internal nodes, forming a mesh, we eliminate thednfee so many edges. In the
example above, we need one virtual node linking to all segsamd all the second class
nodes link to it. This reduces the number of edges by a fadtar ol'he tradeoff is that
processing on the resulting structure becomes more coat@ti@and expensive. We explore
these ideas further in our discussion of network flow algoni in the next chapter.

In terms of optimality, building this structure has neitlagided nor removed con-
straints from the problem. Thus an optimal solution heré lvélan optimal solution to the

original statement.
3.4 Problem Complexity

To this point we have given several relatively inexpensig/pomial-time algo-
rithms to permute the problem into more useful forms. Noneshactually attempted to
produce an optimal solution to the transfer scheduling lerab The question at this point
is: how efficient can such solution algorithms be? It turnstbat the canonical specifi-
cation from Section 3.3 is sufficiently general that we casluce from an NP complete

problem.
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In the real world, however, most input will not contain thessjal structures re-
quired to make the problem NP complete. A large class of tearssheduling problems
can be solved optimally in polynomial time and many can be&ewbin linear time. So
while the worst case may be very bad, the average case (asdlbfirour use models from
Chapter 2) is not nearly so difficult. This of course depentdgeay on the network and
data constraints given by the user application.

The rest of this section discusses the reduction from an M#plie problem, ap-
proximation algorithms, and the cost of distributed schiedu Chapter 7 returns to this

topic empirically, evaluating the runtime of different atghms on common input.

3.4.1 NP-Completeness

Transfer scheduling can be seen as a generalization of taedardnsfer problem”
described by E.G. Coffman, Jr. In [57], Coffman shows theiaggions under which the
file transfer problem is NP-complete. As transfer scheduproblems can encapsulate
such file transfer problems; it follows that transfer scHieduis also NP-complete.

To see this directly, consider a reduction from the edgeroajoproblem [53].
Given a graplG = {V, E'} to be colored, we construct a constraint graph as follows:

First construct the network constraints: a star-topologywork with a central
‘switch’ node and V| nodes connected to the switch with equal-capacity linkenTton-
struct data constraints corresponding to the edges in tgaak graph: i.e. if there is an
edge between node and node; in G, add a 1-byte data dependency betwegandn;.
Ensure all segments are disjoint by incrementing a countezdch dependency.

Consider an optimal solution to this transfer schedulingppem. It determines
when each data dependency is sent and all data is sent in atithine. The time at which
a data dependency is sent is the color of the correspondigeg dtlis a proper coloring
because nodes can not send two bytes simultaneously. Itisimahcoloring because the

transfer could not complete earlier, i.e. using fewer calor
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Thus any algorithm which can solve all transfer schedulimbfems can be used
to solve the edge coloring problem, and through it the reshefproblems in NP. Even
restricting the structure of the constraint graph to a ltifgagraph— as when senders are just
senders and receivers are just receivers, or a tree— astratfitional” content distribution—
the problem is still NP-complete. See Table Il in [57] andittliéscussion of “Arbitrary
Ports” for further information.

Finally, the full transfer scheduling problem is even ldésaightforward, though not
necessarily more computationally complex. This examplaygh NP complete, effectively

ignores network structure. In other cases, one must acfoutitat structure.

3.4.2 Approximation and Asymptotic Bounds

The above analysis specifically utilized one-byte datatraimgs because achieving
the NP-completeness result required that transfers beisildle and serial. In practice,
flows are larger and can be subdivided and parallelized irfynagbitrary ways. That was
the point of Section 3.2.3; starting transfers at time zeekes them all parallel. This
section walks through an example which qualitatively titates the differences between
the NP-complete cases and more easily solvable ones.

Consider two source nodes of speedhich each have the sanmhesegments, each
segment may have a different size, and one receiver of sheadnts all segments. A
solution here is the transfer schedule which minimizes o transfer time. If transfer
of a segment were indivisible, this is precisely equivaterthe minimum multiprocessor
scheduling problem— which is known to be NP-complete (SS8drey and Johnson [46]).

However, since segments atwisible, we can simply request half of each segment
from each node in parallel. This will provide a solution opdl to within a factor of 1.5:
odd-sized transfers cannot be split equally. For largestexs, the “odd” overhead can be
amortized over the length of the transfer. We can get withinfaxede > 0 of an optimal

solution as the transfer length increases.



40

In general, most problems we expect to find in the real worleelthis property:
for all practical purposes they can be solved nearly optimalpolynomial time. Such
problems include those with large divisible data and no pdtdimitations (or at most a
few bottlenecks), or networks with high sharing. In the faase, the ability to split large
transfers into arbitrarily sized, independently schedylertions is enough to approach an
optimal solution. In the second case, data can merely devett from the most local, least
loaded node, regardless of wider-area network structure.

In contrast, other types of problems are fundamentally ncoreplex. This is not
simply the negation of the class above- that is necessamdiusufficient to make the
problem “hard.” To pose difficulty, the problem must inclugentrivial bottlenecked net-
works and either small, indivisible data or data with lowrsfig. In the first case, cannot
spread load by subdividing data transfers. In the secong, ees are limited to a given
set of source/destination pairs. In both cases, nontmaalvorks provide a large set of
possible transfer routes implying that an exhaustive $earay be unavoidable. Lastly,
time-dependent network or data constraints can also beudiffo handle, even if known
ahead of time, as it dramatically increases the set of plessihedules.

In such “hard” cases, the polynomial-time algorithms wedss in the next chapter
will still provide someschedule. However, depending on the algorithm, the indtigput
may be far from optimal. Feedback and heuristics are usedrteat for this over time.
These constraints are rare in practice- our target enviemsifall in the class of polynomial
time-solvable problems. Similarly, most applications én@ither high sharing properties
(such as CDNs or peer-to-peer file-sharing) or simple bloaged data constraints. In both

cases, we can efficiently solve them to produce high quattedules.
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3.4.3 Centralized and Decentralized Scheduling

Prior discussion has implicitly assumed that the schedudita exists in a single
location for an algorithm to process. In a distributed systieat may not be the case. Then
either an extra data-retrieval term must be included in oatysis, or we must divide the
processing cost over multiple nodes.

First consider a centralized node scheduling using digeib data. In this case,
the data access cost rises franil) to O(log n) wheren is the number of nodes in the
system. This assumes a DHT such as Chord [108] were storngfiormation. The naive
approach of serially pre-fetching all data takes tithe log n) assuming there is a roughly
constant amount of data per node and bounded maximum nelatericy. While this may
be an expensive operation, it does not affect the order afuthhéime for these algorithms.

Second, consider decentralized scheduling over dis&ibdata. In this case, as-
suming appropriate clustering of data in the DHT, many dj@na can be performed solely
on local data. Then the ext@(log n) term is effectively eliminated giving performance
comparable to a centralized scheduler. Unfortunately tagimg the same transfer se-
mantics in a distributed environment is difficult; Sectidn8.2-5.3.3 describe the issues
involved in distributing scheduling in more depth.

In the end, centralization versus distribution is a desigaiae; both have their
drawbacks. Centralized systems have to capture global atat may not scale, while de-
centralized systems have higher overhead and difficultyrogihg globally. We focus on
hybrid algorithms with both a centralized part and distidaupart, based on our assump-

tions about the target environment (Chapter 2). The algmistin Chapter 4 seek a balance.
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3.5 Sample Analysis

While Figure 2.2 showed an example problem using intuitiegéupes, this section
shows one more rigorously. This example ignores networlsttaimts, which are already
in a graph structure and hence need no preprocessing. “Speeslis the NIC speed of
the host, which provides a simple upper bound on its tramafer Data units are irrelevant
here; one may think of ranges as being over gigabyte blocks.

Input (Fig. 3.2, left) is specified by the nodes themselves usiegspecification
defined in Chapter 2. Applying the transformations givenhis thapter produces the
canonical segment graph (Fig 3.2, right). Note that we camediately detect when the
problem has no solution. In this case receiver 1 can not lifisdt no peer provides seg-
ment 8-9. This is a simplé@(n) time test that our implementations roll into the conversion
algorithm directly.

Solution: So a solution exists, we add an edge from node S2 to segneniEig-
ure 3.3 shows an optimal graph solution (right) and two esjeivt explicit schedules (left).
Blocks 1-3 and 14-16 are the bottleneck here; they deterthmeverall termination time.
Thus, there is flexibility in setting the transfer speed efthmaining nodes without chang-
ing the overall termination time. Excess bandwidth therelzaallocated to other flows.

In practice, desired rates can not be enforced while usinB. TThey are at best
roughly followed as short flows complete and larger flows gtowill remaining capacity.

Underutilized network links should be filled by the remamnfiows.



Node | Speed| Data

S1 100 1-6

S2 1000 | 4-7,10-13

S3 100 11-16

R1 2000 | 1-16

R2 100 1-3

R3 100 4-6

R4 100 11-13

R5 100 14-16
Transfer | Data Solutions

Nodes | Range| Rate | Rate
S1-R1 1-3 50 50
S1—R2 1-3 50 50
S2—R3 4-6 69 50
S2—R1 4-6 259 | 50
S2—R1 7 86 17
S2—-R1 8-9 172 | 33
S2—-R1 10 86 17
S2—R1 | 11-13 || 259 | 50
S2—-R4 | 11-13 || 69 50
S3—-R1 | 14-16 | 50 50
S3—-R5 | 14-16 | 50 50

Figure 3.3: Explicit and Canonical Gra@utput from Transfer Scheduler

11-13

14-16

1-3

4-6

8-9

10

11-13

14-16
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3.6 Summary and Conclusion

This chapter has shown how one can efficiently, commanly log n) time, con-
vert from an arbitrary transfer scheduling problem into rctured specification. This
specification allows fast insertion, deletion, and seafaiarges for the purposes of com-
puting transfer schedules. In the process, we have showmara rigorous fashion the
complexity of the problem and sub-classes which can andatdoensolved efficiently.

Returning to our claims, this chapter has shown that a gsapittured representa-
tion provides a straightforward, efficient, general probkencapsulation. Chapter 4 shows
how to produce transfer schedules from this representaiabling high-performance dis-
tributed data transfer.

Acknowledgements Material from this chapter, in part, appeared in “Partiah€
tent Distribution on High Performance Networks,” Eric Weignd Andrew A. Chien, Pro-
ceedings of the IEEE International Symposium on High-Rerémce Distributed Comput-
ing (HPDC), 2007. The dissertation author was the primargstigator and author of this

paper.



Chapter 4. Scheduling Algorithms

This chapter discusses several scheduling algorithmilibgioff the tools intro-
duced in Chapter 3. These algorithms form the core of a tearssfheduler; using their
output we support high performance distributed data teansf

Our approach focuses on optimizing for data constraintsis Works under the
assumption that either core network bandwidth is not admtitk or that there is no useful
information on network structure. In either case, a reaskenglan is to optimize for data
constraints and use heuristics to dynamically correct &work behavior.

All algorithms require information on data constraints,ievhpeers want/provide
which data, and network constraints, the bandwidth anahd¢gtef links. At this point we
assume it is provided in the canonical segment-graph foppically, the more information
the better the output. Chapter 5 addresses the issuessdimgunetadata collection.

This chapter first covers algorithms based on the ideas @famnktflow, a natural
approach for transfer scheduling; then linear programmiogrovide a known optimal
baseline; finally greedy hill-climbing, a technique to irape algorithm runtime. Then
we discuss a few powerful optimizations and how theoretical practical results differ in

common environments. We conclude with a high-level congparpf all techniques.

4.1 Network Flow Algorithm

As a network transmission problem, a natural approach isatyae the problem
using Flow Networks [1, 32, 38, 42]. This section first showsvio convert the graph-
structured form of the problem developed in Chapter 2 intcow fhetwork. Then we
show how to use that to calculate a transfer schedule. Finaldiscuss the quality of the

solutions produced by this approach— unfortunately theyat optimal for general graphs.
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4.1.1 Conversion to a Flow Network

Converting the canonical segment-graph form of the probtema flow network

is done using the following mapping. Firsipdes

e The senders; become the sources, and the receiverbecome the sinks.
e The data segments become nodes in the center of the flow hetwor

e \We must create a new super-source and super-sink, but thejroma nothing.

Then we convert thedges
e Each sender is fed from the super-source by a link with thigireal speed.

Each receiver can sink to the super-sink by a link with thaginal speed.

Infinite capacity between each senderand all data nodes whic$; provides.

Infinite capacity between data nodes and receifrahich R; requires.

For example, Figure 4.1 gives one graph and the conversiarfltav network. Note that
this conversion ignores network constraints other thamper-bound NIC speed for each
peer. These can either be handled by heuristics during d@nefer, or by using a second
flow network in parallel. That is, create two flow networksedar the data constraints and
another for the network constraints. Solve them togetherarch iteration attempting to
push additional flow through the data constraint graph, kbhed update spare capacity on

the network constraint graph.

Figure 4.1: Original Problem Specification and Conversa Elow Network
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Observe that some nodes suchSgsare superfluous, and can be removed via an
optimization step. In general we can remove any node witll ardingle associated seg-
ment, replacing it with a direct link with appropriate cayacFor sparse graphs with little

sharing this optimization may remove nearly all the nodes.

Figure 4.2: Optimized Flow Network Graph

Figure 4.2 shows the results of this (worst-case tinge:)) optimization. We indi-
cate the nodes removed in parentheses; this metadata akawsonvert back to a transfer
schedule after solving on this graph. This optimizationuess the run-time of the solution
algorithms described in the next section.

Lastly, note that the scale for bandwidth values here anthieralgorithms does not
matter. Bandwidth input is effectively unitless; equaltakng input produces equivalently

scaled output. Only the ratio between values is significant.

4.1.2 Solution Using Network Flow Algorithms

There are many fast algorithms for solving network flow peoh$, which is what
originally motivated this approach. We can apply any of thenfind the maximal in-
stantaneous transmission rate for the network; for exanmm@eoriginal Ford-Fulkerson
algorithm, which runs in time(m/|f|), or the Edmonds-Karp algorithm, which runs in
time O(nm?). Heren is the number of verticesy is the number of edges, and| is the
size of the maximum flow in the graph.

The main difference between transfer scheduling and né&tilaw is the abstrac-

tion of time. Network flow problems ignore time, attemptiregrhaximize instantaneous
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flow— put another way, they assume that the problem is solued and the solution runs
forever. Transfer scheduling does not ignore time— in fagtexplicitly try to minimize
global termination time. Therefore, straightforward apgion of network flow algorithms
will fail. A max-flow solution may allocate all flow through ¢ih-capacity nodes, starving
others. This violates the problem’s data constraints. Mer@ddress it by iteration (Sec-
tion 4.2.1 gives another approach): solve the initial inséaand as peers complete recur
using the new constraints. Rather than simply starting be&ween iterations, we re-use
prior state to improve the runtime of the algorithm. Seeibgst.1 for pseudocode.
Runtime depends on the max flow algorithm selected and thd moblem-— its
constraints. The Edmonds-Karp algorithm is good for spgraghs, which represent trans-
fers with low sharing. Regardless of the algorithm seleetsd graph input, this approach
terminates in worst-case time strongly polynomial in thenber of data constraints. The
iteration’s inner loop requires ore(log n) heap operation, then a few constant-time graph
operations. The final optimization step in the worst casedake same time as a full
run of the max-flow algorithm. Together this requires rugnenstrongly polynomial time

algorithm up ton times, giving another strongly polynomial time algorithm.

Calculate Max flow.
For each link to a receiver:
Calculate when that link becomes idle.
This is the time the receiver has that segment;
Just the size of the segment / current rate.
Insert that (time, node) into a heap.
While (receivers exist):
Remove the minimal time from the heap.
Delete that link.
If the node has no ingress, delete that receiver.
Push-back that flow
Creates at most one adjunct path , 4@ptimize .
As we re-optimize, update the elements in the heap.

Listing 4.1: Iterative Max-Flow Algorithm
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The point of the receiver heap is to improve the iterationisimon case from poly-
nomial to linear time. Most nodes are already optimized fthmprior iteration, and via
the heap we know exactly where spare capacity exists— paths hode that just finished.
Commonly reallocating that flow takes one pass over the edgesg. depth-first search.
This gives time linear in the number of edges Worst-case behavior occurs in dense
graphs, when nearly all nodes have dependencies to the hadist finished; then flow

must be recalculated for all nodes, and multiple passesaiMedges.

4.1.3 Network Flow Optimality and Approximation

Network flow works works well for two classes of problems.sEis on networks
with relatively homogeneous performance; meaning the fletwark will tend to weight
all edges rather than one ‘fast’ edge. This will in turn $gt#l nodes and all will terminate
about the same time, which is the goal. Shahrokhi and Magriaela strongly polynomial
algorithm solving this case [104].

The second class is one with disjoint data segments— a sprase. Here the choice
of flow paths is strictly constrained to certain edges. Thissfies the nodes and tends to
perform well. With no replication there is only one path semtb receiver, so the flow
network algorithms will produce an optimal solution.

Unfortunately this algorithm is not guaranteed to provideoptimal solution on
all graphs, due to the differing semantics between the gufalsstantaneous flow maxi-
mization and aggregate transfer termination. Typicallytraommodity flow formulations
suffer from the same problem. The maximum concurrent flovblera [104] is the only
exception, capturing the right termination semantics,doutent solution techniques work
only on networks with homogeneous links and peers.

Another problem with network flow is that implementing thesdutions requires
explicit multipath routing; this is impossible over IP netiks without extra infrastructure.

Still another problem is error due to integer arithmetiansfers are nearly arbitrar-
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ily divisible, but these algorithms use integer values fowffrates. This aggregate error by
definition will be smaller than (number of edgeg$caled unit value). That s, if ‘1" in the
graph represents 1Mbps and there are 11 edges, total erydveras much as 11Mbps due
to the implicit rounding. The error can be decreased beloyaahitrary e by scaling the
edges prior to applying the max-flow algorithm, but the valowust fit inside a hardware
integer (32 or 64 bits) or arithmetic itself becomes expansi

We mentioned that this algorithm produces optimal schexdfde sparse graphs;
those without replication. With replication, say by a faadb k, the iterated flow network
solution will approximate the optimal by a factor of no wotkank - (1 + ¢€), wheree is
as above. This is because each iteration will maximize tive; ftmmpleting the transfer
to at least one receiver’s replica. In the worst case, thiéematck flow will not begin until
the final iteration (at which point its flow will be maximizedtherwise it would not be
the last iteration) and run to completion. Since it is thelbaeck, it will take the longest
time to run, and the priok iterations will have taken less (or equal) time. Thus thaltot
termination time for a solution using this algorithm is nomathank - (1 + ¢) times the
termination time for an optimal schedule.

That is not a very useful bound, since it is not tight for- 2. For networks with
arbitrary replication, adequate capacity, but a singlélémmeck link, we can show a more
useful bound2 - (1 + ¢). This is via the following observations:

First, to achieve an optimum schedule the bottleneck linktrbe fully utilized at
all times— but if faster links also are ingress to a recewexx-flow using them may starve
that bottleneck. Then maximum termination time is then tharvation time” plus the
bottleneck transfer time. This gives a ratio to an optimalison of (starvation time +

bottleneck time) / (bottleneck time) or equivalently (stgron time)/(bottleneck time) + 1.
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Starvation time can be no more than bottleneck time; otlsarttie other link would
be the system’s bottleneck. Thus the ratio is at most a fa¢t®r This is in addition to the
integer error factor described above.

Figure 4.3 shows one example where performance approauisdsound. Many
network flow algorithms would simply select the path usingrse 1 and data block A,
maximizing the instantaneous flow at 10 units. The iteralgorthm would then complete
block A at time 10, and finish block B after another 10, for atabmpletion at time 20.

For comparison, one optimal solution takes 9 units of flovetigh block A and 1
unit of flow through block B until time 10 (completing block Band then completes the
remaining 10 bytes of block A at time 11. The ratio here is tR0&.1 or about 1.8 times

worse than optimal. This is near both worst-case bound sleanlier.

Data Block A
(size 100) &
[o0)
Data Block B
(size 10)

Figure 4.3: Example of Poor Performance Using Iterated Ne¢Wlow

4.2 Linear Programming Algorithm

Linear programming (LP) methods have been used to effigiantd optimally solve
min/max problems for decades. Transfer scheduling can & @& global maximization
problem, so it makes sense to try and use LP techniques. \Wkillenow this will pro-
duce an optimal solution given the right input equations,algorithms involved are more

computationally expensive than other approaches.
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4.2.1 Conversion to Linear Equations

To create the desired linear equations, we again work francémonical segment
graph. In this case, we think of the problem as one of weightidges: figuring out the
proportion of a sender’s or receiver’s capacity spent fearnag each data segment. These
weights are a rate-based transfer schedule. Note that thiglsolution targets maximizing
flow, this flow is subject to the constraints missing from tleéwork flow problem. Con-
fusingly, max-flow here has the right semantics and is ogtimhaile max-flow there had
the wrong semantics and need not be optimal.

As we know, a simple flow network has a problem with node stayma A non-
iterative approach to this is replacing shared links witehared, proportional links whose
capacity sums to the original. This is the same argumenndivethe transformation in
Section 3.2.2, and an optimal solution for this problem gille us an optimal solution in
general. Compare the two graphs in Figure 4.4 (the first oEwls replicated from Figure

4.1). For the sake of this exposition, assume the sizé ob,, D5 are the same.

Figure 4.4: Proportional Flow Network Graph

An interesting observation at this point is that, ignoriregwork constraints, net-
work flow here would produce an optimal result. Starvatiomed occur as there is always
a path through each receiver to push more flow. Unfortunaselgounting for network

constraints, network flow alone still cannot guarantee stainvation.
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The next step is to apply the single-infinite-link optimipat discussed earlier to
simplify the graph. Then, since our transmissions must l@grtional to minimize the
total completion time, the problem resolves to getting tigatramount of flow through
data node®);. We have also relabeled the remaining infinite-speed lifikss is shown in

Figure 4.5, which looks somewhat familiar to our originadygfn.

Figure 4.5: Simplified Flow Network

Ideally peers here are receiver limited so eatlgets sufficient input flow to satu-
rate the output link tak. If not, we need to get flow to each proportional to their fiact
of total system demand. This minimizes the total completiore. As before, no non-
proportional weighting can finish earlier: it may cause sdlows to do so, but either it
makes no difference to other flows or it makes them finish.later

At this point our constraints (the node speeds, data adunhltgsiand termination
requirements) are clear, and Table 4.1 shows the equatibhsand7'S stand for Total
Demand and Supply? D and PSS stand for Proportional Demand and Sup@y) stands
for Supply toD, andS,,D, are values to/from eacki or D node as labelled in the graph.

Table 4.1: Linear Equations Derived from Sample Problem

| Proportional Demand Supply to D's: | Proportional Supply Link Constraints|

TD:D1+D2+D3 SDl 25151a+ TS:ZfSDZ Sla S 1

PD1 - Dl/TD SQSQa SDl/TS S PD1 Sga + Sgb S 1
PDy = Dy/TD SDy = 5559 SDy/TS < PDy S3q <1

PDs; = D3/TD SD3 = 5353, SD3/TS < PDy

Given these equations and the values calculated for Figrevé can use well
known LP techniques such as the Simplex method or ellipdgatighms [86] to determine

the weightsSi,, Saq, S2p @andSs,. These provide our rate schedule.
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4.2.2 Solving Generalized Linear Inequalities

This section generalizes the example from the prior secsbowing how to de-
rive equations in standard form for linear programming.rSaeother way, we are roughly
converting the mathematical constraints from Section@atmore explicit functional rep-
resentation. The notation is, at best, rather painful t Riesinitialize terms using the graph,
as discussed above. Here is a list of those terms (all cassafter the initial calculation

excepts; ;). Let:

e |Send;| be the speed of sender

| Recv;| be the speed of receiver
e Data; be some data segment Data;| its size.
e Needs; be the total amount of datidecv; needs ¥, ,,ceqs ; | Datay|)

e PropDemand; ; be the proportional demand thatreates fotData;,
((|Recv;|/Needs;) - | Data,|)

e Demand; be the total demand for a data segmént LropDemand, ;)
e Total Demand be the total demand in the netwoiK { Demand;)

e PropDemand; be the proportional demand for a segment
(Demand,; /T otal Demand)

e S;; be the link from a sende§; to a data segmeti?;.
These are the variables we solve for!

Calculating the input values takes one pass over the resawel their edges, so takes time
no more tharO(n + m) arithmetic operations. Listing 4.2 gives pseudocode fir plass.
Then, given those values, we set up inequalities based ogréph as before. Table 4.2
summarizes the resulting constraint equations. Finaliyirgo a more suggestive form we
get the equations shown in Listing 4.3. The valuedsof.., M obviously depend on the

size of the graph being converted.



Table 4.2: Summary of Linear Programming Constraint Equmasti

| Constraint Type | Conversion To Equations |

Supply to data segment nodesSupply; = 3= send, tinks to Data, |S€ndi|Si ;
Proportional supply Supply; < PropDemand,; - Total Supply
Non-starvation Supply; > 0

Link bandwidth conservatior) -5, ; <1
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TotalDemand = 0
# Set the demands on data segment:
For each receiverRecv;, speed |Recv|
Needs; = 0;
For each data segmenData; they need
Needs;+ = |Data,|
For each data segmenbata; they need
Demand;+ = |Recv;|/Needs;
Total Demand+ = |Recv;|/Needs;
For each data segmenbata;
PropDemand; = Demand; /T otal Demand

Listing 4.2: Determining Linear Equation Coefficients

Maximize TotalSupply = Y, Supply;
Subject to
Vj : Supply; = |Send;,|S;, j + |Send;,|Si, j + ... + |Send; . | Si ; > 0
Vg : Supply; + Supplys + Supplys + ...
+(1 — PropDemandj_l)Supplyj + ... + Supply;, >0
Vi : Si,O + Si,l + ...+ Si,M S 1
Vi : SLO + S@l + ...+ Si,M >=(

Listing 4.3: Final Linear Program

At this point it should be clear that this system of equaticers be solved straight-

forwardly with LP techniques. A further optimization is t@ora secondary optimization on

the residual graph after allocating this bandwidth, toéase total transfer speed. Although

this will not affect the total finish time of the run, it allovg®me flows to terminate early.
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Important cases are when we are either totally receivetdinor totally sender
limited. Then the problem has a simple structure and we ge@tinapsolutions either via
the flow network or via this mechanism. The complicated gagken finding the optimum
is most difficult, are when some large number of nodes areesdimdited and others are
receiver limited. “Large” means on the order of hundredshmusands, which is well
within the range of LPs we can solve with today’s technoldggally, in the static case, an

LP solution gives an optimal result up to one-byte roundimgrs.

4.2.3 Conversion of Rate-Based and Explicit Schedules

We have used rate based and explicit transfer scheduleshategeably. The only
difference is how transfer interleaving is done. Explichedules send as fast as possible
to one peer, then another, and so on. Rate-based schedul@splicitly, specifying rates
to multiple peers concurrently; the interleaving is dondhmytransport protocol/OS. This
section shows how to convert between the two in time no wdrae®(mn) wherem is
the number of edges in the graph ants the number of nodes.

Explicit Transfer Schedule — Rate Based ScheduteConversion in this direction
is easy: we need only divide out the explicit data transfenget their rates. As rates are
now spread out evenly over the entire transfer period, aime tan their aggregate be
larger than the explicit schedule: meaning no speed constialations occur. The same
amount of data is sent, and to the same peers: meaning thatacahstraint violations
occur. The termination time is the same, meaning it is edgemily optimal. Thus, the rate
based solution produced is equivalent to the original saleed

Rate Based Schedule~ Explicit Transfer Schedule: Conversion in this direction
is a bit trickier, and tends to be the conversion done in pratb translate solutions to the
transfer graph into actual transmissions. This algoritleuires buffering in network,
either in the local network stack, device memory, or in rogieeues. By design it exceeds

designated speed constraints for small time periods— pisimaverage.
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Let stop_time be the global termination time for
the explicit schedule.
For each sender (whose max rate isax_rate)
Let total=0
For each receiver (desiringlata bytes from sender)
Let total = total + data
For each receiver

Allocate each receiver ratefft—z;-stop_time

Listing 4.4: Explicit to Rate-based Schedule Conversion

Select an interval timet # e.g. 1 second.
For each interval [0%], [t,2t],
For each Sender
For each Receiver
Sender sendg - rate bytes as fast as possible.
Sender sleeps until end of current interval.

Listing 4.5: Rate-based to Explicit Schedule Conversion

Selection of an appropriate interval is key. In the limit Bs interval approaches
zero, it becomes exactly the rate based scheme. Simildripeaend of each interval
period, the data sent coincides with that of the rate baseeinse. Interval length trades
between minimizing overhead and exceeding buffer capatii0 seconds tends to be a
good compromise among overhead, bursty traffic, and bufferflows. In the worst case
we can look at all sender/receiver pairs, and set the intéma to bet=min(buffer size /
rate). This guarantees no buffer overflows.

Note that algorithms which iterate over senders and receitrging to create a
‘cleaner’ schedule with full-speed transfers until eagimnsent is complete tend not to work
very well. This is because each receiver must in the worst aasount for constraints from

all others, leading to a complicated algorithm.
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4.3 Greedy Weight Based Algorithm

This algorithm and its derivatives form the core of our inmpéntation. It is similar
to the LP algorithm in attempting to proportionally alloedtandwidth among peers based
on their requirements. It differs in that it makes primatdgal decisions— thus its output
is not necessarily optimal but it runs extremely quickly.isTts appropriate for latency-
sensitive transfers, dynamic transfers that are reschddigquently, or those where some
constraints are unknown. This section discusses the bessgclyg algorithm, how to opti-

mize for high-sharing environments, and how parts of theritlygm can distributed.

4.3.1 Basic Greedy Algorithm for Low Sharing

The basic greedy algorithm works by balancing supply andadeimthen dividing
out capacity proportional to transfer size. The idea is $&mgervers allocate more of their
bandwidth to highly desired segments than undesired sagntéow much more? Exactly
the ratio between the demand for the two segments.

At a high level, the algorithm first calculates the demandefach data segment in
the system. Then it allocates senders’ capacity propatitnthe demand for each data
segment they provide. Finally receivers allocate inconfiagdwidth proportional to the
individual segment’s size and subdivide their requestsraysithe senders proportional to
the sender’s weighted speed. The pseudocode in Listingivie8 ghore detail. Input is
again the canonical segment graph form.

The run time of this algorithm i© (m) wherem is the number of edges in the input
graph. Step 1 look at all receiver link®(m)), Step 2 at all sender link€X(m)), Step 3
at both sender and receiver linkS((n)). Iterating over nodes is insignificant; there are
always more links than nodes. Thus our total run time is attrgs:). In low-sharing
or total-sharing configurationsy ~ n and this is linear in the number of peers. For

intermediate-sharing configurations it may be as bad(@s).



59

# 1. Calculate proportional demand:
For each receiver:
Sum total size = total data required =
size of all linked segments.
Label each link with:
(receiver speed * (segment size)/(total size)) .
For each segment, label with total demand:
Sum up receiver demands for that segment
# (marked on links).

# 2. Calculate proportional supply:
For each sender:
Sum demand for all segments sender provides
# (marked on segments).
For each linked segment,
provide to that segment bandwidth:
(sender speed) x (segment demand /total demand)

# 3. Output rate schedule:
For each sender:
For each segment they provide:
# equally allocate rate to receivers.
Send to each receiver at rate:
min((total segment rate)/(# of receivers), receiver demand)

# 4. Execute Transfer
Convert to explicit schedule
Each node locally optimizes for speed/locality
Recalculate as necessary

Listing 4.6: CEP Basic Greedy Algorithm

This mechanism is optimal when the transfer is strictly et receiver limited.
Then bottlenecks are all on one side of the graph and prapaity allocating the available
bandwidth among them is the best approach. In general thissweell in cases with high
server replication as that flexibility allows a good balahetween supply and demand.
It also works well with low replication on either side, as ffi@ently finds the limited

data supply/demand mapping. It works poorly when therewsderver replication but
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high client replication, as it does not account for secordkpscheduling effects: clients
providing the downloaded data to others. We address thiseiméxt section.

As before, we focus on data constraints. Step 4 handles esitpin network
constraints via simple heuristics. Feedback on expertetremsfer speed biases receivers
toward appropriate senders over time. If peers enter oelda system, recalculation can
be done efficiently on intermediate values cached after stgh updating aggregate data
is done with a constant number of operations, and updategafe schedule only affects
the nodes with which a given peer has dependencies.

When used in a steady-state— rescheduling as peers come-arahg feature of
this algorithm is that flow priority is inversely proportialto flow age. New flows have the
most remaining to transfer, become global bottlenecks aaadllocated high capacity. In
this way they can, e.g. quickly build up a buffer of framesvimteo playback. Flows near
completion are effectively lower priority. This tends tolthgervers with nearly-complete

replicas in the system for the sake of the global transfex. rat

4.3.2 Optimizing the Greedy Algorithm for High Sharing

The basic algorithm was designed for low-sharing enviramsievhere receivers
demand different data segments. With no sharing, a preHedés optimal solution is op-
timal through the entire transfer. But when peers share ddnteansfer progress changes
data constraints in such a way that the optimal solution neyhange.

To address this, we extend the algorithm with a “High Sh&drapgimization similar
to the two-phase technique used in Bullet [65] or the Suped$eode in some BitTorrent
applications. Our algorithm extends these to a more gewass: it supportarbitrary

sharing and data constraints. Listing 4.7 lists the newrdlya.
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# Determine proportional demand
For each segments:
demandk] = X,.(down_rate[r][s]-|s|)
total_.demand =X.,demand
capacity =X,.up_rate[r]
For each receiverr:
allocation = (uprate[r]/capacity xtotal.demand
# Supply proportional to demand
For each segments:
If demandf] <allocation and
demandk]>0 and downrate[r][s]>0:
seedf][s] = True
allocation —= demandf]
demandf]0

Listing 4.7: CEP High-Sharing Optimization

At a high level, it works by breaking the transfer into aniaditseeding’ phase
where data is distributed across the network, and a ‘feégimase where peers download
data directly. Both phases apply the original CEP algoritbrachedule the transfer, but
in the seeding phase the constraints are specially cotestitic prepare for an efficient
feeding phase. The goal, as before, is to distribute datathat demand (load) on a given
node is proportional to its supply (capacity).

This differs from existing approaches which randomly dsite data across the
network assuming segments are uniform size (blocks) artijeasegment will be equal.
We deterministically distribute data exactly how it is nedd Ideally we could estimate
the best location for a segment, i.e. place it on the fastede closest to all clients, for a
particularly efficient feeding phase. This is left to futuverk.

The input for the algorithm isown_r at e[ r] [ 4] : the speed at which receiver
wants to download segment estimated as their total capacity divided amongst the seg-
ments they want, andp_r at e[ r] : the total upload capacity of receiver The output is

seed[ recei ver][segnent] whichisTrue if recei ver should gesegnent in
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the seeding phase. This result is in passed astlgutconstraints for the seeding phase
and theinput constraints for the feeding phase. Thinking of this as gctin constraint
graphs, we effectively divide it such that peers get fairctd.” This distribution works
well provided network bottlenecks are known— otherwise dapacity estimates may place

inappropriate load on poorly-connected nodes.

4.3.3 Distributing the Greedy Algorithm

This section shows how to distribute some decision-makmtheé basic greedy
algorithm. It still relies on features of a centralized nustta server; most importantly
global load balancing tolerant of heterogeneous peeks/lamd range matching. Without
these features, data lookup overhead increases and parfoentends to be limited by
the capacity of the slowest node. These characteristicevadent in our evaluation (see
Section 7.6.1).

The distinction between the basic centralized algorithntsfaybrid algorithms is
the intelligence of the endpoints. The original scheme walsesb clients; slaves to the
master centralized scheduler. They report all metadateetedheduler, request a schedule,
and implement the response. The server provides the minimi@mmation required: one
replica per data range. If failures occur, reschedulingtrnesione.

The hybrid approach differs in the scheduler’s responsaddlitionally provides
alternate replicas for data the client requires. This altiwe end-points to perform inde-
pendent replica selection based upon their current pedioce The logical changes are as

shown in Listing 4.8.
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# Scheduler:
Schedule as in basic algorithm
Provide response as with basic algorithm and
Provide k£ extra servers selected as follows:
Calculate residual node, link capacity.
Of nodes with available capacity,
sort based on location.
Return closestk nodes serving data with
|loverlap|| > min_overlap.

# Peers:
Initially follow schedule as specified by server.
Take no action violating upload rate guidelines.
May do anything else to optimize download rates.

Listing 4.8: Logical Changes to Distribute Greedy Proa@ssi

By enforcing upload rates on peers, global load balancingnferced. That is,
when peers meet desired upload rates then download ratekl sf@what the centralized
scheduler expected, and hence the global performanceendslexpected. If peers can not
meet upload rates, it must be due to a previously unknowneleitk somewhere in the
system. In this case, the extra replicas can be exploitedpoave performance. As these
replicas have good locality, and LANs tend to have abundargsesectional bandwidth,
such local traffic tends not to affect the performance of ottansfers. Thus this generally
can be done without concern for global system performance.

Since this approach does not wholly remove the centralipetign of the system,
what good is it? First, it reduces scheduler load: we caness® the period between
metadata updates and rescheduling steps without deayeasiformance, as peers can
optimize locally at the edge. Second, performance impreses scheduler information is
inaccurate: whether out-of-date or missing due to dynamiwork behavior or unknown
bottlenecks. Finally, peers can make progress under éailiirprovides automatic fail
over at the edge when nodes/links go down without needingritact the scheduler. The

guantitative effect of these features is shown in the Sedti@.
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4.4 Erasure Coding Algorithms

Research in erasure and network coding systems [19, 76} sskl similar issues to
this work, so it is natural to explore them as part of a transéeduling system. Erasure
coding combines blocks to create redundant data, which phevides additional distri-
bution flexibility. Network coding is an extension wherelasure coding is performed
on-the-fly within a network. This can dramatically improwerformance: linear codes can
achieve the maximum transfer rate for whole-file multica8{]

Unfortunately, current schemes provide such benefits anlywhole-file transmis-
sions. Second, networks exist where it is impossible toesehihe network capacity by
network coding [37]; unsurprisingly, their main examplaiglogous to partial file shar-
ing. Third, max-flow alone does not guarantee globally maditermination time; other
constraints are necessary, as we discussed in Section 4.1.

This section first shows the problems using erasure codingdnsfer scheduling,

then how these can be avoided to best exploit the performaamefits.

4.4.1 The Problem with Sharing: Dependencies

The nature of erasure coded data is that it creates depeaddmatween blocks.
This allows data to be recovered via redundancy, but it casechigh latency and overhead.
Obviously, we wish to avoid these problems.

Optimal erasure codes spread redundancy such that regmafi@vhich specific
blocks are lost, provided enough blocks are received in, tthta original data is recover-
able. They are typically nonsystematic codes— where ontp@ed blocks are sent rather
than the original data stream. The effect is that very lidflehe original data can be recov-
ered until nearly all of the blocks are retrieved. Even witktematic erasure codes, under
loss the same effects can be observed. In the worst casesti#dck is lost and the whole

file must be retrieved before redundancy allows it to be reced.
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How might erasure codes best be combined with transfer stihg@ Consider
a simple input file containing 8 blocks, which has been spast two servers for load

balancing. Figure 4.6 shows this as a simple transfer cainsgraph.

Figure 4.6: Transfer Constraint Graph

Naively applying a nonsystematic erasure code over thet isigia before the load
balancing step would produce a graph like that shown in thieofeFigure 4.7. In this
graph, servers may may have either raw blocks or encodelihldbed symbol refers to
a erasure coding combining blocks (via, e.g., XORing) whilegepresents just the block
itself. In most cases we expect clients will want to downltdasl‘raw’ unencoded blocks,
but the graph shows how clients may desire encoded blocks.

The problem with such an approach is the existence of “ctosstraint dependen-
cies.” Thatis, dependencies tying a desired block to ansireteblock for a given receiver.
In such a case, an edge in the constraint graph crosses eeredaia constraint boundary.

To resolve the blocks that the receiver requires, it mustrdoad excess data.

T
b

Figure 4.7: Problem With/Without Cross-Constraint Erasdoding
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Two cross-constraint dependencies are highlighted hefgl @xd 3p5. These
force each client to download nearly the entire file, everugiothey only want a sub-
set of that data. For example, client 1 needs block 1, whichart download directly. It
also needs block 2, which it can get from®2. Block 3 is only available via@5, but we
now need 5. That entails downloading block® and finding block 7. This chain con-
tinues until it downloads a minimum of 7 blocks: it needs ait B:8 to decode block 3:
(305)B(507)B(766)d(664)D(402)B(241)®(1) = 3. For whole-file sharing this behav-
ior adds only latency. With low sharing it adds unacceptabierhead: nearly the whole
file must be downloaded, regardless of client interest.

Applying erasure codingfter load balancing does not help without knowledge of
client demands: a client wishing one block per server catillbge forced to download the
entire file. The trick is avoiding cross-constraint depemuiles. This can be doné client
sharing is known: (1) split the file into chunks such that ifl@m wants any part of a
chunk, it wants all of it (2) erasure code only over those &suibtep 1 can be done using
the segmentation algorithm from Section 3.3.

In the above example, simply switching the highlighted edgemoves the cross-
constraint dependency chain. This gives us to the secomihgtiae right of Figure 4.7.
This encoding is load balanced, erasure coded, and has s& ooostraint dependencies.

In summary, the problem with erasure coding for partial eantlistribution is that
it combine bits from disparate locations in a file. With lonasihg these are probably not
bits a given peer wants— and it have to download excess blociecode its data. This

overwhelms any performance gains from the coding.

4.4.2 Exploiting Erasure Coding

Comparison between Figure 4.7 and the basic transfer emsgraphs shown ear-
lier reveals that erasure codes add yet another level ofgitiyeto the distribution problem:

peers may provide/desire not just blocks, but combinatiwrignctions of blocks.
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This idea can minimize download latency for erasure cod&lidamplicitly sched-
uled systems: receivers determine what would allow thenetmde the maximal number
of blocks (via, e.g., a depth-first search through the deprecytree), and add a dependency
for that combination. This would reduce the effects of n@tssatic code use.

In terms of algorithms, little needs to be changed to hanateéings without cross-
constraint dependencies. We simply perform initial schiagwas before, weighting flows
as appropriate at the level of byte ranges. Then we accougtdsure coding semantics.

Servers must allocate supply proportional to demandlémodedblocks. This is
complicated if, e.g. a server has blotkp 3 and2 @ 3 but wants to allocate bandwidth
equally to block 1, 2, and 3. This is impossible with the caotrencoded blocks; block 3
gets twice the bandwidth. The server should create blaek and offer equal weight%
to each of these encoded blocks.

Clients simply look at which blocks are in a byte range and likbock requests
proportional to allocated flow to servers. This is a simpdifion of the rate-based to explicit
scheduling algorithm from Section 4.2.3. We can use wetivkmtechniques such as lottery
scheduling to randomly but proportionally request blocksf each server.

Put another waywithin a given segment, CEP allows bytes to be downloaded in
any order at any rate— so long as the aggregate transferramhfo the schedule. Within a
segment, we by definition have a high degree of sharing Jtdthkrefore all the techniques
for block transfer, erasure coding, etc. from other work lbarapplied— if the segment is
sufficiently large to warrant the overhead.

To handle encodings with cross-constraint dependenciesirst perform a modi-
fied depth-first search for the blocks we need to download tabbe to decode those we
actually want. We select the one with the minimal expectetktto finish (sum(block
sizexexpected rate from that server) over all blocks). Next wekntlaose blocks as ‘re-

guired’; this removes the cross-constraint dependenognide can proceed as above.
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Unfortunately, while we can address erasure coding’s ssihere is little reason
to use them with transfer schedulers. Proponents of erasut@etwork coding cite lack
of management overhead, enhanced system reliabilityewaace of network structure,
and high bandwidth as benefits of the technique. Transfexdadimg already maintains
metadata on data and network structure and provides higtivbdth. Similarly, we can
tolerate the same class of failures. So in the end, this ges\ittle benefit. The techniques
are complimentary: erasure coding techniques are apptepor latency tolerant, high-

sharing transfers; CEP is appropriate for lower sharirgg latency tolerant transfers.

4.5 Algorithm Performance Characteristics

Most of this chapter focused on abstract development ofthdimgy algorithms. Un-
fortunately, theory and practice are rarely the same. @@ discusses a few caveats for
real-world use of these approaches and the heuristics asftskequired to make the sys-

tem work. We conclude with a summary and comparison betweedifferent approaches.

4.5.1 Theory versus Practice

The discussion of conversion between rate-based and #xguleedules touched
upon the problem of unknown network constraints. This isrtfan difference between
theory and practice. Other important aspects include thegoily compute-once nature
of the transfer schedulers, the types of networks for whingy twere designed, and the
underlying protocols used: all affect real-world performoa. We will return to these ideas
in Chapter 6 when we discuss our implementation.

We have focused on pre-calculation and then execution aresfer schedule. In
practice, this is only realistic for three types of networlds relatively static networks such
as pre-reserved lambda networks; (2) those with qualityeofise guarantees; (3) those
with known long term performance patterns and very largesfiers. These are exactly the

high-performance networks described in our target use mode
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For more arbitrary networks (e.g. the commodity Intern#jis scheduling per-
forms poorly. Performance depends more on dynamic behanidmpotentially unknown
network constraints than known data constraints. While iginot the focus of this work,
our experimental evaluation shows that focusing on datatcaints with simple update
heuristics is still effective.

Another caveat is that the dominant network protocol on therhet is TCP. With-
out traffic shaping, manual tuning, or large amounts of lirftg its congestion control
mechanisms induce problems in the wide-area: TCP’s AIMDharsm produces a “saw-
tooth” that at best achieves only 3/4 of the bandwidth abelaThis means our algorithms
may miscalculate by 25% or more from the ideal, when using a€the underlying trans-
port. Attempting to run rate-based transfers over TCP is pl®blematic for the same
reason. TCP’s flow and congestion control mechanisms céigspacket sending rate to
have little relation to the rate at which the applicatiomdg data (passes it to TCP). We
discuss this further when talking about our implementaitno8ection 6.2.1

The critical difference between theory in reality is that”CEust actually imple-
ment a calculated transfer schedule; this may or may not Beilge, depending on the

validity of our input data and assumptions.

4.5.2 Scheduling with Inaccurate Metadata

In an ideal world, the metadata server is an oracle whiclmaneously knows the
status of everything in the system. In practice, metadatabeaut of date, misestimated,
or have other problems. Here we classify the types of pateatiors, while Section 7.7.2
evaluates the performance effects for transfer scheduling

There are three types of potential errgerver error, when it claims it has data it
doesn't, or it doesn’'t have data it doesipnt error, when it claims it needs data it doesn't,
or it doesn’'t need data it does; andtwork error, when we overestimate, underestimate,

or have no estimate of capacity.
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Well-behaving peers never claim excess supply or demaruth eswiors only occur
with malicious peers. Server lies will be seen as failuretherclient side and can be han-
dled as in Section 7.7.1. Clients claiming excess need @gkirve excess server bandwidth,
which may give them unfair performance but will not othemvadfect the system.

Similarly, clients under claiming need should not happenin@ so only hurts the
client. Servers under claiming data provided may occur mgiuations. First, at the start
of a transfer, before knowledge of system state is colledted is unavoidable. Second,
during the transfer, clients download data but may not imatety notify the scheduler that
they can serve that data— but the information is superfludbts. scheduler can calculate
data locations at any point based upon initial conditiometivork capacity is known.

Thus everything resolves to capacity estimation. Lack oéstimate is equivalent
to an overestimate, as we have only the NIC speed as an uppedbdverestimates
will typically overload the given node(s), while underestites will shift load elsewhere.
This of course depends upon the data constraints. Infleddibeconstraints make capacity

estimations irrelevant— clients must download data froensghecified server.

4.5.3 Heuristics and Knobs

Heuristics for replica selection are the most importamgtseparating theoretical
and actual performance. With insufficient information aboetwork structure or peers
to make intelligent central decisions, peers must make aicatedd guess and adapt as
transfers progress. In the limit, with no central scheduech heuristics create an implicit
scheduler. This section describes our heuristics and theug'knobs” on the system.

The first heuristic is the way peers select among replicas funich to download
their data. We take the most simplistic view possible: deadldata from the fastest peer.
So this resolves to peer capacity estimation. Each peerrapger bound rate which is
used initially. After some data has been downloaded, we cismbexperienced rates. We

ignore other options such as locality or using the networkthver service [83].
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This single-server selection only applies when downloggmall amounts of data.
For larger amounts of data (greater than one “chunk,” seew)elpeers automatically
download disjoint subsets in parallel. This is again a vemypte approach. Other work
takes a much more complicated view of data selection, agheisore of their scheduling
mechanism- e.g. BitTorrent’s thresholded random-rdnesttblock selection.

Similarly, we make no special effort to address the “straggbroblem, where one
slow node determines the aggregate termination time. Tiedsding mechanisms above
already optimize for such nodes so no extra peer techniqeesquired.

Table 4.3 covers the main parameters common across diffecbeduling algo-
rithms, and their default values. The “fixed values” are separt of the implementation

and can not be changed without altering the source code.

Table 4.3: System Parameters and Values

Tunable Parameters Fixed Values
Parameter Name \ Default Value || Setting Name Set Value
Maximum chunk size | 16 MB Global reschedule intervalNever
Metadata update interval5 seconds Popularity threshold 100%
Server write queue 16-64 MB Optimistic schedule delay 0
Maximum concurrency | 256
Transport protocol TCP

The “chunk size” is the largest amount of data sent in a siegl@munication
between two peers. The larger the size, the more efficiettdahsfer. The smaller the size,
the more responsive the protocol (lower latency). 16 MB inetlifor 1:00Mbps networks or
better; at least one chunk transfer should complete in thada&a update interval.

That interval is how frequently metadata updates are sethietaentral scheduler.
This is a balance between load and data fidelity. A 5-seconeldut is sufficient to handle
tens of thousands of peers (see Section 7.5.3).

The write queue is how much data a server tries to keep in mepsoding a write.
1-4 large chunks is enough to amortize fixed disk read andesogkite overhead, and

ensure kernel TCP buffers remain full.
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We set a maximum number of concurrent transfers to avoidingnaut of file
handles. Attempts to connect or transfer beyond this ar@lgikilled. Similarly, the
default protocol is TCP, mainly for simplicity.

The reschedule interval is when the scheduler would pertogiobal checkpoint,
recalculate all transfers, and push new metadata to alsp®és do not support this due to
its high cost. We instead incrementally schedule indivighae@rs as new requests arrive.

The popularity threshold is the point at which the “high shgit optimization en-
gages; 100% means all peers must be demanding the same ttegav&ues are evaluated
in Section 7.10. Currently the user must manually engageotbtimization.

The optimistic scheduling delay is how long the scheduleushwait to perform
scheduling in hopes additional clients will register imf@tion. We want to avoid schedul-
ing, immediately getting new data, and having to continuaschedule. Ideally we sched-
ule just after the pulse of registrations from a synchrahigeart has passed. By default,
scheduling is initiated explicitly by the application code

While this may seem like a lot of tuning is possible, perfonteis not very sensi-
tive to these values. A large range is acceptable. We exfilereffects of these parameters

throughout Chapter 7.

4.5.4 Comparison of Algorithm Features

Table 4.4 (page 73) gives good and bad aspects of each hlgatta high level. It
includes popular algorithms from related work. These idelGridFTP [4], a user-level file
transfer application supporting striped N-to-N file trarsfbetween clustered nodes above
a shared file system, BitTorrent [29], the well-known hylméhtralized/decentralized peer-
to-peer file transfer protocol, and Bullet [65], a mesh-basbole-file content distribution
network using special data encoding and request stripingy. i@plementation (Section
6.2.1) focuses on the greedy weight based algorithm for bwoas reasons: its speed,

simplicity, and good performance in practice.
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The differences between the various algorithms are duettm@ation for different
criteria; some for network performance, others for fauktance, others for security. Each
also assumes a slightly different environment as far as wodeectivity, homogeneity,
and trust are concerned. The algorithms presented in tbs&dation optimize for global
aggregate bandwidth, assuming a connected network, het®ous nodes and speeds,
and shared trust among nodes. The most critical differentieat they do not assume full
replication and high sharing among all nodes in the transfer

Our algorithms were designed so that a user will generahjeae best performance
by specifying the least restrictive constraints. Thathg, tnore flexibility allowed in the
problem specification, the more room for optimization by tfasfer schedulers. How-
ever, if desired, the user can indirectly control the amaimork assigned to a node by
scaling its speed or the amount of data which it holds/reguiFor example, if a transfer is
specified with no overlaps (e.g. a scatter/gather openatiba scheduler has no freedom

of choice and will do exactly what the user specified.

Table 4.4: Summary of Algorithms

| Algorithm |  Good Characteristics |

Relatively fast, often optimal
dynamic features

Bad Characteristics |

, Very poor performance on
edge cases.

Network Flow

Linear : High overhead, slow algo-
. Known Optimal results. , :

Programming rithm, static scheduler.

Greedy & Simple, very fast, dynamic . .

Hybrid Greedy | features, good performance. Not optimalin general case.

Erasure Codes

Simple, optimal in some case

{th CPU use, high latency
ulk transfer.

File Transfer
(e.g. GridFTP)

Simple, very fast,
integrated security.

No scheduling. No heterg
geneity, full or no replication.

Peer-to-peer
(e.g. BitTorrent)

Very scalable, fairly fast an
fault tolerant.

d Full replication only,

little security, not optimal.

Multicast
(e.g. Bullet)

Very scalable,
good performance.

Full replication only,
fault tolerance.
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4.6 Summary and Conclusion

This chapter has introduced several new algorithms fostearscheduling that ef-
ficiently produce near-optimal schedules for our targetrenvnent. We have developed a
useful, known optimal baseline: the LP algorithm. We alseehaur main approach, the
much faster Greedy algorithm and its optimizations.

All algorithms exploit multiple nodes and simultaneoussfers to avoid single-
node bottlenecks. All use hybrid centralized/decentealischeduling to exploit global
characteristics while tolerating limited knowledge. Tleiads us nicely toward the coming
chapters where we build a full system around these algosittima evaluate them under a
variety of conditions.

At this point, we have a fairly useful result. We have showat thiven transfer
constraints we can translate to a conical form and apprdariaraoptimal transfer schedule
in worst-case tim& (n?); commonly in timeO(n log n). This is no worse an order than
simple comparison-based sort. This is true even thoughehergl form of the transfer
scheduling problem is NP complete.
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Distribution on High Performance Networks,” Eric Weigledadndrew A. Chien, Proceed-
ings of the IEEE International Symposium on High-PerforoeaDistributed Computing
(HPDC), 2007. The dissertation author was the primary ityator and author of both

these papers.



Chapter 5. System Design

This chapter addresses the design of the Composite Endfroitaicol, focusing on
the external interfaces and internal structure. Relevaptamentation details are covered
in the next chapter, and previous chapters have discussedigbrithms involved.

The programmer’s APl and command-line programs exportingpresent the en-
tire user interface. Simple, versatile, and efficient ifategs target our goal of simplicity
and ease of use. Similarly, a logical breakdown of systemrmatis allows for efficient

implementation, targeting the ultimate goal of high perfance data transfer.
5.1 Overview

At a high level the life cycle of a CEP transfer is a simple Ipop

1 User provides initial constraints

2 Loop:

3 Generate a transfer schedule

4 Start transferring data

5 Wait for modified constraints (user or system)
6 If all peers complete, stop Else continue

Line 1 and 5, constraint specification, are the only part & gnocess involving
the user. Constraints are input via one of the the CEP apiplicarogrammer interfaces
(APIs). Unsurprisingly, the lowest-level interface mnsdhe input specification given in
the Analysis chapter, Section 3.1. In a dynamic implementathe user may explicitly
change the constraints as the transfer progresses (limedgdition to the implicit con-
straint changes as downloads complete.

Line 2 and 6 are the abstract flow of control. The system ischa#e simple state
machine. We discuss this in detail later in this chapter;Sion 5.3. Line 3, generating

a transfer schedule, was discussed in the last chapter.
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Line 4, transferring data, is implementation specific. Thresgage protocol is part
of the state machine discussed in Section 5.3.1. Implerientdetails are in Chapter 6.

This chapter starts with details on the various APIs (lirg tve have developed to
feed the transfer scheduler (line 3). Then we show how theyraldy lead to the protocol’s
flow of control (line 2,6). This chapter begins to addressskaes of complexity and fault

tolerance raised in our problem statement.
5.2 System Interfaces/APIs

The use model determines the best interface. Our first usenasa singléogical
transfer comprised of many individual smaller transferg, €Move this huge database
from this cluster to that cluster.” This form of compositentmunication motivates the
global maximization and termination semantics the trarsfbeduling algorithms provide.

The alternative is a peer-to-peer model where differentsusgecify sub-transfers
in a global transfer namespace, e.g. “Fetch the second lieigen, skipping these com-
mercials.” This form of communication motivates the locatimizations allowed through
hybrid scheduling.

In either case, the system must acquire the same data: & $ishders, receivers,
the data each sender provides, and the data each receiuesdddis is exactly the data
required for input to the transfer scheduling algorithmer & single user, information is
all specified at once. For a peer-to-peer system, each useifisp their piece.

All this information need not be specified explicitly—a usey describe their prob-
lem at various levels of detail. At the lowest level, they l&ifly provide everything. At
higher levels, they provide a general goal and the systearmates the specifics. We map
onto pre-existing interfaces for file transfer and Unix ssiskgenerating some constraints
automatically. This is a natural way to simplify the inteda easing user understanding

and optimizing for common requirements.
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The most useful way to think of all these APIs is as an interfecca specialized
database, one maintaining transfer constraints in thentealograph structure. Calls that
update information maintain the consistency of this strrect

To simplify the implementation, mixing use of separate ARIthin a single pro-
gram is not supported. Different processes participating iransfer can use any API: at
the protocol level everything interoperates.

Lastly, we introduce a new term in this chapter: “DBS.” Thisrgls for Distributed
Byte Stream, which is what we call an instantiation of a tfanschedule. The term extends
the idea that TCP is a byte stream protocol, while CEP prevalglobal, logical byte
stream in a distributed system. The idea is that this prevadeew namespace: internally
segments are named by start and end bytes in the DBS.

The next three sections cover the three main APIs accedsiltkee user, starting
with the most powerful. After that, we give two useful extems to the APIs making
them more useful for particular types of transfers. Finalggive an example program and

summarize the features of each interface.

5.2.1 Low-Level API

The low level API allows users to specify individual constta, which directly
modify the canonical segment graph structure. This is oheenonly for programmers’
use. We expect users will want to use a front-end to the systeam as the command-line
interface described in the next section. The additionaildlity offered at this level is most
useful when transfers include memory components or pdatigicomplex mappings.

This API consists of a small number of operations. We presese ag’' function
calls associated with a CEP handle, but all APIs have cooreipgC + + class interfaces.

Implementations simply look up the handle and set fields imwctire as required.
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i nt cep_open(uint64.t id): This creates and returns a CEP handle. The
i dis a transfer identifier required to distinguish betweefed&ént CEP transfers occurring
simultaneously. It is analogous to the port number in TCPDBPWANd is used globally by
all peers participating in the transfer. Commonly, thid wé a random number or the hash
of a filename/Uniform Resource Identifier (URI). By defatik tscheduler is assumed to be
on the local machine; if not, the user must make a call to eitlylichange the scheduler.
bool register_info(int handle, dbslnfo xdbs): This adds info
on a “dbs’— a segment and associated metadata— to the dafsdieeiuler. Alternatively,
it can be seen as mapping local data into the global DBS naanesphe dbsinfo fields

include:

e peer | D: some network identifier for the peer. For the TCP-basedempghtation
it is a character string name like “foo.ucsd.edu” or “19816).12” and a 16-bit

unsigned port.

e speed: a 32-bitinteger representing the estimated max speecdqgfeahr, as used in
the transfer scheduling calculations. This can be in aniswa long as all peers are

consistent; we typically use kilobits per second.

e f il ename: a character string representing an actual file or memomtioe. URI

syntax is also allowed for compatibility with Globus XIO és8ection 6.3).

e byt e_of f set : a 64-bit integer representing the offset withinl enanme at which

our segment begins.

e byt e begi n, byt e_end: 64-bit integers representing the location in the global

namespace where the data is mapped.

e server: boolean, true if the peer has this data, false if the peetsithis data.
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We logically require two pairs of numbers to map local filefnoey to global DBS
data: byte ranges in the both namespaces. Since the twosrargby definition the same
size, we need specify only three numbers. We opted for a gtahge and a local offset;
alternatively we could have specified local/global offsetd a single length.

bool wunregister_.info(int handle, dbslnfo *dbs): removes the
entry from the database, mirroring the register call. Thadics differ slightly, however.
If the entry does not completely cover an existing entryeihoves just the overlapping
segment. This might be necessary, for example, when a ¢émrahaé partially completed
and we wish to reschedule based on the current data layout tBis and the register
function are overloaded with explicit versions taking tts fields as parameters directly.

voi d schedul e(i nt handl e): invokes the current transfer scheduling al-
gorithm. This function may be called at any time to generateegenerate the transfer
schedule based on current database information. Theyatoilieschedule complicates the
implementation and is too computationally expensive fonsalgorithms.

bool transfer(int handl e, bool bl ock): Begin or continue the ac-
tual data transfer. Must be called afsschedul e() . If bl ock is true the call will not
return until the transfer has completed (returning truejaded (returning false). Non-
blocking calls return immediately. Minor functions not dissed here are used to check
the progress of nonblocking transfers.

Together these calls provide all the information to cordtthe transfer graphs

required for our scheduling algorithms, as well as contani$fers in progress.

5.2.2 File Transfer API

The file transfer API provides the abstraction of bulk filensport. In this spe-
cial case, namely whole-file content distribution, we caovjte a less intricate constraint
specification. This API was designed for integration with Bistributed Virtual Computer

(DVC) work [110]. As before, we givé'-style declarations.
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i nt cep_handl e create( cep_handl et *handl e, string sched,
uint16.t port, uint64_t id): creates a CEP handle. Analogous to calling the
cep_open() procedure in the low-level API, but specifies the masterdales explicitly.

int cepregister wite(cep_handl et handle, string peer,
uint1l6t port, string filenane): states that the given peer serves the given
file. That file data provides the entire global DBS. The reggirange values are calculated
from file system information and entered in the databasenisnuise model all servers have
a copy of the entire file, perhaps via a shared file systeap_r egi st er _r ead is the
parallel call for clients, who will each get their own copytbg entire file. Peers can also
callcep_r egi st er which allows limited access to the lower-level API.

cep_schedul e andcep_t r ansf er: create the transfer schedule and actually
perform the transfer. They have the same semantics as tHevelAPI.

We also provide a command-line tool similar to Globus GriBFdr RFT [4, 92].

It allows users to start a CEP file transfer by passing a s¢bedade, filename, and flow
identifier. On the server side, a default flow ID can be autaraly generated by hashing
the file. Clients then use that ID to look up the transfer. Tad in conjunction with the
weakly-constrained extension (Section 5.2.4) is usefub&formance evaluation.

5.2.3 Sockets-like API

The sockets-like APl eases converting legacy point-tovpmode to use CEP. It has
a similar set of calls to standard Unix sockets; semantifsrdslightly since it supports
many-to-many communication rather than just point-taapoi

A sockets-like API is attractive in that it can be implemehss ‘shim’ code in-
tercepting socket calls. This allows both legacy and newedodcoexist with the same
function calls in the same program. One mechanism for ddiisg$ library interposition;
theLD_PRELQADfeature in Unix-like systems. When not used in this fashadizalls are

prefixed withsocket _to avoid name conflicts with the standard functions.
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socket,listen,accept,send,recv,wite, andr ead are implemented
with nearly the same semantics as standard sockets. Theliffierence regards blocking:
a write or send may block indefinitely, as multiple clientsyba reading the data. Closing
the socket forces a blocked write to terminatei t e’s return value is the total number of
bytes written taall clients, which may be larger than the buffer size.

bi nd andconnect have the same semantics as standard BIND(2) and CON-
NECT(2) but we accept either a real or a virtual address.udiraddresses may refer to
a group of peers. Other software, such as DVC [110], providesnfrastructure to map
such virtual addresses to a list of physical addresses. Wehis list to determine the
connection’s participants.

get sockopt andset sockopt get or set socket options. For CEP (level IP-
PROTQCEP) the options are shown in the following table. The firsht @ve the most
important. Most users will need these calls to complete tlwaltglobal data mapping

required by the CEP scheduler.

CEP_I DENTI FI ER Get/set stream identifier

CEP_PGCSI TI ON Get/set offset in a global namespace (8eek() )

SO.LI NGER Linger on close if data is present

SO.ERROR Get error on the socket (get only)

cl ose is similar to the standard CLOSE(2); it completes the tranaihd closes the
socket. It has different semantics based on current sogietns. If the linger socket op-
tion isnotset (the default), it maps whut down( handl e, CEP_FORCED) . Otherwise
it maps toshut down( handl e, CEP_UNFORCED) . Forcing a shutdown immediately
kills all flows in progress on the local peer regardless oif tt@mpletion state. Not forcing
a shutdown prohibits new connections but waits for peersnistfipending reads before
destroying the flow handle.

Lastly, we provide a Globus XIO-like interface parallel tost sockets interface.

For more information see Section 6.3.1; low-level detaiés@nitted to avoid repetition.
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5.2.4 Weakly Constrained Transfer Extension

This section describes an extension to the prior interfmeweakly constrained
transfers. That is, we can specifysatof of peers to send or receive ranges of data. This
adds no generality to the sender side— it is syntactic sugavaent to duplicating the con-
straint for all senders. The benefit is weakening receiv download semantics. Instead
of all receivers downloading their own copy of the data, omhe copy is downloaded.
Furthermore, we can exploit this flexibility to downloadtleapy efficiently.

This is useful when peers at the receiver side of a logicakfea share a file system.
Any peer can download any part of the file, so long as one cophpetlata is saved in
aggregate. Naively using the earlier data specificationldvdawnload too many copies
of the data. The only way to avoid it with the earlier APIs isnt@nually construct a
client/server mapping for the transfer. By avoiding this suaplify the user’s life, and
allow for dynamic load reconfiguration given changing pead or network performance.

To use this extension one simply (a) creates a virtual peactsitre, which can
refer to one or more machines, (b) fills it with the cluster e®thvolved, and (c) passes
it as the registration functions in Section 5.2.1 or 5.2.2tudl peers are a feature of the
DVC [110] software, but we have re-implemented that smdiket of the API to remove
the DVC/Globus dependency.

Internally, this flexible specification is translated to apleit set of constraints
simply by dividing the range up and allocating segments @ragnal to the capacity of
each node. The scheduler and transfer runs as before. Wd@rerkiling, we must first re-
calculate the constraints before recalculating with theedaling algorithm: subtract com-
pleted segments from the original range and divide as above.

The performance benefits of this approach are discussediin8&.6.2.
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5.2.5 Block Level Interface Extension

The section describes a second extension: a block-bas¥thod augmenting the
low-level API. This simplifies integration with existingditk-based applications, allowing
them to take advantage of CEP scheduling without major caoldifioations. The motiva-
tion is that most systems use blocks, so we need to supporhteeace. Legacy code and
application integration and is important; that was the sarogvation for our sockets-like
API.

Luckily, as blocks are merely a special case for ranges, waloao with minimal
changes. The interface we provide is just a wrapper for tvddéwel API with the same set
of functions. The only difference is that ranges are spetifiaunits of blocks, and we add
a function to set the block size.

Internally, when a block range is specified we multiply by bieck size to get a
segment. Then we can aggregate with existing segments th@nglgorithm in Section
3.2.1. This minimizes the size of the constraint graph. TiWwencan apply our transfer
scheduling algorithms as before.

Like the file transfer API, we provide a command-line tool lempenting this in-
terface for testing and performance evaluation. We haweiategrated this interface with
a BitTorrent client application, described in Section B.2Section 7.8 studies the perfor-

mance effects of this approach.
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5.2.6 APl Summary and Examples

For comparison purposes, Table 5.1 (page 85) gives a lisfitige main interfaces
discussed in this chapter. We have omitted call parametesste space. The block-
based and XIO interfaces are not listed as they duplicatéothrdevel and sockets API,
respectively. One can see how each API provides esserttiallgame information, but in
different ways. Each targets a different use model.

We considered but did not implement an extension providirsipaed memory/
mmap()API. The idea was abandoned due to implementation complard concern that
users would expect different semantics and performanaacteaistics than those actually
provided by the protocol.

Given these interfaces, we return to our example from Se@&ib (see Page 43).
Implementing this with the low-level API gives a program lsukbat shown in Listing 5.1
(page 86). This is actually a valid program that will compile

While this program statically specifies the transfer to bdégomed, this information
would rarely be specified so explicitly in practice. It carsigabe read from a configura-
tion file, calculated by a distributed file system, or basedthrer application structure.
Distributed file systems know the location and replicatidulistributed objects and want

to move them quickly, so mesh naturally with this interface.
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Table 5.1: Application Programmer Interfaces

APl Name
| Call | Purpose
Low-Level API
cep_open() Set transfer ID

register_nfo()

Provide database info

unregi ster_nfo()

Remove database info

sati sfiabl e()

True if a schedule can be created

schedul e()

Create transfer schedule

transfer()

Perform transfer

Fi

le Transfer API

cep_handl ecreate()

Set scheduler, transfer ID

cep_handl e_destroy()

Kill flows, state

cepregisterwite()

Provide database info: server

cepregister_read()

Provide database info: client

cepregister()

Provide database info: low-level

cep_get i nfo()

Get transfer status information

cep_schedul e()

Create transfer schedule

ceptransfer()

Perform transfer

Sockets API

socket _socket ()

Initialize state

socket _li sten()

Set master to localhost

socket _accept ()

Accept metadata transfer

socket send()

Register write, implicit schedule, and do transfer

socket wite()

Same purpose as send()

socket recv()

Register read, implicit schedule, and do transfer

socket _read()

Same purpose as read()

socket _bi nd()

Implicitly provide name info

socket _connect ()

Implicitly provide group info

socket _get sockopt ()

Get database information

socket _set sockopt ()

Set transfer ID, database location, termination congia

1N

socket _cl ose()

Terminate local or global transfer

Weakly Constrained API

create_col l ective()

Create a “collective” == a cluster == a virtual peer

add_range()

Add a peer/range to the collective

renove_r ange()

Remove a peer/range from the collective
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#i ncl ude <stdi o. h>

#i ncl ude "cep. h"

int main(void) {

i nt

fd,

i dx;

dbsl nfo *dbs= {
/'l peer:port,
com 5555",
com 5555",
com 5555",
com 5555",

}

{"S1.
{"s2.
{"s2.
{"S3.
{"R1.
{"R2.
{"R3.
{"R4.
{"R5.

sone.
SOme.
sone.
SOme.
ucsd.
ucsd.
ucsd.
ucsd.
ucsd.

{NULL, O,

edu:
edu:
edu:
edu:
edu:

speed,

5555",
5555",
5555",
5555",
5555",

name,
100,
1000,
1000,
100,
2000,
100,
100,
100,
100,

NULL, O, O, 0}

byte of fset, byte begin/end

"file:///datalbig", 0,
"file:///datalbig",O,
"file:///datalbig", O,
"file:///datalbig",O,
"file://l/tnp/copy", O,
"file:/l/tnp/setl", O,
"file:/l/tnp/set2", 0,
"file:/l/tnp/set3", 0,
"file:/l/tnp/setd", 0,

/[l a 64-bit XOR-folded MD5 hash of "My Data File"
= cep_open(0xe79d8f d79b44cf 61) ;

(1 dx=0; dbs[idx].peer!=NULL; idx++) {
register_info(fd, dbs[idx]);

fd
for

}

schedul e(fd);

if (transfer(fd,true)) {

} else {

printf("Transfer succeeded\n");
return (0);

printf("Transfer failed\n");
return (-1);

1,
4,
10,
11,

6},
7},
13},
16},
16},
3},
6},
13},
16},

Listing 5.1: Example CEP Program
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5.3 System Internals

CEP actions are driven by the current transfer constraitgch are updated by
receipt of messages or local timeouts. We use a simple stathine approach, where
events (changes to the transfer constraint database)sponé to changing states. This
section first discusses the CEP state machine, then how wagaanetadata, and why we

chose not to use the DHT abstraction as part of the core CE§ndes

5.3.1 Control Flow and Messaging

Internally, all implementations are driven by changes #ltital database of trans-
fer information. Figure 5.1 gives the state machine for ¢hegents. These events are
usually triggered by external messages, the most impastavhich are listed in Table 5.2.

We discuss the format of these messages and other low-letaaldin the imple-
mentation chapter. They are passed over a reliable transgehanism such as TCP. This
assumption greatly simplifies the protocol design, allgvirs to ignore many types of

errors from the underlying network.

Table 5.2: Primary CEP Messages

Control Messages

Spawn Client| Ask a remote daemon to act as a client.
Spawn Server Ask a remote daemon to act as a server.

Quit Ask a remote daemon to quit.

Metadata Messages

Get Request a transfer schedule for one segment.
Put Provide one segment worth of a transfer schedule.
Take Remove a peer/segment from a remote database.
Data Transfer Messages

Read Request a range of bytes.
Write Provide a range of bytes.
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Receive

(master)
null

Receive
Request

Figure 5.1: CEP System Internal State Machine

5.3.2 Centralized Metadata Management

Having a single centralized metadata server offers seberagfits. It provides a
single point of control, a single global view on the netwodk §cheduling, a canonical
location for peers to find the metadata they require, it igp#@eases implementation, and
high-end hardware can be employed to optimize performahoe downsides are that it is
a single point of failure, and may limit scalability. We adds the alternatives in the next
two subsections. Even here, only metadata is centralizad; id always distributed and
processed in parallel.

Figure 5.2 shows a simplified view of the structure in eachemmithe system. The
user API provides and receives information to/from the gfanscheduling mechanisms,
and also indirectly controls the internals of the system.e Tdansfer scheduler in turn
decides the actual network transfers which occur. The systanagement mechanisms get

or set information and work with the transfer scheduler toi@éy control the transfer(s).
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User API «— | Transfer Scheduling
[ [
System Management— Networking

Figure 5.2: System Structure

This use model has a centralized “master” process whicls tader input, calculates
a transfer schedule, and sends it to remote “slave” prosdesactually implement. The
master process maintains the constraint database andathes sire mindless daemons.
Only one CEP process is required per physical node. Eaclegsanay take part in any
number of concurrent logical CEP transfers, and within ¢eafsfer there may be multiple
network flows. Figure 5.3 shows this structure, highliggtine difference between master-
to-daemon control flow and daemon-to-daemon data flow.

The user first creates an application and links with a shated {ibrary. After
starting daemons on all peers participating in the CEP feanghey run their code. It
adds information via the APIs described above, which is getite master— the local CEP
library, unless otherwise specified. The master scheduéesansfer and sends commands
to the daemons, which implement the actual data transferd@emons are simple applica-

tions using the same CEP library; they only set up accessai@mrtd wait for commands.

6561‘ Applicati()} (" CEP Daemon ) (_ CEP Daemon )( CEP Daemon )
CEP Library CEP Library CEP Library CEP Library
System | Transfer
Control | Scheduler
Networking Networking Networking Networking
Clients ) ( Servers Clients ) ( Servers Clients ) ( Servers Clients
\L!J CEDICEE)NEEDIEEYIE
N\ A
Control/Metadata Flow ™ ey s o gl Joieg z-

Data Flow (here, all-to—all)

Figure 5.3: Overview of Global Structure: Push Model

1A tool such as net d can be used to launch the CEP daemon automatically.
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5.3.3 Distributed Metadata Management and the DHT Abstracton

Our core techniques are based on the idea of distributingfeawork across mul-
tiple nodes to improve performance. Centralized scheduherefore requires some jus-
tification; especially given the alternative distributeaksh table approach. This section
discusses the difficulties in transfer scheduling usingabatraction.

A naive straw-man approach is to place data into the DHT &tradlirectly, as a
value keyed by start/end byte. That is, hash the start/etedtbydetermine where the data
should be stored, then send it to that node. This is a bad idea.

First, it creates at least one unnecessary transfer to aapges data to one or more
other nodes. They may be far away, have limited bandwidthitéid disk space, or high
load— the DHT abstraction hides this from the user. In génera nodes need not be
homogeneous, but DHTSs treat them as guchusing performance problems.

Second, popular data induces high server load. The bestondy libad balancing
in a DHT s still under active research. It can be partiallg@ssed by caching (as in
Coral [45]), but caching does not help one-time transféassé with low sharing, or those
with mutable data. It may add latency to locate data, and #ube object abstraction
meshes poorly with byte-range-based transfers.

A third problem is that we are not exploiting known problemmstraints given to
CEP: data may already have high replication and exist ngaotential clients. Forcing the
DHT abstraction throws away that valuable structure.

A fourth problem is central to the abstraction provided by T3H they provide
exact match key lookups. In contrast, we support “fuzzy”ehitg based on overlapping
byte ranges. There are only three ways to support such matahthe DHT abstraction.
First is registering block information for all subrangesattmight be queried. Second is

partial centralization, via e.g. partitioning the rang&se over peers and having each peer

2Some peer-to-peer systems support limited heterogeniaitisupernodes,” but this single-level hierar-
chy does not solve the problem.



91

manage every range which overlaps its subset. Then peed®@alimited amount of fuzzy
matching on requests. Third is simply treating the range set af blocks which can be
individually exact-matched, abandoning the idea of ranges

The first approach is too expensive, enumeratisig + 1))/2 keys for a range of
sizes. By creating a multi-resolution map this can be improve@tdogs) keys; but the
lowest-resolution maps induce high load on the nodes magdgem. In either case, de-
termining the best replica has little relation to finding thege in a DHT; although finding
somematch is a prerequisite. The second approach has probletimsoad balancing as
most data tends to fall in a small subset of the t@falname space. The third approach
fundamentally changes the semantics of the problem, agstied in the introduction.

We can partially solve these issues with another layer ofrattson. Instead of
storing data directly in the DHT, we store block mappingseml@ublish block IDs as keys,
and peer addresses as values. Now peers look up data, fincdietnnetch on the block
ID, and contact the peer to download the block. This avoiddrftial copy, but not other
problems. We need to knowhich value is returned when duplicate keys are registered,;
multiple peers may all say “I have this block.” The behav®tyipically undefined: DHTs
offer no strong consistency guarantees for multiple cameurservers. Optimizing load
means getting thbestvalue, not jussomevalue.

This leads to still another layer of abstraction. Peers lopkhe block ID in the
DHT and find a “manager” peer. They contact that peer, whicintais a list of servers for
the block. It replies with the best replica(s) based on lbgdbad, or another metric. This
is essentially what file systems built on DHTs do to providesistency. Unfortunately, it
still does not completely address the problem; in the waségwith a single large/popular
block, the manager peer has to maintain as much state asralzent server. Peers also

have insufficient information to perform global load balegoor efficiently detect locality.
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In summary, using a DHT to distribute transfer schedulingaudata is fraught
with problems: poor network locality, poor toleration oftéegeneous nodes, issues with
load sharing/hot spots, insufficient consistency/muitgisiemantics, and exact-match only
lookup. To address these problems, one must constructieki@atructure augmenting the
DHT. Unfortunately such infrastructure tends to subveet bienefits of using a DHT in
the first place. Finally, even if all these issues were sqlhew to globally optimize data
transfer in such a structure is an open question.

The ultimate conclusion is that a DHT is the wrong abstrachoo transfer schedul-
ing; or equivalently that transfer scheduling is the wroachhique for DHTs. Scheduling
and centralization go together, decentralization andaagklection heuristics go together.
We focus on hybrid centralized/decentralized approact&esction 7.5.3 provides some
benchmarking data showing performance of the CEP metadatarsand alternatives such

as a DHT metadata server.
5.4 Summary and Conclusion

This chapter introduced the interfaces to CEP and intetnattsire of the system.
Domain-specific interfaces with simple, versatile APIside users a straightforward way
to capture their constraints and efficiently perform mamyrany network transfers. Like-
wise, a simple centralized scheduler design permits dfticgiraplementations, which we
discuss in the next chapter. Later, Chapter 7 will prove these interfaces also provide
high performance in a variety of environments.

Acknowledgements Material from this chapter, in part, appeared in “The Com-
posite Endpoint Protocol (CEP): Scalable Endpoints foalbgr-lows,” Eric Weigle and
Andrew A. Chien, Proceedings of IEEE Conference on Clustan@uting and the Grid
(CCGRID), 2005. The dissertation author was the primargstigator and author of this

paper.



Chapter 6: Implementations

The remaining evaluation in this dissertation is largelptiyh experiments. Thus,
understanding the implementation pertains directly tovioig the claims we have made.
We follow the design discussed in the prior chapter and aethe best transfer scheduling
algorithms from Chapter 4. Our primary interest is in theegeweight-based algorithm
and its derivatives, and the linear programming algoritonrcbmparison purposes. We do
not consider network flow or erasure coding algorithms fenth

To minimize implementation cost, we leverage existing tettigy when possible.
We use existing reliable transports as the underlying paytosuch as TCP, GTP, and
others available in the Globus XIO framework. We exploit MACEDON/MACE [62,
100] project for network overlays. We use various languageslibraries as appropriate.

At a high level, there are three common approaches to degjgratwork libraries.
The multi-process (MP) architecture uses a process to baadh task. The multi-threaded
(MT) architecture uses a thread for each task. The singlegss event-driven (SPED) ar-
chitecture uses a single process to handle all tasks; tkedyraken into sub-tasks which are
handled by a global event loop and call-back functions. Otagants, such as the asym-
metric multi-process event-driven (AMPED) architectu88]| are a hybrid. AMPED uses
a main SPED process with a MP pool of helper processes;ubidsproblems with block-
ing 10 encountered on some systems. With careful tuninga@roaches can potentially
provide similar performance— assuming a well-behavedaijpey system.

This chapter describes two implementations, the infratire common to both,
and relevant engineering issues. Our first implementats&s the SPED architecture and
standard Unix sockets. Our second implementation uses Tharbhitecture; it has better
performance, supports more network protocols, schedalggrithms, and other features.

The latter implementation is used for our simulations analiegtions.

93



94

6.1 Version 1. Event-Based Implementation

The initial implementation usedsel ect () loop driven event model following
the state machine from Figure 5.1. Development was on Limeb{an and Red Hat)
targeting the ROCKS cluster environment, which is the saashdoundation for OptlPuter
system software. We used the Gnu C++ compiler, Flex/Bidm standard template and
boost [35] libraries, and standard Unix/Posix socketsriate. Core code is about 5,000
lines of mixed C/C++ and a small amount of lex/yacc for paygianfiguration files.

This prototype implementation was based on message passingse of nonblock-
ing calls. As proof of concept this was fine, but it had manyititions; lack of support for
algorithms, interfaces, and other features discussedon ginapters. Source code was not
made publicly available.

The first limitation was that user programs could not be ewaged: two se-
lect loops in one program will generally not work. This is whther event-based li-
braries provide their own event model to which an applicatiuust conform. For example,
| i basync [77] and Globus XIO [84] use event registration and callbfarictions.

Second, the implementation was inherently not thread gafes designed around
a single flow of control. It did not work well with the Globus ®luse model, and working
around the problem with locks and thread serializationgraréd poorly.

Third, the code was complicated, hard to debug, and tool&éguse as a research
platform. This resolves to the event model: any operatioitivimight conceivably block
required its own entrance point, generally a new functibgives a large code base where
related code is distributed undesirably— giving strandetigaces. Program state must also
be maintained across these call-back functions, by exgladiocating them, passing them
around in task-specific structures, and later deallocdtiagn. Management of all this state

in is complicated and difficult in C++.

Libasync and Globus do not interoperate; as we wish to usbugIXIO we can not use libasync.
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For example, consider reading raw network data and parsintpivariable-length
structured data. Chunks of data depend upon those readrgasdiwith reading the length
of a structure, then its fields, which may also be of variableggth. Implementing this

requires multiple call-back functions— when logicallysta single serial operation.
6.2 Version 2: Threaded Implementation

The second, threaded implementation was developed fraatcbdio avoid the lim-
itations of the event-based implementation. It immedyeselved many of those problems.
This version is provided as a shared library and severalegijuins for common use cases.
The library is used both for real-world tests, as the baclsaieduler in our simulations,
and as a tool to add CEP features to existing applications.

We handle scheduling for satellite/terrestrial transtess special case, described
in Chapter 8. This code was implemented targeting simulaige only and is not in the

library: we have no real-world access to satellites.

6.2.1 \ersion 2a: Threaded Stand-Alone Library

This version completely rewrites CEP internals using ttisg@threads) instead of
events. This allowed us to refactor the code into a morematiobject-oriented design.

The implementation includes a number of enhancementsiding:

Cleaner and more robust code base; better separation leliwesy, API, and user

program code;

Conversion to a dynamically linked, shared library;

Support for multiple platforms, hardware: Multiple Linuxdixibutions, FreeBSD,

Mac OS X;

Support for Globus XIO [5] and GTP [126] (Section 6.3);
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Full APl implementation (see Section 5.2);

Full test suite with regression testing (see Section 6.4);

Improved overall performance (see Chapter 7);

Improved documentation.

This implementation doesot include some features described earlier. We do not
(1) perform rate-based transfers; we perform explicitdfars. Using stock TCP as an
underlying transport protocol makes finely specified ratsell transfers effectively impos-
sible. We do not (2) centrally collect network constraitie scheduler uses NIC speeds to
generate an explicit schedule and nodes locally optimize aldb do not (3) use dynamic
maximum transfer size detection (Section 3.1.1) or (4) tierval tree structure (Section
3.1.2); instead we set the maximum transfer a priori andigteih the segment graph.

For development we use the same Linux platform and tools #eeiprior version,
but the software works on any Unix-like system. The core coaee than doubled to
implement the new features. We also added several supplahpeces of application
code, scripts for common tasks, and documentation.

The threaded version avoids the problems encountered idedeopment of the
event-based version by naturally keeping linearly exetetmde together. We integrate
with user programs in a thread-safe manner, require lesplamated state maintenance,
and so forth. The event handling structure is now implentebtedispatching events to
specific threads, and their structure takes care of the rest.

Another benefit is that this library implementation can Iné&did directly into a sim-
ulator, allowing us to use much of the same code for both realdrand simulation tests.
This helps validate our results. We use simulation for lesgae exploratory research; em-

ulation or real-world tests are infeasible for some of owgéaenvironments, such as those
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with multiple 10Gbps links or satellite transponders. Tt feerformance on such networks
we use thans- 2 [116] network simulator, version 2.29.

The only unusual feature implemented for simulation puegasas the addition of
a small amount of randomized jitter. This avoids unrealigtobal synchronization effects
when setting timers, selecting peers, or dropping pacKéts not a problem in the real-
world, which by nature includes some nondeterminism.

This software was first made publicly available to users iD52®ia a Rocks [102]
Roll package. It is part of the OptIPuter system softwareage [105], which is used for

the development of future high performance grid software.

6.2.2 Version 2b: BitTorrent/Application Integration

One goal for this work was to support legacy applicationsse@ble to drop in the
CEP library and improve performance with few other changéss motivated the block-
level extensions described in Section 5.2.5, and these wge@ to add transfer scheduling
functionality to BitTorrent [29].

We chose BitTorrent as it is the most popular tool for contistribution— account-
ing for as much as 80% of the background traffic on the Intd@igtwith approximately
50 implementations [124]. Of these, we selected the Bitddonclient [2] for our im-
plementation. While not the most popular client, it has sewode available, reasonable
baseline performance, and the features we wanted. Bit@orisavritten in Python, making
exploratory modifications simple.

BitTornado and other current BitTorrent implementatioreage metadata with a
hybrid centralized/peer-to-peer approach. One or ni@eker nodes maintains a list of
peers and minimal state metadata. Peers fetch a list of pgess, and then individually
exchange information on block locations. Data is transfilyetween peers directly using

a local feedback mechanism.
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Structurally, this meshes well with the CEP approach. Wiidjhfly more infor-
mation, the tracker can perform the data scheduling taskierGa schedule, peers can
continue using the feedback mechanism for downloads, geavihey upload at a suffi-
cient rate. Thus, half the implementation task was enhgrecBitTorrent client and tracker
with mechanisms to support transfer scheduling, partiakiag, and sub-file transfers. The
other half was implementing the API extensions, algorithmirig, and glueing everything
together. These changes nearly capture the desired semanmith the exception of using
blocks instead of byte ranges.

With some BitTorrent clients now supporting selective filwhload, which in-
duces partial sharing at the whole-file level, this work igtipalarly relevant. BitTornado
supports selective download in a limited way: one may sgemibrities for files in a set
or disable their download. These priorities are merely sstjgns. Blocks from disabled
files may be downloaded anyway, because they are neededdkscine desired files. Low
priority files may be downloaded first, because higher pyidilies’ blocks are unavailable.
This selective download code was expanded and rewrittelfolw specification of specific
block requests, enabling arbitrary partial-file downloattsvas also changed to enforce
hard limits on block downloads.

We extended the tracker metadata management to deternacialéyloptimal data
transfers between peers using the greedy algorithm. Coxtdléxt and provide peers with
more useful information was also added (e.g. collectingrogt bandwidth measurements,
and ensuring replies contain peers which can supply thgirasts).

Our results show that this approach is general, for arlyitiarels of sharing from
disjoint to whole-file transfers; efficient, achieving Idatency and high capacity; and scal-

able, to thousands of nodes. It provides good results ongediormance networks.
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6.3 Networking Infrastructure

There are two independent network stacks in the threadelémgmtation, one for
sockets and another based on Globus’s eXtensible Inpygi®utbrary [5]. XIO allows
CEP to exploit a large number of protocols being developdtiwits framework. Inter-
nally, all CEP file and network input/output is done througbcammon 1O class with a
simple read/write interface; this hides the details of tighiidual transport protocols. We
rely upon only the existence of a reliable, in-order protsteh as TCP.

As CEP’s core contribution is efficient data transfer in hggrformance systems,
the performance of the networking portion of the implemsatafundamentally affects
the performance results for the system as a whole. The rabtso$ection discussed the

implementation in more detail; the sockets/XIO transptatiss and message format.

6.3.1 Network Stacks and Transport Protocols

CEP provides two separate network stacks internally, whiielselected at compile-
time by the user. The first is a sockets-based stack targedirigbility, while the second is
a Globus X10O-based stack targeting customizability.

Targeting portability limits the sockets stack to using T@e kernel's SOCK-
STREAM), even on systems which natively support other proisuch as FAST or SCTP.
We also avoid OS-specific calls, egendfi | e() . Nonetheless, TCP’s limitations mean
that some tuning is required to achieve high performancemwst disable Nagel's algo-
rithm and modify socket buffer sizes [90,113].

This type of limitation is one reason why Globus XIO was depeld. By providing
a unified development framework and API under whathlO can be accomplished, the
same code can be ported to a variety of systems with diffenedérlying protocols. By
utilizing the X1O network stack, we can leverage any rekain-order 1/0 protocol XIO

provides without concern for the details.
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XIO provides a simple byte-stream interface with standaréneclose-read-write
(OCRW) semantics. It astonishing that such a library is iregu40 years after Unix in-
troduced the everything-is-a-file abstraction. NonetglXIO is becoming the de facto
standard interface for bleeding edge research protocdlsecess to high end storage de-
vices. CEP’s XIO stack allows the user to select the appatgprotocols for their appli-
cation. As discussed earlier, we also export an Xke-interface parallel to the sockets
interface; unfortunately we can not provide exactly the Xi@rface specification due to
the semantic difference between point-to-point and manyrany communication.

By implementing CEP using these approaches, we get the bdxitlo worlds.
We use the sockets version when Globus is not installedc@riactly installed, or when
latency/overhead are an issue. It provides a basic, pertaiglementation. The Globus
version is more powerful, but more complicated and less lyideailable. Its performs
better on certain workloads due to internal buffer managemed protocol optimizations,
but worse on others for the same reasons. XIO also has souesigsth overhead and it
is difficult to tune protocols effectively through the sirfig)d OCRW interface.

One important special case is CEP’s support for GTP [12€&],Ghoup Transport
Protocol. GTP is a many-to-one rate-based UDP scheme fty #&liocating download ca-
pacity across multiple flows. When fairness between flowsgirtant, users can compile
GTP rather than TCP for the sockets stack. Unfortunatelyflicting goals between the
scheduling techniques used by CEP and GTP tend to produc@edormance— CEP sees
fair flows as underperforming, and tries to schedule arobathtas bottlenecks.

Lastly, these low-level interfaces are completely segdrain the APIs provided to
users (Chapter 5). Those APIs are available regardles®afrttierlying technology used

by CEP to transport data and metadata.
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6.3.2 Message Format

We introduced the main CEP messages in Figure 5.1 and Tabl@&implement
that state machine, we use the simple message format sholable 6.1 (page 102). All
messages begin with four common fields, and then one or méute §ipecific to each mes-
sage type. For efficiency reasons, we use a custom binanagefsmat rather than a text
transfer mechanism (as with FTP or XML-based protocols), @erform serialization/de-
serialization directly rather than via an external library

We have one field for the message type (e.g. “spawn readeré)tmidentify the
database (the logical flow to which we are referring), and the range within that database
this message concerns. We use a large field for the messagéotyeep the remaining

fields 32-bit aligned, to leave room for future extensiomsl & allow fast type parsing.
6.4 Engineering Issues

This work focuses on the interesting research questiomsusaling the problem of
transfer scheduling. However, the way we address the pketffeengineering issues when
developing a large piece of software directly affects thalitpiof our results. This section

discusses our regression testing framework and how we @daitlires.

6.4.1 Infrastructure and Platforms

CEP's target platform is the ubiquitous 32-bit x86 arcHitee, running Linux. We
also target 64-bit linux on Xeon/Opteron and OS X on PowetR€se are found in some
OptlPuter storage and visualization clusters. After asling issues with endian-ness,
word-length, differences between “standard” librariég tore code runs on all these ar-
chitectures. GTP and Globus do not support 64-bit or PPQtanthres, so so that code
is 32-bit x86-specific. In other words, full functionalityailable only on Linux/x86; else-

where only the TCP transport can be used.
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Table 6.1: Individual Message Data Fields

Message Type
| Size | Field
All Messages
4 Bytes | Message Type
8 Bytes | Database Identifier (Flow ID)
8 Bytes | Start byte in global namespace
8 Bytes | End byte in global namespace
Reader Spawn, Writer Spawn Messages
4 Bytes | Peer ID length
2 Bytes | Port
Variable | Peer ID (Name or string IP address)
8 Bytes | Offset within file
4 Bytes | File name length
Variable | File name
Get, Put, Take Messages
4 Bytes | Peer ID length
2 Bytes | Port
Variable | Peer ID (Name or string IP address)
Variable | Other metadata (transfer rate, etc.)
Write Message
| Variable| Binary data. Length known from message start/end byte.
Read and Quit Messages
\ 0 Bytes \ No extra data. Peer is implicit in transfer state.

After the initial development effort, we created a seriesegfression tests to verify
common CEP functionality. These are listed in Table 6.2.s€lest specific features from
the basic— does it compile, does it tolerate files larger tiabytes— to the complex— can
it optimally schedule and execute a transfer with no 1-1 nragsp

Finally we assembled a regression testing framework faningnall tests after any
change to the CEP code to detect whether bugs had been ioeihdd back-end database
and PHP-based web frontend provide a useful way to checkseswu progress. This code
has been running since early 2006 and has helped ensuretifts shown in this document

are consistent and representative even with evolutioneottidebase.
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Table 6.2: CEP Regression Tests

| Test | Purpose |
Null Does nothing. Does the regression code work?
Compilation Does CEP compile in the given configuration?
Small file Does a 1-1 small filext2KB) transfer work?
Medium file Does a 1-1 medium filex{100MB) transfer work?
Large file Does a 1-1 large file5GB) transfer work?

1 server 4 client Does a 1-4 scatter (disjoint data fetch) work?

4 server 1 client Does a 4-1 gather (disjoint data assemble) work?
3 server 5 client Does a many-to-many overlapping data transfer waork?
Multiple file Do serial transfers (proper state cleanup) work?

6.4.2 Handling Failures

There are three classes of failures in a collective trarssfsiem: scheduler, server,
and client failures. Our implementation tolerates onlywsefailure, the second class.

Surviving scheduler failure after peers have received thigtadata is relatively
simple; however we have chosen not to support this. Instabidg the scheduler in the
current implementation cleanly terminates transfers amote nodes. This allows the user
to stop the distributed transfer easily without additian&dastructure or commands.

Server failure is survivable when two or more servers repdéiche same data or
when the data they serve is not required by any client. Ireeithse, the aggregate transfer
can still complete successfully. In our implementationghstailures are transparent to
the user— so long as at least one replica exists for desite tthe transfer will continue.
Section 7.7.1 looks at the performance of transfers underdaconditions.

To detect these failures, we rely heavily on the transpgsdriai.e. TCP- reporting
lost connections or failing to connect. In the best case, 8RIEpacket will be sent allow-
ing for immediate recovery. In the worst case, a series odouts must occur. This may

take on the order of minutes.
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Client failure normally means that the transfer will not quete. As we are inter-
ested in aggregate termination, failure of any part meanddbiyition that the aggregate
fails. The only exception is when using the weakly conseditransfer extension— which
provides sufficient semantic flexibility to allow use of otlpeers for recovery.

We chose not to support this due to problems detecting thatlad had even
occurred. Once work is given to peers, the scheduler hasfioeeat way to do so. The
best options are timeouts on “heartbeat” messages or atxfjected completion time.
Heartbeats can become very expensive for large numberseo$.p& single timeout is

cheap, but by waiting so long we multiply the transfer timedach peer that fails.
6.5 Summary and Conclusion

This chapter has explained the structure of the two mainemphtations. The
next chapter, the longest in this dissertation, uses timegkementations to experimentally
validate our ideas and analysis. This background detadl put performance into context
and helps prove its validity.

Acknowledgements Material from this chapter, in part, appeared in “The Com-
posite Endpoint Protocol (CEP): Scalable Endpoints foalb#r-lows,” Eric Weigle and
Andrew A. Chien, Proceedings of IEEE Conference on Clustan@uting and the Grid
(CCGRID), 2005. The dissertation author was the primargstigator and author of this

paper.



Chapter 7. Evaluation

This chapter presents experiments and analysis explotungerformance claims:
scalability, efficiency high performancgrobustnessandgenerality It is roughly separated
into two parts; the first part covers performance of coreuiest, while the second part
covers performance in a specific content distribution @ggilon, BitTorrent.

The first part begins with an overview of our evaluation appig then some base-
line performance measures. We show linear systeatability on cluster environments,
achieving up to 30Gbps in local clusters and over 10Gbpsentidle-area. After that,
we look at microbenchmarks and results in a variety of otheirenments; showing over
100x more efficientcomputation using our Greedy algorithm than the baselinalgB-
rithm. We seéigh performancéncluding 40x faster transaction processing than Apache,
and 4-5< higher bandwidth on heterogeneous configurations thamwumistriping (as in
GridFTP). Finally, we show we am@bust we have only a 2% performance penalty under
real world server failures and negligible performance figneth inaccurate metadata.

The second part looks at content distribution scenaridsamcontext of peer-to-peer
transfers with our BitTorrent/CEP hybrid. We quantify perhance under a variety of par-
tial and whole-file sharing configurations. We again stmgh performancendefficiency
up to 8x higher bandwidth and 10 lower latency than BitTorrentobustnesssucceed-
ing when 20% of BitTorrent nodes fail; arggnerality exceeding BitTorrent performance

under a variety of user constraints.
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7.1 Overview and Approach

While Chapters 3 and 4 supported our claims analyticallyg e focus on empir-
ical evidence. Using the implementations developed in @& we exhibit the features
and performance we have claimed on real world, emulatedsiamalated networks.

Our real-world tests were performed on the typical highgrenfince clusters listed
in Table 7.1. “High performance” refers to x86-based maebiwith 1Gbps or faster links
in the LAN and 10Gbps in the WAN. The largest cluster, FWG8€][ has over 300 nodes
(only 128 can be used at once) accessed through a batch 8ngedterface. This cluster

has 32-node racks with switched 1Gbps Ethernet, and 10Ghpsrtet between racks.

Table 7.1: Available Cluster Hardware

| Name | Nodes| Network | CPU (x2) | Memory |
csag-slow 32 100Mb | 450MHz Pentium-1l|  1GB
csag-fast 24 1Gb 2.4GHz Xeon 2GB

fwgrid-opteron| 94 2x1Gb 1.6GHz Opteron 2GB
fwgrid-dell-1 64 2x1Gb 2.8GHz Xeon 4GB
fwgrid-dell-2 160 | 2x1Gb 3.2GHz Xeon 4GB

For wide area tests, such real-world infrastructure has lbeeeliable and access
to remote resources has been otherwise problematic. thsteaturn to emulation and
simulation. For emulation we use DummyNet [99] to creatéuail high-latency links
between nodes on the csag-fast cluster. Unfortunately|adion scales poorly in terms
of raw bandwidth. Even using recent developments with Xdrafl time dilation [50]
emulation of many 10Gbps Ethernet links is infeasible.

We usens- 2 [116] simulation for our largest tests. We validate theseusations
through several mechanisms to gain confidence that theyatetyicapture salient problem
features. First, we reproduce real-world experimentsrimugtion, verifying there are no
disparities. Second, results match theoretical predistioom earlier chapters. Third, man-
ual analysis matches simulation output on small configonati Finally, thens validation

suite, which tests core features (e.g. TCP behavior), teparproblems.
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7.2 Baseline Performance

This section evaluates the performance of underlying telcigy used by CEP. All
the results we present here use TCP as a transport, so amtkngt its performance char-
acteristics on this hardware is important. Similarly, ¢éstSections 7.8-7.9 use a Python

application, so understanding the Python network stackelated operations is important.

7.2.1 TCP Performance

Understanding TCP performance characteristics is negessanderstand the CEP
results we present below. This section provides data feksI€P in Linux and in the ns-2
simulator. Two programs are used to test on the live netwoper f [82] and a custom
Python benchmarking tool. We use Dummynet to emulate hidakay links. Figure 7.1

shows the bandwidth achieved for a 10 second transfer uradieus network delays.
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Figure 7.1: TCP performance in the LAN/WAN
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The bottom three lines show the performance of TCP withauthty These exhibit
TCP’s well known performance problems in the wide area [@4,119]. Its flow and
congestion control feedback mechanisms give poor perfoceavhen théandwidth x
delay product is large. For example, performance falls by a faotd00 with only 20ms
of latency added through DummyNet. Also note that Dummykegn configured to add
zero delay, still cuts performance by over 70%: stock TCReaels 890Mbps directly, but
only 250Mbps through DummyNet.

Achieving good performance on even faster or higher delayslis more difficult
[25,90,113]. The top three lines show TCP performance wittinty. By increasing TCP
buffer sizes, using parallel flows, and increasing the lefthe transfer, we can maintain
performance under increasing delay. the two “Tuned Trahbfes show this behavior. In
contrast, if we limit the flow length to 10 seconds as befo@PE ramp-up time becomes
an increasing proportion of the total transfer time, andguarance falls slowly as delay
increases— the “Tuned TCP” line.

Also note the 150Mbps difference between the performandearad transfers in
theory (ns-2 simulation) and practice (Iperf). Even withihg, these machines cannot
achieve more than around 900Mbps (90% of the 1Gbps theabetive to hardware and
software limitations. This is not uncommon, particularty fachines running a firewall
or inexpensive NICs which perform some operations in satwa

In terms of CPU load, Iperf tests used approximately 20% efGRU and Python
tests used approximately 13%. The difference is due to thkeoRybenchmarking tool

caching transfer buffers which Iperf regenerates- 2 does not model CPU load.
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7.2.2 Python Performance

Python, as a partially interpreted language, may seem ioappte for high perfor-
mance tasks. However, our results show transfer speedsacabie to native C code. There
is only one critical aspect to consider: buffer managem&ically strings, which are an
immutable type in Python, are used as buffers. Thereforeraambuffer modifications—
such as adding headers or reassembling fragmented datpetargially expensive.

Using a node from the csag-fast cluster, we look at the speenhcatenating 8KB
buffers. Figure 7.2 shows the results using two algoritHiterative” joins buffers together
one-by-one while “one-shot” collects buffers into a lisdgnins them with a single call
(toj oi n). We see that for older versions of Python this processindyeaa significant but

avoidable performance bottleneck.
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Figure 7.2: Performance of Python Buffer Concatenation
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7.3 Node Scalability: Composition

Our motivating examples (Section 2.2) included high speauaisfer between clus-
ters of computers and large-scale content distributionis $hction examines CEP per-
formance in such environments; in particular, aggregatelwalth. This is our most basic
goal: being able to scalably compose multiple nodes’ flowsarsingle logical connection.

We test transfers using various numbers of homogeneous nodee how well the
system performs. Input constraints are set such that notlesgwally share load: node;
transfers byte§| £total]...[“total| — 1]. This is the schedule produced by the weakly

constrained transfer extension from Section 5.2.4.

7.3.1 Exploiting Local-Area Nodes

First we evaluate local area performance, as between dustea single campus.
We set the total amount of data semtal, such that each node transfers 2 Gigabytes of data
user-level memory to user-level memory. Figure 7.3 grapbsaggregate bandwidth CEP

achieves on the fwgrid-opteron cluster and in simulationyarious numbers of nodes.
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Figure 7.3: CEP Composition Efficiency
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The “Raw Bandwidth” and “Projected Limit” lines are for coanson purposes.
Raw bandwidth is the unattainable maximum capacity, igripnecessary overhead such
as packet headers. The projected limit is the ideal capa@tg all nodes to run at the rate
(=~ 830Mbps) achieved by the benchmarks in Section 7.2.1.

In simulation, the Greedy and LP algorithms produce idahtiesults. Performance
increases linearly with the addition of nodes, running @rapimately 96% efficiency. The
remainder is due to packet headers— 40B/1KB = 4% overhead.

Performance is slightly below the projected value in thé weald, but still grows
linearly. The difference is due to asynchrony between fearisrmination and overhead in
scheduler communication. Unfortunately, we can test att d$ode pairs (88 nodes) in
the real world due to contention for cluster resourcemsurprisingly, in simulation these
results scale linearly as high as one cares to test; we haes\ad up to 1 Tbhps.

In terms of load, during these tests CPU load was approxlyné&@o on cluster
nodes. CPU load on the scheduler node was less than 1%. Meniagd is proportional
to number of flows and a user-specified amount of precached fdathese experiments it
is about 32MB per node. While not a limiting factor, CPU loadkithree times that of Iperf.
Further examination shows that much of this is due to an esiperdata randomization
operation; transport buffers are filled with random bytestifits benchmark. Without this,
load falls to approximately 30% but bandwidth achieved ishamged. The remaining

‘extra’ CPU overhead is likely due to thread contention.

10f the 94 nodes, 6 were misconfigured limiting us to 88 nodasgér numbers could not be concurrently
allocated for our tests.



112

7.3.2 Exploiting Wide-Area Nodes

The last section showed good performance on local-areaonietwNext we show
the performance a very wide-area network: the OptIPuter][WIAN. This is a computa-
tional grid environment. Our results shows that we can akpigh capacity links (10Gbps)
to transfer large amounts of data. Due to problems with tlysighl hardware, we present
simulation results for this environment. Figure 7.4 shomesrelevant portion of the net-
work we model.

For this test we use the clusters in San Diego (csag-fagiec)u€hicago (‘Scylla’
cluster), and Amsterdam (‘vangogh’ cluster). These aresifes which have shared com-
putational resources available. The Scylla and Van Gogstals are roughly equivalent
in size and configuration to the csag cluster describedegaldut in simulation the only

relevant characteristic is nodes’ network speeds: 1Ghpsr&et per node.

l\? Amsterch}nJ

Seattle ~

A<

Figure 7.4: The OptlPuter Wide-Area Network

The San Diege— Chicago link is 10Gbps with 60ms round-trip latency, whhe t
Chicago— Amsterdam link is 10Gbps with 103ms round-trip latency. sTisi approxi-
mately 100 times the latency of the network in the previougise, due to unavoidable

speed-of-light and queuing delays over such long distances
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We configure a transfer as in the previous section; clusteittster transfer with
servers in San Diego and Amsterdam, and clients in Chicalge tAeoretical max transfer
rate is therefore 20Gbps: 10Gbps aggregated over eachr shrgter. We use 16 nodes
in San Diego and Amsterdam, 32 nodes in Chicago. In aggregateave two “barbell”
shaped cluster-to-cluster transfers, with bottleneclO&@Hps. Figure 7.5 shows the results
for transfers of varying size.

The peak rate experienced is about half that theoreticasiple. The average
transfer rate as determined by the last flow to finish is abowighth of the theoretical
maximum. While undesirable, this is actually exactly whatexpect due to the behavior of
stock TCP inthe WAN (see Section 7.2.1). The problem is tifevdlows encounter losses
and take a long time to recover; dragging the aggregatenopeaface down. Unfortunately,

increased parallelism can not help this due to the time égsd&r TCP windows to open.
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Figure 7.5: Exploiting Wide-Area Networks with CEP
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Consider the Chicago-Amsterdam link. A link at 10Gbps will@ihs delay means a
125MB bandwidth-delay product. With 1KB packets, satmgsuch a link means senders
must have 125,000 packets “in flight” at any given time. Sayngls TCP flow were
attempting to saturate such a link. A loss cuts the congestimdow in half (62,500
packets) and additive increase must recover at one padkBifge That's 6,250 seconds to
recover: an hour and 45 minutes.

Saturating the link therefore requires uncommonly longs(bfterabytes) trans-
fers, parallel flows, and large buffers (up to the bandwiithay product) throughout the
network. Parallel flows divide the recovery time and cost sirgle packet loss, but tend
to produce burstier traffic and induce correlated lossesater queues overflow. Beyond
such tuning there is little we can do to improve performanbhéewsing TCP as the under-
lying transport. On such high bandwidth-delay networkstqcols such as HS-TCP [41],
FAST [56], UDT [49], or RBUDP [52] are preferable. Unfortuely, they are not widely
supported in the real world. See section 9.4.1 for more métion.

In summary, these two sets of results demonstrate the ddgledsults we expected
based on our high-level analysis and baseline TCP perfarendio justify claims for larger

number of nodes we must turn to other benchmarking techaique

7.4 CPU Scalability: Computation Cost

This section complements the prior by showing CPU scatgbiiVe measure the
run time of our scheduling algorithms/infrastructure. \&sttschedulers on a trivial input
problem: simple striping. That ig; nodes have data and anothewant that data. An
optimal solution is any set of 1-1 node pairings (or corresidog solutions at the segment
level). As greedy scheduling time is invariant under dayal& changes, this input favors
other schedulers. It is trivial to solve by hand and shoulédsy for e.g. the LP library to
solve. Figure 7.6 show the run-time of algorithms on a 3.2®datium 4 processor. We

include best-fit curves for some cases, as testing them leecdeasible.
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Figure 7.6: Scheduling Cost vs. Number of Nodes

We are most interested in the LP and Greedy lines: the two adgorithms im-
plemented in CEP. The LP algorithm performs much worse tixpeaed. The results of
solving the 8192-node equations took several minutes,wisicinacceptable for any but
the longest transfers. This is particularly true as thesfiemnsolution is no better than the
greedy algorithm’s schedule. That is, the time to implentieatransfer given either sched-
ule is the same. Note that the absolute time to generate dygsebedule is less than 100
milliseconds for up to 10,000 nodes, our target scaling.gbiak is less than the RTT in the
current OptlIPuter WAN (103ms San DiegdAmsterdam, as described in Section 7.3.2).

The remaining curves are for BitTorrent— which does implegheduling. This
resolves to selecting random peers (at the tracker) andtamgiimy sorted lists of commu-
nication partners (at the peer). For the implementatiooudised in Section 6.2.2, these
operations are efficient up to 50,000 nodes. Beyond thatheae of automatically sized
and type-tagged data structures use too much memory. Q@Blis used for the 50,000
node case, causing the machine to go into swap. Minor impi&tien changes could

easily avoid this to give better results for large problestamces.
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Lastly, this graph can also be interpreted as scalabilitgrims of segments; there is
one segment per peer in the input constraints. If we instefaedsile two peers and vary the
number of segments, we get the same results. Altogether,dapacrity is not a limitation

for our target environments — provided we use the greedydsdée

7.5 Network Scalability: Metadata and Bounds

This section breaks down the network features limitingaaitity. This resolves
to metadata limitations for the whole system, as data tearisfunds can be avoided by
adding more nodes. We walk through the timeline for a CEPsteanshow that the sched-
uler can theoretically support over 100k transfers on a B3ink, and present network

benchmarking results supporting these values.
7.5.1 Transfer Timeline

This section shows that, unsurprisingly, metadata tratisfie is insignificant com-
pared to data transfer time for large transfers. Given the @f€hitecture, even slow cen-
tralized schedulers have sufficient bandwidth to suppogelaumbers of peers. Table 7.2
shows the timeline of events during a CEP transfer and oaeriveolved. This is for the

centralized ‘push’ use model.

Table 7.2: Transfer Time Analysis (milliseconds)

| Time (ms) | Percent| Task
3-5rtt ~ 50| .28 Spawn remote client/server threads
1rtt ~ 10 | .06 Request scheduling data, peessmaster
n/100 =~ 1 |.0056 | Calculate schedule, See Section 7.4
1rtt ~ 10 | .06 Reply with schedule, master peers
3-5rtt =~ 50| .28 Peers connect to each other
~17650 99.26 | Lower bound data transfer time; 2GB @ 1Gbps Ethernet
1rtt ~ 10 | .06 Update master; termination message

[ ~17782 | 100 | Total |
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First, the scheduler spawns peers on all machines. This &keind 4 round-trip
times; time for TCP handshaking plus data send/acknowledgé Peers then request
orders from the master and wait for its reply. Finally theyfpen the desired transfer and
tell the master when they finish.

The important things to note are that (1) data transfer datasthe total transfer
time and (2) almost all events occur in parallel. Peers aagvspd in parallel, possibly at
the same time scheduling is done. Peers can be spawned witbdiate transfer tasks.
Peers can begin transfers before others have been spawmednlly ordering constraints
are that scheduling must occur before peers receive thiegdsde, and individual peers

must start, receive their schedule, transfer, and then stop

7.5.2 Calculating Bandwidth Required

The analysis above assumed the scheduler had sufficientigapanly network
delay mattered. Now we show bounds on bandwidth requireddgcheduler node: it can
theoretically manage over 120,000 peers/second using psliix. Peers have no related
scalability issues; they generally communicate with onhaadful of other nodes.

Setting up a TCP connection typically requires three 4@Ipdckets, and peer
metadata is around 60 bytes per record. The spawn, reqpgt/and termination each
carry the record. In sum, this is less than 1KB/peer for a Brspriped transfer (1 record
per peer). This network bandwidth will not be a problem for target environments- a
1Gbps can transfer over 120,000 1KB records per second.

In more detail, a data constraint record requires: an 8 gtester ID, 2<8-byte
integers specifying the range, and the name/port of the géés is commonly around 60
bytes, depending on the peer name length. With multiplerds¢peer, we can amortize
that cost and asymptotically approach 16 bytes (begin/énange) per record. Network
constraint records are similar, about 70 bytes: two peeresaand 4 bytes for bandwidth.

However, the centralized scheduler does not collect tiisgnmation in these experiments.
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All data collected needs to be stored. If each record averalgeut 60 bytes, 10,000
records only take 600KB. Including management overheasl ntlay grow to 1MB. This
memory is obviously not going to be a system bottleneck. @rother hand, kernel mem-
ory is also used for network buffers. By default, each TCHKebcan claim up to 64KB of
memory. This can be tuned down to 16KB, which is enough fodQ® peers in 256 MB
of memory. Other tuning is required to handle this many comeu TCP connections in
practice [60]. An alternative approach is use of UDP with oadly added reliability. In

either case, memory will not be a problem for our target emrnents.

7.5.3 Testing Network Scalability

To physically test the networking portion of the centratizeheduler, we created
a benchmarking client. It makes metadata requests but doastoal data transfer. For
comparison purposes we include benchmark data for Apachealdd the Pastry DHT
[101].

Apache results are Apache 2.0.58 benchmark data. Thisfigl@seone alternative
to CEP’s custom scheduler is a web service implemented gsimgnodity software; a rea-
sonable choice would be Apache, the most commonly used weérsé/e use the Apache
2.0.52 server with up to 15 preforked processes and the Agiasich client version 2.0.41.

Pastry results are from benchmarks of a simple metadatarseritten using the
MACE [62] implementation of Pastry. Multiple peers form theetadata “server” and
clients make requests as before. This is another potettgahative approach as described
in Section 5.3.3. Note that clients dotthemselves join the overlay. This naive approach
performs very poorly— up to 100worse than the results we present here— as lookup costs
grow with the size of the DHT and keys are shuffled among nodes.

Figure 7.7 shows the transaction processing (read) rateE®& Apache, and Pastry
between csag-fast cluster nodes. We perform five triald) 800 requests of 64-bytes

each. Tests stop at a concurrency of 1020 or lower due to fiergor/thread limitations.
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This figure shows CEP performance comparable to the rougiDQ@QQG:stimate
above. CEP performance falls after 64 due to thread managdiméations. Apache per-
formance improves and stays roughly stable as the conayrggows; a desirable property.
Pastry performance follows roughly the same pattern. FgelaDHTs (i.e. the 64-node

line shown here) performance falls due to increased looksgp ¢
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Figure 7.7: Transaction Processing in CEP, Apache, andyPast

We have also tested with other DHT implementations. Firg @penDHT [96], a
service-oriented implementation of Bamboo running on &llaab [91]. Unfortunately, the
system is heavily used; storing or retrieving even small@ailvas unreliable due to capac-
ity limitations. It was also “embarrassingly slow” [95] kiag on average 7.25 seconds to
retrieve a value over a dozen trials.

MIT’s Chord [108] implementation was also not suitable far gurposes. By
default it uses erasure codes; storing a single block regjsiaving data to 16 nodes. This

provides excellent robustness under failure but at theafgstrformance.
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Together, these results show the desired scalability mdef bandwidth. A single
scheduler can handle large numbers of metadata requestge hambers of peers can be
serviced with low latency provided their requests are nochyonized— ideally no more
than 64 requests occur at once.

The last several sections have shown that system capacky; ®lemory, and
network capacity— are sufficient to scale to desired proldem®s. Environments with up
to tens of thousands of peers can be handled on commoditwheedas we have claimed.
Now we turn to our claims of generality and high resolutionwsimg that CEP can handle

more complex constraints.

7.6 Exploiting Widely Varied Constraints

This section shows the generality of our approach by evialuan a wide variety
of environments. CEP performs well regardless of node dgpaetwork capacity, or data
constraints. First we show the effects of heterogeneoussiode can exploit all nodes
efficiently, regardless of their capabilities. Then we slibaeffects of heterogeneous data

access— we can exploit differing data layouts to optimizégpmance.

7.6.1 Exploiting Node Heterogeneity

To show the advantages of utilizing heterogeneous nodesrrtan enforcing one
to use a homogeneous cluster, we test CEP versus the bagafioren striping mechanism
that tools like GridFTP [4] use.

Using 16 total nodes, 10 taken from the csag-slow clusteiGainom the csag-fast
cluster, we perform a 1GB transfer. Using the weakly-c@mnséd transfer extension, half
of the nodes from each set are allocated as senders and #réhathreceivers. We begin
by testing transfers using just the slower set until we rut) thien we allocate nodes from

the faster set. Figure 7.8 shows the bandwidth achievedsnrtnsfer.
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Figure 7.8: Exploiting Node Heterogeneity with CEP

The CEP and uniform striping schemes give identical peréorte when nodes
are homogeneous. When faster nodes are added (at point f&fetfing to all five slow
senders plus one fast sender in use), the greedy/LP schedleieve far better perfor-
mance. We effectively shift to the performance curve for fdster nodes. The simple,
uniform striping scheme remains limited by the slowest nasied. Seen another way, we
can enforce fairness by providing tight constraints. Bwegitransfer flexibility, we can
optimize— in fact we need the flexibility to enable optimiratwith heterogeneity.

The simulations reveal diminishing returns as the numbeodes increases. That
is, node management and scheduling overhead become apaogertion of the transfer
time as the number of nodes grows. This was lost in the noifeeateal-world tests.

One side effect of this behavior is that we need not worry algcuaurately allo-
cating nodes based on a priori knowledge. With CEP a userttamgt a transfer, and if
performance is inadequate, simply add resources untibpeence is acceptable. This ad-
dition can be done without concern for details of homogeneiy. whether the additional

resources are fast new nodes or a much slower cluster froenaderears ago.
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7.6.2 Exploiting Data Access Flexibility

Prior tests used the weakly constrained transfer extensien assumed a fixed
level of data access, to allow optimization under variedenloeterogeneity. Now we look
at the other half of the problem: given a fixed set of nodes, twoaptimize under varying
levels of data access. Logically, the more server replitesimore optimization potential.
Zipf-like distributions are common due to changing “hotfjular data over time.

Given a fixed set of 8 heterogeneous nodes, four each frons#gesiow and csag-
fast clusters, we explore two different data layout scherash varies the amount of data
each node may access from disjoihds B /n per node, to total- the wholg5 B per node.

The first layout sets allocations serially, starting witk thster nodes. Thus over-
lap falls only on the slower nodes. This is the optimal lay@s the fast nodes can be
maximally exploited in low-sharing environments, but isr@what unrealistic. Figure 7.9

shows the results for this layout scheme.
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Figure 7.9: Exploiting Data Access Flexibility with CEP
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With uniform striping, regardless of the data access fléigfbperformance is the
same. With flexibility, the more overlap, the higher perfarme. Improvement flattens out
as the hardware is saturated. This gain is due to the schieshiteng work to more pow-
erful nodes until all nodes are equally saturated. Beyoadbint, additional flexibility
cannot give additional performance.

The second layout sets allocations equally. First we speaall ofp peersp; along
on a virtual line of lengths (s=total transfer ge). A peer’s data request is centered at
c=(i+1/2) % (s/p). We then vary the amount of dat,each peer downloads frointo
2s. For a givend each peep; downloads frommaz(0, ¢ — d/2) to min(c + d/2,s — 1).
Ford < (s/p) these are disjoint; for largetpeers’ requests have increasing overlap.

Virtual Line: Disjoint Peer Data

[ Y Y Y
y ® x ® A ® A ®

~—

Virtual Line: Overlapping Peer Data

~—

ettt
New Exploitable Overlap

The performance of transfers using this second layout iseafitransformation of
the results above. In particular, it stretches the graplezbotally. The only value that
matters is how much of the data the fast nodes can accesssilaylout that is exactly
the upper bound of the second fast node’s data:g. As we increase the percent of data
accessible, only half of the second nodes’ allocation n@ewbrlaps that of the slow nodes.
Thus performance improvements are one quarter those ausierthe first layout.

At a higher level, we learn two things from these resultssti-that CEP can capture
both explicit and flexible user constraints— forcing theestilier to transfer use uniform
striping, or allowing it to allocate capacity more intebigtly. Second, that the weakly-
constrained transfer extension is exactly the 100% flagjlploint at the right side of this
graph. On homogeneous nodes, the scheduler ignores thhtilitgxand produces a striped

layout. On heterogeneous nodes, the scheduler optimizes isde capacity.
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7.7 Performing Under Stress

This section determines the performance of CEP when thiogagng. In particu-
lar, we look at the effects of node failure on transfer perfance, and how inaccurate data
affects transfer scheduling. In particular these addiresslaims made in Section 4.3.3 that

nodes can make progress under failure and that we toleateurate information.

7.7.1 Tolerating Node Failure

This section looks at the effectiveness of failure recoxasydiscussed in Section
6.4.2. Performance under failure obviously depends greatlthe type of failure. As we
are interested in the mechanism itself, we focus on a singaiéiguration which should
ideally show little or no performance degradation unddufai

This configuration consists of a receiver-limited transfer a set of disjoint seg-
ments, two servers completely replicate each segment, m@deceiver desires each seg-
ment. All nodes are homogeneous; thus servers are only sages/@alf utilized, and the
failure of either server in a pair should be recoverable guthaffecting performance.

Using 16 nodes (10 servers, 5 clients, 1 scheduler) from $hg-tast cluster, we
configure a transfer such that each receiver downloads 2CGdataf. After starting the
transfer, we manually kill from zero to half the servers.¥&g7.10 shows the results.

As desired, performance is roughly constant regardleseeohtimber of servers
lost. Any transfers in progress to a dead node receive a TE# reessage, and they
immediately shift their work to the next available repliddnis failover occurs on the order
of milliseconds. The only costs involved are some wastedkwdren the failure occurs
right before a chunk (by default, 16MB) is finished— that dharust be downloaded again.
In general the cost includes overhead to initiate new cadiorecand wait for TCP windows

to open. This potentially wastes several round-trip timefete performance recovers.
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Figure 7.10: CEP Performance Under Node Failure

7.7.2 Tolerating Inaccurate Scheduling Data

Section 4.5.2 outlined several ways in which metadata cbeldrrong. Data con-
straint metadata can only be wrong due to malicious peevghich case the entire system
can be brought down, or due to misconfiguration, in which acadg the given peer is
harmed. In contrast, network constraint metadata is easggstimated.

As before, performance results depend heavily on data i@onts. Here we use a
simple topology: two servers with 2GB of identical data ané client for that data. The
client has an independent 1Gbps link to each server. We targdpacity estimation for
one of the links from O upwards. Figure 7.11 shows the outmuthiis configuration.

The ideal line shows the bound due to actual physical capadiile the “as sched-
uled” line shows the transfer performance expected exéathywing the greedy scheduler
output. An accurate estimation of 1Gbps would equally doadldata from both servers,
producing maximal performance. Overestimating link céiyawerloads that server, while
underestimating link capacity overloads the other sefMeis curve shows that the greedy

scheduler is tolerant to error: in dividing capacity amoegg, it divides errors.
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The “actual” line shows the performance actually running #imulation. Regard-
less of the schedule provided, the client receives infaonabn both available servers.
It begins downloading blocks from both as fast as possib&rguthe optimistic parallel

chunk download mechanism described in Listing 4.8 and atd®age 70.
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Figure 7.11: Performance Effects of Capacity MisestinmaitioCEP

In this trivial network, no other peers compete for bandijdto performance is
limited only by actual link capacity. Put another way, theoeeous estimate is quickly
corrected based on actual transfer performance; this bhayart of the reason we focus
on data constraints rather than network constraints. Iremomplex network configura-
tions other peers may also place demands on servers. Tlweselseder effects may limit

us to the rates as scheduled, however inaccurate.
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7.8 Outperforming Traditional Content Distribution

The remainder of this chapter focuses on integration wighBhTorrent peer-to-
peer content distribution application. We show how the taldiof enhanced CEP features
(see Section 6.2.2, page 97) to the BitTornado client irgeéandwidth by a factor of 4-8
depending on the level of sharing, decreases latency bydar of magnitude, provides
higher fairness, requires less tuning, and provides theripartial-file transfer semantics
we desire.

Tests are performed with cold caches to allow fair compareeross tests. Short
transfers are ultimately limited to disk bandwidth. Longransfers can theoretically ex-
ploit caching, particularly in high-sharing configuratspibut BitTorrent’s RRF block selec-
tion interacts poorly with caching algorithms. These pedafeatures are notimmediately

obvious as our experiments focus on aggregate performance.

[ The remainder of this page has been intentionally left btardnsure subsequent

figures fall on the same page as their associated text.
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7.8.1 BitTorrent Baseline Performance
First we look at performance of stock BitTorrent. This pkdtlee results for our
later modifications into context, and shows several featuegevant to later discussion.
Using the csag-fast cluster, we determine completion tifmesarious numbers of nodes

performing a 256MB transfer. For reference, the perforreasfa 128-node multicast tree

is given as a baselirfeFigure 7.12 shows a graph of these results.
Completion time is roughly logarithmic in the number of ned&itTorrent scales

well with high receiver sharing. However, the total complettime is longer than neces-
sary; a naive multicast tree would get data to all peers muate muickly. Also, there is
a large startup time: for most of a transfer few peers coraptaen suddenly the majority
of peers finish with a few stragglers. The primary reasonHesé results are the source’s

behavior in BitTorrent: it has to verify the entire file bedait can be shared, and tries to
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Figure 7.12: BitTorrent Peers Complete vs. Time

2This is without pipelining; more intelligent multicast &g or meshes can do even better.
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7.8.2 Performance of CEP’s High Sharing Optimization

Now we look at aggregate completion times of BitTorrent artePCboth for the
original “default” greedy algorithm and with the “high shag” optimization. The LP
algorithm’s performance is equivalent to the default gyealdorithm’s and is not shown.
Figure 7.13 shows the results using the same transfer coafiiga as the previous test.

For small numbers of peers, the stock CEP algorithm is bésisetare effectively
low-sharing environments and the source can supply allspsenigh speed. As the num-
ber of peers grows, however, the source is saturated andtmgletion time grows (source
transfer rate is consistently around 800Mbps for all te®#)lorrent scales as in the prior
graph. The High Sharing optimization initially performsermediate the others; with few
peers the two-phase transfer induces higher overheadhbaletault one-phase CEP trans-

fer. As the number of peers grows, however, it outperforni$dsirent by 25-40%.
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Figure 7.13: Peers vs. Aggregate Completion Time for CEPBatT@rrent
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7.8.3 Fairness and Performance Variability

The distribution of completion times for peers is usefulfagasuring the effective-
ness of BitTorrent and CEP fairness mechanisms. Figureshdws the actual and sorted
peer completion time distribution for another run of the A2fle case presented above.
We evaluate fairness via Jain’s measure [55]; the farthentilue is from 1.0, the less fair
the system. With; as the termination time for peérfairness is(>"¢,)?/(n - 3 t2).

The spread of the completion times is quite large; the first peceiving a full copy
in 50 seconds while the slowest taking almost 90 seconds—I180&er. While we would
like to see more consistent results, the majority of pedtsr a uniform distribution
about the mean quite nicely. We get get fairness values &20i& CEP and 0.988 for

BitTorrent— effectively the same.
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7.9 Tuning BitTorrent/CEP for High Performance

Section 7.2.1 showed TCP tuning necessary for high banbdwidhe WAN. Here
we focus on the parameters available within BitTorrent. 8aamre accessible via the
command-line while others require source code changes. @8HRewer user “knobs.”
For a fair comparison, we try to maximize performance vagydifferent parameters. By

comparing results we discover which provide the most beaeréltwhich are insignificant.

7.9.1 BitTorrent Tuning Parameters

This section evaluates the effects of BitTorrent tuningPGtas fewer parameters
(see Section 4.5.3) and performance is insensitive to tladires. We perform a 256MB
whole-file transfer with 32 nodes. “Baseline” is the defailiTorrent performance from
CVS, “No Double Check” turns off potentially costly downbbaerification, “More Up-
loads” increases the number of concurrent uploads to 20yéNMinchokes” allows more
data transfers outside the tit-for-tat scheme, “Suped'Sgends a copy of each block into

the network before repeating, and “Larger Slices” sets thrimal transfer size to 1MB.

Table 7.3: BitTorrent Tuning Parameters

Time (s) Time (s)
Tuning Method | Mean | Ratio || Tuning Method | Mean | Ratio
Baseline 48.1 100% || More Unchokes| 52.5 109%

No Double Check 48.9 101%/| Super-Seed 90.6 188%
More Uploads 52.3 108% | Larger Slices 154.9 322%

Without exception, all of this “tuning” hurt performancen fact all variations of
parameters we tried, other than the defaults, hurt perfoceathe system is surprisingly
well tuned even though it was designed for Internet top@sgiersus high performance
networks. Super seed in general performs poorly as it iscatly limiting transfer speeds
in favor of block diversity. Larger slices perform poorlyealto problems with blocking and

string management overhead in Python (see Section 7.2.2).
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7.9.2 Block and Chunk Size

The most critical BitTorrent tuning parameter, typicalBlected automatically, is
block size. CEP is range-based internally, but we use maxitnansfer size (the “chunk”
size) which is roughly analagous to the block size in Bitéotr(see Section 3.1.1).

For this test, we look at the performance of transfers vargither the number
of blocks (with a fixed 1KB block size) or the size of blocks tfwa fixed 32 blocks per
transfer) with various file sizes in BitTorrent. For CEP wetbe maximum chunk size to

be = of the file size; the same idea as having a fixed 32 blocks pesfea We run 5 trials

L
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and report the mean.
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Figure 7.15: Performance Effects of BitTorrent Block Size

Figure 7.15 demonstrates three things for this environntérgt, BitTorrent trans-
fers of 1MB are necessary and sufficient to amortize globaflovad such as system initial-
ization, file read time, network connection time, etc. SegditTorrent works well with
block sizes from 1KB to 2MB, but have issues with blocks 4MBawger. Third, metadata

management can handle up to 100,000 blocks but does notsgalad that.
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For CEP, the bigger the maximum transfer size the betterodyrces lower over-
head. The internal mechanisms, being range based, depgnd/@akly on the transfer
size. Performance improves as file size grows, with perfanaaventually flattening off,
but improving again as disk caching and readahead becoffeetiv#. Disk bandwidth and
file system performance provide an upper bound of around 2p@8NR25MBps) on transfer
speed for large files.

To achieve the same performance, higher latency netwodksreeproportionally
larger transfers with higher parallelism— primarily to wa@round issues using stock TCP
for data transport. Similarly, larger blocks are desiraisiesuch networks to enable TCP
congestion windows to fully open; this requires furtheritignof internal BitTorrent pa-
rameters and changing buffer management schemes (seerSé@&ifor more informa-
tion). Lastly, with fewer than 32 blocks, the schedulinghteiques in the system can not
be exploited effectively and performance also suffers.

Given the performance in Figure 7.15 and good selectionaxfibsize, BitTorrent
will provide high bandwidth on transfers from 1MB and 200@&Tornado uses Table 7.4
to automatically select block size given total torrent site selection keeps the number
of blocks in the desired range for file sizes up this 200GBtlitmbwever the larger block
sizes induce high latency and overhead for partial-filesienrs. CEP’s default maximum
transfer size (16MB) is enough to saturate a single disk’'sliaédth, but does not induce

the problems seen with similarly large block sizes in Bit€ot.

Table 7.4: Automatic Block Size Selection in BitTornado

| Torrent Size | Block Size| Blocks | Torrent Size | Block Size | Blocks |
[O-4MB) 32KB 1-128 [512MB-2GB) 512KB | 1024-4096
[4MB-16MB) 64KB 64-256 [2GB-8GB) 1MB | 2048-8192
[16M8-64MB) 128KB 128-512 [8GB-oo) 2MB 4096+
[64MB-512MB) 256KB | 256-1024
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7.10 Enabling Partial Content Distribution

This section looks at the performance of partial-file trarnsf the purpose and jus-
tification for CEP’s transfer scheduling mechanisms. Osuits show that CEP can opti-
mize using transfer constraints to produce efficient, lagbed transfers under a variety of
conditions. In contrast, the stock approach has poor pedoce for partial content dis-
tribution problems— it was designed for high-sharing emwinents. In conjunction with
the prior section, these results show the fundamentalrdiffees between whole-file and

partial-file transfer techniques.

7.10.1 Performance and Sharing

The first test examines performance based on sharing. Thig isentral feature
distinguishing performance of different systems. Using thirtual line’ data layout as
described in Section 7.6.2, we vary the sharing factor framD We use a fixed 32 nodes
and 256MB file size; these values are in the range where aésgsperformed reasonably.

We plot the mean with error bars showing the standard dewviati
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Figure 7.16: Bandwidth vs. Sharing for CEP and BitTorrent
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With no sharing among peers, stock CEP is able to most effigiese the source’s
upload capacity to satisfy peer demands. The bandwidtleaetliis invariant under the
level of sharing: it is limited by network link capacity anthek performance.

BitTorrent performs poorly for low sharing, but quickly imgves. A sharing ratio
of 0.3 means each peer shares approximately 1/3 of its dataewery other (although
different subsets), meaning there are a large number ofipessurces for desired blocks.

CEP with the high sharing optimization is roughly equivalenstock TCP for low
sharing; for intermediate sharing the inefficiency of a iase transfer mechanism keeps
performance below that of BitTorrent. For higher sharingwaver, the initial seeding
phase allows for very efficient transfers. The main probleersee here is high variability
due to the well-known ‘straggler’ problem: the last peer tosth determines the system
termination time, and hence aggregate bandwidth. We akerigavays to minimize the

impact of such peers in the future.
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7.10.2 Data Latency

Our next test focuses on the lowest-sharing case, whengdstigded across a clus-
ter. This is how GridFTP [4] transfers work. Each peer musate and retrieve a small
1KB block of data from the single source. Metadata managénaémer than transfer per-
formance is being exercised. Figure 7.17 shows the coroplgtne for increasing numbers
of peers. Error bars are shown for the min and max over 5 trials

As the number of peers grows, the first peer to complete itstea tends to ter-
minate in about the same amount of time. However, the digtdb of times continually
grows, with the last peer to detect and download its blockntaO times longer for 25
peers than for 2 peers (note the log scale). The stock maragesthemes in BitTorrent
rely heavily on local peers being able to provide copies otk$. When that assumption
fails, the system can not efficiently satisfy complex transéquirements. In contrast, CEP

has an order of magnitude lower latency and smaller resuiatien.
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Figure 7.17: Completion Time vs. Total Peers for Partiah&fars
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7.10.3 The Failure of High-Sharing Techniques

The next graph extends the ideas above, showing the effeptrallelized down-
loads. With a single sender we increase the number of peguesang disjoint blocks out
of a 128MB file and report the bandwidth per peer averaged Bvests. Error bars are
shown to one standard deviation.

As before, there is a large amount of variation in the resuwitsile the general
pattern is what we expect, it is unpredictable. Furthermareund 60 peers, the default
number of peers the tracker replies with when a peer makestadata request, failures
start occurring. Some peers do not get the server that hasbtbek in the response set,
and fail to do so before the 20 minute test is over.

The flat metadata model in BitTorrent can not cope with thetgf disjoint data.
Ironically enough, this is tied to a transitory performammease; BitTorrent is empirically
known to perform best with 40-60 peers (hence the defautt)his is seen in the data. Yet
as the number of peers continues to grow, the difficulty inifigca server with a desired

block begins to dominate, and performance falls drasticall
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Figure 7.18: Partial Transfer Rate and BitTorrent Failures
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The “expected failures” line plots the expected portioneéis tonotfind a server

with their desired block. That is, the probability the semwéth their block falls outside

the set of peers they know aboup-§0)/p. This is divided by the average number of peer

re-request timeouts,

2 for this test.

The final graph of this section (Figure 7.19) shows the sant@ fdam the prior

graph but includes stock CEP performance. Ideally, ine@gsrallelism should increase

performance up to the sender’s capacity and remain consisteil overhead begins to

dominate. We see exactly that: CEP performance peaks a¥unddes (when each peer

is downloading 4MB in parallel) and falls beyond that.
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7.11 Summary and Conclusion

This chapter has presented results from simulation, eronlaand real-world tests
of CEP and related approaches. These show that the coreeleatuCEP provide high
performance, efficiency, robustness, and generality aa@osriety of environments. The
techniques scale to tens of thousands of nodes, provide Higher bandwidth on hetero-
geneous configurations than uniform striping, 10<4faster transaction processing than
Apache or DHT approaches, and 4-8igher bandwidth with 1@ lower latency than Bit-
Torrent.

Acknowledgements Material from this chapter, in part, appeared in “The Com-
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Chapter 8: Satellite/Terrestrial Networks

The core work of this dissertation focuses on fast, wiredvogts for high per-
formance computing. However, the infrastructure and tearscheduling techniques are
useful in more constrained environments. In particularavneeinterested in content distri-
bution on Satellite/Terrestrial Networks. Such netwomlesammonly used for distribution
of large amounts of data— typically video— from a single seup a number of geographi-
cally dispersed destinations.

This chapter reuses the centralized scheduler, metad#éstom, and transfer
scheduling idea, but with a new algorithm and implementat®ection 8.1 explains why
the problem and solution differ from the rest of this disagoin. Section 8.2 presents the
new algorithms and infrastructure required. Section 8&@uates these techniques using
the criteria from Chapter 7, showing good performance.

8.1 Overview

Making the most of both satellite and terrestrial networguires specialized ex-
tensions to the techniques described earlier. These diiyimprove performance, but
are only appropriate in this particular case. The diffeesnare due to the (1) satellite
broadcast characteristics and (2) level of sharing- ti@thi content distribution means to-
tal sharing in demand, rather than the partial sharing tastieen our focus. This section
discusses the unique problems involved and the targetamaent in more detail.

Our approach has the following desirable properties: itodryects for large er-
ror/loss rates- 5% or more; (2) scales in the file size- tolgjtgs- and number of nodes-
to 1000s+; (3) provides low latency-400ms; (4) is efficient- low network, memory over-
head, globally minimizes cost; (5) is fair- different pestare equally; (6) and it is user

tunable- user may control peering behavior.
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8.1.1 Uniqueness of Satellite/Terrestrial Content Disttution
In contrast to the general transfer scheduling problemsritesl in Chapter 2, con-

tent distribution on hybrid satellite/terrestrial netksihas these additional characteristics:

1. Continuous transmission: maer-transmission “free” time to recover from errors.

2. Lowintra-transmission delay tolerance: data must be receivedmattiéw seconds

after it is initially sent.

3. Variable loss between uplink (to satellite) and dowrdirfkom satellite): loss is

lower on uplinks (by up to 1) due to higher transmit power and antenna gain.

The PlanetLab Grand Challenge with the Public BroadcaSeryice (PBS) [14,91] pro-
vides one concrete example. They transfer up to 450GB/day RBS headquarters to ap-
proximately 180 affiliates across North America. Live tmaissions require low latency-
displaying frames within a few seconds of receipt andOms inter-frame jitter.
8.1.2 Details of Target Environment

Our target environment has high bandwidth in the terrdstoee network (10-40
Gbps), low access link bandwidth (128 Kbps-1.5 Mbps), andenate satellite bandwidth
(20-40 Mbps). One common configuration for affiliates is teeh@al links (1.5 Mbps) to a
fast core network and 40 Mbps satellite transponders. @f #7avibps is used for forward
error correction (FEC) and 23 Mbps is available for user .dase will show the exact
values are less important than the ratios between thenthesratio of satellite bandwidth
to access link bandwidth defines the effectiveness of ttpsageh.

Terrestrial parameters are roughly based on the OptIP1i&i pr AT&T core net-
work [8]. The latter covers a significant portion of the conéernet in the United States.
Extensive studies have shown minimal core loss due to ctingdd0]. Terrestrial delay

is insignificant compared to satellite delay, making peeality less important.
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Access link information is from the PBS/PlanetLab Grand liénge correlated
with station/location information from the PBS web site ] 98uch links are too slow to
satisfy transfer requirements by themselves. Faster iakde acquired, but are expensive
compared to satellite transponders which can receive besadata at higher speeds.

Satellite links are the primary source of both delay and.ldsaditional approaches
use up to 50% of the link bandwidth for forward error-coriect(FEC) and fall back on
whole file retransmission for uncorrectable FEC errorsel8i broadcast packets arrive
in order, allowing immediate detection of loss for most sag&ror rates will vary between

0.05% to 5% depending on weather and the level of FEC.
8.2 Satellite/Terrestrial Algorithms and Design

Our approach exploits both satellite and terrestrial netaidoroadcast via satellite,
recover via the terrestrial network. Receivers exchangg tdedetect and correct errors in
a peer-to-peer fashion. Broadcast/recovery are pipelmedoverlap for most of a trans-
mission.

We compare two designs. The first is a simple approach witmaalescheduler
node that collects and maintains metadata information.te@decond is a fully peer-to-
peer system. In both designs there is a single source uptidk with the original copy
of the data. In all discussion, the one source (uplink) tratsdata to the satellite, which
broadcasts it to all nodes. Recovery is initiated as soomasla detects a loss.

The scheduler provides performance enhancements wheruthleen of nodes is
on the order of thousands, but may be a bottleneck for larggvorks. Its purpose is (1) to
provide an accurate database of data location for peersetiy gund (2) to enforce global
load-sharing and fairness. Both of these features aregdvn a fully peer-to-peer system

at the cost of slightly higher latency and potentially lovisrness.
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The uplink broadcasts over the satellite and concurrertly as a peer node in the
recovery algorithm. Figure 8.1 shows this structure. Nbg& &ny peer or the uplink may

act as the scheduler, or the scheduler may be a designatedmibe core network.
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Figure 8.1: Satellite/Terrestrial Configuration
8.2.1 Primary Scheduling Algorithm

Transfer scheduling in this environment resolves to eroovery for packets lost
in the satellite broadcast. The algorithms for this are gmésd in Table 8.1, and they
address both metadata and data transfer. In both, dataldeteicted based on a gap in the
sequence numbers in the incoming packet stream. For thegesmpf this algorithm, we

treat data as blocks rather than segments; this is apptegiigen total-sharing transfers.

Table 8.1: Error Recovery Algorithms

With Scheduler | Without Scheduler
Node detects data block loss
Send Scheduler NACK | Request block fronk peers
Scheduler picks best peeiPeers say if they have block
Request block from peer Request block from first peer
Peer provides block
Provide Scheduler info: | Request block from source
load, cumulative acks | Source re-broadcasts/repligs

In the scheduler-based algorithm, the scheduler can teleawhere to best find a
missing block. Note that the best peer may be the originaicgonode. Peers periodically

provide information to update the scheduler’s state usedgs$an recovery peers.
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In the fully distributed peer-to-peer algorithm, peersdamly askk other peers for
block information. With independent and uniform downlirdss$, the probability that no
peer (out ofk peers) receives a block from the satellitg is— loss rate)®, which falls
rapidly whenk increases. If no peer receives the block, it is probably dwtuplink loss
and the peers will ask the sourtéf the source gets several such requests, it is effectively
certain that the block was lost on the uplink and should beoaatcast over the satellite link
or multicast over the terrestrial network. Otherwise thacklis sent to nodes individually.

Note that the peer-to-peer system incurs (1) an extra titneoulock recovery if
data is lost on the uplink or a poor set of peers was seleated 23 slightly higher network
overhead for state communication. This is the price paidHerextra system scalability;
DHTs have similar characteristics but high complexity amdrbead for our purposes.

More rigorously, let:

N = Number of terrestrial nodes

BS = Block gze

Pr(L) = Probability of loss on a satellite link

BW,, BW, = Bandwdth of satellite or errestrial bottleneck

Teend = Time that a block is ser{aibsolute)

Dy, Dy, = Max Delay to satllite (uplink<—nodes), teestrial nodes
Digmit = Max Delay to send aaellite or errestrial block 8.5/ BW ;)
Dyjick = Delay between clock ticgk(timeouts)

Tpeer = Timout for peefscheduler response

Using this notation we can calculate aspects of the systéramMia: maximal block delay,
termination time, and so forth. With uniform independerssies, the chance that a node
immediately gets any particular packet is simply— Pr(L))? since packets may be lost
on the uplink or downlink. This is the probability of “ideaféception at timél},.,, =

Tsenda + Ds_wmit + Dsat. If Only one copy of the packet is lost, it will be detected imerst

Well-known technigques can be applied to avoid the “ack irsjalo” problem.
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one timeout, then metadata requested from the schedwdes/fghen the packet requested
from a peer and received at time at m@st,; + Dyicr. +4 - Dier + Di_omiz. When multiple
copies of a block are lost, at mdst= | (Dy. * BW;)/BS]| losses can be recovered per
clock tick by each node thdtasreceived the block. Then, after another (at mdsg),
those nodes can provide the block to others.

In the worst case, (1) a block is lost on the uplink so only th&se has it and (2) the
source is on the terrestrial bottleneck. In this case, afterclock tick (plus network delay)
[+1 nodes will have the block, after two ticks approximatlipave it, and so on. At worst,
the last node will receive the block at tifdg;..; +( Diick+ Dier ) - [logiN |44+ Dier+ Dy _zmit-
This is a desirable bound as it grows very slowly, but it isjsatito a few constraints.

The first constraint is thab,;.,. is large compared t®; ,,.;; and D;.,.. If not, the
recovery algorithm breaks down — to make progress, remiesquests must arrive before
the next timeout occurs.

The second is that the satellite loss rate must be “streaneitgverable”: the ter-
restrial links must be fast enough to always fix the satédlitesses within a few RTTs of

when they occur. This is only true whéh— (1 — Pr(L))?)- BW, < BW, or equivalently

whenPr(L) < 1 — \/1 — (BW,/BWj). This is why it is the ratio between satellite and
terrestrial speeds, rather than their absolute valuesiginaost important. In practice, the
maximum loss rate recoverable at streaming rates is slifgivtler due to congestion losses
and transient load.

To make this concrete, when losses are streaming-recdgetale maximum la-
tency to receive a block in our simulations is less than ha&eond. If the satellite loss
is not streaming-recoverable, then losses will accrue and theydelreplace a lost packet
will grow without bound. Eventually, if the satellite trangssion completes and there is no
subsequent transmission, the errors can be recoveredsydbd of the terrestrial network.

We see these features in Section 8.3.
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8.2.2 Error Recovery

The peer selection algorithm is the core of block recoveryth\& scheduler, or
other metadata, we can globally optimize this step. Withipwre cannot improve upon
random selection. The best peer is selected as follows:

Select a random peer from

the minimal cost peers from
all peers which have the block.

The first selection is easy; any reasonable pseudo-randomberugenerator suf-
fices. Similarly, the third selection is easy when inforroatis centralized or other infras-
tructure exists to maintain it. The second selection dep@md“cost.” This can be any
formula, but for our tests it is simply load: lower load, lawest. This selection is a
trivial instance of the job scheduling or bin-packing pexhblwhere all jobs are the same
size (transferring one block). In such a case, minimizirapgl cost resolves to globally
balancing cost, which is exactly what this algorithm attésrip do. Thus, its optimality is
limited only by metadata accuracy.

The delay in metadata propagation means the scheduler mayp to the number
of requests that arrive in the time it takes a packet to tsevére network. This is at most
Dy ymit + 4 * Dy, Dy, to return metadatal),., to request the blockl; _....; to send it,
D,., to traverse the network, and,., to return an ACK to the scheduler. The expected
difference is only a few blocks (below; ./ D;_....:) and will be self-correcting over time:
the percent difference from optimal falls as the transroissize increases. Our empirical
results show this behavior. Randomization avoids oventwaohdividual peers during the

update period.
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8.2.3 Algorithm Features

This section explains a couple of the results that follow mdmtely from this algo-
rithm design (we will return to these ideas in Chapter 7)sti-ione benefit of the concept
of maximal streaming-recoverable loss rate is that whesikdramatically lower, we can
exploit that fact to send less data over the satellite linkese would then be treated as
losses, and recovered on the terrestrial network. This sxsélese when the cost structure
is such that cost(satellite)>: y cost(terrestria), since for every satellite broadcast we must
sendN terrestrial blocks. This reduces the amount of satellita da be sent by a few
percent when loss is low.

For satellites whose level of redundancy can be adjustedshwoald therefore set
the FEC level to the minimum tolerable by the terrestriaberaorrection. This value is
known from the analysis in the prior section, and with somewedge of the satellite
error rate we can set the level of redundancy appropriately.

Second, one particularly useful cost function for schetyiln practice is as follows:
a simple (linear) weighted sum of load, link speed, link exgee(i.e. cost in dollars), and
distance between peers. Link speed is required when lirffer dignificantly in speed;
however in such a case global termination will always berdeiteed by the slowest node in
the network given uniform loss. If losses were more commofaster nodes, we could still
perform well. Link expense ties cost to real-world pricestance allows us to minimize
latency; in particular for soft real time systems we canaase the cost of nodes farther
away as deadlines approach.

This approach can also help engineer the minimum cost nksabat satisfy user
requirements. Specifically, when we know the parameterfi¢ocost function and the
expected/experienced error rates at different receieegs, (due to climate or being on the
boundary of satellite coverage), we can determine thedeimébandwidth each node will

require. For example, some nodes might only need DSL linedgewthers may require T-
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3. However, this must be globally optimized since we mustenseceivers have sufficient
bandwidth to peer with others— techniques such as linegraneming can be used with

the cost functions to determine an appropriate global casthmum.
8.3 Satellite/Terrestrial Evaluation

Our evaluation first demonstrates the system performanadwasction of satellite
link loss. Second, we demonstrate scalability in terms efdike and number of receiver
nodes. Third, we show receipt latency is low. Fourth, we destrate the access links’
utilization efficiency. Finally, we show that the protocal @ whole is very fair. Together

these justify our claims.

8.3.1 Loss Recovery

The first question concerns how much loss we can recover tsisgystem. We
model errors as uniform, independent burst losses usingralatd Gilbert-Elliot model
per link (more complex correlated error models do not gatiely change our results).
These initial tests are performed on a relatively simpl@togy— access links connect to a
single backbone router, creating a terrestrial star tapol&atellite links are 23Mbps and
terrestrial links are 1.5Mbps (T1s). Figure 8.2 shows alg@doss rate over the satellite
links and completion time for a 100MB broadcast to 10 nodes.

As we expected, there is a sharp knee showing the point ahwltrieaming recovery
is no longer possible. This knee is at the same point for badterees given the same access

link speeds. With slower peer links, less loss can be reeovand knee moves lower.
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Figure 8.2: Bidirectional Loss Rate vs. Completion Time

According to our calculations in Section 8.2.1, the maxithabretical streaming-
recoverable loss rate is 6.5%3(V/bps x .065 ~ 1.5Mbps), but we see the actual maximum
at 5%. This is about 75% of ideal recovery efficiency. Theeaddhce is primarily due
to the application’s in-order semantics; if some data inrégmovery window cannot be
retrieved, recovery may temporarily stall waiting for thefhiis may occur when multiple
segments are lost on the uplink and exist only on the souroequires multiple iterations
to propagate them throughout the network.

Loss rates shown above are aggregate loss, with an equapcbbability on both
uplink and downlink. There is no reason to expect the logsrit be equal; in fact, uplink
losses will tend to be lower. Moreover, recovery from upliokses and downlink losses
are distinct problems. For uplink losses, no node recehatsiata; it is only available from
the source. For downlink losses, most peers can provideuitkily, our unified solution
can solve both problems and performance is weakly tied ®dosrelation. In the worst

case, all nodes can recover from the source nodeyiiV) iterations of the algorithm.
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Consider Figure 8.3, which for a fixed 10% loss varies the @riogn of the loss in-
curred on the uplink versus downlinks. In all cases, thd soteount of data to be recovered

is the same. All that varies is the correlation of the errors.
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Figure 8.3: Effect of Uplink/Downlink Loss

As more losses occur on the uplink (loss correlation amoregspgrows), more
must be globally rebroadcast on the terrestrial networkis Téads to overloading of the
source node, and requires multiple iterations of the pegreer recovery mechanism to get
the data to all nodes. Put another way, the set of losses wlmlr on the uplink must be
broadcast on the terrestrial network. The difference ifgperance between 0% and 100%
of the loss occurring on the uplink is the benefit of explgtihe satellite network.

The deeper cause of this performance difference is moréesWiith a uniform loss
distribution on the downlink, as the number of nodes grovesgiobability that no node
has a given segment (meaning it must be retrieved from theapgrows proportional to
loss rate™. On the other hand, the number of losses and the capacitydeaelosses grows
proportional ton. This means that as the number of nodes grows, we have arlesxcel

chance of being able to recover using a peer-to-peer mesrhani
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8.3.2 Scalability

The second question concerns scalability—both in termdeosizes and in terms
of system size (number of nodes). Ideally, completion titveugd be linear in the file size.
Similarly, as the number of nodes grows, the completion simauld stay constant (below
the streaming point) and grow slowly above it (as nodes beocoverloaded).

To test the former, we broadcast files of sizes ranging fronB1d 1GB under
various amounts of loss (above and below the knee in the griyh) using T1-speed

peers, and present the results normalized to the percenteaf time (zero loss on the

satellite link).
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Figure 8.4: Completion Time vs. File Size

For 1-8MB transfers, network latency and other overheadsiiate. Above that
size, we can effectively meet the ideal transfer time for erately high loss rates. The
peer-to-peer system matches the scheduled scheme we#l blightly less efficient for
high loss rates— the randomized location scheme has higednead.

To test scalability in terms of nodes, we broadcast 100MBeu@éb loss to increas-

ing number of nodes. Figure 8.5 shows completion time far tidst.
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Figure 8.5: Completion Time vs Node Count

A 2% loss is streaming recoverable with 1.5Mbps peers, bataind 128 nodes,
the capacity of the centralized Scheduler to track lossesreply with metadata is ex-
hausted. Moving the Scheduler to a 100Mbps core link sHiiks$ knee to around 1,800
nodes. The peer-to-peer system is slightly less efficientstales better.

The peer-to-peer curve grows approximately with the lochefiumber of nodes,
as expected- this is due to data propagation requiring amicaul iteration with each
doubling of the number of nodes. Larger numbers of nodes mn@rsimulated due to time
constraints and other limitations with the simulationsisiator; however, we reiterate that

these results satisfactorily meet the goals of our appdinat

8.3.3 Intra-Transfer Performance

The next logical question is how the system is performindhinita transfer, i.e.,
how the different parts of the transfer progress and whetleemeet our latency goals.
Figure 8.6 shows the aggregate data received via the saaill terrestrial networks over

time for all 10 nodes under high-loss (10%) conditions.
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Figure 8.6: Initial Transfer and Recovery Phases

The ideal curve transfers all data over the satellite linkur @ctual performance
is effectively a linear combination of the degraded sageHignal and terrestrial recovery
transmissions. For low-loss cases, both terminate at samee [For higher loss cases such
as this, we spend time after the satellite transmission dipleted to recover the errors.

This graph shows that while the system is able to recoverehigisses at low cost,
the satellite link may be underutilized. In such a case, wedrte increase the forward
error correction slightly to bring the net satellite errdmvn; otherwise the latency grows
unacceptably (up to 32s for the last segment lost in thi$.test

The normal latency is captured in Figure 8.7, which showdlifierence from the
expected time of arrival for data in a 100MB broadcast to 1€rpe&vith 2% satellite loss.
The vast majority of the data (98%) is received when expedicted the satellite. The 2% of
segments lost are recovered via the peer-to-peer mechgnisth latency up to 450ms but
on average about 175ms. Each doubling of the number of peensaises the worst-case
latency we observe by approximately 50ms. The total lat@mayrred is of the same order

as the baseline latency to reach and return to a geosynais cadtellite.
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Figure 8.7: Delay Due to Loss
8.3.4 System Utilization

To show system efficiency we must have high access link atibn over the du-
ration of the transmission (the core network is lightly leddelative to its total capacity).
Figure 8.8 shows the percent of access link capacity utilizedata; that is, not including
packets corrupted, metadata, or packet header overheagithsithe large core (Internet-
like) network configuration. We perform a 1GB transfer ur@Brloss rate on this network,
parameters representing a realistic streaming-recolesabnario. This test uses the cen-
tralized Scheduler. Full P2P results are qualitativelyghme but have higher variability,
making for messier illustrations.

The first thing to notice is that with streaming-recoverdbteses, there is no phase
where the satellite is idle. Both networks are utilized foe tvhole transfer. Second, the
losses only require about 30% of the data capacity of thederal network. Third, the
results are not qualitatively different than those on sengpbnfigurations (not shown due
to space limitations). This has held true for all our testse primary difference is that the

backbone structure creates a higher variation in the datealsimple benchmark topology.



155

100 r - x r , r

80 Satellite Links —— 1
2 Terrestrial Links ----- enooe
0]
(&)
3 60 |
a
C
je)
T 40
N
5

20

O y

0 50 100 150 200 250 300 350
Time (s)

Figure 8.8: Percent Utilization of Core Access Links with S#tellite Loss

In general, demand for access link bandwidth is directlypproonal to satellite
loss, and satellite utilization (goodput) is inverselymodional to loss. The 2% loss rate
in Figure 8.8 shows high satellite utilization and low ascésk utilization. The point
at which transient access link utilization reaches 100%hésgoint at which streaming
recoverability becomes impossible.

Furthermore, the data to be sent by each node, and hencenkhetilization, is
controlled internally by a token-bucket mechanism. Cutyeit allows 100% of the link
to be used for recovery, but the protocol is user-tunablerséJsan limit this to any desired

proportion to avoid competing with other traffic.

8.3.5 Metadata Update Efficiency

There are two reasons a node may be unable to satisfy a datstei it is heavily
loaded or cannot be located. Both of these problems can doeuto stale metadata. If the
scheduler does not know which nodes have which blocks, it ovayload certain nodes

while others go idle.
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Figure 8.9 shows the staleness of metadata in terms of ségkr@wn to receivers

but not the Scheduler. This figure shows the efficiency of detaupdate.
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Figure 8.9: Number of Unacknowledged Segments

The Scheduler information lags about 180 segments behitdlagystem state.
This resolves to about 60 milliseconds, of which block timmsanake up 10-20ms, network
latency about 30ms, and the remainder is due to lost metpdateets and queuing delay.
We conclude that our metadata update mechanism is effigi@ihtmost of the delay due
to unavoidable physical constraints. Furthermore, thiaydes sufficiently low such that

accurate data location is known to the scheduler by the toleup requests arrive.

8.3.6 Fairness

Finally, fairness using Jain’s measure [55] has been higisécto 1) in all cases.
This is in terms of data uploaded, work done that is of notealibenefit to a node, and
termination time, the actual node’s performance. This @y incentive for users.

With the Scheduler, for the simple topologies and blocks s&as uniformly over

0.999, meaning all nodes sent out almost the same numbeoakdlSimilarly, for recov-



157

ery blocks received it was over 0.999, in this case due tolthgagtermination constraints
and uniform loss behavior. Under nonuniform loss, by definitsome nodes will unfairly
load the system to recover their data, but the blocks sehstiilbe evenly allocated (i.e.,
no tit-for-tat behavior).

The more realistic core topology had fairness values cterdiy around 0.987, also
very high but somewhat lower than the simpler topology. Tiffer@nce was again due to
the structure in the core network; some nodes were closéret&theduler. This implies
the Scheduler data was consistently more fresh for thosesy@hd they would tend to
have slightly higher load.

Without a centralized scheduler, 65% of our tests showeddas over .99, 94%
over .95, and 100% were over .88 fair. In general, the smtiketransfer the greater the
chance that the random peer query will create an unfair wibwkation; the last 6% above
were transfers where peers uploaded less than 20 blocks/nod

In sum, these results coincide with our prior analysis ampett our claims as to

the system'’s performance under a variety of conditions.

8.4 Summary and Conclusion

This chapter has shown two specialized dynamic transfezdadimg algorithms
for traditional content distribution over hybrid satedliterrestrial networks. These are ex-
tensions to the techniques described elsewhere in thisrths®n which optimize for the
unique constraints encountered in such an environment.ake $hown that the approach
provides high bandwidth, low latency, and high fairnesséailistic environments.

Acknowledgements Material from this chapter, in part, appeared in “PeeRt®r
Error Recovery for Hybrid Satellite-Terrestrial NetwojkEric Weigle, Matti Hiltunen,
Rick Schlichting, Vinay A. Vaishampayan, and Andrew A. GhiProceedings of 6th IEEE
International Conference on Peer-to-Peer Computing (PZ®)6. The dissertation author
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Chapter 9: Related Work

This chapter discusses the body of work related to CEP. Wddlivinto four cat-
egories: classical distributed systems, grid systemgjayveetworks, and supplemental
technology. We highlight the differences between CEP ahdrotvork, showing that we
provide (1) a richer partial-file, many-to-many distritmrtimodel and (2) improved perfor-
mance.

Classical distributed systems includes work on paralleigoters and communica-
tion libraries. Grid systems include advances in parakgion, file systems, network sys-
tems, and high-speed file transfers. Overlay network schémetude content distribution
networks, caches, multicast meshes, and most current@gerer research. Supplemen-
tal technology includes work on erasure codes, high pedaoia transport protocols, and
other high performance hardware/software; these areeckiatthe sense that they enhance

the functionality of the CEP or other approaches, but addsethogonal issues.
9.1 Classical Distributed Systems

Distributed systems research historically focused ondaioation, agreement, and
fault tolerance [11, 34,61, 72,111]. Work with parallel pessing and parallel commu-
nication libraries is the most relevant, but their assuonsidiffer from CEP. We provide
weaker consistency semantics which favor high performénacesfers.

CEP is a write-once system. Once shared, data cannot safehanged. In our im-
plementation, this resolves to a last writer wins mecharibat we do not define the write
ordering. Replicated data is by definition identical. If issequire stronger consistency or
features such locks, they can be provided by other softwanse of disjoint segments in

the 64-bit CEP address space.
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9.1.1 Parallel Computers

Today’s high-end computers use Symmetric Multi-Proces$8MP) or threaded
processors, or both. Historically, systems were basecddrtauge parallel vector architec-
tures, hypercubes (such as nCUBE [36]) or fat-tree intereotion mechanisms. Recent
systems such as IBM Blue Gene [94] have revisited these g@mobl

Such systems have many-to-many communication propetiigstheir focus on
low latency and strict consistency leads to different sohg than CEP. Internally they use
simple data busses, flat or strictly hierarchical netwogksbal caches, and simple back-
off/retry algorithms. These suffice for a single, local, Hatency system. Unfortunately,
they do not scale to large distributed systems; finding ancguate data replica, optimiz-

ing the transfer, and dealing with WAN issues require tharnegues found in CEP.

9.1.2 Parallel Communication Libraries

Applications that are written for computational clustese yparallel communica-
tion libraries to simplify their programming. MPI, PVM, ardistributed shared memory
libraries are commonly used.

MPI, the Message Passing Interfac§/8] standard supports the notion of a com-
munication target, a communicator, which can be used by leatmn of nodes as the
target for a sequence of messages— an aggregate logicaSilonarly, it contains ways to
express shared memory and remote direct memory access (RB#&i&h allow implicit
many-to-many communication.

Many MPI features are implementation-dependent; the stahdoes not specify
their internal mechanisms. In particular, implementatigenerally require homogeneous
peers, do not provide transfer scheduling or wide-areapan, and provide only a low-
level interface. In contrast, CEP provides a global nameegeansfer scheduling, a high-

level interface, and other features.
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MPI and CEP are targeted toward slightly different envirenis; MPI for local,
low-latency intra-application communication, CEP foreintpplication communication
supporting larger transfers, larger networks, and moresp&ée two approaches are mu-
tually complementary. Conceivably the algorithms desatiin this dissertation could be
used to extend future MPI implementations.

PVM, theParallel Virtual Machine [109] project supports the creation of a virtual
computer comprised of multiple heterogeneous nodes ambries. It is intended to sup-
port less tightly coupled applications than MPI. While théWframework could naturally
support replication, transfer scheduling, or other ideasfCEP, these features do not ex-
ist. PVM instead focuses on distributed computation issnegsnagement, coordination,
etc., rather than communication problems.

Most applications choose MPI rather than PVM, due primaysupport from
hardware vendors and system integrators. The virtual maatoncept is still powerful,
however, and may have a revival with increased use of theuSldbolkit [84] and Dis-
tributed Virtual Computer [110].

Distributed shared memory (DSM) extends the virtual memory hierarchy to re-
mote nodes. This is a popular interface— nearly thirty agbxojects (including the MPI
standard) include DSM features. In some sense, CEP proaidedge-once DSM mecha-
nism via the linear byte range abstraction: any node cangeadite into that space. An
API to memory map byte ranges would make this concrete, Battito future work.

DSM systems tend to focus on latency over bandwidth, someetesttent of being
designed around data prefetching. One such system is LdRalnafduxtaView [66], in the
OptlPuter project. It includes many-to-many communicafieatures, but does only im-
plicit transfer scheduling. Instead, it includes a blo@séd prefetching mechanism target-
ing visualization applications. CEP supports heteroges@odes, full transfer scheduling,

and has a more general interface.
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Other popular DSM systems, such as TreadMarks [61], focuthercreation of
the memory for a virtual machine. They target memory coasist guarantees and simple
management functions. They do not work well over the wida,améth loss, heterogeneity,

or replication, nor do they do transfer scheduling.
9.2 Grid Systems

Grid systems are the natural evolution of local area clast€hey “coordinate re-
sources not subject to centralized control, using stanagreh, general purpose protocols
and interfaces, to deliver nontrivial qualities of servip&3]. This requires complex soft-
ware, which itself falls into several sub-categories: aggpion parallelization mechanisms,

parallel file systems, and file transfer mechanisms.

9.2.1 Application Parallelization Mechanisms

Running a single logical application on a cluster requirasajelization— often a
nontrivial task, if the application was designed for a sengtocessor. Toolkits to simplify
this job often include many-to-many communications medrag, and hence are relevant
to CEP. One such project@haos/MetaChaod71,125] from the University of Maryland.

MetaChaos is has similar motivations and includes an imterSimilar to CEP. In
particular, it includes a global linearization abstrasteEquivalent to the distributed byte
stream we developed, and a different but roughly equivad@tit Internally, the mecha-
nisms used are quite different.

In particular, it is another system focusing on low latenidyey use a ‘fuzzy’ time-
based segment matching scheme and a producer/consumemisachThis approach does
not support replication, nor missing segments, nor faduréhey do not use account for
dynamic feedback, node location, or node heterogeneitgy To not support third party
transfers. CEP supports all of these features.

Their linearization representation is based around ayryt supports arbitrary
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structures via a more expensive representation. CEP’'madteepresentation is less ef-
ficient for dense strided arrays, but more efficient for tHeteary case. They rely on an
all-to-all broadcast, which works poorly over the wide aaed is not scalable.

Finally, they do provide two features which we have left teufe work. These
include caching of transfer mappings and support for mieltgpogramming languages.

Currently, CEP does no caching and supports only C/C++.

9.2.2 Parallel File Storage and Transfer

Parallel transfers are commonly used to avoid bottlenedks physical media,
such as spinning disks. Some current parallel file systerddientransfer applications
support replication and heterogeneity; similar to CEP. By, they focus on locking,
data consistency, and small local-area networks. They aaagtimize in the same way a
content distribution system can— they have insufficientatiata. Block request streams do
not provide enough information on global supply and demawrdn with “hinting.” CEP
focuses on primarily static data, more complicated distidm demands, supports large-
scale distributed systems, and provides global transfiemgation.

The Parallel Virtual File System (PVFS) [21] is a simple striping-based mecha-
nism for storage of files across a number of cluster nodesciides on raw performance
does not support node heterogeneity, replication, or ddsures. Red Hat'&lobal File
System(GFS) [54] is similar but also supports replication, faolerance, and scalability
to 256 nodes. It does not support wide area transfers, peifdgelligent replica selection,
transfer scheduling, or scale to large systems.

The Lustre [27] file system is more powerful and extensible, includioge sup-
port for heterogeneous nodes, replication and replicactsete It does not yet support
strong transfer scheduling mechanisms or wide-area gensSimilarly, theGoogle File
System(also, confusingly, called “GFS”) [47] supports replicatiand large file transfers,

but with the same drawbacks. It also has problems with smaadsters (under 64MB).
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The Grid Datafarm (Gfarm) [112] parallel file system targets “petascale data-
intensive computing.” They plan to implement CEP-like sf&m scheduling mechanisms,
but currently support only homogeneous nodes, uniforrpistgi and socket-parallel trans-
fers. CEP supports much richer transfers, heterogeneityieaiger numbers of nodes.

GlobusGridFTP [4] is a user-level parallel file transfer application. I{pports
striped N-to-N whole-file transfers between clustered soglaove a shared file system,
targeting high speed in the wide area. GridFTP assumes hemeogs nodes and glob-
ally available data. It incorporates only static stripiryass nodes and parallel socKets
and does not tolerate failures. The Globus Reliable Filegpart (RFT) [92] mechanism
was developed for that purpose. In contrast, CEP suppasdigeneity in node and data

accessibility, partial-file distribution, and is nativdfult tolerant.
9.3 Overlay Networks

One way of viewing the structure of many-to-many transfersoi cast it as an
overlay network- a logical network built above the physioatiwork. Overlay nodes are our
peers and links represent their communication paths. Tssaction lets one apply well
known routing, group membership, and agreement protoodtahsmission problems.

This section discusses full overlay networks, which focagauting, and content
distribution networks, which focus on multicast and caghihese overlays all support
many-to-many communication patterns and some form of datefer, but do not provide

the performance or semantics of CEP.
9.3.1 Full Overlay Networks
Full overlay networks explicitly build a network structuaad base their operations

on it: searching is done via network algorithms, downloawgagate through the network

structure, and so forth. The most commonly known overlagdastributed Hash Ta-

1GridFTP plans to support variable-sized striping in theifet
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bles (DHTSs) such as Pastry [101], or Chord [107]. These providsedul abstraction for
distributed data management, but do not in themselves supposfers of large amounts
of data, nor provide a single point at which transfer optatian can occur. DHTs suf-
fer problems with high lookup latency, hot spots, and datesistency, although these are
actively studied. We discussed these issues in detail inddes.3.3.

KaZaA [59] builds upon a variant of the roughly tree-structuredtiFeack net-
work. Searches and results propagate up and down the trele, deta is downloaded
in parallel from nodes which respond. In contraShutella [97] is a weakly-structured,
decentralized overlay network, which uses flooding for gees. This limits scalability
but makes the network very fault tolerant. Such peer-ta-peerlay networks do not in-
clude mechanisms for global bandwidth control or optim@atas they target individual
node performance: many-to-one block downloads for whateréplication. CEP supports
many-to-many communication, global optimization, andip&file replication.

Freenet[26] uses key-based routing, caching, encryption, andrattechanisms.
It focuses on ways to allow users to anonymously publish atdere data, rather than
performance. Freenet is still under development so finduatian is impossible, however
given these design decisions we expect CEP will provide nheatter performance and

transfer scalability.

9.3.2 Content Distribution Networks

Content distribution networks provide a one-to-many comitation channel for
whole-file distribution of popular content. Common appiftex include building a mul-
ticast tree/mesh overlay or using special caches. Unfatély) such approaches do not
support CEP’s partial-file sharing or rich semantics, amicglly have problems with het-
erogeneity or node failure.

Scalable Reliable Multicast(SRM) [39] provides scalable one-to-many whole-file

transfer of static data. They use a simple timeout scheme fe@gdback and random-
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ized back-offs. SRM tolerates packet loss, provides a cstiggecontrol mechanism, and
supports various underlying topologies. They do not suppantial-file sharing or show
scalability as with CEP.

Bullet [64, 65] is a mesh-based multicast network; in effect it adass-links to
a multicast tree, allowing more block retrieval choices ammin for optimization. Bullet
works by striping requests across multiple nodes and teHoliting data randomly across
the mesh. While similar to the striping mechanisms in CEReBtocuses on TCP friend-
liness, special encoding, and state distribution probleslet provides good download
performance and inter-node fairness. Again, itis solvingpae limited problem than CEP:
only whole file replication.

Commercial content distribution networks suchfsmai [3] typically employ a
set of well-connected machines distributed across thear&tw hese nodes replicate, typ-
ically via multicast, and cache the source data. Clientel@a¥-1 download relationship
with the closest cache. Akamai uses over “14,000 serversl®OInetworks in 65+ coun-
tries” for this purpose. Th®pen Media Network [81] is a similar CDN for distribution
of free digital video. It useKontiki [63], a “secure, commercial alternative to BitTorrent”
as the underlying distribution mechanism. Such networ&sarengineering feat, but CEP
provides good transfer performance and more powerfulgdite semantics without this
infrastructure.

Coral [45] is a CDN constructed from a set of caches and a name seData
is published to the CDN implicitly. Users request a spegiatlangled URL, which is
resolved by the Coral name servers and forwarded to a locall cache. That cache uses a
“Sloppy DHT” mechanism to efficiently retrieve a copy of thestted data and forward it to
the client. Coral’s sloppy DHT searches in concentric ‘sim@ughly correlated with node
location; this better exploits node locality, reduces loadhe original server, and improves

performance. Structurally, this architecture of centedimetadata server (Coral DNS) and
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distributed data transmission (Caches) is similar to CiEmdementation. However, Coral
again targets whole-file content distribution rather thiaa ich partial-file transfers and
global optimization supported by CEP.

Lastly, BitTorrent [29] is used for content distribution, but structurally ssemple
peer lists and heuristics rather than creating a full oyenketwork. We have discussed

BitTorrent and its limitations throughout this disserati starting in Section 1.1.3.
9.4 Supplemental Technology

This section discusses supplemental technology usefanmbaation with CEP or
might easily be confused with features found in CEP. Thitughes work on high perfor-
mance point-to-point transfer protocols, and other higiesiphardware/software. Each of
these provides features which CEP can exploit. While dsounsof erasure or network

coding techniques would fit here, we have already coverddrhgerial in Section 4.4.

9.4.1 High-Speed Transport Protocols

TCP, originally designed in the 1970s, has problems on tedastworks. These
include poor performance on high-latency paths, those @viblss traffic, those with high
loss (e.g. wireless) or those with large bandwiddelay products. There is a variety of
work seeking to improve transfer performance with TCP vasar reliable UDP proto-
cols. As CEP needs only a reliable in-order transport, iteguloit this work to improve
performance.

The FAST [56] protocol is a popular rate-based variant extendingkwar TCP
Vegas [15]. It provides stable, high bandwidth transferkigh bandwidth-delay networks.
HS-TCP [41] is another variant which effectively does slow-staralh times when the
TCP congestion window is large. This maintains performametdigh bandwidth-delay
networks, but may induce loss and network instability.

TheUDP-based Data Transferprotocol (UDT) [49], is a rate-based protocol over
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UDP which offers high performance and smooth rate transstiorhis is good for fairly
static networks but may have issues in highly dynamic cordins.

Reliable Blast UDP(RBUDP) [52], is a simple mechanism for transmitting large
amounts of data (a blast) over UDP and then recovering lodseses epochs and rate
control to minimize metadata transmissions. This aggvedseéhavior performs well on
private/reserved links, but with competing traffic it willquiuce congestion.

TheGroup transport Protocol (GTP) [126], is a rate-based UDP scheme for fairly
allocating traffic across concurrent downloads. It is a mngne mechanism where each
parallel stream is allocated min-max fair bandwidth. Noregtion need be aware of any
other, and performance is smooth and quickly adapting. Tineiot version of CEP can
utilize GTP as an underlying transport when such fairneagisal.

Lastly, Globus XIO is a communication library meant to provide a simple open-
read-write-close interface on top of a variety of differamiderlying protocols— such as
those discussed in this section. CEP supports an XIO netstadk, and hence can exploit

any protocol that provides an XIO interface (See Chapter 6).

9.4.2 High-speed Hardware/Software Libraries

Lastly, some high-speed hardware and software both mesSv@eP and includes
similar functionality. Hardware vendors provide librari®r message passing (e.g. MPI),
rDMA, synchronization, etc. which enables large-scale yAaamany transfers. Simi-
larly, many networks include multi-protocol label switngior optical links with switch-
able wavelengths; software to schedule these links is ainal CEP.

Quadrics [88] is the “dominant interconnect technology in the waosldop 10
supercomputers” and provides provides rDMA and other featas mentioned above.
Myrinet [13] is another popular cluster interconnect which allowsgng arbitrary length
messages (similar to CEP’s segments) between nodes. Naithvede transfer scheduling,

fault tolerance, or wide-area transfers like CEP.
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Infiniband [22] is the newest high-performance interconnect, desigade a se-
rial, switched network. The algorithms for setting up thétskhes and routing are similar to
ideas in CEP and include parallelism despite the seriagdesnfiniband does not perform
transfer scheduling or work in the wide area, although tieveork in this direction.

Cheetah[118], the Circuit-switched High-speed End-to-End Tramsp\rcHitec-
ture, preallocates point-to-point circuits to supporgy&file transfers. Derived from work
with SONET and network engineering, it provides weak schiedwand reservation fea-
tures. It does does not support many-to-many communicati@any other CEP feature.
BigBangWidth [75] similarly provides hardware and software to suppotbomatic detec-
tion and offload of large TCP flows onto an optical circuit. Cé&dh efficiently use the

dedicated circuits created by such software to improvesteauperformance.
9.5 Summary and Conclusion

This chapter has shown the work most similar or otherwisevegit to the ideas
developed in this dissertation. We have included work thatally seems to provide a
competing approach, but is actually complementary. We ksaesvn that CEP provides
a richer many-to-many partial-file distribution model arettbr performance than related

work.



Chapter 10: Conclusion

This chapter provides a summary of the claims we have madedgrissertation:
high resolution simplicity/flexibility, high performanceefficiency scalability, robustness
andgenerality We discuss each claim and the evidence provided in suppibride show
that we surpass common software such as BitTorrent, Ap&iH€s, or GridFTP on these

metrics, and give our final conclusions.
10.1 Summary of Claims and Evidence

We claimed CEP providdsigh resolution: nodes can transfer any arbitrary set of
bytes, not necessarily in blocks, not necessarily a whate fit the core of our transfer
scheduling algorithms is a graph-based canonical fgr@J) using byte ranges. All the
algorithms developed in Chapter 3 and 4 accept arbitragy clabstraints in this way. We
have also shown good performance under different leveldhafisg— from whole files
down to disjoint portions of a file5(7.10.1). In contrast, other techniques provide weaker
whole-file § 9.3.2) or block-based transfers4.2.2).

We claimed CEP isimple/flexible good interfaces exist for describing user and
system constraints. We described a variety of straightdicdwAPIs tailored for different
purposes{5.2). The low-level { 5.2.1), file transfer{ 5.2.2), sockets§(5.2.3), weakly-
constrained transfeg (5.2.4), and block interface 6.2.5) APIs are each appropriate for
a specific environment. Similarly, we provide a libragyg.2) with few dependencies that
makes this functionality available to user programs. CEB hhs few “knobs” and appro-
priately tuned default values, compared to the variety pirtg parameters in, e.g., BitTor-
rent § 7.9). Other flexibility claims are addressed in our discussf system generality,

below.

169
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We claimed CEP haigh performance: transfers converge to bandwidth and la-
tency near hardware/user limits. We can compose nodes tevadhigh bandwidth, over
30Gbps on local clusterg (7.3.1). We provide 4-8 higher bandwidth than traditional
content distributionq 7.10.1), with high inter-node fairness; .99 using Jain’sasuze §
7.8). The system has an %Qower latency than other approach&s7(10.2), particularly
those using nonsystematic erasure coges4).

In general, Chapter 4 shows that our algorithms executallsg@and Chapter 7
shows that these schedules perform well. In particular,gileedy algorithm output is
equivalent to the the known optimal LP output for these emnnents§ 7.3.1, 7.6.1, 7.6.2).
The system has a high performance desiyb.8, 6.4) and implementation (Chapter 6),
particularly the core message passing protogal.5.3); with only about 4% overheaf (
7.3.1). Lastly, for the special case of hybrid networks (@bBa8) we have shown high
bandwidth, within 1% of ideal (8.3.2), low latency, with 998fblocks recovered within 3
satellite RTTs (8.3.3), and high fairness, above .999 u3ang's measure (8.3.6).

We claimed CEP ifficient: computation time is worst-case(n?), commonly
O(n log n), and query response 0(1). Sections 3.1-3.3 show conversion to canonical
input form commonly takes tim@(n log n). In the worst case it may take tind&n?), but
limits on segment size bound it&(n log n). This is an unavoidable tradeoff between gen-
erality and performance. Chapter 4 showed several algositio efficiently solve transfer
scheduling problems. The core greedy algoritf@.8) runs in time linear in the number of
edges given canonical-form input, and nodes’ queries cdrahdled inO(1). In contrast,

a problem which takes less than a second for the greedy @idgotd solve would take over
23 hours for approaches using linear programming.4). While some sub-problems are
NP-complete, we can approximate them arbitrarily well instrcases§(3.4). Finally, on
hybrid satellite/terrestrial networks, we achieve 75% ettdr transfer efficiency;(8.3.1,

8.3.4) and fast metadata updatg83.5).
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We claimed CEP iscalable the system works for transfers involving tens of thou-
sands of nodes and 10Gbps+ links. Our efficiency resultseabloow that the core system
algorithms are efficient enough to run for large problemsizke greedy algorithm can
schedule a transfer of 100,000 nodes in less than 1 secéntd4)(We have shown net-
work scalability to over 100,000 requests/seconds b@tter than DHT implementations,
40x better than Apache, and that the memory required was relalgsniass than 256MB
(§ 7.5). We have achieved over 30Gbps on real local clustersy dfgbps in simulation
(§ 7.3.1), and over 10Gbps in the wide aré&/(3.2). Finally, we showed that the hybrid
network approach scales in terms of file sizes and to thossafmibdes { 8.3.2).

We claimed CEP isobust: failures which do not eliminate data required by another
peer are tolerated. We have shown that we can tolerate retl server failures with only
a 2% performance penalty 7.7.1), and inaccurate metadata with negligible perfocean
penalty ¢ 7.7.2). We perform flawlessly in environments where 20% a¢T&rent peers
fail (§ 7.10.3). Our regression testing framewogk6(4) enhances reliability in practice,
and we have shown how techniques such as erasure codinglmukkd to enhance data
robustness§(4.4). For hybrid satellite/terrestrial networks, we halsmahown tolerance
of loss rates as high as 10%§.3.1).

Lastly, we claimed CEP igenerat we produce desirable results in a wide variety
of environments and user constraints. We have shown thawexploit nodes’ capacity
differing by an order of magnitudg 7.6.1) and data layout constraints varied from disjoint
to total overlap § 7.6.2); achieving 4-8 BitTorrent’'s bandwidth for low and high sharing
configurationsq 7.10.1). We achieve bandwidth near hardware capacity im ligh per-
formance and peer-to-peer configurations (Chapter 7) dsawdlybrid satellite/terrestrial
networks (Chapter 8). We support stand-alone and appicatitegration § 6.2.2), with
APIs supporting different use modek§.2); other approaches target a single API or use

model (Chapter 9). We support a variety of different undadyprotocols, including TCP,
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GTP, and those implemented using the XIO framewdrk.G). We support a variety of
hardware; CEP has been tested on x86, Opteron, and Powerétthes§ 6.4.1).

Returning to our main thesis statement: fully utilizing higpeed links§ 2.2.1,
7.3.1) for large, complex transfer§ 2.2.2, 7.6.2) requires metadata management infras-
tructure § 5.3) and simultaneous transfers between multiple noglés3(1). Compos-
ite endpoints using hybrid centralized/decentralizeddfar scheduling (Chapter 4), via
graph-structured algorithm§ 8.3) and feedback heuristids4.5), provide a general, high-

performance and robust approach (see above).
10.2 Future Work

While we have met our goals— performance and a rich transbeiefn all research
exposes further interesting questions. This section dgEsiways in which this work could
be extended or improved, and potential future researclegopi

First, considetransfer extensions There are a wealth of possible techniques that
have not been deeply explored. These include prefetchind) as that done by Lam-
daRam [66], data compression with well-known algorithnughsas LZW [123] or block-
sorting with Huffman coding [17, 103]. Other techniqueslilie transfer of deltas for
mutable data, cross-flow data caching, or weakening of tester semantics to allow
“super nodes” to serve data in which they were not otherwisaésted.

Each of these techniques has the potential to dramaticaflyave performance for
certain types of applications, but how to apply them effedyi in a distributed transfer
system such as CEP is an open question. Do prefetching thigaridesigned for disks
scale to the wide-area? How large must data transfers beamdlbw must the network
be to justify compression? How best to encode compressadsdahat portions of it can
be forwarded independently, as may be necessary givenausub-file transfer model?

Is avoiding cross-constraint dependencies (see page 6bpkfA How would this impact
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the use of erasure coding? What about integrating a multicsegmesh for distribution of
highly shared sub-file ranges? What are the trade-offs &ipgr nodes; when is the extra
copy worthwhile? Can they be used to provide TCP connecpbttisg [98] functionality?

Second, considesystem interaction At a high level a CEP transfer may look a lot
like a denial of service attack. While CEP provides TCPHass at the transport level, its
scheduling mechanisms do not guarantee fairmeaggregatavhen competing with other
traffic. Individual transport flows may exhibit complex dyni@ interactions on peculiar
networks: CEP works well in all the environments we haveesbut competitive and
malicious environments may show other behavior.

Can we guarantee stability or fairness? How does the systimact with multiple
users competing maliciously? What happens when multiplesyort protocols are being
used concurrently, e.g. TCP, GTP, and RBUDP? Can CEP’sradmistnechanism be used
to ensure proper network behavior? Can it give qualityesfsse guarantees itself or be
integrated with systems providing QoS functionality? Ceaaffic be tunnelled through a
constrained CEP transfer as a network engineering tool? c@zss-CEP-transfer com-
munication be used to provide strong semantics (fairnes$pqmnance) across composite
endpoints? What about structured or hierarchical aggiagat composite endpoints into
increasingly complex workflow-like graphs? Can the aldwomic results presented here be
extended to provide stronger guarantees under these wasdk@mnptions? While we have
evidence hinting at answers, these remain open questions.

Finally, the question ddistribution — one we had hoped to address in greater depth.
Can partial-content transfer tasks be distributed yetapae the generality and perfor-
mance forpartial content distribution? How do we efficiently perform distribd sub-file
matching without using blocks? Can we do so in such a way tleajain scalability or in-
crease robustness? Current mechanisms such as primé&xypbarcclustering with voting

(e.g. Paxos [70]) fall back to using a single node (the pryar distinguished learner) for
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performance reasons. CEP has tried to provide a distrilitdedfer abstraction similar to
the distributed hash table abstraction; is there a bett@enying model or system design

to accomplish this?
10.3 Final Remarks

This dissertation has described the interrelated probktperienced when trying
to transfer data at high speeds with a rich interface. We hddeessed problems with ca-
pacity: achieving scalability, high bandwidth, and lowelaty; problems with complexity:
achieving a simple, flexible interface without too many usesbs; problems with crashes:
robustly surviving system faults, errors, and inaccurattadand done so in a comprehen-
sive, general fashion. Our analysis and evaluation showGQE#® successfully addresses
each of these problems and provides all of the desired fesatur

The core of this dissertation is the set of graph-structtraaisfer scheduling al-
gorithms and their implementation. We have provided a dgerdefinition of this prob-
lem and its complexity, as well as several solutions to it. Nafee shown efficient, high-
performance transfer schedulers; analyzed from a theatgterspective with implemen-
tations tested empirically. Comparison with related warkyBitTorrent) shows great per-
formance improvement.

The ideas in this work, implemented in CEP, provide a medmarallowing mul-
tiple processes to join in a single logical connection. Ysgrecify constraints at a high
level through a simple, flexible interface, and the systems the desired high performance
transfers. CEP allows one to terminate disproportiondéefye network transfers on rela-
tively weak nodes, efficiently utilize heterogeneous hanan an arbitrary configurations,

and gracefully tolerate errors and failures.
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