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This dissertation introduces the Composite Endpoint Protocol (CEP) which solves

two related problems: large-scale high performance transfers, and partial content distribu-

tion. Achieving high performance in large-scale networks,with speeds above 1Gbps and

latency up to 200ms, is difficult; individual machines can not fully exploit overall system

capacity, and existing protocols (e.g. TCP) have well-known problems. Similarly, while

whole-file content distribution is well studied, when individual clients each desiredifferent

parts of a file new techniques are required. The core algorithms and abstractions needed to

exploit large scale networks or provide sub-file distribution semantics do not exist.

The underlying problem is fundamental:transfer scheduling. Given a set of hetero-

geneous nodes whichhavedata and nodes whichneedsome subset of that data, perform
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transfers to best satisfy all nodes’ demands. No strong semantics are implied here; subsets

of this data may be replicated, missing, not fall on block/word boundaries, etc. The solution

is a transfer schedulerwhich implicitly or explicitly specifieswhich nodes transferwhat

data andwhen.

CEP solves the transfer scheduling problem using minimal centralization for meta-

data/scheduling and infrastructure for fully distributeddata transmission. Hybrid central-

ized/distributed algorithms and heuristics dynamically generate the most desirable transfers

as system state evolves. In this way, CEP enables both large-scale high performance trans-

fers and provides rich partial content distribution semantics. The dissertation includes the

following contributions:

1. An efficientmechanism for multiple heterogeneous nodes/processes (a composite

endpoint) to take part in a single logical connection, wherecore algorithms run in

O(n log n) for the common case;

2. Simple, flexibleinterfaces for describing data layouts and composite endpoint com-

munication, backed by ageneralmathematical abstraction;

3. Multiple transfer scheduling algorithms which producehigh performance(over 10

Gbps),high resolution, and when possible provablyoptimal output, with detailed

analysis of each;

4. A scalableandrobustcomposite endpoint architecture which supports tens of thou-

sands of participants and transparently survives server failures.

We describe the theoretical and real-world underpinnings of this problem, including

in-depth analysis of the algorithms involved, discuss two implementations of the Composite

Endpoint Protocol, as provide an empirical evaluation showing the benefits of CEP under a

variety of conditions: over10× faster than Apache, BitTorrent, DHTs, or uniform striping

techniques.
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Chapter 1: Introduction

This dissertation introduces techniques enabling (1)large-scale, high performance

transfers, with (2) partial content distribution semantics. Large scale means transfers in-

volving up to tens of thousands of participants. High performance means close to underly-

ing hardware limitations, providing tens of gigabits of bandwidth with millisecond latency

in LAN environments. Partial content distribution means that each participant may supply

or demand arbitrary parts of a logical data set.

In other words, the Composite Endpoint Protocol (CEP) provides a rich model al-

lowing thousands of machines to specify their individual desires, which CEP then effi-

ciently satisfies. Providing any one of these features is itself difficult problem. Providing

all of them together is even more difficult; no existing approach does so.

First, “large scale” entails coordinating large numbers ofmachines in a distributed

system, where machines may have heterogeneous hardware, network connectivity, be in

different administrative domains, etc. Some may even fail during the transfer. We must de-

terminecapacityof individual transfer participants anddetect failures. Existing approaches

have problems exploiting heterogeneity, tolerating failures, or with scalability.

Second, “partial content distribution” entails allowing each individual machine to

supply or demand any arbitrary set of bytes; not necessarilyfalling on block/word bound-

aries, nor necessarily in a contiguous range. Arbitrary subsets of data may be replicated

on multiple machines, and there may be no machines serving some data. Machines may

simultaneously serve some data and want other data. We must determine whohaswhat

data, whowantswhat data. Existing approaches do not capture these rich semantics; data

is instead assumed to be in fixed-size blocks and all machinesare assumed to want the same

data. They do not provide the infrastructure necessary to collect this information.

1
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Third, “high performance” in such a large, complex system entails a similarly large,

complex optimization problem. We call this thetransfer scheduling problem. Given infor-

mation on system state– who has/wants which data and capacities, as above– the system

must determine how to satisfy all participants. That means determining atransfer schedule:

whocommunicates,whatdata they send, and at whatrate, such that everyone get exactly

what they want as quickly as possible. Existing approaches do not attempt to optimize

globally. Instead they focus on individual transfer participants and provide minimal global

functionality.

Transfer scheduling is a fundamental distributed systems problem encountered in

a variety of situations. Any large scale data transfer, be itphysics, biology, or geology

data sets, ISO images for Linux distributions, off-site repositories for system backups, or

media/content distribution networks (CDNs), etc., is solving an instance of the transfer

scheduling problem. Peer-to-peer file sharing is a distributed instance of the problem, typi-

cally optimizing for robustness. Distributed file systems and distributed memory implicitly

solve instances of the transfer scheduling problem, providing block or whole-file semantics.

A more concrete example is cluster-to-cluster file transfer, which initially motivated

this work. Here, individual cluster nodes’ capacity (e.g. 1Gbps Ethernet links) is small

relative to total system capacity. To utilize high bandwidth (e.g. 10Gbps) links we must

exploit multiple nodes. This means determining which nodescommunicate, what data they

send, and at what rates: a straightforward instance of the transfer scheduling problem.

Since total system performance is more important than the work individual nodes perform,

there is flexibility to optimize by, e.g., placing load on more powerful, lightly loaded, or

well-connected nodes. Section 2.2 discusses these examples in more depth.

While prior work focused on special cases, CEP solves the most general form of

the transfer scheduling problem. We capture a more complex set of transfer constraints,

providing richer partial-content transfer semantics. We work on a larger range of systems,
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including transfers on heterogeneous nodes and transfers with many participants. We pro-

vide higher performance in many environments, achieving higher bandwidth, lower latency,

and more robust transfers.

Specifically, we claim that CEP, the Composite Endpoint Protocol, provides anef-

ficientmechanism for multiple heterogeneous nodes (a composite endpoint) to take part in

a single logical connection; hassimple, flexibleinterfaces for describing data layouts and

communication constraints, backed by ageneralmathematical abstraction; provides mul-

tiple transfer scheduling algorithms which producehigh performance, high resolution, and

(when possible) provably optimal output; and has ascalableandrobustarchitecture which

supports large numbers of participants and tolerates failures.

We achieve these features using graph-structured transferscheduling algorithms,

heuristics, and partially centralized metadata management infrastructure. Transfer schedul-

ing is an optimization optimization problem which can be attacked with linear program-

ming, greedy algorithms, implicit scheduling, or other techniques; together these form the

core of our approach. Similarly, efficient detection, representation, and management of

metadata is necessary to enable transfers with complicatedrequirements.

The rest of this chapter discusses high-level motivating factors for this work, our

new contributions, and gives the actual thesis statement. We conclude with an outline of

the dissertation.

1.1 Motivation

CEP targets high performance and rich transfer semantics. Motivating the former

are historical trends in hardware and software- these have have led to a world where ca-

pacity is available but underutilized. User demands and advances in distributed systems

motivate the latter. This section discusses these trends and relevant background.
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1.1.1 Exploiting Hardware Trends

Over the last several decades, computer technology has changed dramatically. To-

day we are entering a world where such incredible amounts of core bandwidth are poten-

tially available that end node capacity is a bottleneck. This is even true given the oft-cited

Moore’s Law [79], which as commonly phrased states that computational power doubles

every 18 months. A similar law exists for network capacity [28], but network speeds are

growing even faster than computational speeds [105].

Networking technology is shifting from electric to opticalsignals, which provide

two main benefits. First, optical fiber can carry high speed signals much farther without re-

peaters. Second, multiple wavelengths of light can be utilized on a single fiber with almost

no interference. Thus both signal fidelity and density are very high. In practical terms,

6.4Tbps/fiber was demonstrated by NEC in the year 2000 using 160 channels at 40Gbps

each [33]; and more recently over 1000 wavelengths per fiber has been demonstrated [58].

That leads to a potential capacity of over 40 Terabits per second,per fiber. This kind of

capability has driven large companies to snap up spare (“dark”) fiber [51].

The problem in this environment is that end nodes run at much slower speeds–

typically less than 1Gbps– a fraction of available bandwidth. To exploit available capacity,

we must use nodes in parallel. Beowulf clusters [16, 102] areattractive for this purpose:

built from commodity components, they provide low cost, scalable infrastructure. They are

commonly used for physics simulations [24], biology/bioinformatics [12,80], data mining,

and even supercomputing [115]– all tasks that may have largescale transfer requirements.

A final hardware problem is heterogeneity. Even in “homogeneous” clusters, nodes

have heterogeneous features due to failures, transient load, wiring limitations, or config-

uration issues. Given rapid change in technology, nodes purchased even a few months

apart may differ in CPU speeds, memory, etc. The problem of heterogeneity is exacerbated

when including peers on the Internet- nodes with DSL or cableaccess are slower by or-
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ders of magnitude. While hardware technology and physical infrastructure exists, transfer

scheduling software to effectively utilize complex heterogeneous environments does not.

1.1.2 Providing Rich Software Semantics

Systems with multiple nodes have a variety of communicationoptions- the com-

bination of which nodes communicate, what they send, how fast they send provides a

large space in which to make decisions. While prior work makes a variety of simplify-

ing assumptions to manage this complexity, we show it is possible to capture arbitrary user

constraints and act upon them efficiently. This allows us to provide a unified framework

encompassing a variety of use models with a single scheduling and optimization engine.

We support communication patterns that are impossible to doefficiently in block-based

systems; for example handling combinations of small, oddly-sized pieces and bulk data in

a single transfer.

Put another way, we capture and solve a superset of the problems prior work can

even represent. This includes problems such as striped file transfer, where peers each send

disjoint portions of a file, distributed editing, where individual peers work on small pieces

of a file, or data scatter/gather, where some peers have the entire file while others need

only portions of it, or vice versa. Our unified framework alsomeans that improvements to

the underlying algorithms or software improve performanceacross all environments. Our

simple interfaces (see Section 5.2) enable users to exploitthese features without concern

for the underlying model.

Another important example is traditional whole-file content distribution– “get iden-

tical copies of a data set to every machine.” There is a large body of work focusing on such

replication [3,29,65,81]. We support this and also let users specify arbitrary data demand/-

constraints, not necessarily a whole file or block-aligned pieces of one. This captures a

wider variety of situations. It provides new challenges, such as byte-range-based metadata

management, and optimization opportunities, such as constraint structure we can exploit.
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The distinguishing feature between use models is the level of sharing. For tra-

ditional content distribution, all peers want thesamedata: they share demand. For par-

tial content distribution, peers may each desiredifferentdata: lower sharing of demand.

Low-sharing environments have limited opportunities to exploit peer-to-peer transfers. To

achieve good performance it is critical to efficiently (1) discover data supply/demand con-

straints, and (2) allocate capacity satisfying peers’ differing constraints.

1.1.3 Limitations of Current Approaches

Given the differences between traditional whole-file and partial content distribution,

traditional techniques do not provide a good solution. In lower sharing environments peers

at best download useless extra data; the smaller the fraction of data desired, the worse the

overhead. At worst, they fail entirely: nodes are unable to retrieve desired data (see Section

7.10.3). Traditional distribution approaches are mostly orthogonal to this work.

Peer-to-peer networks provide the most common example of contemporary dis-

tributed systems where multiple peers cooperatively transfer data. Examples include Bit-

Torrent [29], KaZaA [59], LionShare [74], or the LogisticalFilesystem [10]; BitTorrent is

the most popular. Peers in such systems can downloadblocksfrom multiple peers, eventu-

ally reconstructing awhole file. This differs from the byte range and partial file semantics

we offer. Their metadata management features can not support partial content distribution–

information on rare data does not “trickle through” the network, leading to partitions and

inaccessible data. We show this experimentally in Section 7.10.3 (page 137).

BitTorrent [29], the most well-known and popular tool for large peer-to-peer down-

loads, is worth discussing further. BitTorrent supports only whole-file traditional content

distribution. It uses a centralized “tracker” node to maintain global information on (1) par-

ticipating peers and (2) a rough measure of their progress. When a new peer wishes to

download a file, it asks the tracker for a list of existing peers who have or are downloading

that file. Peers trade information on their progress pairwise, and each peer uses heuris-
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tics to weight block upload/download from others in parallel. BitTorrent does not support

downloading only portions of a file. It is also slower and has higher latency than CEP. We

discuss this further in Section 6.2.2 and the second half of Chapter 7.

Work on Distributed Hash Tables (DHTs) and overlay networksis also a popular

research area. There is a large body of literature and implementations such as Pastry [23]

or Chord [108] are available. These have been used as building blocks for peer-to-peer

metadata management or file transfer mechanisms. But again,these systems support only

block-based transfers and whole-file semantics. We discussuse of and problems with DHTs

in more detail in later sections; e.g. 5.3.3 (page 90) and 7.5.3 (page 118).

Multicast trees/meshes [64,65], erasure coding [18,19,76], and network coding [73]

techniques are also popular. They similarly support only block-based whole-file transfers.

The whole-file assumption (in multicast trees, children totally share demand) and inter-

block dependencies (in erasure codes, multi-block encoding), mean these can not be used

in partial-sharing environments. We discuss this further in Section 4.4 (page 64).

Our final example comes from the high performance computing community, where

data striping is commonly used to improve performance. Tools such as GridFTP [4] or

RFT [92] and messaging systems such as MPI or PVM [6, 78, 109] allow peers to col-

lectively transfer data. These systems require uniform/homogeneous nodes, are limited to

simple data constraints (i.e. striping) and have limited fault tolerance. CEP supports a more

general environment. We show this experimentally in Section 7.6.1 (page 120).

In summary, recent trends in hardware performance have created an opportunity

for very high performance distributed transfers. Current block-based whole-file transfer

approaches can neither provide the rich semantic features desired nor offer high perfor-

mance in widely varied environments. Naive work-arounds applying existing technology–

such as creating a separate CDN for each subset of desired data– perform poorly and have

unacceptable overhead. This and other related work is covered in more detail in Chapter 9.
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1.2 Thesis Statement and Contributions

Here we provide the thesis statement and a brief explanation. Chapter 2 discusses

the problem in detail, as well as clearly defining the solution requirements.

1.2.1 Thesis Statement

Fully utilizing high speed links for large, complex transfers requires metadata man-

agement infrastructure and simultaneous transfers between multiple nodes. Composite

endpoints using hybrid centralized/decentralized transfer scheduling, via graph-structured

algorithms and feedback heuristics, provide a general, high-performance and robust ap-

proach.

Subsidiary theses required to substantiate this thesis include:

• Generality: produce desirable results in a wide variety of environments and user

constraints. This also requires:

• high resolution: nodes can transfer any arbitrary set of bytes, not necessarily in

blocks, not necessarily a whole file, and

• simplicity/flexibility: good interfaces exist for describing user and system constraints.

• High performance: converge to bandwidth and latency near hardware/data limita-

tions. This also requires:

• efficiency: computation time amortized over all nodes commonlyO(n log n), worst-

caseO(n2), with query response inO(1); and

• scalability: system works for transfers involving tens of thousands of nodes and

10Gbps+ links.

• Robustness: failures which do not totally eliminate desired data are tolerated.
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1.2.2 Dissertation Contributions

CEP, the Composite Endpoint Protocol, provides all these features. It composes

up to tens of thousands of senders and receivers by way of a setof simple, flexible user

APIs. We provide rigorous analysis of the problem and algorithms involved, as well as

experiments to show functionality in a variety of environments and optimality under cer-

tain conditions. Our implementation is efficient, high speed, and tolerates server failures.

It allows nodes of any speed with any subset of data to participate in the transfer. This

dissertation provides the following contributions to the field:

• Rigorous mathematical definition of the transfer scheduling problem, also known as

the the partial content distribution problem.

• In-depth analysis of the transfer scheduling problem, including complexity and vari-

ous sub-problems, and development of a useful graph-structured canonical form.

• A set of new algorithms which (1) efficiently solve the transfer scheduling problem–

commonlyO(n log n), worst-caseO(n2), with query response inO(1) and (2) pro-

duce high performance transfer schedules– typically equivalent to an optimal linear

programming solution– that exploit heterogeneous node andnetwork performance.

• A set of simple, flexible interfaces for integration with various types of applications,

and which allow expression of arbitrary data layout and nodeconstraints.

• Multiple implementations of CEP using different underlying network stacks and pro-

tocols, which have been used in real world situations.

• Side-by-side comparisons with other approaches showing the features and perfor-

mance of CEP, improving bandwidth/latency by an order of magnitude as compared

to BitTorrent: over 8× higher bandwidth for low-sharing configurations, 4× higher

bandwidth for high-sharing configurations, and1
10

th
the latency for small transfers.
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• Empirical evaluation showing the above features in a variety of environments: (1)

functionality– composition of hundreds of real-world nodes and tens of thousands in

simulation, (2) high performance– achieving over 30Gbps inthe local area, 10Gbps

in the WAN, and 1Tbps in simulation, and (3) fault tolerance–surviving failure of1
2

the servers with only a 2% decrease in performance.

1.3 Dissertation Outline

This chapter covered the motivating factors for the dissertation, the thesis statement,

and our claims. This section gives an overview of the remainder of this document.

Chapter 2 discusses the problem in more detail. We walk through several increas-

ingly complex use cases, outline the desired solutions, andmore rigorously define the terms

and sub-problems discussed at a high level in this chapter.

Chapter 3 provides analysis of the transfer scheduling problem. We cover reduc-

tions and simplifications to the general transfer scheduling problem which are worthwhile

in real-world environments, conversion to the canonical graph form of the problem, and

discuss which forms of the problem can be solved efficiently and which are NP-complete.

Chapter 4 discusses the main scheduling algorithms we develop in this work. While

the prior chapter provided basic analysis and background material relevant to all environ-

ments, this chapter covers specific algorithms for generating transfer schedules. We cover

three primary algorithms, extensions to them, and discuss their various performance char-

acteristics. Together with Chapter 3, this addresses our claims of high resolution, efficiency,

scalability, and high performance from a theoretical perspective.

Chapter 5 discusses the system design. It covers the “glue” which combines the

scheduling algorithms, network communication, and other pieces into a cohesive whole.

This includes the state machine for control of the protocol,several core algorithms not

directly related to scheduling, and the various application programmer interfaces (APIs)
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used to interact with the system. This chapter addresses ourclaims of simplicity/flexibility

and robustness.

Chapter 6 discusses the two main implementations of CEP and their variants. We

include information on the network infrastructure, Unix sockets [106] and Globus XIO [5]

stacks, and relevant engineering issues encountered in development.

Chapter 7 is our core empirical evaluation. In various real world, emulated, and

simulated environments, we determine the performance of the system under the criteria

discussed above. It covers the test configurations, and provides results supporting our

claims of high performance, efficiency, scalability, and robustness from an experimental

perspective.

Chapter 8 departs slightly from the rest of this document to look at a specific con-

tent distribution problem– traditional content distribution on hybrid satellite/terrestrial net-

works. We show that a simple transfer scheduling mechanism can provide excellent per-

formance in this special case. This chapter speaks mainly tothe generality of the transfer

scheduling approach, but also shows efficient, scalable, robust and fair performance in this

special-case environment.

Finally, Chapter 10 summarizes the claims and evidence in this dissertation, as well

as providing some concluding remarks and discussion of future work.



Chapter 2: The Transfer Scheduling Problem

This chapter discusses the central problem of the dissertation: transfer scheduling.

We show that the problem is interesting, difficult, and has valable open research questions.

We provide an overview of the issues in many-to-many communication, make these is-

sues concrete with several use cases, and then show how to effectively represent problem

constraints. We conclude with a more rigorous definition of the underlying computational

problem, which we solve in Chapters 3 and 4.

We will use the following terminology: anoderefers to a physical machine, while

a peerrefers to the machine and any associated software. We typically have only one peer

per node, so the two are roughly interchangeable. Aclient is a peer that wants data, while

a serveris a peer that provides data. A client peer may simultaneously be a server, or vice

versa. Ascheduleris a peer or set of peers which determines a transfer schedulefor the

global transfer. Typically the scheduler is also ametadata server, which collects and serves

information on data location, host capacity, and system performance.

2.1 Overview

Transfer scheduling solves a generalization of the contentdistribution problem–

what we call the partial content distribution problem. Given a logical set of data and some

number of distributed peers, where each peer which may have and want different subsets

of that data, how to best transfer data such that each peer gets what they desire?

This isnot just whole file transfer to all participating peers. In contrast to traditional

content distribution, each client may wantdifferentsubsets of the data. Similarly, this is

not just one-to-many multicast. Multiple servers may have replicas of different parts of the

data. Finally, this isnot just many-to-one download, as in GTP [126]. There can be many

clients/servers acting in parallel. Peers may be both server and client concurrently.

12
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The partial content distribution problem includes all of these earlier problems as

special cases. Given the large class of problems this covers, we focus on the subset without

known solutions: where peers require less than whole-file transfers and there are nontrivial

mappings between clients and servers. However, the techniques we develop in this disser-

tation are sufficiently general so as to be useful forall distribution problems.

A good solution would include several features. We have five competing goals:

1. High Performance (i.e. high capacity): high aggregate system bandwidth and low

response latency.

2. High Efficiency (i.e. low cost): do not waste system resources, exploit inexpensive

hardware, be efficient.

3. Simplicity (i.e. low complexity): provide a straightforward API, support legacy

code, minimize system “knobs.”

4. Robustness(i.e. tolerate crashes): survive faults, failures, errors, and inaccurate

metadata.

5. Generality (i.e. be comprehensive): work on a variety of hardware/software plat-

forms, with different input constraints and goals.

The first goal, performance, generally resolves to high bandwidth. While typically

only aggregatebandwidth matters, we also try to keep latency low and ensurefairness

when possible. High performance is difficult when availablenodes may be relatively slow,

heterogeneous, or have limited access to the data. There maymany nodes, meaning that

we must have good scalability properties– our target is on the order of 10,000 peers per

logical transfer. We project that the largest “common” compute clusters will be around

that size in the coming years; even today’s largest supercomputers only use a few thousand

Input/Output (IO) nodes.
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The second goal, efficiency, is minimizing resource expenditure. Many approaches

can achieve high bandwidth but are very inefficient- e.g. flooding or whole-file transfers.

We must minimize overhead from metadata transfer, computation time for scheduling al-

gorithms, and ensure peers do not receive extraneous data.

The third goal, simplicity, is how to make a powerful system available without

painful configuration or manual tuning. This resolves to providing the right Application

Programmer Interface (API) and suitable tools for the target use model, and an internal

transfer mechanism that transparently manages low-level details.

The fourth goal, robustness, is how to tolerate various failures. Aggregating de-

vices causes capacity to grow linearly but failure probability to grow exponentially. In a

distributed transfer, node or link failure should not causethe entire transfer to fail if another

data replica is available. This is a particularly bad problem for high performance systems,

which tend to use bleeding-edge hardware. As anecdotal evidence, it took over 30 runs

of the LINPACK benchmark [67] for a successful result duringthe burn-in period for Los

Alamos National Laboratory’s ASCI Q supercomputer.

The final goal, generality, is simply that solutions should function in all cases.

There is a unifying thread between the different use models–namely the idea of trans-

fer scheduling– and we can exploit this to produce a more comprehensive approach than

those currently taken.

2.2 Use Models

This section makes the issues described above concrete through illustrative exam-

ples. We go through several specific use cases and show how theproblems encountered are

interesting and not adequately solved by existing work. Previously, we defined the problem

negatively– by explaining what it was not– while this section defines what it is.
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Our first example, high speed cluster-to-cluster communication was the initial mo-

tivation for this work. Next we look at remote visualization; where data constraints may

change and latency is more important. Finally we look at content distribution, and the

problems traditional approaches have when applied in partial-sharing environments.

2.2.1 Cluster-to-Cluster Bulk Transfer

Consider a transfer between two homogeneous clusters of nodes. Each node has

access to a local shared file system, and we wish to transfer a file from one cluster’s file

system to the other. The naive approach is a one-to-one transfer between a single server

node and a single client cluster node. This will be limited bythe capacity of a single node

and have problems in the wide area due to TCP limitations (seeSection 7.2.1).

Server 2

Server N

Client 2

Client N

Server 1 Client 1

DataServers Clients

Figure 2.1: A Simple Striped Transfer

The next obvious approach is a striped transfer from severalservers to several

clients as in Figure 2.1. Each client/server pair transfersa disjoint piece of the file. This is

useful to avoid TCP’s problems in the wide area, to distribute data for analysis on a cluster

of nodes, or to logically collect otherwise disparate transfers for management purposes.

In an ideal world, this would be enough; but we wish to solve a more realistic

problem. Nodes may not be homogeneous; equally sharing workwould limit performance

to the speed of the slowest node. Clients may want arbitrary sections of the file; e.g.

tiled simulations require some overlapping data at the edges. Servers may provide arbitrary

sections of the file, due to caching, load balancing, etc. Finally, nodes may host both a client

and server simultaneously, e.g. during a distributed computation. Figure 2.2 illustrates

some of these features.
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Figure 2.2: Sample Problem

NodesS1 to S4 (the Servers) have access to overlapping subsets of a logical data

collection, e.g. a file or database. NodesR1 to R6 (the Receivers) want subsets of that

data. Nodes have different capabilities, indicated by the thickness of their oval. The data

logically exists in a linear name space.1 Note the overlap in supply and demand for given

ranges, and ranges which no node supplies or demands. These features distinguish our

problem from the relatedM×N problem (a.k.a. the N-to-M problem, the M-by-N problem,

and so forth) defined by Sussman [71] and others [36]: ours explicitly allows replication,

holes, and failures, dynamic behavior, and nodes may be bothclient and server.

In the general case, clients mustlocateservers providing desired data, andselect

the best one(s) from which to download their data. The replica location and selection tasks

provide new challenges and opportunities for optimization: peer-to-peer transfers, locality

detection, load balancing, etc.

1This was a parallel creation of a linearization mechanism, discussed in depth in [125] by Sussman.
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2.2.2 Remote Visualization

This use model considers visualizing a large data set, such as those found in research

on physics, geology [24], climate change, or medical imagery [80]. Consider data currently

on a storage cluster’s distributed file system, to be analyzed on a second cluster, and the

analysis rendered for display (perhaps on a third cluster).The user wants to interact with

the visualization. While the prior use model was for latency-tolerant bulk data transfer,

here response time and dynamic behavior are important.

The networking portion of this application is complicated.Frame rendering time

varies depending on complexity and data location, so each rendering node will have a differ-

ent amount of data belonging in differing logical locationsin the video stream. Presentation

on a tiled display provides no 1-to-1 mapping between display and rendering nodes.

Similarly, we may have source and destination replication at the file system or ap-

plication level as the user steers back and forth through thedata. There will be holes in

supply and demand for the same reason, and it may be difficult to map a complex data set

into a linear range without empty sections.

We may have heterogeneity. Nodes may have imperfect load balancing for render-

ing tasks or different performance depending on which distributed data is physically on

their local disk. We may also have dynamic behavior. Transfer requirements will change

as the user interacts with the system.

Work flow tools such as Kepler [7] are increasingly being usedto capture the sep-

arate pieces in such a process. Some of these operations entail movement of massive

amounts of data, and that is where we come in to the picture. For example, consider the

simple work flow graph in Figure 2.3; our work (CEP) fits naturally into this structure.
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Figure 2.3: Sample Work Flow

2.2.3 Content Distribution

The distinction between traditional and partial content distribution is that the lat-

ter allows different users to request or provide different subsets of the data. For example,

consider a small Internet TV station. Some users want all theshows, some only a favorite

show, some want to skip commercials, some want only the commercials (e.g. the Super-

bowl), some want adult content included, some a version safefor children, and so forth.

All users may want data at different bit rates or frame sizes.

As discussed in Chapter 1, traditional approaches using multicast, caching, peer-

to-peer transfers, or erasure coding work poorly for partial content distribution. Enabling

this use model would requires the server predict user interest, create and store multiple

versions of the data, and support hundreds of transfers. Even then each transfer would be

independent, unable to exploit data in others. We show this empirically in Chapter 7.

This brings us back to the concept of demand overlap, or demand sharing. Tradi-

tional content distribution is total sharing: all nodes want the same data. Partial content

distribution sees this a spectrum of possibilities from no sharing (nodes want disjoint data),

to low-sharing (nodes’ data has minimal overlap), to high ortotal sharing. Section 2.3.1

provides an explicit definition of a sharing metric.
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While this work focuses on high-speed wired networks, content distribution prob-

lems arise in nearly every network imaginable. As special-case extension, Chapter 8 con-

siders traditional content distribution on a network whosenodes have satellite capabilities

as well as physical Internet connections. Due to the magnitude of changes required to best

support this environment, it is discussed separately from the main flow of this dissertation.

2.3 Problem Specification

This section covers the next obvious question: how to efficiently capture all the

user’s constraints, and in such a way that processing them isfeasible? We do so by distin-

guishing between the physical and logical constraints. Physical constraints are the structure

and characteristics of the network. Logical constraints are constraints on the data. Each set

is input as a simple list of known information, as described below.

2.3.1 Logical Constraints: Data

We make no assumptions regarding data location, either the input (current) or output

(desired) structure. Either may have arbitrary overlaps (replicated data areas), holes (data

for which no sender/receiver exists) and be of any size. We assume no special data encoding

(e.g. erasure coding).

We capture these constraints as two sets of contiguous byte ranges for each node.

That is, each node provides a list of〈start byte, end byte〉 tuples which is the data they

require (are a client for) and provide (are a server for). This representation is inexpensive

for most environments. The only inefficient common case is strided access over small data.

This can be handled with a simple extension,〈 start byte, block size, stride length〉 tuples,

but this is left to future work. Alternatively the user can remap their data.
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Given the lack of assumptions on data layout, we can capture awide variety of sit-

uations at high resolution: two of our goals. Performance will obviously vary depending

on the constraints. The most important predictor of transfer behavior and appropriate tech-

nique is the level of sharing. We will talk about the correspondence more in Section 2.5

discussing the solution space, but for now we quantify the idea with the following metric:

Sharing = avg∀i(avg∀j((|{di} ∩ {dj}|)/|{di}|))

For each nodeni and reachable peernj, the overlapping proportion of datanj has or wants

thatni wants, aggregated over all nodes.{bi} and{bj} are the set of data that nodesni and

nj have, and|| takes the size of the set. Effectively this is a measure of setsimilarity.

Put another way: For each node, calculate the average level of data shared with its

peers; then average that across all nodes to get the sharing measure. When all nodes want

the same data, this is 1. When all nodes want different data, it is 0. When half want one

set of data and half another, it is 1/2. For the special case ofblock input, this metric can be

calculated particularly efficiently by ORing block bitmaps.

2.3.2 Physical Constraints: Nodes and Networks

We make somewhat stronger assumptions about the networks used for CEP trans-

fers: that they are IP-based and well connected. That is, an IP packet from any node can

reach any other; firewall/NAT traversal is not supported. Weassume all devices can run

TCP and a minimal amount of user-level code. Weak or proprietary devices, such as sen-

sors or microscopes, can participate through a gateway.

We assume nothing about the number or location of peers. We assume nothing

about pairwise network properties (bandwidth, latency). We assume nothing about pairwise

node properties, i.e. homogeneity. We will make stronger assumptions to perform specific

experiments. Our motivating environment, for example, hashigh core bandwidth (10+

Gbps) and hundreds of endpoint nodes with Gigabit Ethernet.
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Similar to the logical constraints, we capture network links as part of a tuple space:

〈 source node, destination node, bandwidth, latency〉. Unsurprisingly these tuple spaces

can be transformed efficiently into a graph structure, as specified in our thesis statement.

We do not currently use metadata such as a link’s loss rate or other dynamic behavior as

part of our scheduling algorithms. Input data should represent the current net goodput and

be updated as behavior changes.

2.4 Rigorous Definition of Transfer Scheduling Problem

This section gives an abstract specification of the problem and our desired solution.

First we discuss capturing an instance of the problem, then what a valid solution entails,

and finally the objective function to maximize- the goal. Thenext chapter shows how to

simplify the problem without loss of generality.

A problem instanceis a complete specification of constraints as described above;

A set of nodes, with the data each node has and needs, and a set of links, with the bandwidth

and delay of each link. We use the termsrangefor an arbitrary set of integers specified as

disjoint segments [bi...ei] (begin toend, inclusive). These ranges are the bytes that a given

node stores or wants, in no particular order. Segments may overlap. These terms were

chosen to bring to mind line segments and the range of a function.

� �

Set o f Nodes { Node0 . . . Noden }
Nodei := {

Range of d a t arequired := { 〈b0, e0〉 . . . 〈br, er〉 }
Range of d a t aprovided := { 〈b0, e0〉 . . . 〈bp, ep〉 }

}
Set o f Links { Link0 . . . Linkm }

Linki := 〈Source , Destination , Bandwidth , Latency〉

� �

Listing 2.1: Problem Instance
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An element of thesolution spaceis a transmission mapping: a set of 6-tuples. This

is just a list of which nodes communicate, what they send, andwhen they start and stop

sending. Transfer rate is constant over that period.

〈 source , destination , b y t e begin , b y t e end , start , stop 〉

To be a valid solution, the set must satisfy severalconstraints. Each tuple must

be well-formed: receivers must get the data they have requested, servers may only provide

data they have, and link capacities must not be violated. Forclarity, we treat ranges as a

simple sets – enumerating every byte in every segment in the range. Set notation simplifies

the expression. See Listing 2.2. This specification assumesa single physical path between

pairs of nodes and that routes do not change while the transfer is in progress.

� �

# C o n s t r a i n t t u p l e s must be wel l−formed
∀c ∈ T : csource ∈ Nodes and cdestination ∈ Nodes and

cstart ≥ 0 and cstop ≥ 0 and cbegin ≥ 0 and cend ≥ 0

# Senders can send o n l y da ta t h e y have ;
# o r i g i n a l l y or f rom a n o t h e r t r a n s f e r
∀c ∈ T, ∀x ∈ {cbegin, ..., cend} : x ∈ csourceprovided

or
∃c′ ∈ T | c′beg ≤ x ≤ c′end and c′dest = c and

c′stop + latency(route(c′source, c
′
dest)) < cstart

# R e c e i v e r s can o n l y r e c e i v e data t h e y want
∀c ∈ T, ∀x ∈ {cbegin, ..., cend} : x ∈ cdestrequired

# R e c e i v e r s must g e t t h e i r da ta
∀Ni ∈ Nodes , ∀x ∈ Nirequired

∃c ∈ T | cdestination = Ni and cbyte begin ≤ x ≤ cbyte end

# Can no t send f a s t e r than l i n k c a p a c i t y .
∀ t i m es t ∈ {min∀c∈T (cstart)...max∀c∈T (cstop)}
∀l ∈ Links , ∀c ∈ T

Σ(lstop − lstart)/(cend − cbegin + 1) ≤ lcapacity where
l ∈ route(csource, cdestination) and lstart ≤ t ≤ lstop


� �

Listing 2.2: Linear Program Problem Constraints
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This specification explicitly allows peer-to-peer sharingin the second sender data

constraint clause, which states that they may send bytes in asegment already received from

another node.latency(route()) refers to the network delay sending from the source to the

destination. It explicitly denies optimistic receiver operations– no downloading extra data.

The primaryobjective here is speed: minimize the time at which the last node

finishes receiving data. We are interested in the total completion or termination time, not

that of any individual node. Thus, we minimize the completion time of thelast node.

Our evaluation uses other metrics to show system characteristics. With equivalent

aggregate termination times, we wish to maximize fairness,streaming performance, or

system utilization (depending on the enviroment). For fairness we use Jain’s measure [55].

Streaming bandwidth measures the rate at which nodes can start utilizing data they receive:

the largest run of data with no holes. Table 2.1 shows these objectives.

Table 2.1: CEP Primary and Secondary Objectives

Primary Objectives (equivalent)
Termination time: minimize∀c ∈ T : cstop+latency(route(csource, cdest));
Bandwidth: maximize(

∑

c∈T data(c))/time
Secondary Objectives(May have trade-offs)

Fairness: maximize(
∑

xi)
2/(n ·

∑

x2
i )

Link utilization: maximizecapacity/bandwidth
Streaming bandwidth: maximize(highest contiguous byte)/time

2.5 Solution Space

While the prior section discussed the solution space from a theoretical point of view,

this section gives a high-level overview of different ways one might solve the problem.

Stepping back for a moment, we show how current research fits together.

All transfer schedulers fall into two rough categories;explicitschedulers plan an full

transfer and subsequently implement it, whileimplicit schedulers use node/block selection

heuristics, forwarding semantics, or special data encoding to get receivers their data. Most

current approaches fall into the latter category; CEP is a hybrid mechanism.
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Along the same lines, metadata transfer and scheduling can occur locally or glob-

ally.2 This is a measure of coordination, but need not mean centraliziation; decentralized

approaches often communicate heavily to maintain invariants such as DHT structure. In-

creased coordination enables partial-file sharing; without it nodes cannot efficiently locate

a source for a desired piece of data.

Peer-to-peer systems typically have only local metadata and optimize locally with

an implicit scheduler; global behavior is an emergent property derived from local actions.

This approach makes sense for dynamic, heterogeneous, “black box” networks: long-term

plans in such environments are inappropriate. In contrast,high performance and research

networks [20, 31, 69, 117] tend to be less heterogeneous, less dynamic (some even include

bandwidth reservation features) and their structure is often known. CEP can exploit these

features to improve performance via explicit planning and global information.

Figure 2.4 gives a graphical view of some current approachesin terms of coordina-

tion and performance. The level of coordination is how much metadata is shared among

peers: their local/global-ness. Most approaches here act as implicit schedulers; e.g. net-

work coding can be applied to create explicit schedules but that is not its intended use.
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Figure 2.4: Coordination & Performance

2While metadata propogation and scheduling are logically separate, it only makes sense that better-
informed peers make the decisions. This is not a democracy.
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2.6 Summary and Conclusion

This chapter has shown that the general transfer scheduling(or, equivalently, the

partial content distribution) problem is interesting, difficult, and unsolved. We have given

concrete examples, a rigorous problem definition, and a map of the potential solution space.

This lays the groundwork for the analysis of Chapter 3 and algorithms developed in Chapter

4, which solve the problem from a theoretical perspective. Chapter 5 and 6 then take

those algorithms to produce a real-world implementation with all the desired features and

performance characteristics.

Acknowledgements: Material from this chapter, in part, appeared in “The Com-

posite Endpoint Protocol (CEP): Scalable Endpoints for Terabit Flows,” Eric Weigle and

Andrew A. Chien, Proceedings of IEEE Conference on Cluster Computing and the Grid

(CCGRID), 2005. The dissertation author was the primary investigator and author of this

paper.



Chapter 3: Analysis of Transfer Scheduling

This chapter focuses on analysis of the transfer schedulingproblem from a theoret-

ical perspective. It provides a more rigorous foundation for the core algorithms proposed

in Chapter 4. Together, these chapters target our goals of efficient processing; similarly

the quality of these algorithms are what produce a high-performance transfer. Subsequent

chapters address design of systems using these algorithms and their implementation.

Here we first discuss the implications of the weakly structured input described in

Chapter 2. We assumed no specific structure on input data constraints and nodes had no

particular capabilities. As for the network, we assumed only that it was well-connected.

Now we walk through several preprocessing steps showing howsuch input can be pro-

cessed efficiently- in time commonlyO(n log n). These simplify the problem and add

useful structure without loss of generality. This leads to construction of the desired canon-

ical form: a segment graph structure, which supports queries in constant time. The transfer

scheduling algorithms in Chapter 4 take this as input.

We conclude the chapter with a discussion of the run-time complexity of algorithms

using such data and an example illustrating typical problemanalysis/solution.

3.1 Input Specification

Our input specification allows applications to efficiently define transfer require-

ments with arbitrary constraints on data and network structure. In particular, applications

specify byte ranges instead of fixed-sized blocks for transfer. This captures a more general

class of problem, but to exploit such structure more complexalgorithms are required. This

section discusses the tradeoffs between ranges and blocks and how to perform efficient op-

erations on ranges. This chapter uses such operations to process the unstructured input into

more useful forms.

26
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3.1.1 Data Ranges and Data Blocks

Essentially all current approaches use block-based instead of range-based mecha-

nisms. They split data into equally sized chunks, typicallysome power of two, for schedul-

ing and transfer; this simplifies their algorithms. Range-based mechanisms effectively turn

a special case for block mechanisms– partial block transfers– into the common case. Con-

versely, blocks can be seen as a special-case optimization for range-based systems.

Ideally one system could provide the best features of both approaches: general but

able to use special-case optimizations. To do so we need a wayto determine when and how

to apply block scheduling techniques in the context of a range-based system, or vice versa.

This can be accomplished by a few simple heuristics. “When” is whenever there are large

overlapping ranges or range endpoints naturally terminateat regularly-sized boundaries.

“How” is just to select the correct block size.

First, we look for large overlapping ranges. These are high sharing areas; when they

exist, using block-based algorithms is desirable. Detection of such overlap can be done by

building a sorted list of〈 byte range, count of instances〉 tuples. This requires one iteration

over all byte ranges. Running this after the segmentation algorithm from Section 3.3 allows

us to detect ranges which have significant overlap but are notidentical. As a side benefit

the relevant metadata will be fresh, local, and warm in the cache.

Next, we simply look for ranges in the list which have sufficiently high sharing

and are sufficiently large. These two thresholds can be determined experimentally. Results

from BitTorrent [29] have shown that sharing on the order of 20-30 peers is required for

the algorithms to be most effective, with 30-50 preferred [30]. The overhead of these

algorithms requires that the ranges be at least hundreds of megabytes in size.

Then we determine the best block size. For large overlappingranges we can choose

any block size that is small enough to transfer quickly but large enough to minimize costs

of metadata management. Again, this is determined experimentally; see Section 7.8.
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Finally, even if we found no large ranges, it may still be useful to use block based

mechanism given a natural block structure to the data. Say, e.g., 90% of the ranges fall on

a 16KB boundary. Then blocks of 16KB would be a rational choice. Detecting this can

be done quickly (constant time to any fixed degree of certainty) by random sampling and

modular arithmetic using the tuples list.

Together these allow us to determine when to apply block scheduling techniques,

and what parameters to use with them. Unfortunately, this will not improve performance

if we already have good range-based techniques. Worse, the main benefit of block-based

transfers is simplicity, but applying these techniques does exactly the opposite– adding

more complexity to a range-based system.

In practice we need only half this approach: determine a goodblock size as above,

and set it as a maximum transfer size. The performance effects of using blocks resolves pri-

marily to (1) dynamic per-block replica selection and (2) data replication growing quickly

as blocks propagate through the network. A maximum transfersize set to the correct block

size achieves these benefits.

3.1.2 Efficient Range Matching

Range matching is the first step to transfer scheduling: before being able to opti-

mize, one must be able to findsomeserver for the desired data. This means finding ranges

that overlap a search range. At its core, any scheduling algorithm must be able to do this

efficiently.

Our problem statement assumed nothing about the structure of input ranges, e.g.

they need not be disjoint or in sorted order. If we need stronger semantics, we must build

any structure required. One useful tool is the “Interval Tree” data structure described in

Section 14.3 of [32].
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By augmenting nodes in a red-black tree with a “max value” field, an interval tree

supports range insertion, deletion, and search for an overlapping range in timeO(log n).

If we wish to findall overlapping ranges it takes timeO(min(n, k log n)), wherek is the

number of overlapping ranges output.

Unfortunately, the worst-case search performance isO(n), which is unacceptable.

This occurs when a request matches every node in a tree– i.e. in a high-sharing environment

where many different peers serve the same byte range. Finding the best peer to serve a

request becomes computationally more difficult when there are more options.

We would like a stronger bound: logarithmic time range matching. By using the

techniques described in the following sections, we can achieve this: first, sort and make

ranges disjoint (timeO(n log n)). Then insert them into an interval tree (timeO(n log n))

where each node is augmented with a priority queue/heap. If the range already exists in the

tree, push the peer onto the priority queue (timeO(log n)). The priority queue is keyed by

e.g. available peepeerpacity. In this way, peer lookup takes only logarithmic time: look up

the node inO(log n) time, then pop off the queue inO(log n) time.

There are two problems with this approach. First, the “best”result depends upon the

client (querying) node- which this approach does not take into account. Second, peers are

placed in multiple priority queues. Changing data in one queue corrupts the heap structure

in others. In practice we pay a higher up-front cost (worst caseO(n2)) to convert to a graph-

structured canonical form (Section 3.3), which then allowsa lower cost query (O(1)).

3.2 Preprocessing: Simplifications and Reductions

This section discusses a series of transformations to the transfer scheduling problem

that move it towards the canonical form. All are made withoutloss of generality unless

otherwise stated. These transformations let us avoid strong assumptions on input: whatever

it may be, we can quickly transform it into the form desired.
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3.2.1 Disjoint, Sorted Ranges

Converting arbitrary input ranges to a set of disjoint ranges sorted in increasing

order is straightforward. We only need to sort the list and combine overlapping ranges.

That is, we convert lists like{[3,5], [7,10], [2,4]} to just{[2,5], [7,10]}. This conversion

takes timeO(n log n) using the following algorithm.

� �

Given an a r b i t r a r y range i n an a p p r o p r i a t e encod ing :
S o r t i n i n c r e a s i n g o r d e r by beg in va lue ,

t h en by end v a l u e# t o break t i e s .
I t e r a t e t h ro u g h each rangeSi :

I f (Si+1(begin) ≤ Si(end) ) : # There i s o ve r l a p
Remove both ran g es .
I n s e r t combined range [Si(begin), max(Si(end), Si+1(end)) ]
Reco n s i d e r rangeSi # May need t o merge aga in


� �

Listing 3.1: Creating Disjoint, Sorted Ranges

First we sort using any of the well-knownO(n log n) sorting algorithms. Then

we walk through the list, anO(n) operation, checking to see if adjacent entries need to

be merged. We know that ranges which overlap or touch must be adjacent due to the sort.

Together these are at most anO(n log n) operation.

This naive algorithm can be improved given knowledge of the structure of the data.

In particular, Section 3.1.2 shows how red-black trees can be used for efficient range match-

ing. Therefore another approach is to simply insert all values into such a red-black tree,

and check for overlap during the insert procedure. If there is overlap simply remove the

existing node and insert a merged value instead.

Finally, an important subset of the problems we encounter have predefined struc-

ture, such as blocks. Section 3.1.1 showed how this can be detected with high probability in

constant time. In such cases, we can use a hash-based bucket sorting algorithm to perform

this conversion in linear time.



31

3.2.2 One-Segment Ranges

The original problem description allows peers to have an arbitrary range of bytes,

not necessarily contiguous, but this does not actually increase the generality of the problem.

If instead peers were treated as having only a single contiguous data range it simplifies the

problem statement greatly. Consider the following transformation algorithm:

� �

For a l l nodes # a l l s en d e r s and r e c e i v e r s
I f t h e node has more t h an one segment i n t h e i r range :

# Sum t h e t o t a l b y t e s i n t h e e n t i r e range :
Let σ =

∑

〈 bi,ei〉∈R(ei − bi + 1)
For each segment〈bi, ei〉 :

Add a node :
Speed r · ei−bi

σ

Edge t o on ly t h a t segment
Remove t h e o r i g i n a l node


� �

Listing 3.2: One-Segment-Per-Peer Transformation

A solution to this new problem is a solution to the original problem; satisfying each

“sub-receiver” means the original receiver gets its data. We added no new data to the range,

so it receives no extra data. Dividing the node’s speed among“sub-receivers” means we can

not exceed the original speed. Nothing else changed; thus a solution to this new problem is

a solution to the original.

As all data must be received before a node is considered “done,” the best way to

split the network capability of a node is proportional to thesize of data transferred. If we

were to split in a non-proportional way, some segment(s) would complete sooner but others

would complete later. In other words, the total completion time for any non-proportional

allocation is at least as large as for the proportional one, so the proportional one provides

the optimal solution for the simplified problem. Thus an optimal solution here is an optimal

solution for the original problem.
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This transformation assumes independence in the transfer of each segment, which

is not quite true. Multiple transfers between a pair of peersneed not go over separate

connections; re-using a single socket improves performance by avoiding TCP handshaking

and slow start behavior. In the same way, this creates hiddenperformance and failure

correlations among these newly-created nodes (e.g. a bottleneck link or competing load).

Luckily, we can both use this simplification and maintain thecorrect structure. By

representing this using weightededgesin a graph rather than newnodes, we capture the

right semantics. This is shown in Section 3.3.

3.2.3 Transfers Starting at Time Zero

The last transformation normalizes over time. The originalproblem description

allows for a solution where transfers start and complete at any time. However, this gains

us nothing in generality. Network speeds are almost infinitely divisible, and it is almost

always better to immediately request data rather than waiting [48]. In other words, implicit

space-sharing of a link is just as good as explicit time-sharing the link.

Therefore, we remove the start/stop times as part of the criteria for a solution. In its

place we assume that a node transmits/receives data at ratesproportional to the size of data

sent to/from each peer. Put another way, a node divides available bandwidth among flows

such that their expected termination times are all equal. When otherwise limited, it simply

sends as fast as possible; the excess bandwidth may be allocated to other flows. This does

not change total aggregate completion time– which is alwayslimited by the slowest node.

Rate mismatches are quickly detected in practice and a scheduler can address it by shifting

load between replicas.

A solution to this new problem will be a solution to the original problem. This

transformation does not change the set of data transferred,only when it is done. Therefore

we can not violate any of the original data or network constraints.
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An optimal solution to this problem will be at least as good asan optimal solution

to the original problem. Our new constraint ensures that each node either (a) fully utilizes

its link for the entire transmission, or (b) one of its peers is a bottleneck for some data.

In case (a), we have 100% link utilization so there is no way any solution to the

original problem could do better. Similarly in case (b), we are transferring as fast as pos-

sible to/from the bottleneck node. The only possible reasonwhy it is not handling data at

the speed we wish it to is when that node handles a larger amount of data proportional to

its speed. In other words, there is no way to improve the overall completion time because

that peer node is in case (a), perhaps due to problems in the network.

Counterintuitively, local reallocation of “excess” bandwidth to other flows when

some peer is bottlenecked will not necessarily improve overall performance. This is be-

cause that “excess” is due to another peer not using its full share of bandwidth– i.e. going

slower than expected. Local reallocation of flow will not improve that peer’s performance.

It is othernodes from which that peer can fetch data that need to do the reallocation. We

locally experience their bottleneck, but they need to schedule around it. This second-order

dependency is one reason the transfer scheduling problem iscomplex.

Again, there are some potential problems with this transformation in practice. First,

it relies on adequate congestion control at the network level. Using stock TCP as a carrier,

this is only true in the long term, without link errors or round-trip-time differences across

competing flows. Second, it assumes the peer OS can avoid thrashing. Starting all flows

concurrently may lead to high load and poor locality of reference. Fortunately, our experi-

ments in Chapter 7 show no noticeable problems degradation from such problems.
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3.3 Conversion to Canonical Form

This section describes the segment graph, our canonical data format, and input for

the algorithms in Chapter 4. A segment graph is a set of vertices and directed edges.

Vertices represent segments or nodes, with any associated metadata (e.g. an filename).

Edges linkfromsegments to nodes thatneedthat data (clients), orto segments from nodes

thathavethat data (servers). This captures the input data constraints; network constraints

can be captured in the same way, with edges mirroring physical topology and capacity.

This structure is sufficiently general to allow many different types of processing.

The simplest transfer scheduler consists of receivers picking a random linked sender for

each segment they need; as a first approximation this how schemes like BitTorrent work.

To construct this graph we turn once again to an augmented binary search tree

whose entries represent segments. We maintain a separate list of peers. Segments are

doubly linked to senders providing them and to receivers requiring them.

The structure is filled with a sorted list of known segments asfollows: for each

peer, add their requested or supplied segments individually to the tree. If the segment

totally overlaps a pre-existing segment, link the node to the existing segment. If it does not

overlap, add the segment and then link. If it partially overlaps, split the segments to create

total a region of total overlap and a disjoint region, then recur on the pieces. Listing 3.3

(page 35) captures this process, whereSegmentRanges is the main function.

WhenSegmentRanges is complete, each node has two sets of links: one for the

‘have’ relationship and one for the ‘need’ relationship. Peers link to segments they have or

need, segments link back to nodes that have or need them. All segments are disjoint.

The input and output structures are equivalent: walking a node’s links in the output

and applying the merge algorithm from Section 3.2.1 reproduces exactly the original in-

put. Any solution over this structure can likewise be translated to the prior format in time

O(nk log k) wheren is the number of nodes andk is the number of edges per node.
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� �

SegmentRanges( Senders , R e c e i v e r s ) :
For each noden i n Senders∪ R e c e i v e r s :

Le t b, e be n ’ s b eg i n n i n g and end ing b y t e s .
AddRange( b, e, n )

Walk t h e segment s t r u c t u r e ; f o r each edge :
Back l i nk node t o segment and t ag s en d e r / r e c e i v e r

S p l i t ( Range r , p ) :
C rea t e a new ranges :

sbegin=p
send=rend

snodes ← rnodes

rend=p− 1 .
I n s e r t s i n t o range s t r u c t u r e .

AddRange( b, e, n ) :
F ind b i n t h e range s t r u c t u r e .
I f b f a l l s o u t s i d e any segment :

Le t s be t h e n ex t segment t o s t a r t .
I f no segment i s next , l e tsbegin =∞ .

Add b as t h e s t a r t o f a new segment ,r .
rnodes ← n
I f e < sbegin : rend = e
Else : rend = sbegin ; AddRange( rend , e , n )

I f b i s t h e s t a r t o f some segmentr
I f e < rend : S p l i t ( r , e−1); AddRange( b, e, n )
Else I f e=rend : rnodes ← (rnodes ∪ n) ; r e t u r n ;
Else : AddRange( b , rend ,n ) ; AddRange( rend , e , n )

I f b f a l l s i n s i d e some segmentr :
S p l i t (r , b )
AddRange( b, e, n )


� �

Listing 3.3: Segment Graph Conversion Pseudocode
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The problem is that theSegmentRanges algorithm has worst-case running time

of O(n2) wheren is the number of nodes (or equivalently the number of segments, given

the one-segment-per-node transformation). Each time we add a segment, we induce at most

two new splits, one for the begin byte and one for the end byte,amortized over the entire

run of the algorithm. That is, givenn nodes with a begin and an end byte, we have at most

2n points on a line, which creates at most2n− 1 segments.

The creation of each segment requires finding the begin/end among pre-existing

segments; these lookups take timeO(log n). Each of these segments will link to at most

2n sender/receiver nodes. This term dominates, so the total linking time will beO(n).

Together, this gives a total time for the creation of these segments and mapping

to their respective sender/receivers ofO(n2). This upper bound is tight, as shown by the

following worst-case example; the simple input specification creates many graph edges.

Considern nodes in two classes. The first class, nodesi = 1...n
2

have range[3i, 3i+

1]. The second class, nodes(n
2
+1)...n have range[0, 2n]. All nodes in the first class create

a disjoint segment all their own, that is,n
2

segments. All nodes in the second class force

the creation of a link for all nodes in the first class and all spaces between them. That is, at

leastn links per range.

Thus, we are forced to createn
2
·n links, giving a lower bound ofΩ(n2). Enumerat-

ing them in this algorithm will take timeΘ(n2). Figure 3.1 illustrates this forn = 8; note

the rats-nest of links the second class of nodes must build.

First Class:

  range [3i,3i+1]

Second Class:

  range [0,2n]

1 2 3 4

5 6 7 8

Figure 3.1: Worst-Case Input to Segment Ranges
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That said, the worst-case time is certainly not the average-case time. Most real-

world uses of this algorithm run in timeO(n). Such cases include total data replication

(one segment,n links), data striping across nodes (n segments, one link each), or any fixed

combination of the two (n/k segments,k links each).

Similarly, this worst case only occurs with unboundedly large segments. Given an

upper bound on the length of a linked segment, the algorithm runs in linear time. Given a

lower bound on the minimal segment split, we also get linear time (both with large constant

factor). In the limit, the latter case is equivalent to a block-based scheme.

Finally, should the cost of creating this structure be too high for large problem sizes,

an useful related structure can be created in timeO(n log n). By extending the graph with

virtual internal nodes, forming a mesh, we eliminate the need for so many edges. In the

example above, we need one virtual node linking to all segments, and all the second class

nodes link to it. This reduces the number of edges by a factor of n. The tradeoff is that

processing on the resulting structure becomes more complicated and expensive. We explore

these ideas further in our discussion of network flow algorithms in the next chapter.

In terms of optimality, building this structure has neitheradded nor removed con-

straints from the problem. Thus an optimal solution here will be an optimal solution to the

original statement.

3.4 Problem Complexity

To this point we have given several relatively inexpensive polynomial-time algo-

rithms to permute the problem into more useful forms. None have actually attempted to

produce an optimal solution to the transfer scheduling problem. The question at this point

is: how efficient can such solution algorithms be? It turns out that the canonical specifi-

cation from Section 3.3 is sufficiently general that we can reduce from an NP complete

problem.
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In the real world, however, most input will not contain the special structures re-

quired to make the problem NP complete. A large class of transfer scheduling problems

can be solved optimally in polynomial time and many can be solved in linear time. So

while the worst case may be very bad, the average case (as defined by our use models from

Chapter 2) is not nearly so difficult. This of course depends entirely on the network and

data constraints given by the user application.

The rest of this section discusses the reduction from an NP complete problem, ap-

proximation algorithms, and the cost of distributed scheduling. Chapter 7 returns to this

topic empirically, evaluating the runtime of different algorithms on common input.

3.4.1 NP-Completeness

Transfer scheduling can be seen as a generalization of the “file transfer problem”

described by E.G. Coffman, Jr. In [57], Coffman shows the assumptions under which the

file transfer problem is NP-complete. As transfer scheduling problems can encapsulate

such file transfer problems; it follows that transfer scheduling is also NP-complete.

To see this directly, consider a reduction from the edge coloring problem [53].

Given a graphG = {V, E} to be colored, we construct a constraint graph as follows:

First construct the network constraints: a star-topology network with a central

‘switch’ node and|V | nodes connected to the switch with equal-capacity links. Then con-

struct data constraints corresponding to the edges in the original graph: i.e. if there is an

edge between nodeni and nodenj in G, add a 1-byte data dependency betweenni andnj .

Ensure all segments are disjoint by incrementing a counter for each dependency.

Consider an optimal solution to this transfer scheduling problem. It determines

when each data dependency is sent and all data is sent in minimal time. The time at which

a data dependency is sent is the color of the corresponding edge. It is a proper coloring

because nodes can not send two bytes simultaneously. It is a minimal coloring because the

transfer could not complete earlier, i.e. using fewer colors.
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Thus any algorithm which can solve all transfer scheduling problems can be used

to solve the edge coloring problem, and through it the rest ofthe problems in NP. Even

restricting the structure of the constraint graph to a bipartite graph– as when senders are just

senders and receivers are just receivers, or a tree– as with “traditional” content distribution–

the problem is still NP-complete. See Table II in [57] and their discussion of “Arbitrary

Ports” for further information.

Finally, the full transfer scheduling problem is even less straightforward, though not

necessarily more computationally complex. This example, though NP complete, effectively

ignores network structure. In other cases, one must accountfor that structure.

3.4.2 Approximation and Asymptotic Bounds

The above analysis specifically utilized one-byte data constraints because achieving

the NP-completeness result required that transfers be indivisible and serial. In practice,

flows are larger and can be subdivided and parallelized in nearly arbitrary ways. That was

the point of Section 3.2.3; starting transfers at time zero makes them all parallel. This

section walks through an example which qualitatively illustrates the differences between

the NP-complete cases and more easily solvable ones.

Consider two source nodes of speeds which each have the samek segments, each

segment may have a different size, and one receiver of speed2s wants all segments. A

solution here is the transfer schedule which minimizes the total transfer time. If transfer

of a segment were indivisible, this is precisely equivalentto the minimum multiprocessor

scheduling problem– which is known to be NP-complete (SS8 inGarey and Johnson [46]).

However, since segments aredivisible, we can simply request half of each segment

from each node in parallel. This will provide a solution optimal to within a factor of 1.5:

odd-sized transfers cannot be split equally. For larger transfers, the “odd” overhead can be

amortized over the length of the transfer. We can get within any fixedǫ > 0 of an optimal

solution as the transfer length increases.
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In general, most problems we expect to find in the real world have this property:

for all practical purposes they can be solved nearly optimally in polynomial time. Such

problems include those with large divisible data and no network limitations (or at most a

few bottlenecks), or networks with high sharing. In the firstcase, the ability to split large

transfers into arbitrarily sized, independently scheduled portions is enough to approach an

optimal solution. In the second case, data can merely be retrieved from the most local, least

loaded node, regardless of wider-area network structure.

In contrast, other types of problems are fundamentally morecomplex. This is not

simply the negation of the class above– that is necessary butnot sufficient to make the

problem “hard.” To pose difficulty, the problem must includenontrivial bottlenecked net-

works and either small, indivisible data or data with low sharing. In the first case, cannot

spread load by subdividing data transfers. In the second case, we are limited to a given

set of source/destination pairs. In both cases, nontrivialnetworks provide a large set of

possible transfer routes implying that an exhaustive search may be unavoidable. Lastly,

time-dependent network or data constraints can also be difficult to handle, even if known

ahead of time, as it dramatically increases the set of possible schedules.

In such “hard” cases, the polynomial-time algorithms we discuss in the next chapter

will still provide someschedule. However, depending on the algorithm, the initialoutput

may be far from optimal. Feedback and heuristics are used to correct for this over time.

These constraints are rare in practice- our target environments fall in the class of polynomial

time-solvable problems. Similarly, most applications have either high sharing properties

(such as CDNs or peer-to-peer file-sharing) or simple block-based data constraints. In both

cases, we can efficiently solve them to produce high quality schedules.
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3.4.3 Centralized and Decentralized Scheduling

Prior discussion has implicitly assumed that the scheduling data exists in a single

location for an algorithm to process. In a distributed system that may not be the case. Then

either an extra data-retrieval term must be included in our analysis, or we must divide the

processing cost over multiple nodes.

First consider a centralized node scheduling using distributed data. In this case,

the data access cost rises fromO(1) to O(log n) wheren is the number of nodes in the

system. This assumes a DHT such as Chord [108] were storing the information. The naive

approach of serially pre-fetching all data takes timeO(n log n) assuming there is a roughly

constant amount of data per node and bounded maximum networklatency. While this may

be an expensive operation, it does not affect the order of therun time for these algorithms.

Second, consider decentralized scheduling over distributed data. In this case, as-

suming appropriate clustering of data in the DHT, many operations can be performed solely

on local data. Then the extraO(log n) term is effectively eliminated giving performance

comparable to a centralized scheduler. Unfortunately maintaining the same transfer se-

mantics in a distributed environment is difficult; Sections5.3.2-5.3.3 describe the issues

involved in distributing scheduling in more depth.

In the end, centralization versus distribution is a design choice; both have their

drawbacks. Centralized systems have to capture global state and may not scale, while de-

centralized systems have higher overhead and difficulty optimizing globally. We focus on

hybrid algorithms with both a centralized part and distributed part, based on our assump-

tions about the target environment (Chapter 2). The algorithms in Chapter 4 seek a balance.
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3.5 Sample Analysis

While Figure 2.2 showed an example problem using intuitive pictures, this section

shows one more rigorously. This example ignores network constraints, which are already

in a graph structure and hence need no preprocessing. “Speed” here is the NIC speed of

the host, which provides a simple upper bound on its transferrate. Data units are irrelevant

here; one may think of ranges as being over gigabyte blocks.

Input (Fig. 3.2, left) is specified by the nodes themselves using the specification

defined in Chapter 2. Applying the transformations given in this chapter produces the

canonical segment graph (Fig 3.2, right). Note that we can immediately detect when the

problem has no solution. In this case receiver 1 can not be satisfied: no peer provides seg-

ment 8-9. This is a simpleO(n) time test that our implementations roll into the conversion

algorithm directly.

Solution: So a solution exists, we add an edge from node S2 to segment 8-9. Fig-

ure 3.3 shows an optimal graph solution (right) and two equivalent explicit schedules (left).

Blocks 1-3 and 14-16 are the bottleneck here; they determinethe overall termination time.

Thus, there is flexibility in setting the transfer speed of the remaining nodes without chang-

ing the overall termination time. Excess bandwidth there can be allocated to other flows.

In practice, desired rates can not be enforced while using TCP. They are at best

roughly followed as short flows complete and larger flows growto fill remaining capacity.

Underutilized network links should be filled by the remaining flows.
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Node Speed Data
S1 100 1-6
S2 1000 4-7,10-13
S3 100 11-16

R1 2000 1-16
R2 100 1-3
R3 100 4-6
R4 100 11-13
R5 100 14-16

S1
100

S2
1000

S3
100

R1
2000

R3
100

R2
100

R4
100

R5
100

1−3

4−6

7

8−9

10

11−13

14−16

Figure 3.2: Explicit and Canonical GraphInput to Transfer Scheduler

Transfer Data Solutions
Nodes Range Rate Rate

S1→R1 1-3 50 50
S1→R2 1-3 50 50
S2→R3 4-6 69 50
S2→R1 4-6 259 50
S2→R1 7 86 17
S2→R1 8-9 172 33
S2→R1 10 86 17
S2→R1 11-13 259 50
S2→R4 11-13 69 50
S3→R1 14-16 50 50
S3→R5 14-16 50 50

100%

0%

32.8%

8.6%

17.2%

8.6%

32.8%

0%

100%

50%

50%

50%

50%

21%

79%

100%

100%

100%

79%

21%

S1
100

S2
1000

S3
100

R1
2000

R3
100

R2
100

R4
100

R5
100

1−3

4−6

7

8−9

10

11−13

14−16

Figure 3.3: Explicit and Canonical GraphOutput from Transfer Scheduler
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3.6 Summary and Conclusion

This chapter has shown how one can efficiently, commonlyO(n log n) time, con-

vert from an arbitrary transfer scheduling problem into a structured specification. This

specification allows fast insertion, deletion, and search of ranges for the purposes of com-

puting transfer schedules. In the process, we have shown in amore rigorous fashion the

complexity of the problem and sub-classes which can and cannot be solved efficiently.

Returning to our claims, this chapter has shown that a graph-structured representa-

tion provides a straightforward, efficient, general problem encapsulation. Chapter 4 shows

how to produce transfer schedules from this representation, enabling high-performance dis-

tributed data transfer.

Acknowledgements: Material from this chapter, in part, appeared in “Partial Con-

tent Distribution on High Performance Networks,” Eric Weigle and Andrew A. Chien, Pro-

ceedings of the IEEE International Symposium on High-Performance Distributed Comput-

ing (HPDC), 2007. The dissertation author was the primary investigator and author of this

paper.



Chapter 4: Scheduling Algorithms

This chapter discusses several scheduling algorithms, building off the tools intro-

duced in Chapter 3. These algorithms form the core of a transfer scheduler; using their

output we support high performance distributed data transfer.

Our approach focuses on optimizing for data constraints. This works under the

assumption that either core network bandwidth is not a bottleneck or that there is no useful

information on network structure. In either case, a reasonable plan is to optimize for data

constraints and use heuristics to dynamically correct for network behavior.

All algorithms require information on data constraints, which peers want/provide

which data, and network constraints, the bandwidth and latency of links. At this point we

assume it is provided in the canonical segment-graph form. Typically, the more information

the better the output. Chapter 5 addresses the issues surrounding metadata collection.

This chapter first covers algorithms based on the ideas of network flow, a natural

approach for transfer scheduling; then linear programming, to provide a known optimal

baseline; finally greedy hill-climbing, a technique to improve algorithm runtime. Then

we discuss a few powerful optimizations and how theoreticaland practical results differ in

common environments. We conclude with a high-level comparison of all techniques.

4.1 Network Flow Algorithm

As a network transmission problem, a natural approach is to analyze the problem

using Flow Networks [1, 32, 38, 42]. This section first shows how to convert the graph-

structured form of the problem developed in Chapter 2 into a flow network. Then we

show how to use that to calculate a transfer schedule. Finally we discuss the quality of the

solutions produced by this approach– unfortunately they are not optimal for general graphs.

45
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4.1.1 Conversion to a Flow Network

Converting the canonical segment-graph form of the probleminto a flow network

is done using the following mapping. First,nodes:

• The sendersSi become the sources, and the receiversRj become the sinks.

• The data segments become nodes in the center of the flow network.

• We must create a new super-source and super-sink, but they map from nothing.

Then we convert theedges:

• Each sender is fed from the super-source by a link with their original speed.

• Each receiver can sink to the super-sink by a link with their original speed.

• Infinite capacity between each senderSi and all data nodes whichSi provides.

• Infinite capacity between data nodes and receiversRj whichRj requires.

For example, Figure 4.1 gives one graph and the conversion toa flow network. Note that

this conversion ignores network constraints other than theupper-bound NIC speed for each

peer. These can either be handled by heuristics during the transfer, or by using a second

flow network in parallel. That is, create two flow networks: one for the data constraints and

another for the network constraints. Solve them together; on each iteration attempting to

push additional flow through the data constraint graph, check and update spare capacity on

the network constraint graph.

S1
5

S2
2

S3
3

R3
1

R2
4

R1
5D1

D2

D3

S1

S2

S3 R3

R2

R1D1

D2

D3

S R

5

2

3

5

4

1

Figure 4.1: Original Problem Specification and Conversion to a Flow Network
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Observe that some nodes such asS3 are superfluous, and can be removed via an

optimization step. In general we can remove any node with only a single associated seg-

ment, replacing it with a direct link with appropriate capacity. For sparse graphs with little

sharing this optimization may remove nearly all the nodes.

S2

R3

R1D1

D2S R

(S1) 5

(S2) 2

(S3, D3) 3

5

(R2) 4

1

Figure 4.2: Optimized Flow Network Graph

Figure 4.2 shows the results of this (worst-case timeO(m)) optimization. We indi-

cate the nodes removed in parentheses; this metadata allowsus to convert back to a transfer

schedule after solving on this graph. This optimization reduces the run-time of the solution

algorithms described in the next section.

Lastly, note that the scale for bandwidth values here and in other algorithms does not

matter. Bandwidth input is effectively unitless; equally scaling input produces equivalently

scaled output. Only the ratio between values is significant.

4.1.2 Solution Using Network Flow Algorithms

There are many fast algorithms for solving network flow problems, which is what

originally motivated this approach. We can apply any of themto find the maximal in-

stantaneous transmission rate for the network; for examplethe original Ford-Fulkerson

algorithm, which runs in timeO(m|f |), or the Edmonds-Karp algorithm, which runs in

time O(nm2). Heren is the number of vertices,m is the number of edges, and|f | is the

size of the maximum flow in the graph.

The main difference between transfer scheduling and network flow is the abstrac-

tion of time. Network flow problems ignore time, attempting to maximize instantaneous
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flow– put another way, they assume that the problem is solved once and the solution runs

forever. Transfer scheduling does not ignore time– in fact we explicitly try to minimize

global termination time. Therefore, straightforward application of network flow algorithms

will fail. A max-flow solution may allocate all flow through high-capacity nodes, starving

others. This violates the problem’s data constraints. Herewe address it by iteration (Sec-

tion 4.2.1 gives another approach): solve the initial instance and as peers complete recur

using the new constraints. Rather than simply starting overbetween iterations, we re-use

prior state to improve the runtime of the algorithm. See Listing 4.1 for pseudocode.

Runtime depends on the max flow algorithm selected and the input problem– its

constraints. The Edmonds-Karp algorithm is good for sparsegraphs, which represent trans-

fers with low sharing. Regardless of the algorithm selectedand graph input, this approach

terminates in worst-case time strongly polynomial in the number of data constraints. The

iteration’s inner loop requires oneO(log n) heap operation, then a few constant-time graph

operations. The final optimization step in the worst case takes the same time as a full

run of the max-flow algorithm. Together this requires running a strongly polynomial time

algorithm up ton times, giving another strongly polynomial time algorithm.

� �

C a l c u l a t e Max f low .
For each l i n k t o a r e c e i v e r :

C a l c u l a t e when t h a t l i n k becomes i d l e .
Th is i s t h e t ime t h e r e c e i v e r has t h a t segment ;

J u s t t h e s i z e o f t h e segment / c u r r e n t r a t e .
I n s e r t t h a t ( t ime , node ) i n t o a heap .

While ( r e c e i v e r s e x i s t ) :
Remove t h e min imal t ime from t h e heap .
D e l e t e t h a t l i n k .
I f t h e node has no i n g r e s s , d e l e t e t h a t r e c e i v e r .
Push−back t h a t f low
C r e a t e s a t most one a d j u n c t path , re−o p t i m i ze .

As we re−op t im ize , upda te t h e e l em en t s i n t h e heap .

� �

Listing 4.1: Iterative Max-Flow Algorithm
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The point of the receiver heap is to improve the iteration’s common case from poly-

nomial to linear time. Most nodes are already optimized fromthe prior iteration, and via

the heap we know exactly where spare capacity exists– paths to the node that just finished.

Commonly reallocating that flow takes one pass over the edgesvia e.g. depth-first search.

This gives time linear in the number of edgesm. Worst-case behavior occurs in dense

graphs, when nearly all nodes have dependencies to the node that just finished; then flow

must be recalculated for all nodes, and multiple passes overall edges.

4.1.3 Network Flow Optimality and Approximation

Network flow works works well for two classes of problems. First is on networks

with relatively homogeneous performance; meaning the flow network will tend to weight

all edges rather than one ‘fast’ edge. This will in turn satisfy all nodes and all will terminate

about the same time, which is the goal. Shahrokhi and Matula derive a strongly polynomial

algorithm solving this case [104].

The second class is one with disjoint data segments– a sparsegraph. Here the choice

of flow paths is strictly constrained to certain edges. This satisfies the nodes and tends to

perform well. With no replication there is only one path sender to receiver, so the flow

network algorithms will produce an optimal solution.

Unfortunately this algorithm is not guaranteed to provide an optimal solution on

all graphs, due to the differing semantics between the goalsof instantaneous flow maxi-

mization and aggregate transfer termination. Typically multi-commodity flow formulations

suffer from the same problem. The maximum concurrent flow problem [104] is the only

exception, capturing the right termination semantics, butcurrent solution techniques work

only on networks with homogeneous links and peers.

Another problem with network flow is that implementing thesesolutions requires

explicit multipath routing; this is impossible over IP networks without extra infrastructure.

Still another problem is error due to integer arithmetic: transfers are nearly arbitrar-
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ily divisible, but these algorithms use integer values for flow rates. This aggregate error by

definition will be smaller than (number of edges)×(scaled unit value). That is, if ‘1’ in the

graph represents 1Mbps and there are 11 edges, total error may be as much as 11Mbps due

to the implicit rounding. The error can be decreased below any arbitraryǫ by scaling the

edges prior to applying the max-flow algorithm, but the values must fit inside a hardware

integer (32 or 64 bits) or arithmetic itself becomes expensive.

We mentioned that this algorithm produces optimal schedules for sparse graphs;

those without replication. With replication, say by a factor of k, the iterated flow network

solution will approximate the optimal by a factor of no worsethank · (1 + ǫ), whereǫ is

as above. This is because each iteration will maximize the flow; completing the transfer

to at least one receiver’s replica. In the worst case, the bottleneck flow will not begin until

the final iteration (at which point its flow will be maximized,otherwise it would not be

the last iteration) and run to completion. Since it is the bottleneck, it will take the longest

time to run, and the priork iterations will have taken less (or equal) time. Thus the total

termination time for a solution using this algorithm is no more thank · (1 + ǫ) times the

termination time for an optimal schedule.

That is not a very useful bound, since it is not tight fork > 2. For networks with

arbitrary replication, adequate capacity, but a single bottleneck link, we can show a more

useful bound:2 · (1 + ǫ). This is via the following observations:

First, to achieve an optimum schedule the bottleneck link must be fully utilized at

all times– but if faster links also are ingress to a receiver,max-flow using them may starve

that bottleneck. Then maximum termination time is then the “starvation time” plus the

bottleneck transfer time. This gives a ratio to an optimal solution of (starvation time +

bottleneck time) / (bottleneck time) or equivalently (starvation time)/(bottleneck time) + 1.
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Starvation time can be no more than bottleneck time; otherwise the other link would

be the system’s bottleneck. Thus the ratio is at most a factorof 2. This is in addition to the

integer error factor described above.

Figure 4.3 shows one example where performance approaches this bound. Many

network flow algorithms would simply select the path using source 1 and data block A,

maximizing the instantaneous flow at 10 units. The iterated algorithm would then complete

block A at time 10, and finish block B after another 10, for a total completion at time 20.

For comparison, one optimal solution takes 9 units of flow through block A and 1

unit of flow through block B until time 10 (completing block B), and then completes the

remaining 10 bytes of block A at time 11. The ratio here is thus20/11 or about 1.8 times

worse than optimal. This is near both worst-case bound shownearlier.

Source 1

Source 2

Data Block A

(size 100)

Data Block B
(size 10)

Super
Source

Receiver
Super
Sink

10

1

10
8

8

8
8

Figure 4.3: Example of Poor Performance Using Iterated Network Flow

4.2 Linear Programming Algorithm

Linear programming (LP) methods have been used to efficiently and optimally solve

min/max problems for decades. Transfer scheduling can be seen as global maximization

problem, so it makes sense to try and use LP techniques. Whilewe know this will pro-

duce an optimal solution given the right input equations, the algorithms involved are more

computationally expensive than other approaches.
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4.2.1 Conversion to Linear Equations

To create the desired linear equations, we again work from the canonical segment

graph. In this case, we think of the problem as one of weighting edges: figuring out the

proportion of a sender’s or receiver’s capacity spent transferring each data segment. These

weights are a rate-based transfer schedule. Note that whilethis solution targets maximizing

flow, this flow is subject to the constraints missing from the network flow problem. Con-

fusingly, max-flow here has the right semantics and is optimal, while max-flow there had

the wrong semantics and need not be optimal.

As we know, a simple flow network has a problem with node starvation. A non-

iterative approach to this is replacing shared links with unshared, proportional links whose

capacity sums to the original. This is the same argument given for the transformation in

Section 3.2.2, and an optimal solution for this problem willgive us an optimal solution in

general. Compare the two graphs in Figure 4.4 (the first of which is replicated from Figure

4.1). For the sake of this exposition, assume the sizes ofD1, D2, D3 are the same.
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Figure 4.4: Proportional Flow Network Graph

An interesting observation at this point is that, ignoring network constraints, net-

work flow here would produce an optimal result. Starvation cannot occur as there is always

a path through each receiver to push more flow. Unfortunately, accounting for network

constraints, network flow alone still cannot guarantee non-starvation.
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The next step is to apply the single-infinite-link optimization discussed earlier to

simplify the graph. Then, since our transmissions must be proportional to minimize the

total completion time, the problem resolves to getting the right amount of flow through

data nodesDi. We have also relabeled the remaining infinite-speed links.This is shown in

Figure 4.5, which looks somewhat familiar to our original graph.
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S3

D1

D2

D3
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Figure 4.5: Simplified Flow Network

Ideally peers here are receiver limited so eachDi gets sufficient input flow to satu-

rate the output link toR. If not, we need to get flow to each proportional to their fraction

of total system demand. This minimizes the total completiontime. As before, no non-

proportional weighting can finish earlier: it may cause someflows to do so, but either it

makes no difference to other flows or it makes them finish later.

At this point our constraints (the node speeds, data accessibility, and termination

requirements) are clear, and Table 4.1 shows the equations.TD andTS stand for Total

Demand and Supply,PD andPS stand for Proportional Demand and Supply,SD stands

for Supply toD, andS∗,D∗ are values to/from eachS or D node as labelled in the graph.

Table 4.1: Linear Equations Derived from Sample Problem

Proportional Demand Supply to D’s: Proportional Supply Link Constraints

TD = D1 + D2 + D3 SD1 = S1S1a+ TS =
∑3

1 SDi S1a ≤ 1
PD1 = D1/TD S2S2a SD1/TS ≤ PD1 S2a + S2b ≤ 1
PD2 = D2/TD SD2 = S2S2b SD2/TS ≤ PD2 S3a ≤ 1
PD3 = D3/TD SD3 = S3S3a SD3/TS ≤ PD2

Given these equations and the values calculated for Figure 4.5 we can use well

known LP techniques such as the Simplex method or ellipsoid algorithms [86] to determine

the weightsS1a, S2a, S2b andS3a. These provide our rate schedule.
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4.2.2 Solving Generalized Linear Inequalities

This section generalizes the example from the prior section, showing how to de-

rive equations in standard form for linear programming. Seen another way, we are roughly

converting the mathematical constraints from Section 2.4 to a more explicit functional rep-

resentation. The notation is, at best, rather painful. First we initialize terms using the graph,

as discussed above. Here is a list of those terms (all constants after the initial calculation

exceptSi,j). Let:

• |Sendi| be the speed of senderi.

• |Recvi| be the speed of receiveri.

• Datai be some data segmenti, |Datai| its size.

• Needsi be the total amount of dataRecvi needs (
∑

i needs j |Dataj |)

• PropDemandi,j be the proportional demand thati creates forDataj ,
((|Recvi|/Needsi) · |Dataj|)

• Demandj be the total demand for a data segment (
∑

i PropDemandi,j)

• TotalDemand be the total demand in the network (
∑

j Demandj)

• PropDemandi be the proportional demand for a segment
(Demandi/TotalDemand)

• Si,j be the link from a senderSi to a data segmentDj.
These are the variables we solve for!

Calculating the input values takes one pass over the receivers and their edges, so takes time

no more thanO(n + m) arithmetic operations. Listing 4.2 gives pseudocode for this pass.

Then, given those values, we set up inequalities based on thegraph as before. Table 4.2

summarizes the resulting constraint equations. Finally, put into a more suggestive form we

get the equations shown in Listing 4.3. The values ofK, L, M obviously depend on the

size of the graph being converted.
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Table 4.2: Summary of Linear Programming Constraint Equations

Constraint Type Conversion To Equations
Supply to data segment nodesSupplyj =

∑

Sendi links to Dataj
|Sendi|Si,j

Proportional supply Supplyj ≤ PropDemandj · TotalSupply
Non-starvation Supplyj > 0
Link bandwidth conservation

∑

Si,j ≤ 1

� �

TotalDemand = 0
# S e t t h e demands on data segment :
For each r e c e i v e rRecvi , speed |Recvi|

Needsi = 0 ;
For each d a t a segmentDataj t h ey need

Needsi+ = |Dataj|
For each d a t a segmentDataj t h ey need

Demandj+ = |Recvi|/Needsi

TotalDemand+ = |Recvi|/Needsi

For each d a t a segmentDatai

PropDemandi = Demandi/TotalDemand

� �

Listing 4.2: Determining Linear Equation Coefficients

� �

Maximize TotalSupply =
∑

i Supplyi

S u b j e c t t o
∀j : Supplyj = |Sendi1 |Si1,j + |Sendi2|Si2,j + ... + |SendiK |SiK ,j > 0
∀j : Supply1 + Supply2 + Supply3 + ...

+(1− PropDemand−1
j )Supplyj + ... + SupplyL ≥ 0

∀i : Si,0 + Si,1 + ... + Si,M ≤ 1
∀i : Si,0 + Si,1 + ... + Si,M >= 0


� �

Listing 4.3: Final Linear Program

At this point it should be clear that this system of equationscan be solved straight-

forwardly with LP techniques. A further optimization is to run a secondary optimization on

the residual graph after allocating this bandwidth, to increase total transfer speed. Although

this will not affect the total finish time of the run, it allowssome flows to terminate early.
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Important cases are when we are either totally receiver limited or totally sender

limited. Then the problem has a simple structure and we get optimal solutions either via

the flow network or via this mechanism. The complicated cases, when finding the optimum

is most difficult, are when some large number of nodes are sender limited and others are

receiver limited. “Large” means on the order of hundreds or thousands, which is well

within the range of LPs we can solve with today’s technology.Finally, in the static case, an

LP solution gives an optimal result up to one-byte rounding errors.

4.2.3 Conversion of Rate-Based and Explicit Schedules

We have used rate based and explicit transfer schedules interchangeably. The only

difference is how transfer interleaving is done. Explicit schedules send as fast as possible

to one peer, then another, and so on. Rate-based schedules doit implicitly, specifying rates

to multiple peers concurrently; the interleaving is done bythe transport protocol/OS. This

section shows how to convert between the two in time no worse thanO(mn) wherem is

the number of edges in the graph andn is the number of nodes.

Explicit Transfer Schedule→Rate Based Schedule: Conversion in this direction

is easy: we need only divide out the explicit data transfers to get their rates. As rates are

now spread out evenly over the entire transfer period, at no time can their aggregate be

larger than the explicit schedule: meaning no speed constraint violations occur. The same

amount of data is sent, and to the same peers: meaning that no data constraint violations

occur. The termination time is the same, meaning it is equivalently optimal. Thus, the rate

based solution produced is equivalent to the original schedule.

Rate Based Schedule→ Explicit Transfer Schedule: Conversion in this direction

is a bit trickier, and tends to be the conversion done in practice to translate solutions to the

transfer graph into actual transmissions. This algorithm requires buffering in network,

either in the local network stack, device memory, or in router queues. By design it exceeds

designated speed constraints for small time periods– just not on average.
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Let stop time be t h e g l o b a l t e r m i n a t i o n t ime f o r
t h e e x p l i c i t s ch ed u l e .

For each s en d e r ( whose max r a t e i smax rate )
Le t total=0
For each r e c e i v e r ( d e s i r i n gdata b y t e s from s en d e r )

Let total = total + data
For each r e c e i v e r

A l l o c a t e each r e c e i v e r r a t edata
total
· stop time


� �

Listing 4.4: Explicit to Rate-based Schedule Conversion
� �

S e l e c t an i n t e r v a l t imet # e . g . 1 second .
For each i n t e r v a l [ 0 ,t ] , [ t, 2t ] , . . .

For each Sender
For each Rece i v e r

Sender sendst · rate b y t e s as f a s t as p o s s i b l e .
Sender s l e e p s u n t i l end of c u r r e n t i n t e r v a l .


� �

Listing 4.5: Rate-based to Explicit Schedule Conversion

Selection of an appropriate interval is key. In the limit as the interval approaches

zero, it becomes exactly the rate based scheme. Similarly, at the end of each interval

period, the data sent coincides with that of the rate based scheme. Interval length trades

between minimizing overhead and exceeding buffer capacity. 1-10 seconds tends to be a

good compromise among overhead, bursty traffic, and buffer overflows. In the worst case

we can look at all sender/receiver pairs, and set the interval time to bet=min(buffer size /

rate). This guarantees no buffer overflows.

Note that algorithms which iterate over senders and receivers trying to create a

‘cleaner’ schedule with full-speed transfers until each segment is complete tend not to work

very well. This is because each receiver must in the worst case account for constraints from

all others, leading to a complicated algorithm.
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4.3 Greedy Weight Based Algorithm

This algorithm and its derivatives form the core of our implementation. It is similar

to the LP algorithm in attempting to proportionally allocate bandwidth among peers based

on their requirements. It differs in that it makes primarilylocal decisions– thus its output

is not necessarily optimal but it runs extremely quickly. This is appropriate for latency-

sensitive transfers, dynamic transfers that are rescheduled frequently, or those where some

constraints are unknown. This section discusses the basic greedy algorithm, how to opti-

mize for high-sharing environments, and how parts of the algorithm can distributed.

4.3.1 Basic Greedy Algorithm for Low Sharing

The basic greedy algorithm works by balancing supply and demand, then dividing

out capacity proportional to transfer size. The idea is simple: servers allocate more of their

bandwidth to highly desired segments than undesired segments. How much more? Exactly

the ratio between the demand for the two segments.

At a high level, the algorithm first calculates the demand foreach data segment in

the system. Then it allocates senders’ capacity proportional to the demand for each data

segment they provide. Finally receivers allocate incomingbandwidth proportional to the

individual segment’s size and subdivide their requests amongst the senders proportional to

the sender’s weighted speed. The pseudocode in Listing 4.6 gives more detail. Input is

again the canonical segment graph form.

The run time of this algorithm isO(m) wherem is the number of edges in the input

graph. Step 1 look at all receiver links (O(m)), Step 2 at all sender links (O(m)), Step 3

at both sender and receiver links (O(m)). Iterating over nodes is insignificant; there are

always more links than nodes. Thus our total run time is at most O(m). In low-sharing

or total-sharing configurations,m ≈ n and this is linear in the number of peers. For

intermediate-sharing configurations it may be as bad asO(n2).
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# 1 . C a l c u l a t e p r o p o r t i o n a l demand :
For each r e c e i v e r :

Sum total size = t o t a l d a t a r e q u i r e d =
s i z e o f a l l l i n k e d segments .

Labe l each l i n k wi th :
(receiver speed ∗ (segment size)/(total size)) .

For each segment , l a b e l w i th t o t a l demand :
Sum up r e c e i v e r demands f o r t h a t segment

# ( marked on l i n k s ) .

# 2 . C a l c u l a t e p r o p o r t i o n a l supply :
For each s en d e r :

Sum demand f o r a l l segments s en d e r p r o v i d e s
# ( marked on segmen ts ) .

For each l i n k e d segment ,
p ro v i d e t o t h a t segment bandwid th :

(sender speed) ∗ (segment demand/total demand)

# 3 . Outpu t r a t e s ch ed u l e :
For each s en d e r :

For each segment t h ey p ro v i d e :
# e q u a l l y a l l o c a t e r a t e t o r e c e i v e r s .
Send t o each r e c e i v e r a t r a t e :

min((total segment rate)/(# of receivers), receiver demand)

# 4 . Execu te T r a n s f e r
Conver t t o e x p l i c i t s ch ed u l e
Each node l o c a l l y o p t i m i z e s f o r speed / l o c a l i t y
R e c a l c u l a t e as n e c e s s a r y


� �

Listing 4.6: CEP Basic Greedy Algorithm

This mechanism is optimal when the transfer is strictly sender or receiver limited.

Then bottlenecks are all on one side of the graph and proportionally allocating the available

bandwidth among them is the best approach. In general this works well in cases with high

server replication as that flexibility allows a good balancebetween supply and demand.

It also works well with low replication on either side, as it efficiently finds the limited

data supply/demand mapping. It works poorly when there is low server replication but
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high client replication, as it does not account for second-order scheduling effects: clients

providing the downloaded data to others. We address this in the next section.

As before, we focus on data constraints. Step 4 handles complexity in network

constraints via simple heuristics. Feedback on experienced transfer speed biases receivers

toward appropriate senders over time. If peers enter or leave the system, recalculation can

be done efficiently on intermediate values cached after eachstep: updating aggregate data

is done with a constant number of operations, and updating the rage schedule only affects

the nodes with which a given peer has dependencies.

When used in a steady-state– rescheduling as peers come and go– one feature of

this algorithm is that flow priority is inversely proportional to flow age. New flows have the

most remaining to transfer, become global bottlenecks, andare allocated high capacity. In

this way they can, e.g. quickly build up a buffer of frames forvideo playback. Flows near

completion are effectively lower priority. This tends to hold servers with nearly-complete

replicas in the system for the sake of the global transfer rate.

4.3.2 Optimizing the Greedy Algorithm for High Sharing

The basic algorithm was designed for low-sharing environments; where receivers

demand different data segments. With no sharing, a pre-calculated optimal solution is op-

timal through the entire transfer. But when peers share demand, transfer progress changes

data constraints in such a way that the optimal solution may also change.

To address this, we extend the algorithm with a “High Sharing” optimization similar

to the two-phase technique used in Bullet [65] or the Super Seed mode in some BitTorrent

applications. Our algorithm extends these to a more generalcase: it supportsarbitrary

sharing and data constraints. Listing 4.7 lists the new algorithm.



61

� �

# Determine p r o p o r t i o n a l demand
For each segments :

demand [s ] = Σr ( down ra te [r ] [ s ] ·|s| )
t o t a l d e m a n d = Σsdemand
c a p a c i t y = Σr u p r a t e [r ]
For each r e c e i v e rr :

a l l o c a t i o n = ( u p r a t e [r ] / c a p a c i t y )∗ t o t a l d e m a n d
# Supp ly p r o p o r t i o n a l t o demand
For each segments :

I f demand [s ] ≤ a l l o c a t i o n and
demand [s ] >0 and down ra te [r ] [ s ] >0 :

seed [r ] [ s ] = True
a l l o c a t i o n −= demand [s ]
demand [s ]0


� �

Listing 4.7: CEP High-Sharing Optimization

At a high level, it works by breaking the transfer into an initial ‘seeding’ phase

where data is distributed across the network, and a ‘feeding’ phase where peers download

data directly. Both phases apply the original CEP algorithmto schedule the transfer, but

in the seeding phase the constraints are specially constructed to prepare for an efficient

feeding phase. The goal, as before, is to distribute data such that demand (load) on a given

node is proportional to its supply (capacity).

This differs from existing approaches which randomly distribute data across the

network assuming segments are uniform size (blocks) and load per segment will be equal.

We deterministically distribute data exactly how it is needed. Ideally we could estimate

the best location for a segment, i.e. place it on the fastest node closest to all clients, for a

particularly efficient feeding phase. This is left to futurework.

The input for the algorithm isdown rate[r][b]: the speed at which receiverr

wants to download segments, estimated as their total capacity divided amongst the seg-

ments they want, andup rate[r]: the total upload capacity of receiverr. The output is

seed[receiver][segment] which isTrue if receiver should getsegment in
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the seeding phase. This result is in passed as theoutputconstraints for the seeding phase

and theinput constraints for the feeding phase. Thinking of this as acting on constraint

graphs, we effectively divide it such that peers get fair “slices.” This distribution works

well provided network bottlenecks are known– otherwise, the capacity estimates may place

inappropriate load on poorly-connected nodes.

4.3.3 Distributing the Greedy Algorithm

This section shows how to distribute some decision-making in the basic greedy

algorithm. It still relies on features of a centralized metadata server; most importantly

global load balancing tolerant of heterogeneous peers/links and range matching. Without

these features, data lookup overhead increases and performance tends to be limited by

the capacity of the slowest node. These characteristics areevident in our evaluation (see

Section 7.6.1).

The distinction between the basic centralized algorithms and hybrid algorithms is

the intelligence of the endpoints. The original scheme usesdumb clients; slaves to the

master centralized scheduler. They report all metadata to the scheduler, request a schedule,

and implement the response. The server provides the minimuminformation required: one

replica per data range. If failures occur, rescheduling must be done.

The hybrid approach differs in the scheduler’s response: itadditionally provides

alternate replicas for data the client requires. This allows the end-points to perform inde-

pendent replica selection based upon their current performance. The logical changes are as

shown in Listing 4.8.
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# S ch ed u l e r :
Schedu le as i n b a s i c a l g o r i t h m
Pro v i d e res p o n s e as wi th b a s i c a l g o r i t h m and
Pro v i d e k e x t r a s e r v e r s s e l e c t e d as f o l l o w s :

C a l c u l a t e r e s i d u a l node , l i n k c a p a c i t y .
Of nodes wi th a v a i l a b l e c a p a c i t y ,

s o r t based on l o c a t i o n .
Return c l o s e s tk nodes s e r v i n g d a t a wi th
||overlap|| > min overlap .

# Peers :
I n i t i a l l y f o l l o w s ch ed u l e as s p e c i f i e d by s e r v e r .
Take no a c t i o n v i o l a t i n g up load r a t e g u i d e l i n e s .
May do an y t h i n g e l s e t o o p t i m i ze download r a t e s .


� �

Listing 4.8: Logical Changes to Distribute Greedy Processing

By enforcing upload rates on peers, global load balancing isenforced. That is,

when peers meet desired upload rates then download rates should be what the centralized

scheduler expected, and hence the global performance will be as expected. If peers can not

meet upload rates, it must be due to a previously unknown bottleneck somewhere in the

system. In this case, the extra replicas can be exploited to improve performance. As these

replicas have good locality, and LANs tend to have abundant cross-sectional bandwidth,

such local traffic tends not to affect the performance of other transfers. Thus this generally

can be done without concern for global system performance.

Since this approach does not wholly remove the centralized portion of the system,

what good is it? First, it reduces scheduler load: we can increase the period between

metadata updates and rescheduling steps without decreasing performance, as peers can

optimize locally at the edge. Second, performance improveswhen scheduler information is

inaccurate: whether out-of-date or missing due to dynamic network behavior or unknown

bottlenecks. Finally, peers can make progress under failure: it provides automatic fail

over at the edge when nodes/links go down without needing to contact the scheduler. The

quantitative effect of these features is shown in the Section 7.7.
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4.4 Erasure Coding Algorithms

Research in erasure and network coding systems [19,76] addresses similar issues to

this work, so it is natural to explore them as part of a transfer scheduling system. Erasure

coding combines blocks to create redundant data, which thenprovides additional distri-

bution flexibility. Network coding is an extension whereby erasure coding is performed

on-the-fly within a network. This can dramatically improve performance: linear codes can

achieve the maximum transfer rate for whole-file multicast [73].

Unfortunately, current schemes provide such benefits only for whole-file transmis-

sions. Second, networks exist where it is impossible to achieve the network capacity by

network coding [37]; unsurprisingly, their main example isanalogous to partial file shar-

ing. Third, max-flow alone does not guarantee globally minimal termination time; other

constraints are necessary, as we discussed in Section 4.1.

This section first shows the problems using erasure coding for transfer scheduling,

then how these can be avoided to best exploit the performancebenefits.

4.4.1 The Problem with Sharing: Dependencies

The nature of erasure coded data is that it creates dependencies between blocks.

This allows data to be recovered via redundancy, but it can cause high latency and overhead.

Obviously, we wish to avoid these problems.

Optimal erasure codes spread redundancy such that regardless of which specific

blocks are lost, provided enough blocks are received in total, the original data is recover-

able. They are typically nonsystematic codes– where only encoded blocks are sent rather

than the original data stream. The effect is that very littleof the original data can be recov-

ered until nearly all of the blocks are retrieved. Even with systematic erasure codes, under

loss the same effects can be observed. In the worst case, the first block is lost and the whole

file must be retrieved before redundancy allows it to be recovered.
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How might erasure codes best be combined with transfer scheduling? Consider

a simple input file containing 8 blocks, which has been spreadover two servers for load

balancing. Figure 4.6 shows this as a simple transfer constraint graph.

Server 1 Client 1

Client 2Server 2

1−3

5−8

4

Figure 4.6: Transfer Constraint Graph

Naively applying a nonsystematic erasure code over the input data before the load

balancing step would produce a graph like that shown in the left of Figure 4.7. In this

graph, servers may may have either raw blocks or encoded blocks. The
⊕

symbol refers to

a erasure coding combining blocks (via, e.g., XORing) while© represents just the block

itself. In most cases we expect clients will want to downloadthe ‘raw’ unencoded blocks,

but the graph shows how clients may desire encoded blocks.

The problem with such an approach is the existence of “cross-constraint dependen-

cies.” That is, dependencies tying a desired block to an undesired block for a given receiver.

In such a case, an edge in the constraint graph crosses a receiver data constraint boundary.

To resolve the blocks that the receiver requires, it must download excess data.
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Figure 4.7: Problem With/Without Cross-Constraint Erasure Coding
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Two cross-constraint dependencies are highlighted here: 2⊕4 and 3⊕5. These

force each client to download nearly the entire file, even though they only want a sub-

set of that data. For example, client 1 needs block 1, which itcan download directly. It

also needs block 2, which it can get from 1⊕2. Block 3 is only available via 3⊕5, but we

now need 5. That entails downloading block 5⊕7 and finding block 7. This chain con-

tinues until it downloads a minimum of 7 blocks: it needs all but 7⊕8 to decode block 3:

(3⊕5)⊕(5⊕7)⊕(7⊕6)⊕(6⊕4)⊕(4⊕2)⊕(2⊕1)⊕(1) = 3. For whole-file sharing this behav-

ior adds only latency. With low sharing it adds unacceptableoverhead: nearly the whole

file must be downloaded, regardless of client interest.

Applying erasure codingafter load balancing does not help without knowledge of

client demands: a client wishing one block per server could still be forced to download the

entire file. The trick is avoiding cross-constraint dependencies. This can be doneif client

sharing is known: (1) split the file into chunks such that if a client wants any part of a

chunk, it wants all of it (2) erasure code only over those chunks. Step 1 can be done using

the segmentation algorithm from Section 3.3.

In the above example, simply switching the highlighted edges removes the cross-

constraint dependency chain. This gives us to the second graph, the right of Figure 4.7.

This encoding is load balanced, erasure coded, and has no cross-constraint dependencies.

In summary, the problem with erasure coding for partial content distribution is that

it combine bits from disparate locations in a file. With low sharing these are probably not

bits a given peer wants– and it have to download excess blocksto decode its data. This

overwhelms any performance gains from the coding.

4.4.2 Exploiting Erasure Coding

Comparison between Figure 4.7 and the basic transfer constraint graphs shown ear-

lier reveals that erasure codes add yet another level of generality to the distribution problem:

peers may provide/desire not just blocks, but combinationsor functions of blocks.
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This idea can minimize download latency for erasure coded data in implicitly sched-

uled systems: receivers determine what would allow them to decode the maximal number

of blocks (via, e.g., a depth-first search through the dependency tree), and add a dependency

for that combination. This would reduce the effects of nonsystematic code use.

In terms of algorithms, little needs to be changed to handle encodings without cross-

constraint dependencies. We simply perform initial scheduling as before, weighting flows

as appropriate at the level of byte ranges. Then we account for erasure coding semantics.

Servers must allocate supply proportional to demand fordecodedblocks. This is

complicated if, e.g. a server has block1 ⊕ 3 and2 ⊕ 3 but wants to allocate bandwidth

equally to block 1, 2, and 3. This is impossible with the current encoded blocks; block 3

gets twice the bandwidth. The server should create block1⊕ 2 and offer equal weight (1
3
)

to each of these encoded blocks.

Clients simply look at which blocks are in a byte range and bias block requests

proportional to allocated flow to servers. This is a simplification of the rate-based to explicit

scheduling algorithm from Section 4.2.3. We can use well-known techniques such as lottery

scheduling to randomly but proportionally request blocks from each server.

Put another way,within a given segment, CEP allows bytes to be downloaded in

any order at any rate– so long as the aggregate transfer conforms to the schedule. Within a

segment, we by definition have a high degree of sharing (total). Therefore all the techniques

for block transfer, erasure coding, etc. from other work canbe applied– if the segment is

sufficiently large to warrant the overhead.

To handle encodings with cross-constraint dependencies, we first perform a modi-

fied depth-first search for the blocks we need to download to beable to decode those we

actually want. We select the one with the minimal expected time to finish (sum(block

size∗expected rate from that server) over all blocks). Next we mark those blocks as ‘re-

quired’; this removes the cross-constraint dependency. Then we can proceed as above.



68

Unfortunately, while we can address erasure coding’s issues, there is little reason

to use them with transfer schedulers. Proponents of erasureand network coding cite lack

of management overhead, enhanced system reliability, irrelevance of network structure,

and high bandwidth as benefits of the technique. Transfer scheduling already maintains

metadata on data and network structure and provides high bandwidth. Similarly, we can

tolerate the same class of failures. So in the end, this provides little benefit. The techniques

are complimentary: erasure coding techniques are appropriate for latency tolerant, high-

sharing transfers; CEP is appropriate for lower sharing, less latency tolerant transfers.

4.5 Algorithm Performance Characteristics

Most of this chapter focused on abstract development of scheduling algorithms. Un-

fortunately, theory and practice are rarely the same. This section discusses a few caveats for

real-world use of these approaches and the heuristics and knobs required to make the sys-

tem work. We conclude with a summary and comparison between the different approaches.

4.5.1 Theory versus Practice

The discussion of conversion between rate-based and explicit schedules touched

upon the problem of unknown network constraints. This is themain difference between

theory and practice. Other important aspects include the primarily compute-once nature

of the transfer schedulers, the types of networks for which they were designed, and the

underlying protocols used: all affect real-world performance. We will return to these ideas

in Chapter 6 when we discuss our implementation.

We have focused on pre-calculation and then execution of a transfer schedule. In

practice, this is only realistic for three types of networks: (1) relatively static networks such

as pre-reserved lambda networks; (2) those with quality of service guarantees; (3) those

with known long term performance patterns and very large transfers. These are exactly the

high-performance networks described in our target use models.
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For more arbitrary networks (e.g. the commodity Internet) static scheduling per-

forms poorly. Performance depends more on dynamic behaviorand potentially unknown

network constraints than known data constraints. While this is not the focus of this work,

our experimental evaluation shows that focusing on data constraints with simple update

heuristics is still effective.

Another caveat is that the dominant network protocol on the Internet is TCP. With-

out traffic shaping, manual tuning, or large amounts of buffering, its congestion control

mechanisms induce problems in the wide-area: TCP’s AIMD mechanism produces a “saw-

tooth” that at best achieves only 3/4 of the bandwidth available. This means our algorithms

may miscalculate by 25% or more from the ideal, when using TCPas the underlying trans-

port. Attempting to run rate-based transfers over TCP is also problematic for the same

reason. TCP’s flow and congestion control mechanisms cause the packet sending rate to

have little relation to the rate at which the application ‘sends’ data (passes it to TCP). We

discuss this further when talking about our implementationin Section 6.2.1

The critical difference between theory in reality is that CEP must actually imple-

ment a calculated transfer schedule; this may or may not be possible, depending on the

validity of our input data and assumptions.

4.5.2 Scheduling with Inaccurate Metadata

In an ideal world, the metadata server is an oracle which instantaneously knows the

status of everything in the system. In practice, metadata may be out of date, misestimated,

or have other problems. Here we classify the types of potential errors, while Section 7.7.2

evaluates the performance effects for transfer scheduling.

There are three types of potential error:server error, when it claims it has data it

doesn’t, or it doesn’t have data it does;client error, when it claims it needs data it doesn’t,

or it doesn’t need data it does; andnetwork error, when we overestimate, underestimate,

or have no estimate of capacity.
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Well-behaving peers never claim excess supply or demand- such errors only occur

with malicious peers. Server lies will be seen as failures onthe client side and can be han-

dled as in Section 7.7.1. Clients claiming excess need will reserve excess server bandwidth,

which may give them unfair performance but will not otherwise affect the system.

Similarly, clients under claiming need should not happen. Doing so only hurts the

client. Servers under claiming data provided may occur in two situations. First, at the start

of a transfer, before knowledge of system state is collected; this is unavoidable. Second,

during the transfer, clients download data but may not immediately notify the scheduler that

they can serve that data– but the information is superfluous.The scheduler can calculate

data locations at any point based upon initial conditions ifnetwork capacity is known.

Thus everything resolves to capacity estimation. Lack of anestimate is equivalent

to an overestimate, as we have only the NIC speed as an upper bound. Overestimates

will typically overload the given node(s), while underestimates will shift load elsewhere.

This of course depends upon the data constraints. Inflexibledata constraints make capacity

estimations irrelevant– clients must download data from the specified server.

4.5.3 Heuristics and Knobs

Heuristics for replica selection are the most important thing separating theoretical

and actual performance. With insufficient information about network structure or peers

to make intelligent central decisions, peers must make an educated guess and adapt as

transfers progress. In the limit, with no central scheduler, such heuristics create an implicit

scheduler. This section describes our heuristics and the various “knobs” on the system.

The first heuristic is the way peers select among replicas from which to download

their data. We take the most simplistic view possible: download data from the fastest peer.

So this resolves to peer capacity estimation. Each peer has an upper bound rate which is

used initially. After some data has been downloaded, we use actual experienced rates. We

ignore other options such as locality or using the network weather service [83].
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This single-server selection only applies when downloading small amounts of data.

For larger amounts of data (greater than one “chunk,” see below), peers automatically

download disjoint subsets in parallel. This is again a very simple approach. Other work

takes a much more complicated view of data selection, as it isthe core of their scheduling

mechanism– e.g. BitTorrent’s thresholded random-rarest-first block selection.

Similarly, we make no special effort to address the “straggler” problem, where one

slow node determines the aggregate termination time. The scheduling mechanisms above

already optimize for such nodes so no extra peer techniques are required.

Table 4.3 covers the main parameters common across different scheduling algo-

rithms, and their default values. The “fixed values” are set as part of the implementation

and can not be changed without altering the source code.

Table 4.3: System Parameters and Values

Tunable Parameters Fixed Values
Parameter Name Default Value Setting Name Set Value
Maximum chunk size 16 MB Global reschedule intervalNever
Metadata update interval5 seconds Popularity threshold 100%
Server write queue 16-64 MB Optimistic schedule delay 0
Maximum concurrency 256
Transport protocol TCP

The “chunk size” is the largest amount of data sent in a singlecommunication

between two peers. The larger the size, the more efficient thetransfer. The smaller the size,

the more responsive the protocol (lower latency). 16MB is tuned for 100Mbps networks or

better; at least one chunk transfer should complete in the metadata update interval.

That interval is how frequently metadata updates are sent tothe central scheduler.

This is a balance between load and data fidelity. A 5-second timeout is sufficient to handle

tens of thousands of peers (see Section 7.5.3).

The write queue is how much data a server tries to keep in memory pending a write.

1-4 large chunks is enough to amortize fixed disk read and socket write overhead, and

ensure kernel TCP buffers remain full.
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We set a maximum number of concurrent transfers to avoid running out of file

handles. Attempts to connect or transfer beyond this are simply killed. Similarly, the

default protocol is TCP, mainly for simplicity.

The reschedule interval is when the scheduler would performa global checkpoint,

recalculate all transfers, and push new metadata to all peers. We do not support this due to

its high cost. We instead incrementally schedule individual peers as new requests arrive.

The popularity threshold is the point at which the “high sharing” optimization en-

gages; 100% means all peers must be demanding the same data. Other values are evaluated

in Section 7.10. Currently the user must manually engage this optimization.

The optimistic scheduling delay is how long the scheduler should wait to perform

scheduling in hopes additional clients will register information. We want to avoid schedul-

ing, immediately getting new data, and having to continually reschedule. Ideally we sched-

ule just after the pulse of registrations from a synchronized start has passed. By default,

scheduling is initiated explicitly by the application code.

While this may seem like a lot of tuning is possible, performance is not very sensi-

tive to these values. A large range is acceptable. We explorethe effects of these parameters

throughout Chapter 7.

4.5.4 Comparison of Algorithm Features

Table 4.4 (page 73) gives good and bad aspects of each algorithm at a high level. It

includes popular algorithms from related work. These include GridFTP [4], a user-level file

transfer application supporting striped N-to-N file transfers between clustered nodes above

a shared file system, BitTorrent [29], the well-known hybridcentralized/decentralized peer-

to-peer file transfer protocol, and Bullet [65], a mesh-based whole-file content distribution

network using special data encoding and request striping. Our implementation (Section

6.2.1) focuses on the greedy weight based algorithm for the obvious reasons: its speed,

simplicity, and good performance in practice.
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The differences between the various algorithms are due to optimization for different

criteria; some for network performance, others for fault tolerance, others for security. Each

also assumes a slightly different environment as far as nodeconnectivity, homogeneity,

and trust are concerned. The algorithms presented in this dissertation optimize for global

aggregate bandwidth, assuming a connected network, heterogeneous nodes and speeds,

and shared trust among nodes. The most critical difference is that they do not assume full

replication and high sharing among all nodes in the transfer.

Our algorithms were designed so that a user will generally achieve best performance

by specifying the least restrictive constraints. That is, the more flexibility allowed in the

problem specification, the more room for optimization by thetransfer schedulers. How-

ever, if desired, the user can indirectly control the amountof work assigned to a node by

scaling its speed or the amount of data which it holds/requires. For example, if a transfer is

specified with no overlaps (e.g. a scatter/gather operation), the scheduler has no freedom

of choice and will do exactly what the user specified.

Table 4.4: Summary of Algorithms

Algorithm Good Characteristics Bad Characteristics

Network Flow
Relatively fast, often optimal,
dynamic features

Very poor performance on
edge cases.

Linear
Programming

Known Optimal results.
High overhead, slow algo-
rithm, static scheduler.

Greedy &
Hybrid Greedy

Simple, very fast, dynamic
features, good performance.

Not optimal in general case.

Erasure Codes Simple, optimal in some casesHigh CPU use, high latency,
bulk transfer.

File Transfer
(e.g. GridFTP)

Simple, very fast,
integrated security.

No scheduling. No hetero-
geneity, full or no replication.

Peer-to-peer
(e.g. BitTorrent)

Very scalable, fairly fast and
fault tolerant.

Full replication only,
little security, not optimal.

Multicast
(e.g. Bullet)

Very scalable,
good performance.

Full replication only,
fault tolerance.
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4.6 Summary and Conclusion

This chapter has introduced several new algorithms for transfer scheduling that ef-

ficiently produce near-optimal schedules for our target environment. We have developed a

useful, known optimal baseline: the LP algorithm. We also have our main approach, the

much faster Greedy algorithm and its optimizations.

All algorithms exploit multiple nodes and simultaneous transfers to avoid single-

node bottlenecks. All use hybrid centralized/decentralized scheduling to exploit global

characteristics while tolerating limited knowledge. Thisleads us nicely toward the coming

chapters where we build a full system around these algorithms and evaluate them under a

variety of conditions.

At this point, we have a fairly useful result. We have shown that given transfer

constraints we can translate to a conical form and approximate an optimal transfer schedule

in worst-case timeO(n2); commonly in timeO(n log n). This is no worse an order than

simple comparison-based sort. This is true even though the general form of the transfer

scheduling problem is NP complete.
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Chapter 5: System Design

This chapter addresses the design of the Composite EndpointProtocol, focusing on

the external interfaces and internal structure. Relevant implementation details are covered

in the next chapter, and previous chapters have discussed the algorithms involved.

The programmer’s API and command-line programs exporting it represent the en-

tire user interface. Simple, versatile, and efficient interfaces target our goal of simplicity

and ease of use. Similarly, a logical breakdown of system internals allows for efficient

implementation, targeting the ultimate goal of high performance data transfer.

5.1 Overview

At a high level the life cycle of a CEP transfer is a simple loop:

1 User p r o v i d e s i n i t i a l c o n s t r a i n t s
2 Loop :
3 Genera te a t r a n s f e r s ch ed u l e
4 S t a r t t r a n s f e r r i n g d a t a
5 Wait f o r mod i f i ed c o n s t r a i n t s ( u s e r or sys tem )
6 I f a l l p e e r s complete , s t o p ;Else c o n t i n u e

Line 1 and 5, constraint specification, are the only part of this process involving

the user. Constraints are input via one of the the CEP application-programmer interfaces

(APIs). Unsurprisingly, the lowest-level interface mirrors the input specification given in

the Analysis chapter, Section 3.1. In a dynamic implementation, the user may explicitly

change the constraints as the transfer progresses (line 5) in addition to the implicit con-

straint changes as downloads complete.

Line 2 and 6 are the abstract flow of control. The system is based off a simple state

machine. We discuss this in detail later in this chapter; seeSection 5.3. Line 3, generating

a transfer schedule, was discussed in the last chapter.
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Line 4, transferring data, is implementation specific. The message protocol is part

of the state machine discussed in Section 5.3.1. Implementation details are in Chapter 6.

This chapter starts with details on the various APIs (line 1,5) we have developed to

feed the transfer scheduler (line 3). Then we show how they naturally lead to the protocol’s

flow of control (line 2,6). This chapter begins to address theissues of complexity and fault

tolerance raised in our problem statement.

5.2 System Interfaces/APIs

The use model determines the best interface. Our first use case was a singlelogical

transfer comprised of many individual smaller transfers, e.g. “Move this huge database

from this cluster to that cluster.” This form of composite communication motivates the

global maximization and termination semantics the transfer scheduling algorithms provide.

The alternative is a peer-to-peer model where different users specify sub-transfers

in a global transfer namespace, e.g. “Fetch the second hour of video, skipping these com-

mercials.” This form of communication motivates the local optimizations allowed through

hybrid scheduling.

In either case, the system must acquire the same data: a list of senders, receivers,

the data each sender provides, and the data each receiver desires. This is exactly the data

required for input to the transfer scheduling algorithms. For a single user, information is

all specified at once. For a peer-to-peer system, each user specifies their piece.

All this information need not be specified explicitly– a usermay describe their prob-

lem at various levels of detail. At the lowest level, they explicitly provide everything. At

higher levels, they provide a general goal and the system determines the specifics. We map

onto pre-existing interfaces for file transfer and Unix sockets, generating some constraints

automatically. This is a natural way to simplify the interface; easing user understanding

and optimizing for common requirements.
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The most useful way to think of all these APIs is as an interface to a specialized

database, one maintaining transfer constraints in the canonical graph structure. Calls that

update information maintain the consistency of this structure.

To simplify the implementation, mixing use of separate APIswithin a single pro-

gram is not supported. Different processes participating in a transfer can use any API: at

the protocol level everything interoperates.

Lastly, we introduce a new term in this chapter: “DBS.” This stands for Distributed

Byte Stream, which is what we call an instantiation of a transfer schedule. The term extends

the idea that TCP is a byte stream protocol, while CEP provides a global, logical byte

stream in a distributed system. The idea is that this provides a new namespace: internally

segments are named by start and end bytes in the DBS.

The next three sections cover the three main APIs accessibleto the user, starting

with the most powerful. After that, we give two useful extensions to the APIs making

them more useful for particular types of transfers. Finallywe give an example program and

summarize the features of each interface.

5.2.1 Low-Level API

The low level API allows users to specify individual constraints, which directly

modify the canonical segment graph structure. This is intended only for programmers’

use. We expect users will want to use a front-end to the system, such as the command-line

interface described in the next section. The additional flexibility offered at this level is most

useful when transfers include memory components or particularly complex mappings.

This API consists of a small number of operations. We presentthese asC function

calls associated with a CEP handle, but all APIs have correspondingC++ class interfaces.

Implementations simply look up the handle and set fields in a structure as required.
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int cep open(uint64 t id): This creates and returns a CEP handle. The

id is a transfer identifier required to distinguish between different CEP transfers occurring

simultaneously. It is analogous to the port number in TCP or UDP and is used globally by

all peers participating in the transfer. Commonly, this will be a random number or the hash

of a filename/Uniform Resource Identifier (URI). By default the scheduler is assumed to be

on the local machine; if not, the user must make a call to explicitly change the scheduler.

bool register info(int handle, dbsInfo *dbs): This adds info

on a “dbs”– a segment and associated metadata– to the database/scheduler. Alternatively,

it can be seen as mapping local data into the global DBS namespace. The dbsInfo fields

include:

• peerID: some network identifier for the peer. For the TCP-based implementation

it is a character string name like “foo.ucsd.edu” or “192.168.10.12” and a 16-bit

unsigned port.

• speed: a 32-bit integer representing the estimated max speed of the peer, as used in

the transfer scheduling calculations. This can be in any units so long as all peers are

consistent; we typically use kilobits per second.

• filename: a character string representing an actual file or memory location. URI

syntax is also allowed for compatibility with Globus XIO (see Section 6.3).

• byte offset: a 64-bit integer representing the offset withinfilename at which

our segment begins.

• byte begin, byte end: 64-bit integers representing the location in the global

namespace where the data is mapped.

• server: boolean, true if the peer has this data, false if the peer wants this data.
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We logically require two pairs of numbers to map local file/memory to global DBS

data: byte ranges in the both namespaces. Since the two ranges are by definition the same

size, we need specify only three numbers. We opted for a global range and a local offset;

alternatively we could have specified local/global offsetsand a single length.

bool unregister info(int handle, dbsInfo *dbs): removes the

entry from the database, mirroring the register call. The semantics differ slightly, however.

If the entry does not completely cover an existing entry, it removes just the overlapping

segment. This might be necessary, for example, when a transfer has partially completed

and we wish to reschedule based on the current data layout. Both this and the register

function are overloaded with explicit versions taking the dbs fields as parameters directly.

void schedule(int handle): invokes the current transfer scheduling al-

gorithm. This function may be called at any time to generate or regenerate the transfer

schedule based on current database information. The ability to reschedule complicates the

implementation and is too computationally expensive for some algorithms.

bool transfer(int handle, bool block): Begin or continue the ac-

tual data transfer. Must be called afterschedule(). If block is true the call will not

return until the transfer has completed (returning true) orfailed (returning false). Non-

blocking calls return immediately. Minor functions not discussed here are used to check

the progress of nonblocking transfers.

Together these calls provide all the information to construct the transfer graphs

required for our scheduling algorithms, as well as control transfers in progress.

5.2.2 File Transfer API

The file transfer API provides the abstraction of bulk file transport. In this spe-

cial case, namely whole-file content distribution, we can provide a less intricate constraint

specification. This API was designed for integration with the Distributed Virtual Computer

(DVC) work [110]. As before, we giveC-style declarations.
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int cep handle create( cep handle t *handle, string sched,

uint16 t port, uint64 t id): creates a CEP handle. Analogous to calling the

cep open() procedure in the low-level API, but specifies the master scheduler explicitly.

int cep register write(cep handle t handle, string peer,

uint16 t port, string filename): states that the given peer serves the given

file. That file data provides the entire global DBS. The required range values are calculated

from file system information and entered in the database. In this use model all servers have

a copy of the entire file, perhaps via a shared file system.cep register read is the

parallel call for clients, who will each get their own copy ofthe entire file. Peers can also

call cep register which allows limited access to the lower-level API.

cep schedule andcep transfer: create the transfer schedule and actually

perform the transfer. They have the same semantics as the lowlevel API.

We also provide a command-line tool similar to Globus GridFTP or RFT [4, 92].

It allows users to start a CEP file transfer by passing a scheduler node, filename, and flow

identifier. On the server side, a default flow ID can be automatically generated by hashing

the file. Clients then use that ID to look up the transfer. Thistool in conjunction with the

weakly-constrained extension (Section 5.2.4) is useful for performance evaluation.

5.2.3 Sockets-like API

The sockets-like API eases converting legacy point-to-point code to use CEP. It has

a similar set of calls to standard Unix sockets; semantics differ slightly since it supports

many-to-many communication rather than just point-to-point.

A sockets-like API is attractive in that it can be implemented as ‘shim’ code in-

tercepting socket calls. This allows both legacy and new code to coexist with the same

function calls in the same program. One mechanism for doing this is library interposition;

theLD PRELOAD feature in Unix-like systems. When not used in this fashion,all calls are

prefixed withsocket to avoid name conflicts with the standard functions.
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socket, listen, accept, send, recv, write, andread are implemented

with nearly the same semantics as standard sockets. The onlydifference regards blocking:

a write or send may block indefinitely, as multiple clients may be reading the data. Closing

the socket forces a blocked write to terminate.write’s return value is the total number of

bytes written toall clients, which may be larger than the buffer size.

bind andconnect have the same semantics as standard BIND(2) and CON-

NECT(2) but we accept either a real or a virtual address. Virtual addresses may refer to

a group of peers. Other software, such as DVC [110], providesthe infrastructure to map

such virtual addresses to a list of physical addresses. We use this list to determine the

connection’s participants.

getsockopt andsetsockopt get or set socket options. For CEP (level IP-

PROTOCEP) the options are shown in the following table. The first two are the most

important. Most users will need these calls to complete the local-global data mapping

required by the CEP scheduler.

CEP IDENTIFIER Get/set stream identifier
CEP POSITION Get/set offset in a global namespace (i.e.seek())
SO LINGER Linger on close if data is present
SO ERROR Get error on the socket (get only)

close is similar to the standard CLOSE(2); it completes the transfer and closes the

socket. It has different semantics based on current socket options. If the linger socket op-

tion isnotset (the default), it maps toshutdown(handle, CEP FORCED). Otherwise

it maps toshutdown(handle, CEP UNFORCED). Forcing a shutdown immediately

kills all flows in progress on the local peer regardless of their completion state. Not forcing

a shutdown prohibits new connections but waits for peers to finish pending reads before

destroying the flow handle.

Lastly, we provide a Globus XIO-like interface parallel to this sockets interface.

For more information see Section 6.3.1; low-level details are omitted to avoid repetition.
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5.2.4 Weakly Constrained Transfer Extension

This section describes an extension to the prior interfacesfor weakly constrained

transfers. That is, we can specify asetof of peers to send or receive ranges of data. This

adds no generality to the sender side– it is syntactic sugar equivalent to duplicating the con-

straint for all senders. The benefit is weakening receiver side download semantics. Instead

of all receivers downloading their own copy of the data, onlyonecopy is downloaded.

Furthermore, we can exploit this flexibility to download that copy efficiently.

This is useful when peers at the receiver side of a logical transfer share a file system.

Any peer can download any part of the file, so long as one copy ofthe data is saved in

aggregate. Naively using the earlier data specification would download too many copies

of the data. The only way to avoid it with the earlier APIs is tomanually construct a

client/server mapping for the transfer. By avoiding this wesimplify the user’s life, and

allow for dynamic load reconfiguration given changing peer load or network performance.

To use this extension one simply (a) creates a virtual peer structure, which can

refer to one or more machines, (b) fills it with the cluster nodes involved, and (c) passes

it as the registration functions in Section 5.2.1 or 5.2.2. Virtual peers are a feature of the

DVC [110] software, but we have re-implemented that small subset of the API to remove

the DVC/Globus dependency.

Internally, this flexible specification is translated to an explicit set of constraints

simply by dividing the range up and allocating segments proportional to the capacity of

each node. The scheduler and transfer runs as before. When rescheduling, we must first re-

calculate the constraints before recalculating with the scheduling algorithm: subtract com-

pleted segments from the original range and divide as above.

The performance benefits of this approach are discussed in Section 7.6.2.
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5.2.5 Block Level Interface Extension

The section describes a second extension: a block-based interface augmenting the

low-level API. This simplifies integration with existing block-based applications, allowing

them to take advantage of CEP scheduling without major code modifications. The motiva-

tion is that most systems use blocks, so we need to support that interface. Legacy code and

application integration and is important; that was the samemotivation for our sockets-like

API.

Luckily, as blocks are merely a special case for ranges, we can do so with minimal

changes. The interface we provide is just a wrapper for the low-level API with the same set

of functions. The only difference is that ranges are specified in units of blocks, and we add

a function to set the block size.

Internally, when a block range is specified we multiply by theblock size to get a

segment. Then we can aggregate with existing segments usingthe algorithm in Section

3.2.1. This minimizes the size of the constraint graph. Thenwe can apply our transfer

scheduling algorithms as before.

Like the file transfer API, we provide a command-line tool implementing this in-

terface for testing and performance evaluation. We have also integrated this interface with

a BitTorrent client application, described in Section 6.2.2. Section 7.8 studies the perfor-

mance effects of this approach.
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5.2.6 API Summary and Examples

For comparison purposes, Table 5.1 (page 85) gives a listingof the main interfaces

discussed in this chapter. We have omitted call parameters to save space. The block-

based and XIO interfaces are not listed as they duplicate thelow-level and sockets API,

respectively. One can see how each API provides essentiallythe same information, but in

different ways. Each targets a different use model.

We considered but did not implement an extension providing ashared memory/

mmap()API. The idea was abandoned due to implementation complexity and concern that

users would expect different semantics and performance characteristics than those actually

provided by the protocol.

Given these interfaces, we return to our example from Section 3.5 (see Page 43).

Implementing this with the low-level API gives a program such that shown in Listing 5.1

(page 86). This is actually a valid program that will compile.

While this program statically specifies the transfer to be performed, this information

would rarely be specified so explicitly in practice. It can easily be read from a configura-

tion file, calculated by a distributed file system, or based onother application structure.

Distributed file systems know the location and replication of distributed objects and want

to move them quickly, so mesh naturally with this interface.
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Table 5.1: Application Programmer Interfaces

API Name
Call Purpose

Low-Level API
cep open() Set transfer ID
register info() Provide database info
unregister info() Remove database info
satisfiable() True if a schedule can be created
schedule() Create transfer schedule
transfer() Perform transfer

File Transfer API
cep handle create() Set scheduler, transfer ID
cep handle destroy() Kill flows, state
cep register write() Provide database info: server
cep register read() Provide database info: client
cep register() Provide database info: low-level
cep get info() Get transfer status information
cep schedule() Create transfer schedule
cep transfer() Perform transfer

Sockets API
socket socket() Initialize state
socket listen() Set master to localhost
socket accept() Accept metadata transfer
socket send() Register write, implicit schedule, and do transfer
socket write() Same purpose as send()
socket recv() Register read, implicit schedule, and do transfer
socket read() Same purpose as read()
socket bind() Implicitly provide name info
socket connect() Implicitly provide group info
socket getsockopt() Get database information
socket setsockopt() Set transfer ID, database location, termination constraints
socket close() Terminate local or global transfer

Weakly Constrained API
create collective() Create a “collective” == a cluster == a virtual peer
add range() Add a peer/range to the collective
remove range() Remove a peer/range from the collective
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#include <stdio.h>
#include "cep.h"

int main(void) {
int fd, idx;
dbsInfo *dbs= {

// peer:port, speed, name, byte offset, byte begin/end
{"S1.some.com:5555", 100, "file:///data/big",0, 1, 6},
{"S2.some.com:5555", 1000, "file:///data/big",0, 4, 7},
{"S2.some.com:5555", 1000, "file:///data/big",0, 10, 13},
{"S3.some.com:5555", 100, "file:///data/big",0, 11, 16},
{"R1.ucsd.edu:5555", 2000, "file:///tmp/copy",0, 1, 16},
{"R2.ucsd.edu:5555", 100, "file:///tmp/set1",0, 1, 3},
{"R3.ucsd.edu:5555", 100, "file:///tmp/set2",0, 4, 6},
{"R4.ucsd.edu:5555", 100, "file:///tmp/set3",0, 11, 13},
{"R5.ucsd.edu:5555", 100, "file:///tmp/set4",0, 14, 16},
{NULL, 0, NULL, 0, 0, 0}

}

// a 64-bit XOR-folded MD5 hash of "My Data File"
fd = cep_open(0xe79d8fd79b44cf61);
for (idx=0; dbs[idx].peer!=NULL; idx++) {

register_info(fd, dbs[idx]);
}

schedule(fd);

if (transfer(fd,true)) {
printf("Transfer succeeded\n");
return (0);

} else {
printf("Transfer failed\n");
return (-1);

}
}


� �

Listing 5.1: Example CEP Program
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5.3 System Internals

CEP actions are driven by the current transfer constraints,which are updated by

receipt of messages or local timeouts. We use a simple state machine approach, where

events (changes to the transfer constraint database) correspond to changing states. This

section first discusses the CEP state machine, then how we manage metadata, and why we

chose not to use the DHT abstraction as part of the core CEP design.

5.3.1 Control Flow and Messaging

Internally, all implementations are driven by changes to the local database of trans-

fer information. Figure 5.1 gives the state machine for these events. These events are

usually triggered by external messages, the most importantof which are listed in Table 5.2.

We discuss the format of these messages and other low-level details in the imple-

mentation chapter. They are passed over a reliable transport mechanism such as TCP. This

assumption greatly simplifies the protocol design, allowing us to ignore many types of

errors from the underlying network.

Table 5.2: Primary CEP Messages

Control Messages
Spawn Client Ask a remote daemon to act as a client.
Spawn Server Ask a remote daemon to act as a server.
Quit Ask a remote daemon to quit.

Metadata Messages
Get Request a transfer schedule for one segment.
Put Provide one segment worth of a transfer schedule.
Take Remove a peer/segment from a remote database.

Data Transfer Messages
Read Request a range of bytes.
Write Provide a range of bytes.
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Figure 5.1: CEP System Internal State Machine

5.3.2 Centralized Metadata Management

Having a single centralized metadata server offers severalbenefits. It provides a

single point of control, a single global view on the network for scheduling, a canonical

location for peers to find the metadata they require, it is simple, eases implementation, and

high-end hardware can be employed to optimize performance.The downsides are that it is

a single point of failure, and may limit scalability. We address the alternatives in the next

two subsections. Even here, only metadata is centralized; data is always distributed and

processed in parallel.

Figure 5.2 shows a simplified view of the structure in each node of the system. The

user API provides and receives information to/from the transfer scheduling mechanisms,

and also indirectly controls the internals of the system. The transfer scheduler in turn

decides the actual network transfers which occur. The system management mechanisms get

or set information and work with the transfer scheduler to actually control the transfer(s).
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User API ↔ Transfer Scheduling
l l

System Management↔ Networking

Figure 5.2: System Structure

This use model has a centralized “master” process which takes user input, calculates

a transfer schedule, and sends it to remote “slave” processes to actually implement. The

master process maintains the constraint database and the slaves are mindless daemons.

Only one CEP process is required per physical node. Each process may take part in any

number of concurrent logical CEP transfers, and within eachtransfer there may be multiple

network flows. Figure 5.3 shows this structure, highlighting the difference between master-

to-daemon control flow and daemon-to-daemon data flow.

The user first creates an application and links with a shared CEP library. After

starting daemons on all peers participating in the CEP transfer1, they run their code. It

adds information via the APIs described above, which is sentto the master– the local CEP

library, unless otherwise specified. The master schedules the transfer and sends commands

to the daemons, which implement the actual data transfer. The daemons are simple applica-

tions using the same CEP library; they only set up access control and wait for commands.
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Figure 5.3: Overview of Global Structure: Push Model

1A tool such asinetd can be used to launch the CEP daemon automatically.
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5.3.3 Distributed Metadata Management and the DHT Abstraction

Our core techniques are based on the idea of distributing transfer work across mul-

tiple nodes to improve performance. Centralized scheduling therefore requires some jus-

tification; especially given the alternative distributed hash table approach. This section

discusses the difficulties in transfer scheduling using that abstraction.

A naive straw-man approach is to place data into the DHT structure directly, as a

value keyed by start/end byte. That is, hash the start/end byte to determine where the data

should be stored, then send it to that node. This is a bad idea.

First, it creates at least one unnecessary transfer to copy source data to one or more

other nodes. They may be far away, have limited bandwidth, limited disk space, or high

load– the DHT abstraction hides this from the user. In general, our nodes need not be

homogeneous, but DHTs treat them as such2, causing performance problems.

Second, popular data induces high server load. The best way to do load balancing

in a DHT is still under active research. It can be partially addressed by caching (as in

Coral [45]), but caching does not help one-time transfers, those with low sharing, or those

with mutable data. It may add latency to locate data, and the cache object abstraction

meshes poorly with byte-range-based transfers.

A third problem is that we are not exploiting known problem constraints given to

CEP: data may already have high replication and exist near topotential clients. Forcing the

DHT abstraction throws away that valuable structure.

A fourth problem is central to the abstraction provided by DHTs: they provide

exact match key lookups. In contrast, we support “fuzzy” matching based on overlapping

byte ranges. There are only three ways to support such matching in the DHT abstraction.

First is registering block information for all subranges that might be queried. Second is

partial centralization, via e.g. partitioning the range-space over peers and having each peer

2Some peer-to-peer systems support limited heterogeneity via “supernodes,” but this single-level hierar-
chy does not solve the problem.
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manage every range which overlaps its subset. Then peers cando a limited amount of fuzzy

matching on requests. Third is simply treating the range as aset of blocks which can be

individually exact-matched, abandoning the idea of ranges.

The first approach is too expensive, enumerating(s(s + 1))/2 keys for a range of

sizes. By creating a multi-resolution map this can be improved toO(logs) keys; but the

lowest-resolution maps induce high load on the nodes managing them. In either case, de-

termining the best replica has little relation to finding therange in a DHT; although finding

somematch is a prerequisite. The second approach has problems with load balancing as

most data tends to fall in a small subset of the total264 name space. The third approach

fundamentally changes the semantics of the problem, as discussed in the introduction.

We can partially solve these issues with another layer of abstraction. Instead of

storing data directly in the DHT, we store block mappings. Peers publish block IDs as keys,

and peer addresses as values. Now peers look up data, find an exact match on the block

ID, and contact the peer to download the block. This avoids the initial copy, but not other

problems. We need to knowwhich value is returned when duplicate keys are registered;

multiple peers may all say “I have this block.” The behavior is typically undefined: DHTs

offer no strong consistency guarantees for multiple concurrent servers. Optimizing load

means getting thebestvalue, not justsomevalue.

This leads to still another layer of abstraction. Peers lookup the block ID in the

DHT and find a “manager” peer. They contact that peer, which maintains a list of servers for

the block. It replies with the best replica(s) based on locality, load, or another metric. This

is essentially what file systems built on DHTs do to provide consistency. Unfortunately, it

still does not completely address the problem; in the worst case, with a single large/popular

block, the manager peer has to maintain as much state as a centralized server. Peers also

have insufficient information to perform global load balancing or efficiently detect locality.
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In summary, using a DHT to distribute transfer scheduling metadata is fraught

with problems: poor network locality, poor toleration of heterogeneous nodes, issues with

load sharing/hot spots, insufficient consistency/mutability semantics, and exact-match only

lookup. To address these problems, one must construct extrainfrastructure augmenting the

DHT. Unfortunately such infrastructure tends to subvert the benefits of using a DHT in

the first place. Finally, even if all these issues were solved, how to globally optimize data

transfer in such a structure is an open question.

The ultimate conclusion is that a DHT is the wrong abstraction for transfer schedul-

ing; or equivalently that transfer scheduling is the wrong technique for DHTs. Scheduling

and centralization go together, decentralization and replica selection heuristics go together.

We focus on hybrid centralized/decentralized approaches.Section 7.5.3 provides some

benchmarking data showing performance of the CEP metadata server and alternatives such

as a DHT metadata server.

5.4 Summary and Conclusion

This chapter introduced the interfaces to CEP and internal structure of the system.

Domain-specific interfaces with simple, versatile APIs provide users a straightforward way

to capture their constraints and efficiently perform many-to-many network transfers. Like-

wise, a simple centralized scheduler design permits efficient implementations, which we

discuss in the next chapter. Later, Chapter 7 will prove thatthese interfaces also provide

high performance in a variety of environments.

Acknowledgements: Material from this chapter, in part, appeared in “The Com-

posite Endpoint Protocol (CEP): Scalable Endpoints for Terabit Flows,” Eric Weigle and

Andrew A. Chien, Proceedings of IEEE Conference on Cluster Computing and the Grid

(CCGRID), 2005. The dissertation author was the primary investigator and author of this

paper.



Chapter 6: Implementations

The remaining evaluation in this dissertation is largely through experiments. Thus,

understanding the implementation pertains directly to proving the claims we have made.

We follow the design discussed in the prior chapter and include the best transfer scheduling

algorithms from Chapter 4. Our primary interest is in the greedy weight-based algorithm

and its derivatives, and the linear programming algorithm for comparison purposes. We do

not consider network flow or erasure coding algorithms further.

To minimize implementation cost, we leverage existing technology when possible.

We use existing reliable transports as the underlying protocol– such as TCP, GTP, and

others available in the Globus XIO framework. We exploit theMACEDON/MACE [62,

100] project for network overlays. We use various languagesand libraries as appropriate.

At a high level, there are three common approaches to designing network libraries.

The multi-process (MP) architecture uses a process to handle each task. The multi-threaded

(MT) architecture uses a thread for each task. The single-process event-driven (SPED) ar-

chitecture uses a single process to handle all tasks; they are broken into sub-tasks which are

handled by a global event loop and call-back functions. Other variants, such as the asym-

metric multi-process event-driven (AMPED) architecture [85], are a hybrid. AMPED uses

a main SPED process with a MP pool of helper processes;;this avoids problems with block-

ing IO encountered on some systems. With careful tuning, allapproaches can potentially

provide similar performance– assuming a well-behaved operating system.

This chapter describes two implementations, the infrastructure common to both,

and relevant engineering issues. Our first implementation uses the SPED architecture and

standard Unix sockets. Our second implementation uses the MT architecture; it has better

performance, supports more network protocols, schedulingalgorithms, and other features.

The latter implementation is used for our simulations and applications.

93
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6.1 Version 1: Event-Based Implementation

The initial implementation used aselect() loop driven event model following

the state machine from Figure 5.1. Development was on Linux (Debian and Red Hat)

targeting the ROCKS cluster environment, which is the standard foundation for OptIPuter

system software. We used the Gnu C++ compiler, Flex/Bison, the standard template and

boost [35] libraries, and standard Unix/Posix sockets interface. Core code is about 5,000

lines of mixed C/C++ and a small amount of lex/yacc for parsing configuration files.

This prototype implementation was based on message passingand use of nonblock-

ing calls. As proof of concept this was fine, but it had many limitations; lack of support for

algorithms, interfaces, and other features discussed in prior chapters. Source code was not

made publicly available.

The first limitation was that user programs could not be eventbased: two se-

lect loops in one program will generally not work. This is whyother event-based li-

braries provide their own event model to which an application must conform. For example,

libasync [77] and Globus XIO [84] use event registration and callbackfunctions1.

Second, the implementation was inherently not thread safe;it was designed around

a single flow of control. It did not work well with the Globus XIO use model, and working

around the problem with locks and thread serialization performed poorly.

Third, the code was complicated, hard to debug, and too fragile to use as a research

platform. This resolves to the event model: any operation which might conceivably block

required its own entrance point, generally a new function. It gives a large code base where

related code is distributed undesirably– giving strange call traces. Program state must also

be maintained across these call-back functions, by explicitly allocating them, passing them

around in task-specific structures, and later deallocatingthem. Management of all this state

in is complicated and difficult in C++.

1Libasync and Globus do not interoperate; as we wish to use Globus XIO we can not use libasync.
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For example, consider reading raw network data and parsing it into variable-length

structured data. Chunks of data depend upon those read earlier; as with reading the length

of a structure, then its fields, which may also be of variable length. Implementing this

requires multiple call-back functions– when logically it is a single serial operation.

6.2 Version 2: Threaded Implementation

The second, threaded implementation was developed from scratch to avoid the lim-

itations of the event-based implementation. It immediately solved many of those problems.

This version is provided as a shared library and several applications for common use cases.

The library is used both for real-world tests, as the backendscheduler in our simulations,

and as a tool to add CEP features to existing applications.

We handle scheduling for satellite/terrestrial transfersas a special case, described

in Chapter 8. This code was implemented targeting simulation use only and is not in the

library: we have no real-world access to satellites.

6.2.1 Version 2a: Threaded Stand-Alone Library

This version completely rewrites CEP internals using threads (pthreads) instead of

events. This allowed us to refactor the code into a more rational object-oriented design.

The implementation includes a number of enhancements, including:

• Cleaner and more robust code base; better separation between library, API, and user

program code;

• Conversion to a dynamically linked, shared library;

• Support for multiple platforms, hardware: Multiple Linux Distributions, FreeBSD,

Mac OS X;

• Support for Globus XIO [5] and GTP [126] (Section 6.3);
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• Full API implementation (see Section 5.2);

• Full test suite with regression testing (see Section 6.4);

• Improved overall performance (see Chapter 7);

• Improved documentation.

This implementation doesnot include some features described earlier. We do not

(1) perform rate-based transfers; we perform explicit transfers. Using stock TCP as an

underlying transport protocol makes finely specified rate-based transfers effectively impos-

sible. We do not (2) centrally collect network constraints;the scheduler uses NIC speeds to

generate an explicit schedule and nodes locally optimize. We also do not (3) use dynamic

maximum transfer size detection (Section 3.1.1) or (4) the interval tree structure (Section

3.1.2); instead we set the maximum transfer a priori and use lists in the segment graph.

For development we use the same Linux platform and tools as inthe prior version,

but the software works on any Unix-like system. The core codemore than doubled to

implement the new features. We also added several supplemental pieces of application

code, scripts for common tasks, and documentation.

The threaded version avoids the problems encountered in thedevelopment of the

event-based version by naturally keeping linearly executed code together. We integrate

with user programs in a thread-safe manner, require less complicated state maintenance,

and so forth. The event handling structure is now implemented by dispatching events to

specific threads, and their structure takes care of the rest.

Another benefit is that this library implementation can be linked directly into a sim-

ulator, allowing us to use much of the same code for both real world and simulation tests.

This helps validate our results. We use simulation for large-scale exploratory research; em-

ulation or real-world tests are infeasible for some of our target environments, such as those
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with multiple 10Gbps links or satellite transponders. To test performance on such networks

we use thens-2 [116] network simulator, version 2.29.

The only unusual feature implemented for simulation purposes was the addition of

a small amount of randomized jitter. This avoids unrealistic global synchronization effects

when setting timers, selecting peers, or dropping packets.This not a problem in the real-

world, which by nature includes some nondeterminism.

This software was first made publicly available to users in 2005, via a Rocks [102]

Roll package. It is part of the OptIPuter system software package [105], which is used for

the development of future high performance grid software.

6.2.2 Version 2b: BitTorrent/Application Integration

One goal for this work was to support legacy applications– tobe able to drop in the

CEP library and improve performance with few other changes.This motivated the block-

level extensions described in Section 5.2.5, and these wereused to add transfer scheduling

functionality to BitTorrent [29].

We chose BitTorrent as it is the most popular tool for contentdistribution– account-

ing for as much as 80% of the background traffic on the Internet[87] with approximately

50 implementations [124]. Of these, we selected the BitTornado client [2] for our im-

plementation. While not the most popular client, it has source code available, reasonable

baseline performance, and the features we wanted. BitTornado is written in Python, making

exploratory modifications simple.

BitTornado and other current BitTorrent implementations manage metadata with a

hybrid centralized/peer-to-peer approach. One or moretracker nodes maintains a list of

peers and minimal state metadata. Peers fetch a list of otherpeers, and then individually

exchange information on block locations. Data is transferred between peers directly using

a local feedback mechanism.
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Structurally, this meshes well with the CEP approach. With slightly more infor-

mation, the tracker can perform the data scheduling task. Given a schedule, peers can

continue using the feedback mechanism for downloads, provided they upload at a suffi-

cient rate. Thus, half the implementation task was enhancing a BitTorrent client and tracker

with mechanisms to support transfer scheduling, partial-sharing, and sub-file transfers. The

other half was implementing the API extensions, algorithm tuning, and glueing everything

together. These changes nearly capture the desired semantics, with the exception of using

blocks instead of byte ranges.

With some BitTorrent clients now supporting selective file download, which in-

duces partial sharing at the whole-file level, this work is particularly relevant. BitTornado

supports selective download in a limited way: one may specify priorities for files in a set

or disable their download. These priorities are merely suggestions. Blocks from disabled

files may be downloaded anyway, because they are needed to checksum desired files. Low

priority files may be downloaded first, because higher priority files’ blocks are unavailable.

This selective download code was expanded and rewritten to allow specification of specific

block requests, enabling arbitrary partial-file downloads. It was also changed to enforce

hard limits on block downloads.

We extended the tracker metadata management to determine locally optimal data

transfers between peers using the greedy algorithm. Code tocollect and provide peers with

more useful information was also added (e.g. collecting network bandwidth measurements,

and ensuring replies contain peers which can supply their requests).

Our results show that this approach is general, for arbitrary levels of sharing from

disjoint to whole-file transfers; efficient, achieving low-latency and high capacity; and scal-

able, to thousands of nodes. It provides good results on highperformance networks.
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6.3 Networking Infrastructure

There are two independent network stacks in the threaded implementation, one for

sockets and another based on Globus’s eXtensible Input/Output Library [5]. XIO allows

CEP to exploit a large number of protocols being developed within its framework. Inter-

nally, all CEP file and network input/output is done through acommon IO class with a

simple read/write interface; this hides the details of the individual transport protocols. We

rely upon only the existence of a reliable, in-order protocol such as TCP.

As CEP’s core contribution is efficient data transfer in highperformance systems,

the performance of the networking portion of the implementation fundamentally affects

the performance results for the system as a whole. The rest ofthis section discussed the

implementation in more detail; the sockets/XIO transport stacks and message format.

6.3.1 Network Stacks and Transport Protocols

CEP provides two separate network stacks internally, whichare selected at compile-

time by the user. The first is a sockets-based stack targetingportability, while the second is

a Globus XIO-based stack targeting customizability.

Targeting portability limits the sockets stack to using TCP(the kernel’s SOCK-

STREAM), even on systems which natively support other protocols such as FAST or SCTP.

We also avoid OS-specific calls, e.g.sendfile(). Nonetheless, TCP’s limitations mean

that some tuning is required to achieve high performance: wemust disable Nagel’s algo-

rithm and modify socket buffer sizes [90,113].

This type of limitation is one reason why Globus XIO was developed. By providing

a unified development framework and API under whichall IO can be accomplished, the

same code can be ported to a variety of systems with differentunderlying protocols. By

utilizing the XIO network stack, we can leverage any reliable in-order I/O protocol XIO

provides without concern for the details.
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XIO provides a simple byte-stream interface with standard open-close-read-write

(OCRW) semantics. It astonishing that such a library is required 40 years after Unix in-

troduced the everything-is-a-file abstraction. Nonetheless, XIO is becoming the de facto

standard interface for bleeding edge research protocols and access to high end storage de-

vices. CEP’s XIO stack allows the user to select the appropriate protocols for their appli-

cation. As discussed earlier, we also export an XIO-like interface parallel to the sockets

interface; unfortunately we can not provide exactly the XIOinterface specification due to

the semantic difference between point-to-point and many-to-many communication.

By implementing CEP using these approaches, we get the best of both worlds.

We use the sockets version when Globus is not installed, is incorrectly installed, or when

latency/overhead are an issue. It provides a basic, portable implementation. The Globus

version is more powerful, but more complicated and less widely available. Its performs

better on certain workloads due to internal buffer management and protocol optimizations,

but worse on others for the same reasons. XIO also has some issues with overhead and it

is difficult to tune protocols effectively through the simplified OCRW interface.

One important special case is CEP’s support for GTP [126], the Group Transport

Protocol. GTP is a many-to-one rate-based UDP scheme for fairly allocating download ca-

pacity across multiple flows. When fairness between flows is important, users can compile

GTP rather than TCP for the sockets stack. Unfortunately, conflicting goals between the

scheduling techniques used by CEP and GTP tend to produce poor performance– CEP sees

fair flows as underperforming, and tries to schedule around them as bottlenecks.

Lastly, these low-level interfaces are completely separate from the APIs provided to

users (Chapter 5). Those APIs are available regardless of the underlying technology used

by CEP to transport data and metadata.
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6.3.2 Message Format

We introduced the main CEP messages in Figure 5.1 and Table 5.2. To implement

that state machine, we use the simple message format shown inTable 6.1 (page 102). All

messages begin with four common fields, and then one or more fields specific to each mes-

sage type. For efficiency reasons, we use a custom binary message format rather than a text

transfer mechanism (as with FTP or XML-based protocols), and perform serialization/de-

serialization directly rather than via an external library.

We have one field for the message type (e.g. “spawn reader”), one to identify the

database (the logical flow to which we are referring), and then the range within that database

this message concerns. We use a large field for the message type to keep the remaining

fields 32-bit aligned, to leave room for future extensions, and to allow fast type parsing.

6.4 Engineering Issues

This work focuses on the interesting research questions surrounding the problem of

transfer scheduling. However, the way we address the plethora of engineering issues when

developing a large piece of software directly affects the quality of our results. This section

discusses our regression testing framework and how we handle failures.

6.4.1 Infrastructure and Platforms

CEP’s target platform is the ubiquitous 32-bit x86 architecture, running Linux. We

also target 64-bit linux on Xeon/Opteron and OS X on PowerPC;these are found in some

OptIPuter storage and visualization clusters. After addressing issues with endian-ness,

word-length, differences between “standard” libraries, the core code runs on all these ar-

chitectures. GTP and Globus do not support 64-bit or PPC architectures, so so that code

is 32-bit x86-specific. In other words, full functionality available only on Linux/x86; else-

where only the TCP transport can be used.
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Table 6.1: Individual Message Data Fields

Message Type
Size Field

All Messages
4 Bytes Message Type
8 Bytes Database Identifier (Flow ID)
8 Bytes Start byte in global namespace
8 Bytes End byte in global namespace

Reader Spawn, Writer Spawn Messages
4 Bytes Peer ID length
2 Bytes Port
Variable Peer ID (Name or string IP address)
8 Bytes Offset within file
4 Bytes File name length
Variable File name

Get, Put, Take Messages
4 Bytes Peer ID length
2 Bytes Port
Variable Peer ID (Name or string IP address)
Variable Other metadata (transfer rate, etc.)

Write Message
Variable Binary data. Length known from message start/end byte.

Read and Quit Messages
0 Bytes No extra data. Peer is implicit in transfer state.

After the initial development effort, we created a series ofregression tests to verify

common CEP functionality. These are listed in Table 6.2. These test specific features from

the basic– does it compile, does it tolerate files larger than232 bytes– to the complex– can

it optimally schedule and execute a transfer with no 1-1 mappings.

Finally we assembled a regression testing framework for running all tests after any

change to the CEP code to detect whether bugs had been introduced. A back-end database

and PHP-based web frontend provide a useful way to check results and progress. This code

has been running since early 2006 and has helped ensure the results shown in this document

are consistent and representative even with evolution of the codebase.
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Table 6.2: CEP Regression Tests

Test Purpose
Null Does nothing. Does the regression code work?
Compilation Does CEP compile in the given configuration?
Small file Does a 1-1 small file (≈2KB) transfer work?
Medium file Does a 1-1 medium file (≈100MB) transfer work?
Large file Does a 1-1 large file (≈5GB) transfer work?
1 server 4 client Does a 1-4 scatter (disjoint data fetch) work?
4 server 1 client Does a 4-1 gather (disjoint data assemble) work?
3 server 5 client Does a many-to-many overlapping data transfer work?
Multiple file Do serial transfers (proper state cleanup) work?

6.4.2 Handling Failures

There are three classes of failures in a collective transfersystem: scheduler, server,

and client failures. Our implementation tolerates only server failure, the second class.

Surviving scheduler failure after peers have received their metadata is relatively

simple; however we have chosen not to support this. Instead,killing the scheduler in the

current implementation cleanly terminates transfers on remote nodes. This allows the user

to stop the distributed transfer easily without additionalinfrastructure or commands.

Server failure is survivable when two or more servers replicate the same data or

when the data they serve is not required by any client. In either case, the aggregate transfer

can still complete successfully. In our implementation, such failures are transparent to

the user– so long as at least one replica exists for desired data, the transfer will continue.

Section 7.7.1 looks at the performance of transfers under failure conditions.

To detect these failures, we rely heavily on the transport layer– i.e. TCP– reporting

lost connections or failing to connect. In the best case, a RESET packet will be sent allow-

ing for immediate recovery. In the worst case, a series of timeouts must occur. This may

take on the order of minutes.
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Client failure normally means that the transfer will not complete. As we are inter-

ested in aggregate termination, failure of any part means bydefinition that the aggregate

fails. The only exception is when using the weakly constrained transfer extension– which

provides sufficient semantic flexibility to allow use of other peers for recovery.

We chose not to support this due to problems detecting that a failure had even

occurred. Once work is given to peers, the scheduler has no efficient way to do so. The

best options are timeouts on “heartbeat” messages or at the expected completion time.

Heartbeats can become very expensive for large numbers of peers. A single timeout is

cheap, but by waiting so long we multiply the transfer time for each peer that fails.

6.5 Summary and Conclusion

This chapter has explained the structure of the two main implementations. The

next chapter, the longest in this dissertation, uses these implementations to experimentally

validate our ideas and analysis. This background detail puts our performance into context

and helps prove its validity.

Acknowledgements: Material from this chapter, in part, appeared in “The Com-

posite Endpoint Protocol (CEP): Scalable Endpoints for Terabit Flows,” Eric Weigle and

Andrew A. Chien, Proceedings of IEEE Conference on Cluster Computing and the Grid

(CCGRID), 2005. The dissertation author was the primary investigator and author of this

paper.



Chapter 7: Evaluation

This chapter presents experiments and analysis exploring our performance claims:

scalability, efficiency, high performance, robustness, andgenerality. It is roughly separated

into two parts; the first part covers performance of core features, while the second part

covers performance in a specific content distribution application, BitTorrent.

The first part begins with an overview of our evaluation approach, then some base-

line performance measures. We show linear systemscalability on cluster environments,

achieving up to 30Gbps in local clusters and over 10Gbps in the wide-area. After that,

we look at microbenchmarks and results in a variety of other environments; showing over

100× moreefficientcomputation using our Greedy algorithm than the baseline LPalgo-

rithm. We seehigh performanceincluding 40× faster transaction processing than Apache,

and 4-5× higher bandwidth on heterogeneous configurations than uniform striping (as in

GridFTP). Finally, we show we arerobust; we have only a 2% performance penalty under

real world server failures and negligible performance penalty with inaccurate metadata.

The second part looks at content distribution scenarios in the context of peer-to-peer

transfers with our BitTorrent/CEP hybrid. We quantify performance under a variety of par-

tial and whole-file sharing configurations. We again showhigh performanceandefficiency,

up to 8× higher bandwidth and 10× lower latency than BitTorrent;robustness, succeed-

ing when 20% of BitTorrent nodes fail; andgenerality, exceeding BitTorrent performance

under a variety of user constraints.
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7.1 Overview and Approach

While Chapters 3 and 4 supported our claims analytically, here we focus on empir-

ical evidence. Using the implementations developed in Chapter 6, we exhibit the features

and performance we have claimed on real world, emulated, andsimulated networks.

Our real-world tests were performed on the typical high performance clusters listed

in Table 7.1. “High performance” refers to x86-based machines with 1Gbps or faster links

in the LAN and 10Gbps in the WAN. The largest cluster, FWGrid [89], has over 300 nodes

(only 128 can be used at once) accessed through a batch scheduling interface. This cluster

has 32-node racks with switched 1Gbps Ethernet, and 10Gbps Ethernet between racks.

Table 7.1: Available Cluster Hardware

Name Nodes Network CPU (×2) Memory
csag-slow 32 100Mb 450MHz Pentium-II 1GB
csag-fast 24 1Gb 2.4GHz Xeon 2GB

fwgrid-opteron 94 2×1Gb 1.6GHz Opteron 2GB
fwgrid-dell-1 64 2×1Gb 2.8GHz Xeon 4GB
fwgrid-dell-2 160 2×1Gb 3.2GHz Xeon 4GB

For wide area tests, such real-world infrastructure has been unreliable and access

to remote resources has been otherwise problematic. Instead, we turn to emulation and

simulation. For emulation we use DummyNet [99] to create virtual high-latency links

between nodes on the csag-fast cluster. Unfortunately, emulation scales poorly in terms

of raw bandwidth. Even using recent developments with Xen [9] and time dilation [50]

emulation of many 10Gbps Ethernet links is infeasible.

We usens-2 [116] simulation for our largest tests. We validate these simulations

through several mechanisms to gain confidence that they accurately capture salient problem

features. First, we reproduce real-world experiments in simulation, verifying there are no

disparities. Second, results match theoretical predictions from earlier chapters. Third, man-

ual analysis matches simulation output on small configurations. Finally, thens validation

suite, which tests core features (e.g. TCP behavior), reports no problems.
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7.2 Baseline Performance

This section evaluates the performance of underlying technology used by CEP. All

the results we present here use TCP as a transport, so understanding its performance char-

acteristics on this hardware is important. Similarly, tests in Sections 7.8-7.9 use a Python

application, so understanding the Python network stack andrelated operations is important.

7.2.1 TCP Performance

Understanding TCP performance characteristics is necessary to understand the CEP

results we present below. This section provides data for stock TCP in Linux and in the ns-2

simulator. Two programs are used to test on the live network:iperf [82] and a custom

Python benchmarking tool. We use Dummynet to emulate higherdelay links. Figure 7.1

shows the bandwidth achieved for a 10 second transfer under various network delays.
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The bottom three lines show the performance of TCP without tuning. These exhibit

TCP’s well known performance problems in the wide area [68, 114, 119]. Its flow and

congestion control feedback mechanisms give poor performance when thebandwidth ×

delay product is large. For example, performance falls by a factorof 100 with only 20ms

of latency added through DummyNet. Also note that DummyNet,even configured to add

zero delay, still cuts performance by over 70%: stock TCP achieves 890Mbps directly, but

only 250Mbps through DummyNet.

Achieving good performance on even faster or higher delay links is more difficult

[25, 90, 113]. The top three lines show TCP performance with tuning. By increasing TCP

buffer sizes, using parallel flows, and increasing the length of the transfer, we can maintain

performance under increasing delay. the two “Tuned Transfer” lines show this behavior. In

contrast, if we limit the flow length to 10 seconds as before, TCP’s ramp-up time becomes

an increasing proportion of the total transfer time, and performance falls slowly as delay

increases– the “Tuned TCP” line.

Also note the 150Mbps difference between the performance oftuned transfers in

theory (ns-2 simulation) and practice (Iperf). Even with tuning, these machines cannot

achieve more than around 900Mbps (90% of the 1Gbps theoretical) due to hardware and

software limitations. This is not uncommon, particularly for machines running a firewall

or inexpensive NICs which perform some operations in software.

In terms of CPU load, Iperf tests used approximately 20% of the CPU and Python

tests used approximately 13%. The difference is due to the Python benchmarking tool

caching transfer buffers which Iperf regenerates.ns-2 does not model CPU load.
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7.2.2 Python Performance

Python, as a partially interpreted language, may seem inappropriate for high perfor-

mance tasks. However, our results show transfer speeds comparable to native C code. There

is only one critical aspect to consider: buffer management.Typically strings, which are an

immutable type in Python, are used as buffers. Therefore common buffer modifications–

such as adding headers or reassembling fragmented data– arepotentially expensive.

Using a node from the csag-fast cluster, we look at the speed of concatenating 8KB

buffers. Figure 7.2 shows the results using two algorithms:“iterative” joins buffers together

one-by-one while “one-shot” collects buffers into a list and joins them with a single call

(tojoin). We see that for older versions of Python this processing can be a significant but

avoidable performance bottleneck.
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7.3 Node Scalability: Composition

Our motivating examples (Section 2.2) included high speed transfer between clus-

ters of computers and large-scale content distribution. This section examines CEP per-

formance in such environments; in particular, aggregate bandwidth. This is our most basic

goal: being able to scalably compose multiple nodes’ flows into a single logical connection.

We test transfers using various numbers of homogeneous nodes to see how well the

system performs. Input constraints are set such that nodes will equally share load: nodeni

transfers bytes[⌊ i
n
total⌋...⌊ i+1

n
total⌋ − 1]. This is the schedule produced by the weakly

constrained transfer extension from Section 5.2.4.

7.3.1 Exploiting Local-Area Nodes

First we evaluate local area performance, as between clusters on a single campus.

We set the total amount of data sent,total, such that each node transfers 2 Gigabytes of data

user-level memory to user-level memory. Figure 7.3 graphs the aggregate bandwidth CEP

achieves on the fwgrid-opteron cluster and in simulation, for various numbers of nodes.
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The “Raw Bandwidth” and “Projected Limit” lines are for comparison purposes.

Raw bandwidth is the unattainable maximum capacity, ignoring necessary overhead such

as packet headers. The projected limit is the ideal capacitywere all nodes to run at the rate

(≈ 830Mbps) achieved by the benchmarks in Section 7.2.1.

In simulation, the Greedy and LP algorithms produce identical results. Performance

increases linearly with the addition of nodes, running at approximately 96% efficiency. The

remainder is due to packet headers– 40B/1KB = 4% overhead.

Performance is slightly below the projected value in the real world, but still grows

linearly. The difference is due to asynchrony between transfer termination and overhead in

scheduler communication. Unfortunately, we can test at most 44 node pairs (88 nodes) in

the real world due to contention for cluster resources.1 Unsurprisingly, in simulation these

results scale linearly as high as one cares to test; we have observed up to 1Tbps.

In terms of load, during these tests CPU load was approximately 60% on cluster

nodes. CPU load on the scheduler node was less than 1%. Memoryutilized is proportional

to number of flows and a user-specified amount of precached data; for these experiments it

is about 32MB per node. While not a limiting factor, CPU load is is three times that of Iperf.

Further examination shows that much of this is due to an expensive data randomization

operation; transport buffers are filled with random bytes for this benchmark. Without this,

load falls to approximately 30% but bandwidth achieved is unchanged. The remaining

‘extra’ CPU overhead is likely due to thread contention.

1Of the 94 nodes, 6 were misconfigured limiting us to 88 nodes. Larger numbers could not be concurrently
allocated for our tests.
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7.3.2 Exploiting Wide-Area Nodes

The last section showed good performance on local-area networks. Next we show

the performance a very wide-area network: the OptIPuter [117] WAN. This is a computa-

tional grid environment. Our results shows that we can exploit high capacity links (10Gbps)

to transfer large amounts of data. Due to problems with the physical hardware, we present

simulation results for this environment. Figure 7.4 shows the relevant portion of the net-

work we model.

For this test we use the clusters in San Diego (csag-fast cluster), Chicago (‘Scylla’

cluster), and Amsterdam (‘vangogh’ cluster). These are thesites which have shared com-

putational resources available. The Scylla and Van Gogh clusters are roughly equivalent

in size and configuration to the csag cluster described earlier, but in simulation the only

relevant characteristic is nodes’ network speeds: 1Gbps Ethernet per node.

San Diego

Seattle

Denver

Kansas City
Chicago

Amsterdam

Figure 7.4: The OptIPuter Wide-Area Network

The San Diego↔ Chicago link is 10Gbps with 60ms round-trip latency, while the

Chicago↔ Amsterdam link is 10Gbps with 103ms round-trip latency. This is approxi-

mately 100 times the latency of the network in the previous section, due to unavoidable

speed-of-light and queuing delays over such long distances.
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We configure a transfer as in the previous section; cluster-to-cluster transfer with

servers in San Diego and Amsterdam, and clients in Chicago. The theoretical max transfer

rate is therefore 20Gbps: 10Gbps aggregated over each server cluster. We use 16 nodes

in San Diego and Amsterdam, 32 nodes in Chicago. In aggregatewe have two “barbell”

shaped cluster-to-cluster transfers, with bottleneck of 10Gbps. Figure 7.5 shows the results

for transfers of varying size.

The peak rate experienced is about half that theoretically possible. The average

transfer rate as determined by the last flow to finish is about an eighth of the theoretical

maximum. While undesirable, this is actually exactly what we expect due to the behavior of

stock TCP in the WAN (see Section 7.2.1). The problem is that afew flows encounter losses

and take a long time to recover; dragging the aggregate performance down. Unfortunately,

increased parallelism can not help this due to the time it takes for TCP windows to open.
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Consider the Chicago-Amsterdam link. A link at 10Gbps with 100ms delay means a

125MB bandwidth-delay product. With 1KB packets, saturating such a link means senders

must have 125,000 packets “in flight” at any given time. Say a single TCP flow were

attempting to saturate such a link. A loss cuts the congestion window in half (62,500

packets) and additive increase must recover at one packet per RTT. That’s 6,250 seconds to

recover: an hour and 45 minutes.

Saturating the link therefore requires uncommonly long (10s of terabytes) trans-

fers, parallel flows, and large buffers (up to the bandwidth-delay product) throughout the

network. Parallel flows divide the recovery time and cost of asingle packet loss, but tend

to produce burstier traffic and induce correlated losses as router queues overflow. Beyond

such tuning there is little we can do to improve performance while using TCP as the under-

lying transport. On such high bandwidth-delay networks, protocols such as HS-TCP [41],

FAST [56], UDT [49], or RBUDP [52] are preferable. Unfortunately, they are not widely

supported in the real world. See section 9.4.1 for more information.

In summary, these two sets of results demonstrate the scalability results we expected

based on our high-level analysis and baseline TCP performance. To justify claims for larger

number of nodes we must turn to other benchmarking techniques.

7.4 CPU Scalability: Computation Cost

This section complements the prior by showing CPU scalability. We measure the

run time of our scheduling algorithms/infrastructure. We test schedulers on a trivial input

problem: simple striping. That is,p nodes have data and anotherp want that data. An

optimal solution is any set of 1-1 node pairings (or corresponding solutions at the segment

level). As greedy scheduling time is invariant under data layout changes, this input favors

other schedulers. It is trivial to solve by hand and should beeasy for e.g. the LP library to

solve. Figure 7.6 show the run-time of algorithms on a 3.2GHzPentium 4 processor. We

include best-fit curves for some cases, as testing them became infeasible.
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We are most interested in the LP and Greedy lines: the two mainalgorithms im-

plemented in CEP. The LP algorithm performs much worse than expected. The results of

solving the 8192-node equations took several minutes, which is unacceptable for any but

the longest transfers. This is particularly true as the transfer solution is no better than the

greedy algorithm’s schedule. That is, the time to implementthe transfer given either sched-

ule is the same. Note that the absolute time to generate a greedy schedule is less than 100

milliseconds for up to 10,000 nodes, our target scaling goal. This is less than the RTT in the

current OptIPuter WAN (103ms San Diego↔Amsterdam, as described in Section 7.3.2).

The remaining curves are for BitTorrent– which does implicit scheduling. This

resolves to selecting random peers (at the tracker) and maintaining sorted lists of commu-

nication partners (at the peer). For the implementation discussed in Section 6.2.2, these

operations are efficient up to 50,000 nodes. Beyond that, overhead of automatically sized

and type-tagged data structures use too much memory. Over 1.2GB is used for the 50,000

node case, causing the machine to go into swap. Minor implementation changes could

easily avoid this to give better results for large problem instances.
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Lastly, this graph can also be interpreted as scalability interms of segments; there is

one segment per peer in the input constraints. If we instead schedule two peers and vary the

number of segments, we get the same results. Altogether, CPUcapacity is not a limitation

for our target environments – provided we use the greedy scheduler.

7.5 Network Scalability: Metadata and Bounds

This section breaks down the network features limiting scalability. This resolves

to metadata limitations for the whole system, as data transfer bounds can be avoided by

adding more nodes. We walk through the timeline for a CEP transfer, show that the sched-

uler can theoretically support over 100k transfers on a 1Gbps link, and present network

benchmarking results supporting these values.

7.5.1 Transfer Timeline

This section shows that, unsurprisingly, metadata transfer time is insignificant com-

pared to data transfer time for large transfers. Given the CEP architecture, even slow cen-

tralized schedulers have sufficient bandwidth to support large numbers of peers. Table 7.2

shows the timeline of events during a CEP transfer and overhead involved. This is for the

centralized ‘push’ use model.

Table 7.2: Transfer Time Analysis (milliseconds)

Time (ms) Percent Task
3-5rtt ≈ 50 .28 Spawn remote client/server threads
1 rtt ≈ 10 .06 Request scheduling data, peers→ master
n/100 ≈ 1 .0056 Calculate schedule, See Section 7.4
1 rtt ≈ 10 .06 Reply with schedule, master→ peers
3-5rtt ≈ 50 .28 Peers connect to each other
≈17650 99.26 Lower bound data transfer time; 2GB @ 1Gbps Ethernet

1 rtt ≈ 10 .06 Update master; termination message

≈ 17782 100 Total
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First, the scheduler spawns peers on all machines. This takes around 4 round-trip

times; time for TCP handshaking plus data send/acknowledgement. Peers then request

orders from the master and wait for its reply. Finally they perform the desired transfer and

tell the master when they finish.

The important things to note are that (1) data transfer dominates the total transfer

time and (2) almost all events occur in parallel. Peers are spawned in parallel, possibly at

the same time scheduling is done. Peers can be spawned with immediate transfer tasks.

Peers can begin transfers before others have been spawned. The only ordering constraints

are that scheduling must occur before peers receive their schedule, and individual peers

must start, receive their schedule, transfer, and then stop.

7.5.2 Calculating Bandwidth Required

The analysis above assumed the scheduler had sufficient capacity– only network

delay mattered. Now we show bounds on bandwidth required by the scheduler node: it can

theoretically manage over 120,000 peers/second using a 1Gbps link. Peers have no related

scalability issues; they generally communicate with only ahandful of other nodes.

Setting up a TCP connection typically requires three 40-byte packets, and peer

metadata is around 60 bytes per record. The spawn, request/reply, and termination each

carry the record. In sum, this is less than 1KB/peer for a simple striped transfer (1 record

per peer). This network bandwidth will not be a problem for our target environments- a

1Gbps can transfer over 120,000 1KB records per second.

In more detail, a data constraint record requires: an 8 byte transfer ID, 2×8-byte

integers specifying the range, and the name/port of the peer. This is commonly around 60

bytes, depending on the peer name length. With multiple records/peer, we can amortize

that cost and asymptotically approach 16 bytes (begin/end of range) per record. Network

constraint records are similar, about 70 bytes: two peer names and 4 bytes for bandwidth.

However, the centralized scheduler does not collect this information in these experiments.
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All data collected needs to be stored. If each record averages about 60 bytes, 10,000

records only take 600KB. Including management overhead, this may grow to 1MB. This

memory is obviously not going to be a system bottleneck. On the other hand, kernel mem-

ory is also used for network buffers. By default, each TCP socket can claim up to 64KB of

memory. This can be tuned down to 16KB, which is enough for 16,000 peers in 256MB

of memory. Other tuning is required to handle this many concurrent TCP connections in

practice [60]. An alternative approach is use of UDP with manually added reliability. In

either case, memory will not be a problem for our target environments.

7.5.3 Testing Network Scalability

To physically test the networking portion of the centralized scheduler, we created

a benchmarking client. It makes metadata requests but does no actual data transfer. For

comparison purposes we include benchmark data for Apache [44] and the Pastry DHT

[101].

Apache results are Apache 2.0.58 benchmark data. This is useful as one alternative

to CEP’s custom scheduler is a web service implemented usingcommodity software; a rea-

sonable choice would be Apache, the most commonly used web server. We use the Apache

2.0.52 server with up to 15 preforked processes and the ApacheBench client version 2.0.41.

Pastry results are from benchmarks of a simple metadata server written using the

MACE [62] implementation of Pastry. Multiple peers form themetadata “server” and

clients make requests as before. This is another potential alternative approach as described

in Section 5.3.3. Note that clients donot themselves join the overlay. This naive approach

performs very poorly– up to 100× worse than the results we present here– as lookup costs

grow with the size of the DHT and keys are shuffled among nodes.

Figure 7.7 shows the transaction processing (read) rate forCEP, Apache, and Pastry

between csag-fast cluster nodes. We perform five trials, with 5000 requests of 64-bytes

each. Tests stop at a concurrency of 1020 or lower due to file descriptor/thread limitations.
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This figure shows CEP performance comparable to the rough 120,000 estimate

above. CEP performance falls after 64 due to thread management limitations. Apache per-

formance improves and stays roughly stable as the concurrency grows; a desirable property.

Pastry performance follows roughly the same pattern. For larger DHTs (i.e. the 64-node

line shown here) performance falls due to increased lookup cost.
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Figure 7.7: Transaction Processing in CEP, Apache, and Pastry

We have also tested with other DHT implementations. First was OpenDHT [96], a

service-oriented implementation of Bamboo running on PlanetLab [91]. Unfortunately, the

system is heavily used; storing or retrieving even small values was unreliable due to capac-

ity limitations. It was also “embarrassingly slow” [95], taking on average 7.25 seconds to

retrieve a value over a dozen trials.

MIT’s Chord [108] implementation was also not suitable for our purposes. By

default it uses erasure codes; storing a single block requires saving data to 16 nodes. This

provides excellent robustness under failure but at the costof performance.
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Together, these results show the desired scalability in terms of bandwidth. A single

scheduler can handle large numbers of metadata requests. Large numbers of peers can be

serviced with low latency provided their requests are not synchronized– ideally no more

than 64 requests occur at once.

The last several sections have shown that system capacity– CPU, Memory, and

network capacity– are sufficient to scale to desired problemsizes. Environments with up

to tens of thousands of peers can be handled on commodity hardware, as we have claimed.

Now we turn to our claims of generality and high resolution showing that CEP can handle

more complex constraints.

7.6 Exploiting Widely Varied Constraints

This section shows the generality of our approach by evaluation on a wide variety

of environments. CEP performs well regardless of node capacity, network capacity, or data

constraints. First we show the effects of heterogeneous nodes– we can exploit all nodes

efficiently, regardless of their capabilities. Then we showthe effects of heterogeneous data

access– we can exploit differing data layouts to optimize performance.

7.6.1 Exploiting Node Heterogeneity

To show the advantages of utilizing heterogeneous nodes rather than enforcing one

to use a homogeneous cluster, we test CEP versus the baselineuniform striping mechanism

that tools like GridFTP [4] use.

Using 16 total nodes, 10 taken from the csag-slow cluster and6 from the csag-fast

cluster, we perform a 1GB transfer. Using the weakly-constrained transfer extension, half

of the nodes from each set are allocated as senders and the other half receivers. We begin

by testing transfers using just the slower set until we run out, then we allocate nodes from

the faster set. Figure 7.8 shows the bandwidth achieved in this transfer.
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Figure 7.8: Exploiting Node Heterogeneity with CEP

The CEP and uniform striping schemes give identical performance when nodes

are homogeneous. When faster nodes are added (at point “5+1”referring to all five slow

senders plus one fast sender in use), the greedy/LP schedulers achieve far better perfor-

mance. We effectively shift to the performance curve for thefaster nodes. The simple,

uniform striping scheme remains limited by the slowest nodeused. Seen another way, we

can enforce fairness by providing tight constraints. But given transfer flexibility, we can

optimize– in fact we need the flexibility to enable optimization with heterogeneity.

The simulations reveal diminishing returns as the number ofnodes increases. That

is, node management and scheduling overhead become a largerproportion of the transfer

time as the number of nodes grows. This was lost in the noise ofthe real-world tests.

One side effect of this behavior is that we need not worry about accurately allo-

cating nodes based on a priori knowledge. With CEP a user can attempt a transfer, and if

performance is inadequate, simply add resources until performance is acceptable. This ad-

dition can be done without concern for details of homogeneity, e.g. whether the additional

resources are fast new nodes or a much slower cluster from several years ago.
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7.6.2 Exploiting Data Access Flexibility

Prior tests used the weakly constrained transfer extension, i.e. assumed a fixed

level of data access, to allow optimization under varied node heterogeneity. Now we look

at the other half of the problem: given a fixed set of nodes, howto optimize under varying

levels of data access. Logically, the more server replicas,the more optimization potential.

Zipf-like distributions are common due to changing “hot”/popular data over time.

Given a fixed set of 8 heterogeneous nodes, four each from the csag-slow and csag-

fast clusters, we explore two different data layout schemes. Each varies the amount of data

each node may access from disjoint-1GB/n per node, to total- the whole1GB per node.

The first layout sets allocations serially, starting with the faster nodes. Thus over-

lap falls only on the slower nodes. This is the optimal layout, as the fast nodes can be

maximally exploited in low-sharing environments, but is somewhat unrealistic. Figure 7.9

shows the results for this layout scheme.
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With uniform striping, regardless of the data access flexibility, performance is the

same. With flexibility, the more overlap, the higher performance. Improvement flattens out

as the hardware is saturated. This gain is due to the scheduler shifting work to more pow-

erful nodes until all nodes are equally saturated. Beyond that point, additional flexibility

cannot give additional performance.

The second layout sets allocations equally. First we spreadeach ofp peerspi along

on a virtual line of lengths (s=total transfer size). A peer’s data request is centered at

c = (i + 1/2) ∗ (s/p). We then vary the amount of data,d, each peer downloads from1 to

2s. For a givend each peerpi downloads frommax(0, c − d/2) to min(c + d/2, s − 1).

Ford < (s/p) these are disjoint; for largerd peers’ requests have increasing overlap.

Virtual Line: Disjoint Peer Data

Virtual Line: Overlapping Peer Data

New Exploitable Overlap

The performance of transfers using this second layout is a linear transformation of

the results above. In particular, it stretches the graph horizontally. The only value that

matters is how much of the data the fast nodes can access- in this layout that is exactly

the upper bound of the second fast node’s data:c + d
2
. As we increase the percent of data

accessible, only half of the second nodes’ allocation newlyoverlaps that of the slow nodes.

Thus performance improvements are one quarter those observed in the first layout.

At a higher level, we learn two things from these results. First, that CEP can capture

both explicit and flexible user constraints– forcing the scheduler to transfer use uniform

striping, or allowing it to allocate capacity more intelligently. Second, that the weakly-

constrained transfer extension is exactly the 100% flexibility point at the right side of this

graph. On homogeneous nodes, the scheduler ignores that flexibility and produces a striped

layout. On heterogeneous nodes, the scheduler optimizes using node capacity.
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7.7 Performing Under Stress

This section determines the performance of CEP when things go wrong. In particu-

lar, we look at the effects of node failure on transfer performance, and how inaccurate data

affects transfer scheduling. In particular these address the claims made in Section 4.3.3 that

nodes can make progress under failure and that we tolerate inaccurate information.

7.7.1 Tolerating Node Failure

This section looks at the effectiveness of failure recoveryas discussed in Section

6.4.2. Performance under failure obviously depends greatly on the type of failure. As we

are interested in the mechanism itself, we focus on a simple configuration which should

ideally show little or no performance degradation under failure.

This configuration consists of a receiver-limited transfer; for a set of disjoint seg-

ments, two servers completely replicate each segment, and one receiver desires each seg-

ment. All nodes are homogeneous; thus servers are only on average half utilized, and the

failure of either server in a pair should be recoverable without affecting performance.

Using 16 nodes (10 servers, 5 clients, 1 scheduler) from the csag-fast cluster, we

configure a transfer such that each receiver downloads 2GB ofdata. After starting the

transfer, we manually kill from zero to half the servers. Figure 7.10 shows the results.

As desired, performance is roughly constant regardless of the number of servers

lost. Any transfers in progress to a dead node receive a TCP reset message, and they

immediately shift their work to the next available replica.This failover occurs on the order

of milliseconds. The only costs involved are some wasted work when the failure occurs

right before a chunk (by default, 16MB) is finished– that chunk must be downloaded again.

In general the cost includes overhead to initiate new connections and wait for TCP windows

to open. This potentially wastes several round-trip times before performance recovers.
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Figure 7.10: CEP Performance Under Node Failure

7.7.2 Tolerating Inaccurate Scheduling Data

Section 4.5.2 outlined several ways in which metadata couldbe wrong. Data con-

straint metadata can only be wrong due to malicious peers, inwhich case the entire system

can be brought down, or due to misconfiguration, in which caseonly the given peer is

harmed. In contrast, network constraint metadata is easilymisestimated.

As before, performance results depend heavily on data constraints. Here we use a

simple topology: two servers with 2GB of identical data and one client for that data. The

client has an independent 1Gbps link to each server. We vary the capacity estimation for

one of the links from 0 upwards. Figure 7.11 shows the output for this configuration.

The ideal line shows the bound due to actual physical capacity, while the “as sched-

uled” line shows the transfer performance expected exactlyfollowing the greedy scheduler

output. An accurate estimation of 1Gbps would equally download data from both servers,

producing maximal performance. Overestimating link capacity overloads that server, while

underestimating link capacity overloads the other server.This curve shows that the greedy

scheduler is tolerant to error: in dividing capacity among peers, it divides errors.
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The “actual” line shows the performance actually running this simulation. Regard-

less of the schedule provided, the client receives information on both available servers.

It begins downloading blocks from both as fast as possible– using the optimistic parallel

chunk download mechanism described in Listing 4.8 and also on Page 70.
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Figure 7.11: Performance Effects of Capacity Misestimation in CEP

In this trivial network, no other peers compete for bandwidth, so performance is

limited only by actual link capacity. Put another way, the erroneous estimate is quickly

corrected based on actual transfer performance; this behavior is part of the reason we focus

on data constraints rather than network constraints. In more complex network configura-

tions other peers may also place demands on servers. These second order effects may limit

us to the rates as scheduled, however inaccurate.
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7.8 Outperforming Traditional Content Distribution

The remainder of this chapter focuses on integration with the BitTorrent peer-to-

peer content distribution application. We show how the addition of enhanced CEP features

(see Section 6.2.2, page 97) to the BitTornado client increases bandwidth by a factor of 4-8

depending on the level of sharing, decreases latency by an order of magnitude, provides

higher fairness, requires less tuning, and provides the richer partial-file transfer semantics

we desire.

Tests are performed with cold caches to allow fair comparison across tests. Short

transfers are ultimately limited to disk bandwidth. Longertransfers can theoretically ex-

ploit caching, particularly in high-sharing configurations, but BitTorrent’s RRF block selec-

tion interacts poorly with caching algorithms. These per-node features are not immediately

obvious as our experiments focus on aggregate performance.

[ The remainder of this page has been intentionally left blankto ensure subsequent

figures fall on the same page as their associated text.]
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7.8.1 BitTorrent Baseline Performance

First we look at performance of stock BitTorrent. This places the results for our

later modifications into context, and shows several features relevant to later discussion.

Using the csag-fast cluster, we determine completion timesfor various numbers of nodes

performing a 256MB transfer. For reference, the performance of a 128-node multicast tree

is given as a baseline.2 Figure 7.12 shows a graph of these results.

Completion time is roughly logarithmic in the number of nodes. BitTorrent scales

well with high receiver sharing. However, the total completion time is longer than neces-

sary; a naive multicast tree would get data to all peers much more quickly. Also, there is

a large startup time: for most of a transfer few peers complete, then suddenly the majority

of peers finish with a few stragglers. The primary reason for these results are the source’s

behavior in BitTorrent: it has to verify the entire file before it can be shared, and tries to

distribute blocks across the whole network versus just to carefully selected peers.
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Figure 7.12: BitTorrent Peers Complete vs. Time

2This is without pipelining; more intelligent multicast trees or meshes can do even better.
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7.8.2 Performance of CEP’s High Sharing Optimization

Now we look at aggregate completion times of BitTorrent and CEP, both for the

original “default” greedy algorithm and with the “high sharing” optimization. The LP

algorithm’s performance is equivalent to the default greedy algorithm’s and is not shown.

Figure 7.13 shows the results using the same transfer configuration as the previous test.

For small numbers of peers, the stock CEP algorithm is best– these are effectively

low-sharing environments and the source can supply all peers at high speed. As the num-

ber of peers grows, however, the source is saturated and the completion time grows (source

transfer rate is consistently around 800Mbps for all tests). BitTorrent scales as in the prior

graph. The High Sharing optimization initially performs intermediate the others; with few

peers the two-phase transfer induces higher overhead than the default one-phase CEP trans-

fer. As the number of peers grows, however, it outperforms BitTorrent by 25-40%.
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7.8.3 Fairness and Performance Variability

The distribution of completion times for peers is useful formeasuring the effective-

ness of BitTorrent and CEP fairness mechanisms. Figure 7.14shows the actual and sorted

peer completion time distribution for another run of the 128-node case presented above.

We evaluate fairness via Jain’s measure [55]; the farther this value is from 1.0, the less fair

the system. Withti as the termination time for peeri, fairness is:(
∑

ti)
2/(n ·

∑

t2i ).

The spread of the completion times is quite large; the first peer receiving a full copy

in 50 seconds while the slowest taking almost 90 seconds– 80%longer. While we would

like to see more consistent results, the majority of peers fall into a uniform distribution

about the mean quite nicely. We get get fairness values of 0.992 for CEP and 0.988 for

BitTorrent– effectively the same.
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7.9 Tuning BitTorrent/CEP for High Performance

Section 7.2.1 showed TCP tuning necessary for high bandwidth in the WAN. Here

we focus on the parameters available within BitTorrent. Some are accessible via the

command-line while others require source code changes. CEPhas fewer user “knobs.”

For a fair comparison, we try to maximize performance varying different parameters. By

comparing results we discover which provide the most benefitand which are insignificant.

7.9.1 BitTorrent Tuning Parameters

This section evaluates the effects of BitTorrent tuning; CEP has fewer parameters

(see Section 4.5.3) and performance is insensitive to theirvalues. We perform a 256MB

whole-file transfer with 32 nodes. “Baseline” is the defaultBitTorrent performance from

CVS, “No Double Check” turns off potentially costly download verification, “More Up-

loads” increases the number of concurrent uploads to 20, “More Unchokes” allows more

data transfers outside the tit-for-tat scheme, “Super-Seed” sends a copy of each block into

the network before repeating, and “Larger Slices” sets the maximal transfer size to 1MB.

Table 7.3: BitTorrent Tuning Parameters

Time (s) Time (s)
Tuning Method Mean Ratio Tuning Method Mean Ratio
Baseline 48.1 100% More Unchokes 52.5 109%
No Double Check 48.9 101% Super-Seed 90.6 188%
More Uploads 52.3 108% Larger Slices 154.9 322%

Without exception, all of this “tuning” hurt performance. In fact all variations of

parameters we tried, other than the defaults, hurt performance– the system is surprisingly

well tuned even though it was designed for Internet topologies versus high performance

networks. Super seed in general performs poorly as it is artificially limiting transfer speeds

in favor of block diversity. Larger slices perform poorly due to problems with blocking and

string management overhead in Python (see Section 7.2.2).
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7.9.2 Block and Chunk Size

The most critical BitTorrent tuning parameter, typically selected automatically, is

block size. CEP is range-based internally, but we use maximum transfer size (the “chunk”

size) which is roughly analagous to the block size in BitTorrent (see Section 3.1.1).

For this test, we look at the performance of transfers varying either the number

of blocks (with a fixed 1KB block size) or the size of blocks (with a fixed 32 blocks per

transfer) with various file sizes in BitTorrent. For CEP we set the maximum chunk size to

be 1
32

of the file size; the same idea as having a fixed 32 blocks per transfer. We run 5 trials

and report the mean.
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Figure 7.15: Performance Effects of BitTorrent Block Size

Figure 7.15 demonstrates three things for this environment. First, BitTorrent trans-

fers of 1MB are necessary and sufficient to amortize global overhead such as system initial-

ization, file read time, network connection time, etc. Second, BitTorrent works well with

block sizes from 1KB to 2MB, but have issues with blocks 4MB orlarger. Third, metadata

management can handle up to 100,000 blocks but does not scalebeyond that.
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For CEP, the bigger the maximum transfer size the better: it produces lower over-

head. The internal mechanisms, being range based, depend only weakly on the transfer

size. Performance improves as file size grows, with performance eventually flattening off,

but improving again as disk caching and readahead becomes effective. Disk bandwidth and

file system performance provide an upper bound of around 200Mbps (25MBps) on transfer

speed for large files.

To achieve the same performance, higher latency networks require proportionally

larger transfers with higher parallelism– primarily to work around issues using stock TCP

for data transport. Similarly, larger blocks are desirableon such networks to enable TCP

congestion windows to fully open; this requires further tuning of internal BitTorrent pa-

rameters and changing buffer management schemes (see Section 7.9 for more informa-

tion). Lastly, with fewer than 32 blocks, the scheduling techniques in the system can not

be exploited effectively and performance also suffers.

Given the performance in Figure 7.15 and good selection of block size, BitTorrent

will provide high bandwidth on transfers from 1MB and 200GB.BitTornado uses Table 7.4

to automatically select block size given total torrent size. Its selection keeps the number

of blocks in the desired range for file sizes up this 200GB limit; however the larger block

sizes induce high latency and overhead for partial-file transfers. CEP’s default maximum

transfer size (16MB) is enough to saturate a single disk’s bandwidth, but does not induce

the problems seen with similarly large block sizes in BitTorrent.

Table 7.4: Automatic Block Size Selection in BitTornado

Torrent Size Block Size Blocks Torrent Size Block Size Blocks
[0-4MB) 32KB 1-128 [512MB-2GB) 512KB 1024-4096
[4MB-16MB) 64KB 64-256 [2GB-8GB) 1MB 2048-8192
[16MB-64MB) 128KB 128-512 [8GB-∞) 2MB 4096+
[64MB-512MB) 256KB 256-1024
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7.10 Enabling Partial Content Distribution

This section looks at the performance of partial-file transfers– the purpose and jus-

tification for CEP’s transfer scheduling mechanisms. Our results show that CEP can opti-

mize using transfer constraints to produce efficient, high-speed transfers under a variety of

conditions. In contrast, the stock approach has poor performance for partial content dis-

tribution problems– it was designed for high-sharing environments. In conjunction with

the prior section, these results show the fundamental differences between whole-file and

partial-file transfer techniques.

7.10.1 Performance and Sharing

The first test examines performance based on sharing. This isthe central feature

distinguishing performance of different systems. Using the ‘virtual line’ data layout as

described in Section 7.6.2, we vary the sharing factor from 0to 1. We use a fixed 32 nodes

and 256MB file size; these values are in the range where all systems performed reasonably.

We plot the mean with error bars showing the standard deviation.
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With no sharing among peers, stock CEP is able to most efficiently use the source’s

upload capacity to satisfy peer demands. The bandwidth achieved is invariant under the

level of sharing: it is limited by network link capacity and stack performance.

BitTorrent performs poorly for low sharing, but quickly improves. A sharing ratio

of 0.3 means each peer shares approximately 1/3 of its data with every other (although

different subsets), meaning there are a large number of possible sources for desired blocks.

CEP with the high sharing optimization is roughly equivalent to stock TCP for low

sharing; for intermediate sharing the inefficiency of a two-phase transfer mechanism keeps

performance below that of BitTorrent. For higher sharing, however, the initial seeding

phase allows for very efficient transfers. The main problem we see here is high variability

due to the well-known ‘straggler’ problem: the last peer to finish determines the system

termination time, and hence aggregate bandwidth. We are looking ways to minimize the

impact of such peers in the future.
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7.10.2 Data Latency

Our next test focuses on the lowest-sharing case, when data is striped across a clus-

ter. This is how GridFTP [4] transfers work. Each peer must locate and retrieve a small

1KB block of data from the single source. Metadata management rather than transfer per-

formance is being exercised. Figure 7.17 shows the completion time for increasing numbers

of peers. Error bars are shown for the min and max over 5 trials.

As the number of peers grows, the first peer to complete its transfer tends to ter-

minate in about the same amount of time. However, the distribution of times continually

grows, with the last peer to detect and download its block taking 10 times longer for 25

peers than for 2 peers (note the log scale). The stock management schemes in BitTorrent

rely heavily on local peers being able to provide copies of blocks. When that assumption

fails, the system can not efficiently satisfy complex transfer requirements. In contrast, CEP

has an order of magnitude lower latency and smaller result deviation.
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7.10.3 The Failure of High-Sharing Techniques

The next graph extends the ideas above, showing the effects of parallelized down-

loads. With a single sender we increase the number of peers requesting disjoint blocks out

of a 128MB file and report the bandwidth per peer averaged over5 tests. Error bars are

shown to one standard deviation.

As before, there is a large amount of variation in the results; while the general

pattern is what we expect, it is unpredictable. Furthermore, around 60 peers, the default

number of peers the tracker replies with when a peer makes a metadata request, failures

start occurring. Some peers do not get the server that has their block in the response set,

and fail to do so before the 20 minute test is over.

The flat metadata model in BitTorrent can not cope with this type of disjoint data.

Ironically enough, this is tied to a transitory performanceincrease; BitTorrent is empirically

known to perform best with 40-60 peers (hence the default) and this is seen in the data. Yet

as the number of peers continues to grow, the difficulty in finding a server with a desired

block begins to dominate, and performance falls drastically.

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70  80  90  100
 0

 5

 10

 15

 20

 25

 30

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

bp
s)

F
ai

lu
re

s 
(%

)

Total BitTorrent Peers

Transfer Rate
Actual Failures

Expected Failures

Figure 7.18: Partial Transfer Rate and BitTorrent Failures



138

The “expected failures” line plots the expected portion of peers tonot find a server

with their desired block. That is, the probability the server with their block falls outside

the set of peers they know about: (p-60)/p. This is divided by the average number of peer

re-request timeouts, 2 for this test.

The final graph of this section (Figure 7.19) shows the same data from the prior

graph but includes stock CEP performance. Ideally, increased parallelism should increase

performance up to the sender’s capacity and remain consistent until overhead begins to

dominate. We see exactly that: CEP performance peaks around64 nodes (when each peer

is downloading 4MB in parallel) and falls beyond that.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70  80  90  100

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

bp
s)

Total Peers

CEP, Greedy Scheduling
BitTorrent, Stock Scheduling

Figure 7.19: Partial Transfer Rate with CEP and BitTorrent



139

7.11 Summary and Conclusion

This chapter has presented results from simulation, emulation, and real-world tests

of CEP and related approaches. These show that the core features of CEP provide high

performance, efficiency, robustness, and generality across a variety of environments. The

techniques scale to tens of thousands of nodes, provide 4-5× higher bandwidth on hetero-

geneous configurations than uniform striping, 10-40× faster transaction processing than

Apache or DHT approaches, and 4-8× higher bandwidth with 10× lower latency than Bit-

Torrent.
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Chapter 8: Satellite/Terrestrial Networks

The core work of this dissertation focuses on fast, wired networks for high per-

formance computing. However, the infrastructure and transfer scheduling techniques are

useful in more constrained environments. In particular, weare interested in content distri-

bution on Satellite/Terrestrial Networks. Such networks are commonly used for distribution

of large amounts of data– typically video– from a single source to a number of geographi-

cally dispersed destinations.

This chapter reuses the centralized scheduler, metadata collection, and transfer

scheduling idea, but with a new algorithm and implementation. Section 8.1 explains why

the problem and solution differ from the rest of this dissertation. Section 8.2 presents the

new algorithms and infrastructure required. Section 8.3 evaluates these techniques using

the criteria from Chapter 7, showing good performance.

8.1 Overview

Making the most of both satellite and terrestrial networks requires specialized ex-

tensions to the techniques described earlier. These dramatically improve performance, but

are only appropriate in this particular case. The differences are due to the (1) satellite

broadcast characteristics and (2) level of sharing- traditional content distribution means to-

tal sharing in demand, rather than the partial sharing that has been our focus. This section

discusses the unique problems involved and the target environment in more detail.

Our approach has the following desirable properties: it (1)corrects for large er-

ror/loss rates- 5% or more; (2) scales in the file size- to gigabytes- and number of nodes-

to 1000s+; (3) provides low latency-<400ms; (4) is efficient- low network, memory over-

head, globally minimizes cost; (5) is fair- different peersshare equally; (6) and it is user

tunable- user may control peering behavior.

140
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8.1.1 Uniqueness of Satellite/Terrestrial Content Distribution

In contrast to the general transfer scheduling problems described in Chapter 2, con-

tent distribution on hybrid satellite/terrestrial networks has these additional characteristics:

1. Continuous transmission: nointer-transmission “free” time to recover from errors.

2. Low intra-transmission delay tolerance: data must be received within a few seconds

after it is initially sent.

3. Variable loss between uplink (to satellite) and downlinks (from satellite): loss is

lower on uplinks (by up to 10×) due to higher transmit power and antenna gain.

The PlanetLab Grand Challenge with the Public BroadcastingService (PBS) [14, 91] pro-

vides one concrete example. They transfer up to 450GB/day from PBS headquarters to ap-

proximately 180 affiliates across North America. Live transmissions require low latency-

displaying frames within a few seconds of receipt and< 40ms inter-frame jitter.

8.1.2 Details of Target Environment

Our target environment has high bandwidth in the terrestrial core network (10-40

Gbps), low access link bandwidth (128 Kbps-1.5 Mbps), and moderate satellite bandwidth

(20-40 Mbps). One common configuration for affiliates is to have T1 links (1.5 Mbps) to a

fast core network and 40 Mbps satellite transponders. Of that, 17 Mbps is used for forward

error correction (FEC) and 23 Mbps is available for user data. We will show the exact

values are less important than the ratios between them, i.e., the ratio of satellite bandwidth

to access link bandwidth defines the effectiveness of this approach.

Terrestrial parameters are roughly based on the OptIPuter [117] or AT&T core net-

work [8]. The latter covers a significant portion of the core Internet in the United States.

Extensive studies have shown minimal core loss due to congestion [40]. Terrestrial delay

is insignificant compared to satellite delay, making peer locality less important.
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Access link information is from the PBS/PlanetLab Grand Challenge correlated

with station/location information from the PBS web site [93]. Such links are too slow to

satisfy transfer requirements by themselves. Faster linkscan be acquired, but are expensive

compared to satellite transponders which can receive broadcast data at higher speeds.

Satellite links are the primary source of both delay and loss. Traditional approaches

use up to 50% of the link bandwidth for forward error-correction (FEC) and fall back on

whole file retransmission for uncorrectable FEC errors. Satellite broadcast packets arrive

in order, allowing immediate detection of loss for most cases. Error rates will vary between

0.05% to 5% depending on weather and the level of FEC.

8.2 Satellite/Terrestrial Algorithms and Design

Our approach exploits both satellite and terrestrial networks: broadcast via satellite,

recover via the terrestrial network. Receivers exchange data to detect and correct errors in

a peer-to-peer fashion. Broadcast/recovery are pipelinedand overlap for most of a trans-

mission.

We compare two designs. The first is a simple approach with a central scheduler

node that collects and maintains metadata information, andthe second is a fully peer-to-

peer system. In both designs there is a single source uplink node with the original copy

of the data. In all discussion, the one source (uplink) transmits data to the satellite, which

broadcasts it to all nodes. Recovery is initiated as soon as anode detects a loss.

The scheduler provides performance enhancements when the number of nodes is

on the order of thousands, but may be a bottleneck for larger networks. Its purpose is (1) to

provide an accurate database of data location for peers to query and (2) to enforce global

load-sharing and fairness. Both of these features are provided in a fully peer-to-peer system

at the cost of slightly higher latency and potentially lowerfairness.
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The uplink broadcasts over the satellite and concurrently acts as a peer node in the

recovery algorithm. Figure 8.1 shows this structure. Note that any peer or the uplink may

act as the scheduler, or the scheduler may be a designated node in the core network.

Uplink
Peer

Peer

Peer

Peer

High Speed,
Low Loss

High Speed,
Higher Loss

Very High
Speed,
Very Low
Loss

Low Speed,
Very Low
Loss

Satellite

Network

Terrestrial

Network

Figure 8.1: Satellite/Terrestrial Configuration

8.2.1 Primary Scheduling Algorithm

Transfer scheduling in this environment resolves to error recovery for packets lost

in the satellite broadcast. The algorithms for this are presented in Table 8.1, and they

address both metadata and data transfer. In both, data loss is detected based on a gap in the

sequence numbers in the incoming packet stream. For the purposes of this algorithm, we

treat data as blocks rather than segments; this is appropriate given total-sharing transfers.

Table 8.1: Error Recovery Algorithms

With Scheduler Without Scheduler
Node detects data block loss

Send Scheduler NACK Request block fromk peers
Scheduler picks best peerPeers say if they have block
Request block from peer Request block from first peer

Peer provides block

Provide Scheduler info: Request block from source
load, cumulative acks Source re-broadcasts/replies

In the scheduler-based algorithm, the scheduler can tell a peer where to best find a

missing block. Note that the best peer may be the original source node. Peers periodically

provide information to update the scheduler’s state used toassign recovery peers.
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In the fully distributed peer-to-peer algorithm, peers randomly askk other peers for

block information. With independent and uniform downlink loss, the probability that no

peer (out ofk peers) receives a block from the satellite is(1 − loss rate)k, which falls

rapidly whenk increases. If no peer receives the block, it is probably due to an uplink loss

and the peers will ask the source.1 If the source gets several such requests, it is effectively

certain that the block was lost on the uplink and should be rebroadcast over the satellite link

or multicast over the terrestrial network. Otherwise the block is sent to nodes individually.

Note that the peer-to-peer system incurs (1) an extra timeout for block recovery if

data is lost on the uplink or a poor set of peers was selected, and (2) slightly higher network

overhead for state communication. This is the price paid forthe extra system scalability;

DHTs have similar characteristics but high complexity and overhead for our purposes.

More rigorously, let:

N = Number of terrestrial nodes

BS = Block size

Pr(L) = Probability of loss on a satellite link

BWs, BWt = Bandwidth of satellite or terrestrial bottleneck

Tsend = Time that a block is sent(absolute)

Dsat, Dter = Max Delay to satellite (uplink↔nodes), terrestrial nodes

D[s|t] xmit = Max Delay to send a satellite or terrestrial block (BS/BWs,t)

Dtick = Delay between clock ticks (timeouts)

Tpeer = Timout for peer/scheduler response
Using this notation we can calculate aspects of the system behavior: maximal block delay,

termination time, and so forth. With uniform independent losses, the chance that a node

immediately gets any particular packet is simply(1 − Pr(L))2 since packets may be lost

on the uplink or downlink. This is the probability of “ideal”reception at timeTideal =

Tsend +Ds xmit +Dsat. If only one copy of the packet is lost, it will be detected in at worst

1Well-known techniques can be applied to avoid the “ack implosion” problem.
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one timeout, then metadata requested from the scheduler/peers, then the packet requested

from a peer and received at time at mostTideal + Dtick + 4 ·Dter + Dt xmit. When multiple

copies of a block are lost, at mostl = ⌊ (Dtick ∗ BWt)/BS⌋ losses can be recovered per

clock tick by each node thathas received the block. Then, after another (at most)Dter

those nodes can provide the block to others.

In the worst case, (1) a block is lost on the uplink so only the source has it and (2) the

source is on the terrestrial bottleneck. In this case, afterone clock tick (plus network delay)

l+1 nodes will have the block, after two ticks approximatelyl2 have it, and so on. At worst,

the last node will receive the block at timeTideal+(Dtick+Dter)·⌈loglN⌉+4·Dter+Dt xmit.

This is a desirable bound as it grows very slowly, but it is subject to a few constraints.

The first constraint is thatDtick is large compared toDt xmit andDter. If not, the

recovery algorithm breaks down – to make progress, replies to requests must arrive before

the next timeout occurs.

The second is that the satellite loss rate must be “streaming-recoverable”: the ter-

restrial links must be fast enough to always fix the satellite’s losses within a few RTTs of

when they occur. This is only true when(1− (1−Pr(L))2) · BWs < BWt or equivalently

whenPr(L) < 1 −
√

1− (BWt/BWs). This is why it is the ratio between satellite and

terrestrial speeds, rather than their absolute values, that is most important. In practice, the

maximum loss rate recoverable at streaming rates is slightly lower due to congestion losses

and transient load.

To make this concrete, when losses are streaming-recoverable, the maximum la-

tency to receive a block in our simulations is less than half asecond. If the satellite loss

is not streaming-recoverable, then losses will accrue and the delay to replace a lost packet

will grow without bound. Eventually, if the satellite transmission completes and there is no

subsequent transmission, the errors can be recovered at thespeed of the terrestrial network.

We see these features in Section 8.3.
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8.2.2 Error Recovery

The peer selection algorithm is the core of block recovery. With a scheduler, or

other metadata, we can globally optimize this step. Withoutit, we cannot improve upon

random selection. The best peer is selected as follows:

S e l e c t a random p ee r from
t h e min imal c o s t p e e r s from

a l l p e e r s which have t h e b lock .

The first selection is easy; any reasonable pseudo-random number generator suf-

fices. Similarly, the third selection is easy when information is centralized or other infras-

tructure exists to maintain it. The second selection depends on “cost.” This can be any

formula, but for our tests it is simply load: lower load, lower cost. This selection is a

trivial instance of the job scheduling or bin-packing problem where all jobs are the same

size (transferring one block). In such a case, minimizing global cost resolves to globally

balancing cost, which is exactly what this algorithm attempts to do. Thus, its optimality is

limited only by metadata accuracy.

The delay in metadata propagation means the scheduler may err by up to the number

of requests that arrive in the time it takes a packet to traverse the network. This is at most

Dt xmit + 4 ∗ Dter: Dter to return metadata,Dter to request the block,Dt xmit to send it,

Dter to traverse the network, andDter to return an ACK to the scheduler. The expected

difference is only a few blocks (belowDtick/Dt xmit) and will be self-correcting over time:

the percent difference from optimal falls as the transmission size increases. Our empirical

results show this behavior. Randomization avoids overloading individual peers during the

update period.
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8.2.3 Algorithm Features

This section explains a couple of the results that follow immediately from this algo-

rithm design (we will return to these ideas in Chapter 7). First, one benefit of the concept

of maximal streaming-recoverable loss rate is that when loss is dramatically lower, we can

exploit that fact to send less data over the satellite link. These would then be treated as

losses, and recovered on the terrestrial network. This makes sense when the cost structure

is such that cost(satellite)> ΣNcost(terrestriali), since for every satellite broadcast we must

sendN terrestrial blocks. This reduces the amount of satellite data to be sent by a few

percent when loss is low.

For satellites whose level of redundancy can be adjusted, weshould therefore set

the FEC level to the minimum tolerable by the terrestrial error correction. This value is

known from the analysis in the prior section, and with some knowledge of the satellite

error rate we can set the level of redundancy appropriately.

Second, one particularly useful cost function for scheduling in practice is as follows:

a simple (linear) weighted sum of load, link speed, link expense (i.e. cost in dollars), and

distance between peers. Link speed is required when links differ significantly in speed;

however in such a case global termination will always be determined by the slowest node in

the network given uniform loss. If losses were more common onfaster nodes, we could still

perform well. Link expense ties cost to real-world price. Distance allows us to minimize

latency; in particular for soft real time systems we can increase the cost of nodes farther

away as deadlines approach.

This approach can also help engineer the minimum cost networks that satisfy user

requirements. Specifically, when we know the parameters to the cost function and the

expected/experienced error rates at different receivers (e.g., due to climate or being on the

boundary of satellite coverage), we can determine the terrestrial bandwidth each node will

require. For example, some nodes might only need DSL lines, while others may require T-
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3. However, this must be globally optimized since we must ensure receivers have sufficient

bandwidth to peer with others– techniques such as linear programming can be used with

the cost functions to determine an appropriate global cost minimum.

8.3 Satellite/Terrestrial Evaluation

Our evaluation first demonstrates the system performance asa function of satellite

link loss. Second, we demonstrate scalability in terms of file size and number of receiver

nodes. Third, we show receipt latency is low. Fourth, we demonstrate the access links’

utilization efficiency. Finally, we show that the protocol as a whole is very fair. Together

these justify our claims.

8.3.1 Loss Recovery

The first question concerns how much loss we can recover usingthis system. We

model errors as uniform, independent burst losses using a standard Gilbert-Elliot model

per link (more complex correlated error models do not qualitatively change our results).

These initial tests are performed on a relatively simple topology– access links connect to a

single backbone router, creating a terrestrial star topology. Satellite links are 23Mbps and

terrestrial links are 1.5Mbps (T1s). Figure 8.2 shows a graph of loss rate over the satellite

links and completion time for a 100MB broadcast to 10 nodes.

As we expected, there is a sharp knee showing the point at which streaming recovery

is no longer possible. This knee is at the same point for both schemes given the same access

link speeds. With slower peer links, less loss can be recovered and knee moves lower.
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Figure 8.2: Bidirectional Loss Rate vs. Completion Time

According to our calculations in Section 8.2.1, the maximaltheoretical streaming-

recoverable loss rate is 6.5% (23Mbps∗ .065 ≈ 1.5Mbps), but we see the actual maximum

at 5%. This is about 75% of ideal recovery efficiency. The difference is primarily due

to the application’s in-order semantics; if some data in therecovery window cannot be

retrieved, recovery may temporarily stall waiting for them. This may occur when multiple

segments are lost on the uplink and exist only on the source; it requires multiple iterations

to propagate them throughout the network.

Loss rates shown above are aggregate loss, with an equal dropprobability on both

uplink and downlink. There is no reason to expect the loss rates to be equal; in fact, uplink

losses will tend to be lower. Moreover, recovery from uplinklosses and downlink losses

are distinct problems. For uplink losses, no node receives that data; it is only available from

the source. For downlink losses, most peers can provide it. Luckily, our unified solution

can solve both problems and performance is weakly tied to loss correlation. In the worst

case, all nodes can recover from the source node inlog(N) iterations of the algorithm.
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Consider Figure 8.3, which for a fixed 10% loss varies the proportion of the loss in-

curred on the uplink versus downlinks. In all cases, the total amount of data to be recovered

is the same. All that varies is the correlation of the errors.
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Figure 8.3: Effect of Uplink/Downlink Loss

As more losses occur on the uplink (loss correlation among peers grows), more

must be globally rebroadcast on the terrestrial network. This leads to overloading of the

source node, and requires multiple iterations of the peer-to-peer recovery mechanism to get

the data to all nodes. Put another way, the set of losses whichoccur on the uplink must be

broadcast on the terrestrial network. The difference in performance between 0% and 100%

of the loss occurring on the uplink is the benefit of exploiting the satellite network.

The deeper cause of this performance difference is more subtle. With a uniform loss

distribution on the downlink, as the number of nodes grows the probability that no node

has a given segment (meaning it must be retrieved from the source) grows proportional to

loss raten. On the other hand, the number of losses and the capacity to recover losses grows

proportional ton. This means that as the number of nodes grows, we have an excellent

chance of being able to recover using a peer-to-peer mechanism.
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8.3.2 Scalability

The second question concerns scalability—both in terms of file sizes and in terms

of system size (number of nodes). Ideally, completion time should be linear in the file size.

Similarly, as the number of nodes grows, the completion timeshould stay constant (below

the streaming point) and grow slowly above it (as nodes become overloaded).

To test the former, we broadcast files of sizes ranging from 1MB to 1GB under

various amounts of loss (above and below the knee in the priorgraph) using T1-speed

peers, and present the results normalized to the percent of ideal time (zero loss on the

satellite link).
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Figure 8.4: Completion Time vs. File Size

For 1-8MB transfers, network latency and other overheads dominate. Above that

size, we can effectively meet the ideal transfer time for moderately high loss rates. The

peer-to-peer system matches the scheduled scheme well but is slightly less efficient for

high loss rates– the randomized location scheme has higher overhead.

To test scalability in terms of nodes, we broadcast 100MB under 2% loss to increas-

ing number of nodes. Figure 8.5 shows completion time for this test.
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A 2% loss is streaming recoverable with 1.5Mbps peers, but ataround 128 nodes,

the capacity of the centralized Scheduler to track losses and reply with metadata is ex-

hausted. Moving the Scheduler to a 100Mbps core link shifts that knee to around 1,800

nodes. The peer-to-peer system is slightly less efficient, but scales better.

The peer-to-peer curve grows approximately with the log of the number of nodes,

as expected– this is due to data propagation requiring an additional iteration with each

doubling of the number of nodes. Larger numbers of nodes werenot simulated due to time

constraints and other limitations with the simulations/simulator; however, we reiterate that

these results satisfactorily meet the goals of our application.

8.3.3 Intra-Transfer Performance

The next logical question is how the system is performing within a transfer, i.e.,

how the different parts of the transfer progress and whetherwe meet our latency goals.

Figure 8.6 shows the aggregate data received via the satellite and terrestrial networks over

time for all 10 nodes under high-loss (10%) conditions.
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Figure 8.6: Initial Transfer and Recovery Phases

The ideal curve transfers all data over the satellite link. Our actual performance

is effectively a linear combination of the degraded satellite signal and terrestrial recovery

transmissions. For low-loss cases, both terminate at same time. For higher loss cases such

as this, we spend time after the satellite transmission has completed to recover the errors.

This graph shows that while the system is able to recover higher losses at low cost,

the satellite link may be underutilized. In such a case, we need to increase the forward

error correction slightly to bring the net satellite errorsdown; otherwise the latency grows

unacceptably (up to 32s for the last segment lost in this test).

The normal latency is captured in Figure 8.7, which shows thedifference from the

expected time of arrival for data in a 100MB broadcast to 10 peers with 2% satellite loss.

The vast majority of the data (98%) is received when expectedfrom the satellite. The 2% of

segments lost are recovered via the peer-to-peer mechanisms, with latency up to 450ms but

on average about 175ms. Each doubling of the number of peers increases the worst-case

latency we observe by approximately 50ms. The total latencyincurred is of the same order

as the baseline latency to reach and return to a geosynchronous satellite.
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Figure 8.7: Delay Due to Loss

8.3.4 System Utilization

To show system efficiency we must have high access link utilization over the du-

ration of the transmission (the core network is lightly loaded relative to its total capacity).

Figure 8.8 shows the percent of access link capacity utilized by data; that is, not including

packets corrupted, metadata, or packet header overhead using the the large core (Internet-

like) network configuration. We perform a 1GB transfer under2% loss rate on this network,

parameters representing a realistic streaming-recoverable scenario. This test uses the cen-

tralized Scheduler. Full P2P results are qualitatively thesame but have higher variability,

making for messier illustrations.

The first thing to notice is that with streaming-recoverablelosses, there is no phase

where the satellite is idle. Both networks are utilized for the whole transfer. Second, the

losses only require about 30% of the data capacity of the terrestrial network. Third, the

results are not qualitatively different than those on simpler configurations (not shown due

to space limitations). This has held true for all our tests. The primary difference is that the

backbone structure creates a higher variation in the data than a simple benchmark topology.
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Figure 8.8: Percent Utilization of Core Access Links with 2%Satellite Loss

In general, demand for access link bandwidth is directly proportional to satellite

loss, and satellite utilization (goodput) is inversely proportional to loss. The 2% loss rate

in Figure 8.8 shows high satellite utilization and low access link utilization. The point

at which transient access link utilization reaches 100% is the point at which streaming

recoverability becomes impossible.

Furthermore, the data to be sent by each node, and hence the link utilization, is

controlled internally by a token-bucket mechanism. Currently, it allows 100% of the link

to be used for recovery, but the protocol is user-tunable. Users can limit this to any desired

proportion to avoid competing with other traffic.

8.3.5 Metadata Update Efficiency

There are two reasons a node may be unable to satisfy a data request: if it is heavily

loaded or cannot be located. Both of these problems can occurdue to stale metadata. If the

scheduler does not know which nodes have which blocks, it mayoverload certain nodes

while others go idle.
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Figure 8.9 shows the staleness of metadata in terms of segments known to receivers

but not the Scheduler. This figure shows the efficiency of metadata update.
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Figure 8.9: Number of Unacknowledged Segments

The Scheduler information lags about 180 segments behind actual system state.

This resolves to about 60 milliseconds, of which block timeouts make up 10-20ms, network

latency about 30ms, and the remainder is due to lost metadatapackets and queuing delay.

We conclude that our metadata update mechanism is efficient;with most of the delay due

to unavoidable physical constraints. Furthermore, this delay is sufficiently low such that

accurate data location is known to the scheduler by the time lookup requests arrive.

8.3.6 Fairness

Finally, fairness using Jain’s measure [55] has been high (close to 1) in all cases.

This is in terms of data uploaded, work done that is of note direct benefit to a node, and

termination time, the actual node’s performance. This provides incentive for users.

With the Scheduler, for the simple topologies and blocks sent it was uniformly over

0.999, meaning all nodes sent out almost the same number of blocks. Similarly, for recov-
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ery blocks received it was over 0.999, in this case due to the global termination constraints

and uniform loss behavior. Under nonuniform loss, by definition, some nodes will unfairly

load the system to recover their data, but the blocks sent will still be evenly allocated (i.e.,

no tit-for-tat behavior).

The more realistic core topology had fairness values consistently around 0.987, also

very high but somewhat lower than the simpler topology. The difference was again due to

the structure in the core network; some nodes were closer to the Scheduler. This implies

the Scheduler data was consistently more fresh for those nodes, and they would tend to

have slightly higher load.

Without a centralized scheduler, 65% of our tests showed fairness over .99, 94%

over .95, and 100% were over .88 fair. In general, the smallerthe transfer the greater the

chance that the random peer query will create an unfair work allocation; the last 6% above

were transfers where peers uploaded less than 20 blocks/node.

In sum, these results coincide with our prior analysis and support our claims as to

the system’s performance under a variety of conditions.

8.4 Summary and Conclusion

This chapter has shown two specialized dynamic transfer scheduling algorithms

for traditional content distribution over hybrid satellite/terrestrial networks. These are ex-

tensions to the techniques described elsewhere in this dissertation which optimize for the

unique constraints encountered in such an environment. We have shown that the approach

provides high bandwidth, low latency, and high fairness forrealistic environments.
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Chapter 9: Related Work

This chapter discusses the body of work related to CEP. We divide it into four cat-

egories: classical distributed systems, grid systems, overlay networks, and supplemental

technology. We highlight the differences between CEP and other work, showing that we

provide (1) a richer partial-file, many-to-many distribution model and (2) improved perfor-

mance.

Classical distributed systems includes work on parallel computers and communica-

tion libraries. Grid systems include advances in parallelization, file systems, network sys-

tems, and high-speed file transfers. Overlay network schemes include content distribution

networks, caches, multicast meshes, and most current peer-to-peer research. Supplemen-

tal technology includes work on erasure codes, high performance transport protocols, and

other high performance hardware/software; these are related in the sense that they enhance

the functionality of the CEP or other approaches, but address orthogonal issues.

9.1 Classical Distributed Systems

Distributed systems research historically focused on coordination, agreement, and

fault tolerance [11, 34, 61, 72, 111]. Work with parallel processing and parallel commu-

nication libraries is the most relevant, but their assumptions differ from CEP. We provide

weaker consistency semantics which favor high performancetransfers.

CEP is a write-once system. Once shared, data cannot safely be changed. In our im-

plementation, this resolves to a last writer wins mechanism– but we do not define the write

ordering. Replicated data is by definition identical. If users require stronger consistency or

features such locks, they can be provided by other software or use of disjoint segments in

the 64-bit CEP address space.

158
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9.1.1 Parallel Computers

Today’s high-end computers use Symmetric Multi-Processing (SMP) or threaded

processors, or both. Historically, systems were based around large parallel vector architec-

tures, hypercubes (such as nCUBE [36]) or fat-tree interconnection mechanisms. Recent

systems such as IBM Blue Gene [94] have revisited these problems.

Such systems have many-to-many communication properties,but their focus on

low latency and strict consistency leads to different solutions than CEP. Internally they use

simple data busses, flat or strictly hierarchical networks,global caches, and simple back-

off/retry algorithms. These suffice for a single, local, low-latency system. Unfortunately,

they do not scale to large distributed systems; finding an appropriate data replica, optimiz-

ing the transfer, and dealing with WAN issues require the techniques found in CEP.

9.1.2 Parallel Communication Libraries

Applications that are written for computational clusters use parallel communica-

tion libraries to simplify their programming. MPI, PVM, anddistributed shared memory

libraries are commonly used.

MPI, theMessage Passing Interface[78] standard supports the notion of a com-

munication target, a communicator, which can be used by a collection of nodes as the

target for a sequence of messages– an aggregate logical flow.Similarly, it contains ways to

express shared memory and remote direct memory access (RDMA) which allow implicit

many-to-many communication.

Many MPI features are implementation-dependent; the standard does not specify

their internal mechanisms. In particular, implementations generally require homogeneous

peers, do not provide transfer scheduling or wide-area transport, and provide only a low-

level interface. In contrast, CEP provides a global name space, transfer scheduling, a high-

level interface, and other features.
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MPI and CEP are targeted toward slightly different environments; MPI for local,

low-latency intra-application communication, CEP for inter-application communication

supporting larger transfers, larger networks, and more peers. The two approaches are mu-

tually complementary. Conceivably the algorithms described in this dissertation could be

used to extend future MPI implementations.

PVM, theParallel Virtual Machine [109] project supports the creation of a virtual

computer comprised of multiple heterogeneous nodes and networks. It is intended to sup-

port less tightly coupled applications than MPI. While the PVM framework could naturally

support replication, transfer scheduling, or other ideas from CEP, these features do not ex-

ist. PVM instead focuses on distributed computation issues: management, coordination,

etc., rather than communication problems.

Most applications choose MPI rather than PVM, due primarilyto support from

hardware vendors and system integrators. The virtual machine concept is still powerful,

however, and may have a revival with increased use of the Globus Toolkit [84] and Dis-

tributed Virtual Computer [110].

Distributed shared memory (DSM) extends the virtual memory hierarchy to re-

mote nodes. This is a popular interface– nearly thirty active projects (including the MPI

standard) include DSM features. In some sense, CEP providesa write-once DSM mecha-

nism via the linear byte range abstraction: any node can reador write into that space. An

API to memory map byte ranges would make this concrete, but isleft to future work.

DSM systems tend to focus on latency over bandwidth, some to the extent of being

designed around data prefetching. One such system is LambdaRam/JuxtaView [66], in the

OptIPuter project. It includes many-to-many communication features, but does only im-

plicit transfer scheduling. Instead, it includes a block-based prefetching mechanism target-

ing visualization applications. CEP supports heterogeneous nodes, full transfer scheduling,

and has a more general interface.
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Other popular DSM systems, such as TreadMarks [61], focus onthe creation of

the memory for a virtual machine. They target memory consistency guarantees and simple

management functions. They do not work well over the wide area, with loss, heterogeneity,

or replication, nor do they do transfer scheduling.

9.2 Grid Systems

Grid systems are the natural evolution of local area clusters. They “coordinate re-

sources not subject to centralized control, using standard, open, general purpose protocols

and interfaces, to deliver nontrivial qualities of service” [43]. This requires complex soft-

ware, which itself falls into several sub-categories: application parallelization mechanisms,

parallel file systems, and file transfer mechanisms.

9.2.1 Application Parallelization Mechanisms

Running a single logical application on a cluster requires parallelization– often a

nontrivial task, if the application was designed for a single processor. Toolkits to simplify

this job often include many-to-many communications mechanisms, and hence are relevant

to CEP. One such project isChaos/MetaChaos[71,125] from the University of Maryland.

MetaChaos is has similar motivations and includes an interface similar to CEP. In

particular, it includes a global linearization abstraction equivalent to the distributed byte

stream we developed, and a different but roughly equivalentAPI. Internally, the mecha-

nisms used are quite different.

In particular, it is another system focusing on low latency.They use a ‘fuzzy’ time-

based segment matching scheme and a producer/consumer mechanism. This approach does

not support replication, nor missing segments, nor failures. They do not use account for

dynamic feedback, node location, or node heterogeneity. They do not support third party

transfers. CEP supports all of these features.

Their linearization representation is based around arrays, but supports arbitrary
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structures via a more expensive representation. CEP’s internal representation is less ef-

ficient for dense strided arrays, but more efficient for the arbitrary case. They rely on an

all-to-all broadcast, which works poorly over the wide areaand is not scalable.

Finally, they do provide two features which we have left to future work. These

include caching of transfer mappings and support for multiple programming languages.

Currently, CEP does no caching and supports only C/C++.

9.2.2 Parallel File Storage and Transfer

Parallel transfers are commonly used to avoid bottlenecks with physical media,

such as spinning disks. Some current parallel file systems and file transfer applications

support replication and heterogeneity; similar to CEP. However, they focus on locking,

data consistency, and small local-area networks. They can not optimize in the same way a

content distribution system can– they have insufficient metadata. Block request streams do

not provide enough information on global supply and demand,even with “hinting.” CEP

focuses on primarily static data, more complicated distribution demands, supports large-

scale distributed systems, and provides global transfer optimization.

The Parallel Virtual File System (PVFS) [21] is a simple striping-based mecha-

nism for storage of files across a number of cluster nodes. It focuses on raw performance

does not support node heterogeneity, replication, or otherfeatures. Red Hat’sGlobal File

System(GFS) [54] is similar but also supports replication, fault tolerance, and scalability

to 256 nodes. It does not support wide area transfers, perform intelligent replica selection,

transfer scheduling, or scale to large systems.

TheLustre [27] file system is more powerful and extensible, including some sup-

port for heterogeneous nodes, replication and replica selection. It does not yet support

strong transfer scheduling mechanisms or wide-area transfers. Similarly, theGoogle File

System(also, confusingly, called “GFS”) [47] supports replication and large file transfers,

but with the same drawbacks. It also has problems with small transfers (under 64MB).
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The Grid Datafarm (Gfarm) [112] parallel file system targets “petascale data-

intensive computing.” They plan to implement CEP-like transfer scheduling mechanisms,

but currently support only homogeneous nodes, uniform striping, and socket-parallel trans-

fers. CEP supports much richer transfers, heterogeneity, and larger numbers of nodes.

GlobusGridFTP [4] is a user-level parallel file transfer application. It supports

striped N-to-N whole-file transfers between clustered nodes above a shared file system,

targeting high speed in the wide area. GridFTP assumes homogeneous nodes and glob-

ally available data. It incorporates only static striping across nodes and parallel sockets1,

and does not tolerate failures. The Globus Reliable File Transport (RFT) [92] mechanism

was developed for that purpose. In contrast, CEP supports heterogeneity in node and data

accessibility, partial-file distribution, and is nativelyfault tolerant.

9.3 Overlay Networks

One way of viewing the structure of many-to-many transfers is to cast it as an

overlay network- a logical network built above the physicalnetwork. Overlay nodes are our

peers and links represent their communication paths. This abstraction lets one apply well

known routing, group membership, and agreement protocols to transmission problems.

This section discusses full overlay networks, which focus on routing, and content

distribution networks, which focus on multicast and caching. These overlays all support

many-to-many communication patterns and some form of data transfer, but do not provide

the performance or semantics of CEP.

9.3.1 Full Overlay Networks

Full overlay networks explicitly build a network structureand base their operations

on it: searching is done via network algorithms, downloads propagate through the network

structure, and so forth. The most commonly known overlays are Distributed Hash Ta-

1GridFTP plans to support variable-sized striping in the future.
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bles (DHTs) such as Pastry [101], or Chord [107]. These provide a useful abstraction for

distributed data management, but do not in themselves support transfers of large amounts

of data, nor provide a single point at which transfer optimization can occur. DHTs suf-

fer problems with high lookup latency, hot spots, and data consistency, although these are

actively studied. We discussed these issues in detail in Section 5.3.3.

KaZaA [59] builds upon a variant of the roughly tree-structured FastTrack net-

work. Searches and results propagate up and down the tree, while data is downloaded

in parallel from nodes which respond. In contrast,Gnutella [97] is a weakly-structured,

decentralized overlay network, which uses flooding for searches. This limits scalability

but makes the network very fault tolerant. Such peer-to-peer overlay networks do not in-

clude mechanisms for global bandwidth control or optimization, as they target individual

node performance: many-to-one block downloads for whole file replication. CEP supports

many-to-many communication, global optimization, and partial-file replication.

Freenet [26] uses key-based routing, caching, encryption, and other mechanisms.

It focuses on ways to allow users to anonymously publish and retrieve data, rather than

performance. Freenet is still under development so final evaluation is impossible, however

given these design decisions we expect CEP will provide muchbetter performance and

transfer scalability.

9.3.2 Content Distribution Networks

Content distribution networks provide a one-to-many communication channel for

whole-file distribution of popular content. Common approaches include building a mul-

ticast tree/mesh overlay or using special caches. Unfortunately, such approaches do not

support CEP’s partial-file sharing or rich semantics, and typically have problems with het-

erogeneity or node failure.

Scalable Reliable Multicast(SRM) [39] provides scalable one-to-many whole-file

transfer of static data. They use a simple timeout scheme with feedback and random-
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ized back-offs. SRM tolerates packet loss, provides a congestion control mechanism, and

supports various underlying topologies. They do not support partial-file sharing or show

scalability as with CEP.

Bullet [64, 65] is a mesh-based multicast network; in effect it addscross-links to

a multicast tree, allowing more block retrieval choices androom for optimization. Bullet

works by striping requests across multiple nodes and pre-distributing data randomly across

the mesh. While similar to the striping mechanisms in CEP, Bullet focuses on TCP friend-

liness, special encoding, and state distribution problems. Bullet provides good download

performance and inter-node fairness. Again, it is solving amore limited problem than CEP:

only whole file replication.

Commercial content distribution networks such asAkamai [3] typically employ a

set of well-connected machines distributed across the network. These nodes replicate, typ-

ically via multicast, and cache the source data. Clients have a 1-1 download relationship

with the closest cache. Akamai uses over “14,000 servers in 1,100 networks in 65+ coun-

tries” for this purpose. TheOpen Media Network [81] is a similar CDN for distribution

of free digital video. It usesKontiki [63], a “secure, commercial alternative to BitTorrent”

as the underlying distribution mechanism. Such networks are an engineering feat, but CEP

provides good transfer performance and more powerful partial-file semantics without this

infrastructure.

Coral [45] is a CDN constructed from a set of caches and a name server. Data

is published to the CDN implicitly. Users request a specially mangled URL, which is

resolved by the Coral name servers and forwarded to a local coral cache. That cache uses a

“Sloppy DHT” mechanism to efficiently retrieve a copy of the desired data and forward it to

the client. Coral’s sloppy DHT searches in concentric ‘rings’ roughly correlated with node

location; this better exploits node locality, reduces loadon the original server, and improves

performance. Structurally, this architecture of centralized metadata server (Coral DNS) and
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distributed data transmission (Caches) is similar to CEP’simplementation. However, Coral

again targets whole-file content distribution rather than the rich partial-file transfers and

global optimization supported by CEP.

Lastly,BitTorrent [29] is used for content distribution, but structurally uses simple

peer lists and heuristics rather than creating a full overlay network. We have discussed

BitTorrent and its limitations throughout this dissertation, starting in Section 1.1.3.

9.4 Supplemental Technology

This section discusses supplemental technology useful in combination with CEP or

might easily be confused with features found in CEP. This includes work on high perfor-

mance point-to-point transfer protocols, and other high speed hardware/software. Each of

these provides features which CEP can exploit. While discussion of erasure or network

coding techniques would fit here, we have already covered that material in Section 4.4.

9.4.1 High-Speed Transport Protocols

TCP, originally designed in the 1970s, has problems on today’s networks. These

include poor performance on high-latency paths, those withcross traffic, those with high

loss (e.g. wireless) or those with large bandwidth×delay products. There is a variety of

work seeking to improve transfer performance with TCP variants or reliable UDP proto-

cols. As CEP needs only a reliable in-order transport, it canexploit this work to improve

performance.

The FAST [56] protocol is a popular rate-based variant extending work on TCP

Vegas [15]. It provides stable, high bandwidth transfers onhigh bandwidth-delay networks.

HS-TCP [41] is another variant which effectively does slow-start at all times when the

TCP congestion window is large. This maintains performanceon high bandwidth-delay

networks, but may induce loss and network instability.

TheUDP-based Data Transferprotocol (UDT) [49], is a rate-based protocol over
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UDP which offers high performance and smooth rate transitions. This is good for fairly

static networks but may have issues in highly dynamic configurations.

Reliable Blast UDP(RBUDP) [52], is a simple mechanism for transmitting large

amounts of data (a blast) over UDP and then recovering losses. It uses epochs and rate

control to minimize metadata transmissions. This aggressive behavior performs well on

private/reserved links, but with competing traffic it will produce congestion.

TheGroup transport Protocol (GTP) [126], is a rate-based UDP scheme for fairly

allocating traffic across concurrent downloads. It is a many-to-one mechanism where each

parallel stream is allocated min-max fair bandwidth. No connection need be aware of any

other, and performance is smooth and quickly adapting. The current version of CEP can

utilize GTP as an underlying transport when such fairness isa goal.

Lastly, Globus XIO is a communication library meant to provide a simple open-

read-write-close interface on top of a variety of differentunderlying protocols– such as

those discussed in this section. CEP supports an XIO networkstack, and hence can exploit

any protocol that provides an XIO interface (See Chapter 6).

9.4.2 High-speed Hardware/Software Libraries

Lastly, some high-speed hardware and software both motivates CEP and includes

similar functionality. Hardware vendors provide libraries for message passing (e.g. MPI),

rDMA, synchronization, etc. which enables large-scale many-to-many transfers. Simi-

larly, many networks include multi-protocol label switching or optical links with switch-

able wavelengths; software to schedule these links is similar to CEP.

Quadrics [88] is the “dominant interconnect technology in the world’s top 10

supercomputers” and provides provides rDMA and other features as mentioned above.

Myrinet [13] is another popular cluster interconnect which allows passing arbitrary length

messages (similar to CEP’s segments) between nodes. Neither provide transfer scheduling,

fault tolerance, or wide-area transfers like CEP.
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Infiniband [22] is the newest high-performance interconnect, designed to be a se-

rial, switched network. The algorithms for setting up the switches and routing are similar to

ideas in CEP and include parallelism despite the serial design. Infiniband does not perform

transfer scheduling or work in the wide area, although thereis work in this direction.

Cheetah[118], the Circuit-switched High-speed End-to-End Transport ArcHitec-

ture, preallocates point-to-point circuits to support large file transfers. Derived from work

with SONET and network engineering, it provides weak scheduling and reservation fea-

tures. It does does not support many-to-many communicationor any other CEP feature.

BigBangWidth [75] similarly provides hardware and software to support automatic detec-

tion and offload of large TCP flows onto an optical circuit. CEPcan efficiently use the

dedicated circuits created by such software to improve transfer performance.

9.5 Summary and Conclusion

This chapter has shown the work most similar or otherwise relevant to the ideas

developed in this dissertation. We have included work that initially seems to provide a

competing approach, but is actually complementary. We haveshown that CEP provides

a richer many-to-many partial-file distribution model and better performance than related

work.



Chapter 10: Conclusion

This chapter provides a summary of the claims we have made in this dissertation:

high resolution, simplicity/flexibility, high performance, efficiency, scalability, robustness,

andgenerality. We discuss each claim and the evidence provided in support of it. We show

that we surpass common software such as BitTorrent, Apache,DHTs, or GridFTP on these

metrics, and give our final conclusions.

10.1 Summary of Claims and Evidence

We claimed CEP provideshigh resolution: nodes can transfer any arbitrary set of

bytes, not necessarily in blocks, not necessarily a whole file. At the core of our transfer

scheduling algorithms is a graph-based canonical form (§ 3.3) using byte ranges. All the

algorithms developed in Chapter 3 and 4 accept arbitrary data constraints in this way. We

have also shown good performance under different levels of sharing– from whole files

down to disjoint portions of a file (§ 7.10.1). In contrast, other techniques provide weaker

whole-file (§ 9.3.2) or block-based transfers (§ 9.2.2).

We claimed CEP issimple/flexible: good interfaces exist for describing user and

system constraints. We described a variety of straightforward APIs tailored for different

purposes (§ 5.2). The low-level (§ 5.2.1), file transfer (§ 5.2.2), sockets (§ 5.2.3), weakly-

constrained transfer (§ 5.2.4), and block interface (§ 5.2.5) APIs are each appropriate for

a specific environment. Similarly, we provide a library (§ 6.2) with few dependencies that

makes this functionality available to user programs. CEP also has few “knobs” and appro-

priately tuned default values, compared to the variety of tuning parameters in, e.g., BitTor-

rent (§ 7.9). Other flexibility claims are addressed in our discussion of system generality,

below.

169
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We claimed CEP hashigh performance: transfers converge to bandwidth and la-

tency near hardware/user limits. We can compose nodes to achieve high bandwidth, over

30Gbps on local clusters (§ 7.3.1). We provide 4-8× higher bandwidth than traditional

content distribution (§ 7.10.1), with high inter-node fairness; .99 using Jain’s measure (§

7.8). The system has an 10× lower latency than other approaches (§ 7.10.2), particularly

those using nonsystematic erasure codes (§ 4.4).

In general, Chapter 4 shows that our algorithms execute rapidly, and Chapter 7

shows that these schedules perform well. In particular, thegreedy algorithm output is

equivalent to the the known optimal LP output for these environments (§ 7.3.1, 7.6.1, 7.6.2).

The system has a high performance design (§ 5.3, 6.4) and implementation (Chapter 6),

particularly the core message passing protocol (§ 7.5.3); with only about 4% overhead (§

7.3.1). Lastly, for the special case of hybrid networks (Chapter 8) we have shown high

bandwidth, within 1% of ideal (8.3.2), low latency, with 99%of blocks recovered within 3

satellite RTTs (8.3.3), and high fairness, above .999 usingJain’s measure (8.3.6).

We claimed CEP isefficient: computation time is worst-caseO(n2), commonly

O(n log n), and query response inO(1). Sections 3.1-3.3 show conversion to canonical

input form commonly takes timeO(n log n). In the worst case it may take timeO(n2), but

limits on segment size bound it toO(n log n). This is an unavoidable tradeoff between gen-

erality and performance. Chapter 4 showed several algorithms to efficiently solve transfer

scheduling problems. The core greedy algorithm (§ 4.3) runs in time linear in the number of

edges given canonical-form input, and nodes’ queries can behandled inO(1). In contrast,

a problem which takes less than a second for the greedy algorithm to solve would take over

23 hours for approaches using linear programming (§ 7.4). While some sub-problems are

NP-complete, we can approximate them arbitrarily well in most cases (§ 3.4). Finally, on

hybrid satellite/terrestrial networks, we achieve 75% or better transfer efficiency (§ 8.3.1,

8.3.4) and fast metadata updates (§ 8.3.5).
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We claimed CEP isscalable: the system works for transfers involving tens of thou-

sands of nodes and 10Gbps+ links. Our efficiency results above show that the core system

algorithms are efficient enough to run for large problem sizes; the greedy algorithm can

schedule a transfer of 100,000 nodes in less than 1 second. (§ 7.4) We have shown net-

work scalability to over 100,000 requests/second; 10× better than DHT implementations,

40× better than Apache, and that the memory required was reasonable– less than 256MB

(§ 7.5). We have achieved over 30Gbps on real local clusters, upto 1Tbps in simulation

(§ 7.3.1), and over 10Gbps in the wide area (§ 7.3.2). Finally, we showed that the hybrid

network approach scales in terms of file sizes and to thousands of nodes (§ 8.3.2).

We claimed CEP isrobust: failures which do not eliminate data required by another

peer are tolerated. We have shown that we can tolerate real world server failures with only

a 2% performance penalty (§ 7.7.1), and inaccurate metadata with negligible performance

penalty (§ 7.7.2). We perform flawlessly in environments where 20% of BitTorrent peers

fail (§ 7.10.3). Our regression testing framework (§ 6.4) enhances reliability in practice,

and we have shown how techniques such as erasure coding couldbe used to enhance data

robustness (§ 4.4). For hybrid satellite/terrestrial networks, we have also shown tolerance

of loss rates as high as 10% (§ 8.3.1).

Lastly, we claimed CEP isgeneral: we produce desirable results in a wide variety

of environments and user constraints. We have shown that we can exploit nodes’ capacity

differing by an order of magnitude (§ 7.6.1) and data layout constraints varied from disjoint

to total overlap (§ 7.6.2); achieving 4-8× BitTorrent’s bandwidth for low and high sharing

configurations (§ 7.10.1). We achieve bandwidth near hardware capacity in both high per-

formance and peer-to-peer configurations (Chapter 7) as well as hybrid satellite/terrestrial

networks (Chapter 8). We support stand-alone and application-integration (§ 6.2.2), with

APIs supporting different use models (§ 5.2); other approaches target a single API or use

model (Chapter 9). We support a variety of different underlying protocols, including TCP,
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GTP, and those implemented using the XIO framework (§ 6.3). We support a variety of

hardware; CEP has been tested on x86, Opteron, and PowerPC machines (§ 6.4.1).

Returning to our main thesis statement: fully utilizing high speed links (§ 2.2.1,

7.3.1) for large, complex transfers (§ 2.2.2, 7.6.2) requires metadata management infras-

tructure (§ 5.3) and simultaneous transfers between multiple nodes (§ 7.3.1). Compos-

ite endpoints using hybrid centralized/decentralized transfer scheduling (Chapter 4), via

graph-structured algorithms (§ 3.3) and feedback heuristics (§ 4.5), provide a general, high-

performance and robust approach (see above).

10.2 Future Work

While we have met our goals– performance and a rich transfer model– all research

exposes further interesting questions. This section discusses ways in which this work could

be extended or improved, and potential future research topics.

First, considertransfer extensions. There are a wealth of possible techniques that

have not been deeply explored. These include prefetching, such as that done by Lam-

daRam [66], data compression with well-known algorithms, such as LZW [123] or block-

sorting with Huffman coding [17, 103]. Other techniques include transfer of deltas for

mutable data, cross-flow data caching, or weakening of the transfer semantics to allow

“super nodes” to serve data in which they were not otherwise interested.

Each of these techniques has the potential to dramatically improve performance for

certain types of applications, but how to apply them effectively in a distributed transfer

system such as CEP is an open question. Do prefetching algorithms designed for disks

scale to the wide-area? How large must data transfers be and how slow must the network

be to justify compression? How best to encode compressed data so that portions of it can

be forwarded independently, as may be necessary given our rich sub-file transfer model?

Is avoiding cross-constraint dependencies (see page 65) enough? How would this impact
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the use of erasure coding? What about integrating a multicast tree/mesh for distribution of

highly shared sub-file ranges? What are the trade-offs usingsuper nodes; when is the extra

copy worthwhile? Can they be used to provide TCP connection splitting [98] functionality?

Second, considersystem interaction. At a high level a CEP transfer may look a lot

like a denial of service attack. While CEP provides TCP-fairness at the transport level, its

scheduling mechanisms do not guarantee fairnessin aggregatewhen competing with other

traffic. Individual transport flows may exhibit complex dynamic interactions on peculiar

networks: CEP works well in all the environments we have tested, but competitive and

malicious environments may show other behavior.

Can we guarantee stability or fairness? How does the system interact with multiple

users competing maliciously? What happens when multiple transport protocols are being

used concurrently, e.g. TCP, GTP, and RBUDP? Can CEP’s constraint mechanism be used

to ensure proper network behavior? Can it give quality-of-service guarantees itself or be

integrated with systems providing QoS functionality? Can traffic be tunnelled through a

constrained CEP transfer as a network engineering tool? Cancross-CEP-transfer com-

munication be used to provide strong semantics (fairness, performance) across composite

endpoints? What about structured or hierarchical aggregation of composite endpoints into

increasingly complex workflow-like graphs? Can the algorithmic results presented here be

extended to provide stronger guarantees under these weakerassumptions? While we have

evidence hinting at answers, these remain open questions.

Finally, the question ofdistribution – one we had hoped to address in greater depth.

Can partial-content transfer tasks be distributed yet guarantee the generality and perfor-

mance forpartial content distribution? How do we efficiently perform distributed sub-file

matching without using blocks? Can we do so in such a way that we gain scalability or in-

crease robustness? Current mechanisms such as primary/backup or clustering with voting

(e.g. Paxos [70]) fall back to using a single node (the primary, or distinguished learner) for
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performance reasons. CEP has tried to provide a distributedtransfer abstraction similar to

the distributed hash table abstraction; is there a better underlying model or system design

to accomplish this?

10.3 Final Remarks

This dissertation has described the interrelated problemsexperienced when trying

to transfer data at high speeds with a rich interface. We haveaddressed problems with ca-

pacity: achieving scalability, high bandwidth, and low latency; problems with complexity:

achieving a simple, flexible interface without too many userknobs; problems with crashes:

robustly surviving system faults, errors, and inaccurate data, and done so in a comprehen-

sive, general fashion. Our analysis and evaluation show that CEP successfully addresses

each of these problems and provides all of the desired features.

The core of this dissertation is the set of graph-structuredtransfer scheduling al-

gorithms and their implementation. We have provided a rigorous definition of this prob-

lem and its complexity, as well as several solutions to it. Wehave shown efficient, high-

performance transfer schedulers; analyzed from a theoretical perspective with implemen-

tations tested empirically. Comparison with related work (e.g BitTorrent) shows great per-

formance improvement.

The ideas in this work, implemented in CEP, provide a mechanism allowing mul-

tiple processes to join in a single logical connection. Users specify constraints at a high

level through a simple, flexible interface, and the system runs the desired high performance

transfers. CEP allows one to terminate disproportionatelylarge network transfers on rela-

tively weak nodes, efficiently utilize heterogeneous hardware in an arbitrary configurations,

and gracefully tolerate errors and failures.
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