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No Star has ever Passed through our Planetary System 

by Donald E. Moms and Thomas G. O'Neill 

Abstract 

Passage of a field star or a solar companion (such as the hypothetical Nemesis1,2) 

through our planetary system would be a singular event, with far reaching implications. 

It is shown that no such close passage has taken place since the formation of the 

planetary system. The Jovian planets are in nearly circular, coplanar orbits, and would 

have been perturbed into inclined, eccentric orbits by any close stellar passage. We also 

fmd that the orbital inclination i and eccentricity e of the outer planets are relics of the 

early solar system, and need to be explained by theories of planetary system formation. 
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1. Introduction 

The inclinations and eccentricities of the planetary orbits vary with time due to gravitational 

interactions between the planets which cause exchange of energy and angular momentum. 

Applegate et al.3 have numerically integrated the motions of the outer planets more than 100 million 

years into the p~t and future. The inclinations and eccentricities of the planets were found to 

undergo quasi-Periodic variations b)1t remained small. The range of variations of i and e and their 

time averages <.i> and <e> over this interval are given in Table L No secular trend in i and e was 

seen (except for a possible decrease in the i of Pluto). The orbits did not tend to circularize or 

align, and we expect this behavior to extend over the 4.6xl09 yr age of the solar system. A stellar 

encounter which increased the instantaneous values of i and e would result in similar increases in 

<i> and <0. Thus the present values of <i> and <0 must either be relics of the fonnation of the 

solar system, or the result of a close stellar encounter. Extension of the numerical simulations over 

4.6xl09 yr, and inclusion of a sudden perturbation to i and e, coul4 be used to confum these 

assumptions. 

Neptune provides the best constraint on a hypothetical close stellar passage because it is in a 

large, relatively weakly bound orbit and yet has small <i> and <0. There are two scenarios which 

could account for this: 1) i and e were initially small and have never been increased by a passing 

star, 2) i and/or e were originally larger and have been reduced to their prescmt values by a passing 

star. It will be shown [see equations (6), (8) and (9)] that the second scenario is less likely to have 

led to the low <i > and <0 of Neptune observed today, and only the f11"st scenario need be 

considered when establishing limits on close stc1lar passages. 

In the first scenario, <i> and <0 are taken to be small initially, so the changes ~ and ~e 

caused by the closest stellar passage cannot have. been much greater than the present d> and <e>. 

We will show that for a stellar passage to be consistent with the present <i> and <e>, the change 

~ V in orbital velocity of the planet caused by the star must have been smaller than about ~ V max = 
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0.084 kmls for Neptune and 0.3 kmls for Uranus. We then compare & V max for Neptune With the 

~ V generally produced by the passage of a star of mass M. and initial velocity V. to fmd a 

constraint on S, the distance of closest approach of the star. We will use the dimensionless 

quantities m. = M./Mo and v. = V./46 kmls. [The RMS velocity of stars in the solar 

neighborhood, relative to the sun, is 46 kmls (ref. 4 and Appendix n]. 
The limits we place on the passage of unbound and weakly bound objects are valid for typical 

interaction geometries, but a star passing parallel to the sun-pl~et direction produces a much 
. . 

smaller perturbation, and therefore could have come closer. We will show· that the probability F 

that a randomly-directed stellar passage changes the orbital velocity by less than d V max is very 

small for significant violations of the constraint on S (see equations 6 and 7). 

2. The Change in Orbital Velocity 

For typical stellar velocities (V. >- 10 kmls) the change d V in orbital velocity occurs in a 

time much shorter than the orbital period. If & V is small compared to the orbital velocity 

V p = (GMola)1I2, the change in the orbital angular momentum L is approximately 

&L = Mp R x & V (ref. 6). Here Mp is the planet's mass and R is its position relative to the 

sun. The change in i is given by the change in the direction of L: i.e., 1&;1 = d V L / V p (see 

Appendix m. Here ~V is given by three orthogonal components: &VL (in the direction ofL), ~Vt 

(tangential, in the direction of R x L) and 4 V R (in the direction of R). The change in the Runge­

Lenz vector A is ~A = Mp (& V x L + &L x Vp) (ref. 6). Because e = N(GMoMp2), it is 

changed by the amount ~e = &A/(GMoMp2) during the star's passage6 • This gives 

ldel = (&VR2 + 4 &Vl)ll2 Vp·l (see Appendix m. As mentioned earlier, the perturbation would 

have increased <i> and <0 above their present values unless 1&;1 S <i> and I~el S <e>. If the 

passage geometry produces a ~ V in the direction of L, then ~ V R = ~ Vt = 0 and ~ = O. However, 

in this case l&il is maximized. Conversely, in passage geometries where l&il is small, I~el is large. 
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Thus, a planet's i and/or e would have been increased above the observed values unless 

A V S; .1 V max' where 

(1) 

Using the values of <i> and <e> from Table I, we fmd .1Vmax = 0.084 kmls for Neptune and 

A V U.max = 0.3 kmls for Uranus. 

3. The Passage of a Star at a Distance Greater than 30 AU 

We frrst treat the case of a star passing outside the orbit of Neptune. The change Il. V in 

orbital velocity caused by a passing star is the difference between the velocity changes of the planet 

& V p and of the sun A V Q. This difference arises because the star passes at different distances and 

directions from the sun and the planet (see fig. 1). The change in orbital velocity is Il. V = Il. V p -

.1 V Q = 2 G M. V. -I (P Ip2 - S I S2) in the impulse approximation. Here P is the position of the 

star relative to the planet when they are closest (see fig. 1). When S » a, .1V is typically about 

equal to .1 V typ, where 

.1Vtyp == 2 G M. a S-2 V.-l (2) 

(Appendix Ill). [For example, if the three bodies are aligned at the time of closest approach, then 

p = S ± a and .1 V = 2 G M. V. -1 (P-I - S-I) =:0 .1 V typ.] Equation (2) is accurate within a factor of 

two for S ~ a, as can be shown (see Appendix ill) by comparison with numerical simulations by 

Hills (fig. 8 of ref. 7). Thus, we expect that the stellar passage would increase <i> and <e> above 

the observed values unless Il. V typ S;.1V max' Using the orbital parameters of Neptune, we find that 
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the star must have passed at a distance 

S ~ 117 m.1I2 v.-l12 AU. (3) 

The dependence of the smallest permissible value of S on the stellar mass is plotted in Figure 3 for 

V. = 46 kmIs, the RMS velocity of stars with respect to the sun. 

4. The Passage of a Low-Ma~ Star at a Distance Smaller than 30 AU 

According to equation (3) the passage of a star of mass m. < 0.07 v. within Neptune's orbit 

is not excluded. In this case, approximating the perturbation by the differential impulse is incorrect 

since the distance of closest approach of the star to the sun and to Neptune can be significantly 

different, and equations (2) and (3) no longer apply. 

The perturbation caused by a star passing very close to the sun is easily evaluated. In this 

case the impulse on the sun is much larger than that on Neptune and dominates the change in 

orbital velocity. A star passing close enough to the sun will be deflected from its initial trajectory, 

so the impulse approximation requires modification for stars passing inside the orbit of Neptune. 

However, the sun's velocity is still changed impulsively-i.e., in a time short compared to the 

planet's orbital period. Using the hyperbolic stellar trajectory, the change in the sun's velocity can 

be calculated (Appendix IV) with the result, 

!l.V = 2 G M. V.-l [S + ac]-l, (4) 

where ac == G <Me + M.) V.-2 is the accretion radius7• When S» ac this expression reduces to 

!l.V = 2 G M. S-l V.-l, the impulse approximation. When S« ac and M.« Ma,!l.V::::: 2 m. V.: 

the star delivers a momentum 2 M. V. to the sun, twice its own initial momentum. This is because 
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the star swings around the sun and its fmal momentum is the exactly opposite its initial momentum. 

This is the largest possible change in the star's momentum, and therefore in the sun's as well. 

Equation (4) is accurate within a factor of two when S < a, by comparison (see Appendix N) 

with Hills' numerical simulation (fig. 8 of ref. 7). The perturbation by the star must have satisfied 

d V S; d V max to be consistent with the low <i> and <e> of Neptune (equation 1). Using equation 

(4), we can place a lower limit on S for a small object of mass 0.0009 v.-1 S; m. <- 0.07 V., 

given by 

s ~ [4.55 (M.I 0.01 Ma) v.-1 - aJ AU. (5) 

This is plotted in Figure 3 over the appropriate mass range; the velocity V. is taken as 46 kmls. 

When m. » 0.(XH8 v.-1, the star is not deflected appreciably, and equation (5) reduces to 

S ~ 4.55 (M. I O.OlMa) v.-1 AU. The orbit of Neptune places no limit on the passage of an 

object of mass m. S 0.0009 v.-1, since such an object carries insufficient momentum to change the 

. sun's velocity by more than d V max' no matter how close it passes. 

s. The Perihelion Passage of a Weakly Bound Object 

Equations (3) and (5) are valid only for unbound perturbers, since they were derived 

assuming hyperbolic stellar trajectories: Hills8 carried out numerical simulations giving the change 

in a planet's e produced during the perihelion passage of a weakly bound 0.05 Mo or 0.005 Mo 

object such as Nemesis (the hypothetical brown dwarf solar companion) 1.2. He concluded that no 

Oort cloud object as massive as 0.05 Mo has passed through the planetary system since the 

dissipation of the solar nebula8. (He reached the same conclusion for the passage of a 0.05 Mo 

field star.) Since the change in e at each perihelion distance studied by Hills is proportional to the 
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mass of the intruder we can extend his results by scaling lle to fmd the largest mass that could have 

passed without increasing the e of Neptune above the observed <e> (see Appendix V). The results 

are shown in Figure 3. We fmd that M. < 0.01 Me for weakly bound objects passing through the 

planetary system. 

6. Passage in Special Geometries 

The limits on S in equation (3) or (5) apply to stars passing in most directions. However, a 

star passing closer but parallel to R can not be ruled out, since in this case II V = O. The sun and 

the planet experience identical impulses because the star's path relative to the sun is the same as that 

relative to the planet except for a difference R / V. in the time of passage. In a randomly-directed 

passage it is unlikely that the angle a between V. and R would be small enough that a star could 

pass much closer. than the limit from (3) or (5) without noticeably perturbing Neptune. In a 

passage with small a, II V ... II V typ a (see fig. 2 and Appendix VII). For the perturbation to satisfy 

II V S II V max' we fmd a sac where ac :5 II V max / II Vtyp' Thus, the solid angle within which the 

star perturbs the planet by less than II V max consists of two cones of opening angle 2 ac. The 

probability that a stellar passage in a random direction would give Neptune a II V S II V max' is the 

fraction of solid angle sub tended by these cones: 

(6) 

From equation (1), any change in the orbital velocity of Uranus has been less than 

II V U,max = 0.3 kmls. A star passing close to the sun would change the orbital velocity of Uranus 

by more than II VU,max unless it passed nearly parallel to the Uranus-sun direction. For the star to 

leave both Neptune and Uranus in low i and e orbits, it would have to pass within ac of Neptune's 

R and within au,c of Uranus's R, where au,c == llVu,max / llVtyp' This is only possible if Uranus, 
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Neptune and the sun are aligned at the time of stellar passage. The fraction of Uranus's orbit for 

which the alignment would have been sufficiently accurate is Fu = 4 eu c / (2 1&) = , 

0.64 (S /47.7 AU)2 v. rn.-1• When Fu S 1, the probability that the star would have disturbed 

neither Uranus or Neptune is the product of FN and Fu: 

F = FN Fu =0.0088 (S /47.7 AU)6 v.3 rn.-3• (7) 

For a very close passage or a very massive star, Saturn would also have to be aligned with 

Neptune and the sun, giving F = 2.3xlQ-4 (S / 26 AU)8 v.4 m.-4. We see that only a very small 

fraction F of randomly-directed close stellar passages would occur in the special geometry that 

leaves the Jovian planets unperturbed. 

We will show that, considering the density and velocity distribution of stars in the solar 

neighborhood, equations (6) and (7) pennit us to practically rule out the passage of any star near 

the sun since the fOl;'IIlation of the solar system. The probability th~t a star with speed near Y. 

would pass at a dis~ce near S during a time t, is dp = 27t n t Y. S dS dY. (ref. 7), where n dY. 

is the number density of such stars. We determined dp for the 20 stellar mass classes given in 

Heisler, Tremame and Alcock:4. For our calculations, the velocity distribution n dY. of each stellar 

class in the sun's frame was approximated by an isotropic Maxwellian. The RMS velocity of the 

stars in the sun's frame was found by adding (in quadrature) the stars' RMS. velocity and the sun's 

velocity (17 kmls), both measured in the local standard of rest Integrating dp over Y. and S gives 

the long dash curve in Figure 4. The probability that a star has passed near S without perturbing 

the Jovian planets is the product F x dp. This was integrated for the 20 stellar species to give the 

solid curves in Figure 4. It is clear that significant violations of the limits given in Figure 3 are 

extremely unlikely. 

The above analysis was carried out for the first scenario described at the beginning of this 

note. In the second scenario, Neptune originally had arbitrarily high values of i and/or e, which 
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were subsequently reduced by a passing star. In this case, the star could have passed closer and 

changed i and e by more than <i> and <e>, but it is unlikely that large changes of i and e would 

reduce <i> and <e> to their present low values. This can only occur for special geometries of the 

sun, star and Neptune which give llYu .1VR and .1Vt of the magnitudes and signs appropriate to 

cancel the previous <i> and <e> (Appendix VI). The probability of a sufficiently precise geometry 

is 

f S 2.3xlQ-7 (Vp / .1Vtyp)3 = 0.062 (S /117 AU)6 v.3 m.-3. (8) 

for passages outside Neptune's orbit, and 

for closer passages (Appendix. VI). Both results are smaller than FN given in equation (6). Hence, 

under scenari? 2, it is even less likely that a star has passed near the sun. 

7. Perturbations to the Orbits of the Other Planets 

The limits derived above imply that the i and e of the planets other than Neptune have not 

changed significantly since the formation of the solar system. It is easily shown that the .1 V of the 

planets interior to Neptune would be on the same order or smaller than Neptune's. If the star 

passed at S > 30 AU. then this result follows from the linear dependence of .1 V typ on a (equation 

2). If the star passed at S < 30 AU, then the planets with a ~ S experience the same .1 V, since in 

this case aVis independent of a (equation 4). We have shown earlier that for Neptune, 

.1 V S .1 V max = 0.084 km/s, so the same limit applies to the .1 V's experienced by the planets 

interior to Neptune. The largest changes in i and e that could be produced by these .1V's are: 
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~imax = ~VmaxNp = 1.55xlQ-2 (a /30 AU)1/2 and demax = 2 ~VmaxNp= 3.1xlo-2 (a /30 AU)ll2. 

The values for the different planets are listed in Table 1. 

The ~ V of Pluto can be larger than that of Neptune (equation 2). But, from the constraint on 

the ~ V of Neptune, the maximum changes in Pluto's i and e are ~ i max = 1.55x 10-2 

(40 AU / 30 AU)312 = 0.02 and ~emax = 3.1xlO-2 (40 AU / 30 AU)312 = 0.05. The present 

values of Pluto's <i> and <e> are much larger, and therefore are almost certainly relics of the early 

solar system and not the result of a stellar passage. 

From Table 1 it is clear that the inclinations and eccentricities of Saturn, Uranus and Pluto 

and the eccentricity of Jupiter almost certainly have not changed significantly since the formation of 

the solar system. The probability that a star or a disc dark matter object has ever come close 

enough to change the i or e of any of these planets by more than Aimax or Aemax is no greater than 

about 1 %. The probability that the i of Jupiter and the i and e of Neptune have been changed by 

more than half of their present values is - 3%. 

8. Conclusions 

The orbit of Neptune has very small inclination angle i and eccentricity e, both of which 

would be larger if a star had ever passed near the solar system. Using analytic approximations of 

the changes in i and e produced by a passing star, we have found that no star with mass ~ 0.1 Me 

has passed through our planetary system, and no object with mass ~ 0.003 Mo (i.e., 3 Jupiter 

masses) has passed within the Earth's orbit (see fig. 3). No weakly bound object of mass ~ 0.01 

Me (such as Nemesis) has passed through the planetary system. It is very unlikely that any star or 

dark matter object has passed close enough to significantly change the i and e of any of the outer 

planets, so theories of planetary system formation need to explain them. 
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Planet 

TABLE I 

Orbital Elements of the Outer Planets 

Values from 200 Myr numerical integrationa 

Inclination i (10-2 rad) Eccentricity e (10-2) 

Maximum perturbations 

due to passing starsb 

~max L\emax 

(10-2 rad) (10-2) 

---------------------------------------------------------------------------------------------------------------------
Jupiter 0.3 1.0 0.6 2.5 6.2 4.6 0.6 1.3 
Saturn 1.2 1.9 1.6 0.8 8.9 5.4 0.9 1.8 
Uranus 1.4 2.2 1.8 0.1 7.6 4.4 1.2 2.5 
Neptune 0.8 1.5 1.2 0.01 2.3 1.0 
Pluto 26 30 28 21 28 24 2.3 4.7 

aFrom Table ill of reference 3. 

bLargest values consistent with Neptune's L\ V S L\ V max (see text) 
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Fig.l Diagram of a stellar passage. The orbital velocity of the planet is changed because the 

passing star accelerates the planet and the sun differently. Vectors S and P are directed to 

the star's positions at its closest approach to the sun and to the planet, respectively. The 

velocity impulses on the sun and on the planet are L\ V 0 = 2 G M. 8 / (S2 V.) and 

L\Vp = 2 G M. P / (P2 V.) in the impulse approximation. For symbols, see text 

F.ig.2 A stellar passage nearly parallel to R, the sun-planet separation (i.e., a e« S). Vectors 

8 and P give the positions of the star's closest approach as measured from the sun and 

from the planet, respectively. Two views are represented: the upper part of the figure 

shows the view in the direction opposite V. (the star's velocity), the lower part of the 

figure gives the view aloug the vector -SxV.. As can be seen from the lower part of the 

figure, the circle has radius a sin e .... a e so IP - 81 .... a e. The angle between 8 and R in 

the plane of the circle is ",. In this stellar passage, the change in the planet's orbital 

velocity is L\V .... (2 G M. S-2 V.-l) e (see Appendix Vll). 

Fig. 3 Minimum distances of passing stars and of weakly· bound objects which are consistent 

with the observed low i and e of Neptune when the passage direction is not parallel to R. 

The velocity of the passing star is taken as 46 kmls (the present RMS stellar velocity with 

respect to the sun). The square and circle data points indicate limits for weakly-bound 

objects derived by scaling the mass from numerical simulations of Hills8. 

Fig. 4 The probability that an intruder has passed within a distance D of the sun. The long dash 

line indicates the probability that a main sequence star or white dwarf has come closer to 

the sun than the distance D during the 4.6xl09 yr age of the solar system, based on the 

number density and RMS stellar velocities from ref. 4. The solid lines show the 

probabilities of stars in various mass ranges having come closer than D and, at the same 

time, not perturbing the Jovian planets sufficiently to increase their i and e to greater than 

the observed values. The heavy line is the probability for all main sequence stars and 

white dwarfs. The short dash curve gives the probability that any dark matter object has 

come closer than D, assuming that all disc dark matter is 0.07 solar mass brown dwarfs. 

Fig. 5 A stellar passage. Vectors 8 and P are directed to the star's positions at its closest 

approach to the sun and to the planet, respectively. The difference in the star's position at 

its closest approaches to the sun and to the planet is the projection of the planet-sun 

separation R along the star's velocity V.: (R· V.) V.N .2. See Appendix m. 
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Fig. 6 The passage of a light star so close to the sun that the star is appreciably deflected. The 
position of the star relative to the sun is. R., which equals S when they are closest. The 

angle between R. and S is labeled <p, whose value is <Po when R. is very large. The 

angle between the incoming and outgoing asymptotes is 2<po. The star's direction is 

deflected through an angle X = 2<po - 1t. 

15 



Planet 

L 

p 

.... 

Path of 
Star 

.. 
Sun.................... RxL 

........ .... ........ 
............ 

. .... 
................ ..., .... 

............ 

Figure 1. 

16 



--1--------as 
-- --

s 

p 

s 

Sun s 
Figure 2. 

17 



......-..... 
en 1 
Q) 
en 
en as 
~ 
'-
~ 10-1 
0 en .......... -00 
.... 
Q) 
.0 
'-
€10-2 

Q) 

a.. .... 
0 
en 
~ 10-3 

~ 1 10 100 
DOistance of Closest Approach (AU) 

Figure 3~ 
1i 



\ 
\ 

\ 

\ 
\ 

o 
o 
or-

~--~--~--~--~--~~~--~--~T-
M ~ Lt) <0 ,..... ex) 

I I I I I I 

000000 
C\I 

I 

o 

a uelU JasOIO passed sell JelS e 1ell1 AlmqeqOJd 
19 

-::> « -c: 
:::J 

en 
CD • 
.r:. ~ ... 
E ~ e -... OJ) 
c .~ 

CD ~ 
0 c: co ... 

. !!2 
C 



Planet 
p 

~ -.-..... a 
~, 

~ 

• 
~ 
f+-c 
0 

~ ..c ..... 
~ 
~ 

S 

Figure 5. 

20 



Figure 6. 

21 



Appendix I 

Mass and Velocity Distribution of Stars in the Solar Neighborhood 

The distribution of stellar velocities in the solar neighborhood is given by Heisler, Tremaine 

and Alcocks. For the stars in each of 20 different stellar classes i, they give the the number 

density ni and one-dimensional RMS velocity in the local standard of rest (LSR) O'i,LSR' They 

approximate the velocity distribution for each class by an Isotropic Maxwellian in the LSR. We 

model the velocity distribution in the sun's frame as being isotropic Maxwellian with one­

dimensional RMS velocity O'i = [O'i,LSR2 + (17 kmJs)2 I 3] 112 where 17 kmJs is the sun's velocity 

in the LSR: 

where n(V.) dV. is the number density of stars in the ith stellar class with velocity between V. 

and V. + dV.. The true distribution is not isotropic, since the sun's velocity in the LSR 

introduces a direction preference, but the sun's LSR velocity is sniall, so this does not produce 

significant errors in our model. We used this model to calculate the probabilities in Figure 4. 

The RMS velocity of all stars in the solar neighborhood was calculated as follows: 

00 

Here, Ii = J V.2 n(V .) dV. is the average for the ith class of V.2 weighted by n(V.). We find 

Ii = 3 O'i2 ni because the three-dimensional RMS velocity of the i th stellar class is ..J3 times the 
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one-dimensional RMS velocity O'i. The sum over ~ gives the weighted average of V.2 for the 
00 

stars in all 20 stellar classes. The average is normalized by the sum over Ii = J n(V.) dV. = njo 
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Appendix II 

The Change in i and e Due to a Passing Star 

A change ~ V in orbital velocity results in changes in i and e. Fonnulae for ~i and Ae are 

found for perturbations where AV is small compared to the orbital velocity V p. This is an 

elaboration of the analysis sketched out in the text leading to equation (1). We will also show 

that an upper limit A V max can be set on the strength of the perturbation of the closest passing star. 

Our coordinate system is centered on the sun at the time of the perturbation. The planet's 

orbital angular momentum is L and its position with respect to the sun is R. The axes of the 

coordinate system are in the directions of L, R x L and R, and are called the L, t and R axes, 

respectively. The orbit is nearly circular, so R .. (0,0, a). The polar coordinates of AV are the 

magnitude AV, polar angle 64V (measured from R) and azimuthal angle q,AV (measured from Lin 

the L,t plane). 

The inclination i is the angle between the orbital and invariant planes. Since the invariant 

plane is by definition orthogonal to the total angular momentum J of the solar system, i is also 

the angle between L and J. A passing star would cause a much larger change in the direction of 

L than in J. (The direction of J is determined largely by Jupi~'s orbital angular momentum, 

and the tightly bound Jupiter is less sensitive to outside perturbations than Neptune and Uranus, 

the planets we use to constrain any close stellar passage.) Hence, ~ is approximately given by 

the change in the direction of L. Now the vector change in L is AL = Mp (R x A V) = a Mp 

(-A V v ~ V 1.> 0). The initial magnitude of L is L == aMp V p, so the change in the direction of L is 

~ = arctan &r'L == ALrL = AVL I Vp• This is the result cited in the text. The mean square 

change in any component of AV is <1lVL2> = <1lVR2> = <AVt2> = (l!:.V)2/3, since the sum of 

these must equal A V2. Thus, the RMS change in inclination for perturbations of strength AV is 

<L\l"2>112 = <1l V L 2>112 I V p = (11"'3) ~ V I V p. 
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The planet's e is proportional to the magnitude of its Runge-Lenz vector, A = Mp (V p x L) -

GMoMp (RIR). The change ine can therefore be determined by finding the change in A. 

Because the perturbation is impulsive ~=O. We fmd M = Mp (.1 V x L) + Mp (V p x L\L) = Mp 

L (0, .1 V R' -.1 V J + aMp2V p (0, 0, -.1 V J = aMp2V p (0, .1 V R, -2 .1 V J. Since e = N(GMoMp2) 

and Vp = (GMda)ll2, the change in eccentricity is IL\el = (L\VR2 + 4 L\V?)ll2 Vp·l, as cited in the 

text. Therefore, for perturbatiop.s of strength .1 V, the RMS change in eccentricity is <L\e2> 112 = 

(clVR2> + 4 clVt2»112 1 Vp = [(l/3)L\V2 + (4/3)L\V2]1J21 Vp =" 513 L\V 1 Vp = ~ <L\i2> 1/2. 

We can fmd an upper limit .1 V S tl. V max on the change in a planet's orbital velocity. This 

limit follows from the inequalities 1L\i1 <- <i> and IL\el <- <e>, which must be satisfied for the 

close passage of the star to be consistent with the observed orbits of the Jovian planets. The limit 

can be found by substituting the above expressions for 1L\i1 and IL\el ~to these inequalities: L\VL 

V p·l S <i> and (L\VR2 + 4 L\V t2)1I2 Vp·l S <e>. Squaring these equations and adding them 

yields (L\VL2 + .1VR2 + 4 L\V t2) V p·2 S «i~ + <e~). Since L\V2= L\VL2 + L\VR2 + L\Vt2'5. L\VL2 

+ L\VR2 + 4 L\V?, we have L\V2 S L\Vmax2 == (<i~ + <e>2) Vp2. Thus, we fmd equation (1). 
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Appendix ill 

.1 V Produced by a Star Passing at a Distance Greater than 30 AU 

In this appendix we fmd the· change in orbiW velocity produced by the close passage of a 

field star when S is much greater than a. 

Using the impulse approximation, we fmd: .1V = .1Vp -.1Vo = 2GM.V.-l (PIP2 - 8/S2). It 

is important to note that the velocity impulse on the planet is in the direction of P, not of 8, 

because the directions differ to fIrSt order in a == alS. We now determine P and p2 for.a given 8 

in order to find the corresponding L\ V. The position of the star relative to the planet when the star 

is closest to the sun is S - R. As can be seen in Figure 5, the position of the star when it is " 

closest to the planet differs from this by the component of R along V., R • V ./V •. 

Thus, the position of the star relative to the planet when they are closest is P = S - R + «R • 

V.)N.)V.IV •. Using V • .l S, we fmd p2 = S2 + R2 - 2 S· R - (R· V.)2N.2. It is convenient 

to use polar angles 8s and 8v (called simply 8 in the text) and azimuthal angles <l>s and <l>v of S 

and V. as measured in the coordinate system introduced in Appendix II. 

Substituting R = (0, 0, a) from Appendix II, we fmd P = S + (0, 0, -a ) + a cos 8v V ./V •. 

To fll"St order in a, p2 = 52 (I - 2a cos 8s). So, to fll"St order in a, 

.1 V = 2GM. V. -IS-2 {(I + 2a cos 8s)[S + (0, 0, -a) + a cos 8v V.N.] - S} 

= 2GM. V.-IS-2 {2a cos 8s S + (0,0, -a) + a cos 8v V.IV.} 

We now define .1 V typ == 2 G M. a V.-l S-2 and expand S in rectangular coordinates by 

converting"from its polar coordinates: 

.1 V = .1 V typ {(2sin 8scos 8scos <l>s, 2sin 8geos 8ssin <l>s, 2cos28g-1) + cos 8v V ./V .} 

= .1 V typ {(sin 28s cos <l>s, sin 28s sin <l>s, cos 28s) + cos 8y V.N .} 
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The perturbation II V is significantly smaller than II V typ only when 8y is small. In that case the 

cos 8y term nearly cancels the first term. This can also be seen by reference to Appendix VII. 

Otherwise, II V ... II V typo 

This result can be compared to the results of Hills (fig. 8 of ref. 7), though not directly. 

Hills7 gives the average change in eccentricity Illelav produced by such encounters, but not the 

average change in orbital velocity. So to compare our result with the simulations by Hills7, we 

use the RMS value of lle found in Appendix IT: cle2>1/2 ... ...J 5/3llVtyp I Vp. This agrees with 

l!lelav from Hills 7 within a factor of 2 as long as S ~ Q. 
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AppendixN 

~ V Produced by a Star Passing at a Distance Less than 30 AU 

When S is much smaller than a, ~ V = ~ V 0, and the impulse approximation does not 

necessarily apply. The deflection of the star must be considered in determining the impulse it 

delivers to the sun. The impulse on the sun can easily be found by analysing the star-sun orbit in 

the star-sun center of mass frame. We begin by finding·the equations for the orbit in the CM 

frame. Then we determine the change in the sun's momentum. 

Define the reduced mass J.1 == <Me M.) I (Mo + M.). In the CM frame, the angular 

momentum L., energy E., eccentricity e. and radial separation R. of the star-sun orbit are given 

L. = J.1 R. x dR./dt, (AI) 

GMQM. 
R. (A2) 

(A3) 

I GMQM.J.1 . 
&;= L.2 (1 + e. cos <p). (A4) 

Here <p is the angle between R. and S (see Figure 6). If the star has initial velocity (at great 

distance) V. and impact parameter B with respect to the sun, then L., E. and e. are given by 

L. = J.1 B V. 

E. = J.1 V.2 I 2 
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(A7) 

where ac == G CMo + M.) V.-2 = GMoM. W1V.-2. When the star reaches its closest approach to 

the sun (R. = S), its radial velocity dR./dt is zero. At this time, equation (A2) reduces to IlV.2/2 

= J,J.B2V.2/2S2 - GMoM.IS. Multiplying both sides by 2W1V.-2, we fmd S2 + 2acS - B2 = O. 

With this result and equation (A7), we fmd the more useful equation: e.2 = I + 2Sac-1 + S2ac-2 

= (l + Sac-1)2. That is, 

(A8) 

Now we can determine the angle through which the sun is deflected in the CM frame, which 

allows us to fmd the change in its momentum. The asymptotic angles CPo of the star-sun 

separation R. can be found using equation (A4) in the limit of large R.: (1 + e cos CPo) = 0 or 

cos CPo = -lie •. Since CPo is the angle between one asymptote and S, the angle between the two 

asymptotes is 2CPo. The angle between the initial and fmal momenta of the sun is X = 2cpo - 1t, 
, 

where the 1t is subtracted because the initial momentum is directed towards the center of mass 

along one asymptote but the fmal momentum is directed away from the CM along the other (see 

Figure 6). Note that sin (XI2) = cos CPo = -lie •. 

The final momenta have the same magnitude as the initial [let R. go to infinity in equation 

(A2)]: Mo V Oi = Mo Vat = IlV •. That i.s, in the eM frame, the momenta of the sun and the star 

are redirected,. but not changed in magnitude. It follows that the impulse on the sun is 

M~Vo = 2 Mo V Oi Isin (X 12)1 = 2IlV •1e• = 21lV. (1 + Sac-1)-1 (A9) 
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where we have used equation (A8) for e •. Using ac = GMoM. W1V.-2, we fmally arrive at the 

desired result, 6. V 0 = 2 G M. V. -1 [S + aJ-1. Due to the symmetry of the hyperbolic orbit, the 

impulse is in the direction of the star at its closest approach (6. V 0 II S). 

This result can be compared to the results of Hills (fig. 8 of ref. 7). As in Appendix ill, we 

compare the RMS value <&2>112 "" ~5/3 6. Vo / V p of 6.e with the average value l6.elav found by 

Hills 7• The values agree within a factor of 2 as long as S S a. 
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Appendix V 

Excluded Passages of Weakly Bound Objects 

The results of the numerical simulations of Hills9 for 0.05 Me and 0.005 Mo weakly bound 

objects can be used to derive limits on the close passage of weakly bound objects of various 

masses. Hills found the change.in e produced by the passage of a weakly bound object at several 

different small perihelion distances. Since the change in e is proportional to the mass of the 

passing object we can, for each perihelion distance studied by Hills9, detennine the largest mass 

consistent with the low presently observed <i> and <e> of the Jovian planets. To set limits on 

the perihelion passages of weakly bound objects that correspond to those set for passing stars, 

we estimate the value of ,1 V from the ,1e found by Hills9 and require.,1 V S; ,1 V max. 

For example, if a weakly bound object of mass 0.05 Me passing at S is found to produce an 

average change l,1elav, then a star of mass M. passing at S would produce a change ,1 V = ~ 3/5 

V p 1.1elav (M./0.05 Me) in orbital velocity. The largest mass that could pass without changing 

the orbital velocity by more than,1 V max is M. = v5/3 (0.05 Me},1 V max Vp·l l,1elav·1. Using the 

,1Vmax and Vp of Neptune, we find M. = (lxlQ-3 Me II,1elav). The open circle data points in 

Figure 3 were determined using this formula for M.. The square data points were determined by 

applying the analogous formula M. = (lxlQ-4 Me II,1elav) to Hills's9 simulations of passages of 

0.005 Me objects. 
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Appendix VI 

Probability of Reduction of i and/or e from Initially Large Values 

by a Close Stellar Passage. (the Second Scenario) 

If the planet's i and/or e were initially large, a close passage could only reduce them to values 

as low as observed today if the passage occured with a special geometry. We will show that the 

likelihood of a sufficiently precise special geometry of the passage is extremely small. We will 

flI'St consider the case in which either i or e was initially large but the other was no larger than the 

present average value. Then, the passing star would have to reduce the large orbital element 

without increasing the other orbital element above its present average value. We calculate the . 

probability of this happening. We will show that the probability that a passing star would 

simultaneously reduce i and e from large initial values is always smaller than the probability that 

one orbital element was reduced from an initially large value while the other, initially small, 

remained so. 

We will show that of the possible initial conditions allowed in scenario 2. the one most likely 

to lead to an orbit with the low <i> and <e> observed today is the case of a large initial e but a 

small inital i not much greater than <i>, the present average value. Of course, as stated in the 

text after equation (9), this is sti111ess likely to have occured than Scenario 1, where i and e were 

initially small and no stellar perturbation has taken place of sufficient strength to increase i and e 

above their present average values. 

Reduction of i from a large initial value to a near-zero value would require that the planet be 

passing through the invariant plane when the perturbation occurs, and that the perturbation be of 

the correct- strength to nearly cancel V L> the component of orbital velocity V p orthogonal to the 

invariant plane. Only then would the planet begin to orbit in the invariant plane, because in 

subsequent orbits the planet returns to the position it was at when the perturbation occured. 

When the planet is passing through the invariant plane, V L = ±V p sin ;0'" ±V pio' The 
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cancellation ofVL must occur to an accuracy ofVp <i> if the final inclination is to be no greater 

than <i>. That i,s, the change in V L is -V L ± V p<i>. The probability of this is roughly <i>lio. 

This probability is further reduced by the requirement that the planet be at a distance S <i>a 

from the invariant plane when the perturbation occurs. Since the maximum distance from the 

plane of an orbit with inclination i is a sin i, the fmal inclination would be larger than <i> if the 

planet was any farther from the plane. In the initial inclined orbit, the amount of time that the 

planet spends within this distance from the plane is 4( <i>a I V U per orbital period. The 

probability that the planet is this close to the plane when the star passes is therefore (2/1t) 

(GMda)l12 «i>lio)' Thus, the probability that the planet is passing through the plane and that 

the perturbation cancels V L accurately enough to leave the planet with Ii I ~ <i> is approximately 

(2/1t) (GMda)112 (<i>lio)2. Of course, we cannot know the value of io, but for a perturbation 

~V, ru is typically about...J3 ~VNp, (see appendix II) so if such a cancellation occured, then io 

would have been - ~ ~ V N p. Thus, the probability that a perturbation ~ V would be consistent 

with the observed low i is Ci = (2/31t) (GMda)112 (<i>Vp/~V)2. 

We next consider the case in which the initial eccentricity eo was large, but the initial orbital 

inclination was no larger than at present Then, the perturbation had to reduce the magnitude of 

the Runge-Lenz vector A from its initial value Ao == GMoM; eo to its present value Al == 

GMoMp2 <e> or less. For the cancellation to occur, the change ~A in A has to be nearly 

opposite Ao: that is, it must have both the proper magnitude and direction. Since A points 

towards the planet's perihelion, Ao and Al are both in the orbital plane. Thus, the probability of 

M being in the proper direction is about (lI1t)(A I /Ao). This is the fraction of the circle of 

possible final values of A (with radius M ... Ao) that coincides with the target disk of width 2A l' 

ff the perturbation is in the proper direction, the probability of M having the proper magnitude is 

about (AI/Ao). Thus, the probability of scattering e down to below <e> is Ce ... (ll7t)(AI/Ao)2 = 

(1I1t) «e>leo)2. If the perturbation is of strength ~ V, then eo - ...J 5/3 ~ V IV p, so Ce ... (3/51t) 

( <e> V pi L\ V)2. 
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If only one of the orbital elements was initially much larger than the observed value, then the 

other must have been nearly unaffected by the interaction. Otherwise it would have been 

increased by the passage, and would have a present value much larger than that observed. Either 

the initial value of i or e could have been large. Of these two alternatives, the one most likely to 

lead to the circular, coplanar orbits observed today is a large initial e and an initial value of ion 

the same order as the present <i>. In order that the encounter not change i substantially, I~I ~ 

<i>. The probability Ki of this occuring is the fraction of solid angle for which a perturbation of 

strength Ii V satisfies Ii V LSd> V p. Integrating the solid angle differential dn = (21t1 Ii V) d(1i V u 
from - <i> V p to + <i> V p gives the fraction as Ki = <i> (V pili V). 

The probability that the passing star would reduce e but leave i small is approximately K~e' 

The alternative, with initial i » <i> and eo S <e>, is less likely to have led to the present orbits, 

since the probability Ke that the passing star would not alter the already low e is much smaller 

than K i• (For Ii V to leave i virtually unchanged, only the component Ii V L had to be small, but 

for it to leave e unchanged, both Ii Vt and Ii V R had to be small.) The probability that a passing 

star would simultaneously reduce i and e from large initial values is approximately C,Ce-which is 

always smaller than K,C4!" and need not be considered further. 

Thus, under scenario 2, the probability f that the close passage of a star would be consistent 

with the observed low <i> and <e> is no greater than K{:.e: 

For Neptune, f S 2.3xlo-7 (Vp I dV)3, as cited in equations (8) and (9). 
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Appendix vn 

d V Produced by a Star Passing Nearly Parallel to the Direction of the Planet from the Sun 

A star passing nearly parallel to the sun-planet separation R would leave the planet's orbital 

velocity virtually unchanged. Such a passage would have negligible effect on i and e, and cannot 

therefore be excluded by the arguments in this paper. However, the passage could only have 

escaped detection if the angle 9v (called 9 in the text) between V. and R was very small, a very 

unlikely situation. ~ e will show that when a 9v is small compared to S, d V == d V typ 9v. 

By reference to Figure 2, we see that IP - SI = a sin 9v == a 9vo Let", be the angle between S 

and the projection of R onto the plane orthogonal to V.. Then, the position of the star relative to 

the planet when they are closest is P == S - a 9v (sin '" Sx V .JSV. + cos'" SIS). The magnitude 

of P is P "" S - a 9v cos ",. Thus, to fIrst order in a 9v/S, the change in orbital velocity is 

d V = 20M. V. -1 (P I p2 - S I S2) 

20M. [S-a9v (Sin '" SxV .ISY. + cos'" SIS) S J 
"" v. (S - a9v cos ",)2 - ST 

... 2QM. {[(S-a9vCos ",)SIS - a9vsin '" SxV .JSY .][S + 2a9vcos "'] _ .!.} 
Y. S3 S2 

20M. { .} "" S2y. (2a9v cos'" - a9v cos ",)SIS - a9v sm '" SxV .ISY. 

20M.a9v { . } 
"" S2y. cos'" SIS - sm '" SxV .ISY. 

The magnitude of this result is d V "" 20M.a9v/S2y. = d Y typ 9, as cited in the text and in the 

caption of Figure 2. 
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