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ABSTRACT

Hydrologic response to climate change in California:

observational and modeling studies

Bruce K. Daniels

The lack of adequate quantity and quality of water is a world-wide problem, which 

fosters concerns about the impacts of climate change. Obtaining forecasts of future 

water changes are important to allow early impact mitigation and adaption efforts.

This study forecasts precipitation changes, not through climate models, but by 

analysis of observations to derive trends of three metrics: event Intensity, event 

Duration, and lull Pause. From 50 long-term stations in California we obtained 

median trends of Intensity -0.45% per decade, Duration 0.50% per decade, and Pause 

0.13% per decade.

One problem in the analysis of observations was proper techniques to handle gaps 

from missing data. Multiple Imputation (MI) was applied through fitting of Weibull 

probability distributions to the three metrics. This was tested by artificially injecting 

gaps into the mostly complete Sacramento record. MI partially restored deviations 

caused by that injection.
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Permutation resampling techniques were applied with MI to derive significance 

p-values for each trend. Significance at 95% for Intensity was from 11 of the 50 

stations, Duration from 16, and Pause from 19, of which 12 were 99% significant. 

Trends were combined by weighting them with the reciprocal of their p-values. 

Significance weighted California trends are Intensity -4.61% per decade, Duration 

3.49% per decade, and Pause 3.58% per decade.

Two California basins with hydrologic models were studied: Feather River in the 

northern Sierra Nevada mountains and central coast Soquel-Aptos. Most hydrologic 

components between the two basins were shown to behave differently primarily 

because of climate differences.

Three metric trends were computed for each basin by combining trends from 

nearby observations. Each metric was changed without change to other metrics or the 

total precipitation and input into the models. Most hydrologic impacts were modest 

with magnitudes less than half the corresponding precipitation changes.

Feather River Basin's critical supply to Lake Oroville and the State Water Project 

were benefited from a streamflow increase by 0.5%. Soquel-Aptos Basin's value for 

water supply was harmed by groundwater recharge decrease by -2.5%  and 

streamflow decrease by -1.1%. Neither of these impacts seem amenable to mitigation,

thus adaptation is indicated.
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INTRODUCTION 

1. Motivation

The world climate is a complex system that encompasses numerous Earth surface 

systems, i.e. the atmosphere, hydrosphere, cryosphere, lithosphere, biosphere, etc. 

The preponderance of scientific evidence indicates that anthropogenic actions such as

excess generation of greenhouse gases are causing serious climatic change. The 

typical manner to study climate change is through the construction and operation of 

Global Climate Models (GCMs)  (IPCC, 2013).

Water is a critical resource to humans, commerce, wildlife, and the environment. 

This resource is already over-used and stressed in much of the world (Kondili et al., 

2010). Changes of many of the atmospheric climate elements, such as temperature, 

radiation, wind speed and direction, humidity, and precipitation can impact water 

resources. A thorough understanding of the relationship between climate change and 

water resources could help improve management and improvement of water 

acquisition and delivery systems (Huntington, 2006).

Precipitation is the primary driver of the hydrologic cycle. Precipitation is 

typically characterized and measured in terms of the total annual precipitation. 

However, precipitation can be classified and quantified by other features such as the 

intensity of precipitation events, duration of events, and the lull time between events 

(Trenberth et al., 2003).
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The terrestrial hydrologic cycle is that portion of the global hydrologic cycle that 

takes place on the land surface and the immediate sub-surface. It is an intricate 

system with many transport and storage components, such as evaporation, overland 

flow, infiltration, soil moisture, plant uptake, transpiration, percolation, stream base 

flow, and groundwater recharge, each of which has many uses and dependencies 

(Loaiciga et al., 1996).

It is important to understand how climate change will impact water resources. The 

typical manner to achieve such understanding is to hook-up the output of one or more

GCMs (especially its precipitation output) to the input of hydrology models 

(Markstrom et al., 2011), (Synder et al., 2004), (Flint and Flint, 2012). The deficiency

with this approach is that GCMs currently lack skill in predicting precipitation. 

GCMs often do not have substantial agreement on even the sign of change, i.e. wetter 

vs. drier (Figure 0-1).

One approach to climate understanding that has shown some significance is the 

analysis of changes of precipitation features. For example, the observed intensity of 

precipitation events is quite dramatic (Figure 0-2).

2. Thesis

The thesis of this study is that it is important to understand precipitation features in 

order to understand hydrology. This is motivated in part by the fact that such 
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precipitation features are already observed to be changing. Even if annual 

precipitation is unchanging, precipitation features can still change. These precipitation

feature changes by themselves can have significant impact on how water is 

partitioned and available for the hydrologic cycle components. The goal of this study 

is to compute the quantitive impacts on these hydrologic components from changes in

precipitation features.

A subsidiary thesis is that an observation based approach to precipitation feature 

trend estimation is needed. Even if GCMs had precipitation skill, the coarse 

granularity of GCMs causes a fundamental “drizzle” problem where individual 

precipitation events get averaged over the entire grid cell and thereby obscured and 

lost (Perkins et al., 2007) (Mejia et al., 2014). A secondary goal of this study is to 

derive significant trends for the future changes of precipitation feature metrics from 

precipitation observations.

3. References

Flint, L.E., and Flint, A.L., 2012, USGS Scientific Investigations Report 2012–5132: 

Simulation of Climate Change in San Francisco Bay Basins, California: Case 
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Huntington, T.G., 2006, Evidence for intensification of the global water cycle: 

Review and synthesis: Journal of Hydrology, v. 319, p. 83–95, doi: 

10.1016/j.jhydrol.2005.07.003.

IPCC, 2013, Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental 
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Figure 0-1 GCM precipitation agreements – Global map of CMIP5 multi-model 

mean results for the scenario RCP8.5 in 2081–2100 of average percent change in 

annual mean precipitation. Hatching indicates regions where at least 80% of the 

individual models agree on a change smaller than two standard deviations of natural 

internal variability (i.e., less than two standard deviations of variability in 20-year 

means). Stippling indicates regions where the multi-model mean is large compared to 

variability and where at least 90% of models agree on the sign of change. Regions 

that are not so marked have no such agreement (IPCC, 2013).
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Figure 0-2 Very heavy precipitation regional changes - Increase in the amount of 

precipitation in very intense storms from 1958 to 2007, i.e. the top 1% of all daily 

events. This was described as:

“The amount of rain falling in the heaviest downpours has increased approximately 

20 percent on average in the past century, and this trend is very likely to continue, 

with the largest increases in the wettest places.” (U.S. GCRP, 2009)
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Chapter One

QUANTIFYING THE INFLUENCE OF MISSING DAILY PRECIPITATION

DATA AND TECHNIQUES FOR ESTIMATING TRENDS

IN INCOMPLETE RECORDS
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Abstract

It is important to have observational trends for precipitation statistics, but this is 

imperiled by datasets having missing data. This work investigates the calculation of 

trends for precipitation event intensity, event duration, and lull pause using data sets 

that have gaps. From 50 long-term stations in California we obtained median trends 

of Intensity -0.45% per decade, Duration 0.50% per decade, and Pause 0.13% per 

decade.

Methods for missing data processing by Exclusion, Time Series Analysis 

(ARIMA), and Simple Imputation were found to be ineffective. The Multiple 

Imputation with Monte Carlo repetition method was shown to produce reasonable 

results when tested by artificially injecting missing values into the 99.8% complete 

Sacramento dataset. The initial intensity trend of 0.73% per decade got changed to 

0.31% by missing injections and then MI moved it backwards to 0.47%. Duration 

started at 0.38% per decade, missing injections changed to 0.22%, and MI restored 

back to 0.40%. Pause started at 0.40% per decade, injections flipped it around to 

-0.40%, and MI brought it halfway back to 0.00% per decade. MI restored some of 

the impacts caused by that missing data injection and yielded a deviation from their 

original values by an average 0.76 of the standard deviation of the MI probability 

distribution process.
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1.1 Introduction

Precipitation is important to understand because it is the basic driver of the 

hydrological cycle and is therefore fundamental for water resources. There are many 

water resource components of possible interest, including stream flows, flooding, soil 

moisture, evaporation, or groundwater recharge. But no matter which component is of

concern, knowledge of precipitation is critical. In particular, to know the future of 

water resources, insight on precipitation changes is required.

Like many observational datasets, precipitation data records are usually 

incomplete. This is particularly to be expected for long-term observations back into 

the 19th century or the first half of the 20th century when observations were commonly

recorded manually. Human error might cause observations to be forgotten or mislaid, 

and obviously erroneous values might be recorded and then later discarded. Even 

modern automatic recording devices can break or otherwise malfunction and thus 

miss observations.

Therefore, it is expected to find missing gaps in precipitation time series. These 

can be gaps of a few isolated days scattered here and there across the time range. A 

long sequence of missing data can happen because of human administrative or 

technical problems, such as an employee quits or is fired, funding is lost, or 

equipment breaks and takes a long time to be repaired. Such long down times can 

start and end at seemingly random times. However, some missing sequences are more
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systematic, such as gaps that start at the first day of a month and continue until the 

last day.

Daily precipitation data can, and often is, treated as an undifferentiated sequence 

of values. All of the typical statistical metrics such as mean, median, maximum, and 

standard deviation, can then be applied to that data sequence and used for inference. 

Other more specialized metrics such as extremes and trends can also be defined and 

applied to the data.

Daily precipitation data can be grouped into values for time periods longer than the

daily periods, such as totals for precipitation in each month, or each quarter, or each 

year. Statistical metrics can then be applied to these period values.

An important consideration for the validity of such statistics is the completeness of

the data record. The concern is that missing values may add bias or yield results that 

are not representative or change natural variability and spread.

There has been a long and continuing academic interest and efforts focused on the 

correct statistical handling of missing data (e.g. Baraldi and Enders, 2010; Graham, 

2009; Pigott, 2001; Little and Rubin, 1987). That said, many of the problems, 

methods, and results are specific to the particular field of interest.

The goal of this chapter is to consider a spectrum of methods to be tested for their 

analysis of precipitation data when some of those data values are known to be missing

(Schafer and Graham, 2002). The investigation will focus on the derivation of valid 
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statistical trends of three specific precipitation metrics Intensity, Duration and Pause 

when working with data sets that are missing data.

1.2 Materials

The primary material necessary for this work is the source and properties of available 

observational precipitation datasets. Also important is computation for the statistical 

processing of this data and, in particular, the proper handling of missing data and the 

derivation of trends of precipitation metrics.

1.2.1 Precipitation Data

For this study we utilize climate data collected, analyzed, and made available by the 

National Climatic Data Center (NCDC), which is a part of the federal National 

Oceanic and Atmospheric Administration (NOAA) (Karl and Koss, 1984; Karl et al., 

1986). The Global Historical Climatology Network (GHCN) inventory contains data 

from over 91,000 sites world-wide, with almost 50,000 located in the United States.

There is monthly data available, but its low frequency makes the data too coarse to

be able to identify the precipitation features of concern in this study. Hourly data is 

available for some stations, but these high-frequency records are not provided at 

enough locations for long-term analysis. For example, there are only three stations in 

California that provide hourly data and extend back 75 years (to 1939).

For this study we use the GHCN daily climate records from the Global Historical 
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Climatology Network-Daily dataset, which is also known as GHCND (Klein Tank et 

al., 2002). There are 2,339 GHCND stations in California, of which 2018 provide 

precipitation records. Each GHCND station is identified with an 11 character 

identification code, e.g. the id for Santa Cruz, California is 'USC00047916'. Detailed 

information about GHCND stations and their data is found in Appendix 1-1.

Of the GHCND stations in California, there are 50 precipitation stations that have 

both long periods of at least 85 years and no more than 7% of their daily data missing.

We focus on these 50 stations for this study (Table 1.1). Of the 50 sites chosen, the 

average quantity of missing data is 4.1%. Only four of those sites have less than 1% 

of their daily records missing. The lowest two of these stations, San Francisco and 

Sacramento, are particularly noteworthy and important in this work for their statistical

inference properties.

Sacramento has 138 years of precipitation records, which is the second longest 

running station in California. This extent is more than twice as long as the full PDO 

cycles of 60 years. It also has a very low 0.2% of data missing, which gives it the 

capability to provide reliable, long-term statistical results.

San Francisco has a much shorter 94 year precipitation record. But its unique 

feature is that there is only one day missing, April 12th, 1947. Therefore, it can be 

expected to provide statistical results that are virtually identical with what would be 

produced if no data were missing.

12



1.2.2 Software

One of the major components in this study is a custom built software system called 

ClimateData, which is used for the access, manipulation, and statistical processing of 

precipitation and other climate data. This ClimateData software is described in 

Appendix A1.2.

1.3 Methods

1.3.1 Station Joining

The first technique to describe is a method to “join” stations. Often climate recording,

which has been performed at one position for some time, ceases there. This recording 

later is performed at another place, which may be identified in the GHCND as a 

different Station with a unique Station Id. There are some stringent conditions that are

followed to help ensure that this is essentially a single recording that has just been 

relocated. The new Station must be a recording that starts after the old one has ended 

and begins no more than two calendar years later, i.e. first could end in 1934 and 

second must begin no later than in 1936. The two Locations must be no further apart 

than 5 km and with an elevation difference of less than 150 m. If two or more such 

related Stations are found, then their records are automatically concatenated and 

treated as a single record whenever the first, initial Station's precipitation data is 

loaded.
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1.3.2 Data Loading

There are a number of issues that must be resolved and properly handled in the 

loading and processing of GHCND data. The data is supplied as text files with each 

line of text tagged with and containing data for one metric. This work is just 

concerned with precipitation data. Other data types are not analyzed.

Each line is also tagged with and contains data for one month. Sometimes months 

get repeated or are skipped. In the first case, duplicate months are ignored. In the 

second case, skipped months are installed into the DataSet and daily values are 

marked as “missing” in the precipitation dataset, using the special IEEE floating 

number format "Not-a-Number" value (NaN).

Associated with each value in the file is a measurement-flag. The flag “T” 

indicates a trace amount of precipitation. We indicate this condition by storing a 

0.05 mm value, i.e. half way between zero and the lowest representable value of 

0.1 mm for precipitation.

1.3.3 Precipitation Features

In this work, the precipitation data is not treated just as an undifferentiated sequence 

of values or calendar period summaries. Instead we define and identify specific 

precipitation features within that data sequence.

Daily precipitation values are typically categorized and studied in particular value 
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ranges. Traditional precipitation analysis often distinguishes the properties of wet 

days vs. non-wet days. Some researchers have defined a wet day to be any day with 

precipitation strictly >1 mm/day (Dai, 2001). Others consider a wet day to be 

precipitation ≥1 mm/day (Leander et al., 2013; Klein Tank et al., 2002); the latter 

definition is applied to the present study.

The first defined precipitation feature is a precipitation Event, the maximal 

sequence of adjoining and uninterrupted wet days. People might talk about such a 

precipitation Event colloquially as a rain storm or snow storm.

The second precipitation feature is a precipitation Lull, the maximal sequence of 

adjoining and uninterrupted non-wet days.

The third precipitation feature is a precipitation Gap. This is a maximal, 

uninterrupted sequence of days within the precipitation data sequence for which there 

is no data available, i.e. missing data.

None of these features can be preceded nor followed by a feature of the same class 

since their union would be a single feature of that same class but a longer sequence. 

Therefore a precipitation event must be preceded and followed by either Lulls or 

Gaps (or else be at the beginning or end of the entire sequence).

The end result of this feature identification process is a chronological sequence of 

features. Each such feature corresponds to one or more days in the chronological 

precipitation data sequence. Each day in that data sequence is contained within 
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exactly one feature.

1.3.3.1 Uncertainty Associated with Gaps

If there is a Gap feature in the data record, then the precipitation quantity for that 

missing day (or multiple days) is by definition unknown. This missing data introduces

statistical uncertainty about inferences for the dataset.

However, the existence of a Gap also removes statistical certainty about the two 

Features located on either side of the Gap. If these two adjoining Features were of the

same type, then the Gap could have either joined them together into a much longer 

Feature of that same type, or else kept them separated. When the two adjoining 

features are of different types, then at least one of them would have been lengthened. 

So the uncertainty introduced by missing data infects adjoining Features and so has a 

much bigger impact on statistical certainty.

Missing data can be particularly harmful when it is associated with the Gaps 

between storms. Gaps last for ten days on average and at times they can persist for 

several months during the dry California summers. Because summers are often dry, a 

gap of a single day can influence interpretation of a long time period.

1.3.4 Metrics

For each precipitation Feature, there are various methods to specify and compute 

many statistical metrics of interest. For this work, we will utilize just three basic 
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metrics, two metrics for precipitation Events and one metric for precipitation Lulls.

The first precipitation Event metric is Intensity, defined as the mean rate of 

precipitation for such an Event. This is just computed as the sum of the precipitation 

amounts for all the days of that Event divided by the length of that Event in days. 

This gives an Intensity metric in units of mm/day.

The second precipitation Event metric is Duration, the length of that Event in units

of days.

The single precipitation Lull metric is Pause, defined to be the length of a Lull, 

measured in days.

1.3.4.1 Set Metrics

For sets of multiple Features of the same kind, there are various methods to specify 

and compute metrics of interest for such a set. For a set of precipitation Events, we 

define its Intensity of that set to be the mean of the set of Intensity values. Similarly, 

the Duration of a set of Events is the mean value of Event Durations. As an aside, 

these two examples of a mean value calculated from a set of mean values is termed a 

Grand Mean, which has interesting statistical properties discussed in Chapter 2.

For a set of Lulls, we define the Pause to be the median value of the set of Lull 

Pause values. We use the median rather than the mean because of the nature of 

precipitation patterns in California. In California, most days of a year are dry. Across 

the 50 stations chosen for this study, an average of 81% of the days are dry. So the 
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number of dry days in a year is four times larger than the number of rain days. If the 

number of rain days were to change by X%, the fractional change in dry days would 

be -X/4%. Thus the number of dry days is relatively constant. Since the mean is this 

number of dry days divided by the count of Lulls, then the mean is primarily 

determined by just the count of Lulls in a year. In contrast, using the median of Lull 

Pauses provides some measure of the actual variability of the length of these Lulls 

instead of their count.

1.3.5 Robust Statistics

Precipitation and its various statistics do not have a normal distribution. The 

statistical methods and tools that depend on normality must be avoided since their 

built-in assumptions and results might well be invalid. Instead it is advisable to use 

non-parametric or distribution-free methods that avoid these normality assumptions.

In addition, methods commonly applied to normal distributions such as standard 

deviation or least-squares regression give extra added weight or emphasis to data 

outliers. Methods designed for use with non-normal data sets are better because they 

tend to de-emphasize the influence of outliers.

Instead of the typical use of standard deviation as a measure of scale, spread, or 

dispersion, this work employs the median absolute deviation (MAD). The MAD is 

defined as the median of the absolute value of the deviations from the median of the 

samples X, or alternately:
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MAD=mediani(|Xi− X̂|) , where X̂=median j(X j)

Instead of the typical linear fit estimated by least-squares regression, a preferable 

method used in this work is the least absolute deviations approach (Birkes and Dodge,

1993).

1.3.6 Missing Data Handling

It is clear that some process is needed to handle the missing data. We can instantly 

dismiss allowing missing data to just remain in the dataset because of fatal calculation

problems.

1.3.6.1 Exclusion

A frequent process to handle missing data is ignore the gaps and calculate statistics on

the available data. Exclusion is how a statistical computation system such as the R 

Project for Statistical Computing provides capabilities for the handling of missing 

data (R Core Team, 2013).

One statistical criteria typically used to check if ignoring missing data might be 

justified is to verify if the data is Missing Completely At Random (MCAR). This 

MCAR holds if there is no correlation between whether a particular data item is 

missing and any other data items either existing or missing. In other words, missing 

items are a random subset of the dataset. A weaker criteria called just Missing At 

Random (MAR) allows missing to be dependent on other variables, such as a station's

19



temperature record. The opposite of these two criteria is called Missing Not At 

Random (MNAR) (Heitjan and Basu, 1996).

1.3.6.2 Time Series Analysis

A standard method for handling discrete chronological data is time series analysis that

involves the creation and application of Auto-Regressive Integrated Moving Average 

(ARIMA) models. This technique is often used and applied for predicting future 

values in a time series and is most particularly applied to econometrics. 

An ARIMA model forecasts a value in a time series as a linear combination of its 

past data values and past data deviations (or equivalently its past moving average 

values). The foundation of ARIMA, the Auto Regressive AR portion, consists of a 

weighted sum of previous values. The Moving Average or MA portion of ARIMA is a

weighted sum of past forecast errors, which are differences between the past actual 

data and their forecasted values. There is a convertibility between AR and MA models

such that any stationary AR(p) model of 'p' terms can be transformed into an MA(∞) 

model of infinite terms. Similarly an MA(q) model can be an AR(∞) model. The 

Integrated portion of ARIMA means that the AR and MA are applied to an initial 

differencing of the data. For all these ARIMA forms, the model's effectiveness is 

always dependent and predicated on having highly significant autocorrelations. In 

fact, analysis of data auto-correlations is typically performed first to determine which 

ARIMA forms and their parameters fit best (Bradley, 1985; Chatfield, 2003).
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Note that although ARIMA model analysis is traditionally used for forecasting, it 

also has been recommended as a method to infill the missing values from a time 

series (Rosen and Porat, 1989; Walter et al., 2013). Applying a conventional ARIMA 

model to replace missing values would only use part of available information, i.e. past

values. More effective missing replacement methods might use bi-directional ARIMA

models to incorporate following values.

1.3.6.3 Simple Imputation

Simple imputation is a general term for the replacement of a missing data value with 

a single estimated possible value. Simple imputation can be further categorized as 

either endogenous or exogenous.

Endogenous imputation, also known as hot deck, is where the estimate is derived 

just from examining other records of the same dataset, e.g. other existing days of the 

same precipitation record. The time series ARIMA analysis method is a very general 

example of such endogenous imputation since it makes use of time shifted values 

from the same data.

In contrast, exogenous imputation, also known as cold deck, allows examination 

and use of other outside datasets for estimation. An example might be where 

precipitation records from other stations would be utilized. This could give the 

distinct advantage that information about weather conditions on the exact same day 

that is missing from some station might still be derived from other stations. If these 
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other locations are relatively nearby, have similar elevations, and are not separated by

high orographic features, then they might be particularly effective for estimation 

(Donders et al., 2006).

There are many imputation methods in use and some are quite simple, such as 

replacement with the mean or mode value, or repeating the last value. The more 

effective simple imputation methods consist of some algebraic expression involving a

number of other relevant variables. This is most frequently just a linear weighted 

combination of such variables and is often derived through some kind of regression 

process (Luengo et al., 2012).

1.3.6.4 Multiple Imputation

Multiple imputation (MI) is a more sophisticated technique that can be used to 

understand and produce values for missing data. Unlike single imputation, which 

attempts to produce just a single estimate for a missing data item, multiple imputation

tries to infer the probability distribution expected for the unknown value's population 

(Rubin, 1996). In particular, MI tries to identify the form of the distribution that fits 

the missing data, such as a Gaussian/Normal, exponential, Poisson, or Weibull 

distribution. It must also derive values for the distribution's parameters, e.g. statistical

distribution center and spread. This MI method is performed by generating several 

imputed value estimates using different varying computational probabilistic 

approaches. From such a set of proposed replacements, a likely center and spread for 
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the missing value can be derived (Schafer, 1999). Multiple imputation research has 

shown that 25 such values in an environment with even as high as 50% missing 

values is sufficient to be able to determine those two statistical quantities with a 99% 

confidence (Bodner, 2008).

In this work it is important to try to compute what the value of a trend would likely

have been if none of the data were missing. We can never know exactly what the 

values were for any missing records. The best that can be done is to estimate the 

likely value of this missing data and its probabilistic variability.

Unfortunately it is not sufficient in this work to estimate just a single distribution 

for a station's missing precipitation. For a seasonal time series such as precipitation, 

and particularly for highly seasonal climates, the metric's probability distribution and 

in particular its parameter values in January would be expected to be rather different 

from that needed for July. In this work it is necessary to have different distribution 

parameter values for each month of the year and each would be used to estimate 

missing data in that month.

When the whole purpose of estimation is the evaluation of possible trends, then 

this admits to the possibility that values could either be increasing or decreasing with 

time. Therefore, it is also not reasonable to compute and use a single probability 

distribution for every January a long term record. To utilize just a single distribution 

for each particular month would only help to dampen or underestimate any trend by 
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injecting the same mixture of values for missing data across the full time period. 

Therefore it is also necessary to have a distinct set of distribution parameters for each 

month within each year (Zhang, 2003).

Testing has been performed on how to compute the multiple imputations of 

statistic values. This test checked how many values from the previous and following 

months would be most effective for imputation. It was found that using the two 

months on either side of a target month could produce the best estimate and that 

adding more months caused the deviations to increase. Similarly, using values from 

the same month in the previous and following years was tested and showed that using

up to eight years on either side produced the best estimates. 

 We can use all combinations of these possibilities to generate our multiple 

imputations. For each possibility of zero, one, or two months on both sides of the 

target month, we combine with the possibility of zero to eight years before and after. 

Thus producing 26 different multiple imputation values. From this set of 26 values it 

is straightforward to extract possible center and spread metrics. This MI technique is 

needed in order to take account of the possible range of errors introduced by missing 

data and its impact on a computed statistic.

1.3.6.5 Monte Carlo MI Injection

This work does not employ multiple imputation for the estimation of each actual 

missing daily precipitation value and then try to derive useful metrics from that 
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imputed data. Doing so would take all errors in the estimation of all those daily 

precipitation values and compound and increase them in the process of metric 

calculation. Instead, multiple imputation will be used to directly estimate the value of 

the desired statistic.

Consider the computation of the long-term trend statistic of the Duration metric. 

First we examine that Duration metric for each month of the record. If all of the 

precipitation Event data used to compute the metric is Certain, then its metric value is

computed and accepted. If the month has any Uncertain Feature data, then MI is used 

to compute and inject an estimated value that completes the metric. This is 

accomplished as a proportional process that combines the metric computed from the 

month's Certain Feature(s) and the MI computation of the Uncertain/missing 

Feature(s). For a 30 day month where 20 days are Certain and 10 are Uncertain, their 

direct computed and MI values are combined with weights 2/3 and 1/3 respectively.

Note that in computing the metric for a particular month some Features may cross 

that month's start/end and be only partially contained in that month. In that case, the 

month in question gets partial credit for the fractional part of the Feature that is 

contained in that month. So a precipitation Event of length 5 days of which only 2 

days is located in the month in question, then only 2/5 of that Event's metric will be 

utilized by that month and 3/5 by the adjoining month. In calculating that month's 

mean Duration, to the numerator will be added 2/5 of the event's 5 day Duration (i.e. 

2 days) and to the denominator is added 2/5 of the count of its single Feature (i.e. 

25



0.25). By doing calculations this way, each month gets the proper credit for exactly 

what happens in that month and none of the metric values are omitted or double 

counted.

This method can be used to calculate likely values of the metric for a month by 

using these randomly chosen monthly MI values. This can be repeated to compute the

metric for each month of the entire record. Then to compute a metric statistic such as 

the historical trend of Event Durations, it is necessary to remove the seasonality of 

these monthly metric values. So twelve monthly metric values are combined to yield 

a yearly value. This can either be done for a calendar year (January-December) or 

even what the California Department of Water Resources (DWR) terms a water-year 

(October-September). This study uses the water year, which is better by far because of

the seasonality of precipitation. Using these yearly values, a trend can be calculated 

that has replacement of any missing or Uncertain data with reasonably likely MI 

filled data values instead.

Finally, this MI injection method and statistic calculation can be performed 

repeatedly in a Monte Carlo process. Upon each iteration, a different set of values are 

randomly chosen from the metric MI probability distribution. For this work, this is 

performed ten thousand times, then it will produce a large population of possible 

trend statistic values. Each value is derived from both the concrete values of Certain 

data and also the filling of some likely values derived from that metric's MI 

probability distribution. Each of these ten thousand statistic values will be different 
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and each is equally likely. From this population, the most likely value for that trend 

statistic is its median. From the spread of that population of trend statistic values 

about its median, we get the likely expected range for that trend value. What has been

produced is an MI probability distribution for the statistic itself.

This MI Monte Carlo process yields a trend value, which does not simply exclude 

and ignore any missing or Uncertain data. It also produces a measure of the 

variability of this result (Schunk, 2008).

1.4 Results

1.4.1 Exclusion

The simplest method to handle and account for missing data records is to exclude 

them from the data to be analyzed.

Many locations are missing data early in the period of record, including Santa 

Cruz, California (Figure 1-1). For others, such as California State University, Chico, 

most of their missing values are later during the period of record (Figure 1-2). 

Missing data are often not distributed randomly through out the days of the year. For 

example, in some California locations such as San Jose the missing data tends to be 

clustered in summer months (Figure 1-3), perhaps because summers are typically dry

and precipitation monitoring might be suspended.. For some other locations such as 

Hetch Hetchy in California's Yosemite National Park, data gaps are concentrated in 
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the winter months (Figure 1-4). Such mountainous areas might be in locations that 

are difficult to reach and so winter storms could interfere with their daily access.

The length of clusters of missing precipitation data might be expected to follow a 

binomial distribution, which declines rapidly for longer gaps. For the long-term 

records and relatively modest missing percentages of the 50 California stations, they 

are expected to experience isolated missing singles over 90% of the time, doubles less

than 10%, triples a few tenths of a percent, and essentially no clusters larger. But for 

these stations, cluster distributions tend to be less concentrated, highly spread out, and

more idiosyncratic. For example, Santa Cruz, California station 'USC00047916' has a 

mean cluster size of 10 days and it shows a decidedly strong spike at both 30 and 31 

days in duration (one month) and at other month multiples (Figure 1-5). In fact, there

are 23 months in the Santa Cruz record that are missing all data. These characteristics 

are indicative of non-random gap distribution.

The statistical impact of the simple exclusion of missing data can be even more 

directly demonstrated by taking the long and largely complete Sacramento dataset and

marking as missing those days that are missing at another station, e.g. Santa Cruz, 

which is missing data from 7.0% of the period of record. Inserting gaps in the 

Sacramento data set, changes the trend for the annual Intensity of precipitation events 

from 1.73% per decade to 3.08% trend per decade (Figure 1-6). Applying the same 

strategy to introduce gaps into the Sacramento data changes the apparent trend of 

Event Duration from -0.28% per decade value to -0.05% (Figure 1-7).  Clearly it is 
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not acceptable to simply ignore significant data gaps when calculating trends in these 

precipitation metrics.

1.4.2 Time Series Analysis

The applicability of time series analysis methods for estimation is dependent on good 

correlation with past values. So the analysis for ARIMA starts with autocorrelation 

for verification and then for parameter selection and fitting.

For the San Francisco station, the most complete precipitation record in the state, 

the autocorrelation of daily precipitation data with a lag of 1 day is 30.2% and a 2-day

lag value is 17.4% (Figure 1-8). The autocorrelation of daily precipitation continues 

to decrease with longer lags, and by 7 days it has dropped down to a single digit 

percentage. The Santa Cruz station, which has the least complete record in this study 

(7.0% missing), shows almost the same results (Figure 1-9), suggesting that 

autocorrelation analysis is not heavily impacted by the presence of gaps. The 

theoretical autocorrelation significance levels are calculated as: 

±z (1−α /2)÷
2
√N

where N is the sample size, z is the cumulative distribution function of the standard 

normal distribution and α is the significance level. These two autocorrelation results 

are much higher than this autocorrelation significance level, which for 95% 

significance and 85 years of daily data is about ±1%. However, the 1 day lag plots for

San Francisco (Figure 1-10) and for Santa Cruz (Figure 1-11) demonstrate that day-
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to-day variability is considerable for these stations, suggesting that filling gaps based 

on autocorrelation using a one day lag for a single station is unlikely to be beneficial.

Thus simple ARIMA solutions for estimating San Francisco and for Santa Cruz 

precipitation have error rates of at least 50%. Given the even lower autocorrelation 

values for lags greater than 1 day, the inclusion additional regressive or moving 

average terms, would as expected add complexity but did not improve results at all.

Note that if this ARIMA model is used to just estimate a single isolated missing 

data value, then such a level of error might be better than the alternative of repeating 

as estimate the mean value. Applying this approach to multiple data gaps of varying 

lengths is going to introduce additional errors as gaps become longer and more 

common in the record. In applying such a process to estimate values for one of the 

30-day missing sequences that are observed, most of the estimated values will have 

essentially zero confidence.

1.4.3 Simple Imputation

Simple imputation is the replacing of missing data with an estimate. Exogenous 

imputation, in particular, is where the missing values from one dataset would be 

estimated using data from another. This is effective only when there is high 

correlation between the two records.

But precipitation in California is not only highly variable in time, but also variable 

in space. For example, consider the use of station "USC00049473" in Watsonville, 
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California to impute missing precipitation values in Santa Cruz. Many of the physical 

location relationships are well satisfied. Both are located about 1-2 km inland along 

the north shore of Monterey Bay in central California. The distance between them is a

modest 20.8 km. The Watsonville station is located at an elevation of 29 m and Santa 

Cruz is at 40 m. In the travel along State Highway 1 between them, there is just a 

single notable hill of height 140 m.

So one might expect that these two precipitation data sets should be similar and 

well correlated. But that does not appear to be true. The cross-plot of these two 

stations (Figure 1-12) shows no apparent relationship. In fact, the Pearson 

Correlation Coefficient between the Watsonville and Santa Cruz records is -0.0063, 

suggesting a vanishingly small correlation.

More sophisticated imputation techniques were applied to fill data gaps in the 

Santa Cruz record. This involved the use of multiple nearby stations. Some 89 

stations were found within 50 km of Santa Cruz and with no more than a 250 m 

elevation change. All these stations were given weighting factors determined by how 

well their precipitation data were correlated to the Santa Cruz records. The estimates 

from all stations were combined by using several formulations of their relative 

weights. Even this more complex imputation technique was not able to accomplish 

significant improvement in imputation error reduction.
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1.4.4 Multiple Imputation

The multiple imputation technique is used in this work to categorize, generate, and 

fill statistically plausible data values into time series data in place of whatever 

missing data was originally there. These imputed values are drawn from a probability 

distribution that is specified to match that of those missing data locations.

The first task was to select a suitable probability distribution form or forms to 

model the data. Since there are three Metrics of interest chosen for investigation, 

there could well be three different distribution forms. The Weibull distribution was 

chosen for consideration because it incorporates the Exponential distribution, which 

these three metrics seem to follow and is highly adaptable by use of its shape 

parameter (Figure 1-13). The Weibull distribution has frequently been applied in 

reliability and in lifetime and failure data analysis. In addition, the Weibull has 

already been found to be appropriate in modeling precipitation data (Duan et al., 

1998; Wilks, 1989) and it is used widely in hydrology (Singh, 1987).

The Weibull distribution has a formula with two parameters that must be specified.

 f (x ; k , s)=k /s∗(x /s)k−1∗exp(−(x /s)k )

The shape parameter 'k' selects a single distribution curve out of a whole family of 

widely different shapes. The scale parameter 's', like most scale parameters of other 

distributions, causes a stretching out of the distribution curve and a related decrease 

of its height.
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These two Weibull parameters can be determined by first computing a metric's 

empirical probability density function pdf(x). Then for the corresponding cumulative 

density function cdf(x), a Weibull Plot of

 ln (−ln(1−cdf (x )))   versus  ln (x)

is created. Verification that a Weibull probability distribution is appropriate comes 

from the observation that the data plots as a straight line. The slope of the linear 

regression line for that plot determines the Weibull shape parameter 'k'. Finally, the 

zero intercept can be used to compute the scale parameter 's' as

s=exp(−intercept /k )

The Weibull Plot created for the probability density function for the two event 

metrics demonstrates good fit and the acceptability of Weibull distributions as a 

model. The Sacramento Event Intensity plot fit has a Least Absolute Deviation 

Regression Coefficient of Determination (a robust analog of the familiar R2 value 

from least squares regression) value of 95.5% (Figure 1-14). The Sacramento Event 

Intensity plot yields a shape parameter value of 0.988. The Sacramento Event 

Duration shape parameter value is 0.742 with a fit coefficient of 96.5% (Figure 

1-15). The match of these fitted Weibull curves to the actual data pdf are shown for 

Event Intensity (Figure 1-17) and for Event Duration (Figure 1-18).

The Sacramento Lull Pause shape is 0.535 with fit of 69.2% (Figure 1-16). The 

Weibull fit appears most linear up to values of ln(x) = 3.5 or so (about 33 days). After 

that time the data seems to follow a different distribution. For the time interval from 
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about 30 days to 150 days, the data falls below the Weibull distribution. At longer 

durations the data returns to the Weibull distribution which is apparent in the plot of 

the fitted Lull Pause Weibull curve to its actual data pdf (Figure 1-19).

This Weibull Lull fit deviation suggests that it might be prudent to not go beyond a

single month for imputation of Lull length (Pause). Conveniently that is exactly how 

these Weibull distribution fits are used in MI. They are applied to only impute the 

missing metric values for a single month or more frequently just a fraction of a 

month. So this lack of close fit for the longer time lengths is true but irrelevant for 

this study.

The Weibull shape is often found to be highly specific to the physical process that 

is involved in the underlying physical mechanism and its metrics (Papadopoulou et 

al., 2006; Smith and Naylor, 1987). It is thus expected that each of the three 

precipitation features of this study might well have different Weibull shapes. In fact, 

not just the median values, but also the spread of the 50 station Weibull shape values 

for each of the three metrics are quite distinct. The Inter-Quantile Range (IQR) for the

Intensity shape extends from 0.89 to 1.04, the Duration shape IQR extends from 0.74 

to 0.78, and Pause extends from 0.52 to 0.59.

The second Weibull parameter for scale can easily be determined from knowledge 

of the Mean or the Standard Deviation value for a feature metric. It would be 

inappropriate however to compute and use a single mean statistic for the entire time 
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series. As expected, the values of these features can and do change throughout an 

annual cycle. Depending on where in that cycle a particular missing value(s) is 

located, a mean value suitable for that location should be used. In this work, a month 

by month categorization of that annual cycle seemed sufficient. In addition, if there is 

in fact a trend for a feature metric, then a mean value for an early year should be 

different than its value for a later year. So a mean value is collected to compute a 

Weibull scale parameter for each month of each year in the dataset, e.g. 1,200 values 

for 100 years of data.

Multiple Imputation (MI) is a statistical technique that is described as a convenient

and flexible paradigm for analyzing data with missing values (Schafer, 1999). This is 

the technique to be applied to compute these monthly mean values. For each month, 

multiple estimation algorithms are performed, each of which generates an estimate of 

the metric for that time period. Multiple imputation research has shown that 25 such 

values in an environment with as much as 50% missing values is sufficient to be able 

to determine those quantities with a 99% confidence efficiency (Little and Rubin, 

1987)  The real advantage of this MI technique is that it produces not just a single 

representative central value, but also a measure of the variability for that substituted 

value. 

Testing has been performed on the effectiveness of examining values from a 

previous and following month for imputation. It was found that using the two months 

on either side of a target month could produce the lowest deviation estimate for that 
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target's value. Adding more months caused the estimate deviation to increase. 

Similarly, using values of the same month from a previous and following year was 

tested using some dozen different stations. This showed that the best numbers of 

years to use was a range of from 7 to 14 years on either side to produce the lowest 

deviation estimates. So this work has selected a median value of 10 years on either 

side of a target month to employ for MI estimation.

 We use all combinations of these possibilities to generate our multiple 

imputations. For each possibility of zero, one, or two months on either side of the 

target month, we combine with the possibility of zero to ten years before or after. 

Thus this produces 33 different multiple imputation values. From this set of 33 

values, we calculate a possible center (mean) and a spread (absolute deviation) 

metrics. This technique takes account of the possible range of errors introduced by 

missing data and its impact on a statistic.

The final result of this MI work is a table of Weibull distribution scale parameters 

for each month of each year of the record. Using this table it is then possible to 

construct a relevant probability distribution for a particular month and year and then 

to generate a random value from this probability function for that period.

1.4.5 Confirmation

We performed a test to determine the effectiveness of the Monte Carlo – Multiple 

Imputation filling of data gaps. This test was completed by taking a virtually 
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complete data set, and inserting data gaps based on the pattern of gaps observed in 

another data set. 

The complete Sacramento dataset was used to compute the trends for the three 

metrics: Intensity, Duration and Pause. Next, the Sacramento dataset was repeatedly 

gapped to have the same missing days as each of the other 48 stations with missing 

samples. Each of these 48 sets of gapped Sacramento data were used to compute the 

same three trend values from which the median was calculated. The deviation 

between the original data trend values and the gapped median values was 

considerable. The Intensity trend went from a 0.73% per decade to 0.31% per decade.

Duration went from a 0.38% per decade to 0.22% per decade. The Pause trend went 

from a 0.39% per decade to -0.40% per decade, approximately the same magnitude 

but opposite sign.

The Multiple Imputation Monte Carlo filling process for missing data was applied 

to each of the 48 Sacramento gapped data sets, trends were calculated, and the median

values calculated again. In all three cases this filling process helped restore at least 

some of the negative impact on the calculated trend values, which was imposed by 

the insertion of data gaps. The best case was the Duration trend, which was nearly 

restored to that calculated from the full dataset. Duration started originally at 0.38%  

per decade, gapping took it to 0.22% per decade, and then with MI filling it came 

back to 0.40% per decade. The Intensity trend started at 0.73% per decade, gapped to 

0.31% per decade, and then with MI filling brought this value back to 0.47% per 
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decade. The most extreme impact was to the Pause trend. The complete data set 

indicated a Pause trend of 0.39% per decade, gapping increased this to to -0.40% per 

decade, and MI filling resulted in a trend of 0.00% per decade.

1.5 Discussion

1.5.1 Time Series Analysis

The negative results observed from the autocorrelation 1-day lag plots are a 

measure of the highly variable temporal behavior of precipitation time series. 

Precipitation events are rarely organized to have a gradual increase and decrease in 

intensity through time. Gradual changes are more common in the economic 

forecasting that typically utilizes the ARIMA methods. Instead, precipitation can, and 

sometimes does, go from nothing one day to high intensity the next day and then 

return the third day to zero again.

However, some discussion is appropriate to understand why there is no 

autocorrelation visible in the lag plots, whereas the autocorrelation versus lag analysis

shows a nontrivial 30% correlation for the 1-day lag, values in the teens for lags of 2-

6 days, and all other values well over the 1% significance level. The key to 

understanding how both of these relations can exist within the same data set is in the 

long periods during which there is no rain. Throughout California during the period of

record, 81% of the data days have no rain. The autocorrelation is based almost 

entirely on the likelihood of a dry day following another dry day, whereas wet days 
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are virtually uncorrelated day to day. Another way to describe the latter relation is that

most precipitation events either end after a day, or (if they persist) have a significantly

different intensity day by day. 

1.5.2 Simple Imputation

The negative precipitation correlation result such as is observed from the cross plot of

Watsonville versus Santa Cruz daily precipitation is a measure of the highly variable 

and uncorrelated spatial behavior of California precipitation. Given the close 

proximity of these two stations, this lack of spatial correlation seems surprising. Up to

50% of California precipitation is delivered via long and very thin bands of 

atmospheric moisture that has been termed Atmospheric Rivers (AR) (Dettinger et al.,

2011). Perhaps 90% of the water vapor moved toward the polar regions across the 

midlatitudes occurs in such narrow storms (Dettinger, 2011).

The existence and strong importance of such spatially, restricted precipitation 

delivery mechanisms in California could help to explain local variability in observed 

precipitation patterns. One station may lie within an AR storm track, whereas an 

adjacent station lie just outside the track. It would be interesting to use the historical 

and spatial data set to assess more extensively the nature of spatial correlation 

between nearby stations.

1.5.3 Multiple Imputation

The MI Monte Carlo filling process provided the least benefit when data gaps impacts
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were the most extensive. In the analysis using Sacramento station data, with gaps 

added using the pattern from the Santa Cruz data, the metric of event Duration was 

impacted the least, with a 0.16% per decade change and all of that was restored. 

Intensity was next with a 0.42% per decade change, of which 0.26% (about 2/3) was 

restored. Pause had the largest change of 0.79% per decade and only 0.39% (less than

half) was restored.

Multiple Imputation works by determining a probability distribution for the 

missing data. The values drawn from this distribution will typically be its most 

frequent values and these are what fills in for the missing data. If the actual values 

had been from these frequent distribution values, then MI could fill-in with similar 

frequent values and this might be effective at restoring the statistics. But if, by 

random happenstance or the unintended consequence of decisions of what data to 

miss, the actual values had been extreme or infrequent, then MI would still replace 

with the frequent distribution values which might not be a good statistical match. The 

largest change from gapping for Pause might perhaps indicate that its actual data was 

rather extreme and infrequent.

The MI filling method does reduce the impact of missing data. This can be shown 

by looking at the range of the impacts on the trends resulting from data gaps. The 

original data Intensity trend was 0.73% per decade and the gapping impact had an 

inter-quartile range (IQR) from 0.05% to 0.71%, which is a spread of 0.65%. In 

comparison, the MI filling results ranged from 0.26% to 0.57%, a spread of 0.31% 
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less than half. For Duration the IQR spread was reduced slightly from 0.23% to 

0.21%. The Pause results IQR spread dropped from 0.86% to 0.46%.

This MI filling method is itself a statistical process and these three final trend 

results deviate from their original true values by an average of 0.76 of the standard 

deviation of the probability distribution of that filling process. So the results are well 

with the expected capabilities of the method.

1.6 Conclusions

The three initial data handling methods of Exclusion, Time Series Analysis, and 

Single (exogenous) Imputation provide little benefit in filling data gaps for 

calculation of trends in precipitation metrics. In contrast, filling in the missing data 

with estimates generated by Multiple Imputation with a Monte Carlo process was 

more effective. This method does not provide a means to replace missing data, but it 

can restore at least some of the degradation on trend statistics caused by data gaps. As

an added benefit, the method provides probability bounds on the reliability of its 

estimates.
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Figure 1-1 Early occurrence of missing days. Count of missing days within each year

for station 'USC00047916' in Santa Cruz, California. This diagram shows that almost 

all its missing days occur early in the period of record. This is represents a decidedly 

Missing Not At Random (MNAR) situation.
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Figure 1-2 Late occurrence of missing days. Count of missing days within each year 

for station 'USC00041715' in Chico, California. This diagram shows that most of its 

missing days occur late in the station's period of record. This represents a decidedly 

Missing Not At Random (MNAR) situation.
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Figure 1-3 Summer occurrence of missing days. Count of missing days within each 

day of the year for station 'USC00047821' in San Jose, California. This diagram 

shows that many of the data gaps occur in the summer season. This represents a 

Missing Not At Random (MNAR) situation.
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Figure 1-4 Winter occurrence of missing days. Count of missing days within each 

day of the year for station 'USC00043939' in Hetch Hetchy, California. This diagram 

shows that more of the data gaps occur in the winter season. This lends some support 

to a Missing Not At Random (MNAR) situation.
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Figure 1-5 Length of clusters of the missing days for station 'USC00047916' in Santa

Cruz, California. Of the 43,494 days in its record there are 3,055 missing (7.0%). If 

these missing days were randomly placed, then a little over 93% would be expected 

to occur as isolated singletons, somewhat over 6% as twins, perhaps a couple tenths 

percent as triplets, and essentially nothing larger. In contrast, the mean length of 

clusters in this Santa Cruz record is 10 days. Note the distinctive peaks occurring at 

lengths of one, two, and three months. All this is very strong support of Missing Not 

At Random (MNAR).
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Figure 1-6 Event Intensity trends before and after gapping. The plot of annual values 

of Event Intensity for station "USW00023271" in Sacramento, California together 

with its long-term trend, both shown in red. The blue color shows the same 

information about Sacramento but after the 3,055 days missing in the record for 

station "USC00047916" in Santa Cruz are then marked as missing within the 

Sacramento record. So Sacramento has gone from missing 72 days (0.2%) to missing 

3,095 days (7.1%). This demonstrates the serious impact on the trend value from the 

original 1.7% per decade to 3.08% per decade after the missing additions.
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Figure 1-7 Event Duration trends before and after gapping. The plot of annual values 

of Event Duration for station "USW00023271" in Sacramento, California together 

with its long-term trend, both shown in red. The blue color shows the same 

information about Sacramento but after the 3,055 days missing in the record for 

station "USC00047916" in Santa Cruz are then marked as missing within the 

Sacramento record. So Sacramento has gone from missing 72 days (0.2%) to then 

missing 3,095 days (7.1%). This demonstrates the serious impact on the trend value 

from the original -0.28% per decade to -0.05% per decade after the missing additions.
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Figure 1-8 Autocorrelation of the daily precipitation record for station 

"USW00023272" in San Francisco, California for lags from 1 day to 30.
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Figure 1-9 Autocorrelation of the daily precipitation record for station 

"USC00047916" in Santa Cruz, California for lags from 1 day to 30.
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Figure 1-10 Autocorrelation 1 day lag cross-plot of the daily precipitation record for 

station "USW00023272" in San Francisco, California. Each point shows the 

relationship of the value for one day of the record to that for the next day. Note the 

lack of any trend tendency.

55



Figure 1-11 Autocorrelation 1 day lag plot of the daily precipitation record for station

"USC00047916" in Santa Cruz, California.  Each point shows the relationship of the 

value for one day of the record to that for the next day. Note the lack of any trend 

tendency.

56



Figure 1-12 Cross plot of station "USC00049473" in Watsonville, California versus 

station "USC00047916" in Santa Cruz, California.  Each point shows the relationship 

of the value for one day of the Watsonville record to that for the same day for Santa 

Cruz. Note the lack of any trend tendency.
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Figure 1-13 Weibull family curves showing the variability that comes from different 

shape parameters 'k'. The shape parameter k=1.0 produces an Exponential probability 

distribution. [Philip Leitch, Wikipedia]
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Figure 1-14 Weibull Plot of a Weibull fit for the Event Intensity for Sacramento 

precipitation. This fit is a cross-plot of the ln(-ln(1-cdf(x))) versus ln(x) where x is the

Intensity values. The calculated Least Absolute Deviation Coefficient of 

Determination for this regression fit is 95.5%. The fitted line's slope gives a Weibull 

shape parameter 'k' of 0.988 and the intercept yields a scale parameter 's' of 6.75.
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Figure 1-15 Weibull Plot of a Weibull fit for the Event Duration for Sacramento 

precipitation. This fit is a cross-plot of the ln(-ln(1-cdf(x))) versus ln(x) where x is the

Duration values. The calculated Least Absolute Deviation Coefficient of 

Determination for this regression fit is 96.5%. The fitted line's slope gives a Weibull 

shape parameter 'k' of 0.742 and the intercept yields a scale parameter 's' of 1.137.
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Figure 1-16 Weibull Plot of a Weibull fit for the Lull Pause for Sacramento 

precipitation. This fit is a cross-plot of the ln(-ln(1-cdf(x))) versus ln(x) where x is the

Pause values. The calculated Least Absolute Deviation Coefficient of Determination 

for this regression fit is 69.2%. The fitted line's slope gives a Weibull shape parameter

'k' of 0.535 and the intercept yields a scale parameter 's' of 5.746.
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Figure 1-17 The empirical probability density for the Event Intensity of the 

Sacramento station precipitation shown with its Weibull distribution fit. This Weibull 

distribution fit has a shape parameter 'k' of 0.988 and a scale parameter 's' of 6.75.
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Figure 1-18 The empirical probability density for the Event Duration of the 

Sacramento station precipitation shown with its Weibull distribution fit. This Weibull 

distribution fit has a shape parameter 'k' of 0.742 and a scale parameter 's' of 1.14.
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Figure 1-19 The empirical probability density for the Lull Pause of the Sacramento 

station precipitation shown with its Weibull distribution fit. This Weibull distribution 

fit has a shape parameter 'k' of 0.535 and a scale parameter 's' of 5.75.
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Table 1-1 The 50 GHCND long-term, low-missing stations in California
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Site Name GHCND Id Years Missing County

North Coast Drainage

Graton USC00043578 89 0.3% Sonoma

Scotia USC00048045 89 0.6% Humboldt

Ukiah USC00049122 121 3.5% Mendocino

Orleans USC00046508 112 4.1% Humboldt

Santa Rosa USC00047965 112 6.7% Sonoma

Sacramento Drainage

Sacramento 5 Ese USW00023271 138 0.2% Sacramento

Stony Gorge Rsvr USC00048587 89 1.4% Glenn

Nevada City USC00046136 122 2.7% Nevada

De Sabla USC00042402 109 2.9% Butte

Colgate Ph USC00041916 109 3.2% Yuba

Nicolaus USC00046193 104 3.7% Sutter

East Park Rsvr USC00042640 94 4.0% Colusa

Volta Ph USC00049390 89 4.1% Shasta

Canyon Dam USC00041497 101 4.4% Plumas

Chico Univ Farm USC00041715 109 4.8% Butte

Red Bluff Muni Ap USW00024216 123 5.3% Tehama

Orland USC00046506 112 5.7% Glenn

Willows 6 W USC00049699 109 5.7% Glenn

Hat Creek USC00043824 94 5.9% Shasta

Chester USC00041700 105 6.1% Plumas

Grass Valley USC00043571 122 6.6% Nevada

Northeast Interior Basins

Tahoe City USC00048758 112 6.0% Placer

Doyle USC00042504 92 6.1% Lassen

Central Coast Drainage

San Francisco Dwtn USW00023272 94 0.0% San Francisco

Livermore USC00044997 112 1.2% Alameda

San Jose USC00047821 115 2.4% Santa Clara

Priest Valley USC00047150 109 4.8% Monterey

Big Sur Stn USC00040790 100 6.2% Monterey



The 50 GHCN-Daily stations in California that contain at least 85 years of 

precipitation data record and with no more than 7% of its daily records missing. 

These are grouped by their climatic regions. These 50 stations are those used for the 

investigations in this study.
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Site Name GHCND Id Years Missing County

San Joaquin Drainage

Madera USC00045233 87 2.7% Madera

Elliott USC00042760 89 2.8% San Joaquin

Ash Mtn USC00040343 88 3.5% Tulare

Camp Pardee USC00041428 89 3.6% Calaveras

Calaveras Big Trees USC00041277 86 3.8% Calaveras

Tiger Creek Ph USC00048928 93 4.2% Amador

Lindsay USC00044957 102 4.4% Tulare

Porterville USC00047077 103 5.3% Tulare

Hetch Hetchy USC00043939 105 6.3% Tuolumne

Auberry 2 Nw USC00040379 100 6.7% Fresno

South Coast Drainage

Chula Vista USC00041758 97 1.4% San Diego

Laguna Beach USC00044647 87 2.3% Orange

Newport Beach Harbor USC00046175 94 3.5% Orange

Redlands USC00047306 117 4.2% San Bernardino

San Gabriel Canyon Ph USC00047776 98 4.2% Los Angeles

San Bernardino F S 226USC00047723 112 4.2% San Bernardino

Ojai USC00046399 110 6.1% Ventura

Tustin Irvine Rch USC00049087 113 6.9% Orange

Southeast Desert Basin

Haiwee USC00043710 92 3.3% Inyo

Greenland Rch USC00043603 104 4.2% Inyo

Trona USC00049035 95 4.4% San Bernardino



Chapter Two

THE SIGNIFICANCE OF TRENDS IN PRECIPITATION METRICS

IN THE OBSERVATIONAL RECORD

OF CALIFORNIA FROM 1877 TO 2014
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Abstract 

This work applies statistical techniques to quantify confidence in interpreted trends in

long-term precipitation event Intensity, event Duration, and lull Pause for 50 stations 

in California. The permutation technique is used to generate a trend's empirical 

distribution, which provides exact inference of its significance p-values. This Monte 

Carlo process is repeated 50,000 times to ensure p-value accuracy to 0.09%.

This permutation technique has been enhanced to allow statistical consideration of 

the effect of missing data for calculation of these p-values for trends in precipitation 

metrics. Within the Monte Carlo process, a step is added to repeatedly fill-in missing 

data with Multiple Imputation (MI) estimates using Weibull probability density 

distributions of likely values. For the Intensity metric, 11 of the 50 stations had trends

95% significant. The Duration trends had 16 stations 95% significant. Pause trends 

had 19 stations 95% significant of which 12 were 99% significant.

Sets of trend results are summarized through use of p-value reciprocal weighing. 

The state-wide summary for the Intensity trend is -4.61% per decade with a p-value 

of 0.16% and shows a west-east increase. The Duration trend of 3.49% per decade has

a p-value of 0.03% and shows both a strong west-east and a north-south increase. The

Pause trend of 3.58% per decade has a p-value of 0.09% but no directional 

tendencies. The study shows that for California as a whole storms are getting more 

gentle, lasting longer, and perhaps getting separated longer in time.

68



2.1 Introduction

The goal of this chapter is to resolve trends of precipitation metrics where some of the

data is missing, including an assessment of confidence. Even when data gaps are non-

missing at random, it has been shown that a likely value can still be calculated for a 

trend statistic. This calculation also produces bounds for the range of likely values. 

But the question here is: can it be determined if such a likely value is statistically 

significant and not just the result of random occurrence?

Trend values are sometimes desired for practical resource management. These 

values become important when resource decisions are based on these results. These 

decisions may entail considerable investments in time, effort, and money. So it is 

critical to verify if such trends are significant.

Determining significance for trends is particularly challenging for this research 

because it uses observation records of precipitation in California. Precipitation in 

California is highly variable in space and time. One study (Dettinger et al., 2011) 

assessed the values of the coefficient of variation (ratio of the standard deviation over 

the mean) for inter-annual precipitation across the contiguous U.S. The coefficient of 

variability in the eastern half of the country generally ranges from 0.1 to 0.2 and most

of the western half from 0.2 to 0.3. The majority of values in California are from 0.3 

to 0.5 and a few might be as high 0.7 (Figure 2-1). As a specific California example, 

the coefficient of variation for the Sacramento station is 0.34 (Figure 2-2).
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This inter-annual variability of precipitation in California is often larger than the 

inter-annual change implied by precipitation trends. This makes it challenging to 

detect significant trends against this background of strong “noise” in the climate 

system. However if statistical methods can produce significant inferences in 

California, then they could be more applicable elsewhere.

2.2 Data and Metrics

The precipitation data described in the first chapter is used again in this chapter. The 

same 50 Global Historical Climatology Network – Daily (GHCND) stations in 

California are used; all have at least 85 years of daily records and no more than 7% 

missing data. Statistics of three precipitation metrics are derived from the records of 

those stations. The Intensity metric is the mean precipitation for an Event (a sequence 

of “wet” days with precipitation ≥1 mm/d). The Duration metric is the length in days 

of such an Event. The Pause metric is the length in days of a Lull (a sequence of 

“dry” days with precipitation <1 mm/d). The statistic of interest for these three 

metrics is their long-term trend, as defined by the slope of a straight line of the metric 

versus time.

2.2.1 Climate Divisions

Climate Divisions have been established by the National Climatic Data Center 

(NCDC) part of the federal National Oceanic and Atmospheric Administration 

(NOAA). They were defined for the contiguous United States to allow a collection of 
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long-term temporally and spatially complete data to generate regional historical 

climate analyses (Guttman and Quayle, 1996). There are 344 climate divisions within 

the contiguous United States. The Global Historical Climatology Network (GHCN) 

stations in the United States are grouped by the state in which they are located. Within

each state, the stations are further grouped by NCDC into from 1 to 10 individual 

state Climate Divisions. The stations in California are organized into these seven 

NCDC Climate Divisions:

1)  North Coast Drainage

2) Sacramento Drainage

3) Northeast Interior Basins

4) Central Coast Drainage

5) San Joaquin Drainage

6) South Coast Drainage

7) Southeast Desert Basin

as shown on the NCDC map (Figure 1-3).

Information about which GHCN stations are within a NCDC Climate Division can

be found by cross-correlating the GHCN station identifier with the station data listing 

of the stations of the Cooperative Observer Network (COOP). This station list is 

available from the NCDC Historical Observing Metadata Repository (HOMR) file 

found at:
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    <http://www.ncdc.noaa.gov/homr/file/coop-stations.txt>

This COOP listing also provides some additional station information such as the 

name of county in the state where it is located and its time zone.

This work uses these NCDC Climate Division assignments for the 50 California 

stations selected for this study. This allows investigation of whether and how the 

precipitation trend statistics of these stations might vary across the climate regions of 

the state.

2.2.2 Software

The ClimateData software system created by this author and described in the first 

chapter is used again in this chapter. That software base has been augmented for this 

chapter with an additional 2-3,000 lines of Java code also created by this author. The 

new code adds the capability to perform the statistical significance computations and 

produce the plots described in the Methods section.

2.3 Methods

The approach applied in this chapter is to determine linear trends in designated 

precipitation metrics, and calculate the p-values to assess the significance of the 

calculated trends. This section also describes the methods to summarize sets of p-

values in order to compare them across climate regions.
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2.3.1 Trend Significance

A powerful method for the analysis of statistical significance is called permutation 

testing, sometimes called exact or randomization tests (Ernst, 2004; Feinstein, 1993; 

Good, 2005). The permutation test method has the advantage that it is completely 

non-parametric, so it does not depend on the data being normally distributed. Since 

non-normality is clearly the case for the precipitation metrics chosen for this research,

these permutation tests are suitable (Welch, 1990).

Permutation testing also offers the great benefit that it is applicable for any test 

statistic and not just useable for the usual statistics mean, standard deviation, least 

squares parameter fitting, etc. It works even if the data's probability distribution is 

unknown. Permutation tests accomplish this advantage by generating the metric's 

empirical distribution by Monte Carlo sampling the population of data permutations 

(Smyth and Phipson, 2010; Ojala and Garriga, 2010).

For determination of the significance of trends, this permutation method first 

computes a reference trend value t from the original observed, non-permuted 

sequence of annual metric values (Berry et al., 2011). This trend computation is 

carried out just as described in the previous chapter. Missing data for each month are 

filled in by random sampling from a specific monthly Weibull probability density 

distribution. After this filling procedure, the trend is calculated using the resulting 

filled annual values. These two operations are repeated 10,000 times as a Monte Carlo
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process from which the desired trend value t is taken as the median of all these 

estimates.

For the second permutation step, the annual data values are randomly permuted or 

shuffled and a new permuted trend value pt1 is computed. Within a second Monte 

Carlo process, such permutation is repeated again and again to generate permuted 

trend values pt2, pt3, … ptm. This research uses a permutation loop repetition count m 

of 50,000 times. The generated trend sequence pt1, pt2, pt3, … ptm thereby constitutes

a probability density distribution for the trend metric of interest (Gandy, 2009).

Finally, the significance of the actual trend t0 is derived by performing a count B of

all the permuted trend values pti at least as extreme as the reference trend value t. 

This count B is a measure of how far the reference trend value t is found out on the 

tail of the permutation generated probability distribution. The p-value for significance

is given by count B divided by the loop number m (Berger, 2000).

The repetition count m also determines the error bounds for the computed 

significance p-value. The permutation Monte Carlo process is probabilistic and has a 

standard deviation value of

2

√
p(1−p)
m

where p is the p-value of the significance being computed (Johnston et al., 2007; 

Gandy, 2009). Some extra certainty for these error bounds suggests allowing for 2 of 
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these standard deviations. For example, for 50,000 repetition count for m and testing 

for 99% significance (a p-value of 0.01), the error bounds or precision of these 

significance values is 0.0009 or ±0.09%.

There is an additional innovation that accounts for the effects of missing data. 

Each time around the Monte Carlo permutation loop, Multiple Imputation is 

performed to again fill in missing data for each monthly metric value. This is the 

same MI method that is carried out in the fill-in phase of the t trend estimation 

method. In other words, within each of the 50,000 permutation repetitions, the 

monthly missing data is recomputed and filled with different metric values. These 

new monthly metric values come from random draws from the specific Weibull 

probability distribution for that month.

2.3.2 Significance Weighting

Measures of statistical significance are useful when dealing with sets of data values. 

The simple approach is to treat each value as equally important. This means 

producing a summary measure of central tendency such as using computed statistical 

mean, median, or mode.

However, if there are significance measures for the various values in the set, then 

some of these values are less likely to be random. Accommodation can insure that 

certain values are more likely to be correct. A method to perform this trust 

accommodation is to give different weights to each value, with stronger weights to 

75



those that are more significant (Zhang and Nguyen, 2005; Ghazanfar and Prugel-

Bennett, 2010).

There are many formulas that accomplish such significance weighting of data 

values. However, it has been shown that for the advantages of weighting, “power is 

remarkably robust to misspecification of these weights” (Roeder and Wasserman, 

2009). This work uses the reciprocal of the p-value, which is perhaps the simplest 

weighting formula. So a value that is more significant will have a p-value closer to 

zero yielding more weight for the corresponding data value.

In addition, it is possible to give different weights to the sets of p-values 

themselves. This gives an indication of the p-value or significance of such a weighted

set of data values (Alves and Yu, 2011). Just as done with the data value trend 

weighting, each p-value is weighted by its own reciprocal.

2.4 Results

2.4.1 Trend Significance

For each of the 50 selected GHCND stations, metric trend values and the 

corresponding significance p-value were calculated. The 2-sigma error bounds (95% 

containment) was calculated for each computed p-value. These calculations were 

repeated for each of the three precipitation metrics Intensity, Duration, and Pause.

For the significance of the precipitation Event Intensity metric (Table 2-1), there 
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were 5 stations at the traditional cut-off level of 95% significance with p-values <= 

5%. An additional 6 stations were at the higher 99% very significant level with 

p-values <= 1%. This puts 11 of the 50 station set (22%) supplying results at least 

95% significant. Also there were 4 stations that just missed being termed significant 

by having their p-values >5% but < 6%.

For the precipitation Event Duration metric (Table 2-2), there were 10 stations at 

the level of 95% significance with p-values <= 5%. An additional 6 stations were at 

the 99% very significant level with p-values <= 1%. So there are 16 of the 50 stations

(32%) supplying results at least 95% significant. 

For the precipitation Pause metric (Table 2-3), there were 7 stations at the level of 

95% significance. A total of 12 stations were at the 99% very significant level. Of the 

50 stations, 19 (38%) were at least 95% significant.

As a particular example, the Santa Cruz station has an event Intensity trend of 

-1.98% per decade. Its significance p-value of 0.53% is determined from its position 

on the left hand tail of the permutation probability density curve, where only 266 out 

of the 50,000 values have values less than or equal (Figure 2-4). The computed error 

bounds for that p-value are ±0.03%. The Santa Cruz station event Duration trend of 

0.60% lies toward the right side of its permutation curve where 12,567 out of the 

50,000 values are greater than or equal. This gives a p-value of 25.13% with bounds 

of ±0.19% (Figure 2-5). The Santa Cruz Pause trend 1.69% has 336 permutation 
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values greater than or equal, giving a p-value of 0.67% with bounds of ±0.04% 

(Figure 2-6).

2.4.2 Significance Weighting & Climate Divisions

For each of the three metrics, the set of 50 California stations were grouped into the 7 

defined climate divisions and then the trend results and their significance p-values 

were summarized for each division. These climate divisions were further grouped and

then summarized to assess if any consistent trend patterns occur across the state in the

west-to-east direction or along the north-to-south direction (Figure 2-3).

These summaries were performed in two ways. First, the station results were 

combined using the standard median measure of central tendency. Second, the 

previously defined method of weighting values by the reciprocal of their p-value was 

applied. Both the trends and particularly the significance p-values produced by the 

weighting method are noticeably stronger than their median values.

2.5 Discussion

2.5.1 Trend Significance

The probability density distributions for Monte Carlo trend permutations appear 

quasi-symmetric. This follows from the fact that for every permutation order that 

yields some slope X, there exists the reversed order permutation, which must have the

opposite slope -X. Therefore, if these plots were totally complete, i.e. included all 
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possible permutations, then they would be precisely symmetric. Since a hundred year 

precipitation record will have factorial (100) or about 10158 possible permutations, 

such plots can never be complete. However, with a large number of permutations, 

such as the 50,000 performed here, there is a probabilistic tendency for the count 

around some trend value above zero to be balanced by a similar count for the 

corresponding below zero trend value.

There is another probabilistic factor that could explain the lack of precise 

symmetry: the filling in of missing data. Random values are drawn from the Weibull 

probability distribution chosen for the metric of interest and at the year-month time of

that missing data. Therefore, the values being permuted also have their values 

changed somewhat upon each iteration.

Both of these random processes mean that the results for trend values and their p-

values are not absolutely fixed or certain. Every time that these calculations are 

performed, the results will be slightly different. However, estimates of the spread of 

these variable results can be produced. The two-sigma spread of the calculated 

p-values is shown for the trend significances shown in (Tables 2-1, 2-2, and 2-3) in 

the Error column. For example, the Santa Cruz Intensity metric trend has a p-value of 

0.53% with an error bound of ±0.03%. The Santa Cruz Duration metric has a p-value 

of 37.98% with an error of ±0.22% and its Pause p-value is 0.67% with error ±0.04%.

The variability of these statistical results is determined by the iteration count of the
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relevant Monte Carlo process. The iteration counts have been selected so that the 

spread of these results are relatively modest and, in particular, are much smaller than 

the result values themselves. If tighter bounds of variability are desired, then the 

iteration counts can be increased. At the current count of 50,000 iterations for p-value 

Monte Carlo, the computation time is quite acceptable. On the author's small Apple 

Mac Mini mid-2012 computer, the calculation for a metric of its trends and their 

permutation significance p-values for all 50 stations takes 5 ½ minutes, which is less 

than 7 seconds each.

2.5.2 Significance Weighting & Climate Divisions

It is worthwhile to consider the choice of weighting for the p-value of sets of results. 

The use of the reciprocal formula for weighting p-values provides an exponential 

weighting of trend constituents. So as the trend p-value approaches 0% its weight 

grows rapidly. Of course, there are many other possible weight formulas. For 

example, rather than the reciprocal of the p-value, the reciprocals of the p-value's 

square root or its cube root do not grow in value as quickly (Figure 2-7).

2.5.2.1 Intensity

For the Climate Divisions, precipitation event Intensity trends of the median measure 

of central tendency provide no statistically significant results. The p-values range 

from 13% to 31%. The trends themselves are mixed with two positive values and the 

other five negative and most magnitudes under 1% per decade. There is no state 
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apparent directional tendency.

The weighted Intensity trends offer some significance with two p-values less than 

5% and two less than 1%. The trends are all larger but still mixed. However, these 

weighted trends show a distinct west to east increase, but with decreasing magnitude 

trends of -5.0%, -2.4%, and -1.7% per decade. It might be expected that Intensity 

would naturally strengthen from orographic lifting effects as storms head inland. This 

lifting might be expected to still strengthen about as much the storms that are weaker 

arriving at the coast.

2.5.2.2 Duration

For the precipitation event Duration metric trends, the median measure provides just 

one result of any significance with p-value 1.5%. The Division Duration trends are 

almost all positive (one is at -0.01%). So it seems reasonable to conclude that there is 

a real state trend in Duration, i.e. storms are lasting longer, with a state-wide trend of 

0.5% and p-value of 18.6%. There is no state directional tendency for these medians.

The weighted Duration trends again offer good significance with three p-values 

less than 5% and two less than 1%. All weighted Division trends are positive except 

for one anomaly. For Climate Division 6 South Coast Drainage, the mean trend is a 

positive 0.14% per decade while the weighted trend is -3.34%, i.e. a reversal and also 

different than other weighted Duration trends. The two stations with the best p-values 

are Ojai with trend of -3.3% and p-value of 0.00% and Chula Vista with -2.6% and 
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p-value 0.42%. So the advantage of weighting is shown where the negative trends of 

those two highly significant stations overcome the weak positive trends of the other 

non-significant stations. However, the weighted state-wide Duration trend is a strong 

positive value of 3.5% per decade with a p-value of 0.03%.

The weighted trends show a very strong west to east increase of -3.3%, 2.5%, and 

6.9% per decade. All these also have strong significance p-values of 0.04%, 2.43%, 

and 0.00%, respectively. Just as orographic lifting intensifies storms, it would be 

expected that a concentrated and shorter storm front at the coast could get dispersed 

and lengthened as it moves inland.

There is also an increasing Duration trend from north to south of 1.2%, 2.7%, and 

3.5% and their significance also increases in this direction from a p-value 5.7% north 

to 0.01% south. So this tendency could just be an artifact of that increasing 

significance. The one climate change effect suspected in that southmost area is a 

poleward expansion of the tropical belt (Seidel et al., 2008; Lu et al., 2007). This 

movement could engender a north to south tendency. An encroaching descending 

branch of the Hadley cell might extinguish smaller precipitation events and thus 

increase the Duration.

2.5.2.3 Pause

For the precipitation lull Pause metric trends, the median measure provides just one 

result of any significance with p-value 2.5%. The Division Duration trends are mixed 
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with four positive and three negative. The median state-wide trend in Duration is a 

weak value of 0.1% per decade and a p-value of 12.3%. There is no state directional 

tendency for these median trends.

The weighted Pause trends are quite significant with three p-values less than 5% 

and three less than 1%. The individual Division weighted trends are just as mixed as 

they were in the median trend case. However, the state-wide weighted Pause trend is 

a 3.6% per decade value with a weighted p-value of 0.1%.  There is no directional 

tendency for these weighted trends.

2.5.3 Attributions

The majority of the infrequent mentions in literature of precipitation event Duration 

and event Intensity definition are when they are lumped together as Intensity-

Duration-Frequency (IDF), used in determining the return period of storms. Duration 

and Intensity are rarely measured or analyzed separately and there is only study we 

have seen that purports to measure their trends (Palecki et al., 2005). This study used 

a definition of storm as any 15-minute interval with 2.54 mm of precipitation, which 

is completely different and considerably more limiting and extreme than our 

definition of any day with 1 mm of precipitation. So there seems no effective way to 

compare our results to any other known studies.

We can speculate on reasons for the consistent increase in event Duration and the 

decrease of Intensity. Both changes would seem to follow if storm events were 
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moving slower. Duration would clearly be longer since a slow moving storm would 

take longer to pass through a location. The import of new moisture needed to feed the 

storm precipitation could also be reduced by a slower storm velocity.

There have been recent work on a concept called Arctic amplification where the 

Arctic is observed to warm faster than the mid-latitudes thereby reducing the 

temperature gradient (Francis and Vavrus, 2012; Cohen et al., 2014). It is claimed that

this gradient change has caused a 14% decrease in upper-level winds leading to a 

slowing of west to east movement of large-scale Rossby waves. Also implicated is an 

increase of atmospheric blocking events. All these effects could be connected with 

such a slower movement of storms.

Someone might argue that our measured decrease in precipitation event intensity 

over the last 100+ years is contrary to many published studies of the anticipated 

influence of climate change on the hydrologic cycle, which suggest that greater 

intensity is to be expected.

Most such theoretical and observational studies have based such estimates on 

country, continental, or world-wide scales (Alexander et al., 2006; Barnett et al., 

2006; IPCC, 2013; Min et al., 2011; Toreti et al., 2013; U.S. GCRP, 2014; Karl and 

Knight, 1998; Groisman et al., 1999, 2004, 2005). The differences between the 

Southwest region and the rest of the United States is illustrated by large storm 

intensity measures (Figure 2-8). The differences between California and the rest of 
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continental United States is also seen in Figure 2-1. The statistics of this study are 

only for California precipitation.

Both larger scale studies and those that strictly study California (Pierce et al., 

2013; Russo et al., 2013) typically investigate the statistics of just the very largest of 

storms. Study of the full range of storm events shows that the largest storms can 

increase, while the small and even moderate events could decrease Figure 2-8. An 

increase in the very largest storms implies little about the average trends of all storms,

such as performed in this study.

Almost all these other studies are quantifying complete storms. These are 

measured as the total precipitation of a storm. In contrast, this study is perhaps unique

in that it bifurcates that total storm metric in order to research separately the length of 

the storm event (Duration metric) and its daily average (Intensity metric). There can 

be confusion because the commonly used total storm metric is often called intensity 

too. The Intensity metric of this study is measuring something different than the other 

use of the word.

2.6 Conclusions

The permutation Monte Carlo method was used to identify significant trends in 

precipitation metrics. It demonstrates the possibility of extracting significant p-value 

results in the California region, despite its highly variable climate. With inclusion of 

Multiple Imputation to repeatedly estimate and fill-in for missing data values, it can 
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also properly account for effects of modest amounts of missing data.

The provision of data significance p-values allows all data to not have to be treated

the same. Instead, greater weight can be given to those results with demonstrated 

higher significance. This significance weighing can provide a summary value for a set

of samples giving more credence to those contributors that are more significant. This 

can provide a significance p-value to the summary value itself.
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Figure 2-1 Illustration showing how large and exceptional is the inter-annual 

coefficient of variation of precipitation in California compared to the rest of the 

contiguous United States. The coefficient of variation is defined as the standard 

deviation of inter-annual water-year precipitation divided by its mean. This diagram is

from (Dettinger et al., 2011).
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Figure 2-2 Chart of the annual water year precipitation in Sacramento, CA. This 

location's inter-annual precipitation standard deviation of 159 mm divided by its 

annual mean of 464 mm yields a coefficient of variation value of 34.3%. This large 

value illustrates how California inter-annual precipitation is significantly more 

variable than elsewhere in the contiguous United States.
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Figure 2-3 Map of California with its County boundaries. This map is overlain with 

red lines and numbers, which define the boundaries of the 7 GHCN defined Climatic 

Divisions. These are #1 North Coast Drainage, #2 Sacramento Drainage, #3 Northeast

Interior Basins, #4 Central Coast Drainage, #5 San Joaquin Drainage, #6 South Coast 

Drainage, #7 Southeast Desert Basin.

      Divisions #1, #4, and #6 in this work are termed the Western coastal region. 

Divisions #2 and #5 are the Central Valley. Divisions #3 and #7 form the Eastern 

boundary with Nevada and Arizona. Divisions #1-3 are termed North, #4 and #5 are 

Middle, and #6 and #7 are South.
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Figure 2-4 Probability density plot for Santa Cruz Intensity trend permutations. 

Shown as a blue arrow is where the original, non-permuted trend of about -2.0% per 

decade lies on this distribution's tail. At this location there are 266 of the 50,000 

values that are equal or less than this trend value. This position yields a p-value of 

266/50,000 or 0.53%, which represents 99.47% significance.
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Figure 2-5 Probability density plot for Santa Cruz Duration trend permutations. 

Shown as a blue arrow is where the original, non-permuted trend of about 0.6% per 

decade lies on this distribution. At this location there are 18,992 of the 50,000 values 

that are equal or greater than this trend value. This position yields a p-value of 

18,992/50,000 or 25.13%, which represents 74.87% significance.
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Figure 2-6 Probability density plot for Santa Cruz Pause trend permutations. Shown 

as a blue arrow is where the original, non-permuted trend of about 1.7% per decade 

lies on this distribution's tail. At this location there are 336 of the 50,000 values that 

are equal or greater than this trend value. This position yields a p-value of 336/50,000

or 0.67%, which represents 99.33% significance.
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Figure 2-7 Formula options for giving relative weights to p-values. In addition to the 

direct Reciprocal of the p-value, shown is 'RecipSqrt' the reciprocal of its square root 

or 'RecipCubert' of its cube root. Also shown is the simple 'Linear' weighting by the 

formula

0.5 – p

where p is the p-value. In all cases, the weight increases as the p-value goes from 

50% or no significance towards 0% or very, very significant.
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Figure 2-8  This is a map that shows the considerable disparity between the 

Southwest region and the rest of the United States of the trends for the heaviest 1% of

storms (U.S. GCRP, 2014).
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Figure 2-9  This is a graph of the distribution across relative storm size of their 

projected future change (U.S. GCRP, 2009).
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Table 2-1  Intensity trend significance

Station ClimDiv Missing   Trend p-value Error

    (%) (%/decade)

Graton 1 0.3 -0.11% 47.94% 0.22%

Scotia 1 0.6 -1.58% 2.11% 0.06%

Ukiah 1 3.5 0.42% 29.67% 0.20%

Orleans 1 4.1 0.56% 21.81% 0.18%

Santa Rosa 1 6.7 -0.92% 15.60% 0.16%

Sacramento 5 Ese 2 0.2 0.54% 25.59% 0.20%

Stony Gorge Rsvr 2 1.4 -0.62% 29.94% 0.20%

Nevada City 2 2.7 0.53% 24.84% 0.19%

De Sabla 2 2.9 -1.14% 8.95% 0.13%

Colgate Ph 2 3.2 0.98% 7.44% 0.12%

Nicolaus 2 3.7 0.59% 26.63% 0.20%

East Park Rsvr 2 4.0 2.88% 5.32% 0.10%

Volta Ph 2 4.1 2.39% 1.38% 0.05%

Canyon Dam 2 4.4 0.36% 39.59% 0.22%

Chico Univ Farm 2 4.8 -3.17% 0.03% 0.01%

Red Bluff Muni Ap 2 5.3 -0.63% 22.57% 0.19%

Orland 2 5.7 -0.19% 42.11% 0.22%

Willows 6 W 2 5.7 0.32% 31.39% 0.21%

Hat Creek 2 5.9 0.63% 28.06% 0.20%

Chester 2 6.1 -1.18% 13.12% 0.15%

Grass Valley 2 6.6 -1.18% 5.69% 0.10%

Tahoe City 3 6.0 -0.45% 30.07% 0.21%

Doyle 3 6.1 1.16% 19.44% 0.18%

San Francisco Dwtn 4 0.0 -0.69% 23.00% 0.19%

Livermore 4 1.2 -0.19% 37.44% 0.22%

San Jose 4 2.4 0.30% 38.69% 0.22%

Priest Valley 4 4.8 -1.87% 1.91% 0.06%

Big Sur Stn 4 6.2 -1.11% 15.90% 0.16%

Santa Cruz 4 7.0 -1.98% 0.53% 0.03%
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Station ClimDiv Missing   Trend p-value Error

Madera 5 2.7 2.52% 5.47% 0.10%

Elliott 5 2.8 3.33% 0.27% 0.02%

Ash Mtn 5 3.5 -0.48% 32.79% 0.21%

Camp Pardee 5 3.6 0.91% 18.23% 0.17%

Calaveras Big Trees 5 3.8 -2.35% 5.83% 0.10%

Tiger Creek Ph 5 4.2 -0.61% 22.61% 0.19%

Lindsay 5 4.4 -0.83% 23.59% 0.19%

Porterville 5 5.3 -2.52% 0.99% 0.04%

Hetch Hetchy 5 6.3 0.75% 24.23% 0.19%

Auberry 2 Nw 5 6.7 -2.47% 2.17% 0.07%

Chula Vista 6 1.4 -0.03% 48.72% 0.22%

Laguna Beach 6 2.3 -0.15% 45.05% 0.22%

Newport Beach Harbor 6 3.5 -2.10% 4.00% 0.09%

Redlands 6 4.2 -2.90% 0.16% 0.02%

San Gabriel Canyon 6 4.2 -0.74% 28.43% 0.20%

San Bernardino F S 6 4.2 -1.55% 6.80% 0.11%

Ojai 6 6.1 -5.08% 0.00% 0.00%

Tustin Irvine Rch 6 6.9 0.86% 18.65% 0.17%

Haiwee 7 3.3 -3.12% 5.36% 0.10%

Greenland Rch 7 4.2 -0.12% 47.64% 0.22%

Trona 7 4.4 -0.45% 39.26% 0.22%

The long-term observational trends of precipitation event Intensity. The 5 p-values 

shown in bold are significant at the 95% level (p-value less than 5%). The 6 shown in 

red are at the further 99% significance level (p-value less than 1%). See Figure 2-3 

for definitions of ClimDiv, the GHCN Climatic Divisions.
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Table 2-2  Duration trend significance

Station ClimDiv Missing   Trend p-value Error

    (%) (%/decade)

Graton 1 0.3 -0.32% 2.65% 0.07%

Scotia 1 0.6 1.98% 23.23% 0.19%

Ukiah 1 3.5 0.49% 24.21% 0.19%

Orleans 1 4.1 0.71% 0.79% 0.04%

Santa Rosa 1 6.7 2.12% 35.11% 0.21%

Sacramento 5 Ese 2 0.2 0.25% 1.82% 0.06%

Stony Gorge Rsvr 2 1.4 2.19% 9.81% 0.13%

Nevada City 2 2.7 0.70% 17.15% 0.17%

De Sabla 2 2.9 0.75% 40.35% 0.22%

Colgate Ph 2 3.2 -0.20% 30.62% 0.21%

Nicolaus 2 3.7 0.55% 24.74% 0.19%

East Park Rsvr 2 4 -0.85% 2.66% 0.07%

Volta Ph 2 4.1 -2.02% 39.63% 0.22%

Canyon Dam 2 4.4 -0.20% 4.29% 0.09%

Chico Univ Farm 2 4.8 1.26% 42.38% 0.22%

Red Bluff Muni Ap 2 5.3 -0.14% 3.23% 0.08%

Orland 2 5.7 1.18% 5.20% 0.10%

Willows 6 W 2 5.7 1.46% 25.81% 0.20%

Hat Creek 2 5.9 -0.54% 38.23% 0.22%

Chester 2 6.1 -0.25% 35.10% 0.21%

Grass Valley 2 6.6 0.30% 8.63% 0.13%

Tahoe City 3 6 0.67% 22.66% 0.19%

Doyle 3 6.1 -0.70% 15.38% 0.16%

San Francisco Dwtn 4 0 0.62% 39.09% 0.22%

Livermore 4 1.2 -0.19% 43.74% 0.22%

San Jose 4 2.4 0.07% 3.32% 0.08%

Priest Valley 4 4.8 1.43% 0.45% 0.03%

Big Sur Stn 4 6.2 2.43% 25.13% 0.19%

Santa Cruz 4 7 0.60% 37.98% 0.22%
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Station ClimDiv Missing   Trend p-value Error

Madera 5 2.7 -0.49% 20.12% 0.18%

Elliott 5 2.8 -1.06% 22.44% 0.19%

Ash Mtn 5 3.5 0.51% 13.82% 0.15%

Camp Pardee 5 3.6 1.04% 0.13% 0.02%

Calaveras Big Trees 5 3.8 3.27% 46.28% 0.22%

Tiger Creek Ph 5 4.2 0.08% 3.37% 0.08%

Lindsay 5 4.4 -1.13% 1.88% 0.06%

Porterville 5 5.3 1.66% 34.76% 0.21%

Hetch Hetchy 5 6.3 0.28% 16.28% 0.17%

Auberry 2 Nw 5 6.7 0.67% 0.42% 0.03%

Chula Vista 6 1.4 -2.58% 34.36% 0.21%

Laguna Beach 6 2.3 0.49% 9.11% 0.13%

Newport Beach Harbor 6 3.5 -0.96% 25.68% 0.20%

Redlands 6 4.2 0.64% 22.81% 0.19%

San Gabriel Canyon 6 4.2 0.96% 39.21% 0.22%

San Bernardino F S 6 4.2 -0.22% 1.70% 0.06%

Ojai 6 6.1 1.47% 0.00% 0.00%

Tustin Irvine Rch 6 6.9 -3.35% 0.00% 0.00%

Haiwee 7 3.3 5.48% 0.00% 0.00%

Greenland Rch 7 4.2 8.40% 4.42% 0.09%

Trona 7 4.4 -3.18% 103.18% 0.09%

The long-term observational trends of precipitation event Duration. The 10 p-values 

shown in bold are significant at the 95% level (p-value less than 5%). The 7 in shown 

red are at the further 99% significance level (p-value less than 1%). See Figure 2-3 

for definitions of ClimDiv, the GHCN Climatic Divisions.
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Table 2-3  Pause trend significance

Station ClimDiv Missing   Trend p-value Error

    (%) (%/decade)

Graton 1 0.3 2.54% 0.88% 0.04%

Scotia 1 0.6 -3.76% 2.20% 0.07%

Ukiah 1 3.5 -0.10% 44.29% 0.22%

Orleans 1 4.1 0.18% 43.42% 0.22%

Santa Rosa 1 6.7 0.35% 36.07% 0.21%

Sacramento 5 Ese 2 0.2 0.31% 25.61% 0.20%

Stony Gorge Rsvr 2 1.4 -1.23% 18.51% 0.17%

Nevada City 2 2.7 1.64% 0.33% 0.03%

De Sabla 2 2.9 -0.11% 45.91% 0.22%

Colgate Ph 2 3.2 0.09% 44.80% 0.22%

Nicolaus 2 3.7 -1.83% 1.29% 0.05%

East Park Rsvr 2 4 2.29% 1.50% 0.05%

Volta Ph 2 4.1 -1.87% 2.99% 0.08%

Canyon Dam 2 4.4 2.21% 1.09% 0.05%

Chico Univ Farm 2 4.8 -2.19% 0.15% 0.02%

Red Bluff Muni Ap 2 5.3 -0.09% 41.52% 0.22%

Orland 2 5.7 0.30% 28.36% 0.20%

Willows 6 W 2 5.7 0.67% 30.33% 0.21%

Hat Creek 2 5.9 1.45% 8.33% 0.12%

Chester 2 6.1 0.83% 22.35% 0.19%

Grass Valley 2 6.6 0.70% 15.80% 0.16%

Tahoe City 3 6 -0.71% 21.83% 0.18%

Doyle 3 6.1 -0.94% 29.58% 0.20%

San Francisco Dwtn 4 0 -1.37% 8.79% 0.13%

Livermore 4 1.2 0.00% 50.00% 0.22%

San Jose 4 2.4 0.82% 6.45% 0.11%

Priest Valley 4 4.8 -0.45% 18.62% 0.17%

Big Sur Stn 4 6.2 -0.19% 42.96% 0.22%

Santa Cruz 4 7 1.69% 0.67% 0.04%
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Station ClimDiv Missing   Trend p-value Error

Madera 5 2.7 -0.65% 26.78% 0.20%

Elliott 5 2.8 -0.14% 45.00% 0.22%

Ash Mtn 5 3.5 -0.56% 28.62% 0.20%

Camp Pardee 5 3.6 -1.18% 7.63% 0.12%

Calaveras Big Trees 5 3.8 -2.61% 0.37% 0.03%

Tiger Creek Ph 5 4.2 0.76% 23.00% 0.19%

Lindsay 5 4.4 3.91% 0.00% 0.00%

Porterville 5 5.3 0.70% 16.13% 0.16%

Hetch Hetchy 5 6.3 1.37% 5.60% 0.10%

Auberry 2 Nw 5 6.7 0.30% 35.86% 0.21%

Chula Vista 6 1.4 1.45% 3.41% 0.08%

Laguna Beach 6 2.3 -2.70% 0.97% 0.04%

Newport Beach Harbor 6 3.5 2.04% 3.97% 0.09%

Redlands 6 4.2 -0.07% 46.31% 0.22%

San Gabriel Canyon 6 4.2 -0.11% 42.91% 0.22%

San Bernardino F S 6 4.2 2.42% 0.35% 0.03%

Ojai 6 6.1 2.00% 0.40% 0.03%

Tustin Irvine Rch 6 6.9 3.31% 0.03% 0.01%

Haiwee 7 3.3 -2.47% 0.96% 0.04%

Greenland Rch 7 4.2 -2.51% 0.12% 0.02%

Trona 7 4.4 2.03% 6.46% 0.11%

The long-term observational trends of precipitation lull Pause. The 7 p-values shown 

in bold are significant at the 95% level (p-value less than 5%). The 12 shown in red 

are at the further 99% significance level (p-value less than 1%). See Figure 2-3 for 

definitions of ClimDiv, the GHCN Climatic Divisions.
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Table 2-4  Intensity trend and p-value summaries

---  Median  --- ---  Weighted  ---

Climate Division Trend p-value Trend p-value

(% per decade) (% per decade)

1 North Coast Drainage -0.11% 23.42% -1.20% 7.83%

2 Sacramento Drainage 0.34% 19.54% -2.97% 0.43%

3 Northeast Interior Basins 0.36% 24.75% 0.53% 23.61%

4 Central Coast Drainage -0.90% 19.58% -1.87% 2.34%

5 San Joaquin Drainage -0.55% 13.62% 1.50% 1.76%

6 South Coast Drainage -1.15% 18.98% -5.02% 0.03%

7 Southeast Desert Basin -0.45% 30.75% -2.56% 12.88%

California -0.45% 20.62% -4.61% 0.16%

West Coast -0.74% 18.65% -4.98% 0.07%

Central Valley 0.07% 20.40% -2.38% 0.60%

East Border -0.45% 30.07% -1.73% 15.74%

Northern 0.32% 22.57% -2.93% 0.60%

Middle -0.65% 17.07% 0.45% 1.94%

Southern -0.74% 18.65% -5.02% 0.04%

The summaries of precipitation event Intensity trends for GHCND Climate Divisions 

and state directions. The 3 weighted p-values shown in bold are significant at the 95%

level (p-value less than 5%). The 7 shown in red are at the further 99% significance 

level (p-value less than 1%).
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Table 2-5  Duration trend and p-value summaries

---  Median  --- ---  Weighted  ---

Climate Division Trend p-value Trend p-value

(% per decade) (% per decade)

1 North Coast Drainage 0.71% 16.05% 1.97% 2.84%

2 Sacramento Drainage 0.28% 22.26% 0.70% 7.66%

3 Northeast Interior Basins -0.01% 15.64% 0.29% 12.50%

4 Central Coast Drainage 0.61% 21.19% 2.20% 2.26%

5 San Joaquin Drainage 0.40% 19.71% 2.91% 1.16%

6 South Coast Drainage 0.14% 16.66% -3.34% 0.02%

7 Southeast Desert Basin 5.48% 1.48% 6.94% 0.00%

California 0.50% 18.63% 3.49% 0.03%

West Coast 0.60% 22.81% -3.29% 0.04%

Central Valley 0.29% 21.28% 2.48% 2.43%

East Border 0.67% 4.42% 6.94% 0.00%

Northern 0.49% 23.23% 1.24% 5.73%

Middle 0.55% 18.20% 2.74% 1.42%

Southern 0.49% 4.42% 3.50% 0.01%

The summaries of precipitation event Duration trends for GHCND Climate Divisions 

and state directions. The 3 median and 5 weighted p-values shown in bold are 

significant at the 95% level (p-value less than 5%). The 6 weighted p-values shown in

red are at the further 99% significance level (p-value less than 1%).
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Table 2-6  Pause trend and p-value summaries

---  Median  --- ---  Weighted  ---

Climate Division Trend p-value Trend p-value

(% per decade) (% per decade)

1 North Coast Drainage 0.18% 25.37% 0.72% 3.00%

2 Sacramento Drainage 0.31% 18.05% -0.62% 1.25%

3 Northeast Interior Basins -0.82% 25.71% -0.81% 25.12%

4 Central Coast Drainage -0.10% 21.25% 1.33% 3.24%

5 San Joaquin Drainage 0.08% 18.90% 3.87% 0.02%

6 South Coast Drainage 1.72% 12.29% 3.02% 0.18%

7 Southeast Desert Basin -2.47% 2.51% -2.43% 0.31%

California 0.13% 12.30% 3.58% 0.09%

West Coast 0.18% 6.45% 2.88% 0.39%

Central Valley 0.30% 17.32% 3.76% 0.05%

East Border -0.94% 6.46% -2.42% 0.52%

North 0.18% 21.83% -0.47% 1.58%

Middle -0.07% 17.37% 3.86% 0.03%

South 1.45% 0.97% 2.07% 0.20%

The summaries of precipitation lull Pause trends for GHCND Climate Divisions and 

state directions. The 1 median and 4 weighted p-values shown in bold are significant 

at the 95% level (p-value less than 5%). The 1 median and 9 weighted p-values 

shown in red are at the further 99% significance level (p-value less than 1%).
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Chapter Three

HYDROLOGIC RESPONSE TO CHANGES IN PRECIPITATION METRICS:

TWO BASINS IN CALIFORNIA
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Abstract

This study computes the relative impacts to hydrology flow components from the 

changes of three precipitation metrics: event Intensity, even Duration, and lull Pause. 

The analysis is performed using a Precipitation-Runoff Modeling System (PRMS) 

hydrology model for two California locations: the Feather River Basin in the northern

Sierra Nevada mountains and the central coast Soquel-Aptos Basin. The three metric 

trends are computed for each basin by weighting and combining the trends from 

nearby precipitation station observations. Each metric is changed in the precipitation 

record for a basin without change to the other metrics or the total precipitation.

Most hydrologic components are shown to behave differently between the two 

basins primarily because of climate differences. Most hydrologic impacts are modest 

with magnitudes less than half the corresponding precipitation metric changes. The 

one exception is the Duration metric change in the Feather River Basin, which was by

far the smallest metric change. This might suggest that small precipitation metric 

changes could have relatively larger hydrologic impacts.

The importance of the Feather River Basin to supply streamflow into Lake 

Oroville and the State Water Project is benefited from all three precipitation changes 

by an increase of mean of 0.5%. The value of the Soquel-Aptos Basin for water 

supply from groundwater recharge is harmed from all three precipitation changes by a

decrease of mean of -2.5%. Soquel-Aptos streamflow is similarly harmed by a 
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decrease of mean of -1.1%. Neither of these Soquel-Aptos impacts seem amenable to 

mitigation, thus adaptation is indicated.

3.1 Introduction

The goal of this chapter is to compute the quantitive impacts on hydrologic conditions

and processes from changes in precipitation metrics. This computation is performed 

by varying the precipitation metrics that are input to a hydrological model. It is a 

standard practice in the calibration of parameters of a hydrologic model to compute 

the sensitivity of model outputs to changes in these parameters. This study is 

concerned with the sensitivity of model outputs to changes of precipitation inputs.

There are practical values of such a hydrologic impact study. There may be actions

which can be taken to reduce or eliminate impacts on water resources. Early 

notification of impacts can provide the time it might take to investigate, design, 

permit, finance, and implement facilities or policies to mitigate some or all of the 

impacts. A hydrologic study can also provide the early warning for actions needed to 

adapt to impacts, such as acquisition of additional water supplies, flood controls, or 

conservation.

This study performs a series of tests to determine the differential impact of 

precipitation metric changes on the hydrological components. Each basin test 

repeatedly invokes a hydrological model. First, the model is invoked with its base 

climate data, which is the same historical precipitation record with which the model 
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was calibrated. Second, the model is invoked with that climate input but with one 

precipitation metric varied. The computed water flows of the model are analyzed to 

compute the change relative to the base results of each hydrological component. That 

second model invocation and analysis is repeated for each of the three precipitation 

metrics: Intensity, Duration, and Pause. The end result is a set of the relative 

sensitivities of the various hydrology components to change of each precipitation 

metric.

Tests are run for two watershed and groundwater basin locations to assess how the 

results vary between these two basins. Numerous physiological and biological 

characteristics could influence the nature of hydrologic response to changes in 

precipitation metrics, including topography, vegetation, drainage, or soils. The two 

basins are located in different climate areas, which provides additional information 

about the nature of hydrologic response.

3.2 Study Areas

This study investigates climate impacts on the hydrology at two locations in 

California (Figure 3-1). Each of them is located in a different NOAA climate division

identified for California and each has a hydrologic model used in this study.

The Feather River Basin is located in the Global Historical Climatology Network 

Daily (GHCND) California Climate Division #2, the Sacramento Drainage Division. 

The Feather River basin is described in considerable detail in the report about its 
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hydrologic model (Koczot et al., 2005). But in brief, the basin is located in north-east 

California on the western slope of the Sierra Nevada foothills. It has an area of about 

45,000 square kilometers (3,600 square miles). It ranges from an elevation of (843 ft) 

at its outlet at Oroville Dam to (9,525 ft) near Mt. Lassen. The basin receives an 

average of about 114 cm (45 inches) of precipitation ranging from 33 cm (13 inches) 

in a rain-shadow area of the Sierra Nevada to 317 cm (125 inches) near Mt. Lassen. 

Almost 60% of the basin lies below its current average snowline. With this 

placement, temperature can easily change between above and below freezing. Some 

68% of precipitation falls as snow with some melting on arrival and others persisting 

for months.

The Soquel-Aptos Basin is located in the GHCND California Climate Division #4,

the Central Coast Drainage. The Soquel-Aptos Basin is described in the report about 

its hydrologic model (Hydrometrics, 2011). The study area was also detailed in an 

extensive earlier report (Johnson et al., 2004). This basin has an area of 820 square 

kilometers  (65 square miles) in central California along the north shore of Monterey 

Bay. It ranges from sea-level up to 963 m  (3,160 feet). The basin receives average 

precipitation of 30 inches (76 cm) near the coast up to 46 inches (117 cm) at higher 

elevations. There is occasional snow fall at the highest elevations, but no regular 

snowpack accumulation.
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3.3 Materials

3.4 Methods

The primary methods of this chapter are the procedures for changing a 

precipitation dataset so as to adjust one of three metrics: Intensity, Duration, or Pause.

The requirement is to change a metric to accomplish some computed metric trend 

percentage increase or decrease. The goal is to accomplish this change of a metric 

while leaving the other metrics and the total precipitation amount unchanged.

3.4.1 Hydrology Model Software

This study uses the U.S. Geological Survey (USGS) software Precipitation-Runoff 

Modeling System (PRMS). It is a modular, deterministic, distributed-parameter, 

physical process based system for modeling hydrology (Wenming et al., 2008; 

Leavesley et al., 1983). It was developed to evaluate the impacts of various 

combinations of precipitation, climate, and land use on streamflow, sediment yields, 

water-balance relationships, flow regimes, flood peaks and volumes, soil-water 

relationships, ground-water recharge, and general basin hydrology. PRMS models 

most hydrology components of interest from the first contact of precipitation (rain or 

snow) at the surface down to the water recharged into groundwater (Figure 3-2 and 

Figure 3-3).

PRMS represents four hydrologic zones (Figure 3-2): Surface, Soil, Ground, and 
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SurfaceWater. Each zone has its own input sources and output destinations. Often an 

output of one zone serves as an input into another.

PRMS does not provide detailed groundwater representation or modeling. The 

Ground zone contains just the one input, Recharge. For output, any excess that is not 

needed to discharge to streams as base flow can be discarded into a non-specific 

GroundWater Sink basin output.

For this modeling work, we can track and analyze these following 15 distinct 

PRMS flows (grouped by their zone):

Surface: Precipitation, Exfiltration (Dunnian), Plant Evaporation, Snow Sublimation,

Surface Impervious Evaporation, Surface Runoff, Infiltration, Far Runoff

Soil: Infiltration, Soil ET, Exfiltration (Dunnian), Interflow, Recharge, Far Interflow

Ground: Recharge, Groundwater Sink, Baseflow

Surface Water: Surface Runoff, Interflow, Baseflow, Lake Precipitation,

Lake Evaporation, Stream Outflow

Neither of the two models employed in this study make use of the flows Exfiltration 

(Dunnian), Lake Precip, Lake Evap, Far Runoff, or Far Interflow components. Since 

these are always zero, they are ignored and not shown.

We are also not including in our analyses the seven water stores (shown as blue 

ovals on Figure 3-2), but have chosen instead to focus on flows within and between 

zones. Changes in storage could be assessed by calculating a budget based on 
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aggregate input and output flows.

PRMS has been used to create dozens of hydrologic models. A number of these 

PRMS models have been used to perform climate change impact studies, almost 

always by connecting outputs of GCMs to the PRMS model inputs (Bae et al., 2008; 

Chang and Jung, 2010; Hay et al., 2006; Im et al., 2010; Legesse et al., 2004; Walker 

et al., 2011). In particular, several such conventional climate investigations with 

PRMS have involved the Feather River Basin (Hay et al., 2010; Huang et al., 2012; 

Koczot et al., 2012; Walker et al., 2011). Another study, which utilized a different 

hydrology Basin Characterization Model (BCM), used two GCMs and included the 

Soquel-Aptos Basin (Flint and Flint, 2012).

Software was previously created by the author to supply inputs and extract outputs 

of hydrologic models that use the USGS GSFLOW (coupled Ground water and 

Surface-water FLOW) software system. This software could automatically 

incrementally increase or decrease supplied climate input data. The software could 

run the model with that modified input and then extract the resulting output. By 

comparing output from models with different input parameters, the relative impacts 

were computed. This software has been adjusted for use with the PRMS models of 

this hydrology testing study. It has also been enhanced to independently vary each of 

the three precipitation metrics: Intensity, Duration, and Pause.
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3.4.2 Changing Intensity

The precipitation event Intensity metric is the mean value of the intensity of all the

precipitation events. The intensity of a single event is the mean of its daily 

precipitation amounts, i.e. the sum of those daily precipitation amounts divided by its 

count of days. As such Intensity is the mean of the set of the means of intensity for all

those events. This mean of means is referred to as a grand mean (Everitt, 2010). If the

divisors of each of the set of means are different, as is the case with these 

precipitation events, then the Intensity grand mean can be changed without changing 

Duration or Pause metrics or total precipitation.

The Duration metric is computed as the total number of event days divided by the 

number of events. Our goal is to change Intensity, without changing either the total 

number of event days or the number of events, since that would change the Duration.

It is also not allowed to change the total of daily precipitation, since that would 

almost certainly produce different hydrologic outputs.

It is allowable to exchange days between events or to take some of the 

precipitation from one event day and transfer it to another event on a different day. To

see that this exchange works, five events of random lengths and values were selected 

(Table 3-1). Repeatedly and randomly exchanging their daily values and searching 

for the rearrangement with the largest grand mean changes the value from 2.0791 to 

2.7297 (Table 3-2). This simple exchange example has produced a 31% increase in 
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its Intensity value.

It is currently unknown how to classify those exchanges that increase Intensity 

from those that decrease Intensity. All that is possible now is to perform an exchange, 

recompute the Intensity metric, and observe if its value has increased or decreased.

The Intensity change methodology operates by choosing 20 pairs of precipitation 

events and 20 pairs of days (one from each event). Some random portion of the 

precipitation from one day is redistributed to the other day. The Intensity is 

recomputed and if these redistributions moves the metric towards the desired goal, 

then they are retained, otherwise these 20 redistributions are discarded. This process 

is repeated until the desired change is obtained

Performing this daily value redistribution process has the great benefit that it does 

not change the lulls between the events or their time length values. It also does not 

change the event lengths or the count of events. So both the Pause and the Duration 

metrics are unchanged by changing the Intensity using this method.

3.4.3 Changing Pause

The precipitation Pause metric is defined as the median value of the time length of all 

the lulls between precipitation events. Let us say that the Lull metric is 'D' days in 

length. To decrease the Pause metric, we need to increase the number of lulls that are 

less than the Pause median D value and decrease the number of those greater than that

value. To increase the Pause metric, we decrease the number of lulls less than D and 
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increase the number of those greater than D.

A goal for the change of the Pause metric is to change its value without changing 

Duration or Intensity. The simplest way to change the Pause metric without affecting 

the other two metrics is to employ an event shifting technique moving a precipitation 

event either back or forward in time. When shifting an event backwards in time, the 

lull immediately preceding the event gets shorter in time length (length A decreases) 

and the lull following the event gets longer (length B increases). When shifting 

forwards, the effects are reversed.

In either case it is possible to increase a lull length that is less than the Pause 

median D into one greater than the median or to change a lull greater than median D 

into one less than D.

If both A and B are greater than the median value D (called GG), then a sufficient 

shift of the event will change one of the greater than the median D values (a G) into a 

value less than median D. This produces a situation with one lull greater than D and 

one less than D (called: GG  →  GL).

In general, we actually need to distinguish between two GL cases, one in which 

the sum of the two lull lengths (A + B) is greater than 2*D+1 (called GL>2D+1), and 

one in which the sum is less than 2*D-1 (called GL): GL<2D-1. When GL>2D+1, a 

shift can accomplish a transition back to the GG case, i.e.  GL>2D+1  →  GG. When

GL<2D-1, a shift can transition to a situation where both lulls have lengths less than 
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D (called LL): GL<2D-1  →  LL.

We also need to distinguish between the LL case when the sum A plus B is greater 

than D+1 (called LL>D+1), then there can be a transition back to the GL<2D-1 case 

or LL>D+1  →  GL<2D-1. If instead A plus B is less than D+1 (called LL<D+1), 

then no worthwhile transition is possible.

In all the cases, whenever there is a change in the timing of an event, this causes 

two changes in the Pause metric, with the gain for G or L being a loss for the other 

one. This whole event shifting and transition scheme is illustrated (Table 3-3).

To decrease the Pause metric, which is calculated as the median of all lull lengths, 

we need to increase the number of lulls that are less than the initial Pause value and 

decrease those greater than that value. This requires performing shifts of precipitation 

events that meet those cases that start as GG or GL<2D-1 above. To increase the 

Pause metric, we would perform event shifts that start with the cases GL>2D+1 or 

LL>D+1.

There is a script of this event shift algorithm at work (Table 3-4). The script 

repeatedly performs a specified series of shifts increase or decrease the Pause metric 

by a desired decrease percentage. The script checks progress and continues adding 

shifts as needed to achieve the desired change in the Pause metric, slowing down the 

magnitude of each shift as it approaches the goal.

One new concept needed for this shift algorithm is the concept of an “interpolated”
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median. Both lull and precipitation event length metrics have a relatively small 

integral number of days. So any computed median will almost always be an integer 

such as 3, 4, 5, etc. With several thousand lulls occurring in a long precipitation 

record, these small integers will have hundreds of repetitions. A change of the median

from a 4 to a 5 is a 25% increase. Therefore it would seem to be difficult to 

accomplish or measure a 10% change. 

An expression has been devised to measure how close or far away a dataset is from

a targeted change in the median value. This is motivated by the fact that if the middle 

of the dataset is exactly between the last 4 value and the first 5, then its normal 

median is 4.5. Similarly if the middle is between the last 3 and the first 4 then its 

value is 3.5. So a simple interpolation uses the location of that dataset middle within 

the long sequence of all the 4 values. If the dataset middle is right at the middle of the

4 values, then the interpolated median is a 4.0 quantity. As the dataset middle gets 

closer to the boundary with the 3 values, then the median is interpolated to be closer 

to a 3.5 quantity. On the other edge of the 4 values closer to the 5's, the interpolated 

median value changes closer to a 4.5 quantity. With this interpolation mechanism, we 

can precisely measure and accomplish small changes in the median within such 

heavily repeated integer dataset records.

The obvious advantage of this event shifting approach is that no changes need to 

made to precipitation events other than some slight shifting of their start times in the 

record. There are still just as many precipitation events as there were before. Each 

121



event still has exactly the same length and the same daily precipitation amounts. So 

this shifting has no influence on the Duration or Intensity metrics.

3.4.4 Changing Duration

The precipitation event metric Duration is the mean value of the time lengths of all

the precipitation events. As such it is the sum of the number of days in all those 

events divided by the count of events.

Changing the number of total event days is problematical. For example, if a new 

event day is added to the climate record, this would increase the total precipitation. 

Changing the total precipitation while adjusting the Duration makes it difficult to tell 

if hydrologic changes occur because of the change in Duration or because of an 

increase in total precipitation.

Instead of giving some new precipitation amount to a newly added event day, we 

could move precipitation from one day to another day, either in the same event or in 

another event. However, this spreading of precipitation across more days would 

reduce the Intensity metric.

The only way to change the Duration metric without changing other metrics is to 

change the count of events. This is done by splitting an existing event into two new 

daughter events. We subtract events by merging two existing events into a single 

survivor event. Adding events decreases Duration, and subtracting events increases 

Duration.
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3.4.4.1 Preserving Other Metrics

The effects of these Duration metric event mergers and splits will tend to change 

the Pause metric, but this effect can be neutralized. After the Duration change, the 

Pause change process can be invoked to remove the inadvertent change. As already 

noted, changes to the Pause metric will not affect the Duration metric.

Performing Duration change will also change the Intensity metric, but this effect 

can be removed as well, without affecting the Duration metric.

3.4.5 Hydrology Testing

For each hydrological model there are at least two nearby long-term climate stations 

with fairly complete records. For each of these stations, we have calculated the three 

climate metric trends and their statistical significance P-values. We combine the three 

model-local sets of station trend results for each metric by weighting them by the 

reciprocal of their significance p-value. This weighting yields a single trend value for 

each metric that is used for testing that hydrological model.

Each model is tested by using the observation precipitation dataset with which the 

model was designed and calibrated. One assumption here is that each model was 

carefully and professionally prepared and that it is a reasonably good representation 

of the basin hydrology.

First, the hydrology model is executed with its supplied precipitation dataset. This 
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execution yields as output detailed data on resulting hydrology component flows. 

These flows are expressed in terms of centimeters of water over the entire model 

domain averaged over all the years of the climate data extent, i.e. cm per year. For 

example, for the Feather River Basin the precipitation was 100.41 cm/yr, the recharge

was 21.98 cm/yr, and the stream outflow was 41.88 cm/yr. These two datasets, one 

for each model, we term the Base data for that model.

Second, each model is executed three additional times, using each of the three 

metrics to modify the precipitation dataset, This analysis thus produces six output 

hydrology impact datasets, one for each model and desired change in each metric.

Finally, each impact dataset is compared to its relevant model Base dataset. We 

take the difference for each hydrology flow component between its impact dataset 

value and the Base value and then divide by the Base value. This yields a proportional

impact measure as a non-dimensional percentage for each component and for that 

model-metric combo.

3.5 Results

3.5.1 Basin Metric Trends

For each basin model there are at least two local long-term climate stations with 

fairly complete records. From each of these stations we computed an estimate of 

climate trends for Intensity, Duration, and Pause and their statistical significance 
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p-values. The base trend statistics for each station are expressed on a percentage per 

decade basis are shown for the Feather River Basin and for the Soquel-Aptos Basin in

(Tables 3-5 and 3-6), respectively. The two values lightly highlighted are statistically

significant at the 95% level.  The seven values that are darkly colored are highly 

significant at the 99% level.

For each set of individual station metric trend results, the trends are combined by 

weighting them by the reciprocal of their p-values. This yields a composite trend 

value for each metric to apply to each hydrologic model. The individual p-values are 

themselves weighed as well to yield a significance measure for the combined trend 

values. The combined metric trend results and their composite p-values are also 

shown (Table 3-5) and (Table 3-6).

It is encouraging that six of nine combined trends have at least one contributor that

is highly significant and a seventh value has a significant contributor. There are only 

two of combined metrics that have little statistical significance.

3.5.2 Impacts Extent

We wish to understand the future hydrologic impacts. The precipitation metric trends 

are all based on past observations. As shown in Table 3-5 and Table 3-6, the 

combined trends are all quite significant, except for the one Duration trend from the 

Feather River Basin. Significance does give support that the results are not random 

and, hopefully, are not a result of internal variability. Therefore, we assume that it is 
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justifiable to extend those metric trends into the future.

We need to select a time period of interest. Extrapolation of linear trends is risky 

because some climate changes are non-linear. In particular, water evaporation, which 

is the supplier of atmospheric water vapor and thus a driver of precipitation, is 

approximately exponential with respect to increases in temperature (Alduchov and 

Eskridge, 1996). Also it would be productive to select a time extent long enough to be

a reasonable planning horizon for many institutional investment and operation 

endeavors.

An extent of 30 years has been selected for future climate trend projections and 

hydrology impact testing. Assuming that the climate trend values computed are to be 

applied for a 30 year period, the Feather River Basin metrics are expected to change 

as: Intensity = -8.21%, Duration = 0.22%, and Pause = 6.28%. The extrapolated 

Soquel-Aptos metrics are expected to change by: Intensity = -8.81%, Duration = 

6.55%, and Pause = 5.00%.

3.5.3 Hydrologic Impacts

The three 30 year metric trends were applied separately to the Feather River Basin 

precipitation dataset. The relative impacts to the hydrologic components were 

computed (Table 3-7). Similar hydrology impacts were computed for the Soquel-

Aptos basin (Table 3-8).
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3.6 Discussion

It is encouraging that four of the six metric trend composites used for the hydrologic 

modeling have at least one precipitation station contributor that is highly statistically 

significant (Tables 3-5 and 3-6). An additional composite trend, the Feather River 

Pause metric, has a statistically significant contributor. Only one of the composites, 

the Feather River Duration metric, has no statistical significance support. The end 

result is strong in that three of the six composite metric trends for modeling are highly

statistically significant, two are significant, and one is not significant.

3.6.1 Basin Comparison

Before discussing hydrologic impacts, it is important to understand the quite different

hydrology of the two basins. Many of these differences can be seen from their relative

flow rate components in Table 3-9.

Some of the differences follow directly from their different climate conditions. The

Feather River Basin is located in the Sierra Nevada mountains and snow is a large 

fraction of its precipitation and a dominant hydrology factor.

Snow sublimation is about 1% of its precipitation, whereas Soquel-Aptos is at low 

coastal elevations and has essentially none. With most precipitation arriving as snow 

and melting slowly over time, Feather has less than 0.1% runoff, instead Soquel has 

almost 14%. As a consequence, Feather a has high infiltration of about 93% and 

Soquel infiltration is lower at 68%. Along with this higher Feather infiltration flow 
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rate, Feather has higher rates of interflow, recharge, and baseflow.

Another climate effect comes from the Soquel precipitation arriving as rain instead

of snow. The warmer rain, which wets the Soquel plant leaves and stems, evaporates 

about 17% of Soquel precipitation. With the Feather precipitation arriving as snowfall

and colder rain, the corresponding plant surface evaporation is a smaller 6%.

A final difference is caused by a land use disparity. Feather is almost entirely rural 

and its impervious surface evaporation is at zero. Soquel is partly urban and has an 

impervious evaporation of about 1.7%.

Only two of the hydrologic flow components are somewhat similar between 

Feather and Soquel: soil evapotranspiration and stream outflow.

With so many clear differences between the two models, mainly from climate 

effects, we should not be surprised to see them respond in clearly different ways to 

our precipitation metric changes.

3.6.2 Feather River Hydrologic Impacts

The Feather River Basin hydrology impacts have some interest (Table 3-7). It is 

perhaps gratifying to see some hydrology impacts are similar in magnitude to the 

climate changes.

The Feather surface runoff decrease was almost double the Intensity decrease. 

With runoff less than 0.1% of precipitation, its process is weak and possibly quite 
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sensitive to change. This is reinforced by the moderately strong effect that Duration 

also has on runoff. In any case, runoff is so small that it is of theoretical interest, but 

probably of no practical consequence in this basin. 

All three climate metrics had fairly strong negative effects on Feather sublimation. 

Weaker and longer snow storm changes could cause fresh, colder snow to continue to 

be added to the top of the snowpack, so Intensity and Duration changes might well 

reduce sublimation. It is unclear why longer pause could also reduce sublimation.

Although the Duration metric change was the smallest (+0.22%), it had significant 

relative influences on most hydrology flow component impacts. Five components 

changed with a magnitude larger than the Duration change and three more had at least

half its magnitude. Some of the hydrology component sensitivities to change are 

probably non-linear. This Duration result might suggest that hydrology response to 

small climate changes could be relatively bigger than the response to large climate 

changes.

Perhaps the most important economic value of the Feather River Basin is to fill 

Lake Oroville, the largest dam and second largest reservoir in California and the 

primary watershed for the State Water Project. The impact on streamflow from the 

Duration change is negative -0.07%, which is quite minimal. In contrast, the impact 

from Duration is 0.26% and from Pause is 1.28%. Since both the numeric and 

economic streamflow impacts are largely positive, probably no mitigation or 
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adaptation efforts are worth consideration.

3.6.3 Soquel-Aptos Hydrologic Impacts

All the Soquel-Aptos Basin climate metric changes are large and significant (Table

3-6). However, the hydrologic impacts to Intensity are only modest and the impacts to

Duration and Pause are weak.

The strongest Intensity responses are from recharge (-6.70%) and baseflow 

(-5.69%) with magnitudes at least half of the -8.81% Intensity trend. Intensity impacts

to another five components, plant evaporation (3.65%), impervious evaporation 

(2.97%), surface runoff (-2.20%), interflow (-2.88%), and streamflow (-2.98%), are 

percentages in a non-trivial 2-4% range.

Both Duration and Pause impacts are anemic. There is only one impact, the 

impervious evaporation to Duration change, which is barely over 1%. It is puzzling 

why this would happen. It is almost as if this temperate hydrology is insensitive to 

any timing changes.

The only effect that seems to make any big difference to impacts is actual water 

amount changes. But note that the Intensity metric change does not change the total 

precipitation received. All that this change does is reduce mean Intensity by 

redistributing precipitation amounts. Such an Intensity reduction seems to be 

accomplished by moving rainfall amounts away from the short events into the longer 

events. This would make small storms weaker and big storms stronger. Stronger big 
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storms could produce more soil saturation, which would be consistent with the two 

largest Intensity effects of reduced recharge (-6.70%) and baseflow (-5.69%). Soil 

saturation would be expected to decrease infiltration, which did happen but very 

weakly (-0.88%). However, soil saturation would also be expected to increase runoff 

and interflow, however both decreased: runoff (-2.20%) and interflow (-2.88%). The 

only impacts that increased were plant evaporation (3.65%) and impervious 

evaporation (2.97%), which do not follow logically. We have no cogent theory that 

would explain all the confusing impacts from this Intensity change.

The values for water in the Soquel-Aptos Basin are for domestic water supply, 

irrigation, and the environment. The news from this study are all bad.

If water supply comes from groundwater, this is bad news. All three recharge 

impacts are negative and especially Intensity at -5.69%. The only positive 

components for Intensity are the three evaporation impacts. These can not be reduced 

to mitigate the deficit. Effecting some sort of rain water detention solution such as 

berms or spreading basins could increase infiltration. But these solutions come at the 

cost of even more reduction to streamflow, which would harm riparian ecosystems, 

threatened fish, and its use for water supply. So the only solution seems to be to adapt

to these shortages.

If water supply comes from streams, this is bad news. All three streamflow impacts

are negative and especially Intensity at -2.98%. Once again the positive evaporation 
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impacts can not be reduced. Routing more surface water into runoff would harm 

infiltration and groundwater recharge. So one must try to adapt to these shortages.

For irrigation and the environment, soil moisture is of importance. The news for 

soil moisture is not good. For all three metric changes, the gain (if any) from the 

major soil input (infiltration) is smaller than the loss from the major soil output 

(evapotranspiration). In particular for the Intensity change, the infiltration input 

decreases by -0.88% and the evapotranspiration output increases by 0.77%. Yet again,

these Intensity impacts can not be easily mitigated, so one must try to adapt 

(somehow).

3.7 Conclusions

This study was designed to quantify the impacts of precipitation trends in two 

hydrologic basins in California. This was done by using computed trends in 

precipitation metrics, extrapolated over a 30 year period, to drive hydrologic models. 

The models for the two basins show large differences in behavior attributable to the 

differences in climate.

Our results suggest that hydrologic impacts are typically modest compared to 

changes of the three precipitation metrics. The magnitudes of most hydrologic 

impacts are less than half the magnitudes of the corresponding precipitation metric 

changes. The only exception was the Feather River Basin impacts to the Duration 

metric change. This change was far smaller than that for any other metrics, suggesting
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that perhaps small changes might have relatively larger hydrologic impacts.

Impacts are often subjective. Much depends on what it is that someone values, 

which determines the hydrologic components that matter. If the Feather River 

streamflow into the Lake Oroville and then feeds the State Water Project is all 

important, then impacts are largely positive and thus beneficial by a mean of 0.5%. 

For critical Soquel-Aptos water supply, the impacts of all three precipitation changes 

harm both groundwater recharge by -2.5% and surface streamflow by -1.1%. There 

seems to be no feasible ways to mitigate these impacts and thus adaptation to this 

climate change is indicated.
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Figure 3-1 Two study sites in California: the Soquel-Aptos Basin in Santa Cruz 

County and the Feather River Basin in Plumas, Butte, Lassen, Shasta, and Sierra 

Counties.
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Figure 3-2  Schematic of the USGS Precipitation-Runoff Modeling System (PRMS) 

conceptual component architecture. The seven water store reservoirs are shown as 

blue ovals grouped into the four zones: Surface, Soil, Ground, and Surface Water. The

one basin water input is precipitation. The nine water flow outputs are shown as thick 

lines with double arrow heads leading to the basin dotted boundary. The six internal 

water flows between zones are thin lines with single arrow heads.
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Figure 3-3  PRMS geographical component architecture view.
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Table 3-1 Initial events and their Grand Mean.

Event # Mean values Element count Element values

#1 0.99475 2 0.89135, 1.0982

#2 3.3977 3 4.0874, 3.9204, 2.1853

#3 1.2275 1 1.2275

#4 2.7390 3 4.8198, 2.3465, 1.0506

#5 2.0368 2 3.6771, 0.39642

This is an initial set of five events of random length and values. Their Grand Mean 

(the mean of this set of five mean values) is 2.0791.

Table 3-2 Final events and their maximized Grand Mean.

Event # Mean values Element count Element values

#1 3.0118: 2 3.6771, 2.3465

#2 1.8481: 3 3.9204, 1.2275, 0.39642

#3 4.8198: 1 4.8198

#4 1.3757: 3 1.0506, 0.89135, 2.1853

#5 2.5928: 2 4.0874, 1.0982

This is the final set of five events each with the same count of elements as above. 

However, the element values have been repeatedly swapped between events in order 

to find this final arrangement that has the largest Grand Mean value of 2.7297.
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Table 3-3  Event shift transitions for changing Pause metric

Case start L changes G changes Net change (G–L) Case end

GG +1 -1 -2 GL>2D+1

GL>2D+1 -1 +1 +2 GG

GL<2D-1 +1 -1 -2 LL>D

LL>D+1 -1 +1 +2 GL<2D-1

LL<D+1 none none 0 none

This the set of interesting cases for a pair of lulls that surround a precipitation event. 

Shown is transitions between cases when a precipitation event between two lulls is 

shifted. This is done in order to change a Pause metric.

A letter 'G' represents a lull with a length greater than the current Pause median value 

'D'. A letter 'L' is a lull with length less than D. Transitions go from the start column to

the corresponding end column with the associated change in the count of Ls, change 

in count of Gs and net change of the difference.

Table 3-4  Log of event shifts performed to change a Pause metric

Increase goal Increase achieved Shifts Pause Metric

+10.000% 0.0% 0 4.4810

+10.000% +3.554% 34 4.6402

+10.000% +7.933% 42 4.8364

+10.000% +9.393% 14 4.9019

+10.000% +9.811% 4 4.9206

+10.000% +10.019% 2 4.9299

Log of the process to increase Pause value by +10% by doing shifts of precipitation 

events between two lulls. This is for the Santa Cruz station precipitation dataset from 

January 1, 1893 to February 1, 2012. The Pause median starts with a value of exactly 

4, but its interpolated value is 4.481. Note on each repetition it uses a different count 

of shifts to be done based on the progress achieved by the last shift count.
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Table 3-5  Feather River Basin Climate Trends and Significance

Metric Canyon Dam Chester Quincy Combined

Intensity

      Trend/decade 0.36% -1.18% -2.75% -2.74%

      P-Value 39.59% 13.12% 0.06% 0.17%

Duration

      Trend/decade -0.20% -0.25% 0.45% 0.07%

      P-Value 39.63% 38.23% 25.28% 32.98%

Pause

      Trend/decade 2.21% 0.83% 0.38% 2.09%

      P-Value 1.09% 22.35% 34.05% 3.04%

There are three precipitation stations of note in the Feather River Basin area. Their 

trends for metrics Intensity, Duration, and Pause are combined by weighting with the 

reciprocal of their p-values. The two p-values shown in bold are significant at the 

95% level (p-value less than 5%). The two shown in red are at the further 99% 

significance level (p-value less than 1%). Thus two of the three combined results are 

significant to at least the 95% level.
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Table 3-6  Soquel-Aptos Basin Climate Trends and Significance

Metric Watsonville Santa Cruz Combined

Intensity

      Trend/decade -3.12% -1.98% -2.94%

      P-Value 0.10% 0.53% 0.17%

Duration

      Trend/decade 2.19% 0.60% 2.18%

      P-Value 0.05% 25.13% 0.10%

Pause

      Trend/decade 0.84% 1.69% 1.67%

      P-Value 20.83% 0.67% 1.30%

There are two relevant precipitation stations in the Soquel-Aptos Basin area. Their 

trends for metrics Intensity, Duration, and Pause are combined by weighting with the 

reciprocal of their p-values. The one p-value shown in bold is significant at the 95% 

level (p-value less than 5%). The six shown in red are at the further 99% significance 

level (p-value less than 1%). All three of the combined results are significant to at 

least the 95% level.
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Table 3-7  Feather River Basin Hydrology Impacts

Component Base (cm/yr) ∆Intensity ∆Duration ∆Pause

Precipitation 100.41 0.23% 0.00% 0.02%

Plant Evap 6.13 -0.06% -0.05% 0.40%

Sublimation 1.12 -5.87% -0.91% -5.80%

Imperv Evap 0.00 n/a n/a n/a

Surface Runoff 0.08 -16.61% 0.15% -0.45%

Infiltration 93.08 0.33% 0.02% 0.07%

Soil ET 19.07 3.07% -0.14% -1.36%

Interflow 30.44 0.28% 0.39% 1.56%

Other ET 21.59 -1.58% -0.49% -2.46%

Recharge 21.98 -0.09% 0.12% 1.73%

Groundwater Sink 10.63 0.77% 0.35% 2.98%

Baseflow 11.35 -0.91% -0.08% 0.55%

Stream Outflow 41.88 -0.07% 0.26% 1.28%

These are the impacts to the Feather River Basin hydrology components relative to 

their base values, i.e. the PRMS model outputs produced using unaltered 

observational climate inputs. These hydrology impacts are separately from the climate

changes of the three metrics ∆Intensity = -8.21%, ∆Duration = +0.22%, and ∆Pause =

+6.28%. The five impacts with magnitude greater than half the trend's magnitude are 

shown in bold and the six greater than the trend's magnitude are shown in red.
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Table 3-8  Soquel-Aptos Basin Hydrology Impacts

Component Base (cm/yr) ∆Intensity ∆Duration ∆Pause

Precipitation 82.01 -0.24% 0.03% 0.01%

Plant Evap 13.69 3.65% -0.66% -0.47%

Sublimation 0.00 n/a n/a  n/a

Imperv Evap 1.36 2.97% 1.05% 0.66%

Surface Runoff 11.33 -2.20% -0.03% 0.01%

Infiltration 55.63 -0.88% 0.18% 0.12%

Soil ET 38.81 0.77% 0.39% 0.25%

Interflow 8.74 -2.88% -0.13% -0.07%

Recharge 8.02 -6.70% -0.45% -0.34%

Groundwater Sink 0.00 n/a n/a n/a

Baseflow 3.57 -5.69% -0.32% -0.34%

Stream Outflow 23.63 -2.98% -0.11% -0.07%

These are the impacts to the Soquel-Aptos Basin hydrology components relative to 

their base values, i.e. the PRMS model outputs produced using unaltered 

observational climate inputs. These hydrology impacts are separately from the climate

changes of the three metrics ∆Intensity = -8.81%, ∆Duration = +6.55%, and ∆Pause =

+5.00%. The two impacts with magnitude greater than half the trend's magnitude are 

shown in bold.
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Table 3-9 Comparison of Hydrology of Feather River versus Soquel-Aptos Basins

Component Feather River Soquel-Aptos Comparison

Precipitation

Plant Evap 6.10% 16.69% -46%

Sublimation 1.11% 0.00% 100%

Imperv Evap 0.00% 1.66% -100%

Surface Runoff 0.08% 13.81% -99%

Infiltration 92.70% 67.83% 15%

Soil ET 40.50% 47.32% -8%

Interflow 30.32% 10.65% 48%

Recharge 21.89% 9.78% 38%

Groundwater Sink 10.58% 0.00% 100%

Baseflow 11.31% 4.35% 44%

Stream Outflow 41.71% 28.81% 18%

Comparison of the two basins, Feather River and Soquel-Aptos, by showing their 

flow components expressed as a percentage of their Precipitation input. The 

Comparison column is the difference of the two percentages as a fraction of their 

sum. A positive value shows that Feather River has relatively more of that component

and a negative shows that Soquel-Aptos has more.
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CONCLUSIONS 

The original vision for this study was simply to derive results for climate change 

impacts on water resources. We believe that some portion of that vision has been 

achieved. There is a logical chain of derivation steps of those results through all the 

chapters. Chapter 1 derived trends of three metrics from precipitation observations. 

Chapter 2 computed significance p-values for those trends. Chapter 3 used these 

p-values to combine local trend metrics, which produced the input into two 

hydrological basin models. Comparing the model outputs before and after these trend 

changes yielded relative climate change impact results.

There were some interesting new, or at least unusual, twists to these 

hydroclimatology results. These results did not utilize the predominate method of 

obtaining climate change information from the execution of global climate models 

(GCMs). Because GCMs seem to have problems with precipitation significance and 

skill, they were rejected. Instead, this study produced climate change results by 

obtaining trends from observations and projecting these forward into the future.

Another twist is the low-level precipitation metrics chosen for trend estimation. 

Precipitation is often analyzed at a coarse time granularity, such as quarterly or yearly

totals. The finest granularity for study is usually the total accumulation of a complete 

storm event. This study divided that quantity down further into the Duration of an 

event and its Intensity, the daily mean precipitation amount. Another metric used in 
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this study, but rarely studied elsewhere, was the Pause length of the lull time between 

storms.

A third twist has been the ability to define these three metrics so that their trends 

can be derived separately and then applied independently. This has allowed the 

hydrologic impacts from a single metric change to be considered in isolation from the

other two metric changes and any change in total precipitation. Sometimes such 

isolated impact analysis can lead to insight, or sometimes, as happened in cases here, 

it can lead to puzzlement.

However, perhaps the most important accomplishment of this study has turned out 

to be its methodology. Throughout this study unexpected challenges have cropped up.

These had to be resolved through the piecing together of suitable methodologies.

The first challenge was whether and how to deal with the ever-present missing 

data in precipitation records. It became clear that missing data could not simply be 

ignored for trend computation since that produced statistical deviations. A number of 

methodologies were investigated as possible solutions, but without success. The 

multiple imputation methodology, as applied in this work, appears to work admirably 

by supplying, not only a likely value for the missing data, but also its probability 

distribution, which can inform about the uncertainty range for the missing value.

The second challenge was how to measure statistical significance without ignoring

the effects of missing data. The permutation algorithm is well suited to calculation of 
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significance p-values. The permutation algorithm was enhanced by a strategic 

multiple imputation step which takes values from a distribution and fills in for the 

missing data.

A great attribute of these methodology contributions is they are fairly general data 

processing methods. Therefore, they are probably useful in many diverse fields and 

for all kinds of problems. The broad utility of the methodology in this study is 

satisfying since the climate change impact results seem less clear-cut and perhaps less

valuable than we originally envisioned. However, we can be pleased that in 

California, with its highly variable climate, we were still able to successfully derive 

and utilize so many trends with such impressive levels of significance.

Future Work

The first thing that cries out to be studied is the application of the three metric 

changes at the same time to the hydrology models. All three trends were detected in 

the observations occurring at the same time. It seems that applying them together is 

perhaps even more justified than applying them in isolation. That would give a clearer

picture of the total climate impacts to hydrology. We would then be able to tell if the 

separate impacts reinforce each other or cancel out.

We could apply these analysis methodologies to other metrics, such as the number 

of precipitation events in a yearly period or some measure of precipitation 

seasonality. We could also study metrics for the one missing precipitation feature: 

148



drizzle instances where precipitation is less than 1 mm/day but greater than zero.

Another thing we have long wanted to investigate is the role of precipitation 

metrics in droughts. We all know that a drought is an unusual decrease in 

precipitation. But does this decrease stem from having fewer precipitation events, or 

from less intense events, or shorter events? This metric analysis could well be applied

in other situations. For example, how does El Niño or La Niña affect the statistics of 

these metrics? What about the Pacific Decadal Oscillation? It seems these low-level 

metrics and their inference might give a new way to analyze problems and processes.
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APPENDICES 

Chapter 1

A1.1 Global Historical Climatology Network-Daily precipitation data

For this study we use the GHCN daily climate records from the Global Historical 

Climatology Network-Daily dataset, which is also known as GHCN-Daily or 

GHCND (Klein Tank et al., 2002). For this work we use the version of GHCN Daily 

denoted as “3.12-upd-2014040705”, which was prepared and published on 7 April 

2014, and retrieved from <ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily>.

The GHCND-derived text file 'ghcnd-inventory.txt' contains 527,770 lines of text 

that describe the climate elements each station collects. In addition to precipitation 

data, stations can provide climate data on local temperatures, wind speeds, cloud 

cover, humidity, etc. These various climate elements are specified via four character 

tags. In this study, we focus on the precipitation element, which is denoted by the 

element tag 'PRCP'. The full set of element tags are listed and described in the GHCN

supplied text file 'readme.txt'.

In the inventory file for Santa Cruz, California there is the text line:

USC00047916  36.9906 -121.9911 PRCP 1893 2014

This inventory line starts with the 11 character station identification number, which 

for Santa Cruz is 'USC00047916'. Next the station's Latitude and Longitude are 

supplied. Then there is the indication that this line is the description for the 
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precipitation data denoted by tag 'PRCP'. Finally is the info that the Santa Cruz data 

provided for this precipitation element begins within the year 1893 and extends into 

2014.

The actual climate data for this, or any other, station is contained in a separate text 

file named the same as the station identifier appended with the file suffix of '.dly', 

which stands for 'daily'. Each text line of that station data file contains the values for 

just one kind of climate element and for one month of record. Here is the first text 

line of the text file named 'USC00047916.dly' containing Santa Cruz data:

USC00047916189301PRCP    0P 6    0P 6    0P 6

    0P 6    0P 6    0P 6    0P 6    0P 6    0P 6

    0P 6    0P 6    0P 6    0P 6    0P 6  318  6

    0P 6    0P 6    0P 6    0P 6    0P 6    0P 6

    0P 6    0P 6    0P 6    0P 6  572  6   89  6

   38  6  216  6  114  6    0P 6

Immediately after the 11 character station identifier is found the four digit year 

number '1893' and the two digit month number '01', which corresponds to January. 

The fact that this text line supplies data for the precipitation element is indicated next 

by the tag 'PRCP'. The daily data for that month then follows and consists of 31 

repeated 8 character fields for each day of that month. If the month has less than 31 

days, then the extra day fields at the end of the line are set to the special value that 

denotes it is missing and can just be ignored.

These 8 character fields for each day consists of first a 5 character integer number 

for the precipitation value as expressed in tenths of a millimeter (mm). The GHCND 
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has a special notation for a trace precipitation, which is a day with a value 

intermediate between the zero amount of 0 mm/day and the smallest non-zero value 

representable of 0.1 mm/day. For this work we store such a trace amount with an 

intermediate quantity of 0.05 mm/day. Any missing data item is indicated by a special

value of -9999. After the number field, there follows three single character fields, 

which contain tags with information about that value's measurement (10 possible 

values), its quality (14 values), and its source (28 values). The various meanings for 

these flag values will not be described here but are specified in the GHCN text file 

'readme.txt'.

The precipitation records in the text file 'USC00047916.dly' for Santa Cruz, CA 

extend from the month of January 1893 into March 2014, 121 years and 2 months and

five days. This means that there are 1,455 months of precipitation data listed in that 

full record, each of which is provided by a single text line in that file. In particular, 

for the initial month of January 1893 that was shown above, the 31 provided 

precipitation values in mm are:

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 0.0, 31.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 0.0, 0.0, 57.2, 8.9, 3.8, 21.6, 11.4, 0.0

We see this January 1893 month had a relatively dry start with no precipitation until 

the 15th, which got a single 31.8 mm rain day, and then later there was a nice five day 

storm starting on 26th with a total of accumulation of 102.9 mm. In addition, we did 

have data for all 31 days of that month with no observations missing. When all the 
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other months of this precipitation data are extracted from this Santa Cruz data file, 

then we get the annual rainfall chart as shown in (Figure A1-1).

There are 2,339 GHCN stations with precipitation records in California, of which 

2018 provide precipitation records. Each GHCND station is identified with an 11 

character identification code, e.g. the id for Santa Cruz, California is 'USC00047916'. 

The first two letters of that id are the FIPS code of the country containing the station. 

These country code abbreviations are detailed in the GHCN text file named 'ghcnd-

countries.txt', e.g. 'US' stands for United States. The third character of a station 

identifier is a network code (9 possible values), which identifies the station 

numbering system used. For example, the 'C' network in the Santa Cruz station 

identifier is described in file 'readme.txt' as

C = U.S. Cooperative Network identification number.

The remaining eight characters of the id contain the actual station Id specifier string.

Associated with each station identifier in the 91,267 text line GHCN supplied file 

named 'ghcnd-stations.txt' is a single text line with some basic station info. For the 

Santa Cruz station id of 'USC00047916' is the text line:

USC00047916 36.9906 -121.9911 39.6 CA SANTA CRUZ HCN

This station is described as located at Latitude 36.9906°N and Longitude W 

-121.9911°. Then is an elevation value of 39.6m and info that it is located in the state 

of 'CA', i.e. California. This line shows the station has the name 'SANTA CRUZ'. The
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station name is not necessarily unique in the GHCND. For example, the station 

'BR000253000' along with four others located in Brazil have the same name 

'SANTA CRUZ'. Finally indicated is that this station is part of the 'HCN', which is the

NOAA U.S. Historical Climatology Network (USHCN), a set of stations created to 

quantify national and regional climate changes.

In order to get valid statistics, we need stations with long-term precipitation 

records. The longer the record, the better to avoid effects from climate cycles such as 

the Pacific Decadal Oscillation (PDO), which has events that can persist for 20-30 

years (Mantua et al., 1997). Therefore, it is important to be able to span a complete 

PDO cycle, which can be 60 years in length (Minobe, 1997). There are 214 California

stations with at least 85 years of precipitation data, 159 stations with 100 years, 49 

stations have 120 years, and only 3 stations have as much as 130 years of record.

Some California locations have most of their precipitation data missing, which 

makes them unusable for long-term trend analysis. For example, Bucks Lake in 

Plumas county is missing 93% of its 1916-1970 daily records. In Kern county 

Tehachapi has 91% missing and Lost Hills has 94% missing. There are four sites in 

Southern California with more than 90% missing. On average, California stations 

with at least 50 years of data are missing 19.6% of their daily records.

Of the GHCND stations in California, there are 50 precipitation stations that have 

both long periods of at least 85 years and no more than 7% of their daily data missing.
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Of these 50 sites, the average quantity of missing data is 4.1%. Only four of those 

sites have less than 1% of their daily records missing. These are 'San Francisco Dwtn'

with id 'USW00023272', which has 0.0% missing, 'Sacramento 5 Ese' with id  

'USW00023271' has 0.2% missing, 'Graton' with id 'USC00043578' has 0.3%, and 

'Scotia' id 'USC00048045' has 0.6%. 

A1.2 ClimateData Software

One of the major components in this study is a custom built software system called 

ClimateData, which is used for the access, manipulation, and processing of 

precipitation and other climate data. ClimateData was designed and implemented by 

the author for this project and consists of some 25,000 lines of Java code.

Data processing systems typically have some fundamental data unit(s) for its data 

representation and processing. For example, the basic unit of a relational database 

management system (RDBMS) is a record. In ClimateData the fundamental unit is a 

container called a DataSet, which holds a fixed-sized collection of double precision 

floating point numbers.

The construct NumSeq is defined to reference a sequence, or perhaps just a sub-

sequence, of the numerical values in a DataSet. In fact, there can be multiple such 

NumSeq's that all reference portions in the same DataSet. Those references can be 

disjoint, overlapping, nested, identical, etc. So one NumSeq can reference an entire 
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multi-thousand days of precipitation quantities while others reference the data for 

each year or for each individual storm event. A change made through any of these 

NumSeq's can be shared and visible in all of the others which contain that data item.

A NumSeq also provides a host of processing functionality. You can add, subtract, 

multiply, or divide a NumSeq by either a single number or another NumSeq of the 

same size. A rather complete set of statistical operations are also provided for 

computing mean, median, sum, max, min, variance, standard deviation, absolute 

deviations, quarters, moving averages, summations, etc. Other operations provide the 

capabilities to perform data searches, sub-setting, selecting, and sorting.

A NumSeq provides the capability to specify a particular data item by an integer 

index or a sequence of data items by pair of indexes as a range. A DateSeq is an 

extension of NumSeq, which also allows such data specification by dates, e.g. get all 

data from 21 June 1907 up to 21 September 1912. In addition, a DateSeq provides 

addditional date operations such as to slice the data into multiple month or water-year

chunks. There is also support there for reading in and processing data values from text

files using the very specialized and complex GHCN data format.

Further extensions of the DateSeq data type are specialized for handling 

precipitation data record extents (a Precip object) and also individual precipitation 

storm events or the lull period between events (a PrecipState object). There is even an

extension called a PrecipStateFragment, which can be used to represent pieces of a 
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PrecipState broken up so that no data crosses any time period boundary such as 

months or otherwise would make statistics for such periods somewhat arbitrary.

A set of geographic objects are closely associated with climate data. The 

PrecipSource object contains sets of the sources of data used in this study. Each of 

these sources is a Station, which contains its specific unique GHCN identification(s) 

together with information about the inventory of the different kinds of data it has to 

offer, e.g. PRCP, TMAX, TMIN, etc. Each Station is also a Location, which defines 

its position as a longitude, latitude, elevation, country, province/state, city, postalcode,

timezone, etc. together with the functionality to find any Location(s) with particular 

values of those attributes or those within certain distances. Given two Locations it can

even determine the great circle distance and the direction from one to the other.

ClimateData offers some additional higher level statistics functionality. There is a 

choice of several covariance, correlation, and auto-correlation methods. A standard 

set of probability distributions are available together with methods to create 

probability density functions from datasets. The usual parametric and some non-

parametric regression techniques are present and can be utilized. Graphing of these 

statistical results is then supported by connections to the bundled open-source 

JFreeChart package (Gilbert, 2014).

Finally there is a subsystem that gives much of the functionality similar to that 

offered by a basic relational database, i.e. selection, projection, grouping, and 
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aggregation. Someone can select from a sequence of all precipitation storm events (a 

PStateList) to create another PStateList containing those with intensity values greater 

than 5 mm/day or those with a duration of 3 days. A projection can extract a value 

such as the total storm accumulation amount from each element of such a PStateList 

to create a NumSeq of those values. Grouping allows the execution of an operation 

such as to group all precipitation storm events by the month of the year, which 

produces a mapping from each of the months January through December onto a 

sequence (a PStateList) of the storms that happened in that month. Aggregation is a 

calculation operation that allows such composites to be easily summarized. For 

example, in the grouping for each such month, compute the standard deviation of all 

the intensities extracted from each storm event in that month's list. This produces a 

NumSeq of the 12 monthly standard deviation quantities, which could then be 

displayed as a bar graph.

Most ClimateData capabilities are fairly standard computer science techniques and

statistics capabilities. However in addition, there are several very specialized and 

somewhat complex statistical processing and analysis capabilities in ClimateData that

have been researched and created just for this study of missing data and statistical 

trend inference. These facilities are described in the Methods section of Chapter 1.
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Figure A1-1 Annual precipitation from the NOAA GHCN daily dataset for station 

'USC00047916' in Santa Cruz, California. Annual precipitation amounts are 

accumulated for water-years, which are defined as running from October 1st through 

September 31st of the next year. The annual precipitation mean value over the period 

of record is 827 mm/yr and the median is 768 mm/yr. The standard deviation is 

306 mm/yr, the mean absolute deviation is 242 mm/yr, and its median absolute 

deviation is 210 mm/yr.
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