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Enantioselective Addition of α-Nitroesters to Alkynes

Ryan T. Davison, Patrick D. Parker, Xintong Hou, Crystal P. Chung, Sara A. Augustine, Vy 
M. Dong
Department of Chemistry, University of California, Irvine, Irvine, CA 92697 (USA)

Abstract

By using Rh-H catalysis, we couple α-nitroesters and alkynes to prepare α-amino acid precursors. 

This atom-economical strategy generates two contiguous stereocenters, with high enantio- and 

diastereocontrol. In this transformation, the alkyne undergoes isomerization to generate a Rh(III)-

π-allyl electrophile, which is trapped by an α-nitroester nucleophile. A subsequent reduction with 

In powder transforms the allylic α-nitroesters to the corresponding α,α-disubstituted α-amino 

esters.

Graphical Abstract

Making alkynes of C–C bonds. An enantioselective Rh-catalyzed addition of α-nitroesters to 

alkynes affords access to α-amino acid precursors containing contiguous stereocenters. These 

motifs can be further transformed into α-amino esters without stereoablation.
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By designing and synthesizing α-amino acids (α-AAs), chemists have expanded the genetic 

code, shed light on protein function, and enabled innovative medical applications.[1–3] The 

α,α-disubstituted α-AAs and related analogs attract interest due to their metabolic stability, 

unique conformations, and potent bioactivity (Figure 1).[4] Enantioenriched α,α-

disubstituted α-AAs are targeted by various strategies, including phase-transfer catalysis, 

organocatalysis, and transition-metal catalysis.[5] Despite an interest in these motifs, 

methods for the enantio- and diastereoselective preparation of α,α-disubstituted α-AAs 

bearing contiguous stereocenters remain sought after;[6] emerging reports feature pre-

functionalized allylic partners. The direct addition of an amino acid surrogate to a π-system 

represents an attractive approach to α,α-disubstituted α-AAs. Towards this end, Zi and 

coworkers exploited synergistic Pd/Cu catalysis for the stereodivergent coupling of aldimine 
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esters and 1,3-dienes.[7] In a complementary approach, we propose using a Rh-hydride (Rh-

H) catalyst to couple α-nitrocarbonyls and alkynes to generate the corresponding α-AA 

precursors. This atom-economical[8] coupling exploits two simple functional groups and 

provides rapid access to synthons for the building blocks of life.[9]

On the basis of literature precedent,[10] we envisioned a tandem catalytic cycle for the 

asymmetric coupling of α-nitrocarbonyls 1 and alkynes 2 to yield α-AA synthons 3 (Figure 

2). Wolf and Werner discovered that Rh-H complexes isomerize alkynes (2) via an allene 

intermediate (4) to form Rh-π-allyl species IV.[11] By using this isomerization, the Breit 

laboratory achieved asymmetric and catalytic couplings of alkynes with a wide-range of 

heteroatom nucleophiles to afford branched allylic products.[12] In comparison, the 

analogous coupling of alkynes with carbon nucleophiles remains more limited, with only 

three asymmetric variants.[13] We previously reported that aldehydes couple to alkynes with 

high enantio- and diastereoselectivity when using a chiral Rh-H catalyst in synergy with a 

chiral amine co-catalyst.[13a] Xing and coworkers expanded this approach for the coupling 

of ketones with alkynes, however, an achiral amine co-catalyst furnishes the branched 

products with little to no diastereocontrol.[13c]

In related studies, we and Breit independently reported that 1,3-dicarbonyls can couple to 

alkynes to generate branched allylic carbonyl motifs.[14] Promising reactivity and 

regioselectivity has been achieved. However, obtaining high levels of enantio- and 

diastereoselectivity has been challenging. It occurred to us that α-nitrocarbonyls display 

comparable chelation aptitude[15] and acidity (pKa = ca. 8)[16] to 1,3-dicarbonyls. Thus, we 

imagined α-nitrocarbonyls would be suitable nucleophiles for trapping Rh-π-allyl species 

IV. With this design in mind, we set out to couple α-nitrocarbonyls and alkynes with 

enantio- and diastereocontrol.

In initial studies, we discovered that various α-nitrocarbonyls add to the commercially 

available alkyne 2a (Table 1). Using a combination of [Rh(cod)Cl]2, dppf, and diphenyl 

phosphate, we observe allylic α-nitroketone, α-nitroester, and α-nitroamide products as 

single regioisomers (>20:1 rr) with moderate to high diastereoselectivity (5:1–12:1 dr).[17] In 

accordance with previous reports, there is a preference for the branched regioisomer, which 

bears two contiguous stereocenters.[10a–d,12–14] Our findings complement an 

enantioselective Pd-catalyzed α-nitroester allylation reported by Ooi and coworkers.[18] In 

Ooi’s study, the use of allylic carbonates affords linear regioisomers with one stereocenter.

Next, we focused on an enantioselective variant for the coupling of α-nitroesters with 

alkynes because the resulting motifs are readily converted to α-AAs.[19] To identify the 

appropriate chiral catalyst, we selected α-nitroester 1a and alkyne 2a as the model substrates 

(Table 2). Using atropoisomeric bisphosphine ligands L1–L3 with a range of dihedral 

angles,[20] we observe the allylic α-AA precursor 3aa with moderate yields (45–53%) and 

enantioselectivities (85:15–90:10 er). Ultimately, we found that commercial MeO-BIPHEP 

ligand L6 affords 3aa in 90% yield with 97:3 er, >20:1 dr, and >20:1 rr on preparative scale 

(1 mmol).[21,22] This coupling relies on the use of alkynes as the unsaturated partner instead 

of activated olefins, imines, propargylic carbonates, and allylic leaving groups.[18,19] Next, 

we explored the scope of this transformation to access unique β-aryl-α-nitroester motifs.
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With this protocol, we explored the asymmetric coupling of various α-nitroesters with 2a 
(Table 3). Analogs of ethylalanine (3ba), leucine (3da), methionine (3ea), phenylalanine 

(3fa), 4-fluoro-phenylalanine (3ga), tyrosine (3ha), and tryptophan (3ia) are generated with 

moderate to high yields (34–84%) and excellent levels of enantioselectivity (≥95:5 er). The 

absolute configuration of 3fa was confirmed by X-ray crystallographic analysis.[21,22] In the 

case of lower yielding substrates, we often recover α-nitroester 1.[21] The bulkier β-

branched α-nitroesters 1c and 1j do not couple to 2a to form analogs of valine (3ca) and 

phenylglycine (3ja), respectively. Alkyl-substituted esters 3ka-3na provide higher reactivity 

than aryl ester 3oa. We see high levels of diastereocontrol (>20:1 dr) for forming 3ka and 

3la, which suggests the C–C bond is forged by catalyst control.

Table 4 captures results from our study on the addition of 1a to various alkynes 2. Aryl 

alkynes possessing a variety of electronics and substitution patterns participate in the 

asymmetric coupling (3ab–3al and 3ao). Alkynes bearing halides (2b, 2c, 2h, 2i and 2l), 
carbonyls (2d and 2f), and extended π-systems (2o) transform to the corresponding allylic 

α-nitroesters 3. Aryl alkynes with electron-donating substituents (1g and 1j) display lower 

conversion under standard conditions. Increasing the catalyst loading results in improved 

yields of 3ag and 3aj (88% and 96%, respectively), while maintaining high stereoselectivity 

(≥96:4 er and >20:1 dr). The presence of an ortho-substituent on alkyne 2l imparts lower 

reactivity (46%), presumably due to steric hindrance. Pyridyl alkyne 2m converts to allylic 

α-nitroester 3am with a higher catalyst loading. It appears that an aromatic or 

heteroaromatic substituent on the alkyne is critical for reactivity (see 3an). The absolute 

configuration of 3ao was confirmed by X-ray crystallographic analysis.[21,22]

Further experiments provide support for the mechanism depicted in Figure 2. First, we 

monitored a mixture of [Rh(cod)Cl]2, MeO-BIPHEP L6, and diphenyl phosphate by 1H 

NMR spectroscopy.[21] We observe a resonance in the spectrum at –16.2 ppm. The observed 

resonance is consistent with reported values for Rh(III)-H complexes.[23] This resonance 

disappears in the 1H NMR spectrum upon the addition of alkyne 2a. Second, we subjected 

deuterated alkyne d-2a to the standard reaction conditions (Figure 3A). We observe 

deuterium scrambling into the β-, γ-, and δ-positions of allylic α-nitroester d-3aa. The 

incorporation of hydrogen atoms at the δ-position of d-3aa supports reversible β-H 

elimination in the isomerization pathway. Third, to examine the plausibility of an allene 

intermediate in the catalytic cycle, we subjected 1-phenylallene (4a) to the standard 

conditions (Figure 3B). We observe 3aa (14% yield) when using an excess of allene 4a. 

Moreover, the remaining amount of allene 4a is consumed. These results, which are in 

agreement with previous reports that suggest maintaining a low concentration of allene 

intermediate 4 slows competitive polymerization.[10i,12a,24,25]

Treating allylic α-nitroester 3aa with In powder readily yields the corresponding α-amino 

ester 6 in 93% yield (eq 1). This simple reduction allows for rapid access to α,α-

disubstituted α-amino esters that contain two contiguous stereocenters, without 

stereoablation.
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(1)

The use of Rh-H catalysis offers an approach to novel α-AAs. The allylic α-AA precursors 

prepared contain an olefin handle that is attractive due to its potential use for protein 

modifications,[26] glycopeptide synthesis,[27] and cyclizations.[28] Our strategy offers a 

solution to the challenging preparation of contiguous stereocenters in an acyclic framework, 

with diastereo- and enantiocontrol. Insights from this study will guide development of 

related α-nitrocarbonyl coupling reactions with alkynes. In particular, our laboratory has 

found initial success in the enantioselective addition of α-nitroamides to alkynes, which 

could provide a way to couple peptides containing α-nitroamide residues with alkynes.[21] 

Future studies will focus on widening scope and understanding the origins of stereocontrol. 

The high diastereocontrol achieved occurs without the need for a chiral amine (co-catalyst) 

as previously observed.[13a]
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Figure 1. 
Inspiration for the enantioselective addition of α-nitroesters to alkynes.
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Figure 2. 
Proposed mechanism for Rh-catalyzed allylation.
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Figure 3. 
Mechanistic studies.
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Table 1.

Investigating various α-nitrocarbonyls.
[a]

[a]
1 (0.10 mmol), 2a (0.15 mmol), [Rh(cod)Cl]2 (4.0 mol%), dppf (8.0 mol%), (PhO)2P(O)OH (20 mol%), DCE (0.20 mL), 80 ºC, 24 h. Yields 

determined by 1H NMR referenced to an internal standard. Cod = 1,5-cyclooctadiene, dppf = 1,1’-bis(diphenylphosphino)ferrocene, DCE = 1,2-
dichloroethane.
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Table 2.

Survey of chiral ligands.
[a]

[a]
1a (0.10 mmol), 2a (0.15 mmol), [Rh(cod)Cl]2 (4.0 mol%), chiral ligand (8.0 mol%), (PhO)2P(O)OH (20 mol%), DCE (0.20 mL), 80 ºC, 24 h. 

Yields determined by 1H NMR referenced to an internal standard. [b] Isolated yield for a 1 mmol reaction.
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Table 3.

α-Nitrocarbonyl scope.
[a]

[a]
1 (0.10 mmol), 2a (0.15 mmol), [Rh(cod)Cl]2 (4.0 mol%), MeO-BIPHEP L6 (8.0 mol%), (PhO)2P(O)OH (20 mol%), DCE (0.20 mL), 80 ºC, 

24 h. Isolated yields. [b] 6:1 dr. [c] Yields based on recovered starting material (brsm): 3ea (76%), 3ga (96%), and 3ha (65%). [d] [Rh(cod)Cl]2 (8 

mol%) and L6 (16 mol%) instead of standard conditions.
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Table 4.

Alkyne scope.
[a]

[a]
1a (0.10 mmol), 2 (0.15 mmol), [Rh(cod)Cl]2 (4.0 mol%), MeO-BIPHEP L6 (8.0 mol%), (PhO)2P(O)OH (20 mol%), DCE (0.20 mL), 80 ºC, 

24 h. Isolated yields. [b] [Rh(cod)Cl]2 (7.5 mol%) and L6 (15 mol%) instead of standard conditions. [c] 15:1 dr.
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