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The influence of grain shape and volume fraction of sheet
silicates on elastic properties of aggregates:
Biotite platelets in an isotropic matrix

Roman Vasin1, Ricardo A. Lebensohn2, Siegfried Matthies3, Carlos N. Tomé2, and
Hans-Rudolf Wenk4

ABSTRACT

Elastic anisotropy of sheet-silicate-rich rocks such as shales
and slates strongly depends on the orientation distribution of
platelet-shaped minerals, as well as shape and orientation of
pores. Bulk elastic anisotropy of the rock results in the anisotropy
with respect to the propagation of elastic waves, and conse-
quently, the fastest P-waves can travel with velocities exceeding
the slowest velocities by a factor of two or even greater. An im-
portant factor is the sheet-silicate’s grain shapes. We approached
a model system of biotite platelets in an isotropic matrix with
different methods: A mean-field self-consistent method that

considered ellipsoidal particles in an effective anisotropic ma-
trix, and a full-field method based on fast Fourier transforms
that considered the microstructure, the topology of the polycrys-
tal, and local interactions. Both methods provided numerically
very close results. Using these results, we predicted that the ag-
gregate with more oblate grain shape (thinner platelets) was
elastically more anisotropic than the material with grains of less
oblate shape, but only for small volume fractions of oriented
platelets. For large fractions of platelets, the opposite was true.
This switchover in the elastic anisotropy depended on texture
strength, platelet shape, and elastic properties of the isotropic
matrix.

INTRODUCTION

Sheet silicates with platelet-shaped grains are important compo-
nents of many rocks such as gneisses and sedimentary shales. Their
elastic properties are highly anisotropic (e.g., Aleksandrov and Ryz-
hova, 1961; Vaughan and Guggenheim, 1986; Militzer et al., 2011).
Also, they are usually characterized by strong preferred crystallo-
graphic and morphologic orientations (e.g., Wenk et al., 2008,
2010, 2012). Thus, they contribute greatly to elastic anisotropy of
rocks in the Earth’s crust.
Commonly, bulk elastic properties of multiphase polycrystalline

rocks are assessed with simple averaging models such as Voigt, Re-
uss, and Hill, which are not able to account for the effects of grain
shapes in the elastic properties (e.g., Ivankina et al., 2005; Kern

et al., 2008; Wang et al., 2009). These models perform averaging
of single crystal elastic properties of different minerals over their
crystal orientation distribution functions (ODFs) that relate the crys-
tal orientations relative to sample coordinates. Also, it is commonly
believed that oblate plate grain shape of sheet silicates and corre-
sponding shape orientation distributions will lead to an increase in
the calculated elastic anisotropy of rocks (e.g., Kern et al., 2008).
Consideration of grain shapes is possible within mean-field, self-

consistent models, based on Eshelby’s concept of ellipsoidal inclu-
sions in a matrix (Eshelby, 1957). The shape orientations distribu-
tions (in the form of shape ODFs or SODFs) describe ellipsoidal
particle shapes relative to sample coordinates. Recently, such a
self-consistent method has been applied to calculate bulk elastic
properties of biotite gneiss (Wenk et al., 2012) and shale (Vasin
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et al., 2013), based on their microstructural characteristics, includ-
ing preferred orientations and grain shapes. Quite unexpectedly,
it has been found that anisotropic grain shape of sheet silicates
increases elastic anisotropy of rocks containing small amounts of
platelet-shaped grains (gneiss with ∼20% of biotite) and reduces
elastic anisotropy of rocks with large amounts of platelet-shaped
grains (shale with ∼70% of sheet silicates). Also, in both cases,
model rocks with assumed spherical grain shapes of sheet silicates
are characterized by higher values of quasilongitudinal elastic wave
velocities than rocks with platelet-shaped sheet silicate grains
(Table 1). Was this simply an artifact of the mean-field approxima-
tion used, or some kind of intrinsic limit? In this contribution, we
perform calculations on a simple model system of biotite within an
isotropic matrix, using different averaging approaches. Comparing
mean-field methods with ellipsoidal inclusions with full-field simu-
lations that consider the local micromechanical fields, we obtain
similar results and confirm that the grain-shape/volume-fraction ef-
fect is a real physical characteristic.

MODELING AND AVERAGING METHODS

Calculation of bulk elastic properties and elastic wave
velocities in polycrystals

We review here the case of a two-phase model rock consisting of
biotite grains in an isotropic matrix. We are interested in linear elas-
tic properties of this model material that are described with the
twice-symmetric, fourth-rank stiffness tensor Cijkl (or compliance
tensor Sijkl ≡ C−1

ijkl) that we will represent in standard two-index
Voigt notation.
Voigt (1887) and Reuss (1929) models are often used to calculate

bulk elastic properties of polycrystals, based on single crystal elastic
properties and ODFs. They are based on different physical assump-
tions (crystallites are subjected to the same strain or same stress,
respectively) and determine maximum and minimum bounds for
elastic properties of a polycrystal. Their results can be fairly differ-
ent if single crystals with high elastic anisotropy and/or multiphase
aggregates with high contrast in elastic properties are considered.
These averages are not able to take grain shapes into account. Con-
sideration of grain shapes (approximated by ellipsoids) is possible
within a self-consistent scheme (e.g., Kröner, 1958; Morris, 1970;
Kocks et al. [2000], Chapter 7) based on Eshelby’s (1957) concept

of ellipsoidal inclusions in a homogeneous matrix. Here, we use two
slightly different variants of the self-consistent approach.
The first is GeoMIXself (GMS) (Matthies, 2010). A character-

istic feature of this algorithm is that on each self-consistent iterative
step, two effective elastic tensors are calculated for the whole
material, one based on stiffness and the other based on compliance
averaging, and a “symmetric square root” operation (Matthies, 2012)
is applied to get a single solution for bulk elastic properties (i.e., stiff-
ness is the inverse compliance). Currently, it is possible to enter up to
four phases, three of which can have associated grain shapes and ori-
entation distributions, and the fourth one is a “matrix.” Textures of
different phases have to be entered in the form of discrete distribution
functions with 5° × 5° × 5° resolution, resulting in the most general
case in approximately 200,000 unique orientations with correspond-
ing orientation densities for each phase. Despite 5° resolution of input
ODFs, Eshelby tensors are calculated with 1° steps to ensure good
precision of the results in case of extremely anisotropic constituents
of the polycrystal, such as graphite grains (Matthies, 2012).
The second one is the elastic self-consistent (ELSC) module

implemented in the viscoplastic self-consistent (VPSC) code (Leb-
ensohn and Tomé, 1993). The self-consistent approaches are based
on treating each grain as an ellipsoidal inclusion embedded in and
interacting with an effective medium having the overall properties
of the aggregate. With ELSC, we find the (unknown) elastic proper-
ties of aggregates using the (known) elastic properties of the con-
stituent grains. Ellipsoids with different shapes and orientation can
be assigned to each grain, and grains can have different anisotropic
elastic properties if they belong to a multiphase aggregate. Here, the
input ODF is in the form of a set of individual orientations. This
method also guarantees that resulting aggregate stiffness and com-
pliance are the inverse of each other.
Finally, we apply a full-field method based on the fast Fourier

transform (FFT), a method originally developed by Moulinec and
Suquet (1998) to compute the local and effective mechanical re-
sponse directly from an image of a composite material in which
the source of heterogeneity is related to the spatial distribution
of phases with different mechanical properties. The FFT-based ap-
proach has been adapted by Lebensohn (2001) to deal with single-
phase or multiphase polycrystals (in which the heterogeneity is
related to the spatial distribution of crystals with directional mechani-
cal response), deforming in different regimes, elastic (Brenner et al.,
2009), viscoplastic (Lebensohn et al., 2008), or elastoviscoplastic

Table 1. Minimum VP min and maximum VP max quasilongitudinal elastic wave velocities, coefficient of elastic anisotropy
kP � 200 � �VP max − VP min�∕�VP max � VP min�, and maximum S-wave splitting ΔVS max in some model sheet-silicates-bearing
rocks (without pores and cracks).

Model biotite gneiss (no pores),
based on (Wenk et al. [2012],

Table 3) and density of 2.75 g∕cm3

Model shale (no pores), based
on (Vasin et al. [2013], Table 5)
and density of 2.648 g∕cm3

Grain shape of
sheet silicates

Sphere
{1∶1∶1}

Platelet
{1∶0.2∶0.05}

Sphere
{1∶1∶1}

Platelet
{1∶1∶0.1}

Platelet
{1∶1∶0.05}

VP min, m∕s 5551 5464 5535 5311 5285

VP max, m∕s 6235 6235 6366 6067 6017

kP, % 11.6 13.2 14.0 13.3 12.9

ΔVS max, m∕s 472 530 379 338 327
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(Lebensohn et al., 2012). The formulation is conceived for periodic
unit cells and provides an exact solution of the governing equations of
equilibrium and compatibility. The elastic version of the method is
based on the fact that the local response of a heterogeneous
medium can be calculated as a convolution integral between
the Green function associated with the displacement field of
the reference homogeneous medium and a polarization field,
which is a function of the sought solution. Fourier transforms
can reduce convolution integrals in real space to simple products
in Fourier space, and the efficient FFT algorithm can be used to
obtain the strain fields by transforming back into Cartesian space.
However, because the polarization field depends on the a priori
unknown micromechanical fields, an iterative scheme has to be
implemented to obtain, upon convergence, a compatible strain
and stress fields in equilibrium.
The application of these methods requires the knowledge of sin-

gle-crystal elastic constants of all constituent phases, their volume
fractions, orientation distributions (SODF, shape or morphologic
texture, and ODF) and grain shapes. In the FFT-based full-field
case, the exact topology of the multiphase polycrystal, described in
terms of a regular grid of Fourier points (FPs) belonging to either
the isotropic matrix or a given single-crystal biotite grain, is also
required.
All methods provide an elastic tensor of the material. From it,

elastic wave velocities can be calculated using Christoffel equations
and bulk material density in a so-called long-wave approximation
(wavelength ≫ size of heterogeneities in the material). Because
Christoffel equations require the knowledge of the propagation di-
rection, we calculated phase velocities of elastic waves in different
directions of our model rock using a 5° × 5°-grid. Often of practical
interest are values of the P-wave anisotropy coefficient kpð%Þ ¼
200 � ðVP max − VP minÞ∕ðVP max þ VP min) and maximum S-wave
splitting ΔVS max ¼ ðVS1 − VS2Þjmax that can be easily calculated
from known elastic wave velocities patterns.

Elastic properties and density of minerals in the model

Most sheet silicates are monoclinic. But for biotite, we are
using single-crystal elastic properties that have been measured by
Aleksandrov and Ryzhova (1961), assuming hexagonal symmetry
with C11 ¼ C22 ¼ 186.0, C33 ¼ 54.0, C13 ¼ C23 ¼ 11.6, C44 ¼
C55 ¼ 5.8, C66 ¼ 76.8, C12 ¼ C11 − 2C66 ¼ 32.4 ðGPaÞ, and all
other components are equal to zero. The Young’s modulus of a
hexagonal biotite single crystal is shown in Figure 1. It is
stiffest for directions in the sheet plane XBYB but not softest in the
ZB-direction. We also assume hexagonal crystal symmetry for de-
fining the ODF.
To specifically highlight the influence of biotite grain shapes,

ODFs, and volume fraction on bulk elastic properties of the whole
model rock, results will be presented for an isotropic matrix with
Young’s modulus E ¼ 40 GPa and Poisson’s
ratio ν ¼ 0.3. Cases of harder matrix (E ¼
80 GPa) behavior are also considered and illus-
trated for elastic wave velocities. Within the
ELSC scheme, matrix isotropy is enforced by
considering 500 randomly oriented FCC grains
with isotropic elastic constants.
To calculate elastic wave velocities from a

stiffness tensor, a bulk density value is required.
We use a density of 3.05 g∕cm3 for biotite and

isotropic matrix to simplify the interpretation of elastic wave veloc-
ities dependencies on biotite content in the model.

Coordinate systems and orientation distributions

In general, three different coordinate systems (Cartesian, right-
handed) are required to describe orientation relationships in a poly-
crystalline material with nonspherical grain shapes. Bulk elastic
properties of whole material are given with respect to a macroscopic
sample coordinate system KAfXA; YA; ZAg (Figure 2a). Physical
properties of single crystals are usually given in a crystal coordinate
system KBfXB; YB; ZBg, that is related to the unit cell according to
a set of specific rules (e.g., Nye, 1957; Matthies et al., 1987, 1988)
(Figure 2b). The ODF is a probability density for a volume element
of polycrystalline material to have a certain orientation KB with re-
spect to KA. A grain coordinate system KEfXE; YE; ZEg is related
to the shape of the ellipsoidal grain, and its axes are set parallel to
the axes of an ellipsoid (Figure 2c), and the orientation relation of
KE with respect to KB needs to be defined.
There are two extreme cases for defining KE. In our case with

“hexagonal” biotite, KE is directly related to the crystal axes, such
that KB ¼ KE (i.e., the crystal c axis ZB is parallel to the shape ZE

axis, and we have [001] platelets). In the case of crystals in a metal
with a rolling texture, the grains are flat ellipsoids directly related to
sample axes (KA ¼ KE) and independent of crystal orientation.

Figure 1. Young’s modulus of biotite single crystal (units of
100 GPa), equal area projection, linear scale. The minimum value
is 20.5 GPa, and the maximum value is 178.6 GPa.

Figure 2. Definition of coordinate systems. (a) Sample coordinate system KA with el-
lipsoidal grains, (b) crystal coordinate system KB, and (c) grain coordinate system KE.

Elastic properties of aggregates D435



Sheet silicates belong to the first case. They display a character-
istic morphology with grains of thin oblate ellipsoidal, or platelet-
like, shape parallel to monoclinic (001) crystal planes, or (100) if
the first monoclinic setting is used for the crystal. Thus, inside each
biotite platelet, a crystal lattice, and its associated KB, is fixed with a
certain orientation relationship to KE (Figure 2b and 2c). In sheet
silicates possessing monoclinic or triclinic lattices, KE is tilted with
respect to KB (e.g., in triclinic crystals, the direction normal to the
[001] plane is not parallel to [001] direction). Thus, in such cases,
additional rotations have to be performed to consider the difference
between KE and KB (Vasin et al., 2013). In our simplified case
of hexagonal biotite, KB is parallel to KE. As a consequence,

ODF ≡ SODF and the shortest grain dimension is parallel to
ZE ≡ ZBjj½001�. Care should be taken when deriving the SODF
from the ODF. The ODF assumes crystal symmetry, whereas the
SODF satisfies orthorhombic particle shape symmetry.
There are some differences among the GMS, ELSC, and FFT. In

GMS and ELSC, all grains have the same ellipsoidal shape that is
linked to the crystal system, but they have a different ellipsoid ori-
entation (Figure 3a and 3b). In GMS, it is assumed that ODF and
SODF are linked in a systematic statistical way and the transforma-
tion KB → KE applies to the whole distribution. In ELSC, the re-
lationship is defined for each individual grain. In FFT, grain shapes
vary. They are obtained by first creating a random grain distribution

(Figure 3c) and then deforming this microstruc-
ture to the desired aspect ratio (Figure 3d). Thus,
effective grain shapes are related to the sample co-
ordinate system KA. This introduces some dis-
crepancy between the mean-field and the full-
field predictions, but we expect it to be minor
in the present case of a strong preferred orien-
tation.
Sheet silicates in real rocks often have pre-

ferred orientation patterns that are close to axi-
symmetric (or fiber) textures, and the axis of
the fiber is perpendicular to the macroscopic bed-
ding or foliation plane of the rock (e.g., Wenk
et al., 2010). For simplicity, we use a perfect fiber
texture for biotite grains, with a fiber axis parallel
to ZA and perpendicular to the foliation plane
XAYA. Elastic properties of materials with fiber
texture can be described with only five indepen-
dent Cij’s, C11 ¼ C22, C12, C13 ¼ C23, C33,
C44 ¼ C55, and C66 ¼ ðC11 − C12Þ∕2 with all
others being zero.
Following this, we construct two ODFs using

standard Gaussian fiber components (Matthies
et al., 1987) of different full-width at half-

maximum (FWHM):

• ODF 20: FWHM ¼ 20°, texture index F2 ¼ 22.82
• ODF 40: FWHM ¼ 40°, texture index F2 ¼ 5.75,

to investigate the influence of the texture strength on bulk elastic
properties of our model two-phase rock. Corresponding pole figures
of shortest grain dimensions (001) (or ZB ¼ ZE) are shown in Fig-
ure 4. For use in GMS routines, these ODFs are represented in a
discrete 5° × 5° × 5° grid in the orientation space. For the ELSC
and FFT calculations, 5000 randomly selected individual orienta-
tions were assigned corresponding ODF values. Only those with
nonzero ODF values have been further considered for calculations
(e.g., for ODF 20, only 1038 out of 5000 individual orientations had
nonzero ODF values).

Biotite grain shapes

The applied methods for calculation of bulk elastic properties of
polycrystals are size independent and only ratios of grain axes are to
be taken into account. Thus, in KE, biotite particle axes can be de-
fined as {1∶1∶ζ}. For spherical grains ζ ¼ 1, and for platelet-
shaped grains ζ < 1. In real rocks a distribution of grain shapes
of sheet silicates is usually observed, with ζ roughly in the interval

Figure 3. Schematic representation of the microstructure for (a and b) ELSC and (c and
d) FFT. In ELSC, all grains have the same ellipsoidal shape, and in panel (b), each ellip-
soid’s orientation is linked to the crystal (arrows). The ellipsoids are not spatially correlated.
In FFT, the original microstructure (c) is randomly generated and equiaxed and changed
into platelets (d) by stretching the sample. In panels (b and d), the ellipsoids and the unit
cell, respectively, are not to scale for the cases ζ ¼ 0.1 and 0.01 considered here.

Figure 4. Pole figures (001) of biotite, for ODF 20 and ODF 40,
based on discrete 5° × 5° × 5° ODFs (above) and individual orien-
tations (below). Equal area projections. Pole densities in multiples
of a random distribution, log scale for contours; for individual ori-
entations, large symbols mean larger weight.
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between 0.01 and 0.1 (e.g., Vasin et al., 2013). In our simple model,
we consider biotite grain shapes with ζ ¼ 0.1 and 0.01 and compare
them with the case of spherical grains.

RESULTS

For each given biotite ODF, SODF, and grain shape, we calculate
elastic properties of our model rock with mean-field self-consistent
methods, for different biotite content from 0% to 100%, in 5% in-
crements.
Additionally, to provide reference solutions for validation of the

above mean-field estimations, the full-field FFT-based model was
used to calculate the local fields and effective elastic properties for
the ODF 20 crystallographic texture, different biotite grain shapes
(ζ ¼ 1, 0.1, and 0.01), and biotite volume fractions of: 0% (no bio-
tite, only isotropic matrix material), 31.1%, 48.6%, 71.4%, 84.4%,
and 100% (no matrix, single-phase biotite polycrystal). The micro-
structures corresponding to these cases were built as follows:

1) A periodic Voronoi tessellation with 100 domains, discretized
by a 128 × 128 × 128 Fourier grid, was initially generated.

2) The 100 orientations fromODF 20with the largest volume fractions
were randomly assigned to each domain (the 100% biotite case).

3) All FPs with at least one first, second, and third nearest neighbor
belonging to a different grain were identified, removed from the
corresponding grain, and assigned to the isotropic matrix, re-
sulting in 71.4%, 48.6% (see Figure 3c), and 31.1% volume
fraction of biotite, respectively. In the case of the first nearest
neighbor, choosing only one FP from each pair, the aggregate
with highest biotite content in the matrix (84.4%) was obtained;

4) To obtain unit cells with equiaxed (ζ ¼ 1) and platelet-shaped
grains (ζ ¼ 0.1 and 0.01), the following distances between
FPs in XA; YA, and ZA directions were adopted: (1∶1∶1),
(2.15∶2.15∶0.215), and (4.64∶4.64∶0.0464), respectively. Fig-
ure 3d shows a 2D section of the unit cell corresponding to
platelet grains (not to scale).

All of the methods (mean-field and full-field) give qualitatively
and quantitatively very similar results for Cij, as is shown in Table 2

for the case ODF 20 and isotropic matrix with E ¼ 40 GPa and
ν ¼ 0.3, for 48.6% biotite content and two different grain shapes.
More generally, the results are shown in Figure 5 for the same ODF,
matrix, and different biotite grain shapes and volume fractions. Note
that, for the sake of clarity, the curves corresponding to the different
models are shifted with respect to each other; otherwise, they would
be almost coincident. This figure shows a crossing of the equiaxed
and platelet curves at approximately 75%–85% biotite for C11 and
C66, and at approximately 40%–50% biotite for C13 and C44,
whereas the C12 and C33 curves do not cross.
More specifically, elastic constants calculated with GMS and

ELSC differ by less than 2GPa. The small differences are mostly
due to the relatively low number of individual orientations used to
describe orientation distribution of biotite grains in the VPSC code;
e.g., in the ODF 20 case, there are 1038 nonzero ODF values, that is,
approximately 35 times lower than the number of 5° × 5° × 5° cells in
orientation space with nonzero ODF values used by GMS. On the
other hand, calculation times for ELSC are approximately two orders
of magnitude less than for GMS. The precision of ELSC could be
improved by using a larger number of orientations.
Because all methods yield similar elastic constants, we will only

show elastic wave velocities and anisotropy coefficients calculated from
elastic properties obtained with GMS. Figure 6 shows P-wave aniso-
tropy kp and maximum S-wave splitting ΔVS max for different models.
Results for Voigt and Reuss methods are plotted for comparison.
It should be noted that VP max is always associated with a vector

in the XAYA plane (90° to the fiber texture axis). However, VP min is
not necessarily associated with a vector parallel to ZA. In fact, this
direction is inclined to ZA by an angle in the 0°–35° interval. This
angle’s value depends on texture strength, shape of biotite grains,
and biotite content. It happens because the minimum Young’s
modulus of biotite is not in the ZB ¼ ZE direction, but in a direction
inclined to it (Figure 1). The consequence is that, as we made veloc-
ities calculations in different directions of the model rock every 5°,
our VP min value can be overestimated. The overall change of VP min

with the change of biotite content is relatively small (especially
compared to changes of VP max). This small error should not have
a profound influence on the results and k-values.

Table 2. Comparison of the three different methods for the calculation of effective elastic properties. Elastic constants (in KA) of
model two-phase rock consisting of 48.6% of biotite grains with ζ � 1 and 0.01 and ODF 20 and isotropic matrix with E �
40 GPa and ν � 0.3. All values are in gigapascal. All other values are close or exactly equal to zero.

Aspect ratio ζ ¼ 1 ζ ¼ 0.01

Model GMS ELSC FFT GMS ELSC FFT

C11 87.7 87.3 87.6 97.2 96.8 102.0

C12 27.2 27.2 27.2 26.4 26.4 25.4

C13 21.5 21.6 20.7 21.8 22.0 20.7

C22 87.7 87.5 87.6 97.2 97.2 102.0

C23 21.5 21.5 20.7 21.8 21.9 20.7

C33 52.4 52.3 53.0 51.9 51.8 52.5

C44 11.1 11.2 10.4 11.0 11.1 10.4

C55 11.1 11.2 10.4 11.0 11.1 10.4

C66 30.2 30.1 30.6 35.4 35.3 38.8

Elastic properties of aggregates D437



Figure 5. Comparison of Cij ’s as function of biotite content for the three different methods for the calculation of effective elastic properties:
GMS, EPSC, and FFT. Biotite with ODF 20 texture and grain aspect ratios ζ ¼ 1 and 0.01 in an isotropic matrix with E ¼ 40 GPa and ν ¼
0.3. GPa units apply to GMS. Other curves are shifted 40 GPa for ELSC and 80 GPa for FFT for C11, and 10 GPa for ELSC and 20 GPa for
FFT for C12, C33, C13, and C44, and 20 GPa for ELSC and 40 GPa for FFT for C66.
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Also, VP min and VP max are not only minimum and maximum
phase velocities, but also minimum and maximum group velocities
(e.g., Dewhurst and Siggins, 2006). The same is true for ΔVS max-val-
ues that are the same, independently if phase or group velocities are
used for the calculation. Minimum S-wave splitting, as for all materi-
als possessing axial symmetry, is equal to zero for our model rocks.

Figure 5 shows that for a biotite fraction of 1.0, a model rock with
spherical biotite grains has higher C11 and C66, but lower C44 than
that with biotite platelets. This results in higher kp andΔVS max for a
model rock composed of 100% biotite spherical grains (e.g., Fig-
ure 6a and 6d). By contrast, a rock with high content of biotite plate-
lets is less anisotropic with regard to elastic wave propagation.

Figure 6. (a-c) P-wave velocity anisotropy coefficient kP and (d-f) maximum S-wave splitting ΔVS max as function of biotite fraction for GMS
model (ζ ¼ 1; 0.1 and 0.01, ν ¼ 0.3); Voigt and Reuss averages are shown for comparison. (a and d) ODF 40, isotropic matrix with
E ¼ 40 GPa, (b and e) ODF 20, E ¼ 40 GPa, and (c and f) ODF 20, E ¼ 80 GPa.

Elastic properties of aggregates D439



However, at a low biotite content, the situation is reversed. An ag-
gregate with low content of biotite platelets has higher C11 and C66,
and lower C44 than an aggregate with the spherical biotite grains.
Dependencies of C11, C44, and C66 with biotite content (for all

considered combinations of biotite ODFs and matrix properties)
and, consequently, the kP (Figure 6a and 6c) andΔVS max (Figure 6d
and 6f) dependencies show certain “critical” biotite contents at
which the corresponding curves for spherical and platelet biotite grains
cross each other. At this critical biotite content, certain elastic charac-
teristics of the two-phase composite are independent on the platelet
shape. In case of the weaker ODF 40, a critical biotite content also
appears on C33 curves (not shown). In aggregates with sharper biotite
texture (ODF 20), for the case of spherical biotite grains, a higher C33

value was obtained than for biotite platelets, but only by 1–2 GPa.
Dependencies of kP and ΔVS max on biotite content for some

combinations of matrix properties and biotite texture strength are
shown in Figure 6. The critical biotite contents for these depend-
encies shift toward lower biotite content with decrease in texture
strength. Values of these critical biotite contents for kP strongly de-
pend on the Young’s modulus of the isotropic matrix. The stiffer the
matrix, the less biotite content is needed for material with spherical
biotite grains to become more elastically anisotropic than material
with biotite platelets (see Figure 6c and 6f).

DISCUSSION

All the models provide numerically similar results. It is reassur-
ing to observe the same predicted behavior with mean-field ap-
proaches and the full-field FFT-based method, considering that
the latter accounts for heterogeneity and spatial grain correlations.
At a higher biotite content, all model rocks consisting of an iso-

tropic matrix aggregate with spherical biotite grains are more aniso-
tropic with respect to elastic wave propagation: kP and ΔVS max are
always higher for material with spherical grains. Thus, the effect of
reduction in elastic wave propagation anisotropy when platelet-
shaped biotite grains (instead of spherical grains) are considered
is not an artifact of the averaging method.
Critical points appear on Cij dependencies on biotite content for

some combinations of isotropic matrix properties and biotite texture
strength (Figure 5). This is particularly clear for C11 and C66. Criti-
cal points for FFT are somewhat shifted relative to GMS and ELSC,
and we attribute it to the different definitions of the particle shape
coordinate system as discussed earlier. In FFT, the shape is linked to
the sample, and in GMS and ELSC, it is linked to the crystal. Similar
points exist for velocity dependencies such as P-wave anisotropy kP
and S-wave splitting ΔVS max (only shown for GMS in Figure 6),
though the critical biotite content for different dependencies may
be different. If the biotite content in a model rock is higher than
the critical content, the kP coefficient of the rock with biotite platelets
becomes closer to that of Reuss model, whereas the kP of the rock
with spherical biotite grains is closer to that of Voigt model, and the
reverse is true for low biotite content. We note, that, for example, kP
of the model two-phase rock with a certain critical biotite content is
largely independent of the biotite platelet aspect ratio ζ.
At low biotite content, all model rocks with platelet-shaped bio-

tite grains are more anisotropic with respect to elastic wave propa-
gation. The transition depends on the elastic coefficients of the biotite
and the matrix, as well as texture strength. The biotite content at the
kP critical point decreases with the increase in the Young’s modulus

of the isotropic matrix and with the decrease in the biotite texture
strength.

CONCLUSION

Using different modeling techniques, we document the effect of
particle shape on elastic properties in a two-phase composite with
platelets. Interestingly, there is a consistent crossover, relative to
spherical particles, which depends on particle content and also
on elastic properties of particles and matrix. It would be interesting
to see if such effects can also be observed experimentally, for ex-
ample, P-wave anisotropy in silt-clay mixtures.
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SUMMARY OF ACRONYMS AND SYMBOLS

ODF = Orientation distribution function, a mathematical
description of preferred orientation of crystals rel-
ative to sample coordinates

SODF = Shape orientation distribution function, preferred
orientation of morphologic features (e.g., none-
quiaxed ellipsoidal grains) relative to sample coor-
dinates

ELSC = Elastic self-consistent (mean-field averaging
method)

GMS = GeoMIXself (mean-field averaging method),
which combines geometric mean and the standard
ELSC

FFT = Fast Fourier transform (full-field averaging
method)

FP = Fourier point, point of the discrete grid used to
model the material with the FFT method

KA = a coordinate system related to the sample
KB = a coordinate system related to the crystal lattice
KE = a coordinate system related to the grain morphol-

ogy (represented by an ellipsoid)
Cij = elastic tensor of the material (stiffness)
Sij = elastic tensor of the material (compliance)
E = Young’s modulus
ν = Poisson’s ratio
ζ = aspect ratio of platelet-shaped grains
kP = P-wave anisotropy coefficient that demonstrates

the anisotropy of the material with respect to
(quasi) P-wave propagation

ΔVS max = maximum S-wave splitting, i.e., the maximum dif-
ference between velocities of primary and secon-
dary (quasi) S-waves
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