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ABSTRACT OF THE DISSERTATION 
Abstract of the Dissertation 

 
Design and Characterization of an Allosteric Metalloprotein Assembly 

by 

Lewis Anthony Churchfield 

Doctor of Philosophy in Chemistry 

University of California, San Diego, 2018 

Professor F. Akif Tezcan, Chair 

 

 Proteins are one of the main building blocks of life. Among their numerous 

functions are roles as biocatalysts for essential chemical reactions, signaling agents that 

coordinate communication down to the sub-cellular level, and as modules for 

constructing cellular superstructures. In many cases, these functions rely on the ability of 

proteins to form stable and specific associative interactions with other proteins, as well as 

with metal ions. Drawing inspiration from nature, we deploy these functional features as 

design elements that aid in the construction of artificial metalloprotein assemblies. Using 

an iterative design approach, we have engineered the monomeric protein cytochrome 

cb562 by application orthogonal strategies: Metal Designed Protein Self-Assembly 



 
 

xx 

(MDPSA), Metal-Templated Interface Redesign (MeTIR), and the installation of 

intermolecular disulfide bond crosslinks. This synergistic design approach afforded a 

self-assembling protein variant, C38/C81/C96R1, which bears metal chelating groups, a 

designed dimerization interface (termed i1), and surface-exposed cysteine residues. In the 

presence of ZnII this engineered variant self-assembled into a tetramer, Zn-C38/C81/C96R14. 

Removal of ZnII from the assembled tetramer resulted in hydrolysis of a single C38-C38 

disulfide bond, leaving the five remaining crosslinks intact. Thus, C38/C81/C96R14 is an 

allosteric protein, capable of remotely coupling ZnII binding at is central binding sites to 

the breakage of a peripheral disulfide bond. In this work, we discuss the design of the 

C38/C81/C96R14 protein as well as the demonstration of this allosteric behavior. We further 

carry out biochemical and biophysical characterization of this protein and related variants 

to determine the structural and energetic basis of this Zn-disulfide allostery. The C38-

C38 disulfide bonds are embedded in the i1interface which, crucially, forms malleable 

protein-protein contacts. The flanking disulfide crosslinks of C38/C81/C96R14 serve as 

structural conduits for coupling the pair of i1 interfaces, which is critical to develop the 

requisite driving force to effect disulfide bond hydrolysis. In this designed system, it is 

the underlying malleability of the structure that gives rise to the allosteric behavior. We 

consider this as a successful application of synergistic design to give a coordinated 

protein function, and anticipate that adoption of similar design paradigms will greatly 

benefit ongoing protein engineering efforts in the community at large. 

  



 
 

 1   
 

 

 

Chapter 1: A survey of designed 
protein assemblies 
Chapter 1: A survey of designed protein assemblies 
 

 

 

 

 

1.1 Foundations of protein design: drawing inspiration from Nature 

Proteins are ubiquitous members of the cellular toolkit that fulfill a stunningly 

diverse array of functions: dynamic structural scaffolds which give cells their form and 

serve as intracellular highways, prodigious catalytic complexes that carry out the 

chemical reactions integral to life, and faithful messengers within signaling networks that 

orchestrate biological function, to name a few. A pool of 20 amino acids serve as the 

building blocks for the myriad three-dimensional folded structures that have been 

observed in Nature, structures which in turn enable this functional prowess. One critical 

aspect of this structure-function paradigm is the ability of many proteins, including as 
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many as 80% of Escherichia coli proteins,1 to form complexes in carrying out their 

specific roles. A self-assembling protein presents practical benefits to the cell, such as 

lower energy cost and error rates in gene synthesis.1 However, self-assembling proteins 

also possess functional advantages relative to their monomeric subunits, including 

allosteric modulation and cooperative function, enabled by emergent properties such as 

symmetry and long-range order.1, 2 Notable examples of these principles at work can be 

found in protein assemblies that catalyze challenging multi-step reactions (e.g., nitrogen 

fixation by nitrogenase), molecular machines (e.g., gradient-coupled formation of 

adenoseine triphosphate, or ATP, by ATP-synthase) and responsive biomaterials (e.g., 

dynamically assembling microtubule filaments) (Figure 1.1).3, 4 Despite the impressive 

capabilities of these and other natural protein assemblies, all are limited by the constraints 

of evolutionary pressures attendant to operating as part of a biological system. One can, 

however, readily imagine removing such constraints to generate artificial protein 

assemblies with useful functional properties. This presents the grand challenge of protein 

design: the creation of novel functional protein complexes with properties that rival or 

surpass the efficiency, complexity, and fidelity of those found in Nature. 

It is helpful to understand the opportunities and challenges facing protein design 

by comparing them with efforts to construct self-assembling DNA architectures. These 

efforts have given rise to the field of DNA nanotechnology, which generates exceedingly 

complex structures composed of a long single-stranded scaffold polynucleotide that 

adopts the desired configuration by base-pairing with small, so-called staple DNA 

strands.5 The success of these designs rests on the simplicity and programmability of the 

Watson-Crick base pairing interactions that mediate robust sequences-specific assembly.  
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Figure 1.1 Notable examples of naturally occurring protein assemblies.  
(a) Segment of a microtubule assembled from the dimeric protein tubulin. Microtubules are cytoskeletal 
filaments that dynamically assemble and disassemble to form key cellular structures, such as the mitotic 
spindle during cell division. (b) The octameric complex of nitrogenase consists of two Fe protein 
homodimers (depicted in green) and the heterotetrameric MoFe protein (depicted in blue and magenta). Fe 
protein supplies electrons to the MoFe protein, which contains the catalytic center that fixes N2 into NH3, 
making this essential element of life available for biological use. (c) The ATP synthase complex is an 
assembly of 12 polypeptide chains of seven distinct types. This molecular machine is responsible for 
converting ADP into ATP, a ubiquitious biological energy source. ATP synthase is embedded in a cellular 
membrane, and couples movement of H+ down its concentration gradient to ATP formation by rotary 
catalysis. Images are reproduced with permission from PDB Molecule of the Month entries (microtubules - 
doi:10.2210/rcsb_pdb/mom_2014_7, nitrogenase - doi:10.2210/rcsb_pdb/ mom_2002_2,  ATP Synthase – 
doi:10.2210/rcsb_pdb/mom_2005_12).  Images are based on the indicated entries in the Protein Databank 
(rcsb.org)  
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The use of DNA origami to generate exquisite structures and molecular devices is a 

testament to the utility of these simple interacting rules.5 However, the simplicity of the 

nucleotide alphabet limits the functional diversity all-DNA assemblies, and therefore are  

sometimes deployed as scaffolds for protein.5 Proteins, by contrast, consist of building 

blocks with greater chemical diversity. However, this complexity has largely precluded 

the elucidation of robust general rules that govern protein assembly. Herein lays the 

promise and the challenge of protein design. 

This dual nature of the chemical complexity underlying protein-protein 

interactions is true of their dynamics as well. Flexible proteins often adopt an ensemble 

of conformational states in carrying out their native function. This is now a widely 

recognized characteristic of proteins with implications that have shaped our 

understanding of allosteric protein function.  Simple, structure-focused models originally 

proposed for allostery (Monod-Wyman-Changeaux model) and catalysis (lock-and-key 

model) have been supplanted by views that recognize protein dynamics as a crucial 

aspect of these and other functional properties.6-8 Adoption of a particular structural 

arrangement is a key aspect of protein function, but this alone fails to account for the 

prowess and diversity displayed by natural proteins. 

Clearly, the importance of structural dynamics as a driver of protein function 

naturally-occurring protein complexes must be true of their engineered counterparts as 

well. Let us briefly consider efforts to emulate the biological complexity through the lens 

of designing an artificial humanoid robot composed of multiple building blocks (head, 

torso, arms, etc.). One crucial aspect of successful design is link the building blocks with 

the desired connectivity. While necessary for constructing our artificial system, this is not 
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a sufficient condition for successful design if we consider the possibility of loose 

connections that limit any coordinated action of the linked components (Figure 1.2). 

Compensating for the shortcomings of this design, one may consider the use of tight 

well-fastened junctions to link the building blocks. While this approach furnishes an 

assembly that holds the desired shape and which is suitable to serve as a container or 

scaffold, the absence of any dynamic behavior limits the functional capabilities of such 

monolithic artificial systems (Figure 1.2). Instead, judicious deployment of both rigid 

and flexible interfaces acting in concert is required to enable sophisticated functions, such 

as coordinated movement. Additionally, the ideal interactions between building blocks 

allow for modular replacement, as well as for tailoring and functionalization of the 

artificial assembly, rather than having a high degree of interdependence that prohibits 

such modification (Figure 1.2). This simple analogy illustrates the importance of 

dynamics in natural biological systems, while also showing how systems with the correct 

structural properties may fall short of the functional breadth displayed by natural 

biological systems. 

As discussed below, strategies for protein design must either confront the 

energetic idiosyncrasies of protein-protein interactions, or devise chemical and 

biochemical design strategies to circumvent this challenge. This has inspired protein 

engineers to develop a toolkit for creating novel self-assembling proteins beyond the 

boundaries of Nature’s proteome. Broadly speaking, efforts to impart self-assembly can 

be viewed as either repurposing an existing protein interaction modality, or as efforts to 
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Figure 1.2 Cartoon depiction of the roles of flexibility and rigidity in an artificial biological assembly.  
Building block assembled in the desired configuration have different properties and capabilities depending 
on the nature of their interfaces. Overly loose connections and overly tight connections preclude many 
cooperative functions. Failure to achieve the desired structural configuration prohibits most, if not all, 
coordinated function. Adopting the desired structure allows for a structure to serve as a container or as a 
scaffold, but prohibits dynamic function and complicates design alteration. Structures with judicious 
placement of flexible interfaces with modest interdependence allow for coordinated movement, module 
tailoring, and module functionalization.  
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to impart self-assembly by installing new interaction motifs. Efforts to repurpose an 

existing interaction exploit established protein-ligand interactions, intramolecular protein 

contacts, or existing intermolecular protein-protein contacts (Figure 1.3a-c).9-32 Installing 

new interaction motifs can be accomplished by appending a templating molecule, 

installing a metal chelating motif, using disulfide bond crosslinkers, or through the de 

novo design of a self-assembling protein surface (Figure 1.3d-f).33-73 

An important predecessor to the field as it exists today was the demonstration that 

biologically-relevant natural protein complexes could be self-assembled in vitro. One of 

the earliest successes was the reconstitution of active Tobacco mosaic virus (TMV) from 

its purified coat protein and viral genome, laboriously isolated from natural sources.74 

The success of this experiment hinged on the inherent self-assembling properties of the 

capsid proteins to generate infection-competent viral particles ex vivo, an impressive feat 

considering the millennia of evolutionary optimization for in vivo assembly.  

 Efforts to engineer artificial supramolecular protein complexes also owe a great 

deal to work involving artificial peptides. A pioneering study by Ghadiri and co-workers 

used solid-phase peptide synthesis to introduce an abiologicial 2,2’-bipyridine metal-

binding motif into a 15 residue peptide.75 In the presence of NiII, the metal-binding motif 

templated the formation of a trimeric species with α-helical structure that formed a 

hydrophobic core, providing an early demonstration of using chemical first-principles 

design to generate biomolecular assemblies. Self-assembling peptide systems have 

continued to receive considerable attention as techniques for de novo design have 

advanced, recently culminating in the design of a self-assembling transmembrane ZnII/H+ 
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Figure 1.3 Survey of strategies for engineering protein assemblies. 
(a) Protein-ligand interactions can be used to generate large protein assemblies through the design of 
multivalent ligands. (b) Engineering the loop region of a protein can alter the topology to redirect 
intramolecular domain-domain contacts to form intermolecular interactions via domain swapping. (c) 
Naturally-occurring oligomers fused together can form higher-order assemblies, including protein cages 
and fibers. (d) Appending a templating molecule, such as DNA, to a protein allows for the design of self-
assembling protein conjugates. (e) Installing a chelating motif on a protein surface can be used to generate 
metal-templated self-assembling proteins. (f) Surface-exposed cysteine residues under oxidizing conditions 
form covalent disulfide bond crosslinks, which can be used for reversible oxidative self-assembly of 
proteins. (g) Rational or computational design strategies can alter protein surfacs to form favorable non-
covalent interactions, such as Van der Waals contacts or electrostatic interactions, with steric 
complementarity to generate a self-assembling protein. 
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antiporter four-helix bundle76 as well as the self-assembly of cages77 and 2D arrays78 

from simple peptide building blocks. These and other advances in the field of designed 

peptide assemblies have recently been recently reviewed recently.79, 80 The focus of the 

remainder of this chapter is strategies for the design of self-assembling proteins, or 

polypeptides of sufficient length to adopt a defined tertiary structure, as well as the 

emerging trends that are rising to meet the remaining challenges in protein engineering. 

 

1.2 Repurposing native interactions for engineered protein assemblies 

Natural protein-ligand complexes. Many proteins bind small molecule ligands as 

part of their biological function, and interaction that has been exploited to drive protein 

self-assembly. The synthesis of appropriate multivalent ligands that bear two or more 

binding moieties gives molecular bridges that bind multiple copies of their protein partner 

(Figure 1.3a).9 One example comes from Freeman and coworkers, who used 

concanavalin A, a tetrameric protein that bears four sugar binding sites arranged in a 

tetrahedral fashion.10 It was hypothesized that binding of each side of a C2 symmetric 

bismannopyranoside would bridge the binding sites between tetramers to form 3D protein 

arrays, a result that was confirmed by transmission electron microscopy (Figure 1.4a).10 

This has proven to be a generalizable strategy, and has been exploited by several groups 

to generate protein assemblies. A commonly utilized motif is the high-affinity binding 

between streptavidin-, or Sav-tagged molecules, and derivatized biotin, including 

bisbiotin,11, 12 biotinylated DNA molecules,13 and biotinylated proteins.14 The Wagner 

group has explored the use of drug molecules as the basis for generating assemblies of 

dihydrofolate reductase (DHFR) by synthesizing divalent versions a known inhibitor, 
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Figure 1.4 Design of multivalent ligands for inducing protein assembly. 
(a) The homotetrameric protein concanavalin A (PDB: 5CNA) bears four binding sites for the 
monosaccharide mannose. Bis-mannose molecules can serve as a bridge between pairs of concanavalin A 
tetramers, which self-assemble into arrays observable by electron microscopy. Reproduced in part, with 
permission, from reference 10. (b) The natively-monomeric protein DHFR can be engineered to form 
dimers. Mixing this variant with a dimeric form of the drug MTX affords protein nanorings visible by 
electron micsroscopy. Reproduced in part, with permission, from reference 14. (c) The homotetrameric 
protein Sav, and an engineered dimer of Mb have been used to form two-component protein wires. A 
chimeric ligand with a single heme moiety and a pair of biotin moieties bridges members of these protein 
wires, as confrmed by atomic force microscopy. Reproduced in part, with permission, from reference 17.  
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methotrexate (MTX), to bridge protein dimers15 and nanorings16 (Figure 1.4b). Hayashi 

and coworkers have utilized triadic heme molecules as nucleation sites for cytochrome 

b562 (cyt b562) assembly,17 and synthesized chimeric heme-biotin linkers to generate two-

component protein assemblies of alternating Sav and myoglobin (Mb) building blocks18 

(Figure 1.4c). As the above examples demonstrate, the underlying protein-ligand 

interaction can be used to form larger assemblies via synthesis of an appropriate 

molecular bridge, and this approach can be deployed without a need to modify the 

involved protein. However, this strategy is limited to proteins with known pre-existing 

interaction partners, and the interaction strength between proteins is wholly dictated by 

the binding constant of the ligand. This design approach may yield kinetically trapped 

assemblies if association is too tight, or limited assembly if association is too weak.  

Domain swapping. As a consequence of the iterative process of molecular 

evolution, many proteins contain multiple “domains”, which may fold and function 

independently from the rest of the polypeptide chain, providing modularity to the global 

protein structure. The relative arrangement of these domains is subject to changes in the 

protein environment and amino acid sequence, which may favor the formation of new 

intermolecular contacts by a process known as domain swapping. In Nature, this provides 

one mechanism for modulating protein function,81, 82 as well as a route for the 

formation83-85 and evolution86 of oligomeric proteins. It has been suggested that almost 

any protein, under appropriate conditions, is capable of undergoing domain-swapping if 

the termini of the protein are sufficiently mobile.87 

 Drawing inspiration from these observations, protein engineers have used domain 

swapping to designing self-assembling protein systems. Such design efforts typically 
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focus on modifying or deleting part of a loop region to disfavor the intramolecular 

association of the flanking structural elements (Figure 1.3b). For example, deleting a six-

residue loop from staphylococcal nuclease reoriented its C-terminal helix to favor the 

formation of a 2900 Å homodimeric interface (Figure 1.5a).19 This approach was been 

applied to generate dimers and fibrils of loop-deleted 3-helix bundle proteins (Figure 

1.5b),20 as well as to generate a β-strand swapped homodimer.21 Loh and coworkers 

employed a strategy, termed mutually exclusive folding, where a hinge protein is inserted 

into the loop region of another protein.22 Hinge protein insertion disrupts the intra-

molecular associations of the monomeric species, favoring the formation of domain-

swapping (Figure 1.5c). The use of deactivated protein domains with this strategy 

provides a means of switching enzymatic activity on and off.23 Domain-swapping can 

also occur in laboratory-evolved proteins, as observed by Hecht and co-workers when a 

patterned library of 4-helix bundle proteins unexpectedly yielded a domain-swapped 

dimer.24 While this approach can readily be applied to virtually any protein, the resulting 

assemblies often form heterogenous assemblies and relatively weak contacts, limiting the 

utility of this method for achieving specific structures of interest. 

Fusion of oligomeric proteins. As mentioned above, a significant fraction of 

proteins exist as oligomers in their functional state, and monomeric proteins which 

comprise these complexes (homo-oligomers in particular) have typically evolved to have 

symmetrically identical interfaces to achieve self-complementarity. Consequently, 

symmetry has become one of the most powerful tools available to both Nature and to 

protein engineers for generating protein assemblies. Just as C2 symmetric small molecule 

ligands can link two protein binding partners, fusing a pair of protein monomers with  
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Figure 1.5 Engineering a homodimeric protein via domain swapping.  
(a)The natively monomeric nuclease derived from Staphylococcus aureas possesses a C-terminal helix 
downstream of a short loop segment. Deletion of part of this loop affords a variant that undergoes 
dimerization via domain-swapping, with the C-terminal helix giving a monomer-like topology to the 
complementary domain of the binding partner. Reproduced in part, with permission, from reference 19. (b) 
Straightening the loop of an updown/up three-helix bundle protein alters the topology, resulting in a self-
dimerizing variant. Reproduced in part, with permission, from reference 20. (c) Insertion of a protein in the 
loop region of a protein can strain the folding preferences of both proteins. The ensuing domain swapping 
was termed mutually exclusive folding. Reproduced in part, with permission, from reference 22. 
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compatible respective symmetries can give rise to extended crystalline arrays or discrete 

protein cages (Figure 1.3c). This is the strategy employed by Sinclair et al., in which a 

fusion construct of D2 and C4 symmetric proteins with a shared rotational axis was 

observed to yield binary protein arrays.25 The Yeates group has also used this approach to 

generate nanometer-scale cages by fusing dimer- and trimer-forming protomers in the 

appropriate relative orientation.26, 27 The observed 15 nm spheres were consistent with the 

formation of the desired homododecameric cages, with trimers as the four vertices of a 

tetrahedron and dimers creating each of the six edges (Figure 1.6).26 Strikingly, when 

two residues flanking the helical linker were mutated to mitigate potential unfavorable 

contacts (Q24V and K118A), monodisperse assembly was observed, allowing for the 

determination of the cage structure by x-ray crystallography.27 While the general 

geometric principals behind the design of such constructs are well-understood,28, 29 the 

success of these designs depends heavily on protein-specific interfaces that cannot, by 

their very nature, be generalized, as well as on local sequence effects that can be difficult 

to account for a priori. 

In contrast with the above examples, supramolecular assemblies can also be 

generated through the fusion protein building blocks using flexible linkages. In one 

example, the Marsh group fused each member of a heterodimeric coiled-coil peptide to a 

homotrimeric protein via a soluble linker. Trimers bearing each binding partner, upon 

mixing, self-assemble into cylinders formed from two trimers, tetrahedral cages 

containing four trimers, and octahedral cages containing eight trimers.30 In a similar 

study, the de novo designed WA20 peptide dimer was linked to the fibritin trimerization  
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Figure 1.6 Design of a self-assembling protein cage by genetic fusion of oligomers. 
The FkpA protein contains a dimerizing domain, which was genetically fused to the trimeric KDPGal 
protein. Use of a rigid helical linker allowed for control over the relative orientation of the two domains 
within the fusion construct. The fusion satisfies the oligomerization preferences of both domains by self-
assembling into a 24mer protein cage. Adapted from reference 27. 
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domain, foldon.31 Here, Arai and coworkers observed the formation of discrete 

assemblies with masses and solution-phase behavior consistent with a compact barrel and 

a tetrahedral cage, in addition to larger cage-like structures.24 The flexible-design 

approach was further extended with higher-symmetry elements comprising a tetrahedral 

cage: a C3-symmetric trimer at each face and a C4- symmetric coiled-coil tetramer at each 

vertex 32. In the design of such cages, the authors noted that the geometry of their fusion 

was relatively unconstrained, and focused on optimizing the length of the flexible peptide 

linker. Given the modularity of the approach and the availability of stimulus-responsive 

coiled-coil peptides, a proposed extension for this design strategy is the generation of 

cages whose assembly/disassembly is coupled the biochemical environment. 

 

1.3 Engineering protein assemblies using de novo designed interactions 

Protein assembly via molecular templating. There are numerous examples of 

non-protein species that form supramolecular complexes, ranging from pairwise 

interactions to larger aggregates, which one can envision as templates for driving protein 

assembly. Protein surfaces are heterogeneous and decorated with many functional groups 

of similar chemical properties, which present a challenge to protein engineers seeking to 

design self-assembling proteins. Conjugating a protein to a templating molecule can 

endow the protein with assembly properties, such as binding specificity or stimulus 

responsiveness, that are challenging properties to design in from scratch (Figure 1.3d).  

 Many small-molecule systems form stoichiometric interactions, which can be 

envisioned for use in directing the assembly of proteins with properties of interest. Host-

guest binding partners that form specific binary supramolecular complexes, such as the β-
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cyclodextrin/lithocholic acid pair, can be grafted to proteins and drive dimerization, 

including inside a living cell.33, 34 This strategy has also been applied to methylviologen 

and naphthalene protein conjugates, which form a ternary complex with cucurbit[8]uril.35 

The cucurbit[8]uril host can also form a ternary complex with a pair of FGG tripeptides, 

which when appended to the N-terminus of a protein, can be used to template the 

formation of oligomers,36, 37 nanowires of dimeric protein,38 and contractible nano-

springs.39 DNA has also been employed as a molecular template, due to the sequence-

specificity of base pairing that can be used to program assembly. The Mirkin group 

demonstrated the construction of hybrid materials by densely functionalizing the surfaces 

of catalase with ~12-15 DNA molecules (Figure 1.7).40 These DNA molecules were 

designed to hybridize with a complementary sequence and leave an unpaired sticky end.40 

Generating complementary sticky ends drives the formation of self-assembly of two-

component lattices containing a single enzyme, a pair of enzymes, or proteins and 

nanoparticles, and which contained active enzyme (Figure 1.7).40 The choice of 

conjugation chemistry provided a means of changing the surface distribution of the 

associated DNA molecules, which could in turn alter the lattice parameters of the 

assembly.88 Due to the universality of DNA base-pairing rules, this approach can be 

extended to other protein systems to generate lattices with a chemical and structural 

diversity beyond the scope of DNA-based materials. 

Metal-mediated self-assembly. Metal ions are ubiquitous in protein biochemistry, 

and are some of the most common cofactors within natural protein assemblies. In fact, 

roughly 5% of structurally-characterized oligomers contain a metal ion or metallocofactor 

that serves a structural or functional role at an interfacial site.71 Numerous metal coordin- 
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Figure 1.7 Design of two-component protein-DNA lattices. 
(a) Single-stranded DNA molecules can be covalently appended to a protein surface, typically 12-15 (one 
shown for clarity). These oligonucleotides base pair with an added linking strand to form a stiff DNA 
duplex with a short sticky end.  A second component bearing the complementary sticky end can undergo 
base pairing to link the proteins. (b) Two types of DNA-functionalized catalase were used to generate a 
two-component protein lattice, as confirmed by small angle x-ray scattering. Reproduced in part, with 
permission, from reference 40. 
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ation motifs have been characterized in proteins, typically involving chelating sites with 

multiple carboxylate- or sulfur-containing residues with histidine sidechains. If one 

considers the entire protein as a large ligand for metal coordination chemistry, it becomes 

clear that the strength, reversibility, and intrinsic directionality89, 90 of these interactions 

are highly advantageous for self-assembly strategies. Nature has exploited this fact, as 

there is phylogenetic evidence that ancestral metal binding proteins provide crucial 

footholds in the evolution of some extant oligomeric metalloproteins.91-97 

 These principles have been successfully applied to protein design through a 

strategy termed Metal Designed Protein Self-Assembly (MDPSA).41, 42 The application of 

MDPSA to a soluble, monomeric protein of choice is as follows: sets of surface-exposed 

chelating residues are appropriately installed such that binding of a free metal ion 

promotes the association of two or more monomers in order to satisfy its preferred 

coordination number and geometry (Figure 1.3e).89, 90, 98 As a proof of principle, MDPSA 

was applied to an engineered version of cyt b562 which contains c-type heme linkages (cyt 

cb562).99 A pair of bis-His motifs were installed on helix 3 of the protein to yield a protein 

variant, Metal Binding Protein Complex One (M1), that undergoes ZnII-induced assembly 

into a stable homotetramer,41 and which could be readily tuned by modifying the 

coordination environment43 or by using metal ions with different coordination 

preferences (Figure 1.8a).44 This design logic can be applied in reverse to transform a 

self-assembling natural protein oligomer into an inducible assembly that requires the 

addition of metal.45 Several native interfacial contacts of the 24-mer cage protein 

maxiferritin were removed, and metal coordinating residues were installed in their stead,  
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Figure 1.8 Designed protein scaffolds for metal-templated assembly. 
(a) A natively-monomeric protein bearing a pair of chelating motifs on a single surface of the protein can 
bind metal ions. Multiple proteins can associate to satisfy the coordination preferences of the metal, giving 
a metal-templated oligomeric protein. In the case of the cyt cb562 variant M1, addition of ZnII affords a 
tetramer, while addition of CuII forms a dimer. Adapted from reference 44. (b) The homotetrameric protein 
RhuAforms two-diemsional sheets upon binding NiII or ZnII. Adapted from reference 48. (c) Spherical 
ferritin cages bearing tris-His metal-binding sites coordinate metals with open sites to bind linking 
mollecules and form three-dimensional arrays. Adapted from reference 49. 
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which yielded a soluble monomer in solution. This construct could then be reassembled 

into the native cage structure upon the addition of copper, which templated the 

reformation of the native interface via metal coordination.45 The general chemical 

principles underlying MDPSA are not limited to discrete assemblies, and have been 

applied to the design of pseudo-infinite two-dimensional protein arrays.46-49, 72 Installing 

metal-binding sites onto symmetric oligomeric protein scaffolds will yield multiple 

interaction sites capable of array formation. The C4-symmetric homotetramer L-

rhamnulose-1-phosphate aldolase (RhuA) was mutated to have bis-His clamps at its four 

corners, giving a variant (H63/H98RhuA) that forms tessellated crystalline 2D lattices upon 

binding NiII or ZnII ions (Figure 1.8b).48 The O-symmetric homododecameric 

maxiferritin can, with a single mutation, afford a variant (H122ferritin) bearing tris-His 

coordination sites at all eight of its three-fold symmetry axes, roughly corresponding to 

the eight corners of a cube (Figure 1.8c).49 H122Ferritin cages preloaded with metal ions at 

each of these sites serve as giant metal clusters, from which crystalline 3D protein metal-

organic-frameworks (MOFs) may be synthesized by addition of ditopic molecule linkers 

to form bridges between pairs of protein-associated metal ions (Figure 1.8c).49 Similar to 

traditional MOFs, this system is highly modular, which allowed a library of ferritin-

MOFs with cubic or tetragonal symmetry to be constructed by varying the identity of the 

metal ion or bridging ligand.50  

Protein assembly with disulfide bond crosslinks. Pairs of thiol-containing cysteine 

residues can react to form disulfide bonds, which serve structurally important roles as 

inter- and intra-molecular covalent tethers,100 including the linkage of antibody 

domains,101 and mechanical stabilization of the protein domains found in collagen 
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fibers.102 From a synthetic standpoint, disulfide bonds are particularly attractive for their 

strength, reversibility, and facile installation into a protein scaffold via single point 

mutation to include as cysteine residue. Disulfide bonds can, therefore, be exploited to 

crosslink proteins via oxidative self-assembly with minimal protein modification (Figure 

1.3f).   

As with other strong directional interactions, the structure of the final disulfide-

mediated self-assembled product is largely dictated by the relationship between cysteine 

position and protein geometry. One demonstration of this comes from Mougous and co-

workers, who introduced a pair of cysteine residues onto a hexameric protein such that 

each face of the ring-shaped complex displayed six crosslinkable residues (Figure 1.9).51 

The location of the thiols restricted assembly to 1D stacked nanorods, which were meant 

to mimic the arrangement observed in the crystal structure of wild-type Hcp1. Assembly 

was terminated by the introduction of capping variants with a single cysteine-containing 

face, and the resulting nanorods were observable by transmission electron microscopy 

(TEM). The success of this design relied on the fortuitous preferential stacking of this 

protein in crystallo. Templated formation of disulfide bonds in the absence of this bias 

presents a challenge to the use of disulfide bonds in other protein systems. Additionally, 

the use of multiple cysteine crosslinks in a monomeric protein remains challenging, but 

has been achieved in combination with other engineering approaches.52 Indeed, given 

their small footprint, disulfide bonds are particularly well-suited as an element of 

synergistic design. 
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Figure 1.9 Design of disulfide-linked protein nanorods. 
(a) The homohexameric protein Hcp1 exhibits a ring-like structure. The available crystal structure (PDB 
ID: 12Y12) shows a stacking interaction of the rings that positions residues Arg157 and Gly90 in close 
proximity. (b) Cysteine residues installed on both faces of the ring give a segment variant (C90/C157Hcp1), 
while mutations on a single face give two capping variants (C90Hcp1 and C157Hcp1). Shown are electron 
micrographs of nanotubes of varying length assembled by oxidative self-assembly in vitro. Reproduced in 
part, with permission, from reference 51. 
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Rational and computational design of protein-protein contacts. Protein-protein 

interfaces in natural complexes are typically composed of numerous weak interactions 

dispersed across relatively large surface areas.103-105 Consequently, the design of a new  

protein-protein interaction often requires the simultaneous consideration of numerous 

participating residues, which presents a significant challenge to the protein engineer 

(Figure 1.3g). One strategy to mitigate this complication is to use symmetrical proteins, 

such that a single mutation is multiply propagated in a well-defined manner.53, 54 Schulz 

and co-workers applied chemical intuition and structural insight in a design effort that 

incorporated multiple oligomeric proteins with cyclic symmetries (Figure 1.10a).53 

Installing hydrophobic residues at a single oligomeric surface afforded larger assemblies, 

with symmetric proteins generally requiring fewer mutations to form larger oligomers 

(Figure 1.10a). Recently, this principle has been applied to generate fibrillar protein 

assemblies in vivo from building blocks with dihedral symmetries.54 Through analyzing  

the structures of nearly 2000 oligomeric complexes, they identified a trend for surface 

residues in positions that were the most at risk to permit self-association to contain 

residues with lower interaction propensities, suggesting that many protein complexes are 

poised to undergo assembly in this fashion if these protective residues are removed.54 

Additionally, protein engineers have formed patterned assemblies using electrostatic 

interactions, including between pairs of different proteins with different charge 

envelopes55 and variants of a single protein engineered to have opposite charges,56 

illustrating that other weak intermolecular forces can drive self-assembly. 

Computationally-guided remodeling and de novo design of protein interfaces. 

Recent advances in the computationally-guided modeling of protein structures now   
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Figure 1.10 Designing protein-protein contacts for engineered supramolecular assemblies. 
(a) Urocanase forms a C2-symmetric dimer, while RhuA forms a C4-symmetric tetramer. Hydrophobic 
mutations lie on a single surface (with respect to the rotational axis of symmetry) act in concert to form a 
larger binding surface. In the case of urocanase, three mutattions were sufficient to mediate formation of a 
tetramer. For the higher-symmetry RhuA, a single point mutations mediated formation of an octameric 
species. Adapted from reference 53. (b) Computational design efforts can exploit protein symmetry through 
the use of symmetry-nforced docking protocols. Docking of a eight copies of a homotrimer with respect to 
distance a distance (r) and an angle (ω) about a shared central point furnished a dodecameric cage, O3-33. 
(c) Candidate mutations are grafted onto the backbone of docked constructs to install favorable 
hydrophobic contacts, as well as hydrogen bond interactions (shown as black dashed lines). Adapted from 
reference 64. 
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enable the de novo design of new protein assemblies. A typical computational design 

workflow will start by screening databases of structurally characterized proteins for an 

appropriate starting construct. The scaffold will typically be chosen to contain structural 

features that sterically permit the formation of the interaction of interest, but lack 

favorable contacts that impart a propensity to self-assemble.  From here, the desired inter-

action region is defined, and an ensemble of plausible mutations is generated for testing. 

For each member of this ensemble, candidate scaffolds are docked, and interfaces are 

energetically scored by scanning possible rotamers of the candidate mutations,57, 58 giving 

rise to designs that bear optimized interfacial contacts. A number of software packages 

exist to aid in computational protein design efforts.106 As with any modelling process, 

there is necessarily a tradeoff between accuracy and efficiency of the modeled systems, 

and the results of such design efforts must therefore be verified experimentally. While the 

algorithms involved in de novo protein design have improved dramatically in the past 

decade and have achieved success,59-61 computational design remains challenging, and 

sometimes requires supplementary optimization with directed evolution techniques.62, 63  

 In addition to improved force fields for the energy evaluation, computational 

design efforts have benefitted from design principles employed elsewhere in rational 

protein design efforts. For example, the use of symmetric building blocks has been 

incorporated into the computational toolbox in the form of a symmetric protein docking 

protocol in the Rosetta software (Figure 1.10b-c).64 This symmetric docking approach 

has led to the successful computational redesign of oligomeric proteins to yield 

crystalline 2D protein arrays that form in vivo 65, and the design discrete 3D cages over 

10 nm in diameter.107 As described below, this approach has been extended to the design 
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of large two-component cages.66, 67 Computational design can be expected to improve as 

increasingly sophisticated and accurate design algorithms are available, and as the 

computing power continues to increase. An outstanding challenge in computational 

protein design is the formation of interfaces which are not only energetically favorable, 

but also flexible enough to permit dynamic protein motions central to the functions of 

natural proteins. As outlined in Figure 1.2, achieving a particular structural arrangement 

is not the sole prerequisite for obtaining a functional protein scaffold. 

 

1.4 Synergy of design strategies for native-like engineered protein assemblies 

Keeping in mind that the ultimate goal of protein engineering is the design of 

novel proteins with properties that rival their natural counterparts, it is prudent to 

recognize that all of the protein self-assembly strategies reviewed here have their own 

specific advantages and disadvantages. Installing interaction motifs (templating 

molecules, chelating groups, disulfide bonds) is effective, chemically intuitive, and often 

present a small design footprint. However, these approaches fail to capture the intricacies 

of the protein-protein interactions that enable the function of the vast majority of cellular 

proteins while remaining enigmatic. Computational de novo design is growing ever closer 

to the reliable prediction of extended noncovalent interfaces, but the successes of finding 

the global energy minimum may create rigid scaffolds, rather than dynamic machines. 

Consequently, progress in the field will undoubtedly benefit from the simultaneous 

application of both rational and computational design strategies. 

MDPSA provides a means for the rapid design of metalloprotein assemblies via 

well-defined interactions, but does not prescribe further engineering beyond the introduc- 
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Figure 1.11 Metal tempalted interface redesign (MeTIR): a versatile strategy for protein engineering. 
(a) The exterior of a monomeric protein can be modified by installing chelating motifs that mediate metal-
directed self-assembly, a process known as MDPSA. A second engineering step, the Metal-Templated 
Interface Redesign (MeTIR) strategy, generates self-assembling protein surfaces. This is done by imparting 
the nascent protein-protein interface with favorable amino acid contacts. (b) MeTIR can be used to generate 
infinite protein arrays, discrete assemblies with enzymatic activity, or to generate scaffolds that can 
selectively template bond formation. Such assemblies can exhibit emergetn structural and functional 

  properites. Reproduced in part, with permission, from reference 68.
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tion of metal coordination motifs. Many engineering efforts focus on installing or 

repurposing a metal binding site within a well-folded protein domain.68 While the 

primary coordination sphere of a bound metal ion is itself a useful structural feature, it 

can also serve as an initial foothold for the installation of engineered protein-protein 

contacts at the nascent interfaces of the metalloprotein protein assembly (Figure 1.11a).68 

Using a metal-templated complex to aid interface design, rather than starting wholly de 

novo, tremendously reduces the complexity of the designed system, and can furnish a 

protein that robustly self-assembles in the absence of metal. This two-step design 

approach, termed Metal-Templated Interface Redesign (MeTIR), has been implemented 

by applying computational design methods to an engineered metalloprotein complex.69 

Applying MeTIR to the metal-binding cyt cb562 variant M1 generated a self-dimerizing 

variant, Rosetta Interfaced Designed Complex 1 (R1), that maintains the underlying 

ability to bind ZnII to form a tetramer.70 Metalloprotein assemblies designed in this 

manner provide scaffolds which can be utilized in further engineering efforts, including 

the use of open metal coordination sites to form protein arrays,46, 47 the installation of 

interfacial active sites to give metalloenzyme complexes,73, 108 and to furnish robust 

assembly that can be used to template the selective formation of distinct sets of disulfide 

bonds52 from a single, simple parent building block (Figure 1.11b). The resultant 

engineered assemblies can possess emergent functional properties beyond the scope of 

their monomeric precursors, such as materials that withstand harsh conditions or possess 

high tensile strength,46, 72 as well as enzymes with catalytic sites located at a protein-

protein interface.108 These and other emergent functional properties displayed by systems 

arrived at through MeTIR are discussed below, and in subsequent chapters. 
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1.5 Challenges and opportunities: emerging design paradigms protein self-assembly 

The feats accomplished by natural systems are a source of inspiration to protein 

engineers. Natural protein assemblies frequently rely on the coordinated action of 

multiple protein components through the formation of heteromeric assemblies, which can 

adopt distinct functional conformations, in order to carry out their important biological 

functions. These principles are beautifully illustrated by the molecular machine FOF1 

ATP-synthase (Figure 1.1). The membrane-embedded portion of ATP-synthase contains 

a homododecameric module through which protons are shuttled, and forms a complex 

with 12 additional subunits of seven distinct types. Proton shuttling drives the rotation of 

other portions of the enzymatic complex, and this rotary action provides the requisite 

driving force for the all-important reaction of ATP generation.109 Moreover, the assembly 

of this protein complex is accomplished in a crowded cellular environment surrounded by 

many other proteins, and in a very specific cellular location. The amazing and as-yet 

unrivaled functional prowess also demonstrates the challenges facing protein engineers, 

as well as the opportunities for further advancement in the field. With this in mind, we 

briefly touch on several emerging topics in the area of designed protein assemblies, and 

the opportunities for further innovations that still remain. 

 

Designed heterogeneous contacts in multi-component assemblies 

Many natural protein complexes exist as heteromeric assemblies that require specific 

associations of distinct classes of protein components. These contacts have evolved to 

associate specifically with the interaction partner of interest, and must do so with high 
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fidelity and the appropriate level of affinity, in order to avoid undesirable self-associative 

or non-specific interactions. In engineered systems, the Baker and Yeates groups have 

successfully applied computational design to generate two-component protein cages.66, 67 

A designed interface between two different trimeric building blocks, or between a 

tetramer and a dimer, giving designed self-assembling protein pairs that form hetero-

dodecameric cages.66 This has been further extended to the formation of megadalton-

sized cages, where designed pairwise contacts among pentameric, trimeric and dimeric 

building blocks yield cages with 120 protomers and I53, I52, and I32 symmetries (Figure 

1.12a).67 The ten successfully-realized cage designs range from 1.8-2.8 MDa, and could 

be assembled in vitro to encapsulate GFP cargo molecules. Recently, one of these cages 

was further altered to bear a positively-charged RNA-binding peptide on the cage lumen, 

and the resulting construct was shown to exhibit the virus-like property of encapsulating 

its own RNA genome in vivo, and to protect the encapsulated cargo from degradation 

when isolated from the cell.110 Recognizing the power of a synergistic design, they used 

this genotype-phenotype linkage to generate a library of cage variants and carry out 

directed evolution for improved cargo loading and longer in vivo circulation times in 

mouse models, showing their promise as drug delivery vehicles or as vaccines.110   

Even so, there are additional hurdles to overcome before designed protein 

complexes approach the sophistication of natural assemblies. For example, assemblies 

involving three or more distinct components can be found among natural proteins, but not 

engineered systems. It is also noteworthy that the two-component engineered systems 

reported thus far employ the design of a single A-B interface, and exploit existing A-A 

and B-B oligomerization interfaces. Therefore, the simultaneous design of two or more  
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Figure 1.12 Emerging trends in designing protein assemblies. 
(a) Computational design efforts have been applied to generate two-component cages, containing four 
copies of two types of protein trimers by the design of single interface between the pair of components. 
Adapted from reference 67. (b) The chelating unnatural amino acid (2,2’-bipyridinyl)alanine was installed 
to form a trimerizing metal binding motif. Adapted from reference 116. (c) A tetrameric metalloprotein 
bearing interfacial ZnII active sites (gray spheres and blue surface) was subjected to directed evolution, 
which selected for a mutation that mobilized a surface-exposed loop (shown in purple) that improved 
ampicillin-degrading activity. Adapted from reference 108. (d) Installing cysteines at the four corners of the 
tetrameric protein RhuA afforded a variant that oxidatively self-assembles into 2D arrays which, due to the 
hinge-like properties of the disulfide bonds, are able to undergo concerted opening and closing. 
Reproduced in part, with permission, from reference 48. 
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distinct interfaces within a protein complex remains another major milestone yet to be 

achieved. 

Engineered protein-protein interactions incorporating unnatural amino acids 

Unnatural amino acids can be incorporated into engineered proteins to provide 

properties beyond the scope of their natural counterparts. The 20-residue amino acid code 

evolved under biological constraints, such as metabolic cost 111, that synthetic biology is 

not bounded by. Unnatural amino acids incorporated by chemical methods have been 

employed to enhance the stability of leucine zipper proteins,112 or to generate artificial 

chelating motifs that permit metal-induced oligomerization.113, 114 Additionally, 

fluorinated amino acids can be pan-specifically incorporated in vivo which, when 

supplemented by directed evolution techniques, can also enhance scaffold stability.115 

Advances in synthetic biology tools now permit the site-specific incorporation of 

unnatural amino acids in vivo by repurposing the amber stop codon to encode a 21st 

amino acid. The Baker group has incorporated the unnatural amino acid (2,2’-

bipyridinyl)alanine into a computational design protocol that yielded a homotrimeric 

metalloprotein with a tris-bipyridyl motif at its core (Figure 1.12b).116 As in vivo 

installation of unnatural amino acids becomes possible for a broader range of residues 

residues,117 designed protein interfaces comprising unnatural amino acids will surely be 

investigated further. For example, interfaces bearing perfluorinated residues have been 

proposed as one route to achieve specific biorthogonal  dimerization,118 which would 

undoubtedly aid in generating specific protein assemblies in a cellular environment. 

Evolvable protein assemblies 
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 Proteins, as biomolecules, are subject to the forces of natural selection, and their 

functions are evolvable. This fact has been exploited by protein engineers in the 

laboratory through directed evolution experiments.119-121 These efforts allow for 

mutations that confer improvements in function to be discovered without the need for 

presuppositions of what those mutations will be. Liu, Baker and co-workers used directed 

evolution to increase the binding affinity of the computationally designed Prb and Pdar 

pair.63 Surprisingly, the evolved proteins dimer deviated significantly from the parent 

design, with one member flipped by 180, highlighting the power of unanticipated results 

when coupled with rational design efforts.63 Directed evolution of cargo loading and 

stability can be improved and tailored in protein cages,122, and was shown by the Baker 

group for their self-assembling protein cages.110 

 Our group has previously used in vivo directed evolution to select for improved 

catalytic activity in a supramolecular metalloenzyme.108 Here, interfacial and 

coordinatively unsaturated ZnII sites showed basal levels of β-lactamase activity in 

ampicillin degradation assays. Saturation mutagenesis of residues flanking the active site 

was used to generate a library for an in vivo survival assay, and the most active variant 

contained an unanticipated E57G mutation which mobilized a surface-exposed loop 

flanking the active site (Figure 1.12c).108 In vitro enzymatic assays revealed that this 

mutation conferred a wider substrate scope, and docking studies suggested that the 

improved ampicillin binding may in part arise from favorable interactions with the 

newly-mobilized loop.108 Again underscoring the importance of design plasticity, parallel 

directed evolution experiments on a tetrameric scaffold with a buried catalytic site did not 

afford variants with appreciably improved catalytic properties until scaffold rigidity was 
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slackened by removal of a flanking disulfide bond.73 However, these efforts involve 

directed evolution on a protein complex. Selections or screens that do not require existing 

assembly behavior, and which can select for self-assembly, would constitute a significant 

advancement in generating new protein assemblies. 

Dynamic and responsive protein systems. 

 Proteins do not exist as static atomic slabs, but rather as ensembles of 

conformations moving individually and collectively on varying timescales. The study of 

protein phenomena such as allostery,6, 123 enzymatic catalysis,7, 124 and binding 

interactions125, 126 have all expanded from simple structure-driven models to views that 

acknowledge structural plasticity as central to protein functions. Clearly the biophysical 

principles that govern natural proteins apply to their engineered counterparts as well. 

Moreover, approaches to protein engineering that focus solely on achieving a particular 

atomic structure will remain barred from many of the capabilities of proteins. 

Disulfide bonds can serve as hinge-like linkers that create strong associations 

while still allowing for structural plasticity.  A single cysteine mutation at position 98 in 

the C4-symmetric homotetramer RhuA provides crosslinkable residues at each of the 

protein’s four corners, which allows for oxidative self-assembly into two-dimensional 

arrays.48 Strikingly, mechanical perturbation of these arrays leads to an open 

arrangement, followed by spontaneous and coherent closure (Figure 1.12d).48 

Compression along one axis is accompanied by an extension in the transverse axis, 

making the materials auxetic. This dynamic property arises from the flexibility of the 

disulfide crosslinkers. Additionally, the small footprint of this feature allows for the 
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installation of additional engineered elements to tune the dynamic behavior to build in 

stimulus responsiveness.  

 

Concluding remarks. 

Rational design of self-assembling proteins remains a highly active area of 

research; great strides have been made in exploiting established interactions to generate 

engineered assemblies, or to install new interaction modalities that can readily furnish a 

thermodynamically favored assembly of interest. The rapid development of 

computational methods, synthetic biology tools for installing unnatural amino acids, and 

techniques for directed evolution are expected to provide even more tools for scientists to 

create artificial assemblies well beyond the scope of Nature’s proteome. Just as the study 

of natural proteins has matured from a structure-focused approach to paradigms that 

recognize the importance of structural dynamics, so too should protein engineers focus on 

the design of multicomponent, flexible assemblies in furtherance of the quest for 

designed proteins which sophistication rivaling those of Natural protein complexes. The 

subsequent chapters of this work describe the application of synergistic design to 

engineer an allosteric protein complex, as well as the subsequent efforts to characterize 

this designed complex. It is hoped that his model system effectively illustrates the design 

principles discusses here, and informs future efforts to design functional protein 

complexes. 
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Chapter 1 was reproduced in part, with permission, from a manuscript currently 

being prepared for submission for publication: Churchfield, L.A.; Alberstein, R.G.; 

Tezcan, F.A. Methods for the design of protein complexes and biomaterials.  

The dissertation author is primary author on all reprinted materials. 
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2.1 Introduction 

 In association with proteins, metal ions fulfill central biological roles that range 

from structural stabilization and signaling to electron transfer and catalysis.1, 2 At the core 

of these diverse roles lies an exquisite interplay between the energetics of the bound 

metals and the protein matrix.3-5 This interplay is well understood at the level of the 

primary and secondary coordination spheres of metal ions, and has been recapitulated in 

biomimetic systems6, 7 and designed or reengineered proteins.8, 9 Considerably more 

difficult to model is the relationship between metal coordination/reactivity and outer-

sphere interactions at the tertiary and quaternary structure level. Allostery and 



 
 

 46   
 

cooperativity are particularly striking manifestations of the control of metal coordination 

through outer sphere interactions, as embodied by hemoglobin and metalloregulatory 

proteins. In hemoglobin, structural changes that result from O2 coordination to a single 

heme cofactor are propagated onto the entire quaternary architecture, causing the 

structural equilibrium of the protein to shift from the “tense” state to the “relaxed” state, 

thereby leading to progressively more favorable O2 binding (positive cooperativity) by 

the remaining heme cofactors.10 Similarly, in metalloregulatory proteins, the equilibria 

for metal ion coordination are remotely coupled to those for DNA binding, enabling the 

regulation of gene transcription in response to changes in metal concentrations.11 

 De novo construction of allosteric systems like hemoglobin and metalloregulatory 

proteins represents an outstanding goal in protein design. The challenge therein stems not 

only from the necessity to design at least two (re-)active sites in a single protein, but also 

from the requirement to efficiently couple these sites via a structural conduit. Clearly, 

these design criteria (>two reactive sites and remote coupling) would disfavor scaffolds 

that are small or possess extreme rigidity or flexibility. In fact, a large number of natural 

allosteric proteins are large, oligomeric complexes that contain semi-rigid subunits linked 

by flexible interfaces.12-14  In this way, mechanical strain generated by a chemical event 

in one site can be transmitted onto the interfaces and propagated throughout the entire 

superstructure. Although allosteric proteins have been engineered through different 

strategies, these typically involve either the modification of existing proteins that undergo 

ligand-specific conformational changes or the fusion of protein domains with preexisting 

chemical functions.15-18 In this chapter, we report the de novo construction of an allosteric 

protein assembly with flexible interfaces, in which two distinct chemical functions–metal 
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binding and disulfide bond formation and the structural elements that couple these 

functions are designed in concert. This study highlights how quaternary strain can be 

built in a bottom-up fashion such that a) the thermodynamics of metal ion coordination 

can be regulated through outer sphere interactions, and b) metal binding can be remotely 

coupled to reversible disulfide bond formation, a premier chemical strategy that nature 

uses for redox regulation.19, 20  

 Our strategy for building quaternary strain is based MeTIR (see Figure 1.11), an 

approach we developed for the construction of functional metalloprotein assemblies. 

Using MeTIR, we have previously reported that a monomeric protein (cyt cb562) could be 

decorated with metal chelating groups, which direct the self-assembly of cyt cb562 into a 

discrete tetrameric architecture, Zn-M14, upon ZnII coordination (Figure 2.1).21, 22 This 

D2 symmetric tetramer presents three pairs of C2 symmetric interfaces (i1, i2, and i3) that 

are independently tailorable, forming a tunable shell around the four internalized ZnII 

coordination sites. Applying MeTIR to incorporate favorable, non-covalent interactions 

into the i1 interfaces through six, primarily hydrophobic mutations afforded the variant 

R1 (Figure 2.1).23 This was followed by the incorporation of disulfide linkages into the 

i2 and i3 interfaces through T96C and E81C mutations.24, 25 The resulting tetramer 

C81/C96R14 could self-assemble efficiently from the monomeric building blocks with the 

proper formation of C81-C81 and C96-C96 disulfide linkages and coordinate ZnII ions 

with high affinity as intended by the templating strategy (Figure 2.1).25 Successive 

engineering of the interfaces has two consequences: first, it increases the overall rigidity 

and preorganization of the quaternary assembly, thus turning it increasingly more into a  
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Figure 2.1 Successive engineering of cyt cb562 to form disulfide-linked oligomeric architectures. 
Using Metal Templated Interface Redesign (MeTIR), metal chelating motifs (shown as sticks) were 
installed on the surface of monomeric cyt cb562 (PDB ID: 2BC5). The resulting variant, M1 (or MBPC1, 
PDB ID: 2QLA), forms a Zn-dependent tetramer, Zn-M14. This tetrameric scaffold contains three C2 
symmetric interfaces, i1, i2, and i3. The scaffold was further engineered to include favorable protein-
protein contacts at interface i1 through the installation of hydrophobic patches (cyan). The second-
generation variant, R1, self assembles into a dimer (R12¸ PDB ID: 3HNK) and forms a Zn-induced tetramer 
(Zn-R14, PDB ID: 3HNI) that is topologically identical to the parent variant. Within the tetramer are 
symmetry-related residues, A38/A38, E81/E81, and T96/T96, that are in close proximity. Previous work 
has shown that Zn-mediated R1 assembly can template C96-C96 (green sticks) disulfide bond formation to 
afford a tetrameric species that is maintained in the absence of metal (C96R14, PDB IDs: 3IQ5 and 3IQ6).  
Additionally, in the case of C81/C96R14, Zn-mediated R1 assembly can template the formation of C96-C96 
and C81-C81 (orange sticks) disulfide bonds simultaneously (PDB IDs: 4JE9 and 4JEA). 
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monolithic architecture. Second, it increases the overall strain that ZnII coordination and 

the interfacial interactions exert on one another. The strain is evident when comparing the 

structures of Zn-bound and apo- C81/C96R14 (Figure 2.2). In particular, the 

hydrophobically stabilized i1 interfaces (sidechains shown in cyan in Figure 2.2) 

undergo a substantial deformation upon ZnII removal, whereby the average α-C distance 

between the symmetrically related A38 residues increases from 7.9 to 10.6 Å. This 

deformation is accompanied by conformational changes in the C96-C96 and C81-C81 

linkages that hold the i2 and i3 interfaces together in a hinge-like fashion (Figure 2.2). In 

this study, we set out to examine if the i1 interfaces in C81/C96R14 could also be disulfide-

crosslinked through the incorporation of a Cys residue at position 38. We envisioned that 

this would generate a spring-loaded quaternary structure with highly strained and 

potentially dissociable disulfide bonds that could allow structural coupling between Zn-

binding and disulfide bond formation equilibria. 

 

2.2 Results and discussion 

 Toward this end, we generated the triple Cys mutant C38/C81/C96R1, which was 

expressed in E. coli and isolated as a monomer in high yield. Given the presence of three 

Cys residues on the surface of C38/C81/C96R1, the formation of unstructured, disulfide-

linked aggregates over the desired tetramer (C38/C81/C96R14) becomes a potential concern. 

Nevertheless, we found that the self-assembly of C38/C81/C96R1 under air oxidation 

preferentially gave rise to a tetrameric species in relatively high yield (47±4%, see Fig- 
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Figure 2.2 Structural rearrangements upon ZnII removal from Zn-C81/C96R14. 
The disulfide crosslinks across interfaces i2 and i3 (C96-C96 and C81-C81, respectively), undergo 
conformational changes in a hinge-like fashion when ZnII is removed from the tetramer. The accompanying 
structural rearrangements increase the separation of the symmetry-related A38-A38 residues from 7.9 Å to 
10.6 Å. Dashed lines and values in parentheses denote the average α-carbon separations of the indicated 
residues in the Zn- and apo-C38/C81/C96R14 structures. 
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ure 2.3). The inclusion of 1.5-fold molar excess of ZnII ions gave a slight but 

reproducible increase in the yield of the tetrameric species (53±7%, see Figure 2.3). 

These observations suggest that the hydrophobic mutations engineered to stabilize the i1 

interface likely align the C38/C81/C96R1 monomers in the proper orientation for the desired 

disulfide bonds (C38-C38, C81-C81, C96-C96 rather than any hetero-pair) to form, and 

that ZnII ions have a modest templating effect. Indeed, oxidative self-assembly of the 

variant C38/C81/C96M1 lacking the hydrophobic mutations led primarily to the population of 

higher-order aggregates (Figure 2.3)  with no preference for the formation of the 

tetrameric species (16% yield, see Figure 2.3). 

The C38/C81/C96R14 tetramer, self-assembled in the presence of Zn2- ions, was 

isolated in high purity (>90%, Figure 2.4 ) by size-exclusion chromatography and treated 

with eth ylenedi ami netetraaceti c aci d (EDTA) to produce fully demetallated stock 

solutions. Upon treatment with the reducing agent dithiothreitol (DTT), C38/C81/C96R14 

fully dissociated into a monomeric form (Figure 2.4), confirming that its self-assembly is 

mediated by disulfide bond formation. The narrow and symmetric sedimentation-velocity 

profile of C38/C81/C96R14 (Smax = 4.3) is consistent with a closed tetrameric architecture that 

undergoes a slight structural rearrangement upon binding ZnII (Smax = 4.4) (Figure 2.5). 

We examined the ZnII binding properties of C38/C81/C96R14 using the fluorophore Fura-2, 

fit by a thermodynamic model with two pairs of equivalent Zn-binding sites and two 

corresponding dissociation constants (Kd = 8.1 ± 0.4 and 400 ± 100 nM; overall ΔGZn = –

164 ± 1 kJ/mol) (Figure 2.6 and Table 2.1). These values indicate a significantly 

diminished Zn-binding affinity for C38/C81/C96R14 compared to the previously  
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Figure 2.3 SDS-PAGE gel of the products of C38/C81/C96R1 and C38/C81/C96M1 self-assembly reactions in 
the presence or absence of ZnII. 
The C38/C81/C96M1 variant lacks the hydrophobic mutations engineered to stabilize the i1 interfaces in 
C38/C81/C96R1. The gel was run in the absence of any reductants to keep disulfide bonds intact.Templating 
was carried out using 50 μM monomer in a buffered solutoin of 20 mM Tris, pH 7 and 150 mM NaCl. 
Samples were incubated overnight at 37 °C under ambient atmosphere. 
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Table 2.1 Thermodynamic parameters for ZnII binding to disulfide-linked R14 tetramers. 
Binding affinities were determined by ZnII titration in the presence of Fura-2. Errors denote fitting errors of 
a single measurement. Binding enthalpies were measured by ITC for the titration of ZnII with disulfide-
linked R14 variants.  Reported enthalpies are not corrected for buffer effects, and reported errors are the 
standard deviation among 3-4 replicate measurements. Entropies of binding are inferred from the other 
measured quantities. All measurements were carried out at 22 °C and in the presence of 20 mM MOPS, pH 
7 + 150 mM NaCl. aData taken from reference 24.  bData taken from reference 25. 

 
 
 
 

 
C96R14 

 
C81/C96R14 

 
C38/C81/C96R14 

Binding affinities       
Kd1 (nM)  1.3 ± 0.3a  2.6 ± 0.3 b  8.1 ± 0.4 
Kd2 (nM)  0.53 ± 0.07a  25 ± 4 b  400 ± 100 
Kd3 (nM)  33 ± 8 a  -   - 
Kd4 (nM)  58 ± 8 a  -  - 

Total ΔGZn (kJ/mol)  -186 ± 2 a  -183 ± 1 b  -164 ± 1 
Enthalpy of binding       

ΔH1,ITC (kJ/mol)  18 ± 3  14 ± 4  4 ± 2 
ΔH2,ITC (kJ/mol)  14 ± 10  33 ± 6  5 ± 3 
ΔH3,ITC (kJ/mol)  33 ± 15  11 ± 10  2 ± 3 
ΔH4,ITC (kJ/mol)  −3 ± 4  1 ± 2  −1 ± 2 

Total ΔHITC (kJ/mol)  62 ± 13  59 ± 1  10 ± 0.3 
Entropy of binding       

Total ΔSITC 
(kJ/mol•K)  0.84 ± 0.05  0.82 ± 0.01  0.59 ± 0.01 
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Figure 2.4 Non-reducing SDS-PAGE of C38/C81/C96R14 in the absence and presence of DTT. 
Isolated C38/C81/C96R14 protein runs as a tetramer (~48 kDa) by SDS-PAGE in the absence of reductant. In 
the excess reductant (DTT), gives a single band consistent with a monomeric species. 
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Figure 2.5 Sedimentation velocity profiles of C38/C81/C96R14. 
Representative c(S) distributions of C38/C81/C96R14 (1.25 μM tetramer) samples treated with either 5 μM 
ZnCl2 (+ZnII; dashed trace) or 1 mM EDTA (apo; solid trace). The distributions are noramlized such that 
the total area under each curve equals one. 
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Figure 2.6 Binding isotherm of ZnII to Fura-2 in the presence of C38/C81/C96R14.  
A sample of C38/C81/C96R1 and Fura-2 was titrated with ZnII, and the fluorescence intensity was monitored 
throughout the titration (open squares). The data were fit to a model where four binding sites of 
C38/C81/C96R14 were described by two dissociation constants (2 + 2 model). Vertical lines denote the molar 
equivalents of ZnII added (with respect to C38/C81/C96R14 monomer) in excess of Fura-2. 
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characterized tetramers C96R14 (ΔGZn = –186 ± 2 kJ/mol) and C81/C96R14 (ΔGZn = –183 ± 1 

kJ/mol),24, 25 which feature one and two pairs of disulfide bonds, respectively. These 

findings indicate that the presence of all three pairs of interfacial disulfide bonds imparts 

a strain at the level of the quaternary architecture, manifested in the destabilization of ZnII 

coordination by ~20 kJ/mol.  

To get a deeper insight into how the interfacial disulfide linkages influence Zn-

binding thermodynamics, we conducted isothermal titration calorimetry (ITC) 

experiments with C96R14, C81/C96R14 and C38/C81/C96R14 scaffolds, bearing one, two and 

three pairs of disulfide bonds, respectively. In all cases, the ITC thermograms were 

consistent with the coordination of four ZnII ions per tetramer (Figure 2.7), and allowed 

us to estimate the apparent Zn binding enthalpies (ΔHITC) in combination with the 

thermodynamic parameters derived from fluorescence titrations (Table 2.1). Since the 

primary ZnII coordination spheres are conserved in all three tetramers (see below), their 

measured ΔHITC values can be meaningfully compared without deriving their condition-

independent Zn-binding enthalpies (ΔHZn).26  Our analysis reveals that C96R14
 and 

C81/C96R14
 display nearly identical ΔHITC values of 62 and 59 kJ/mol, respectively. 

Strikingly, ZnII coordination by C38/C81/C96R14 is significantly more exothermic (ΔHITC = 

10 kJ/mol). This 50 kJ/mol decrease in enthalpy suggests that there may be a distinct 

structural change associated with the C38/C81/C96R14 architecture that is coupled to ZnII 

coordination. Conversely, the C38/C81/C96R14 tetramer exhibits a less-favorable entropy 

gain upon ZnII binding compared to C81/C96R14 and C96R14 (Table 2.1). Though changes in 

entropy can arise from multiple sources, the observed trend is consistent with decreased 

conformational flexibility of the C38/C81/C96R14 scaffold. 
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Figure 2.7 ITC thermograms of ZnII titrated into disulfide-linked R1 tetramers. 
Representative baseline-corrected and integrated ITC thermograms for disulfide-linked R14 variants titrated 
with ZnCl2. Solid lines are for fits to four independent binding enthalpies using the dissociation constants 
derived from fluorescence competition assays. 
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Table 2.2 X-ray crystallography data collection and refinement statistics for C38/C81/C96R14 structures. 
Values in parentheses denote statistics for the highest resolution shell. 

‡Rsym = ΣΣj|Ij − <I>|⁄ΣΣj|Ij|. 
§R = Σ||Fobs|  − |Fcalc||⁄ Σ |Fobs|. 
IIFree R calculated against 5% of the reflections removed at random for both structures. 
¶Root mean square deviations from bond and angle restraints. 
*Values in parentheses correspond to the highest resolution shell. 
 

  
C38/C81/C96R14 

 

Zn-C38/C81/C96R14 

Data collection   

Space group P 212121 P21 

Cell dimensions   

a, b, c (Å) 62.59, 77.53, 88.06 48.06, 62.53, 72.44 

α, β, γ (˚) 90.00, 90.00, 90.00 90.00, 99.01, 99.00 

Resolution (Å) 38.77-2.40 37.81-2.10 

Rsym
‡ (%)* 6.7 (23.0) 4.9 (46.3) 

I/σ* 14.9 (5.7) 15.0 (3.0) 

CC1/2 (%)* 99.9 (96.8) 99.9(79.6) 

Completeness (%)* 99.8 (99.6) 99.5 (99.3) 

Redundancy 6.9 3.7 

   

Refinement   

Resolution (Å) 2.40 2.10 

No. unique reflections 17325 24815 

Rwork
§/Rfree

II (%) 22.5/26.5 21.4/25.0 

No. atoms   

Protein 3224 3264 

Ligand/ion 172 195 

Water 64 73 

B-factors   

Protein 56.54 47.19 

Ligand/ion 54.31 43.45 

Water 47.83 39.94 

R.m.s. deviations   

Bond lengths (Å) ¶ 0.008 0.018 

Bond angles (˚) ¶ 1.30 1.57 
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We determined the X-ray crystal structures of Zn-bound and apo-C38/C81/C96R14
 at 

2.1 Å and 2.4 Å resolution, respectively (PDB IDs: 5L32 and 5L31) (Table 2.2). As 

designed, Zn-C38/C81/C96R14 contains four Zn-coordination sites and is structurally very 

similar to its predecessors Zn-C96R14 and Zn-C81/C96R14 both in terms of over topology (α-

C RMSD = 1.78 Å and 1.02 Å, respectively) and primary/secondary ZnII coordination 

spheres (Figures 2.8, Figure 2.9, and Figure 2.10). The presence of all planned 

interfacial disulfide bonds is clearly evident from the electron density maps (Figure 

2.10). To our knowledge, the Zn-C38/C81/C96R14 scaffold represents the first designed 

protein that self-assembles into a closed architecture through the formation of six 

covalent bonds. All three pairs of disulfides adopt distinct conformations in Zn-

C38/C81/C96R14, with the C38-C38 disulfide pairs possessing the highest strain energy as 

calculated using the method reported by Katz and Kossiakoff (Table 2.3).27  

 Indeed, the apo-C38/C81/C96R14
 structure reveals that, upon removal of ZnII, one of 

the two C38-C38 disulfide pairs is broken. This yields a tetrameric architecture that now 

contains five disulfide bonds and does not possess the original D2 symmetry of the Zn-

bound assembly any longer (Figure 2.8 a-c). Despite extensive disulfide crosslinking, 

there is a sizable conformational shift from the Zn-bound to the apo-C38/C81/C96R14 

structure (RMSD = 2.55 Å) (Figure 2.11). This shift is paralleled by the rearrangement 

of all existing disulfide bonds whose calculated strain energies decrease upon ZnII 

removal (Table 2.3).  These observations suggest that ZnII coordination spring-loads the 

quaternary architecture through the formation of strained disulfide bonds, and that this 

strain is relieved through the dissociation of a single C38-C38 bond which is >14 Å away 

from the nearest ZnII coordination site. The fact that the Zn-C38/C81/C96R14 crystals were  
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Figure 2.8 Overview of Zn-induced structural changes in C38/C81/C96R14. 
(a) X-ray crystal structures of Zn-C38/C81/C96R14 and the metal-free C38/C81/C96R14. The broken C38-C38 
disulfide bond is highlighted with a blue box.  Disulfide bonds, Zn-binding sites, and the engineered 
hydrophobic mutations in i1 (cyan) are shown as sticks. (b) Scheme highlighting rearrangements of 
interfacial residues in Zn-C38/C81/C96R14 upon ZnII removal. (c) Close-up view of the broken C38-C38 
disulfide bond, forming a cysteine (Cys) and cysteine sulfenic acid (Cso). A water molecule H-bonded to 
Cys 38 is shown as a pink sphere. (d) Hydrolytic dissociation of a disulfide bond into a sulfenic acid-thiol 
pair. (e) Close-up view of the W66-W66 π-stacking interaction. All 2Fo−Fc electron density maps are 
contoured at 1σ (yellow) and 2.5 σ (black). 
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Figure 2.9 Structural alignments of metal-bound disulfide-linked R1 tetramers. 
(a) Structural overlay of Zn-C96R14 (black), Zn-C81/C96R14 (red), and Zn-C38/C81/C96R14 (blue) aligned over all 
α-carbon atoms. (b) Individual ZnII sites within each structure aligned to the ligand atoms only. 
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Figure 2.10 Electron density maps of key features in C38/C81/C96R14 structures. 
Close-up views of the ZnII coordination sites and disulfide bonds in Zn-C38/C81/C96R14 and C38/C81/C96R14 
structures. 2Fo-Fc electron density maps are contoured at 1 σ (yellow) and 2.5 σ (black). Dashed lines and 
values in parentheses denote the α-carbon separation between the indicated residue pairs.  
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Table 2.3 Dihedral strain energies of disulfide bonds in C38/C81/C96R14 structures. 
Calculated strain energies of disulfide bonds in the available C83/C81/C96R14 structures. Reported energies are 
averaged over disulfide pairs within each structure, with the exception of the single C38-C38 disulfide in 
apo- C83/C81/C96R14. Strain energies were calculated as described in reference 27. 

 
 
  

Average strain energy (kJ/mol) 
 

 

Disulfide site   Zn-C38/C81/C96R14 
 

apo-C38/C81/C96R14 

C38-C38  25  19  
C81-C81  23  13  
C96-C96  17  6  
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Figure 2.11 Structural alignment of Zn-bound and metal-free C38/C81/C96R14. 
Structural overlay of Zn-C38/C81/C96R14 (black) and C38/C81/C96R14 (cyan) assemblies aligned over all α-carbon 
atoms (RMSD = 2.55 Å). Disulfide bonds and the broken C38-C38 disulfide are shown as sticks. 
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obtained by adding ZnII to apo- C38/C81/C96R14 stock solutions indicates that C38-C38 bond 

formation is reversible. Moreover, the direct coupling between ZnII coordination and 

reversible disulfide bond formation in C38/C81/C96R14 is consistent with its significantly 

more exothermic ZnII binding enthalpy compared to C96R14
 and C81/C96R14, which do not 

contain dissociable disulfide bonds. 

 The breakage of the C38-C38 linkage is accompanied by a considerable distortion 

of the i1 interface, whereby the distance between the α-Cs of the C38 residues increases 

from 5.5 Å to 10.6 Å. This distortion largely involves the sliding of the two protein 

monomers with respect to another, which is enabled by the fluidity of the hydrophobic 

interactions in i1. Notably, two sets of Trp residues (W41 and W66) that form the core of 

the i1 interface adopt new arrangements in the vicinity of the cleaved C38-C38 disulfide 

bond. The W66 sidechains are now found in a π-stacking arrangement with an interplanar 

distance of ~3 Å (in contrast to a distance of >10 Å in the Zn-C38/C81/C96R14
 structure), 

likely making a contribution to the stability of the i1 interface in the apo-state (Figure 

2.8d-e). 

 Given that there are no reducing agents in any of the protein solutions, the 

question arises as to how the C38-C38 bond is broken upon ZnII dissociation. A 

mechanistic clue is provided by the elongated electron density associated with one of the 

C38 side chains (Figure 2.8c and Figure 2.12), suggesting the formation of a cysteine 

sulfenic acid. Although the reversible 2-electron/2-proton reduction is the most common 

reaction manifold for disulfide bonds, they can also undergo reversible conversion into a 

sulfenic acid-thiol pair through hydrolysis (Figure 2.8c).19, 28 Whether through redox 

chemistry or hydrolysis, the reactivity of disulfides is thought to depend on mechanical  
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Figure 2.12 Electron density maps of alternative models for CSO38 in apo-C38/C81/C96R14. 
Electron density maps highlighting residue 38 modeled as a cysteine sulfenic acid (CSO) or a cysteine 
(CYS) in the apo-C38/C81/C96R1 structure. The 2Fo−Fc maps are shown in black, and are contoured at 1 σ, 1.7 
σ, and 1 σ in panels a, b, and c, respectively. The Fo−Fc maps are shown in green, and contoured at 3 σ in 
panels a and c. 
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strain.29 However, based on recent work with model compounds, it has been suggested 

that disulfide reactivity may instead be correlated with increased solvent accessibility.30, 

31 An analysis of the relative accessible surface areas32 of the disulfide bonds  indicates 

that the C38-C38 disulfide bonds in Zn- and apo-C38/C81/C96R14 are the least solvent-

exposed (Table 2.4). These data suggest that it is the quaternary strain imposed by the 

C38/C81/C96R14 scaffold on the C38-C38 disulfide bonds that poises one of them to undergo 

hydrolytic cleavage upon Zn removal.  

 In this chapter, we discuss the de novo construction of a protein complex, 

C38/C81/C96R14, through a metal-templating strategy, whereby quaternary strain was built 

through the formation of additional disulfide bonds across protein interfaces. This strain 

has two important consequences: first, it has enabled the modulation of metal 

coordination thermodynamics exclusively through outer sphere interactions and led to an 

destabilization of metal binding by 20 kJ/mol. This stands in contrast to most examples in 

molecular design where metal coordination and reactivity are exclusively handled at the 

primary and secondary coordination spheres.6, 9 Second, the increased strain has allowed 

metal coordination to be directly and remotely linked to the formation/breakage of a 

distinct disulfide bond within the quaternary scaffold, thereby creating an allosteric 

system. Individually, metal coordination and disulfide bond formation are commonly 

employed as allosteric effectors in biological systems.11, 19, 20, 33 The C38/C81/C96R14 

scaffold represents a unique system that links these two effectors to one another. More 

generally, this system illustrates the power of supramolecular protein design in creating 

artificial biological systems with coupled and externally controllable functions. 
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Table 2.4  Relative accessible surface areas of cysteine residues in C38/C81/C96R14.  
Reported values are averaged over disulfide pairs within each structure, with the exception of the single 
C38-C38 disulfide in apo- C83/C81/C96R14.  Values were calculated using the ASAView server 
(http://www.abren.net/asaview/). 

 
 
 
  

Relative accessible surface areas 
 

Disulfide site   C38/C81/C96R14 
 

Zn-C38/C81/C96R14 
C38-C38  0.08  

0.10 

C81-C81  
0.21 
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2.3 Materials and methods 

Protein sample preparation. All constructs used were housed in a pet20b vector 

(Novagen), and coding sequences included the N-terminal periplasmic localization 

sequence of R. palustris cytochrome c556.34 The A38C and L38C mutations were 

introduced into vectors (Novagen) harboring the genes encoding C81/C96R1 and C81/C96M1, 

respectively, by site-directed mutagenesis using oligonucleotide primers obtained from 

Integrated DNA Technologies. The primer pair 5’-cgctccacgcatcgcacgctgcggccgc-3’ and 

5’-ggcggccgcagcgtgcgatgcgtggagcg-3’ was used with the pET20b/C81/C96R1 template to 

yield the gene encoding C38/C81/C96R1, and the primer pair 5’-

gcgcgccgcagcgtgcgatgcgtggagcg-3’ and 5’- cgctccacgcatcgcacgctgcggcgcgc-3’ was used 

with the pET20b/C81/C96M1 template to yield the gene encoding C38/C81/C96M1. DNA 

amplification was carried out using PfuTurbo DNA Polymerase (Agilent Technologies). 

The amplified DNA was transformed into XL-1 Blue competent E. coli cells (Agilent 

Technologies), and the cells were grown at 37 °C on lysogeny broth (LB) agar plates 

containing 60 µg/mL ampicillin. Plasmids were purified with the QIAprep Spin Miniprep 

Kit (QIAGEN), verified by sequencing (Retrogen), and then transformed into 

BL21(DE3) E. coli cells (New England Biolabs) housing the cytochrome c maturation 

(ccm) plasmid cassette.35 The cells were grown at 37 °C on lysogeny broth (LB) agar 

plates containing 34 µg/mL chloramphenicol and 60 µg/mL ampicillin. Single colonies 

were used to inoculate 5 mL of liquid LB medium containing chloramphenicol and 

ampicillin. Cultures were shaken at 37 °C until visibly turbid (typically about 8 h, or to 

an OD600>0.6) at which time 50 µL of inoculum was transferred to 1 L of LB medium, 

typically to 15 cultures in parallel, and shaken for 16-20 h at 37 °C with protein 
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expression occurring by auto-induction. Cells were harvested by centrifugation (4,000 

rpm, 4 °C, 10 min), resuspended in 100 mL of 5 mM sodium acetate (pH 5), frozen, 

thawed, and sonicated for 12 min in pulses of 30 s on and 60 s off in the presence of 

lysozyme and excess DTT while on ice. The lysate was titrated with sodium hydroxide to 

pH >10 and acetic acid to pH 5, and cleared by centrifugation (10,000 rpm, 4 °C, 10 

min). The red cleared lysate was decanted and diluted to 2 L in 5 mM sodium acetate (pH 

5) containing 2 mM DTT, and was manually applied to a CM Sepharose column (GE 

Healthcare) equilibrated in assembly buffer. The sample was washed with 5 mM sodium 

acetate containing 2 mM DTT (pH 5), and eluted in a 0-1 M gradient of NaCl. The clear 

red eluate was concentrated and buffer-exchanged into 10 mM sodium phosphate (pH 8) 

containing 2 mM DTT using a Diaflow concentrator (Amicon) fitted with a 3-kDa cutoff 

membrane. The sample was loaded onto a DuoFlow fast protein liquid chromatography 

station fitted with a Macroprep High Q-cartridge column (BioRad) with 10 mM sodium 

phosphate (pH 8) running buffer containing 2 mM DTT, and eluted using a 0-0.5M NaCl 

gradient. Fractions with Reinheitzahl values (A421/A280) above 3 were combined and 

concentrated, and excess EDTA and DTT (>10 molar equivalents) was added to the 

protein samples to remove any bound metal ions and prevent disulfide formation. These 

stock solutions were then flash frozen in liquid nitrogen for storage at –80 °C. 

Tetramer self-assembly and purification. Concentrated stock solutions of 

C38/C81/C96R1 (or C38/C81/C96M1) were thawed, reduced by the addition of excess DTT, 

transferred to glass vials sealed with rubber septa, cycled under vacuum and argon 

atmosphere, and transferred to a glove box (Coy Lab) under an anaerobic (<10 ppm O2) 

atmosphere of argon with 10% hydrogen. Here, the samples were exchanged into an 
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assembly tris(hydroxymethyl)aminomethane-, or Tris-buffered solution (50 mM Tris, pH 

7, and 150 mM NaCl) using Econo-Pac 10DG pre-packed columns (BioRad). Protein 

concentration was determined spectrophotometrically (ε415, ox = 148,000 M-1 cm-1),34  and 

samples were diluted to a final concentration of 50 µM in assembly buffer supplemented 

with 75 μM ZnCl2. Samples were incubated overnight under ambient atmosphere at 37 

°C with shaking. Self-assembly reactions were analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of added reductant to 

keep disulfide bonds intact. The crude self-assembly reaction mixture was applied to a 

preparative scale Superdex 75 gel filtration column (GE Healthcare) equilibrated in 

assembly buffer. Purities of the tetramer-containing fractions were assessed by non-

reducing SDS-PAGE. The purest fractions were combined, concentrated, and treated with 

>10-fold excess EDTA to remove bound metal, and applied to an Econo-Pac 10DG 

prepacked column equilibrated in 20 mM MOPS  (3-(N-morpholino)propanesulfonic 

acid) (pH 7) and 150 mM NaCl. The resulting stock solutions of Zn-free tetramer were 

flash frozen in liquid nitrogen, and stored at –80 °C. 

Sedimentation velocity analytical ultracentrifugation. Solutions of 1.25 µM 

tetramer (C38/C81/C96R14) in 20 mM MOPS (pH 7) and 150 mM NaCl were treated with 

either 5 µM ZnCl2 or 1 mM EDTA to prepare metallated or apo samples. Sedimentation 

velocity measurements were made on a XL-1 Analytical Ultracentrifuge (Beckman-

Coulter) equipped with an An-60 Ti rotor at 41,000 rpm for 400 scans at 25 °C, and 

monitored at 415 nm. The endpoint of sedimentation was determined using the match 

function in HeteroAnalysis (http://biotech.uconn.edu/auf/).  Scans were processed in 

Sedfit36 using buffer viscosity (0.01002 poise), density (1.007 g/mL) and partial specific 
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volume (0.7316 ml/g) parameters calculated by SEDNTERP (http://sednterp.unh.edu/). 

The final c(S) distributions are reported at a confidence level of 0.95 in Figure 2.5. 

Competitive ZnII titration assay. The concentration of a light-protected stock 

solution of Fura-2 (Invitrogen) was determined spectrophotometrically (ε362 = 27,000 M-1 

cm-1).37 Samples of C38/C81/C96R14 and Fura-2 were prepared at a final concentration of 7.5 

μM in a buffered solution of 20 mM MOPS (pH 7) and 150 mM NaCl treated with 

Chelex 100 resin (BioRad). The sample was titrated with a ZnCl2 solution while 

thermostatted at 22 °C, and fluorescence measurements were made after 5-min 

equilibration periods. Fura-2 fluorescence emission at 510 nm was monitored to obtain an 

excitation scan over 250-450 nm on a Horiba Fluorolog 2 fluorimeter (Figure 2.13). 

Binding isotherms were generated from the changes in emission intensity plotted as a 

function of ZnII concentration, and were fit using Dynafit38 as previously reported.24, 25 

Briefly, we fit the four Zn-binding equilibria using three different models: a single 

dissociation constant model (or 4 × 1) where all sites were treated as equivalent, a two 

dissociation constant model (or 2 + 2) with two inequivalent pairs of binding sites, or a 

four dissociation constant model (or 1+1+1+1) with each site treated as inequivalent. We 

found the two dissociation constant model (2 + 2) adequately described the data.  The 

measured dissociation constants and total ΔGZn  are reported in Table 2.1. 

X-ray crystallography and structural analysis. For crystallization of apo-

C38/C81/C96R14, a stock of 700 μM tetramer was prepared in 20 mM MOPS, pH 7, with 150 

mM NaCl. For crystallization of Zn-C38/C81/C96R14, a 375 µM stock of apo-protein in 

assembly buffer (20 mM Tris, pH 7, with 150 mM NaCl) was prepared and preincubated  
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Figure 2.13 Fluorescence scans of ZnII titrated into a solution of Fura-2 and C38/C81/C96R14. 
Competitive ZnII binding titration of C38/C81/C96R14 in the presence of Fura-2. Zn competition was monitored 
by excitation scans at a fixed emission wavelength of 510 nm. The corresponding changes in the intensity 
at 335 nm (shown above) were used to generate the Zn binding isotherms shown in Figure 2.6  
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with 2250 µM ZnCl2. Screens were carried out by sitting-drop vapor diffusion at room 

temperature with 500 µL reservoirs and droplets consisting of 1.5 µL of protein and 1 µL 

of precipitant solution. Crystals of metal-free C38/C81/C96R14 were obtained with a 

precipitant solution consisting of 0.1 M Bis-Tris (pH 6.5) and 45% 2-methyl-2,4-

pentanediol, and crystals of Zn-C38/C81/C96R14 were obtained with a precipitant consisting 

of 0.2 M MgCl2, 0.1 M Bis-Tris (pH 6.5), and 35% PEG 400. Crystals were harvested, 

cryoprotected in perfluoropolyether cryo oil (Hampton Research), and stored in liquid 

nitrogen. X-ray diffraction data for apo-C38/C81/C96R14 and Zn- C38/C81/C96R14 were collected 

at 100 K on beamlines BL9-2 and BL14-1, respectively, with 0.99 Å radiation at the 

Stanford Synchrotron Radiation Lightsource. Diffraction data were integrated using Web-

Ice.
39 Integrated datasets were scaled using SCALA40 within the CCP4 suite. Molecular 

replacement was carried out using Phaser41 with a C96R1 monomer (PDB ID: 3IQ6) as the 

search model. Data refinement and model building were carried out using REFMAC42 

and COOT43. Four-fold non-crystallographic symmetry restraints were applied in the 

initial stages of refinement and gradually relaxed. Ramachandran plots were calculated 

using PROCHECK.44 All structure figures and structural alignments were generated 

using PyMOL (www.pymol.org). 

Isothermal titration calorimetry.  Experiments were carried out on a VP-ITC 

instrument (MicroCal) with a cell volume of 1.4125 mL. Samples of C96R14, C81/C96R14 

and C38/C81/C96R14 were buffer-exchanged into a solution of 20 mM MOPS (pH 7) and 150 

mM NaCl previously treated with Chelex-100 Resin (BioRad). Protein samples were then 

dialyzed twice at 4 °C for >8 h against the indicated buffer, with the second dialysis 

buffer retained for diluting protein samples and preparing ZnCl2 titrant solutions. The 
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calorimeter cell contained 25-50 μM of apo-tetramer and a water reference. The cell was 

equilibrated at 22 °C for 180 s before an initial injection of 1 μL of 1.4 mM ZnCl2 titrant, 

followed by a schedule of 30 injections of 5.5 μL ZnCl2 delivered at 5 min intervals. Data 

analysis was carried out using the ORIGIN data analysis plugin from MicroCal. The 

initial injection was omitted from data analysis. Integrated data were background-

subtracted using the final injections of the thermogram to account for metal dilution 

effects, and were fit to a four-site sequential binding model. ITC thermograms were fit 

using dissociation constants determined by fluorescence competition assays, and enthalpy 

values were allowed to vary. The dissociation constants could not be directly determined 

by ITC owing to the tight binding constants (requiring ~40 μM protein to measure the 

weakest binding events, and even lower concentrations for tighter binding) and low 

enthalpies of binding (requiring ~50 μM binding site to achieve 1 μcal/injection). 

Therefore, the reported experimental conditions gave a value of c > 1000 (where c is the 

concentration of binding sites divided by the dissociation constant). This limitation has 

also been reported in other metalloprotein systems with high metal-binding binding 

affinities, where an ancillary experiment (e.g., equilibrium dialysis) can be used instead 

to determine the dissociation constants.45  As previously noted,45 the use of two 

independent experiments has the added benefit of avoiding correlated errors in 

determining ΔG and ΔH from measuring both parameters by ITC. Finally, we note that 

the complexity of ZnII binding to the R14 scaffolds (four ΔHITC’s and four Kd’s, giving 

eight free parameters in total) necessitate a complex model that may not robustly measure 

these binding parameters on a per-site basis. Therefore, we employed an analysis of the 

global binding parameters supported by additional experiments. Representative raw and 
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integrated thermograms, as well as their best-fit curves, are reported in Figure 2.7, and 

the measured ΔHITC values in Table 2.1. 

 

Chapter 2 was reproduced in part, with permission, from Churchfield, L. A.; 

Medina-Morales, A.; Brodin, J. D.; Perez, A.; Tezcan, F. A. “De novo design of an 

allosteric metalloprotein.” J. Am. Chem. Soc. 2016, 138, 13163‒13166. Copyright 2016, 

American Chemical Society.  

The dissertation author is primary author on all reprinted materials. 
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3.1 Introduction 

The grand challenge posed to protein engineering is to create systems that can 

rival, and even surpass, those of natural proteins. A large portion of naturally-occurring 

proteins function as oligomers,1, 2 which is thought to grant access key functional 

advantages, such as coordinated action of distal regions in a protein scaffold through 

allosteric function.3 To this end, a number of groups have explored strategies for 

achieving designed supramolecular protein assemblies,4 including protein-DNA 

composite lattices,5 self-assembly of fused oligomers,6 computationally-designed protein 

cages,7, 8 and disulfide-linked nanomaterials. 9 These strategies have made great strides in 
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their predictive accuracy, leading to the design of protein assemblies of varying scales 

and complexities. However, less attention has been given to strategies that can generate 

dynamic and responsive protein assemblies. This latter case of designed system 

successfully captures a key functional aspect of Nature’s proteome, given the growing 

appreciation of protein dynamics as enabling allosteric function10 or efficient catalytic 

function11.  

Our lab has employed a metal-centered synergistic design strategy that uses 

interfacial chelating motifs12  to enable the subsequent design of self-assembling protein 

complexes.13, 14 The strength and geometric preferences of metal coordination drive the 

formation of new protein-protein interactions, termed MDPSA.14 We have employed 

MDPSA to as a first step toward the design oligomeric metalloprotein assemblies15 and 

metal-mediated nanomaterials16, 17 of the monomeric protein cytochrome cb562
 .18 The 

small footprint interfacial of the interfacial chelating sites allows for further design of the 

nascent interfaces to form favorable protein-protein contacts, termed MeTIR (see Figure 

1.11).13, 14 Applying MDPSA and MeTIR to cyt cb562 afforded a variant, R1, that can bind 

ZnII to form the D2-symmetric tetramer Zn-R14. Each protomer forms contacts along 

three C2-symmetric axes: one engineered interface (i1) and two additional non-designed 

interfaces (i2 and i3)13 (Figure 3.1). This design approach has also allowed for the 

introduction of such as designed disulfide crosslinks 19, 20 and interfacial active sites.21  

As discussed in Chapter 2, the MDPSA and MeTIR approaches have been 

extended to the design of an allosteric metalloprotein assembly, Zn-C38/C81/C96R14. This 

homotetrameric protein assembly contains four core ZnII binding sites and six peripheral 

disulfide bonds, with one disulfide pair spanning each of the three protein-protein inter- 
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Figure 3.1 Interfaces and disulfide crosslinks in the allosteric protein C38/C81/C96R14.   
The Zn-R14 tetramer bears three distinct interfaces. Installing pairs of cysteine residues at these interfaces 
affords the hextuply disulfide bonded Zn-C38/C81/C96R14 complex.  Notably, upon removal of ZnII , one 
member of the C38-C38 crosslinks located in the i1 interface is observed to cleave, presumably by 
hydrolysis. 
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faces (Figure 3.1). When ZnII was removed from the protein, one member of the C38-

C38 disulfide pair spanning the i1 interface was cleaved, presumably via hydrolysis, to 

yield a thiol-sulfenic acid pair. This bond cleavage event is remotely coupled to ZnII 

binding, and occurs over 14 Å away from the nearest metal binding site. The net result of 

ZnII removal and bond breakage is significant structural rearrangement of the tetrameric 

scaffold, including relaxation of the remaining disulfide bonds and rearrangement of the 

i1 interface. The apo-C38/C81/C96R14 protein was competent to bind ZnII, but exhibited a 5 

kJ/mol/site penalty to the free energy of binding relative to C81/C96R14 (see Table 2.1). 

In the present study, we sought to understand the structural requirements for the 

allosteric behavior of C38/C81/C96R14.  We generated cysteine-deleted analogs of 

C38/C81/C96R1 that still bear C38 residues, C38R1 and C38/C96R1, and examined their 

(dis)assembly behavior in the presence and absence of ZnII. These variants allowed us to 

examine whether C38-C38 hydrolysis is an intrinsically fragile bond that breaks upon 

ZnII release, or if there is a larger structural requirement that leads to the emergence of 

the observed bond breakage, and to probe the origin of the decrease in metal binding 

affinity of C38/C81/C96R14. Collectively, these experiments show that C38-C38 hydrolysis 

only arises in the context of the crosslinked tetrameric architecture. Additionally, it is the 

extent of crosslinking in C38/C81/C96R14, rather than the presence of C38-C38 disulfide 

bonds, that can be attributed to the penalty in ZnII binding affinity, and which gives rise 

to other non-additive effects on tetramer stability and the rate of ZnII release. This 

suggests that rearrangement of a single i1 interface provides insufficient driving force for 

C38-C38 disulfide bond hydrolysis, which is only observed in constructs couple two i1 

dimers to one another. These results show how the function of dynamic and responsive 
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protein features can be coordinated, giving rise to emergent functional properties. We 

anticipate that the improved understanding of this designed system will inform future 

efforts to engineer functional protein assemblies that approach the complexity and 

sophistication of their counterparts in nature. 

3.2 Results and Discussion 

 Protein scaffold design and preliminary characterization. The net result of ZnII 

removal from Zn- C38/C81/C96R14
 is C38-C38 bond scission and concomitant structural 

rearrangements. However, the causal relationship of these changes is not clear from the 

available crystal structures of the protein. For example, C38-C38 hydrolysis could arise 

directly from the Zn-induced structural changes observed in the dimeric interface of the 

parent R1 scaffold’s metal-free (PDB 3HNK) and Zn-bound (PDB 3HNI) structures.13 

Here, ZnII release increases the α-C separation of residue A38 from 5.0 Å to 12.2 Å, 

outside a reasonable disulfide bonding distance.22 Similar structural rearrangements of 

A38 are observed for ZnII removal from C96R14 and C81/C96R14,19, 20 as well as for the 

broken C38-C38 disulfide bond of C38/C81/C96R14
 (Table 3.1). The structural 

rearrangement across the dimeric interface could render the associated C38-C38 disulfide 

bond susceptible to hydrolysis. However, from this explanation alone, it is not clear why 

only a single C38-C38 disulfide bond hydrolyzes in C38/C81/C96R14. The breakage of one, 

rather than both members of the pair, suggests that this allosteric behavior is a global 

phenomenon that arises from the tetrameric architecture in its entirety, rather than solely 

from local changes experienced by a disulfide bond in its embedded interfaces. In order 

understand the dependence of C38-C38 disulfide scission on the structural context of 

C38/C81/C96R14, we generated the protein variants C38/C96R1 and C38R1. Zn-mediated assem-  
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Table 3.1 C-α separations of residue 38 pairs in available crystal structures of R1 variants. 
Values are the measured distance between the C-α atoms of pairs located at the i1 interface of the indicted 
R1 variants. Values are averages of all residue pairs within the assymmetric unit of the crystal strurcture, 
except in the case of metal-free C38/C81/C96R1. ‡Reported value corresponds to the distance between the 
residues in the broken C38-C38 disulfide bond, and the parenthetical value corresponds to the distance of 
the intact disulfide bond. 

 

  C-α separations (Å) 
Protein 
Variant Residue Zn-bound Metal-free 

R1 A38 5.0 12.2 
C96R1 A38 5.1 11.2 

C81/C96R1 A38 7.9 10.6 
C38/C81/C96R1 C38 5.5 10.7 (5.7) ‡ 
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bly of these variants was expected to yield tetramers that were isotopological to 

ZnC38/C81/C96R14 (and one another) but with pairs of disulfide bonds selectively deleted 

(Figure 3.2). Additionally, due to the low extent of crosslinking, C38R1 was expected to 

undergo partial disassembly upon removal of ZnII, and to dissociate even further in the 

event of C38-C38 disulfide bond breakage (Figure 3.2). 

We first set out to isolate the disulfide-linked species of interest for C38R1 and 

C38/C96R1. Since C38/C96R1 bears more than one surface-exposed cysteine, it was possible 

for undesirable mixed disulfide bonds to form. Therefore, the C38/C96R1 protein was 

isolated under reducing conditions for subsequent in vitro templating.  Oxidative self-

assembly of C38/C96R1 showed a modest enrichment for the tetrameric species (27 ± 2%), 

which was further enhanced in the presence of ZnII (34 ± 2%) (Figure 3.3 and Table 

3.2). Oxidation of a variant lacking the engineered i1 contacts showed decreased tetramer 

formation in the absence or presence of one equivalent of ZnII (6 ± 2% and 16 ± 1%, 

respectively), suggesting that the engineered protein contacts were involved in C38/96R14 

assembly (Figure 3.3 and Table 3.2).  The C38/C96R14 species was isolated by size-

exclusion chromatography, and the ~50 kDa species observed by non-reducing SDS-

PAGE dissociated into a ~12 kDa species in the presence of excess DTT, consistent with 

formation of a monomer (Figure 3.4). The C38R1 variant bears a single cysteine residue, 

and therefore the formation of the correct disulfide bonds is site-specific by default. Since 

the protein was localized to the periplasm of E. coli during expression, we were able to 

isolate disulfide-linked species C38R12 without the need for in vitro templating by 

omitting reductant from the purification (Figure 3.5).  
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Figure 3.2 Hypothetical speciation of C38-linked R1 variants following Zn-removal. 
Cartoon representations Zn-induced tetramers of C38-bearing R1 variants are shown with each monomer 
represented as a gray circle, and ZnII represented as a red circle. The engineered i1 residues are shown as 
cyan patches. Pink lines represent C38 residues, while C81 and C96 are shown as orange and green lines, 
respectively. The expected speciation resulting from removal of all ZnII ions and breakage of a single C38-
C38 disulfide bond is depicted for each construct. 
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Figure 3.3 Representative templating reactions of C38/C96R1 and C38/C96M1. 
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Table 3. 2 Speciation of templating reactions of C38/C96R1 and C38/C96M1. 
Errors denote standard deviations from triplicate measurements of relative band intensities in Coomassie-
stained non-reducing SDS-PAGE gels. 

 
 
  C38/C96R1  

 
C38/ C96M1 

  
Zn-free +ZnII 

 
 Zn-free +ZnII 

 
1mer 15.6 ± 0.2%  20 ± 2%  

 
1mer 44 ± 3%  43 ± 7%  

 2mer 20 ± 5%  18 ± 1%   2mer 33 ± 5%  20 ± 2%  

 3mer 17.1 ± 0.2%  13.3 ± 0.5%   3mer 15 ± 4%  16 ± 1%  

 4mer 27 ± 2%  34 ± 2%   4mer 6 ± 2%  19 ± 4%  

 n-mer 22 ± 4%  15 ± 1%   n-mer 2 ± 3%  3 ± 4%  
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Figure 3.4 SDS-PAGE of isolated C38/C96R14 in the presence and absence of reductant. 
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Figure 3.5 SDS-PAGE of C38R1 protein under varied templating conditions. 
C38R1 protein was isolated under oxidizing condtions (with no added reductant), or reducing conditions (in 
the presence of 2 mM DTT). Reduced protein was subjected to in vitro templating following removal of the 
DTT. Templating reactions were incubated overnight at 37 °C with shaking. 
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We also purified C38R1 in the presence of reductant to explore its ability to 

undergo in vitro C38-C38 disulfide bond formation. When we removed the reductant and 

incubated samples under ambient atmosphere overnight, we did not observe the 

formation of appreciable disulfide-linked protein (Figure 3.5). Under these conditions, 

significant crosslinking of C38R1 was only observed in the presence of both excess ZnII 

and oxidized glutathione (GSSG) (Figure 3.5). By contrast, C38/C96R1 under comparable 

templating conditions was comparatively rapid, and the formation of trimeric, tetrameric 

and larger assemblies observed by SDS-PAGE (Figure 3.3) suggested that the C38 

residues, in addition to the C96 residues, must be participating in this rapid self-assembly. 

The difference in crosslinking ability of C38 in the case of C38R1 self-assembly and 

C38/C96R1 implies a difference in structural/contextual effect exerted by each protein. The 

previously-characterized structures of C38-lacking R1 variants provide some indication 

of how the C38-bearing variants would look upon i1-mediated self-assembly without 

forming C38-C38 crosslinks. In these structures, Ala38 displays modestly increased 

relative accessible surface area (ASA) in apo-C96R14 (0.47) relative to apo-R12 (0.45). 

This difference in accessibility holds true when modeling in a C38 at this site as well, 

yielding different relative ASAs for the models R1 + C38 (0.33) and C96R1 + C38 (0.51) 

(Table 3.3). This structural effect is consistent with our understanding of the i1 contacts 

constituting fluid interface,13 and the observed differences in accessibility correlate with 

the observed differences in templating behavior. Moreover, they suggest that crosslinking 

elsewhere in the protein scaffold can influence the orientation of the proto-  
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Table 3.3 Relative accessibility of residue 38 in metal-free R1 and C96R1 structures and models. 
Relative accessible surface areas of residue A38 in the Zn-free crystal structures of R1 and C96R1 are 
reported, along with the relative accessible surface area estimated for an uncrosslinked C38 residue 
modeled in these structures. 

 

 

Relative Accessible SA's 
 

  A38 structure C38 model 
apo-R1 0.45 0.33 

apo-C96R1 0.47 0.51 
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Figure 3.6 Sedimentation velocity profiles of templated C38R1 and C38/C96R1. 
Sedimentation velocity profiles of (a) C38/C96R1 and (b) C38R1 protein in under metal-free conditions (black 
traces) or in the presence of stoichiometric ZnII (red and blue traces). The data were normalized such that 
the total area under each curve is equal to one. 

 

  



 
 

 95   
 

mers along their i1contact in such a way that modifies the accessibility (and reactivity) of 

the C38 residues embedded at this interface. 

We determined the solution-phase oligomerization behavior of both variants 

through sedimentation-velocity analytical ultracentrifugation (AUC). The sedimentation 

velocity profile of C38/C96R1 in the presence of EDTA confirmed the formation of a 

tetramer that persists in the absence of bound metal (Smax = 4.0 S) (Figure 3.6a). The 

sedimentation velocity profile showed little change in the presence of ZnII (Smax = 4.3 S), 

consistent with a tetrameric species that undergoes minimal structural rearrangement 

(Figure 3.6a). The sedimentation-velocity profile of the isolated C38R12 species gave a 

single symmetric peak (Smax = 2.7 S), suggesting that the protein was predominantly 

dimeric in solution (Figure 3.6b). Surprisingly, the sedimentation velocity profile of a 

low concentration of C38R12 protein (5 μM monomer) in the presence of a stoichiometric 

amount of ZnII was almost exclusively dimeric (Smax = 2.7 S) as well. At 50 μM C38R1 

monomer in the presence of stoichiometric ZnII, only ~15% of the sample is tetrameric 

(Smax = 4.5 S), which is much less than the observed abundance of Zn-R14 under similar 

experimental conditions.13 These data reveal that the presence of a C38-C38 bond 

disfavors tetramer formation. Conversely, this implies that a covalently enforced a 

tetrameric structure, such as in C38/C81/C96R14  or C38/C96R14, is likely disfavored by the 

C38-C38 disulfide linkages within the complex. 

Probing ZnII binding affinity by competitive titrations. We next examined the 

metal-binding thermodynamics of the templated C38R12 and C38/C96R14 proteins. In order 

to estimate the ZnII binding affinities of the two variants, we carried out competitive 

binding titrations of ZnII to each protein in the presence of Fura-2 (Kd,Zn
 = 5.7 nM)19 as a  
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Figure 3.7 Binding isotherm of ZnII to Fura-2 in the presence of templated C38-bearing R1 variants. 
Sample of templated (a) C38/C96R1 and (b) C38R1 were mixed with Fura-2, and the solutions were titrated 
with ZnII. The fluorescence intensity was monitored throughout the titration and plotted as a function of 
[ZnII] (red circles). The data were fit to models where the individual sites (two for C38R12 and four for 
C38/C96R14) were fit to independent dissociation constants. Additionally, the superstoichiometric binding 
observed for titrating ZnII into C38R12 was accounted for with by including an additional apparent 
dissociation constant (K*) with the binding site concentration modeled as equal to the concentration of 
monomer. 
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competing ligand. The ZnII binding behavior of C38/C96R14 showed the expected 

stoichiometry of one ZnII per protomer, or four per tetramer (Figure 3.7a), that has been 

previously observed for disulfide-linked R1 tetramers.19, 20 The data was well-described 

by a model with four different dissociation constants (Kd = 4 ± 2 nM; 3 ± 1 nM; 2 ± 1 

nM; and 40 ± 10 nM) (Figure 3.7a and Table 3.4), which we used to estimate the per-site 

free energy of binding (ΔGZn/site
 = −47.0 ± 0.4 kJ mol-1 site-1) (Table 3.5). The C38R1 

variant, by contrast, displayed appreciable non-specific binding beyond the expected 

stoichiometry of one ZnII per protomer. We fit the data to a thermodynamic model with 

two different dissociation constants (Kd = 4.4 ± 0.8 nM; 12 ± 3 nM) and an apparent 

dissociation constant (Kapp = 90  ± 40 nM) to capture the supersoichiometric binding 

(Figure 3.7). With this treatment, we estimated the per-site free energy of binding to 

C38R12 as ΔGavg.
 = −46.0 ± 0.2 kJ mol-1 site-1 (Table 3.5). 

 Alongside previously the reported measurements,19, 20 these data show that C38-

C38 disulfide bond formation does not impair metal binding. For example, the free 

energy penalty for ZnII binding to C38/C81/C96R14 (ΔGavg. = −41.0 ± 0.3 kJ/mol•site) relative 

to that of  C81/C96R14 (ΔGavg. = 45.8 ± 0.3 kJ/mol•site)20 and C38/C96R14 cannot be attributed 

to the presence of the C38 disulfide bond. Rather, the extensive crosslinking afforded by 

all three pairs of disulfide pairs in C38/C81/C96R14 seems to uniquely result in the ~20 

kJ/mol decrease in overall binding affinity due to non-additive effects among the multiple 

disulfide pairs (Table 3.5).  Additionally, these data reveal that C38R12 binds ZnII with 

comparable affinity to that of C96R14 (ΔGavg. = 46.5 ± 0.5 kJ/mol•site)19 despite the 

decreased propensity to form a tetramer for C38R12. Crucially, this implies that the 

formation of a tetrameric species perturbs the constituent dimers in the C38-linked R12  
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Table 3.4 Dissociation constants of ZnII binding to dislufide-linked C38R1 and C38/C96R1. 

Binding affinities were determined by ZnII titration in the presence of Fura-2. Errors denote fitting errors of 
a single measurement. K* is the apparent dissociation constant that resulted from modelling the 
superstoichiometric ZnII binding observed for  C38R12. All measurements were carried out at 22 °C and in 
the presence of 20 mM MOPS, pH 7 + 150 mM NaCl. 

 
 

 
 
 

 
C38R12 

 
C38/C96R14 

 Binding affinities      
Kd1 (nM)  4.4 ± 0.8  4 ± 2  
Kd2 (nM)     12 ± 3      3 ± 1  
Kd3 (nM)  -      2 ± 1  
Kd4 (nM)  -  40 ± 10  
K*(nM)  90 ± 40   -  
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Table 3.5 Average free energies of ZnII binding to disulfide-linked R1 variants. 
Binding affinities of ZnII to disulfide-linked R1 variants. a Data taken from reference 22. b Data taken from 
reference 19.c Data taken from reference 20. Reported errors correspond to fitting errors of a single 
measurement. 

 

Protein Variant 
ΔGavg. ΔΔGavg. 

(kJ/mol•site) (kJ/mol•site) 
C38R1 −46 ± 0.2_ − 

C38/C96R1 −47 ± 0.4_ −1 
C38/C81/C96R1 −41 ± 0.2a_ +5 

C96R1 −46.5 ± 0.4 b  −0.5 
C81/C96R1 −45.8 ± 0.3c_ −0.2 
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species, and implies some degree of structural communication between the dimers along 

their shared i2 interface when assembled into a tetramer. 

Measuring ZnII release rates by stopped-flow mixing spectroscopy. We examined  

the effect of disulfide bonds on ZnII binding lability in the disulfide-linked R1 tetramers: 

C96R14, C38/C81R14, C81/C96R14, and C38/C81/C96R14. The four variants contain chemically 

identical ZnII binding sites and comparable ZnII binding affinities (see above). Any 

difference in the kinetics of ZnII release would, therefore, likely arise to some outer-

sphere or global effects of the disulfide bonds on the scaffold as a whole. We pre-

incubated each protein with stoichiometric amounts of ZnII, and carried out asymmetric 

mixing with a vast excess (400 equivalents) of the metal-binding chromophore 4-(2-

Pyridylazo)resorcinol (PAR).23 The absorbance measurements were fit to pseudo first-

order release kinetics with one or two release rates (Table 3.6). Overall, the Zn-release 

curves (Figure 3.8) reveal markedly different behaviors for the four protein scaffolds. 

The slowest overall release occurs from C38/C96R14 and C38/C81/C96R14, implying that ZnII 

binding is relatively inert for these scaffolds. This is consistent with binding sites that are 

less exposed and exhibit roughly compensatory decrease in the association and 

dissociation rates.  Strikingly, we also observe a context-dependence to the role of the 

C81-C81 disulfide bonds: addition of these crosslinks to C96R14 appears to accelerate 

ZnII release, while they slow ZnII release when added to the C38/C96R14 scaffold. These 

data illustrate the subtleties in overall behavior that can arise from a single perturbation in 

a protein scaffold 

Determining tetramer stabilities by thermal denaturation. Disulfide bonds are 

commonly used in natural proteins to stabilize tertiary and quaternary structures.24, 25  
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Table 3. 6 Pseudo first-order ZnII release rates from disulfide-linked R14 tetramers. 
Data were determined by stopped-flow mixing of Zn-loaded protein with excess PAR at 22 °C. Rate 
constants are from fits to single- or double-exponential pseudo first-order rate laws. Binding stoichiometry 
(N1 and N2) is estimated from normalizing the pre-exponential factors in the rate equations. Values in 
parentheses denote errors in fitting of data averaged over eight replicate measurements. 

 

R14 Variant   
koff,1  
(s-1) 

 

N1 
 

 

koff,2  
(s-1) 

 

N2 
   

C96R14  0.0247(2)  4  -  -  C81/C96R14  0.34(2)  2.7(1)  0.044(4)  1.3(1)  C38/C96R14  0.14(1)  1.01(1)  0.0051(1)  2.9(1)  C38/C81/C96R14   0.0212(3)   1.25(3)   0.0031(2)   2.75(7)   
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Figure 3.8 ZnII binding curves of PAR mixed with Zn-loaded R14 variants. 
Data collected at 5 s intervals are plotted for clarity (filled shapes). Data collected at 1 ms intervals were fit 
to pseudo first-order release rates (black lines). Data shown are averages of an eight-measurement series, 
and normalized to the expected ZnII binding stoichiometry. 
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While disulfide bonds are generally thought to increase protein stability through limiting 

the conformational freedom of the unfolded state,26-28 their net energetic influence is 

context-dependent, and they can sometimes even be destabilizing.29 We investigated the 

effects of the different disulfide connectivities and supramolecular rigidities on protein 

stability in the isotopological disulfide-linked R1 tetramers. The tetrameric complexes do 

not fold/unfold reversibly, which precludes a quantitative thermodynamic analysis. 

Instead, we determined the resistance of these complexes to thermal denaturation as a 

measure of their stability, where the apparent melting temperature (Tm) served as an 

indicator of relative protein stability. Thermal unfolding was monitored by monitoring the 

ellipticity at 222 nm as a function of temperature (Figure 3.9). 

 C96R14, with a single pair of disulfides in its i2 interfaces, exhibited a Tm of ~56 

°C. Addition of a second set of disulfides either across i1 (C38/C96R14) or i3 (C81/C96R14) 

increased the Tm to 64.6 and 66.8 °C, respectively (Table 3.7 and Figure 3.9). However, 

the addition of the third set of disulfide bonds in the context of either scaffold, to give 

C38/C81/C96R14, decreased the Tm to 62.2 °C (Table 3.7 and Figure 3.9). The decrease in 

Tm was accompanied by an apparent decrease in the cooperativity of unfolding, indicated 

by a gentler slope for the melting transition. These observations point to the presence of 

the mutually destabilizing interactions in C38/C81/C96R14 due to its extensive crosslinking. 

The series as a whole also points to non-additive and context-dependent effects exerted 

by the disulfide bonds on stabilization of the protein complex. Additionally, these data 

reveal the potentially undesirable effects of extensive crosslinking from generating an 

overly rigid protein scaffold. 
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Figure 3.9 Thermal denaturation of disulfide-linked R1 tetramers. 
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Table 3.7 Apparent melting temperatures of disulfide-linked R1 tetramers. 
Reported errors correspond to fitting errors of a single measurement. 

 
 

Protein Variant 
TM 

(° C) 
C96R14 56.2 ± 0.1_ 

C81/C96R14 66.8 ± 0.3_ 
C38/C96R14 64.7 ± 0.2_ 

C38/C81/C96R14 62.2 ± 0.3_ 
 
 

  



 
 

 106   
 

Assessing C38-bearing R1 variants for disulfide breakage. We next sought to 

determine if ZnII removal and C38-C38 hydrolysis were allosterically coupled in 

C38/C96R14 using ITC. We found that formation of a C38-C38 disulfide bond could be 

inferred from the Zn-binding thermogram of a C38-bearing variant relative to its C38- 

lacking counterpart, as the apparent enthalpy of binding (ΔHITC) was far more exothermic 

(ΔΔH+C38 =  −49 ± 1 kJ/mol for C38/C81/C96R14). Therefore, we carried out ITC 

measurements for ZnII binding to C38/C96R14, and fit the data using the dissociation 

constants determined by fluorescence competition titrations (Table 3.4) to estimate 

ΔHITC for Zn-binding to C38/C96R14 (ΔHITC
 = +17 ± 7 kJ/mol) (Table 3.8 and Figure 

3.10). Comparing these data with the previously obtained Zn-binding enthalpy of C96R14 

reveals a significantly more exothermic heat of binding in C38/C96R14 (ΔΔH+C38 = −45 ± 

15 kJ/mol), consistent with formation of a disulfide bond upon ZnII binding (Table 3.8). 

The extensive crosslinking of C38/C81/C96R14, therefore, is not necessary for allosteric 

coupling of ZnII binding to disulfide bond cleavage. 

We also examined whether C38-C38 hydrolysis occurs upon ZnII removal for 

C38R12. Due to the minimal crosslinking of the scaffold, this question could be probed 

using non-reducing SDS-PAGE. Hydrolysis of the sole disulfide bond in a crosslinked 

C38R12 dimer can be readily inferred from the formation of monomeric species. Treating 

C38R12 with a stoichiometric amount of ZnII, as expected, afforded a single dimeric 

species (Figure 3.11). We then exposed this sample to iodoacetamide (IAA), an 

alkylating agent for capable of capping both cysteine thiol and cysteine sulfenic acid 30. 

In the presence of this capping agent, we added the chelator EDTA to remove the protein-

bound ZnII. The observed dimer persisted under these conditions, with no concomitant  
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Figure 3.10 Representative thermogram of ZnII binding to C38/C96R14. 
A solution of ZnCl2 was titrated into C38/C96R14. Upper panel depicts the baseline corrected heats of 
injection. Lower panel depicts the integrated heats of injection (black squares) and best-fit curve (black 
line) for the data. The data were fit usin the dissociation constants determined by fluorescence competition, 
which were held fixed, and fit to a four-site model for the enthalpies of binding, which were allowed to 
vary. 
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Table 3.8  Binding enthalpies of disulfide-linked R1 tetramers 
Errors are derived from three or more replicate measurements. *Data taken from reference 22. 

 
 

R14 Variant Total ΔHITC 
(kJ/mol) 

ΔΔH+C38 
(kJ/mol) 

C81/C96R14 59 ± 1* - 
C38/C81/C96R14 10 ± 0.3* −49 ± 1 

C96R14 62 ± 13* - 
C38/C96R14 17 ± 7 −45 ± 15 
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Figure 3.11 Assessment of disulfide breakage in C38R12 by SDS-PAGE. 
Isolated, disulfide-linked protein was treated with excess EDTA, affording a single dimeric species. 
Treatment with the reductant TCEP afforded predominantly monomeric species, consistent with reduction 
of a disulfide bond. Treating the oxidized, metal-free protein with ZnII, or stepwise treatment with ZnII, 
IAA, and EDTA, both also afforded a dimeric species on a non-reducing gel. 
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formation of a monomer (Figure 3.11), showing that ZnII removal from C38R12 does not 

result in C38-C38 hydrolysis. Allosteric coupling of ZnII removal and C38-C38 

hydrolysis cannot arise from intrinsic fragility due, or solely from local structural 

rearrangement within the i1-mediated dimer. Rather, the observed allosteric behavior 

emerges from the larger structural context afforded by C38/C81/C96R14. We reasoned that 

the favorable relaxation that occurs upon ZnII release from a single dimer is not sufficient 

to promote C38-C38 hydrolysis, but that coupling the relaxation of two dimers within a 

tetramer would provide an increased driving force for hydrolysis. 

We sought to confirm the allosteric coupling of ZnII removal and C38-C38 

hydrolysis in C38/C96R14 by x-ray crystallography. Surprisingly, we observed the in 

crystallo formation of a disulfide-linked octameric species consisting of four i1-mediated 

dimers connected by four C38-C38 and four C96-C96 disulfide bonds (Figure 3.12 and 

Table 3.9). When metal-free C38/C96R14
 was allowed to stand, formation of an octameric 

species was never observed by SDS-PAGE or AUC, suggesting that this 

crystallographically-observed state is artefactual, a phenomenon that can complicate the 

oligomeric assignment of many proteins 31. In obtaining crystals, we used the amphiphilic 

precipitant 2-methyl-2,4-pentanediol (MPD), which is known to lower the dielectric 

concentration of the crystallization solution 32. The high concentration of MPD employed 

here (15% v/v) could weaken the i1 interactions within C38/C96R14 as it crystallizes. A 

C38/C96R14 bearing a single broken C38-C38 disulfide would be capable of opening up 

significantly if the i1 contacts were loosed, effectively exposing the C38 residues to make 

them available to form octamerizing crosslinks (Figure 3.12). Such a species need not be 

the prevailing state in solution for this to occur, as crystallization contains inherent  



 
 

 111   
 

   

 

Figure 3.12 Crystallization of metal-free disulfide-linked C38/C96R1. 
(a) X-ray crystal structures of the in crystallo octamer of metal-free C38/C81/C96R1 (PDB: 6DHZ). Insets show 
the interfacial disulfide bonds: C38-C38 (pink) and C96-C96 (green). 2Fo−Fc electron density maps (black 
mesh) are contoured at 1 σ. (b) Proposed scheme for the formation of the crystallographic octamer C38/C96R1 
from a tetrameric species that bearing a single broken disulfide bond. Due to the low extent of crosslinking, 
an intermediate butterfly tetramer could form by breaking and reforming the designed interfacial contacts 
(cyan) during crystallization. 
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Table 3.9 X-ray crystallography data collection and refinement statistics for C38/ C96R1 structures. 
Values in parentheses denote statistics for the highest resolution shell. 

‡Rsym = ΣΣj|Ij − <I>|⁄ΣΣj|Ij|. 
§R = Σ||Fobs|  − |Fcalc||⁄ Σ |Fobs|. 
IIFree R calculated against 5% of the reflections removed at random for both structures. 
¶Root mean square deviations from bond and angle restraints. 
*Values in parentheses correspond to the highest resolution shell. 

  

Zn-C38/C96R14 

 

C38/C96R18 

Data collection   

Space group P 61 P 4122 

Cell dimensions   

a, b, c (Å) 52.5, 52.5, 255.7 78.6, 78.6, 168.3 

α, β, γ (˚) 90, 90, 120 90, 90, 90 

Resolution (Å) 2.22 2.80 

Rsym‡* (%) 5.8 (19.6) 8.8 (46.9) 

I/σ* 23.2 (9.2) 16.8 (3.5) 

CC1/2* (%) 99.9 (97.7) 99.9 (87.9) 

Completeness* (%) 99.8 (99.9) 99.7 (98.1) 

Redundancy* 4.3 (3.7) 9.0 (5.8) 

   

Refinement   

Resolution (Å) 2.22 2.80 

No. unique reflections 19755 13669 

R§/Rfree II (%) 22.5/26.4 20.9/28.0 

No. atoms   

Protein 3271 3168 

Ligand/ion 185 179 

Water 41 32 

B-factors   

Protein 44.01 60.99 

Ligand/ion 33.37 56.45 

Water 29.26 39.85 

R.m.s. deviations   

Bond lengths¶ (Å) 0.0085 0.0135 

Bond angles¶ (˚) 1.385 1.590 
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energetic bias. Therefore, we take the formation of this unusual species as further, albeit 

indirect, evidence that hydrolysis of a C38-C38 disulfide bond occurs upon ZnII removal 

from C38/C96R14. 

We also determined the structures of the Zn-bound form of C96/C38R14 by x-ray 

crystallography (Figure 3.13 and Table 3.8). The electron density maps showed ZnII ions 

at the conserved H63/H73/D74/H77 metal-binding sites, and a 1:1 Zn:protomer 

stoichiometry. Additionally, the homotetrameric architecture resembling that of the 

parent Zn-R14 variant was preserved. These structural models allowed us to quantify the 

strain of the C38-C38 disulfide bonds using their dihedral angles,33 which were known to 

be the most-strained disulfide pair in Zn-C38/C81/C96R14 (Table 2.3). By this measure, the 

C38-C38 disulfide bonds of Zn-C38/C96R14
 were slightly more strained (Estrain avg. = 27 

kJ/mol) than those of Zn-C38/C81/C96R14 (Estrain avg. = 25 kJ/mol) (Table 3.10).34 However, 

the octamer in the apo-C38/C96R1 crystal structure contained C38-C38 disulfide bonds with 

even greater strain energy (Estrain avg. = 30 kJ/mol). Clearly, disulfide strain alone is not a 

sufficient energetic descriptor of the structural changes that ZnII removal and C38-C38 

hydrolysis. Moreover, in comparing a Zn-bound and metal-free structure pair, we cannot 

decouple structural changes that follow ZnII release from those that only occur following 

disulfide bond hydrolysis. We reasoned that decoupling these factors would help to 

implicate energetic drivers of disulfide hydrolysis in C38/C81/C96R14, and reveal the degree 

to which structural relaxation, including relaxation of the disulfide bonds, occurs 

following metal removal or following bond breakage. 

The functional prowess of proteins arises from their complex and dynamic 

structures. We have demonstrated that this holds true of the allosteric behavior that  
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Table 3.10 Dihedral strains of disulfide bonds in crystal structures of disulfide-linked R1 variants. 
Strain energies were calculated as reported in reference 33.  Entries for individual disulfide bonds were 
averaged over all intact disulfide bonds within each crystallgraphic asymmetric unit. Entries for the ΔC38 
sum were calculated from the total disulfide bond energies in the C38/C81/C96R14 structure. For all other 
structures, the ΔC38 sum was taken as the total strain energy of all intact disulfide bonds, less the strain 
energy of a single C38 disulfide bond. 

 

 

 

 

  

  
 Average strain 

energy (kJ/mol) 
 

 
Disulfide  

 
Zn-C38/C96R14 

 

C38/C96R18
 Zn-C38/C81/C96R14 C38/C81/C96R14 

C38-C38 30 27 25 19  
C81-C81 - - 23 13  
C96-C96 13 12 17 6 

ΔC38 sum  
56 

 
51 

 
105 

 
57 
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Figure 3.13 Crystal structure of Zn-C38/C96R14. 
X-ray crystal structures of Zn-bound C38/C96R14 (PDB: 6DHY) with insets showing the C38-C38 (pink) and 
C96-C96 (green) disulfide bonds. 2Fo−Fc electron density maps (black mesh) are contoured at 1 σ. 

 



 
 

 116   
 

occurs in the engineered protein C38/C81/C96R14. By characterizing assemblies of the 

disulfide-deleted variants C38R1 and C38/C96R1, we have shown that the coupling of ZnII 

removal to C38-C38 hydrolysis does not arise automatically from the Zn-induced 

structural rearrangement at a single C38-containing dimeric interface. Instead, these data 

imply that coupling of both interfaces within a crosslinked tetramer is necessary to 

develop a sufficient driving force for C38-C38 hydrolysis to occur. This family of 

variants also revealed that the extensive crosslinking arising from the three pairs of 

disulfide bonds in C38/C81/C96R14 is not required for allostery. In fact, incorporation of all 

six disulfide bonds in C38/C81/C96R14, rather than inclusion of the C38-C38 disulfide bond 

irrespective of structural context, results in the observed penalty to ZnII binding affinity. 

Moreover, while each pair of disulfide bonds had a stabilizing effect on the crosslinked 

tetramers, the extensive crosslinking in C38/C81/C96R14 actually led to a destabilization of 

the complex relative to C38/C96R14 and C81/C96R14. Collectively, these results point to the 

importance of structural plasticity as an element of design in engineered protein systems. 

We anticipate that, as protein engineers continue to make strides toward designing 

complex and functional protein assemblies, structural dynamics will emerge as a crucial 

aspect of achieving these goals. 

 

3.3 Materials and Methods 

Protein sample preparation and purification. Protein samples were prepared and 

purified essentially as described elsewhere.14 The genes for all protein variants used in 

this work were housed in a pet20b vector (Novagen), and included an N-terminal leader 

sequence18 for periplasmic localization. A codon encoding residue C38 was installed on 
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genes encoding R1, C96R1, and C96M1 by site-directed mutagenesis to generate genes 

encoding C38R1, C38/C96R1, and C38/C96M1, respectively. Mutagenic primers were obtained 

from Integrated DNA Technologies, and the pair 5’-cgctccacgcatcgcacgctgcggccgc-3’ and 

5’-ggcggccgcagcgtgcgatgcgtggagcg-3’ was used to generate the R1-based genes, while 

the primer pair 5’-gcgcgccgcagcgtgcgatgcgtggagcg-3’ and 5’- 

cgctccacgcatcgcacgctgcggcgc-gc-3’ was used to generate the M1-based gene of interest. 

DNA amplification was carried out using Pfu Turbo DNA Polymerase (Agilent 

Technologies). The amplified DNA was transformed into XL-1 Blue competent E. coli 

cells (Agilent Technologies), and the cells were grown at 37 °C on lysogeny broth (LB) 

agar plates containing 60 µg/mL ampicillin. Plasmids were purified with the QIAprep 

Spin Miniprep Kit (QIAGEN), verified by sequencing (Retrogen), and then transformed 

into BL21(DE3) E. coli cells (New England Biolabs) housing the cytochrome c 

maturation (ccm) plasmid cassette.35 The cells were grown at 37 °C on LB agar plates 

containing 34 µg/mL chloramphenicol and 60 µg/mL ampicillin. Single colonies were 

used to inoculate 5 mL of liquid LB medium containing chloramphenicol and ampicillin. 

Cultures were shaken at 37 °C until visibly turbid (typically about 8 h, or to an 

OD600>0.6) at which time 50 µL of inoculum was transferred to 1 L of LB medium, 

typically to 15 cultures in parallel, and shaken for 16-20 h at 37 °C with protein 

expression occurring by auto-induction. Cells were harvested by centrifugation (5,000 × 

g, 4 °C, 10 min), resuspended in 100 mL of 5 mM sodium acetate (pH 5), frozen, thawed, 

and sonicated for 12 min in pulses of 30 s on and 60 s off in the presence of lysozyme 

(~100 mg). For purifications under reducing conditions, excess DTT (~300 mg) was 

added prior to sonicating. 
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  The lysate was titrated with sodium hydroxide to pH >10 and acetic acid to pH 5, 

and cleared by centrifugation (10,000 rpm, 4 °C, 10 min). Purifications carried out under 

reducing conditions were done in the presence of 2 mM DTT, and DTT was excluded for 

the purification of oxidized protein. The red cleared lysate was decanted and diluted to 2 

L in 5 mM sodium acetate (pH 5) containing 2 mM DTT, and was manually applied to a 

CM Sepharose column (GE Healthcare) equilibrated in 5 mM sodium acetate (pH 5), and 

the protein sample was eluted by a manually applied 0-1 M gradient of NaCl. The clear 

red eluate was concentrated using a Diaflow concentrator (Amicon) fitted with a 3-kDa 

cutoff membrane, and exchanged into a solution of 10 mM sodium phosphate (pH 8) and 

2 mM DTT. The sample was loaded onto a DuoFlow fast protein liquid chromatography 

station fitted with a Macroprep High Q-cartridge column (BioRad) with 10 mM sodium 

phosphate (pH 8) running buffer containing 2 mM DTT, and eluted using a 0-0.5M NaCl 

gradient. Fractions of R1-based variants with Reinheitzahl values (A421/A280) above 3 

were retained, and fractions of M1-based variants were assessed for purity by SDS-

PAGE. Retained fractions were combined, concentrated, and mixed with an excess of 

EDTA and DTT (>10 molar equivalents). These stock solutions were then flash frozen in 

liquid nitrogen for storage at –80 °C. 

 Protein sample templating. Concentrated stock solutions of C38/C96R1 (or 

C38/C96M1) were thawed, reduced by the addition of excess DTT, transferred to glass vials 

sealed with rubber septa, cycled under vacuum and argon atmosphere, and transferred to 

a glove box (Coy Lab) under an anaerobic (<10 ppm O2) atmosphere of argon with 10% 

hydrogen. Here, the samples were exchanged into an assembly buffer solution (50 mM 

Tris, pH 7, and 150 mM NaCl) using Econo-Pac 10DG pre-packed columns (BioRad). 
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Protein concentration was determined spectrophotometrically (ε415, ox = 148,000 M-1 cm-

1),18  and samples were diluted to a final concentration of 50 µM in assembly buffer 

supplemented with 75 μM ZnCl2. Samples were incubated overnight under ambient 

atmosphere at 37 °C with shaking. Self-assembly reactions were analyzed by SDS-PAGE 

in the absence of added reductant to keep disulfide bonds intact. The crude self-assembly 

reaction mixture was applied to a preparative-scale Superdex 75 gel filtration column 

(GE Healthcare) equilibrated in assembly buffer. Tetramer content of the eluted fractions 

was assessed by non-reducing SDS-PAGE. The purest fractions were combined, 

concentrated, and treated with >10-fold excess EDTA to remove bound metal, and 

applied to an Econo-Pac 10DG prepacked column equilibrated in 20 mM MOPS (pH 7) 

and 150 mM NaCl. The resulting stock solutions of Zn-free tetramer were flash frozen in 

liquid nitrogen, and stored at –80 °C. 

 Analytical ultracentrifugation. Solutions of 1.25 µM tetramer (C38/C81/C96R14) in 

20 mM MOPS (pH 7) and 150 mM NaCl were treated with either 5 µM ZnCl2 or 1 mM 

EDTA to prepare metallated or apo samples. Sedimentation velocity measurements were 

made on a XL-1 Analytical Ultracentrifuge (Beckman-Coulter) equipped with an An-60 

Ti rotor at 41,000 rpm for 400 scans at 25 °C, and monitored at 415 nm. The endpoint of 

sedimentation was determined using the match function in HeteroAnalysis 

(http://biotech.uconn.edu/auf/).  Scans were processed in Sedfit36 using buffer viscosity 

(0.01002 poise), density (1.007 g/mL) and partial specific volume (0.7316 ml/g) 

parameters calculated by SEDNTERP (http://sednterp.unh.edu/). The final c(S) 

distributions shown in Figure 3.7 are reported at a confidence level of 0.95 and were 

plotted in Igor (WaveMetrics). 
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Competitive ZnII binding titrations. Assay buffer (20 mM MOPS, pH 7 and 150 

mM NaCl) was treated with Chelex 100 resin (BioRad) to remove trace transition metal 

impurities. The concentration of a light-protected stock solution of Fura-2 (Invitrogen) 

was determined spectrophotometrically (ε362 = 27,000 M-1 cm-1).37 Samples of 

C38/C81/C96R14 (8.25 μM tetramer; 33 μM monomer) and Fura-2 (5 μM), or C38R12 (17.5 

μM dimer; 35 μM monomer) and Fura-2 (7.5 μM) were prepared in assay buffer. The 

sample was titrated with a ZnCl2 solution while thermostatted at 22 °C, and fluorescence 

measurements were made after 5-min equilibration periods. Fura-2 fluorescence emission 

at 510 nm was monitored to obtain an excitation scan over 250-450 nm on a Horiba 

Fluorolog 2 fluorimeter. Binding isotherms were generated from the changes in emission 

intensity plotted as a function of ZnII concentration, and were fit using Dynafit38 as 

previously reported.19, 20, 34 Briefly, we fit the four Zn-binding equilibria using three 

different models: a single dissociation constant model (or 4 × 1) where all sites were 

treated as equivalent, a two dissociation constant model (or 2 + 2) with two inequivalent 

pairs of binding sites, or a four dissociation constant model (or 1+1+1+1) with each site 

treated as inequivalent. Additionally, the super-stoichiometric ZnII binding observed for 

C38R12 was modeled with an additional apparent dissociation constant (K*) assuming a 

binding site concentration equal to the concentration of protein monomer. We found a 

two dissociation constant model (2 + 2) adequately described the data for C38R12, while 

C38C96R14 was best described by a  four dissociation constant model, which were plotted 

in Igor (WaveMetrics) to generate the curves shown in Figure 3.7, and the average free 

energy of binding was reported in Table 3.4. 
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Thermal denaturation of RIDC14 variants. Thermal denaturation experiments 

were carried out in 20 mM borate (pH 7) and 150 mM NaCl in the presence of 1 mM 

EDTA. Cell temperature was raised from 4-94 °C in 0.5 °C increments. Melts were 

carried out using 1.25 µM tetramer in a 0.2 cm quartz cuvette with 30 s equilibrations at 

each temperature. The ellipticity was measured at 222 nm using an Aviv 215 CD 

spectrometer. The ellipticity measurements were fit to a two-state model to calculate the 

apparent TM, assuming no change in heat capacity (ΔCp = 0), using linear terms to correct 

for changes in signal pre- and post-transition, as previously reported.39 The data were fit 

using Kaleidagraph (Synergy Software) and plotted in Igor (WaveMetrics) to generate the 

curves shown in Figure 3.9, and the apparent melting temperatures are reported in Table 

3.6. 

 
Stopped-flow mixing of PAR and Zn4:R14 variants. Stopped-flow mixing 

experiemtns were carried out using an SX.17MV (Applied Photophysics) with a 0.2 cm 

path length and the bandwith set at 1 nm. All samples were prepared in Chelex 100-

treated buffered solutions consisting of 20 mM MOPS, pH 7, and 150 mM NaCl. Light-

protected samples of 4 mM PAR were mixed with 25 μM of Zn-R14 variant loaded with 1 

equivalent of ZnII. Mixing was done asymmetrically in a 10:1 volume ratio of 

PAR:protein solution, giving a 1600:1 molar ratio of PAR to tetramer in the final mixture. 

Changes to the absorbance at 500 nm were monitored for 300 s at 1 ms intervals (30,000 

points total) for eight injections. Data were fit to rate equations of the form: 

𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  −�𝐴𝐴𝑛𝑛𝑒𝑒−𝑡𝑡∗𝑘𝑘𝑛𝑛
𝑛𝑛

1
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where n = 1, 2 or 4 for single-, double-, or quadruple-exponential rate equations, 

respectively, using Kaleidagraph (Synergy Software). Assuming pseudo first-order 

conditions, kn is off rate for one or more ZnII from the RIDC14 variants. The goodness of 

fit statistics and fit residuals showed that the dissociation of ZnII could be well-described 

by a single-exponential rate equation (n=1) for C96RIDC14, and a double-exponential rate 

equation (n=2) for C81/C96RIDC14, C38/C81RIDC14, and C38/C81/C96RIDC14. Approximate 

binding stoichiometry was verified by comparison with a Zn:PAR2 standard curve, where 

samples of 0-200 μM ZnII were mixed in a 1:10 ratio (v/v) with 4 mM PAR and 

monitored for 10 s over five injections. Binding stoichiometry for the individual terms 

were  estimated by normalizing the pre-exponential constants to a total occupancy of four 

ZnII ions per tetramer (i.e. by setting At = 4). 

 
Chapter 3 was reproduced in part, with permission, from a manuscript currently 

being prepared for submission for publication: Churchfield, L.A.; Williamson, L.A.; 

Alberstein, R.G; Tezcan, F.A. Investigating the structural and mechanistic basis of 

allostery in a designed protein scaffold.  

The dissertation author is primary author on all reprinted materials. 
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Chapter 4: Molecular dynamics 
simulations of  C38/C81/C96R14. 
Chapter 4: Molecular dynaimcs simulations of C38/C81/C96R14. 

 

 

 

 

 

4.1 Introduction 

It is a long-held paradigm in biological systems that structure dictates function. 

Increasingly, for many protein systems, it has been found that achieving a competent 

three-dimensional structure is a necessary requirement for protein function, it is not 

sufficient in explaining the functional breadth on display in Nature’s proteome. Rather, 

the underlying protein structure dictates the dynamic behavior of a protein or protein 

complex, and is a critical aspect of the functional capabilities of many natural protein 

systems.1-5 This chapter is an exploration of molecular dynamics (MD) simulations as a 

tool for studying these principles at work in C38/C81/C96R14. Using MD simulations, one 
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can obtain atomic-level structural information from an ensemble of protein structures to 

determine how the structure varies over time.  Additionally, with appropriate ensembles 

of structures, one can obtain thermodynamic information about a structural change of 

interest, an approach that has been successfully applied to investigations of other 

allosteric protein systems.6   

This chapter is intended to serve as a reference for adapting existing 

computational tools to cyt cb562 systems in general, as well as to present specific insights 

into the allosteric behavior of the C38/C81/C96R14 system. Additionally, we note that the 

MD simulations described here complement and corroborate the biochemical and 

biophysical analysis described in Chapters 2-3. Specifically, we suggest that disulfide 

bond relaxation is incidental to the structural rearrangement observed in C38/C81/C96R14 

opening, as allosteric coupling exists in the less-extensively crosslinked scaffold 

C38/C96R14. 

The available crystal structures of C38/C81/C96R14 in the Zn-bound and Zn-free 

forms reperesent the two end states of the allosteric coupling between ZnII removal and 

C38-C38 bond breakage. However, these structures provide little direct information about 

the energetic basis of this coupling, nor do they explain why a single C38-C38 bond is 

selectively hydrolyzed/formed among several others within the scaffold. This embodies a 

major obstacle to the study of any allosteric regulation, as the means by which 

information is communicated structurally typically involves complex (and transient) 

sequences of localized conformational changes which are diffuclut to infer purely from 

well-defined end states.7 Zn-C38/C81/C96R14 presents the added challenge of decoupling the 

structural changes induced by ZnII removal from those caused by disulfide bond 
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breakage. Therefore, we set out to examine the C38/C81/C96R14 complex through molecular 

dynamics (MD) simulations, which allowed us to evaluate the thermodynamic parameters 

for ensembles of structural states what would not be accessible by experiments, as well as 

to examine some of the intermediate states that attend C38-C38 bond breakage. 

Specifically, we examined a metal-free intermediate state of C38/C81/C96R14 bearing six 

disulfide bonds, as well as the structural ensembles that arise from hypothetical bond 

breakage events (C81-C81 or C96-C96 hydrolysis) as well as the experimentally 

observed bond breakage event (C38-C38 hydrolysis). Additionally, efforts to characterize 

Zn-bound states of C38/C81/C96R14 and the intermediates of tetramer opening, as well as the 

challenges facing these modeling efforts, are discussed. 

 

4.2 Development of custom simulation parameters 

Parameterization of cysteine sulfenic acid. In order to model the broken disulfide 

bond of metal-free C38/81/C96R14, we had to develop and implement a custom set of 

forcefield parameters compatible with the CHARMM27 forcefield.8, 9 This was 

accomplished using the Force Field Toolkit (ffTK) plugin10 of VMD. Parameters in the 

CHARMM forcefield are implemented with transferability, rather than system-specific 

accuracy, underlying the process. For example, the backbone amino acids in the 

CHARMM27 forcefield use identical parameters, and distinct parameter sets are only 

implemented for the sidechain of each residue. With this in mind, we selected as a 

parameterization model a small molecule model that closely mimics the sidechain of 

cysteine sulfenic acid (CSO): ethane-SO-thioperoxol (Figure 4.1). The deprotonated 

form of the molecule was used to obtain parameters for the sidechain of cysteine sulfon-  
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Figure 4.1 Chemical structures of sulfenic acid sidechains and paramterization models. 
Cysteine sulfenic acid (Cso) and cysteine sulfonate (Csa) sidechains are shown truncated at their C-α 
atoms, and with sidechain atoms labeled. Parameterization was carried out using protonated and 
deprotonated ethane-SO-thioperoxol models, where the C-α terminates in a methyl group. 
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sulfonate (CSA) (Figure 4.1).  

Initial structures of ethane-SO-thioperoxol and ethane-SO-thioperoxolate were 

manually built in the Molefacture plugin of VMD, which were used as the starting 

models for parametrization. Analogous atom types and Lennard-Jones parameters for 

evaluating van der Waals interactions for the β-carbon, γ-sulfur, δ-oxygen, and ε-

hydrogen were assigned by analogy from existing atom types for cysteine (for C and S) 

and serine (for O and H) residues in the CHARMM27 forcefield. Geometry optimization 

was carried out in Gaussian 11 at the MP2/6-31G* level of theory. In both models, the 

initial arbitrary bond lengths (~1.5 Å) optimized to new lengths that appeared reasonable 

for the atom types involved, and the groups around the C-C bond adopted staggered 

configurations (Figure 4.2). These changes suggested that the structures had been 

successfully optimized, and the resulting models were used for subsequent 

parametrization steps. 

We next carried out partial charge fitting for the new atom types in the Cso and 

Csa model structures. In accordance with the CHARMM convention, partial charges of 

+0.09 were uniformly applied to the aliphatic hydrogen atoms in the structure. This was 

accomplished by placing water molecules next to the parameterization model, and 

subjecting them to two-dimensional (distance and angle) positional refinements at the 

HF/6-31G* level of theory in Gaussian. This protocol omitted the sp3 hybridized C-β 

atom, and placed a single water flanking S-γ atom in both residues, as well as the H-ε 

atom of Cso (Figure 4.3).  A  single water was placed flanking the O-γ atom of Cso, 

while three water molecules were 
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Figure 4.2 Geometry optimization of sulfenic acid parameterization models. 
Starting models for Cso and Csa parameterization are shown in salmon and green, respectively. The 
optimized Cso and Csa models, shown in orange and blue, exhibit altered bond lengths and staggered 
conformations following the optimization procedure. Distances of C-S, S-O, and O-H bonds before and 
after optimization are reported in Ångstroms. 
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placed around the low-valent oxygen of Csa (Figure 4.3). The positions of these water 

molecules were used as target data for fitting CHARMM type partial charges at the molecular 

mechanics level of theory, which are shown alongside the previously reported parameters for 

Cys and Ser (Table 4.1). 

The geometry-optimized structures were next used for parameterization of the 

bonds, angles, and dihedrals in the Cso and Csa models. We used these structures to 

compute the Hessian matrix of the potential energy surface for both structures in 

Gaussian at the MP2/6-31G* level of theory. Molecular mechanics parameter fitting was 

then carried out in the ffTK plugin to achieve bond (Kb and b0) and angle parameters (Kθ 

and θ), which are reported in Table 4.2 and Table 4.3. The dihedral angle parameters 

were obtained by carrying out torsion angle scans about the C-C-S-O dihedral in both 

models, and about the C-S-O-H dihedral in the Cso model. Fits of the molecular 

mechanics parameters to the quantum-level data are reported in Figure 4.4. Artefactual 

parameters that included the methyl hydrogens were excluded from the final dihedral 

parameter set (Kψ, n, δ) reported in Table 4.4.  

Parameterization of ZnII atoms. The homotetramer C38/C81/C96R14 has previously 

been crystallized with four ZnII ions in its core metal binding sites, coordinated by 

residues His63, His73, Asp74 and His77. In order to probe the dynamics of the Zn-bound 

tetramer, we sought out ZnII parameters that would represent the crystallographically 

observed coordination environment. However, we found that the crystallographic 

coordination of the ZnII ions was poorly maintained in short (<10 ns) simulations in 

explicit solvent, during which the coordination geometry became distorted and ligands  
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Figure 4.3 Water placement or partial charge parameterization of Cso and Csa. 
Parameterization models for Cso and Csa are depicted with water molecules that were palced for partial 
charge parameterization. The configurations depicted are those following a 2-D optimization protocol, with 
the final distance drawn (cyan dashed line) and labeled in Å. 
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Table 4.1 CHARMM-type partial charges of sulfenic acid and chemically related residues. 
Water placements depicted in Figure 4.3 were used to establish CHARMM type partial charges for the 
sidechain atoms of Csa and Cso. Also shown are the partial charges used in the CHARMM27 forcefield for 
the chemically related Cys and Ser residues. Omitted partial charges denote atoms that are absent from the 
indicated residue. 

 

Atom Csa Cso Cys Ser 
C-β -0.065 -0.04 -0.11 0.05 
S -0.195 0.01 -0.23 - 
O -0.92 -0.57 - -0.66 

H - 0.42 0.16 0.43 
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Table 4. 2 Bond paramters for the sidechain atoms of the Cso and Csa residues. 
The equilibrium bond lenghts (b0) and force constants (kb) of bonds connecting the sidechain atoms of Cso 
and Csa.  Existing paramters were used for aliphatic C-H bonds.  

 
Atoms kb   (kcal/mol/Å2) b0 (Å) 

Cso C−S 214 1.808 
  S−O 269 1.702 
  O−H 489 0.972 

Csa C−S 200 1.839 

  S−O 320 1.614 
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Table 4. 3 Angle parameters for the sidechain atoms of the Cso and Csa residues. 
The equilibrium bond angles (θ) and force constants (kθ) of angles described by the sidechain atoms of Cso 
and Csa. 

 

 
Atoms  kθ   (kcal/mol/rad2) θ0 (°) 

Cso C-C-S 63 106 

  C-S-O 60 102 

  H-C-S 38 109.5 

  S-O-H 55 106 

Csa C-C-S 68 109.5 

  C-S-O 97 105 

  H-C-S 44 111 
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Figure 4.4 Torsion angle scan energy calculations and fits for Cso and Csa sidechains. 
Cso and Csa structural models were scanned about their sidechain atom torsion angles, and the calculated 
potential energy of each state is plotted above (black curves). The dihedral parameters reported in Table 
4.4 are the result of fitting the data to molecular mechanics parameters. 
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Table 4.4 Dihedral parameters for the sidechain atoms of the Cso and Csa residues. 
The phase shift (δ) periodicity (n) and force constant (kψ) parameters for the dihedral angles described by 
the sidechain atoms of Cso and Csa. 

 
 

 
atoms 

Kψ   
(kcal/mol) n δ (deg) 

Cso H-C-S-O 0.567 1 180 
  C-S-O-H 2.924 2 0 
  C-C-S-O 1.193 3 0 

 
" 0.374 2 0 

  " 1.201 1 180 

Csa C-C-S-O 2.314 1 180 

  " 0.695 2 180 

  " 2.301 3 0 
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frequently became displaced when the ZnII coordinated additional water ligands. The 

forcefield parameters for ZnII in the CHARMM27 forcefield have been successfully 

implemented in the past to simulate such proteins as carbonic anhydrase,12 though in 

these cases the ZnII centers were buried in the protein environment, and therefore better 

shielded from solvation. 

The simple Lennard-Jones description of transition metals employed in the 

CHARMM forcefield are known to have limited transferability.13 One means of 

circumventing this is the cationic dummy atom (CADA) description of a transition metal 

atom. The approach uses a tetrahedral array of low mass (3 Da) dummy atoms, each 

bearing a +0.5 partial charge, and surrounding an uncharged central atom (53.38 Da) 

(Figure 4.5),14 to better capture the tetrahedral coordination preferences of protein-

associated ZnII.15 When we adapted these parameters for use in the CHARMM forcefield 

(see Appendix), however, we found that the ZnII ions rapidly dissociated from the metal 

binding site in favor of coordinating water. 

 Merz and co-workers have previously noted that the Lennard-Jones description of 

transition metal ions could be readily adapted to capture different physical observables of 

interest, as well as different simulation protocols.13 They developed parameters optimized 

with respect to the hydration free energies (HFE), and interatomic distance (IOD) of 

coordinated water molecules for ZnII and other transition metals (Table 4.5). They also 

reported a so-called compromise parameter set, in which optimization was carried out 

with respect to both experimental parameters (Table 4.5). We found the HFE-optimized  
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Figure 4.5 Schematic representation of the cationic dummy atom (CADA) ZnII model. 
The conventional treatment of ZnII as a monatomic species employs a single 65.4 Da cation bearing a +2  
net charge. The CADA description of ZnII involves an electrostatically neutral atom with a mass of 53.4 Da 
which is flanked by four cationic atoms, each with a mass of 3 Da and bearing a +0.5 net charge. These so-
called dummy atoms are arranged tetrahedrally about the central atom. The bonds linking the dummy 
atoms are 1.47 Å in length, while bonds between the dummy atoms and central atom are 0.9 Å in length. 
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parameters to be the most effective at maintaining the ligand set of interest when used to 

simulate Zn-C38/C81/C96R14, and the least prone to coordinate additional water ligands.  

This treatment led to interatomic distances between the ZnII ion and ligands that were 

shorter than reasonable, typically under 1.9 Å for His ligation and under 1.6 Å for Asp 

ligation (Table 4.6). Additionally, during a 10 ns simulation, we observed transient 

dissociation events for two of the 16 metal ligands (Table 4.6). This suggested to us that 

unconstrained simulations of the ZnII binding sites were unsuitable for enforcing the 

crystallographically observed metal binding sites. 

 We implemented a set of harmonic constraints on the distances between the ZnII 

ions and the associated ligands to enforce the experimentally observed coordination 

environment. To do so, we determined the average Zn-ligand distances and degree of 

fluctuation during the 10 ns simulation, ignoring ligands for which significant 

dissociation events were observed (namely, His63 of chain A and His73 of chain C). We 

determined the force constant of a harmonic bond that would reproduce the observed 

level of fluctuation. By the equipartition theorem, the average potential energy of a 

harmonic oscillator at thermal equilibrium is: 

〈𝑈𝑈〉 =
1
2
𝑘𝑘𝐵𝐵𝑇𝑇  

The potential energy of a harmonic oscillator is defined a harmonic oscillator is defined 

as follows: 

𝑈𝑈 =  
1
2
𝑘𝑘𝐻𝐻𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)2 
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Table 4.5 Lennard-Jones parameter sets for ZnII ions. 

 

Parameter Set Reference 
epsilon 

(kcal/mol) Rmin/2 (Å) 

Karplus  5 -0.25 1.09 
HFE-optimized  6 -0.00071558 1.175 
IOD-optimized  6 -0.014917 1.395 

Compromise  6 -0.00330286 1.271 
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Table 4.6 Averaged Zn-ligand distances from an unconstrained Zn-C38/C81/C96R14 simulation. 
Zn-ligand distances above 2 Å are emphasized in grey, and denoted with a *. Manual inspection of the 
simulation trajectory confirmed that these corresponded to transient dissociation events. His63 of chain A 
and His73 of chain C were excluded from calculating the harmonic constraint parameters reported in Table 
4.7. 

 
 
 
  

window A* B C D window A B C D
0 to 1 ns 1.91 1.86 1.88 1.97 0 to 1 ns 1.58 1.59 1.56 1.58
1 to 2 ns 2.02* 1.81 1.79 1.78 1 to 2 ns 1.56 1.61 1.55 1.56
2 to 3 ns 1.90 1.78 1.77 1.77 2 to 3 ns 1.55 1.60 1.56 1.56
3 to 4 ns 1.86 1.80 1.78 1.78 3 to 4 ns 1.56 1.62 1.55 1.55
4 to 5 ns 1.86 1.78 1.78 1.78 4 to 5 ns 1.55 1.62 1.56 1.56
5 to 6 ns 1.85 1.77 1.77 1.83 5 to 6 ns 1.55 1.60 1.56 1.55
6 to 7 ns 1.85 1.78 1.80 1.81 6 to 7 ns 1.55 1.61 1.56 1.56
7 to 8 ns 1.91 1.78 1.76 1.78 7 to 8 ns 1.56 1.63 1.55 1.55
8 to 9 ns 1.87 1.78 1.77 1.78 8 to 9 ns 1.56 1.59 1.56 1.55
9 to 10 ns 2.06* 1.78 1.77 1.79 9 to 10 ns 1.55 1.60 1.56 1.55

window A B C* D Time A B C D
0 to 1 ns 1.82 1.80 1.91 1.84 0 to 1 ns 1.78 1.79 1.82 1.83
1 to 2 ns 1.81 1.78 1.86 1.79 1 to 2 ns 1.77 1.76 1.83 1.79
2 to 3 ns 1.79 1.78 1.90 1.77 2 to 3 ns 1.77 1.76 1.83 1.77
3 to 4 ns 1.79 1.78 2.12* 1.79 3 to 4 ns 1.76 1.76 1.94 1.80
4 to 5 ns 1.79 1.78 2.19* 1.77 4 to 5 ns 1.77 1.76 1.93 1.77
5 to 6 ns 1.79 1.78 2.25* 1.77 5 to 6 ns 1.77 1.76 1.84 1.77
6 to 7 ns 1.79 1.81 2.07* 1.77 6 to 7 ns 1.76 1.77 1.89 1.78
7 to 8 ns 1.78 1.79 1.96 1.76 7 to 8 ns 1.76 1.76 1.90 1.78
8 to 9 ns 1.79 1.79 1.91 1.76 8 to 9 ns 1.76 1.76 1.84 1.78
9 to 10 ns 1.79 1.78 1.81 1.76 9 to 10 ns 1.76 1.76 1.80 1.78

Asp74-Zn Distances (Å)

His77-Zn Distances (Å)

His63-Zn Distances (Å)

His73-Zn Distances (Å)
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Setting these equations equal and solving for the spring constant, kHC, gives: 
 

𝑘𝑘𝐻𝐻𝐻𝐻 =  
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑑𝑑 − 𝑑𝑑0)2 

 

Using the above relation allowed us to determine appropriate force constants from the 

unconstrained simulation to establish parameters for harmonic constraints to enforce the 

desired ZnII coordination environment (Table 4.7). We note that, in the case of residue 

Asp74, both monodentate and bidentate modes were observed during coordination. For 

parameterization of this residue, we used distances and variations for the closest of the 

two oxygen atoms in a given structural conformation, noting that the identity of this atom 

could and did vary. These distances were used to derive a monodentate harmonic 

constraint (Table 4.7), which was applied to the oxygen atom closest in proximity to the 

ZnII in the initial crystal structure.  We found the application of harmonic constraints to 

be effective at enforcing the His63/His73/Asp74/His77 coordination and precluded 

coordination of ZnII by additional water molecules, even when the tetramer was loaded 

with a single ZnII ion. We anticipate that a similar treatment could be used to examine the 

interfacial coordination of metal ions on other cyt cb562 systems to examine their dynamic 

behavior.15-20 

 Solvation the protein interior. In order to effectively and efficiently capture the 

solution-phase dynamics of C38/C81/C96R14, we sought to determine a solvation protocol 

that would solvate the tetramer to the extent most similar to the equilibrated state. The 

available crystal structures of the tetrameric C38/C81/C96R14 in both its Zn-bound and metal-

free states reveal large internal cavities, as well as interfacial crevices throughout the  
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Table 4. 7 Harmonic constraints for ZnII binding to C38/C81/C96R14. 

 
Residue Atom d0  

(Å) 
kHC 

(kcal/mol•Å2) 
H63 εN 1.78 131 
H73 εN 1.78 157 
D74 δO 1.59 358 
H77 εN 1.79 166 
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tetramer (Figure 4.6a). The cavity volumes identified by a 1.4 Å radius rolling probe 

were 212 Å3 for the metal-free structure, and 575 Å3 for the Zn-bound structure, as 

calculated by VOIDOO. This increase in internal cavity volume has been reported 

previously for the Zn-bound and metal-free structures of the related protein C81/C96R14 as 

well.16 The implications of differences in solvation on the energetics of the metal-bound 

and metal-free states are not investigated in this work, but it is hoped that molecular 

dynamics will present a useful computational tool for exploring this aspect of the 

disulfide-linked R14 protein assemblies. 

We carried out molecular dynamics simulations of Zn-C38/C81/C96R14 to determine how the 

number of internalized water molecules varied over time. When using only the repertoire 

of crystallographic waters to solvate the protein interior, and placing additional waters 

surrounding the protein tetramer, we found that the number of water molecules in the 

protein interior significantly increased over time, and was very slow to equilibrate 

(Figure 4.7). The program FLOOD17 has been developed to solvate protein cavities and 

crevices, and used to place waters in the cavity of the C38/C81/C96R14 interior. FLOOD 

placed 34 waters in the cavity of the metal-free C38/C81/C96R14 structure, and 87 waters in 

the cavity of the Zn-bound structure (Figure 4.6b). Using FLOOD to place waters at the 

protein interior also gave an initial state that showed a less dramatic increase in the 

number of internalized waters over time, and more rapidly equilibrated compared to the 

simulation bearing only crystallographic waters in the tetramer interior (Figure 4.7). We 

estimated the number of cavity waters in these simulations using the selection criteria 

depicted in Figure 4.8. 
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Figure 4.6 Solvating the internal of cavities in the C38/C81/C96R14 structures. 
(a) Central cavities of the available Zn-bound and metal-free structurs of C38/C81/C96R14 (PDB ID 5L32 & 
5L31, respectively). Cavities were identified using a rolling probe (r = 1.4 Å) that searched the tetramer 
interior beginning from a central point. The cavities identified in this manner are shown as a black mesh. 
(b) Cavities overlaid with the suite of waters placed in each structure by the program FLOOD. 
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Figure 4.7 Equilibration of internal water number in Zn-C38/C81/C96R14 MD simulations. 
Simulated structures of Zn-C38/C81/C96R14 were solvated using the SOLVATE plugin of VMD. The tetramer 
interiors were solvated using only the crystallographically observed waters (blue trace) or the waters placed 
in the internal cavity using FLOOD (black trace). Waters were assumed to be internalized if they were 
within 18 Å of all four protein chains, and within 18 Å of the centrally located residue 69. 
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4.3 Molecular dynamics simulations of C38-C38 disulfide breakage. 

Identifying key structural changes in C38/C81/C96R14 opening. We carried out 

molecular dynamics of two metal-free states of C38/C81/C96R14, and examined the resulting 

ensembles of structures for significant structural changes. The first state was based on 

theZn-bound structure and contained the full suite of six disulfide bonds in the protein. 

The second was based on the metal-free structure of the protein bearing five intact 

disulfide bonds and a single broken C38-C38 disulfide bond (Figure 4.9). We reasoned 

that simulating these two states would allow the six-disulfide bearing structure to relax 

upon removal of ZnII (a state not accessible by crystallography), and allow for direct 

examination of the structural changes that attend hydrolysis of a single C38-C38 disulfide 

bond in the tetramer. 

We examined the structural ensembles for quantitative descriptors that could 

serve as reaction coordinates to describe the process of tetramer opening. In the available 

crystal structure of C38/C81/C96R14, we observed an increase in the Cα distance between the 

two C38 residues (d38-38) that undergo disulfide bond breakage, from a distance of 5.5 Å 

to 10.6 Å upon ZnII removal. A similar trend was observed for the two metal-free 

simulations of C38/C81/C96R14, where d38-38 increased from 5.7 Å in the six-disulfide 

structural ensemble to 11.5 Å in the five-disulfide ensemble. We were interested in 

structural descriptors that encompassed larger collections of atoms in the two structural 

states, such as opposing pairs of α-helices within the tetramer. Using the naming 

convention outlined in Figure 4.10, the C38-C38 disulfide bond that undergoes breakage 

is contained in the Helix2-Helix2 pair of protein chains B and D. The distance between 

the centers of mass of these helices (dH2-BD) was found to significantly increase from the  
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Figure 4.8 Selecting internalized waters in fully-solvated C38/C81/C96R14. 
The C38/C81/C96R14 was solvated using flood, and placed in a cube of water 85Å to a side using SOLVATE in 
VMD. We regarded waters as internalized if they were within 18 Å of all four protein chains, and within 18 
Å of the centrally located residue 69. Show as red spheres are water that satisfy these selection criteria. 
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Figure 4.9 Metal-free states of C38/C81/C96R14 simulated by all-atom molecular dynamics. 
Removal of ZnII from C38/C81/C96R14 likely results in a transient metal-free intermediate state bearing six 
disulfide bonds.  Reaction of hydroxide with a disulfide bond yields a tetrameric species bearing five 
disulfie bonds and in a closed state, which can further rearrange to adopt a more open configuration. 
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six-disulfide bond state (19.5 Å) to the five-disulfide bond state (27.1 Å) (Table 4.8). We 

measured the structural differences of the other pairs of i1 interfacial helices, and the 

other largest change was found between the opposing pair of Helix3 segments in chains 

A and C, which contain the intact C38-C38 disulfide bond, where dH3-AC
 increased from 

10.2Å  to 13.4 Å (Table 4.8).  Additionally, the centers of mass of the four proteins in the 

tetramer describe a dihedral angle. Applying the topology convention outlined in Figure 

4.10, we found ψ4mer significantly increased from the six-disulfide state (13°) in 

transitioning to the five-disulfide state (34°) (Table 4.8).These simple structural metrics 

illustrate the global nature of the structural change that occurs upon C38-C38 hydrolysis 

in C38/C81/C96R14. All four protomers undergo structural rearrangement with respect to 

their i1 binding partner.  Additionally, physical intuition suggests that breakage of a 

single disulfide crosslink would permit a simple lever-like rearrangement, where the 

intact C38-C38 disulfide bond is the pivot point of the entire structure. The observed 

rearrangement is more complex than this, as shown by the relative magnitude of the helix 

3 separations (dH3-AC
 > dH3-BD), which run counter to the trend expected from lever-like 

rearrangement. Even so, the engagement of both i1-bridged dimers in structural rearrang 

ment is consistent with the biochemical characterization of the C38-bearing R1 variants, 

which show that C38-C38 hydrolysis requires a crosslinked tetrameric architecture to 

proceed (see Chapter 3). 

 Molecular dynamics simulations of C38/C81/C86R14 structural rearrangement. Using 

the metal-free, six-disulfide state of C38/C81/C96R14 as the initial state, we set out to 

simulate the structural transitions that occur between the closed and open tetrameric 

states upon disulfide bond hydrolysis. The simulations employed in this work do not all- 
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Figure 4.10 Topology and naming convention of key C38/C81/C96R14 structural parameters. 
The structures of C38/C81/C96R14 used for molecular dynamics simulations in this work employ the topology 
naming convention depicted above, with gray boxes denoting the chain identities, and numbers depicting 
the individual α-helices of each protomer in the overall 16-helix bundle topology. Helix-helix distances that 
showed the pronounced difference in the two metal-free states of C38/C81/C96R14 (dH3-AC and dH2-BD) are 
encircled in red. The dihedral angle described by the centers of masses of the four protomers as shown 
above, ψ4mer, was also found to change significantly between the two states. 
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Table 4.8 Structural parameters of metal-free C38/C81/C96R14. 
Values reported in the table were averaged over 40 ns simulations of metal-free C38/C81/C96R14 initialized in 
the indicated state. Parameter errors are the standard deviations of measurements made at 1 ps intervals 
during the course of the simulations. 

 
 

  
6-disulfide 

state 
5-disulfide 

state Difference 
Cα separation (Å)       

d38-38 5.7 ± 0.3 11.5 ± 0.4 5.8 
Helix separation (Å)       

dH2-BD 19.5 ± 0.3 27.1 ± 0.4 7.6 
dH3-AC  10.2 ± 0.4 13.4 ± 0.2 3.2 
dH2-AC  19.6 ± 0.3 19.5±0.4 -0.1 
dH3-BD

  10.3 ± 0.4 11.4±0.3 1.1 
Dihedral (°)       

Ψ4mer
  13 ± 1 34 ± 2 21 
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ow for modelling of bond breakage events. However, the chemical change of interest 

could be manually installed on the starting state, allowing us to observe the resultant 

structural changes in silico. We restarted the simulations following manual C38-C38 

disulfide bond breakage, and observed rapid structural changes that corresponded to 

tetramer opening . The d38-38 of the broken disulfide bond, and the distance between the 

flanking helices (dH2-BD) sharply increased (Figure 4.11a-b). However, during the course 

of the simulations attempted, full tetramer opening was never observed, and the structure 

instead adopted a partially-opened intermediate state (Figure 4.11a-b). Moreover, the 

separation of the opposing helices, and the commensurate increase in dH3-AC, was never 

observed in these simulations, and we instead noted a modest decrease in the distance 

between their centers of mass (Figure 4.11c). The dihedral described by the tetramer as a 

whole, ψ4mer, increased toward the value expected from the 5-disulfide simulation of 

C38/C81/C96R14, but also suggested stalling at an intermediate species partway between the 

two previously-observed states (Figure 4.10d). Though far from a full depiction of the 

structural transition that occurs upon C38-C38 disulfide hydrolysis, these results 

suggested that a significant driving force leads to a structural ensemble where the 

resulting Cys38 and Csa38 residue are outside of reasonable disulfide bonding distance 

(d38-38
 > 7 Å).18 Additionally, bond breakage induces some degree of local structural 

elasticity, as can be inferred from the large changes in d38-38 and dH2-BD. However, the 

overall transition from the six-disulfide state to the five-disulfide state suggested by the 

crystal structures involves changes throughout the entire tetramer. Moreover, these 

structural changes do not seem to be accessible by the stochastic sampling of 

conventional molecular dynamics, as the dH3-AC and ψ4mer parameters do not trend signify- 
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Figure 4.11 Changes in C38/C81/C96R14 structural parameters following simulated bond breakage. 
Structural parameters of metal-free C38/C81/C96R14 initially simulated in the metal-free, six-disulfide bonded 
state following manual breakage of the C38-C38 disulfide bond linking chains B and D. Blue lines are 100 
ps averages of measurements made at 1 ps invervals. Black lines denote the target values expected from 
simulating metal-free C38/C81/C96R14 initialized in the five-disulfide state. 
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cantly toward the values observed for the five-disulfide bond simulation built from the 

metal-free C38/C81/C96R14 crystal structure. 

Accelerated molecular dynamics of C38/C81/C96R14 opening. Effective sampling of 

rare events is a fundamental problem facing molecular dynamics simulations.19, 20 The 

potential energy surfaces of structural changes in proteins are frequently rough, and can 

feature many local minima separated by energy barriers that present kinetic barriers to 

effective sampling. Therefore, there have been significant efforts to address this problem 

through enhanced sampling methods. Steered molecular dynamics (see below) can 

furnish a starting series of structures that sample a transition of interest, which can be 

used to get thermodynamic information by umbrella sampling.21 Replica exchange 

employs parallel simulations at different temperatures with defined exchange points and 

probabilities, giving thermodynamic information in spite of such kinetic barriers.22 A 

swarm trajectory approach has been developed to examine structural transitions, where 

short unbiased trajectories are carried out iteratively to obtain a transition path.23 Here, 

we explored the use of Gaussian Accelerated Molecular Dynamics (GaMD) as a method 

of enhanced sampling of C38/C81/C96R14 that would allow us to recover thermodynamic 

information on the observed structural change.24 Briefly, this method carries out a short 

unbiased trajectory to determine an appropriate boost potential for the system. The boost 

potential improves the transition probabilities over energy barriers, and can be accounted 

for to estimate the unbiased potential energy landscape of the system.24  

We set out to use GaMD as a means to sample the transition path between the two 

structural states observed for C38/C81/C96R14.  We carried out GaMD simulations on metal-

free C38/C81/C96R14 following manual disulfide-bond breakage. We carried out 
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conventional molecular dynamics (cMD) simulations with a 400 ps preparatory phase 

where GaMD parameters were not estimated, followed by 2 ns of cMD for estimating 

GaMD parameters (Table 4.9).  In addition to the default boost parameters that are 

applied to the total potential energy of the system, we explored dihedral-only and dual-

boost parameters (Table 4.9).24 We note that the structural changes observed between the 

two states include changes to the dihedral angles of the remaining disulfide bonds, and 

reasoned that boost potentials applied to the dihedral parameters could be effective. 

Significant rapid structural opening was found to occur during the preparatory phase of 

the GaMD when parameter estimates were made, but output structures were not written 

(Figure 4.12). Therefore, we also carried out GaMD simulations with no preparatory 

phase, and which applied the boost parameters determined from a separate simulation. 

We note that this treatment of the system likely undermines the thermodynamic rigor of 

the GaMD acceleration, but was appropriate for obtaining a simulation trajectory of the 

full structural transition. While we did observe changes in some structural parameters 

(d38-38, dH2-BD) that suggested an approach toward the 5-disulfide structural state, we again 

saw the simulations stall out at a structural intermediate (Figure 4.13). 

Steered molecular dynamics of C38/C81/C96R14 opening. To more rapidly sample the 

structural transition that occurs in C38/C81/C96R14 following in silico disulfide bond 

breakage, we set up pulling simulations of the protein. These simulations monitor one or 

more parameters of interest relative to some specified target values. Deviation of the 

parameter from the target value will develop a force that biases the stochastic 

conformational sampling toward the target value. Additionally, we varied the target value 

during the course of such simulations in order to carry out simulated pulling of  
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Table 4.9 GaMD boost parameters for simulations of C38/C81/C96R14 opening. 
GaMD boost parameters for metal-free C38/C81/C96R14 simulations carreid out immediately following manual 
disulfide bond breakage. Parameters were obtained from a 1x106 timestep cMD simulation that followed a 
2x105 timestep preparatory phase.  

 
 

boost mode 
Eboost 

(kcal/mol) k0 
dihedral 2120 0.0000198 

total -187000 0.0000172 
dual (dihed.) 2150 0.0027620 
dual (total) -189000 0.0000165 
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Figure 4.12 Structural changes in C38/C81/C96R14 during GaMD following a preparatory simulation. 
GaMD simulation of metal-free C38/C81/C96R14 initially simulated in the metal-free, six-disulfide bonded state 
following manual breakage of the C38-C38 disulfide bond linking chains B and D. Blue lines are 100 ps 
averages of measurements made at 1 ps invervals. Black lines denote the starting values of the structural 
parameters preceding the preparatory cMD simulation, and during which output structures are not saved. 
Data shown were collected using the total energy boost mode of GaMD. 
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Figure 4.13 Structural changes in C38/C81/C96R14 during GaMD with preparatory phase omitted. 
Structural parameters of metal-free C38/C81/C96R14 initially simulated in the metal-free, six-disulfide bonded 
state following manual breakage of the C38-C38 disulfide bond linking chains B and D. Blue lines are 100 
ps averages of measurements made at 1 ps invervals. Black lines denote the target values expected from 
simulating metal-free C38/C81/C96R14 initialized in the five-disulfide state. Data shown were collected using 
the total energy boost mode of GaMD. 
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C38/C81/C96R14 toward the open state observed in the five-disulfide bond simulation. 

Initially, we carried out pulling experiments with respect to the dC38-C38 parameter. 

However, we found this led to a highly localized application of force that would lead to 

buckling of the α-helices. Therefore, we next used the structural parameters discussed in 

Table 4.8 in order to carry out steered MD simulations. Given that the dH3-AC
 parameter 

actually moved farther away from the target value in both cMD and GaMD simulations, 

we reasoned that monotonic pulling from the fully-closed to the fully-open state would 

likely be ineffective. However, when carrying out a steered MD simulation using a less 

localized structural parameter, dH2-BD, we found that the unconstrained parameters, in this 

case dH3-AC
 and ψ4mer, showed no sign of converging toward the target values prescribed 

by the five-disulfide state simulation (Figure 4.14a-c). Similarly, constraining dH3-AC 

could drive the distances toward the desired target value, but the unconstrained dH2-BD
 and 

ψ4mer
 did not improve appreciably, suggesting that the structure was being driven toward 

an artefactual end state (Figure 4.14 d-f). Attempts to constrain all three parameters (dH2-

BD, dH3-AC, and ψ4mer) could, as expected, steer each toward its respective target value 

(Figure 4.15). However, removal of one of the constraints, such as enforcement of ψ4mer, 

revealed such end states to be far from equilibrated (Figure 4.15c), indicating that the 

structure was satisfying the criteria of the constraints in an artefactual manner. In all the 

cases above, inspection of the structures in these simulations revealed that the desired 

structural ensemble was not achieved. Emblematic of this was the failure to attain the 

correct i1 interfacial packing between chains B and D, which was expected to include the 

π- stacking interaction between the Trp66/Trp66 pair observed in crystallo (see Figure 

2.8e). As such, these trajectories were not regarded as suitable for obtaining thermodyn- 
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Figure 4.14 Structural changes in C38/C81/C96R14 from constant-velocity pulling of a single helix pair. 
Simulations were carried out on C38/C81/C96R14 from a partially opened intermediate achieved during MD 
simulations following manual disulfide bond breakage. (a-c) Changes to structural parameters arising from 
constant-velocity pulling with respect to dH2-BD, where kpull = 10 kcal/mol.  (d-f) Changes to structural 
parameters arising from constant-velocity pulling with respect to dH2-BD, where kpull = 50 kcal/mol. 
Constrained structural parameters are plotted in red, and unconstrained parameters are plotted in blue. 
Dashed lines show the target value of constrained parameters, or the end-state value expected from the five-
disulfide simulation for unconstrained parameters. 
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Figure 4.15 Structural changes in C38/C81/C96R14 from multi-parameter constant-velocity pulling. 
Simulations were carried out on C38/C81/C96R14 from a partially opened intermediate achieved during MD 
simulations following manual disulfide bond breakage. Constant velocity pulling was carried out 
simultaneously with respect to dH2-BD (kpull = 10 kcal/mol), dH3-AC (kpull

 = 50 kcal/mol), and ψ4mer (kpull = 10 
kcal/mol) during a 20 ns simulation. At this time, the constraint for ψ4mer was removed, while the 
constraints for dH2=BD and dH3-AC were maintained at a fixed target distance for an additonal 10 ns 
simulation. 
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amic information on the structural changes that attend C38-C38 hydrolysis in 

C38/C81/C96R14. However, they do illustrate the intricacy and complexity of the structural 

rearrangement that occurs in C38/C81/C96R14, and further underscore the global nature of 

this transition. 

4.4 Molecular dynamics simulations of C81-C81 and C96-C96 breakage. 

 Molecular dynamics allows us to access protein states that are not experimentally 

observed to better understand those that do arise. In the case of C38/C81/C96R14, we were 

interested in exploring the structural changes that would attend C81-C81 breakage and  

C96-C96 breakage, if such an event were to occur. Here, again, we used a Zn-free 

simulation of C38/C81/C96R14 in the six-disulfide state as a starting point, and manually 

broke one copy of each disulfide bond, giving a Cys and Cso pair. In the case of C81-C81 

breakage, we observed rapid and reversible opening of the tetrameric structure, which can 

be described by the Cα separation of the residues at site 81 (d81-81) (Figure 4.16a). 

Assuming the observed transitions constituted a representative equilibrium description of 

the system, the free energy of the system with respect to a chosen reaction coordinate (ξ) 

can be determined. The relationship between the probability of adopting a particular 

microstate, P(ξ), and the free energy of the can be obtained from the partition function, 

and stated as follows: 

𝛥𝛥𝛥𝛥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  −𝑘𝑘𝑏𝑏𝑇𝑇 ln𝑃𝑃(ξ) 

We binned the simulated structures with respect to d81-81 in 0.5 Å increments 

(Figure 4.16b) and, using the above relationship, determine the potential of mean force  

 (PMF) of structural opening with respect to the chosen reaction coordinate, in this case 

d81-81 (Figure 4.16c). This analysis revealed a slight decrease in free energy upon open- 
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Figure 4.16 Thermodynamic analysis of C38/C81/C96R14 opening following C81-C81 breakage. 
(a) Cα separations of C81-C81 residue pairs forming an intact (blue) or broken (black) disulfide bond in 
C38/C81/C96R14. (b) Probability distribution of d81-81 for the broken disulfide bond, binned in 0.5 Å increments. 
(c) PMF of C38/C81/C96R14 opening following C81-C81 breakage. Points correspond to the relative free 
energies estimated for each histogram bin, and the solid line shows interpolated values. 
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ing (ΔGopen = -0.13 kcal/mol) and a modest activation barrier (ΔGbarr. = 0.72 kcal/mol) to 

tetramer closure. Therefore, in the event of C81-C81 breakage, tetramer closure could 

readily occur due to thermal motion of the protein. 

Breakage of a C96-C96 disulfide bond in metal-free C38/C81/C96R14 also led to significant 

structural changes. Here, we monitored structural differences using the Cα separation of 

the 96-96 residue pair (d96-96). Here, we observed tetramer opening, resulting in a 

significantly increased d96-96 that continued to fluctuate, but never returned to a fully-

closed state (Figure 4.17a). Generating a histogram by binning d96-96
 in 0.5 Å increments 

(Figure 4.17b) and determining the PMF with respect to d96-96 (Figure 4.17c) revealed a 

single-well potential that favored an open state, with the free energy minimum occurring 

at d96-96 = 11 Å (Figure 4.17c). If the free energy estimates for the most-closed state are 

taken as an estimate for the free energy of opening, we obtain ΔGopen < -5.9 kcal/mol. 

This is significantly larger than the value estimated for C81-C81 opening, and is unlikely 

to be surmounted by thermal energy. However, this value needs to be considered in the 

full energetic context of disulfide bond hydrolysis, which itself is not a 

thermodynamically favorable process. Therefore, we think it likely that C81-C81 bond 

breakage is not observed because the subsequent structural rearrangement provides 

insufficient energetic payoff to compensate for the penalty associated with bond 

breakage. Moreover, we anticipate that extending the simulation of C38/C81/C96R14 bearing 

a broken C96-C96 bond should lead to population of states that permit reformation of the 

disulfide bond. An extension of the simulation is also desirable to further justify the 

underlying assumption of thermal equilibrium of the system that was made in carrying 

out this analysis. 
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Figure 4.17 Thermodynamic analysis of C38/C81/C96R14 opening following C96-C96 breakage. 
(a) Cα separations of C96-C96 residue pairs forming an intact (blue) or broken (black) disulfide bond in 
C38/C81/C96R14. (b) Probability distribution of d96-96 for the broken disulfide bond, binned in 0.5 Å increments. 
(c) PMF of C38/C81/C96R14 opening following C96-C96 breakage. Points correspond to the relative free 
energies estimated for each histogram bin, and the solid line shows interpolated values. 
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4.5 End-state thermodynamic analysis of C38-C38 disulfide breakage. 

 
 In light of the difficulties associated with efficiently simulating the transition from 

closed C38/C81/C96R14 to the open state following C38-C38 disulfide bond breakage, we 

turned our attention to thermodynamic analysis of the end states of the structural 

transition.   For this, we utilized the molecular dynamics simulations of metal-free 

C38/C81/C96R14 in two states: a tetramer bearing a pair of intact C38-C38 crosslinks (a state 

not readily accessible by x-ray crystallography) with six disulfide bonds in total, and a 

tetramer bearing a single hydrolyzed C38-C38 disulfide bond with five remaining 

crosslinks (Figure 4.8). Simulating this pair of states elucidated the structural changes 

that occur following ZnII removal, as well as the structural differences that can only 

follow disulfide bond hydrolysis. One aspect of structural relaxation following ZnII is the 

dihedral strain of the disulfide bonds. The large difference in strain of the five disulfide 

bonds that persist between the Zn-bound and Zn-free crystal structures (ΔEstrain = -48 

kJ/mol) is diminished when comparing the two simulated metal-free states of 

C38/C81/C96R14 (ΔEstrain = -15 kJ/mol) (Table 4.10). However, focusing on this single 

energetic parameter does not fully capture the potential energy of the disulfide bonds, 

which includes many additional configurational and non-bonded energy parameters. 

Additionally, alleviation of disulfide bond strain is unlikely to be the sole driver behind 

C38-C38 disulfide bond hydrolysis following ZnII removal. Therefore, we sought to 

compute energetic descriptors of the other key residues in C38/C81/C96R14 as well. 
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Using the simulated structures of C38/C81/C96R14, we computed the change in the 

potential energy of the engineered residues (the i1 contacts, the disulfide bonds, and the 

metal binding ligands). This was accomplished by including configurational energetic  

erms (bonds, angles, etc.) and non-bonded interaction terms (electrostatics, van der 

Waals, etc.) of the entire protein structure, while excluding the C38-C38 disulfide bond 

modeled as undergoing hydrolysis. This excluded any systematic differences in the 

calculated potential energy that arose solely from the changes in type and number of 

atoms, and instead provided an estimate in potential energy difference arising from how a 

constant set of atoms was arranged (Estruct.). We computed Estruct. for the disulfide bonds, 

i1 interfacial residues, and metal ligands in the two states, and found ΔEstruct. for these 

engineered residues was well-converged during the 300 ns simulations (Figure 4.18). 

We determined ΔEstruct. for individual sets of key residues, (the i1 interfacial 

residues, the metal-binding ligands, and the disulfide bonds) to determine which residues 

experienced favorable changes in potential energy when undergoing the observed 

structural rearrangement that attends C38-C38 hydrolysis. Consistent with our analysis of 

disulfide bond strain, we found that rearrangement of the disulfide bonds to favored the 

structural rearrangement that attends C38-C38 hydrolysis (ΔEstruct. = -6.5 kJ/mol) (Table 

4.11). By contrast, the change in potential energy of the metal-binding ligands disfavored 

structural rearrangement (ΔEstruct. = +43.4 kJ/mol), meaning they are unlikely to drive of 

disulfide bond hydrolysis (Table 4.11). Of the three sets of residues we interrogated, the 

most favorable potential energy difference attended the i1 residues (ΔEstruct. = -164.5 

kJ/mol), implicating the rearrangement of these interfaces as a major driver of C38-C38 

breakage (Table 4.11). We further decomposed the change in potential energy of the i1 
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Table 4.10 Average disulfide strain in simulations of metal-free C38/C81/C96R14. 

 
  Average strain energy (kJ/mol) 

Disulfide site 
  

C38/C81/C96R14 

(6 disulfides) 
 

C38/C81/C96R14 

(5 disulfides) 

C38-C38  21  
15 

 
C81-C81  

17 
 

16 
 

C96-C96   13   10 
 

5-bond sum  81  66  
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Figure 4.18 Convergence of structural potental energy for C38/C81/C96R14 simulations. 
Potential energy of engineered residues (intact disulfide bonds, i1 interfacial residues, and metal ligands) in 
metal-free C38/C81/C96R14 were calculated for simulations in the five-disulfide and the six-disulfide state. The 
running average of the difference in structural potential energy (ΔEstruct) is plotted for the transition from the 
six-disulfide to the five-disulfide state. This energy estimate appeared stable for the pair of 300 ns 
simulations. 
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Table 4.11 Potential energy differences of key residues in metal-free C38/C81/C96R14 opening. 

 
 
 
 
  

ΔEstruct.(kJ/mol) 
 

 

Protein feature   Configurational 
 

Non-bonded Total 
Disulfide bonds  -24  17 -7  
Metal ligands  2  42 43  
i1 Residues   -41   -123 -165  
Opposing i1   -9  -120 -129 
Adjacent i1  -32  -8 -40 

i1-i1 interaction  -  - -4 
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residues, and found large favorable contributions from both the interface containing the 

broken disulfide bond (ΔEstruct. = -39.6 kJ/mol) and the interface containing the intact 

C38-C38 disulfide bond (ΔEstruct. = -128.6 kJ/mol) (Table 4.11). We note that these terms 

do not sum to the total reported for both interfaces due to non-bonded interactions 

between the two interfaces, which account for the small discrepancy of ~4 kJ/mol (Table 

4.11). 

The potential energy calculations performed on the C38/C81/C96R14 MD simulations 

provide insights into the energetic drivers of C38-C38 disulfide bond hydrolysis and 

subsequent structural rearrangement. Though modest relaxation occurs upon ZnII 

removal, the disulfide bonds and the i1 achieve more favorable arrangements, in terms of 

potential energy, following C38-C38 hydrolysis. The importance of the i1 residues 

suggests why the C38-C38 disulfide bond, which is embedded in i1, hydrolyzes upon ZnII 

removal rather than any of the other crosslinks. Additionally, the favorable changes in 

ΔEstruct. span both i1 interfaces, consistent with the fact that C38-C38 hydrolysis was not 

observed in C38R12, where rearrangement of both interfaces was no longer coupled due to 

removal of the i2-spanning disulfide crosslinks. Additionally, one would expect 

relaxation of both interfaces following hydrolysis of a single C38-C38 bond in C38/C96R14 

and C38/C81/C96R14 to account for the fact that both bonds were never observed to 

hydrolyze: the requisite driving force arises from, and diminishes throughout, the 

tetramer as a whole. Rearrangement of a single protein interface is not sufficient to drive 

C38-C38 hydrolysis, and coupling of the two interfaces by C96-C96 disulfide bonds 

provides the requisite driving force for breakage of one, but only one, disulfide bond. 
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4.5 Methods. 

The crystal structure of Zn-C38/C81/C96R14 (PDB 5L32) was used as the starting 

model for simulating C38/C81/C96R14 with six disulfide bonds, and the crystal structure of 

metal-free C38/C81/C96R14 (PDB 5L31) was used as the starting model for C38/C81/C96R14 

with five disulfide bonds. In the latter case, an unmodeled loop (residues 46-50) in the 

5L31 structure was repaired using PyMOL.25 In the final treatment of the systems, 

heteroatoms and crystallographic waters from both structures were removed, the tetramer 

interiors were measured using a 1.4 Å rolling probe in VOIDOO, and the internal cavities 

were solvated using FLOOD.17 The two structures were parameterized for the 

CHARMM27 forcefield,8, 9 with additional parameters previously reported for an 

oxidized c-type heme and its axial ligands.26 We also utilized custom CHARMM-

compatible forcefield parameters for the sidechains of cysteine sulfenic acid (Cso) and 

cysteine sulfonate (Csa) (see section 4.2). Missing hydrogens were added and atom 

types, and their associated parameters, were assigned to the system in VMD using the 

PSFGEN,27 and solvated in an 85 Å x 85 Å x 85 Å cube of TIP3P water using 

SOLVATE10, leaving at least 10 Å of space on all sides in both states. Ions were placed 

using the Autoionize plugin27 to simulate a 150 mM NaCl solute concentration and to 

neutralize the system. For the metal-free six-disulfide C38/C81/C96R14 system, 71 sodium 

ions and 47 chloride ions were added, while 72 sodium ions and 47 chloride ions were 

added to the five-disulfide-bearing tetramer.  Final builds of the solvated six- and five-

disulfide bonded C38/C81/C96R14 contained 56,796 atoms and 56,811 atoms, respectively.  
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 All molecular dynamics simulations were carried out on a home-built computer 

using NAMD2.10 with multi-core and CUDA support.28 Simulations were carried with a 

canonical NVT ensemble, with constant pressure (1.01325 bar) maintained by the Nosé-

Hoover method (piston period = 100 fs; piston decay = 50 fs). Temperature was 

maintained at 300 K by Langevin dynamics with a damping coefficient of 1 ps-1. Non-

bonded interactions were evaluated out to a 14.0 Å cutoff, with a switching function 

applied for distances exceeding 10.0 Å, and with long-range electrostatic interactions 

calculated using the Particle mesh Ewald method. Hydrogen bond lengths were held 

fixed using the SHAKE algorithm.29 Periodic boundary conditions were used for all 

simulations, and the dynamics trajectory was propagated using the velocity Verlet 

algorithm with a time step of 2 fs. 

Initially, all protein and heme atoms were held fixed, and the systems were 

subjected to 1,000 steps of steepest-descent energy minimization, followed by a further 

5,000 step minimization with no fixed atoms. The systems were equilibrated for 5 ns 

(2.5×106 steps), at which point the structures appeared to have relaxed. Subsequently, 300 

ns simulations were carried out at a rate of about 20 ns simulated time per day, with atom 

coordinates saved every 500 steps (1 ps). Potential energies were computed using the 

NAMDEnergy plugin in VMD. Potential energies were calculated for the i1 interfacial 

residues (residues A34, W41, S42, W66 and I69), the metal binding ligands (residues 

H63, H73, D74, and H77) and the disulfide bonds (residue C38, C81, and C96).  The 

C38-C38 pair modeled as broken in the five-disulfide simulations, and its intact 

counterpart in the six-disulfide simulation, were excluded from all potential energy 

calculations, as were all solvent atoms. Differences in structural potential energy 
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(ΔEstruct.) calculated as the difference in potential energy for the internal and interaction 

energies of the residues of interest in the two simulated states. Convergence of ΔEstruct for 

all three sets of amino acids was monitored by computing the running average (e.g., the 

nth point is the average of the first n frames of the simulation) from the atom coordinates 

over the 300 ns trajectories, which was plotted in Figure 4.18. The computed ΔEstruct. 

values averaged over the entire 300 ns trajectories for each set of residues are reported in 

Table 4.11. 

 

Chapter 4 was reproduced in part, with permission, from a manuscript currently 

being prepared for submission for publication: Churchfield, L.A.; Williamson, L.A.; 

Alberstein, R.G; Tezcan, F.A. Investigating the structural and mechanistic basis of 

allostery in a designed protein scaffold.  

The dissertation author is primary author on all reprinted materials. 
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Chapter 5: Conclusion and future 
directions. 
Chapter 5: Conclusion and future directions. 
 

 

 

 

 

5.1 Concluding remarks 

 Proteins are highly versatile building blocks that can be adapted to carry out an 

extraordinary range of functions. This complexity and diversity embodies both the 

potential of engineered proteins as biotechnological tools,1 biological therapeutics,2, 3 and 

in creating biomaterials.4 Achieving these goals will undoubtedly benefit from a rich 

understanding of the chemical and biophysical principles that underlie the functional 

capabilities of proteins. To this end, creating designed protein systems that approach the 

complexity of their naturally occurring counterparts, both in terms of composition and 
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coordinated function, will further expand the protein engineering toolkit, and furnish 

model systems for study. 

 The allosteric C38/C81/C96R14 system was generated by an iterative and synergistic 

design approach. The independently-tailorable interfaces of the protein complex can 

accommodate multiple distinct modalities of assembly: metal-binding groups, engineered 

protein-protein contacts, and redox-responsive disulfide crosslinks. Grafting these 

engineered features onto the cyt cb562 scaffold protein afforded an engineered variant, 

C38/C81/C96R1, that was capable of self-assembling into a Zn-bound homotetramer, Zn-

C38/C81/C96R14. Removing of ZnII from this templated scaffold led to the hydrolysis of a 

single C38-C38 disulfide crosslink, leaving five intact bonds remaining, including a 

second C38-C38 disulfide bond. The protein scaffold had remotely coupled the 

occupancy of its internalized ZnII sites to a peripheral disulfide bond. 

Incorporating multiple functional features in a single protein opens up the 

possibility of coordinated function, and properties that emerge from the collective action 

of multiple engineered features. Indeed, this was shown to be the case for the allosteric 

coupling of ZnII release and C38-C38 disulfide hydrolysis in C38/C81/C96R14. The modular 

and tailorable nature of the protein building blocks allowed us to interrogate scaffolds 

wherein disulfide crosslinks were selectively deleted. The observed allosteric coupling of 

ZnII to C38-C38 hydrolysis was found to persist in Zn-C38/C96R14, but this behavior was 

abolished in assemblies of disulfide-linked C38R1. These observations imply that the local 

rearrangement that occurs about a single protein-protein interface and its embedded C38-

C38 disulfide bond does not furnish sufficient driving force for bond scission. Instead, 
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covalent coupling of all four protomers within the tetrameric complex was necessary for 

ZnII release to result in disulfide bond hydrolysis. 

However, a purely phenomenological understanding of protein function, without 

any appreciation of the underlying chemistry and physics of such systems, remains a half-

told story. MD simulations provide a computational tool for understanding the dynamics 

and energetics of a protein system in exquisite detail. Through the lens of the 

computational microscope, one can interrogate states of interest that cannot be accessed 

experimentally. In the case of C38/C81/C96R14, this revealed that the structure only modestly 

rearranges upon ZnII removal, and that additional favorable rearrangements are 

obstructed by the intact C38-C38 disulfide bonds. Breakage of a single C38-C38 

disulfide bond permits tetramer opening that appears to be energetically driven by the 

relaxation of the remaining disulfide bonds, as well as favorable repacking of both i1 

interfaces within the protein. The intricate and multifarious structural and energetic 

changes that attend C38/C81/C96R14 provide insight into the basis of C38-C38 hydrolysis, as 

well as the reason that a single bond is cleaved. The process is driven, and dissipates, 

across the tetramer as a whole. Additionally, in silico breakage of a C81-C81 or C96-C96 

disulfide results in structural rearrangements that are attended by modest changes in free 

energy, revealing that the penalty associated with bond breakage is unlikely to be 

surmounted in these cases, an indication of why such breakage events were never 

observed for C38/C81/C96R14 or related disulfide-linked constructs that lack C38-C38 

crosslinks.5, 6  

Collectively, these observations reveal that the interfacial fluidity of the i1 

contacts7 is a crucial aspect of the observed allosteric behavior. These interfaces adopt 
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different packing configurations in the presence or absence of ZnII, and this is at the heart 

of the Zn-responsiveness of the structure. Additionally, this responsiveness must strike a 

balance between specificity and fluidity. It unclear that a promiscuous set interfacial 

contacts, with little orientational or packing preference, could ever furnish sufficient 

driving force to effect structural change. Conversely, an interface that is rigidly locked 

into a single preferred structure would be trapped in the minimum-energy configuration, 

and therefore also be incapable dynamic function. Returning to the schematic example of 

a designed biological system presented in Figure 1.2 provides a framework for 

appreciating the allosteric function on display in C38/C81/C96R14. This rudimentary function 

encapsulates the essential properties of biological complexity. Therefore, it is hoped that 

this example of protein design provides some insight and guidance to future design 

efforts aimed at generating functional protein assemblies with functional properties that 

approach the level of sophistication found in Nature. 

 

5.2 Toward a deeper understanding of C38/C81/C96R14 allostery. 

 The allosteric behavior of C38/C81/C96R14 is an intriguing phenomenon that has been 

probed through biochemical and biophysical methods in the present work. However, 

these investigations leave open productive avenues for further inquiry. Breakage of C81-

C81 and C96-C96 crosslinks in C38/C81/C96R14 afforded complexes that exhibited rapid 

structural transitions, which allowed for thermodynamic analyses of these events.  

An appropriate simulation that allows for similar quantification of C38-C38 

opening has remained elusive. A steered MD trajectory capturing the structural transition 

of interest would allow for the determination of the free energy changes that attend 
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structural opening following C38-C38 breakage. This analysis could be further extended 

toward quantification of a second, unobserved, C38-C38 disulfide bond, which can 

reasonably be expected to result in a C81/C96R14-like structure. Simulating such structural 

transitions would allow for a determination and an examination of the intermediate states 

that are adopted. Preliminary simulations carried out in this work demonstrate that 

tetramer opening following C38-C38 breakage is non-linear with respect to local 

structural metrics. The complexity of this transition may undercut the predictive power of 

intuition in planning a steered MD experiment that appropriately captures the structural 

transition of interest. In light of this, unbiased sampling methods such as replica 

exchange8 or replica exchange GaMD9 are possible routes to effectively modeling 

additional structural transitions of interest in C38/C81/C96R14. 

The analysis of the end-states for C38/C81/C96R14 opening that attends C38-C38 

breakage described here discounted the possible (and likely considerable) importance of 

solvation effects. Hemoglobin, the classic example of an allosteric protein, undergoes 

structural changes upon binding O2 that are thought to be accessible only due to the 

stabilizing effects of solvent molecules.10, 11 However, access to structural snapshots that 

depict the structural transition of interest would permit the quantification of the overall 

energetic contribution of solvent on the observed structural change.12 A more complete 

understanding of how the ZnII-free and ZnII-bound states differ would provide insight into 

the bulk measurements provided by ITC, which can difficult to interpret for ensembles of 

conformations.13 In the case of ZnII binding to C38/C81/C96R14, the apparent enthalpy of 

binding is, counterintuitively, endothermic. A complete and detailed picture of the 
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structural and energetic changes that occur upon ZnII binding would undoubtedly aid in 

resolving this puzzle.   

 

5.3 Exploring new elements of design complexity in the R1 scaffold. 

 While the C38/C81/C96R14 system illustrates engineering strategies by which 

challenges in protein design may be surmounted, there remain new opportunities for 

designing functional protein complexes with greater functional intricacy. Forming the 

C38/C81/C96R14 is accomplished due to the underlying propensity of the involved R1 

protomers to self-assemble, which drives the formation of the six disulfide crosslinks. 

Moreover, this is accomplished on top of the site-specific formation of the c-type heme 

linkages at Cys98 and Cys101 that occurs in vivo.14 One underexplored functional role 

for Cys in the R1 system is that of a metal ligand. The robust templating of the R1 system 

should, in principle, permit the relegation of exposed Cys residues to distinct functional 

roles. Replacement of the Asp74 ligand with an additional cysteine residue in efficiently 

templating C81/C96R14 scaffold gives the variant C74/C81/C96R1, which is expected to bear a 

His3Cys coordination environment similar to the engineered Type 1.5 Cu proteins.15 

Excitingly, when templated under an anaerobic atmosphere, the protein was found to 

preferentially for a tetramer in a ZnII-templated fashion (Figure 5.1). This permitted 

isolation and subsequent crystallization of the protein (Figure 5.2 and Table 5.1). The 

crystal structure revealed that, as designed, the cysteine residues adopted the distinct 

functional roles of metal-binding and disulfide bond formation. However, the templating 

of this sample was found to be poorly reproducible, frequently resulting in exclusive 

formation of aggregate, or failure to template following overnight incubation. Future 
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efforts involving this or other proteins should, therefore, include careful optimization of 

sample aeration and inclusion of chemical reductants/oxidants in the templating mixture. 

 The C38/C81/C96R14 contains several distinct assembly features, but the achievable 

complexity is limited by the incorporation of a single protomer. Achieving selective 

heteromeric assembly in designed protein systems has been reported,16 but remains 

challenging and difficult to generalize. One route to circumvent this challenge is to 

genetically fuse two protomers. A short peptide linker would hold two protein domains 

together, and would dictate the accessible relative orientations of the proteins. 

Constructing a homology model of the available Zn-R14 structure (PDB 3HNI) reveals 

that a linker of nine residues or more could connect the terminii of the proteins of a single 

i1-bridged dimer (Figure 5.3). However, when this construct expressed, purified, and 

analyzed by AUC, there was no discernable preference to adopt the desired 16-helix 

bundle dimeric species in the presence of ZnII. Preparation of construct bearing linker 

lengths, including a 15-residue bridging peptide, also did not show preference toward the 

expected 16-helix bundle topology (Figure 5.4). These variants also did not afford 

diffractible crystals, and the observed propensity to aggregate was consistent with the 

formation of a heterogeneous mixture in solution.  

Previous efforts to model suggest a preferred span length of ~ 10 Å,17 which is far 

exceeded by the 25.7 Å separating the terminii in the Zn-R14 structure (Figure 5.3), even 

before accounting for the added distance from wrapping around the exterior of the protein 

surface. Future efforts in this area could employ metal-binding residues that enforce a 

topology more readily bridged by a peptide linker. Moreover, such an assembly need not 

employ the i1 interfacial constructs of R1, which orient the terminii outward. Such a  
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Figure 5.1 Non-reducing SDS-PAGE gels of C74/C81/C96R1 templating reactions. 
Templating reactions were prepared under an anaerobic atmosphere (Ar + 10% H2) to contain 50 μM 
protein in the presence or absence of 1.5 equvalents ZnCl2. Templating buffer consisted of 50 mM Tris, pH 
7 and 150 mM NaCl. Samples were incubated under ambient atmosphere at 37 °C overnight. 
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Figure 5.2 Crystal structure of C74/C81/C96R14 bound to ZnII. 
Crystal structure of Zn-bound C38/C81/C96R14 alongside close-up views of the ZnII coordination sites and 
disulfide bonds. 2Fo-Fc electron density maps are contoured at 1 σ (black). Metal ligands (gray), disulfide 
bonds (purple) and engineered i1 contacts (cyan) are shown as sticks, while ZnII ions (red) are shown as 
spheres.   
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Figure 5.3 Homology model of an R1 fusion construct. 
A model based on the Zn-R14 structure (PDB 3HNI) depecting the possible connection of i1-bridged 
protomers. The N-terminal domain (red) is connected to the C-terminal domain (blue) by a 9-residue linker 
(black). Right inset depects the distance separating the C-α atoms of the terminal residues of each domain 
(analogous to residues 1 and 106 in unfused R1). 

 
  



 
 

 189   
 

 
 

 
Figure 5.4 SV-AUC profile of RF15 in the presence and absence of ZnII. 
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Table 5. 1 X-ray crystallography data collection and refinement statistics for C74/C81/C96R14. 
Values in parentheses denote statistics for the highest resolution shell. 

‡Rsym = ΣΣj|Ij − <I>|⁄ΣΣj|Ij|. 
§R = Σ||Fobs|  − |Fcalc||⁄ Σ |Fobs|. 
IIFree R calculated against 5% of the reflections removed at random for both structures. 
¶Root mean square deviations from bond and angle restraints. 
*Values in parentheses correspond to the highest resolution shell. 

  

Zn-C74/81/C96R14 

Data collection  

Space group P 21 

Cell dimensions  

a, b, c (Å) 49.0, 64.4, 74.9 

α, β, γ (˚) 90, 106, 90 

Resolution (Å) 1.7 

Rsym‡* (%) 4.4 (49.4) 

I/σ* 17.6 (2.9) 

CC1/2* (%) 99.9 (86.1) 

Completeness* (%) 99.3 (98.3) 

Redundancy* 3.7  (3.6) 

  

Refinement  

No. unique reflections 35091 

R§/Rfree II (%) 24.7/19.3 

R.m.s. deviations  

Bond lengths¶ (Å) 0.0211 

Bond angles¶ (˚) 1.881 
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design strategy would afford greater control over the assembly features, and permit the 

facile design of scaffolds exhibiting greater complexity of composition. 

 

5.4 Materials and Methods 

Preparation and crystallization of C74/C81/C96R14. The pET20b vector housing the 

C81/C96R14 gene as used as a template for site-directed mutagenesis. The H74C mutation 

was installed with the mutagenic primer pair 5’-GGTCAGATTCACTGC-

GCGCTGCACC-3’ and 5’- GGTGCAGCGCGCAGTGAATCTGACC-3’. The sequence 

was confirmed, and the protein was expressed, purified, and templated as described in 2.3 

Materials and Methods. Purified C74/C81/C96R14 was crystallized by sitting-drop vapor 

diffusion at room temperature. Crystallization screens were carried out using 500 µL 

reservoirs 2 µL of protein (1.5 mM monomer) and 1 µL of precipitant solution. 

Diffractible crystals were obtained with a precipitant solution consisting of 0.1 M Bis-

Tris (pH 6.5) and 45% 2-methyl-2,4-pentanediol, and 0.1 M NaCl2. Crystals were 

harvested, cryoprotected in perfluoropolyether cryo oil (Hampton Research), and stored 

in liquid nitrogen. Diffraction data was collected at 100K beamlines BL14-1 with 0.99 Å 

radiation at the Stanford Synchrotron Radiation Lightsource. Crystal data refinement and 

model building was carried out as described in 2.3 Materials and Methods. 

Preparation of R1 fusion constructs. A gene encoding an R1 fusion construct 

encoding two copies of the R1 gene linked head-to-tail by a nine-residue linker (RF9) 

was purchased from DNA 2.0 (see Appendix) in the pJ434 (low-copy) T7 expression 

vector featuring an AmpR marker gene. The gene of interest was flanked by NdeI and 

EcoRI restriction sites, and featured a BamHI restriction site within the linking peptide. 
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The codon usage of the second copy of R1 was manually altered to minimize sequence 

identity to the first copy in order to facilitate subsequent site-directed mutagenesis, and 

was therefore not codon-optimized. The purchased gene was successfully transformed 

into XL-1 Blue E. coli, but transformation into BL21(DE3) E. coli cells housing the ccm 

plasmid failed to yield viable transformants. The RF9 gene was cloned into the pET20b 

vector by NdeI and EcoRI cloning, and confirmed by sequencing. The protein was 

expressed and purified essentially as described in Section 2.3, except that 2 mM DTT was 

excluded from the purification buffers due to the absence of surface-exposed cysteines.  

R1 fusion constructs were generated by iterative site-directed mutagenesis using the 

mutagenic primers indicated in Table 5.2. The resultant peptide linkers of the R1 fusion 

constructs are given in Table 5.3. Protein samples (2.5 μM polypeptide; 5 μM with 

respect to heme) in the presence or absence of four molar equivalents (with respect to 

polypeptide) of ZnCl2 were prepared in a non-chelating buffer solution (20 mM MOPS, 

pH 7, and 150 mM NaCl). SV-AUC experiments were carried out as described in Section 

2.3. 

 
  



 
 

 193   
 

 
 
 
 
 
 
Table 5.2 Mutageneic primers for constructing R1 fusion genes. 

Variant Template Mutagenic Primer (5' to 3') 
RF5 RF7 GATCCGGTGGAGCGGCGGACC 
RF7 RF9 CCTGCCACCAGAAGTATCGTGGATCCGGTGG 
RF9 - - 
RF11 RF9 GAAGTATCGTGGAGGTAGCGGTGGATCCGGTGGAG 
RF13 RF11 GAAGTATCGTGGAGGTGGCGGTAGCGGTGGATCCGGTG 
RF15 RF13 GGTGGCGGTAGCGGCGGAGGTGGATCCGGTG 

 
 
 
 
 
Table 5.3 Linking petides encoded in R1 fusion genes. 

Variant Linking Peptide 
RF5 GSGGA 
RF7 GSGGGSA 
RF9 GGGSGGGSA 
RF11 GGSGGSGGGSA 
RF13 GGGGSGGSGGGSA 
RF15 GGGGSGGGGSGGGSA 
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Appendix 

Appendix 
Gene encoding RF9: 

ATGTTACGCACTGTGATCGTTGCCGGAGCCCTGGTGTTGACGGCGAGCGCCG
TGATGGCGGCTGATCTTGAAGACAATATGGAAACCCTCAACGACAATTTAAA
AGTGATCGAAAAAGCGGATAACGCGGCGCAAGTCAAAGACGCGTTAACGAA
GATGGCGGCCGCAGCGGCGGATGCGTGGAGCGCAACGCCGCCGAAGCTCGA
AGATAAATCACCGGACAGCCCGGAAATGCACGATTTCCGCCACGGTTTCTGG
ATTCTGATTGGTCAGATTCACGACGCGCTGCACCTGGCAAATGAAGGTAAAG
TAAAAGAAGCGCAGGCTGCTGCAGAGCAACTGAAAACGACCTGCAACGCCT
GCCACCAGAAGTATCGTGGAGGTGGATCCGGTGGAGGTTCGGCGGCGGACCT
GGAGGACAACATGGAGACACTGAATGATAACCTGAAGGTTATTGAGAAGGC
CGACAATGCCGCCCAGGTGAAGGATGCCCTGACCAAAATGGCCGCGGCGGC
AGCGGACGCCTGGTCTGCGACCCCACCGAAATTAGAAGACAAAAGCCCGGA
TTCTCCGGAGATGCATGACTTTCGTCATGGCTTTTGGATTCTGATCGGCCAGA
TCCATGATGCCCTGCATCTGGCGAACGAGGGCAAAGTGAAAGAGGCCCAAG
CGGCCGCGGAACAGCTGAAGACAACATGTAATGCGTGTCATCAGAAATACCG
TTAA 
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