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mmatory drivers of severe
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Graphical abstract
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d 124 genes differentially expressed (DE) in Hispanic people

with severe obesity

d ZNF438, LINC01503, MSL3, ARRB1, CACNB4, FCGRT, and

NCF1B generalized to adipose tissue

d AKT1, SCAP, and POLR2E were DE in adipose before and 1

year after bariatric surgery
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In brief

Chen et al. analyzed gene expression in

Hispanic Latino individuals with severe

obesity (BMI R40 kg/m2) in comparison

to controls, following up their 124 findings

with subcutaneous adipose tissue

expression, plasma proteomics, and

longitudinal analyses. Their findings

include inflammatory drivers and

highlight potential mechanistic

relationships between severe obesity and

known correlates of obesity, including

obstructive sleep apnea and

hyperaldosteronism.

Multiomics of Hispanic Latino individuals

with severe obesity highlights

inflammatory drivers and potential

mechanistic relationships between

severe obesity and its correlates.
ll

mailto:kari_north@unc.edu
mailto:jennifer.e.below@vanderbilt.edu
https://doi.org/10.1016/j.xgen.2025.100784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2025.100784&domain=pdf


OPEN ACCESS

ll
Article

Multiomics reveal key inflammatory drivers
of severe obesity: IL4R, LILRA5, and OSM
Hung-Hsin Chen,1,2,3,24 Heather M. Highland,4,24 Elizabeth G. Frankel,1,2 Alyssa C. Scartozzi,1,2 Xinruo Zhang,4

Rashedeh Roshani,1,2 Priya Sharma,4 Asha Kar,5,6 Victoria L. Buchanan,4 Hannah G. Polikowsky,1,2 Lauren E. Petty,1,2

Jungkyun Seo,4,7 Mohammad Yaser Anwar,4 Daeeun Kim,4 Mariaelisa Graff,4 Kristin L. Young,4 Wanying Zhu,1,2

Kalypso Karastergiou,8,9 Douglas M. Shaw,1,2 Anne E. Justice,10 Lindsay Fernández-Rhodes,11 Mohanraj Krishnan,4

Absalon Gutierrez,12 Peter J. McCormick,13 Carlos A. Aguilar-Salinas,14,15 Maria Teresa Tusié-Luna,16
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19Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional
Campus, Brownsville, TX, USA
20MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
21Institute for Precision Health at University of California, Los Angeles, Los Angeles, CA, USA
22Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
23Vanderbilt Translational and Clinical Research Center, Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
24These authors contributed equally
25Lead contact
*Correspondence: kari_north@unc.edu (K.E.N.), jennifer.e.below@vanderbilt.edu (J.E.B.)

https://doi.org/10.1016/j.xgen.2025.100784
SUMMARY
Polygenic severe obesity (body mass index [BMI] R40 kg/m2) has increased, especially in Hispanic/Latino
populations, yet we know little about the underlying mechanistic pathways. We analyzed whole-blood
multiomics data to identify genes differentially regulated in severe obesity inMexican Americans from the Ca-
meron County Hispanic Cohort. Our RNA sequencing analysis identified 124 genes significantly differentially
expressed between severe obesity cases (BMIR40 kg/m2) and controls (BMI <25 kg/m2); 33% replicated in
an independent sample from the same population. Our integrative approach identified inflammatory genes,
including IL4R, ZNF438, and LILRA5. Several genes displayed transcriptomic effects on severe obesity in
subcutaneous adipose tissue. We further showed that the genetic regulation of these genes is associated
with several traits in a large biobank, including bone fractures, obstructive sleep apnea, and hyperaldoster-
onism, illuminating potential risk mechanisms. Our findings furnish a molecular architecture of the severe
obesity phenotype across multiple molecular domains.
Cell Genomics 5, 100784, March 12, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Obesity is a major driver of the population burden of a variety of

diseases (e.g., type 2 diabetes [T2D], kidney disease, cancers,

maternal birth complications, asthma, liver disease) and dispro-

portionately impacts historically marginalized populations, such

asHispanic/Latinos (HL), as compared to non-HispanicWhites.1–9

Severe obesity (SO; body mass index [BMI] R40 kg/m2, approx-

imately >100 lb overweight) is an emerging and critical concern, as

it affects every organ system and is concomitant with nearly a

decade or more of life expectancy reduction.2,10,11 The preva-

lence of SO has doubled among US adults over the past 2

decades to 9.2%; women and HL have experienced the greatest

increases.10,12 However, SO has been an exclusion criterion in

many epidemiological and clinical studies and is often unidentified

in electronic health records andmortality data, limiting knowledge

about its complex etiology, mechanistic pathways, and interven-

tion targets, particularly in understudied populations.13–15

Obesity is a heterogeneous disease with involvement of the

central nervous system, including the pituitary gland and hypo-

thalamus (e.g., the leptin melanocortin system), hippocampus,

and limbic system (reward system),16 in addition to energy pro-

cessing and utilization,16,17 endothelial dysfunction, ectopic

fat deposition,18 and inflammation. While we and others have

made significant inroads to understanding the genetic architec-

ture of the full range of obesity (BMI R30 kg/m2) and its conse-

quences in HL populations (i.e., identifying new loci, refining, and

identifying causal effects of known loci on clinical health out-

comes), this area is still largely understudied.19–24 Furthermore,

we still know little about the disrupted molecular physiology

that underlies SO. While genome-wide association studies

(GWASs) have identified >1,000 loci associated with BMI to

date, we only understand the biologic mechanisms of a small

portion of these variants.25 Gene expression measures can illu-

minate links between genetic variation and diseases, pointing

to pathways for therapeutic intervention.26–34 It is also antici-

pated that the severe phenotype provides a greater ability to

detect causal signals and pathways leading to obesity and

from obesity to other metabolic derangements. Multiple gene

expression studies of obesity-related traits have been conduct-

ed, both with continuous BMI35 and with clinical definitions of

class 1 obesity (30 kg/m2 % BMI <35 kg/m2) as a binary trait.36

However, these studies have been limited by small sample sizes

(e.g., n < 20), lack of replication, failure to assess SO, and focus

on European ancestry. Two studies have explored gene expres-

sion differences in small samples of bariatric surgery patients

(<20 patients), before and after surgery; to date, no population-

based human studies have examined the role of gene expression

to identify molecular signatures associated with SO and down-

stream sequelae.37,38 Thus, our understanding of the causal

mechanisms of SO pathogenesis within and across relevant

metabolic tissues, particularly in understudied populations at

high risk, is limited. Such studies will be key to better under-

standing SO and its role in downstream diseases.

In this study, we aimed to improve the understanding of under-

lying molecular causes and clinical and molecular consequences

of SO by identifying and characterizing whole-blood (WB) tran-

scriptomic signals in adult Mexican Americans participating in
2 Cell Genomics 5, 100784, March 12, 2025
the Cameron County Hispanic Cohort (CCHC). We replicated

our study results in an independent sample from the same study

population and hypothesized that some of these effects may

also bemeasurable in other obesity-related tissues.We examined

the specificity of detected effects in abdominal subcutaneous ad-

ipose tissue (ASAT) from community volunteers from New York

City (20 kg/m2 < BMI < 40 kg/m2).39–41 We also hypothesized

that observed transcriptomic differences may translate to differ-

ential proteomic abundance in blood. Thus, we newly measured

protein abundance using the Olink proteomics panel and as-

sessed the evidence of association with SO in comparison to con-

trols for differentially expressed genes. Because we expected

some differentially expressed genes to exert causal effects on

SO risk, we used information from expression quantitative trait

loci (eQTLs) and SO GWASs to infer causal relationships. Finally,

to characterize the clinical phenome associated with these differ-

ential omics, we generated genetically predicted gene expression

measures in a large electronic health record-linked biobank to

assess clinical outcomes associated with genes differentially ex-

pressed in SO. These analyses, outlined in Figure 1A, contribute

significantly to our understanding of the range of health outcomes

linked to the dysregulation of both known and novel genes asso-

ciated with SO. Our cross-tissue and multiomics findings provide

systemic information aboutmetabolic homeostasis, hematopoiet-

ic development, and immune functions,42 highlighting metabolic,

inflammatory, adipose, and insulin-related mechanisms that

may inform our understanding of therapeutic targets for obesity

medicine and offering insights into the causes and consequences

of SO biology.

RESULTS

Demographic characteristics
As shown in Figure 1A, across our discovery and validation sam-

ples (including replication and proteomic samples), we selected

cases and controls from the CCHC, which includes 5,000 individ-

uals randomly selected from households in Brownsville, Texas on

the US-Mexico border. Table 1 and Figure 1C summarize the sub-

jects’ clinical characteristics. For the discovery stage, 49 CCHC

participants with SO (BMI R40 kg/m2) and 81 controls (BMI

<25 kg/m2) had complete phenotype data and high-quality RNA

sequencing (RNA-seq) data. For the validation stage, 111 inde-

pendent CCHC participants (52 cases, 59 controls) with complete

phenotype and high-quality RNA-seq data were considered for

replication. The proteomic validation considered 91 CCHC partic-

ipants (49 cases, 42 controls), some of whom overlappedwith the

samples that had RNA-seq data (both discovery and replication;

Figure 1B). As expected, all three SO case groups had elevated

rates of T2D, hypertension, and hypercholesterolemia, compared

to control study participants with BMI <25 kg/m2 (Table 1).

We investigated the transcriptome profile in ASAT of our iden-

tified genes in bulk RNA-seq data obtained from n = 19 commu-

nity volunteers in New York City who had needle aspirates of

ASAT with BMI ranging from 21.0 to 36.7 kg/m2. All females

were premenopausal and in the follicular state of their menstrual

cycle. Their characteristics are listed in Table 1.

To strengthen our inference for genes prioritized as causal for

SO, we analyzed RNA-seq measures from ASAT from an
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Figure 1. Study design

(A) Schematic of the study design for high-dimensional multiomics analysis. (Top, pink) Differential expression analyses in whole-blood (WB) RNA sequencing

(RNA-seq) in severe obesity (SO) CCHC cohort (WB-SO discovery).

(B) Sample overlap between the discovery, replication, and proteomics analyses in the CCHC.

(C) Histogram showing the distribution of BMI in discovery, replication, proteomics, and ASAT-BMI correlation analyses.

BMI, body mass index; CCHC, Cameron County Hispanic Cohort, GReX, genetically regulated gene expression.

Generated with BioRender. See also Figure S1 and Tables S1–S4, S5, S6, S7, S8, S9, S10, and S11–S13.
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additional independent ongoing longitudinal study of severely

obese Mexican individuals undergoing bariatric surgery and

participating in a 1-year follow-up as part of the Mexican Obesity

Study (MOSS).43,44We analyzed a total of 45 individuals with sub-

cutaneous adipose RNA-seq data at both time points (Table 1).

To better understand the broad clinical effects of the set of our

identified genes, we conducted a phenome-wide enrichment

study (PheWES) leveraging a large-scale electronic health re-

cord-linked biobank at Vanderbilt University, BioVU.

Transcriptomic discovery
We performed WB RNA-seq (49 cases; 81 controls) using stan-

dard protocols and alignment, yielding 18,565 genes after quality
control (STARMethods; Figure 2). After false discovery rate (FDR)

correction, 124 genes were significantly differentially expressed

(DEGs) between SO cases and controls (SO-DEGs) (Table S1),

including top genes C1RL, IL4R, OSM, RGS16, and SDC2.

Sixty-nine genes (56%) were downregulated and 55 (44%) were

upregulated. Broadly, these genes regulate immune and inflam-

matory activation (LILR5A, TLR5, IL4R, C1RL), cytokine signaling

(SOCS2, SOCS3, CISH), general cell growth/signaling/differentia-

tion/proliferation (SDC2, NHS, ZAK), general cellular effector and

energy production function (OSM, PPP1R10), and metabolism

(ENGASE,SLC37A3).Weconducted a sensitivity analysis, adjust-

ing our analyses for predicted and scaled blood cell types for

WB45; the correlation between the Wald statistics from DESeq2
Cell Genomics 5, 100784, March 12, 2025 3



Table 1. Demographic information of study participants

Trait

Discovery Replication Proteome ASAT BMI

(21.0–36.7)

ASAT MOSS

SO Control SO Control SO Control Pre-bariatric surgery

N 49 81 52 59 49 42 19 45

Male (n, %) 12 (24) 27 (33) 14 (27) 21 (36) 14 (29) 14 (33) 7 (37) 30 (67)

Age, y (mean, SD) 42.8 (17.7) 53.0 (19.1) 50.2 (14.3) 45.7 (17.6) 46.5 (13.7) 52.4 (17.4) 31.3 (7.8) 42.5 (11.2)

BMI, kg/m2(mean, SD) 46.2 (6.4) 23.0 (1.7) 51.3 (4.9) 22.8 (1.8) 45.6 (5.7) 22.9 (2.0) 27.5 (4.8) 46.1 (8.8)

Diabetes (%)a 19 (39) 20 (25) 25 (48) 11 (19) 12 (24) 6 (14) – 20 (44)

Hypertension (%)b 19 (39) 17 (21) 29 (56) 16 (27) 18 (37) 11 (27) 3 (16) –

Hypercholesterolemia (%)c 10 (20) 23 (28) 26 (50) 18 (31) 16 (33) 15 (36) – –

Severe obesity (SO) BMI >40 kg/m2; control BMI <25 kg/m2.
aHypertension: systolic blood pressure R140 mm Hg or diastolic blood pressure R90 mm Hg or use of anti-hypertensive medication.
bSelf-reported hypercholesterolemia.
cDiabetes: fasting blood glucose R126 mg/dL, HbA1c R 6.5%, history of diabetic medication, or diagnosed with diabetes.
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with and without cell-type adjustment was r = 0.878 and p < 2.23

10�16. All but 15 of our SO-DEGs remained significant in this anal-

ysis. To minimize confounding resulting from correcting for multi-

ple RNA-seq-derived variables, results unadjusted for cell types

are reported hereafter.

Validation
Transcriptomic replication

To replicate primary findings, we performed differential expres-

sion analysis in an additional non-overlapping set of 52 cases

of SO and 59 controls from the CCHC (Table 1). Among the

124 SO-DEGs, 104 were found to have the same direction of
4 Cell Genomics 5, 100784, March 12, 2025
effect, and 20 showed opposite effects (chi-squared p value

for the directional consistency = 4.58 3 10�14). Of the 43 genes

with significant differential expression in the replication (FDR

adjusted p < 0.05), 41 genes showed the same direction of effect

as in the discovery (chi-squared p value for directional consis-

tency = 2.72 3 10�9), and two genes (EGFL7, ARHGEF2)

showed an opposite direction of effect (Figure 3; Table S2).

Quantification of the effect of the transcriptomic profile of SO

showed that 47.6% of SO risk is explained by the 124 SO-

DEGs and 38.5% by the 41 replicated genes (STAR Methods).

Although to our knowledge, no population-based human

transcriptomic studies of SO have been previously published,
Figure 2. Discovery transcriptomics

Volcano plot for differential gene expression.

Scattered points represent genes: the x axis is the

log2 fold change, whereas the y axis is the –log10

of the p value. Red triangles and blue dots are

genes whose expression is significantly associ-

ated with SO in discovery analysis (FDR adjusted

p < 0.05); blue dots are also significantly associ-

ated with SO in independent replication analysis

(FDR adjusted p < 0.05).

See also Tables S1 and S2.
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Figure 3. Replication and generalization

(A) Upset plot summarizing intersections of 124

SO-DEGs. In the discovery stage, 124 genes were

significantly differentially expressed between SO

cases and controls; 41 out of 124 SO-DEGs were

replicated in an independent sample drawn from

the same cohort. Five genes were significantly

associated with SO out of 23 that overlapped in the

proteomic analyses, after FDR correction. A total

of 26 genes are significant in ASAT-BMI correlation

analysis using ASAT RNA-seq from New York City

community participants out of 102 genes that

overlapped. A total of 22 genes show significant

casual effects on SO in MR out of 105 genes for

which strong genetic instruments were available.

The histogram to the right shows the number of

genes that are significant in each analysis, and the

histogram to the left shows where each of the

124 genes was categorized across all analyses

conducted.

(B) Heatmap plot summarizing intersections, effect

estimates, and direction of effects of 124 genes

differentially expressed in SO versus controls. The

black box indicates FDR p < 0.05; the gray box

means tested but not FDR significant.

See also Tables S1, S2, S5, S6, S7, and S13.
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the GWAS literature, while limited by mapping to the nearest

gene, provides support for many of the genes we identified.

For example, 29 of the 124 SO-DEGs have been previously

reported in the GWAS Catalog46 as body shape and adipose

distribution loci (Figure 4A; Table S3). Additionally, 34 of

124 SO-DEGs have been associated with cardiovascular dis-

ease and risk factors such as lipid levels (Figure 4A;

Table S3). In the Common Metabolic Diseases Knowledge Por-

tal (CMDKP),47 the Human Genetic Evidence48 scores for 98

genes exhibit moderate to compelling support for anthropo-

metric traits (Figure 4B; Table S4). These genes were also impli-

cated in hematological, hepatic, renal, and lipid traits. Notably,

FCGRT showed compelling evidence across multiple domains,

including anthropometric, hematological, hepatic, lipids, and

metabolites. Similarly, SHISA4 showed compelling evidence

for anthropometric, cardiovascular, lipid, and sleep/circadian

traits. TNxB displayed compelling evidence of genetic involve-

ment in anthropometric, cardiovascular, and hematological

traits, with extreme evidence support for glycemic traits,

and very strong evidence for traits in T1D and immunological,

hepatic, renal, lipid, metabolite, and ocular domains. Other

genes have been implicated in the broader omics literature,

for example, DNA methylation at eight genes was previously

associated with BMI (BCL6, GALNT14, PLEKHM2, PTPRS,

SEMA6A, SOCS3, TP53INP2, VANGL1).49–56
Cell
Proteome association

To further validate our observed tran-

scriptomic effects, we tested associa-

tions in the plasma proteome for each of

our SO-DEGs. Protein abundance of 5

of the 23 available were significantly

associated with SO after FDR correction
(p < 0.05: LILRA5, OSM, CIRL, TNxB, IL4R [Figure 3;

Table S5]). Three of these five genes were significant in the repli-

cation transcriptomic study (LILRA5,OSM, and IL4R) (Table S5),

and four show directional consistency with the regulation

observed in the discovery analysis. TNxB shows an opposite di-

rection of effect in the proteomic analysis when compared to the

results from the discovery.

Correlation of ASAT gene expression with BMI

To explore whether the 124 SO-DEGs in WB generalized to

another key obesity-related tissue, ASAT,we investigated the cor-

relation of BMI with gene expression in ASAT in RNA-seq data

from 19 community volunteers (20 kg/m2 < BMI < 40 kg/m2). Of

the 124 SO-DEGs, 102 passed quality control, and 26 of these

were significantly correlated with BMI (FDR adjusted p < 0.05).

We observed strong associations between BMI and the ASAT

expression level of several of our top genes (e.g., IL4R, ZNF438,

CACNB4 [Figure 3; Table S6]).

Mendelian randomization

We used Mendelian randomization (MR) to investigate possible

causal relationships of gene dysregulation on SO using eQTLs

from both CCHC WB and additional relevant tissues in the

Genotype-Tissue Expression (GTEx) Portal as instrumental vari-

ables. We used a weighted median approach,57–59 which is

robust in the presence of up to 50% invalid instrumental vari-

ables.57 We found validated instruments for 105 of the 124
Genomics 5, 100784, March 12, 2025 5
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Figure 4. Literature support

(A) Diagram showing the number of SO-associated genes discovered in our analyses that were reported as mapped genes for traits contained within the GWAS

Catalog. Of the 124 discovered genes, 102 were found in our GWAS Catalog search. Traits with evidence of genome-wide significant association (p < 53 10�8)

identified within each category and results by association are listed in Table S3.

(B) Heatmap showing the degree of evidence of involvement of each SO-DEG in cardiometabolic trait groupings from the CMDKP. The full query is in Table S4.

The image in (A) was generated with BioRender. See also Tables S3 and S4.
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SO-DEGs, and after FDR correction, 22 genes demonstrated

significant casual effects in SO in at least one tissue in the

weighted median MR analyses. Seven of the genes with
6 Cell Genomics 5, 100784, March 12, 2025
significant causal effects in SO (ARHGEF2, ZNF33A, IL4R,

SHISA4, ZNF438, POLR2E, ST3GAL4-AS1) were among those

that independently replicated after FDR correction (adjusted



Figure 5. Causal effects

Forest plot of the causal effect size with 95%

confidence interval for genes demonstrating sig-

nificant casual effect for SO in two sample median

weighted MR analyses (FDR adjusted p < 0.05).

The instrumental variables (IVs) were selected

from eQTLs in obesity-relevant tissues from GTEx

and eQTLs developed from CCHC WB tran-

scriptomic data (n = 645). The association be-

tween the IV and outcome (SO) were estimated

using SO GWAS summary statistics from both a

European ancestry analysis and an independent

Hispanic/Latino analysis.60

See also Table S7.
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p < 0.05; Figure 5). An overview of full MR results is given in

Table S7.

Prospective analyses

To support our findings of causal inference, we assessed the

association of the baseline expression of these 11 genes with

incident class 2 obesity during follow-up (Table S8A). Among

the identified causal genes identified in our MR analyses, SKA2

expression (log2 fold change =�0.31, p = 0.0032) showed signif-

icant effects on obesity incidence after Bonferroni multiple test

correction. Nominal significance was observed at AKT1. The

results for all tested genes are shown in Table S8B.

Differential gene expression in ASAT of bariatric

patients followed longitudinally

To additionally support our findings of causal inference, we as-

sessed change in expression in abdominal ASAT from an ongoing

longitudinal study of 45 Mexican individuals with SO undergoing

bariatric surgery and participating in a 1-year follow-up as part

of MOSS. Nineteen genes prioritized by MR were measured in

this study, and of these, AKT1, SCAP, and POLR2E showed

significantly altered expression across time pre- and post-bariat-

ric surgery (FDR adjusted p < 0.05). The results for all tested genes

are shown in Table S9.

Pathway enrichment analysis

We conducted pathway enrichment analyses to explore the bio-

logical systems underlying our 124 SO-DEGs. We performed an

over-representation test with two established datasets, Gene

Ontology (GO) and WikiPathways. After multiple test correction

(FDR adjusted p < 0.05), we found 52 significant GO terms—2

from molecular function and 50 from biological process—and

3pathways fromWikiPathways (Table S10). The top fiveGO terms

include response to peptide (GO: 1901652, raw p = 1.583 10�8),

response to peptide hormone (GO: 0043434, p = 1.7 3 10�7),
Cell G
response to organonitrogen compound

(GO: 0010243, p = 3.203 10�7), insulin re-

ceptor signaling pathway (GO: 0008286,

p = 1.153 10�6), and response to nitrogen

compound (GO: 1901698, p = 1.29 3

10�6). The three significant WikiPathways

are the prolactin signaling pathway

(WP2037, p = 2.41 3 10�4), the leptin

signaling pathway (WP2034, p = 2.41 3

10�4), and the overlap of cellular insulin

and leptin signaling (WP3935, p = 2.51 3

10�4). These pathways highlight key mo-
lecular mechanisms that may be disrupted in SO (Figure S1).

Notably, the insulin and leptin signaling overlap, insulin signaling,

and prolactin signaling pathways have well-established roles in

obesity pathogenesis and were enriched in a recent study of

gene expression and BMI.61

PheWESs

We then investigated the broader clinical relevance of our findings

in the electronic health record-linked DNA biobank, BioVU. We

tested for the enrichment of significant associations between a

phecode and imputed tissue-specific genetically regulated

expression (GReX) of 124 SO-DEGs, phenome-wide (1,766

phecodes). This analysis revealed significant enrichment of 25

phecodes after Bonferroni correction (p < 2.8 3 10�5) (Figure 6;

Table S11). These included anomalies of pupillary function (phe-

code 379.4, 56 GRexassociations, p < 1 3 10�6), fracture of tibia

and fibula (800.3, 55 GReX associations, p < 1 3 10�6), mixed

hyperlipidemia (272.13, 54 GReX associations, p = 1 3 10�5),

obstructive sleep apnea (327.32, 54 GReX associations, p < 1 3

10�6), and regional enteritis (555.1, 54 GReX associations,

p = 13 10�5).

To prioritize gene expression profiles that are estimated to be

causal for SO and clinical phenotypes identified in our PheWES,

we conducted MR using tissue-specific GReX from causal

genes as instrumental variables. Among the 25 identified clinical

phenotypes, we observed a significant causal effect of SO on

fracture of the upper limb after FDR correction (phecode 803,

raw p = 0.0019) (Table S12).

DISCUSSION

Here, we performed a genome-wide transcriptomic analysis of

individuals with SO versus controls (BMI <25 kg/m2) and
enomics 5, 100784, March 12, 2025 7



Figure 6. PheWES

PheWES analysis of electronic health record-linked DNA biobank at Vanderbilt University, BioVU permutation-based testing of the enrichment of significant

association between a phecode and imputed tissue-specific genetically regulated expression of SO genes identified in our discovery analysis (124 genes)

phenome-wide (1,766 phecodes).

See also Tables S11 and S12.

Article
ll

OPEN ACCESS
evaluated the replication of findings in an independent transcrip-

tomic sample. In downstream analyses, we assessed evidence

for cross-tissue dysregulation, explored whether transcriptomic

differences translated to proteome abundance, established evi-

dence for causal effects, and investigated the clinical phenome

associated with molecular dysfunction in SO. Our findings un-

dercover novel genes influencing SO in a minoritized ancestrally

admixed population and yield heretofore undiscovered insights

into SO biology.

There is a paucity of WB transcriptomic studies of body mass-

related traits, with most of these studies restricted to European

ancestry participants or lacking replication and validation. A

2019 study measured microarray gene expression data and re-

vealed seven genes associated with BMI, although none of these

overlap with our discovered genes.36 A recent large multi-popu-

lation meta-analysis identified 45 genes whose expression in

cryopreserved peripheral blood mononuclear cells was signifi-

cantly associated with BMI; of these, SOCS2, SOCS3, PTPRS,

and GRAMD1B overlap with our discovered genes.61 Despite

the dearth of prior transcriptomic studies, many of the genes

identified in our study have been implicated previously in

genomic studies of SO and obesity-related traits (Figure 4;

Tables S3 and S4; Table S13). Previously, over 1,100 indepen-

dent loci have been identified for obesity and BMI in GWASs,

candidate gene, and family-based studies; however, in many

cases, the effect genes are uncharacterized or poorly character-

ized. We identified 124 genes whose expression is associated

with SO, and 29 of these have been described in the BMI/obesity

GWAS literature (Figure 4A; Tables S3 and S4). Additionally, the

CMDKP indicates that 57 of our discovered genes have compel-

ling, moderate, or very strong evidence for a role in BMI or

obesity (Figure 4B). Previously identified genes that were not

observed as significantly associated with SO in our analyses

may have tissue-specific function, impact BMI through a mech-
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anism other than RNA abundance, have modest effects on RNA

abundance requiring larger studies, or have different effect sizes

in HL populations.

Our differential expression analyses identified 66 genes asso-

ciated with SO that have not previously been described in the

GWAS literature for BMI or obesity phenotypes and do not

already have compelling evidence for a role in obesity in the

CMDKP. Twenty-eight of these genes replicated after multiple

test correction in a second sample drawn from the same popu-

lation. Because our approach identifies genes whose expression

differences may be the result of SO or causal for SO, it is likely

that some of these genes are dysregulated as a result of SO

and may not harbor genetic variation associated with risk.

Nonetheless, four of these replicated genes also show statistical

evidence of causality and highlight the power of differential

expression analyses for identification of new biology in SO.

Our integrative approach facilitated novel discovery of

inflammatory genes involved in SO pathogenesis (Figure 3A;

Table S13). IL4R displayed significant evidence of association in

all lines of study inquiry. IL4R is a ubiquitously expressed62,63 pro-

tein coding gene that inhibits lipid deposit and promotes insulin

sensitivity and glucose tolerance.While IL4R has not been associ-

ated previously with obesity, it has been associated with asthma

and inflammation in prior GWASs.64 Importantly, dupilumab in-

hibits interleukin-4 (IL-4) intracellular signaling and is used as a

treatment for asthma and eczema, and a previous study found

weight gain associated with dupilumab use.65 In addition, IL-4

reduced insulin secretion in the islets of healthy donors but not in

individuals living with T2D, supporting a mechanistic role in meta-

bolism.66ReplicatedgeneZNF438 also has evidence fromall lines

of inquiry inour studywithavailabledata (ZNF438wasnot assayed

on the Explore 3072 panel). ZNF438 demonstrated significant

causal effects on SO in MR and has been associated previously

with weight, BMI adjusted for hip and waist circumference, and
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leanbodymass.67,68ZNF438 is alsoawell-knownasthmasuscep-

tibility gene. Two additional genes, LILRA5 andOSM, showed ev-

idence of significant differential abundance between people with

SO-associated and controls across the transcriptome and prote-

ome.Theprotein encodedbyLILRA5 is amemberof the leukocyte

immunoglobulin-like receptor family, with activating and inhibitory

functions in innate immunity. AnassociationbetweenLILR5Agene

expression and BMI has been reported in Black children with

obesity.69 OSM regulates cytokine production, including IL-6,

which plays a role in obesity.70,71 Elevated OSM expression has

been observed in ASAT and visceral (omental) adipose tissue in

patients with SO and hyperglycemia72; it is thought that elevated

OSM expression may inhibit adipogenesis, reducing GLUT4

expression, increasing inflammation in human adipocytes, and

leading to the development of insulin resistance.73 Collectively,

these findings strongly support the role of inflammatory genes in

SO pathogenesis.

Our assessment of generalizability of replicated transcrip-

tomic effects across tissues revealed seven genes (ZNF438,

LINC01503, MSL3, ARRB1, CACNB4, FCGRT, and NCF1B)

with significant effects in WB and ASAT. ARRB1 is a key compo-

nent of the superfamily of G-protein-coupled receptors, where it

is responsible for agonist-mediated desensitization, dampening

cellular responses to hormones, neurotransmitters, and sensory

signals, all of which play critical roles in obesity pathogenesis. It

is also known to be a scaffold for downstream signaling proteins

and leads to a sustained cell response after stimulation.74

Furthermore, ARRB1 is thought to play a major role in recep-

tor-mediated immune functions. ARRB1 is a known triglyceride

GWAS signal, has been associated with metabolic activity in

cancer cells,75 and is required for adaptive b cell expansion in

obesity.76 CACNB4 is a b subunit of a voltage-dependent cal-

cium channel that modulates G-protein inhibition, which may

play a role in sensory cues related to obesity.77 An indel in

CACNB4 has been associated with a heightened risk of cardio-

vascular disease.78,79 FCGRT encodes a receptor that binds the

Fc region of monomeric immunoglobulin G. It has been associ-

ated with myriad cardiovascular disease traits in GWASs,

including metabolic traits such as T2D, triglyceride concentra-

tions, low-density lipoprotein cholesterol, and sex hormone-

binding globulin, among many others.80–84 Lastly, methylation

at NCF1B has been previously associated with maternal weight

in early pregnancy in WB.85

SKA2 andAKT1 provide the strongest evidence for causality in

MR and prospective analyses. SKA2 encodes spindle and kinet-

ochore-associated complex subunit 2, and variation in this gene

has been associated with height86 and lung cancer.87 Primarily

expressed in the cerebellar hemisphere, epigenetic modification

and expression of SKA2 in the brain has been associated with

suicidality and post-traumatic stress disorder.88–90 AKT1 has

been associated with APOL1,82 HDL,91 and height.92 Further-

more, candidate gene studies have implicated the phosphatidy-

linisitol-3-kinase (PI3K)/AKT/mTOR signaling pathway with

diabetes and obesity.93,94

Collectively, our gene-level findings highlight key inflammatory

pathways in SO pathogenesis and explain a large proportion of

risk. Cumulatively, our 124 SO-DEGs explain more (47.6%) of

the liability to SO than the recentMulti-Ethnic Study of Atheroscle-
rosis (MESA) transcriptomics study, which explained 29.7% of

BMI variance. Pathway analyses exploring the functional relation-

ships of all 124 SO-DEGs highlight key molecular mechanisms

that may be disrupted in SO (Table S10). One of our significant

GO terms, ‘‘phosphatidylinositol 3-kinase regulator activity,’’

was also identified by the MESA study. This GO term includes

SOCS2 and SOCS3, genes identified in both the MESA study

and our prior methylation studies.95 These genes, as well as

CISH, exhibited elevated expression in SO and also play key roles

in leptin receptor and prolactin signaling. Leptin acts as a multi-

functional hormone and hasmany receptors that activate intracel-

lular signaling pathways in the central nervous system and periph-

eral tissues, including the JAK/STAT pathway, PI3K pathway,

mitogen-activated protein kinase pathway, and 50-AMP-activated

protein kinase pathway.96 Expression of SOCS2, SOCS3, and

CISH is also stimulated by leptin, and this negative feedback

mechanism prevents overactivation of leptin-signaling pathways,

thus highlighting potential mechanisms of risk or consequences of

SO.97,98 IL-4R also signals through the JAK/STAT pathway after

linking with either IL-4 or IL-13.99 Notably, both the insulin and lep-

tin signaling pathways were enriched in a recent study of gene

expression and BMI.61 These mechanistic insights into inherent

factors that impact SO and downstream disease highlight novel

targets for early prevention and pharmaceutical intervention,

and increase the representativeness of the multiomics literature.

Further studies of SO will increase our knowledge about its pro-

gression, mechanistic pathways, and intervention targets.

Another gene identified in our studies, IL1B, joins CISH,

SOCS2, and SOCS3 in the enrichment of the prolactin signaling

pathway. IL1B is produced by activated macrophages as a pro-

protein, influencing other cytokines in an autoimmune network,

and may destroy b cells in the pancreas, causing insulin-depen-

dent diabetes.100 In addition, in humans, SOCS2 has been asso-

ciated with body weight,91 appendicular lean mass,101 and initi-

ation of puberty.67 In addition to SOCS2’s key roles in adipose

tissue remodeling, lipid metabolism, and energy metabolism,

SOCS2 knockout mice have reduced cytokine secretion and

changes in both innate and adaptive immunity, further high-

lighting the role of inflammation and immunoregulation in

SO.102 Of note, prolactin receptors and dopamine receptors

(the targets of prolactin) are present in human adipocytes and

pancreatic b cells, and excess circulating prolactin is linked to

increased obesity and glucose/insulin dysregulation.103

The broad array of outcomes associated with these genes and

the molecular systems impacted by their dysregulation highlights

the importance of understanding the broad clinical consequences

of their collective function. To that end, in a phenome-wide enrich-

ment analysis, we identified phenotypes more often associated

with our discovered genes than expected by chance. These ana-

lyses identified 27 outcomes significantly enriched in our gene

set, many of which have been supported through clinical and

epidemiological studies of obesity. Sleep apnea has been impli-

cated both in PheWAS104 and MR studies of obesity105 and was

oneofour strongest associations.Wealso identifiedstrongenrich-

ment of associationswith hyperlipidemia, which is expected given

the critical role of adipose tissue in lipid biology and metabolism

and consequences of T2D. For example, anomalies of pupillary

function are associated with diabetic autonomic neuropathy,106
Cell Genomics 5, 100784, March 12, 2025 9
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and riskofosteomyelitis, gangrene,anddisturbanceofskinsensa-

tion as a consequence of T2D is well established.107 In line with

known relationships between obesity, diabetes, and bone health,

we also observed enrichments with musculoskeletal diseases,

including knee fractures, and hernia, with leg fractures and frac-

tures of the upper limb, and with infectious disease risk, hospitali-

zation, and mortality, all of which have been extensively docu-

mented.108,109 The distribution of risk of morbidity and mortality

from infections is often J-shaped, with subjects that are under-

weight and those with SO harboring the highest risk. Associations

of SO with preterm birth,4 extremely low birth weight,4 and fetal

growth retardation5 are clinically well established. Our work adds

to this literature by connecting transcriptomic dysregulation of

these serious pregnancy complications with SO in adulthood.

Our phenome-wide enrichment analysis also revealed new as-

sociations. Although there is compelling clinical evidence linking

obesity with adverse drug events,110 the significant enrichment

of GReX associations to adverse drug events and drug allergies

among our identified genes highlight that shared regulation may

impact drug metabolism and drug allergies and SO.111 Addition-

ally, psychiatric disorders have been clinically associated with

obesity,112 and previous PheWASs revealed associations be-

tween genetically predicted BMI and depression.105 Here, we

report shared genetic regulation associated with SO and bipolar

disorder. Together, these clinical associations highlight the com-

plex consequences of genetic dysregulation of genes associ-

ated with SO.

Limitations of the study
Although our study leverages high-dimensional multiomics to

discover, replicate, generalize, and translate DEGs in SO, it is

important to note several limitations. BMI is a surrogate measure

of adiposity, and although widely used, does not distinguish lean

and fat mass or distribution. Our subsequent analyses are de-

signed to further substantiate the role of this gene in SO; however,

lack of validation in these downstream analyses could occur for

many reasons—the original finding might have been spurious,

the gene/protein might not be measured on the assay, ‘‘winner’s

curse,’’113 insufficient power in validation analyses, or poormolec-

ular typing. Because null findings are not equivalent to negative

findings for the aforementioned reasons,wehave focused our dis-

cussion on genes with significant evidence across multiple ana-

lyses. For example, our proteomics assays, while state of the

art, tested only a small subset of our discovered genes, limiting

our ability to assess the translation of differential transcript abun-

dance through to measured protein for some genes. Additionally,

WB, although the key circulating metabolically sensitive tissue,

may not capture well some tissue-specific changes that occur

as a cause or consequence of SO elsewhere in the body. Future

studies will be needed to test the generalizability of our findings

in larger samples and in additional obesity-relevant tissues

beyond ASAT. Lastly, due to limited sample size, we were not

adequately powered to conduct sex-stratified analyses.

Despite these limitations, our study brings together multiple

lines of evidence across omics measures and tissues to charac-

terize the DEGs in SO versus people classified as normal weight.

We provide compelling evidence for genes whose expression is

associated with SO in an underrepresented and disproportion-
10 Cell Genomics 5, 100784, March 12, 2025
ately impacted population, observing highly concordant effects

in an independent replication, generalization of effects in tissue

(i.e., ASAT) with BMI, and translation effects in the proteome.

Furthermore, our causal inference and PheWES analyses pro-

vide insight about the clinical consequences of genetic dysregu-

lation of transcripts associated with SO. Our findings illuminate

new mechanisms of risk and consequences of SO revealing

novel targets for prevention, intervention, and treatment of SO.

Exploring the heterogeneity of outcomes in those impacted by

SO will be an important component of future research.

RESOURCE AVAILABILITY
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For further information and requests for resources, reagents should be
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e.below@vumc.org).

Materials availability

This study did not generate any new unique reagents.

Data and code availability
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tified information requires dbGaP application to verify adequate protec-
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Pardo, R., Vila, M., Pellitero, S., Martı́nez, E., Tarascó, J., Moreno, P.,
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CCHC proteomics This paper dbGaP: phs003894.v1.p1

MOSS transcriptomics Miao et al.43 N/A

NYC ASAT transcriptomics This paper GEO: GSE287627
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PADRE Staples et al.115 https://hufflab.org/software/padre/

GENESIS R package Conomos et al.116 https://bioconductor.org/packages/

release/bioc/html/GENESIS.html
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

CCHC study subjects
In this study, we employed a case–control study design. The CCHC was established on the Texas-Mexico border in 2004.134 This

randomly ascertained community cohort currently comprises over 5000 people and is approximately 60% female. Individuals are

randomly selected from households in Brownsville, Tx, a city with a population that is >90% Mexican American (30% of whom

live below the poverty line, 60% lack health insurance). At visits, extensive examinations included blood samples drawn following

a confirmed 8-h fast. This study was approved by the Committee for the Protection of Human Subjects of the University of Texas

Health Science Center at Houston. The mean age of the CCHC participants at baseline was 45.2 years and 61% were >40 years

old. Blood samples were collected for biochemical risk factors, and DNA and RNA extraction. Anthropometric measures, including

BMI, were collected at baseline and over the course of each five-year follow-up examination. BMI is defined as weight in kilograms

divided by height in meters squared. Participants <18 years of age, pregnant women, individuals with major illnesses, and those

on weight altering medications were excluded from analyses. Severe obesity was defined as BMI R40 kg/m2 and controls BMI

<25 kg/m2 at the visit when the RNA specimen was collected (Figure 1C). All participants provided informed consent to be included

in genomic studies. This study was approved by the Committee for the Protection of Human Subjects of the University of Texas

Health Science Center, Houston.

NYC ASAT
RNAseq from ASATwas obtained from ancestrally diverse adult community volunteers in New York City (20 kg/m2 < BMI <40 kg/m2).

Observations with BMI <20.0 kg/m2 (to ensure adequate adipose sampling), weight loss or gain of ±3% over past 2 months, used

statins or medications that may affect glucose or lipid metabolism including beta blockers, thiazide diuretics, hypolipidemic agents,

thyroid hormone, or weight loss medications or formulas and/or have allergy to lidocaine were excluded from the adipose tissue

sampling. The ASAT data were collected under IRB protocols, STUDY-16-01150: Adipose tissue depots and metabolism,

STUDY-19-00122: Cellular mechanisms regulating depot differences in subcutaneous adipose tissue in women.

Mexican Obesity Study (MOSS) cohort
Individuals patients were recruited into MOSS at the Instituto Nacional de Ciencias Medicas y Nutricion (INCMN), Mexico City, as

described in detail previously.43,44 MOSS is an on-going longitudinal study of severely obese Mexican individuals undergoing bar-

iatric surgery and participating in a 1-year follow-up. We included a total of 45 individuals with subcutaneous adipose RNA-seq

data at both time points. The study was approved by the local ethics committee, and all participants provided written informed

consent.

BioVU
BioVU is a hospital-based biobank at Vanderbilt University Medical Center. The majority of participants are from Nashville metropol-

itan area and middle Tennessee. In our analysis, we performed the enrichment test in an established dataset of results (‘‘PredixVU’’)

from an analyses of the association of genetically regulated predicted gene expression with phecodes (n = 70,439 genotyped Euro-

pean).133 PredixVU contains gene-phenotype associations derived from a genetics-based transcriptome-wide association analysis

of BioVU.135 BioVU data use was reviewed by the institutional review board at Vanderbilt University Medical Center and determined

that the study does not qualify as ‘human subject’ research per x46.102(f)(2) under IRB# 151187.

METHOD DETAILS

CCHC genetic data
All CCHC individuals were genotyped using theMEGAExarray at VANTAGE at Vanderbilt. Wemeasured batch effects, removed spec-

imens with high levels of missingness, extreme heterozygosity, misspecification of sex, or duplicated specimens and pruned variants

with high levels of missingness (call rate <0.95), low minor allele frequency (MAF <0.01), or those that deviate from Hardy-Weinberg
e2 Cell Genomics 5, 100784, March 12, 2025
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equilibrium (p-value <10�6). Genetic relatedness was estimated in PRIMUS and PADRE and individuals related at first and second

degree were removed from further analysis.114,115 Genetic imputation for eQTL mapping was performed on all CCHC participants

using the TOPMed Imputation server with the TOPMed r2 panel.131 Verification of imputation quality by minor allele frequency

has been performed and preliminary measures of alternate allele concordance show >95% agreement between directly measured

and imputed genotypes across all MAF categories. Principal component analysis (PCA) was applied for capturing the population ge-

netic structure. For a robust and unbiased estimation, we conducted PC-AiR within the R package ‘GENESIS’, which estimates the

weights of PCs within unrelated set and predicted PCs for the related subset.116,136

CCHC RNA sequencing
A fasting peripheral blood specimen was collected using PaxGene tubes for each participant at both baseline and at each follow-up

exam. Specimens were stored at�80�Cwithin 20min of the draw. RNAwas extracted from all specimens and stored at�80�C. RNA
sequencing of CCHC participants was conducted using stored WB with sufficient quantity and quality at VANTAGE at Vanderbilt.

Total RNA quality was assessed using the 2100 Bioanalyzer (Agilent). Each sample had at least 200ng of DNase-treated total

RNA with RNA integrity number greater than 6 to generate polyA (mRNA) enriched libraries using TruSeq Stranded mRNA sample

kits with indexed adaptors (Illumina). Library quality was assessed using the 2100 Bioanalyzer (Agilent) and libraries were quantitated

using KAPA Library Quantification Kits (KAPA Biosystems). Pooled libraries were subjected to 150 bp paired-end sequencing ac-

cording to protocol (Illumina NovaSeq). Sixblood cell types were predicted and scaled using the R package DeconCell, a method

that quantifies cell types using expression of marker genes.45

We performed fastp for quality control and filtering the unqualified sequencing reads based on the read length and uncertain

sequence.137 The QC-passed reads were aligned to human genome reference (hg38) with STAR,118 and those aligned reads

were assigned and counted for each gene by featureCounts.119 We then performedMultiQC for quality control of overall sequencing

library, and samples with aligned reads <15M, alignment rate <40%, or assigned reads <15M were excluded.120 DESeq2 was per-

formed for library size normalization and gene-specific dispersion estimation.121

CCHC proteomics
Proteomic typing of frozen plasma samples was performed by Olink Proteomics (Waltham, MA) using the Explore 3072 panel (2,921

proteins including low-abundance inflammation proteins, proteins actively secreted into blood circulation, approved and ongoing

drug target proteins, organ-specific proteins that have leaked into blood circulation, and proteins representing more exploratory po-

tential biomarkers) in 270 CCHC subjects, with each subject measured at 1 or 2 timepoints (total n = 573 samples). The protein abun-

dance level was normalized in the full dataset. Olink data is presented as NPx(Normalized Protein expression) values, where NPxis

Olink’s relative protein quantification unit on a log2 scale. NPxvalues are derived from the number of matched read counts in

sequencing. Data values for measurements below limit of detection (LOD) are reported for all samples.

NYC ASAT collection and RNA sequencing
ASAT was collected at 9:00 a.m. (fasting state) for transcriptomic analysis and banking. A blood sample was additionally collected.

ASATwas collected approximately 5 cm lateral to the umbilicuswith a 2.5-mmcannula. RNAwas extracted from tissues quick-frozen

in liquid nitrogen using the Qiagen RNAseq Lipid Tissue Mini Kit (Cat no 74804). QC included RNA quality (bioanalyzer traces and

RIN). RNAseq was carried out using highly standardized procedures with strict quality controls (Genewiz.com).

MOSS RNA sequencing
Previously generated subcutaneous adipose RNA-sequencing data from theMOSS cohort were aligned to theGRCh38 genomewith

GENCODE v42 annotations138 using STAR v.2.7.10a.118 To account for novel splice junction sites, we ran STAR118 in a two-pass

mode, where splice junctions identified from the first pass were provided with the –sjdbFileChrStartEnd flag to the second pass

as an additional input to further improve the mapping process. We next obtained technical metrics for the reads using the

CollectRnaSeqMetrics command from Picard Tools v2.13.2,139 and counted fragments at the gene name level using featureCounts

v2.0.2.119

QUANTIFICATION AND STATISTICAL ANALYSIS

CCHC differential expression
PEER factor analysis was used to capture the unobserved confounders of transcriptome profiles.140We then implemented a negative

binomial model in DESeq2 to identify severe obesity-related genes with covariate adjustment for sex, age, 10 PEER factors and/or

comorbidities.121 Covariates in the regression model included type 2 diabetes, hypertension, and hypocholesterolemia. CCHC used

standard protocols and clinical definitions for hypertension (SBPR140 mmHg or DBPR90mmHg or use of anti-hypertensive medi-

cation), and type 2 diabetes diagnosis included participants using diabetes-related medications. The status of hypercholesterolemia

was queried from the questionnaire, ‘‘have you been diagnosed with high cholesterol?’’ Three seated resting systolic blood pressure

readings were obtained using random zero sphygmomanometers, retaining the mean of the last two measures. Fasting glucose was

measured in a CLIA-approved laboratory. After association testing, an independent filtering of lowly expressed genes using the
Cell Genomics 5, 100784, March 12, 2025 e3
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default thresholds in DESeq2 was performed and multiple test correction, FDR, was applied. For the 124 SO-DEGs identified in the

Discovery data, the same analysis was conducted in a second independent sub-sample of the CCHC.

Percent variance explained
To further quantify the effect of our identified transcripts on severe obesity, we estimated the percentage of explained variance

(adjusted R2), contributed by our identified genes in our replication dataset. To avoid collinearity among the severe obesity genes,

we conducted a PCA in our identified gene set, and determined the number of PCs that accounted for over 90% of overall variance.

A logistic regression on severe obesity with selected PCs and covariates (sex, age, 10 PEER factors, and comorbidities) was used to

determine the adjusted R2. We compared this estimate with the null model (only included covariates) to obtain the explained variance

of the genes of interest using the ‘‘rsq’’ R package.122 We estimated the percent variance explained for both the 124 SO-DEGs, as

well as the 41 genes that replicated.

CCHC eQTL mapping
We performed eQTL mapping using the GTExv8 pipeline.63 In brief, we selected 645 unrelated CCHC individuals (R3th degree of

relatedness) with both genotyping and RNA-seq data available for Hispanic/Latino-specific eQTL mapping.141 We aligned the

RNA-seq reads to the human genome reference using STAR, and then quantified each gene using RNA-SeQC.118,123 Read counts

were normalized by trimmed mean of M values (TMM), and inverse variance normalization was performed.142 PEER factor analysis

was conducted and 60 PEER factors were used in further analyses.140,143 FastQTL was performed to identify eQTLs in cis (±1MB) for

each gene with adjustment for sex, RNA-seq batch, 5 genetic PCs and 60 PEER factors. We determined the gene-specific signifi-

cance threshold using 10,000 permutations.124

CCHC proteomics
For proteomics, we implemented logistic regression analysis in a single time point measure from 49 individuals meeting criteria for

severe obesity and 42 controls with BMI <25 kg/m2 CCHC participants with adjustment for sex, age, type 2 diabetes, hypertension,

hypercholesterolemia, and 10 genetic principal components in the 23 protein products assayed from the genes in our discovery anal-

ysis. We applied FDR correction to determine the statistical significance of our results.

Correlation of ASAT gene expression and BMI
RNAseq from ASATwas obtained from ancestrally diverse adult community volunteers in New York City (20 kg/m2 < BMI <40 kg/m2).

Due to the limited sample size, we performed a non-parametric approach and assessed Spearman’s rank correlation between gene

expression and BMI to explore the effect of our discovered genes in ASAT. Only 102 of the 124 SO-DEGs were available for corre-

lation analyses. Statistical significance was assessed using FDR correction for multiple tests.

Mendelian Randomization
We conducted two sample Mendelian randomization (in which exposure and outcome measures are from independent samples) to

estimate the causality of gene expression on severe obesity.57 The eQTLs of the 106 SO-DEGs with validated instruments (see STAR

methods section on CCHC eQTLmapping) were used as instrumental variables for Mendelian randomization following the protocols

outlined in Zhou et al.,135 and we used two different sources: eQTLs estimated from CCHC WB and from obesity-relevant tissues in

GTEx, including WB, subcutaneous adipose, visceral omentum adipose, liver, skeletal muscle, amygdala, hippocampus, hypothal-

amus, pituitary, nucleus accumbens in basal ganglia, and substantia nigra. Linkage disequilibrium clumping was used to identify the

instrumental variables in each tissue separately, using the LD panels from the 1000 Genome European or Admixed Americans, and

the R package, ‘‘bigsnpr’’.125,144 The severe obesity GWASdata for these analyses were derived from the HL and European summary

statistics from a large meta-analysis of severe obesity.60 For these analyses we used amedian weighted MR analysis approach from

the R package ‘‘MendelianRandomization,’’ which offers an unbiased and reliable estimation even with half of instrumental variables

violating theMR assumption or with genetic pleiotropy (e.g., if the variant is not predictive of the exposure, the variant is dependent on

confounders, or the variant is not conditionally independent of the outcome given the exposure and confounders).57,126 To test the

robustness of our approach, we performed a secondary analysis using MR-Egger. We then compared MR estimates using a mixed

effect model, controlling for the cross-tissue correlation of each gene and weighted by the number of validated instrumental vari-

ables. The weighted median and Egger MR estimates (standardized z-statics) were significantly concordant (r = 0.298, p-value =

3.5 3 10�11).

CCHC prospective analyses
To validate the genes estimated to have causal effects on severe obesity byMR in whole blood, we examined the association of their

baseline expression with weight gain and incidence of class 2 obesity during follow-up. In an independent set of data from the CCHC,

we identified 21 cases without class 2 obesity at the time of RNA collection (BMI <35 kg/m2) who later developed class 2 obesity (BMI

>35 kg/m2), with a rate of BMI increase >0.5 kg/m2 per year. We also identified 55weight-stable controls (rate of BMI change�0.25 to

0.25 kg/m2 per year), with BMI <30 kg/m2 at baseline who did not develop obesity over at least five years follow-up. Demographic

data for the prospective analyses are shown in Table S8A. In these data, we performed differential expression analysis by DESeq2
e4 Cell Genomics 5, 100784, March 12, 2025



Article
ll

OPEN ACCESS
with obesity incidence as an outcome and including age, sex, BMI at baseline, and 10 PEER factors as covariates. We used Bonfer-

roni adjustment for multiple testing correction.

MOSS cohort longitudinal differential expression
We similarly aimed to strengthen the generalizability of the MR implicated genes in SAT tissue from an on-going longitudinal study of

severely obese Mexican individuals undergoing bariatric surgery and participating in a 1-year follow-up as part of MOSS. To identify

the genes DE by bariatric surgery status (at time of operation vs. 1 year postoperative), we used limma127 with the voom128 normal-

ization method. We first filtered the bulk expression data to retain only expressed genes, with at least 1 count per million mapped

reads in at least 10%of the samples.We then estimated the effects of bariatric surgery status on gene expression, wherewe included

the first three genetic PCs, as described previously,43 and the first PC of gene expression as covariates in themodel to account for the

admixed population structure and correct for technical factors. To account for repeated measures and thus test for differences per

individual patient, we used the duplicateCorrelation method,129 with patient ID as a blocking factor. We fit the described model for 19

of the 22 genes that were implicated as causal in MR analyses. We corrected for multiple testing using Bonferroni correction.

Pathway enrichment analysis
Pathway enrichment analysis was performed on the 124 SO-DEGs analysis usingWEB-based GEne SeT AnaLysis Toolkit.132 Genes

were tested for enrichment in the pathways and gene sets fromWikiPathway117 and the Gene Ontology Resources (GO) databases:

Biological Process (GO: BP), Cellular Component (GO:CC) and Molecular Function (GO:MF).145,146

PheWES
To estimate the enrichment of phecodes associated with genetically regulated expression of the identified severe obesity genes we

imputed tissue-specific genetically regulated expression levels (GReX) for all the genotyped BioVU European participants (n =

70,439) using GTEx data-derived Predixcan models.147 Next, we estimated disease-GReX associations using logistic regression,

phenome-wide.133 We then extracted the set of all phecodes significantly associated with the tissue-specific GReX of the 124

SO-DEGs after FDR correction and counted how many times each phecode was observed. To establish an empirical null expected

distribution of phecode counts, we performed 1,000,000 permutations of random sets of 124 genes. We then derived p-values by

comparing the observed count for each phecode in the severe obesity associated gene list to its null distribution with a minimum

attainable p-value of 1 3 10�6.

We applied MR to estimate the causal effect of severe obesity on the identified clinical phenotypes from the PheWES. The GReX

measures that we selected as instrumental variables for these analyses were calculated for the set of genes with significant causal

effects on severe obesity (p < 0.05, see MR above). As tissue-specific GReX may be highly correlated across tissues, for each gene,

we selected the tissue with the most significant GReX as the instrument variable. The association between GReX and clinical

outcome (identified clinical phenotypes) were obtained from PredixVU, a dataset contains phenome-wide and transcriptome-

wide analysis results from BioVU.133

Validation from extant body of literature
To assess prior evidence in the literature from GWAS studies, we queried the 124 SO-DEGs for previous association with obesity-

related traits in the NHGRI-EBI GWAS Catalog and the Common Metabolic Diseases Knowledge Portal (CMDKP).48 The GWAS

Catalog was searched by mapped gene (recognizing that mapped genes are often based on physical location and thus may not

represent the functional element underlying the GWAS signal) and all resulting genome-wide significant trait associations

(p < 5 3 10�8) were recorded (Table S3). We categorized phenotypes by broader trait categories (Table S3A) and display results

in Figure 4. We retrieved the Human Genetic Evidence (HuGE) scores from the CMDKP across all cataloged traits. HuGE scores

are categorized into seven evidence ranges: compelling (R350), extreme (R100), very strong (R30), strong (R10), moderate

(R3), anecdotal (>1), and no evidence (%1). We visualized the highest range of evidence for each gene within the 22 CMDKP pheno-

type groups using the ComplexHeatmap R package.130 HuGE scores for each gene-trait are in Table S4, and are,CM aggregated by

category in Figure 4B.

General:

All parametric tests were two-sided.

ADDITIONAL RESOURCES

Full discovery transcriptomics summary statistics: https://zenodo.org/records/14713355.

GWAS summary statistics for severe obesity: https://doi.org/10.5281/zenodo.14927159.60
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