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Background -—Coronary artery calcification (CAC) and carotid artery intima-media thickness 

(cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk 

factors for cardiovascular disease (CVD). Type 2 diabetes (T2D) is an independent CVD risk 

factor that accelerates atherosclerosis.

Methods -—We performed meta-analyses of genome-wide association studies (GWAS) in up to 

2,500 T2D individuals of European ancestry (EA) and 1,590 T2D individuals of African ancestry 

(AA) with or without exclusion of prevalent CVD, for CAC measured by cardiac computed 

tomography, and 3,608 EA and 838 AA with T2D for cIMT measured by ultrasonography within 

the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

Results -—We replicated two loci (rs9369640 and rs9349379 near PHACTR1 and rs10757278 

near CDKN2B) for CAC and one locus for cIMT (rs7412 and rs445925 near APOE-APOC1) 

that were previously reported in the general EA populations. We identified one novel CAC 

locus (rs8000449 near CSNK1A1L/LINC00547/POSTN at 13q13.3) at P=2.0×10−8 in EA. No 

additional loci were identified with the meta-analyses of EA and AA. The expression QTL 

analysis with nearby expressed genes derived from arterial wall and metabolic tissues from GTEx 

pinpoints POSTN, encoding a matricellular protein involved in bone formation and bone matrix 

organization, as the potential candidate gene at this locus. In addition, we found significant 

associations (P<3.1×10−4) for three previously reported coronary artery disease loci for these 

subclinical atherosclerotic phenotypes (rs2891168 near CDKN2B-AS1 and rs11170820 near 

FLJ12825 for CAC, and rs7412 near APOE for cIMT).

Conclusions -—Our results provide potential biological mechanisms that could link CAC and 

cIMT to increased CVD risk in individuals with T2D.

Keywords

coronary artery calcification; carotid intima-media thickness; population genetics; Genome Wide 
Association Study; type 2 diabetes mellitus; Genetic; Association Studies; Coronary Artery 
Disease; Diabetes; Type 2

Introduction

Cardiovascular diseases (CVD) remain a leading cause of mortality and morbidity among 

adults in developed countries1. The presence of subclinical atherosclerosis in individuals 

without clinically evident CVD is associated with an increased risk of developing clinical 

CVD, independent from traditional risk factors2–5. Individuals with type 2 diabetes (T2D) 

tend to have higher levels of coronary artery calcification (CAC) and common carotid 

intima-media thickness (cIMT)6, 7 and are at increased risk for CVD compared to those 

without T2D. Subclinical atherosclerosis can be directly visualized through imaging of CAC 

by cardiac computed tomography and cIMT by carotid B-mode ultrasound, both of which 

are highly heritable clinical phenotypes8–12. Although CAC and cIMT may have distinct 

genetic and biological determinants, genetic studies of both subclinical atherosclerotic 

phenotypes may allow the identification of genetic factors underlying atherosclerosis and 

CVD. Genome-wide association studies (GWAS) conducted by the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) Consortium and others have 

identified 4 loci for CAC (APOB at 2p24.113, PHACTR1 at 6p24.113–15, CDKN2B at 
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9p21.313–15 and APOE at 19q13.3213) and 11 loci for cIMT (LINC01717 at 1q32.216, 

ATP6AP1L at 5q14.216, AIG1 at 6q24.216, PIK3CG at 7q22.316, MCPH1 at 8p23.116, 

SGK223 at 8p23.116, PINX1 at 8p23.110, 16, ZHX2 at 8q24.1310, 16, VTI1A at 10q25.216, 

CBFA2T3 at 16q24.316 and APOE at 19q13.3210, 13, 16) in the general populations. 

However, none of these variants reached genome-wide significance levels in a recent 

study of CAC in T2D individuals of African ancestry17. Additional genetic loci for 

these subclinical atherosclerotic phenotypes remain to be identified based on their high 

heritability. T2D is an independent risk factor for CVD18, and is typically accompanied by 

increased adiposity, hyperglycemia, dyslipidemia, and high blood pressure that accelerates 

atherosclerosis and leads to the development of coronary artery disease (CAD)19–21. 

Emerging evidence also suggests that genetic perturbations in glutamic acid metabolic 

pathways among T2D individuals may specifically predispose to increased CAD risk22. In 

the present study, we performed a multi-ethnic GWAS of CAC and cIMT in individuals with 

T2D. We also explored whether known CAD risk variants23 may exert their effects through 

development of subclinical atherosclerosis in these populations.

Methods

The study methods are provided in Supplementary Materials. This study was approved 

by the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium Research Committee. Each study received institutional review board approval, 

participants provided written informed consent, and respective governing ethics committees 

approved each study. All relevant summary-level data in the manuscript will be deposited 

in the CHARGE shared website or the NIH dbGaP. Because of the sensitive nature of the 

data collected for each of the included studies, requests to access the individual dataset from 

qualified researchers trained in human subject confidentiality protocols may be sent to the 

principal investigators of the corresponding cohorts to apply for access in accordance with 

their data access policies.

Results

Study Participants

Twelve cohorts participated in the meta-analyses of CAC and cIMT. The clinical 

characteristics of each cohort are summarized in Supplementary Tables 1 and 2. A total 

of 2,500 EA diabetic individuals and 1,590 AA diabetic individuals were genotyped and 

measured for CAC; and a total of 3,608 EA diabetic individuals and 838 AA diabetic 

individuals were genotyped and measured for cIMT.

CAC Association

Association analyses were conducted that included all participants (model 1) and with 

prevalent CVD cases excluded (model 2 as sensitivity analysis) for EA and AA diabetic 

individuals separately and jointly through meta-analysis. No significant inflation was 

observed in the respective association statistics (Supplementary Figure 1 and 2). The top loci 

with lead variants associated with CAC are listed in Table 1. Two and twelve lead variants 

are marginally associated with CAC with P < 1.0 × 10−6, near but above genome wide 
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significance of P < 5 × 10−8, based on analyses in model 1 and model 2, respectively (Table 

1). The variant rs8000449 near CSNK1A1L at 13q13.3 was genome-wide significantly 

associated with CAC at P = 2.02 × 10−8 in EA diabetic populations after excluding 

individuals diagnosed with CVD (Table 1, Figures 1 and 2, and Supplementary Figure 3). 

This variant was also marginally associated with CAC in analyses including all EA diabetic 

individuals (P = 5.2 × 10−7, Table 1); however, the allelic effect size was attenuated (Figure 

2 and Supplementary Figures 4) after including individuals diagnosed with CVD. There 

was no discernable association observed in AA populations at this region (Supplementary 

Figures 5 and 6). There was no evidence of heterogeneity in effect size of rs8000449 among 

cohorts (P > 0.05, Table 1). The mean imputation quality for rs8000449 was 0.99 over eight 

EA cohorts (Table 1; See supplementary Notes for details) included in the CAC analyses.

cIMT Association

No inflation was observed in association statistics for cIMT analyses (Supplementary Figure 

7). The top loci with lead variants marginally associated with cIMT among all participants 

are listed in Table 1. However, none of the eleven variants reached the genome-wide 

significance level of 5 × 10−8.

Comparison to known variants associated with subclinical atherosclerotic phenotypes in 
general populations

We assessed the associations for 8 variants at 4 loci previously reported in the 

general population to be associated with the subclinical atherosclerotic phenotype CAC 

(Supplementary Table 3)13, 14. Six variants were available in the present study and had 

consistent effect directions as previously reported in EA populations (Supplementary Table 

4). Three variants reached Bonferroni corrected significance levels24 with P < 6.2 × 10−3: 

rs9369640 and rs9349379 near PHACTR1 at 6p24.1 and rs10757278 near CDKN2B-AS1 at 

9p21 in the meta-analyses including all EA (model 1, Supplementary Table 4). No additional 

variants were associated with CAC in EA populations after excluding individuals diagnosed 

with CVD (model 2, Supplementary Table 5). None of these variants were associated with 

CAC in AA populations (Supplementary Tables 4 and 5).

We assessed the associations for 14 variants at 11 loci previously reported in the 

general population to be associated with the subclinical atherosclerotic phenotype cIMT 

(Supplementary Table 3)10, 13, 16. Fourteen variants were available in the present study and 

thirteen of them had consistent effect directions as previously reported in EA populations 

(Supplementary Table 6). Two variants reached Bonferroni corrected significance levels with 

P < 3.5 × 10−3: rs7412 and rs445925 near APOE at 19q13 in our meta-analyses of EA 

populations (Supplementary Table 6). None of these variants were associated with cIMT in 

the AA populations (Supplementary Table 6).

Subclinical atherosclerotic phenotype associations for known variants associated with 
CAD risk

We further tested for associations of 161 variants reported to be associated with CAD 

in predominantly EA populations23 for association with CAC and cIMT in our study. 

Fifty-nine variants were associated with subclinical atherosclerotic measures with P < 0.05 
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and forty-four variants had consistent effect directions for higher subclinical atherosclerotic 

phenotypes and increased risk of CAD (Supplementary Table 7). The variants rs2891168 

near CDKN2B-AS1 at 9p21 for CAC, rs11170820 near FLJ12825 at 12q13.13 for CAC and 

rs7412 near APOE at 19q13.32 for cIMT were associated with subclinical atherosclerotic 

phenotypes at Bonferroni corrected significance levels of P < 3.1 × 10−4 in the EA 

populations (Supplementary Table 7)24.

Discussion

In our GWASs of CAC in 4,090 and cIMT in 4,446 EA and AA participants with T2D, 

respectively, within the CHARGE consortium, we identified a genome-wide significant 

variant rs8000449 near CSNK1A1L at 13q13.3 for association with CAC. We confirmed 2 

loci (rs9369640 and rs9349379 near PHACTR1 at 6p24.1 and rs10757278 near CDKN2B 
at 9p21.3) for CAC and one locus for cIMT (rs7412 and rs445925 near APOE-APOC1 
at 19q13.32) previously reported in general EA populations in our T2D individuals. The 

specific APOB association reported earlier for CAC was not replicated here most likely 

because the Old Order Amish were not included in the present study and they have the 

highest frequency of this rare variant that is associated with CAC13. We also did not 

replicate the APOE association for CAC13 due to relatively small sample size of our T2D 

individuals. In addition, we found significant associations for three coronary artery disease 

loci on these subclinical atherosclerotic phenotypes (rs2891168 near CDKN2B-AS1 at 9p21 

and rs11170820 near FLJ12825 at 12q13.13 for CAC; rs7412 near APOE at 19q13.32 for 

cIMT). Overall, these analyses provide potential biological mechanisms that could link CAC 

and cIMT to CVD risk.

Our novel finding in those with T2D was the association between rs8000449 at 13q13.3 

and CAC. Variants at 13q13.3 region were previously reported to be associated with bone 

mineral density25, but the index variant rs556429 is not in linkage disequilibrium with 

rs8000449 (D’ = 0.09 and R2 = 0.002 of 1000 Genome phase 3 EUR populations)26. 

The CAC reducing C allele of rs8000449 was associated with increased expression of 

POSTN in the aorta artery (P = 4.4×10−4, Supplementary Table 8)27. The SNP rs8000449 

is annotated as a potentially functional variant that overlaps the enhancer histone markers in 

osteoblast primary cells (Supplementary Table 9). POSTN is expressed in multiple tissues 

with the highest expression in arteries (Supplementary Figure 8)27. Periostin encoded by 

POSTN, is a matricellular protein involved in bone formation and bone matrix organization, 

particularly in the bone modeling response to mechanical stimulation and parathyroid 

hormone28, 29. High serum periostin levels are associated with increased fracture risk in 

postmenopausal women30–33 and in those with newly diagnosed multiple myeloma.34 High 

circulating periostin levels are correlated with reduced bone formation and increased bone 

resorption34. Although recent epidemiological studies indicate that decreased bone mineral 

density is associated with increased CVD burden35, 36, the underlying mechanism linking 

increased POSTN expression with reduced calcification in coronary arteries warrants further 

investigation37, 38. The 4 loci previously identified for CAC (APOB at 2p24.113, PHACTR1 
at 6p24.113, 14, CDKN2B at 9p21.313, 14 and APOE at 19q13.3213) were all associated 

with coronary artery disease risk, confirming increased CAC as a biomarker of coronary 

artery disease risk. Although the T allele of rs8000449 was nominally associated with 
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increased risk of acute myocardial infarction and subsequent myocardial infarction in the 

UK Biobank cohort (odds ratio [95% confidence interval] = 1.0007 [1.0001-1.001] and 

1.0003 [1.0002-1.0005]; P = 9.0 × 10−3 and 1.2 × 10−4, respectively), it was not associated 

with CAD risk in the recent largest meta-analysis of GWAS of CAD (odds ratio [95% 

confidence interval] = 1.00 [0.99-1.02] and P = 0.5 with 122,733 CAD cases and 424,528 

controls)23. This suggests that genetic determinants of CAC may not always overlap with 

those of CAD.

Recent large-scale GWAS have established 161 independent loci for CAD in primarily EA 

populations; however, the underlying mechanisms on CAD risk for the majority of these 

variants are unknown23. The variants at forty-four CAD loci had consistent effect directions 

of increased subclinical atherosclerotic phenotypes (at P < 0.05) and increased CAD risk, 

indicating these variants potentially exert their effects on CAD risk through predisposing 

individuals to increased atherosclerotic risk. Three CAD loci were statistically significantly 

associated with subclinical atherosclerotic phenotypes with Bonferroni correction for 

multiple testing24; the CAD loci at both 9p21 (near CDKN2B-AS1) and 19q13.32 (near 

APOE) were previously reported to affect CAC and/or cIMT10, 13, 14, 16. The SNP 

rs11170820 near FLJ12825 at 12q13.13 was associated with CAC in EA populations 

(Supplementary Table 5). However, this SNP was not associated with any traditional CAD 

risk factors (Supplementary Table 7), suggesting that it may potentially affect CAD risk 

through mechanisms intrinsic to the vessel wall or other unidentified mechanisms that are 

shared between CAD and CAC.

Several limitations of this study should be noted. The sample sizes of these two subclinical 

atherosclerotic phenotypes are relatively modest limiting study power, especially in AA 

populations. The lack of replication in AA populations of known variants on subclinical 

atherosclerotic phenotypes reported previously in EA populations could be due to the lack 

of power; however, we cannot rule out allelic heterogeneity at each locus between the 

two ancestral populations. The lack of associations between the remaining CAD variants 

and subclinical atherosclerotic phenotypes may also be due to limited power. Most of 

the identified top variants on CAC or cIMT in our analyses require further replication 

in independent studies. In addition, we did not include diet, physical activity, and other 

environmental factors for adjustment in association analyses, which may confound the 

identified associations.

In a study of individuals diagnosed with T2D, we confirmed known variants previously 

reported for CAC and cIMT. Although we observed that many CAD loci potentially exert 

their CAD risk through the development of coronary atherosclerosis, we also identified a 

locus that is associated with CAC at genome-wide significance levels but not associated 

with CAD risk at this time. These findings may provide an improved understanding of the 

biological mechanisms underlying subclinical atherosclerosis and CVD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

AA African ancestry

CAC Coronary artery calcification

CAD Coronary artery disease

cIMT Carotid artery intima media thickness

CVD Cardiovascular diseases

CHARGE Cohorts for Heart and Aging Research in Genomic Epidemiology

EA European ancestry

GWAS genome wide association study

SNP Single nucleotide polymorphism

T2D Type 2 diabetes
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Figure 1. 
Regional association plot of coronary artery calcification quantity at 13q13.3 (the 

CSNK1A1L locus) in populations of European ancestry (model 2, cardiovascular disease 

cases excluded). Each dot represents the P value (on a −log10 scale) of association for a 

SNP with CAC risk, presented according to its genomic position (NCBI Build 37). The 

most significantly associated SNP is represented by a purple diamond. The color of all other 

SNPs indicates the level of linkage disequilibrium with the lead SNP (estimated by EUR r2 

from the 1000 Genome Project data). Recombination rates were also estimated from 1000 

Genomes Project data (Phase 3), and gene annotations within the 2-Mb regions centered on 

rs8000449 were obtained from the UCSC Genome Browser.
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Figure 2. 
Forest plot of relative coronary artery calcification (CAC) quantity for rs8000449 near 

CSNK1A1L at 13q13.3. CAC quantity in the log scale for T allele carriers relative to 

noncarriers (in model 2 excluding individuals diagnosed with cardiovascular diseases) 

is displayed for all cohorts to demonstrate consistency across cohorts in populations 

of European ancestry. AGES, The Reykjavik study cohort of Age, Gene/Environment 

Susceptibility; DHS, The Diabetes Heart Study; FamHS, Family Heart Study; FHS, 

Framingham Heart Study; GENOA, Genetic Epidemiology Network of Arteriopathy; 

MESA, Multi-Ethnic Study of Atherosclerosis.
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