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Hierarchical effects of task engagement on amplitude modulation encoding in
auditory cortex
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Niwa M, O’Connor KN, Engall E, Johnson JS, Sutter ML.
Hierarchical effects of task engagement on amplitude modulation
encoding in auditory cortex. J Neurophysiol 113: 307–327, 2015. First
published October 8, 2014; doi:10.1152/jn.00458.2013.—We re-
corded from middle lateral belt (ML) and primary (A1) auditory
cortical neurons while animals discriminated amplitude-modulated
(AM) sounds and also while they sat passively. Engagement in AM
discrimination improved ML and A1 neurons’ ability to discriminate
AM with both firing rate and phase-locking; however, task engage-
ment affected neural AM discrimination differently in the two fields.
The results suggest that these two areas utilize different AM coding
schemes: a “single mode” in A1 that relies on increased activity for
AM relative to unmodulated sounds and a “dual-polar mode” in ML
that uses both increases and decreases in neural activity to encode
modulation. In the dual-polar ML code, nonsynchronized responses
might play a special role. The results are consistent with findings in
the primary and secondary somatosensory cortices during discrimina-
tion of vibrotactile modulation frequency, implicating a common
scheme in the hierarchical processing of temporal information among
different modalities. The time course of activity differences between
behaving and passive conditions was also distinct in A1 and ML and
may have implications for auditory attention. At modulation depths �
16% (approximately behavioral threshold), A1 neurons’ improvement
in distinguishing AM from unmodulated noise is relatively constant or
improves slightly with increasing modulation depth. In ML, improve-
ment during engagement is most pronounced near threshold and
disappears at highly suprathreshold depths. This ML effect is evident
later in the stimulus, and mainly in nonsynchronized responses. This
suggests that attention-related increases in activity are stronger or
longer-lasting for more difficult stimuli in ML.

auditory cortex; attention; sound processing; neural coding

AMPLITUDE MODULATION (AM)—a change in amplitude envelope
over time—is an important information-bearing parameter in
speech recognition (Rosen 1992; Shannon et al. 1995; Smith et
al. 2002; Steinschneider et al. 1999; Van Tasell et al. 1987) and
in segregating sound sources in complex listening environ-
ments (Bregman et al. 1990; Fishman et al. 2012; Grimault et
al. 2002; Micheyl et al. 2013). Accordingly, how auditory
cortex (AC) processes AM and other temporal modulations has
been studied extensively (Bendor and Wang 2007, 2010;
Bieser and Müller-Preuss 1996; Eggermont 1991, 1994; Ka-
jikawa et al. 2008; Liang et al. 2002; Lu et al. 2001; Lu and
Wang 2000; Malone et al. 2007; Schreiner and Urbas 1988).
Since most AC research was performed in primary auditory
cortex (A1), we have yet to form a precise understanding of

how temporal sound properties are processed throughout the
auditory cortical network.

Macaque AC has been proposed to have three processing
stages: 1) a primary stage with three core fields, 2) a secondary
stage with seven belt fields, and 3) at least two parabelt fields
(Kaas and Hackett 1999, 2000). This classification is based on
the anatomical connections between the thalamus, core, belt,
and parabelt areas (de la Mothe et al. 2006a, 2006b; Hackett et
al. 1998; Morel et al. 1993; Morel and Kaas 1992; Rauschecker
et al. 1997; Romanski et al. 1999b) as well as on physiological
properties such as first-spike latencies (Lakatos et al. 2005;
Recanzone et al. 2000a), the level of spectral integration, and
response preference to pure tones and more complex sounds
(Imig et al. 1977; Kosaki et al. 1997; Kusmierek and Raus-
checker 2009; Lakatos et al. 2005; Petkov et al. 2006; Raus-
checker et al. 1995; Rauschecker and Tian 2004; Recanzone et
al. 2000a; Wessinger et al. 2001).

In addition to the three-stage hierarchical processing model,
AC has been proposed to contain two parallel pathways:
anterior AC for sound recognition/categorization, constituting
the auditory “what” pathway, and posterior AC for auditory
spatial tasks, constituting the auditory “where” pathway (Kaas
and Hackett 1999, 2000; Kusmierek et al. 2012; Rauschecker
and Tian 2000; Recanzone et al. 2000b; Romanski et al. 1999a,
1999b; Russ et al. 2008; Tian et al. 2001). Tian et al. (2001)
have recorded single-unit responses to monkey calls presented
at different spatial positions in the anterior-lateral (AL), mid-
dle-lateral (ML), and caudal-lateral (CL) belt cortices and
shown that AL neurons are more selective for monkey calls
than ML or CL, CL neurons have a greater spatial selectivity
than AL or ML, and ML neurons show intermediate selectivity
to both space and monkey calls. One interpretation of these
results is that ML may be the branching point of auditory “what
vs. where pathways.” ML is located immediately lateral to A1,
and is heavily interconnected with A1 (Morel et al. 1993). Thus
sound representations in ML may reflect a transformation one
level higher than in A1.

Several studies have demonstrated that neural discrimination
ability can improve when animals are actively discriminating
sounds versus sitting passively (Fritz et al. 2003; Knudsen and
Gentner 2013; Lee and Middlebrooks 2011). Recently, our
laboratory has shown that A1 neurons’ ability to discriminate
AM improves with task engagement compared with a passive
listening condition (Niwa et al. 2012a). Here, we examine how
this behaviorally modulated improvement in neural AM dis-
criminability evolves at the next processing stage in the audi-
tory cortical hierarchy.
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MATERIALS AND METHODS

Subjects

Two female (monkeys W and V) and one male (monkey X) adult
rhesus macaque (Macaca mulatta) monkeys were used in this study.
ML recording was done in the right hemisphere of monkeys W and X.
A1 recording was done in the right hemisphere of all three monkeys.
Some analyses from these A1 recordings have been presented previ-
ously (Niwa et al. 2012a). We only present new and more detailed
analysis of the A1 data (which helps to reveal the differences between
A1 and ML) in the present report. All procedures conformed to US
Public Health Service (PHS) policy on experimental animal care and
were approved by the UC Davis animal care and use committee.

Stimuli

Stimuli were 800-ms sinusoidally amplitude-modulated (AM)
broadband noise bursts. Modulation frequencies were 2.5, 5, 10, 15,
20, 30, 60, 120, 250, 500, and 1,000 Hz. Depth sensitivity functions
were collected at one fixed modulation frequency with modulation
depths of 0% (unmodulated), 6%, 16%, 28%, 40%, 60%, 80%, and
100%. The unmodulated noise served as a comparison to determine
how well neurons could determine whether or not a sound was
modulated. For all these stimuli the noise carrier was “frozen”; the
noise was created using the same random number sequence, produc-
ing a stimulus waveform that was identical on all trials, save for the
modulation envelope.

Sound generation has been described previously (O’Connor et al.
2010). The sound signals were constructed with MATLAB (Math-
Works), digital-to-analog (D/A) converted (Cambridge Electronic
Design, model 1401), passed through programmable (TDT Systems
PA5) and passive (Leader LAT-45) attenuators, amplified (Radio
Shack MPA-200), and delivered to a speaker. We used two different
sound booths (IAC: 2.9 � 3.2 � 2.0 m and 1.2 � 0.9 � 2.0 m)
equipped with different speakers positioned at ear level. One booth
had a Radio Shack PA-110 speaker 1.5 m in front of the subject, while
the other had a Radio Shack Optimus Pro-7AV positioned 0.8 m in
front of the subject. Sounds were generated at a sampling rate of 100
kHz and had cosine-ramped onsets and offsets with 5.0-ms rise and
fall time. Sound intensity was calibrated with a sound-level meter
(Bruel & Kjaer model 2231) to 63 dB sound pressure level (SPL) at
the approximated midpoint of the animals’ two pinnae.

Behavioral Task

The monkeys were trained to discriminate AM noise from unmodu-
lated noise. This also can be regarded as AM detection because
subjects detect whether a sound was amplitude modulated. Task
specifics were as follows. First, monkeys began a trial by pressing and
holding down a lever for at least 500 ms. Then, two 800-ms sounds
were presented sequentially with a 400-ms intersound interval (ISI).
Within a trial, the first (standard) sound was always unmodulated
noise and the second sound (test stimulus) was either another un-
modulated noise (nontarget) or an AM noise (target). Note that here
we reserve the word “stimulus” for test sound (not the standard).
During each recording session, the modulation frequency of target
stimuli was set at the best modulation frequency (BMF) of the
multiple-unit (MU) response from the same electrode (see Unit
Recording). Target modulation depths were 6%, 16%, 28%, 40%,
60%, 80%, and 100%, presented with equal probability. Subjects were
trained to release the lever in response to AM targets. They were
required to wait for stimulus offset to respond and to respond within
an 800-ms response window following the target stimulus offset.
When the test stimulus was an unmodulated nontarget (12.5% of the
trials), subjects were required to continue depressing the lever for the
entire response window. Subjects were given liquid rewards for all
correct responses: hits (a lever release for target trials) and correct

rejections (withholding lever release for nontarget trials). We notified
subjects of incorrect responses—misses (not releasing the lever on
target trials) and false alarms (releasing the lever on nontarget tri-
als)—by turning off an incandescent light placed in front of them.
Subjects were also given a time-out period of 15–60 s after false
alarms. This enabled us to keep the false alarm rates at the relatively
low level of �10% as reported in Niwa et al. (2012b). Behavioral
thresholds were reported in Niwa et al. (2012a).

Unit Recording

The neural recording procedures were described previously (Niwa
et al. 2012a, 2012b, 2013), so we will briefly recap them here. To
allow AC access, a 2.7-cm-diameter CILUX chamber (Crist Instru-
ments) was implanted over the portion of parietal cortex immediately
above AC. The chamber held a plastic grid with 27-gauge holes,
covering a 15 � 15-mm area at 1-mm intervals. Each recording day,
a stainless steel transdural guide tube was inserted through a grid hole.
A tungsten microelectrode (1–4 M�, FHC; 0.5–1 M�, Alpha-
Omega) was put through the guide tube and lowered through parietal
cortex into ML or A1 by a hydraulic microdrive (FHC). During this
procedure macaques were head-restrained by a titanium post. Elec-
trophysiological signals were amplified (A-M Systems model 1800),
filtered (0.3–10 kHz; A-M Systems model 1800 and Krohn-Hite
model 3382), and sent to an A/D converter (CED model 1401, 50 kHz
sampling rate). Action potentials were assigned to individual neurons
on- and off-line with SPIKE2’s (CED) waveform-matching algorithm.

At each recording site, we first determined the BMF of MU activity
by presenting unmodulated noise and 100% depth, 800-ms AM noise
at all modulation frequencies. Receiver operating characteristic
(ROC) areas (ROCas), based on both firing rate and vector strength
(VS, a measure of phase-locking), were calculated at each modulation
frequency (see Neurometric analysis for details). BMFVS was defined
as the modulation frequency with the greatest VS-based ROCa, while
BMFSC was the frequency with the firing-rate-based ROCa most
deviant from 0.5. The farther the ROCa from 0.5, the larger the
difference between responses to AM and unmodulated noise. This
means that the BMF was the modulation frequency at which the unit
could best distinguish AM from an unmodulated sound. When
BMFVS and BMFSC were different, we chose either BMFVS or
BMFSC as the modulation frequency for the subsequent “AM sensi-
tivity” experiment. This selection was alternated from day to day to
avoid a bias toward one of the BMF measures.

After BMF determination, the AM sensitivity of single units (SUs)
and MUs was assessed by collecting response vs. modulation depth
functions at the BMF during two behavioral conditions: 1) while
animals performed the task (behaving condition) and 2) while they
were presented with the same stimuli and received randomly timed
liquid rewards for sitting quietly (passive condition). The sequence of
behaving and passive experiments was alternated daily to eliminate
order effects. For recording, the monkeys sat in an acoustically
transparent primate chair, with their head restrained to the chair, in a
double-walled, sound-attenuated, foam-lined booth.

Data Analysis

Neurometric analysis. ROC analysis (Green and Swets 1974) was
used to quantify how well a neuron distinguishes AM from unmodu-
lated noise. A detailed description of this analysis was presented in
Niwa et al. (2012a), so we briefly describe it here. Neural ROCa, in
our analysis, represents the neural discriminability of AM noise from
unmodulated noise, the probability that an ideal observer can detect a
signal (the modulation) based solely on neural responses. An ROCa of
1 (or 0) means the neural response is 100% accurate in predicting
whether the sound was modulated; values of 0.5 mean the neural
response can only predict at chance level whether the sound was
modulated. An ROCa of 1 means the neural response to AM is always
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greater than the response to unmodulated noise; an ROCa of 0 means
the neural response to AM is always less than the unmodulated noise
response. To calculate neural ROCa, first we quantify a unit’s re-
sponse to AM (for example, with firing rate) for each trial to create a
probability distribution of the neural measure from all repeated trials.
In the same way, we also create a probability distribution for the unit’s
response to unmodulated sound using the same measure. From these
two probability distributions, we determine the proportion of trials
(PAM) where the neural response to AM exceeds a criterion level and
the proportion of trials (PunMod) in which neural response to the
unmodulated noise carrier exceeds the same criterion value. One
hundred pairs of PAM and PunMod are determined using 100 criteria
values that were selected from the full range of both distributions.
PAM, the proportion of AM trials where the neural response exceeds
the criterion, is directly comparable to hit rate for behavior. PunMod,
the proportion of responses to the unmodulated noise carrier that
exceed the criterion, is directly comparable to the false alarm rate. The
plot of all PAM and PunMod pairs forms the neural ROC, and the area
under this is called the neural ROCa.

All analyses were also performed with the discriminability index,
d=, which also measures how well a neuron discriminates AM from
unmodulated noise. d= is the number of standard deviations separating
the means of the AM and unmodulated noise response distributions.
An advantage of d= is that it is unbounded (ROCa is bounded by 0 and
1), so larger differences always result in a larger d=. This allows d= to
distinguish between well-separated distributions for which ROCa has
a ceiling (or floor) effect. The disadvantage of d= is that its relationship
to behavioral performance is less straightforward than ROCa. As was
seen previously in A1 (Niwa et al. 2012a), differences between
behaving and passive conditions were almost always more pro-
nounced with d=, because many neurons show ceiling or floor effects
at ROCa of 1 or 0.

Phase-projected vector strength. Vector strength (VS) measures
the degree of a neuron’s phase-locking, and is defined as

VS �
���i�1

n cos�i�2 � ��i�1
n sin�i�2

n
(1)

where n is the total number of spikes and �i is the phase of each spike
in radians,

�i � 2�
�ti modulo p�

p
(2)

where ti is the time of the spike relative to the stimulus onset and p is
the stimulus modulation period (Mardia and Jupp 2000).

VS has problems measuring phase-locking when the number of
spikes (n) is small. When spikes are randomly distributed in time VS
should be 0, but when working with a small number of spikes VS
tends to give values spuriously higher than 0. For example, if a cell
fires one spike on a trial, VS would be 1. If a cell fires two spikes
randomly, a high VS would also likely result, because the probability
that two random spikes fire 180° out of phase with each other (relative
to the stimulus modulation period) is low. So for spikes occurring
randomly in time, VS will tend toward nonzero values for small
numbers of spikes and will get closer to 0 as the number of spikes
increases. For determining ROCa, we need to calculate VS on
a trial-by-trial basis. Because some SUs fire only a few spikes in a
single trial, bias of VS in low-spike-count trials can become a
problem.

Phase-projected vector strength (VSpp; Yin et al. 2011) circum-
vents this. In determining VSpp, first VS is calculated for each trial.
Then the mean phase angle of each trial is compared with the mean
phase angle of all trials (global response), and the standard VS values
are penalized if they are not in agreement. VSpp is calculated on a
trial-by-trial basis as follows:

VSpp � VSt cos��t 	 �c� (3)

where VSt is the standard vector strength per trial, calculated as in Eq. 1,
�t is the mean phase angle of the trial, and �c is the mean phase angle of
global response (calculated from the unit’s response to 100% AM
collapsed across all repeated trials). Whereas VS ranges from 1 to 0, VSpp

may range from 1 (all spikes in phase with the mean phase of the global
response) to �1 (all spikes 180° out of phase with the global mean
phase), with 0 corresponding to random phase with regard to the global
mean phase. Except for the cases of low spike counts, the two VS
measures were in good agreement (Yin et al. 2011).

Identification of cortical areas. ML was identified on the basis of
physiological responses to tones and band-pass noise as was done
previously (Niwa et al. 2013). First, pure-tone frequency tuning was
assessed at (or near) each recording site by varying tone frequency and
intensity. An initial estimate of the best frequency (BF) of the site was
used to determine the range for the automated procedure where frequen-
cies typically spanned three octaves (usually in 1/5-octave steps) centered
on the initial BF estimate, and intensities typically spanned 80 dB with a
10-dB steps between 10 and 90 dB SPL. Tones (100 ms) were presented
in a random order and repeated at least twice for each frequency-intensity
combination. From a two-dimensional response matrix, the neuron’s
frequency tuning curve was obtained with the contour line (MATLAB’s
“contourc” function) at the mean spontaneous rate plus 2 standard
deviations. The BF and threshold were determined from this frequency
tuning curve. A tonotopic map was created for each animal from the BFs.
We determined the location of A1 based on a systematic BF increase
from anterior to posterior and approximately constant BF along the
medial-lateral axis. The border of A1 and ML was determined based on
the lack of response robustness to tones, slower tone response latency,
and wider width of frequency tuning for ML locations (Kosaki et al.
1997; Merzenich and Brugge 1973; Morel et al. 1993; Rauschecker et al.
1997; Recanzone et al. 2000a). Putative ML was identified as a narrow
strip of 2- to 3-mm width located lateral to the physiologically determined
A1/ML border.

When time permitted, we also recorded unit responses to 100-ms
band-pass noise (BP noise) having various center frequencies, filter
widths (1/3, 1/2, 1, and 2 octaves), and intensities. Intensities typically
were the same as for frequency tuning. BP noises were presented in
random order and repeated one to three times for each combination of
center frequency, filter width, and intensity depending on the available
time. Firing rate was calculated with the 0–100 or 0–150 ms window
after stimulus onset depending on the response profiles at each
recording site. A two-dimensional response matrix (intensity � fre-
quency) was obtained for each filter width size. The frequency tuning
curve was estimated in the same way as above for each filter width
size, and the BF and the preferred filter width size were determined.
The anterior-posterior border of ML (the borders with AL and CL)
was estimated with a systematic change in BF using BP noise tuning.

RESULTS

We recorded spiking activity from 57 MUs and 97 SUs in
ML of monkeys W and X while they discriminated AM (be-
having condition) and while they were passively presented the
same AM stimulus set (passive condition). These results were
compared to 57 MUs and 142 SUs recorded from A1 of
monkeys V, W, and X.

Effect of Engagement on ML Neuron Rate-Based AM
Discriminability Depends on Time Period of Stimulus
Presentation

Animals’ engagement in AM discrimination affects ML
neurons’ AM discriminability differently during the first (0–
400 ms) and second (400–800 ms) halves of the test stimulus.
This is exemplified by three ML neurons whose responses are
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depicted in Figs. 1–3. The neuron in Fig. 1 shows improvement in
firing rate-based AM discriminability due to task engagement
during the first half of the test stimulus but deterioration during the
second half. The neuron in Fig. 2 shows a change in its firing rate
response characteristics to modulation depth from monotonically

increasing during the first half to nonmonotonic during the sec-
ond. The neuron in Fig. 3 shows a change in its firing rate
response characteristics to modulation depth, from monotonically
increasing during the first stimulus half to monotonically decreas-
ing during the second half.
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Fig. 1. Example of the activity of a middle lateral belt (ML) single unit (SU) showing improvement in firing rate-based amplitude modulation (AM) discriminability
due to task engagement during the 1st half of the test stimulus but deterioration during the 2nd half. A and B: raster plots of a SU response to 30-Hz AM as modulation
depth is varied from 0% (bottom) to 100% (top) in the passive (A) and behaving (B) conditions. C and D: average firing rate during the 1st (C) and 2nd (D) halves of
the stimulus plotted as a function of modulation depth for passive and behaving conditions. E and F: receiver operating characteristic (ROC) area (ROCa) based on firing
rate during the 1st (E) and 2nd (F) halves of the stimulus plotted as a function of modulation depth for passive and behaving conditions. Neural ROCa yields the
probability that an ideal observer would detect modulation based solely on the neural responses. An ROCa of 0.5 corresponds to chance performance. The farther ROCa
is from 0.5, the better the neuron is at discriminating AM from an unmodulated sound. An ROCa of 1 or 0 � perfect AM detection, where 1 indicates higher firing rates
for modulated sounds than to the unmodulated sound and 0 indicates lower firing rate to modulated sounds.
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For the ML SU in Fig. 1, in the passive condition the firing rate
increases with depth during both first and second halves of the
stimuli (Fig. 1, C and D). In the behaving condition the depen-
dence of firing rate on modulation depth appears different than in
the passive condition. During the first half, the firing rate roughly
increases monotonically with depth (Fig. 1C), as in the passive
condition. During the second half, firing rate decreases with
increasing depth in the behaving condition (Fig. 1D). The de-
crease during behavior is largely due to increased activity 500–
650 ms after stimulus onset for 0–40% depth in the behaving
condition (Fig. 1B), which lessens at higher depths. This pattern of
activity between 500 and 650 ms is not seen in the passive
condition (Fig. 1A).

During the first half of the stimulus the neuron can better
discriminate AM in the behaving than the passive condition.
When the SU’s firing rates during 0–400 ms in the behaving
and passive conditions are compared, the rate response to both
unmodulated noise and low-modulation-depth AM (0–16%) is
slightly greater in the behaving than passive condition (Fig.
1C). However, at higher modulation depths (particularly at
28–40%) firing rate increases much more in the behaving
condition (Fig. 1C). As a result, in this 400-ms window this SU
exhibits greater response differences between AM and un-
modulated noise in the behaving than the passive condition
(Fig. 1C). This suggests that engagement in the AM task
improves neural AM discrimination at modulation depths �
16% (which is approximately behavioral threshold) during this
portion (the first 400 ms) of the stimulus, which is supported by
neurometric analysis (Fig. 1E).

In contrast to the first half of the stimulus, this SU better
discriminates AM from unmodulated noise in the passive condi-
tion during the second half of the stimulus (Fig. 1F). From 400 to
800 ms after stimulus onset, the response to unmodulated noise
was still higher in the behaving than the passive condition, but the
response to 60–100% AM was quite similar in both behaving and

passive conditions (Fig. 1D). The result is that, during behavior,
the firing rate response to 60–100% AM is slightly less than the
firing rate response to unmodulated noise during the second half
of the stimulus (the last 3 open circles, at 60–100%, are slightly
less than first open circle, at 0%, in Fig. 1D). This leads to poorer
neural discrimination ability (points closer to ROCa � 0.5) during
the second half in the behaving than the passive condition. The
neurometric functions appear to show that the neuron weakly
discriminates AM with increased firing rate relative to the un-
modulated noise response at low depths and with decreased
activity relative to the unmodulated noise response at higher
depths. This is seen in Fig. 1F as ROCa � 0.5 for 6–40% and �
0.5 for 60–100%. However, these points are all relatively close to
ROCa � 0.5.

Figure 2 shows an example neuron that during the 2nd half
of the stimulus discriminates AM with increased firing rate
relative to the unmodulated noise response at low depths and
with decreased activity relative to the unmodulated noise
response at higher depths. In this example a permutation test
showed that ROCa was significantly above 0.5 in the behaving
condition during the second half at 16% depth and significantly
below 0.5 at 60 and 80% depths. In the passive condition, this
SU and the SU in Fig. 3 monotonically increase firing rate with
modulation depth during early and late portions of the stimulus
period (Figs. 2 and 3, C and D). Again, in the behaving
condition, these SUs monotonically increase firing rate with
depth only during the first half of the stimulus (Fig. 2C, Fig.
3C) and not in the second half (Fig. 2D, Fig. 3D). Also during
the first 400 ms AM discrimination is better in the behaving
condition (Fig. 2E, Fig. 3E), but comparisons of neural dis-
criminability during the 400–800 ms period after stimulus
onset are more complicated. The SU in Fig. 3 decreases firing
rate relatively monotonically with depth (Fig. 3F). For all three
example neurons, firing rate during the 400–800 ms period is
greater in the behaving (than passive) condition for 0–40%
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AM and smaller in the behaving condition for 60–100% AM
(Fig. 1D, Fig. 2D, Fig. 3D).

ML Population Summary: Behavioral State Affects Rate-
Based AM Discriminability Differently for Neurons with
Increasing and Decreasing Rate-Depth Functions

For the entire ML population, the dependence of perfor-
mance on task engagement is strikingly different during the

stimulus’s first and second halves. During engagement, neuro-
nal AM sound discrimination improves during the first half and
worsens during the second half of the stimulus (Fig. 4, A–D).
During the first half, firing rate-based ROCa is significantly
greater in the behaving than the passive condition for MUs
(Fig. 4A) and SUs (Fig. 4B). On the other hand, during the
second half, ML ROCa is significantly worse in the behaving
condition (Fig. 4, C and D). Note that Fig. 4, A–D, have a
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function of modulation depth for the passive and
behaving conditions for all recorded multiunits
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tion mean, rate-based ROCas for the second 400
ms of the stimulus are shown for MUs (C) and
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smaller scale than the rest of Fig. 4 to better display ML
differences between behaving and passive conditions. Figure 4,
A–D, appear to show that task engagement significantly im-
proves rate-based AM discriminability during the first half of
the stimulus but significantly impairs it during the second half.
This differs from A1, where 1) ROCa monotonically increased
with modulation depth for behaving and passive conditions and
2) population ROCa increased for all depths (although not
significantly at all depths) in the behaving compared with the
passive condition for both halves (albeit smaller improvements
were seen for the second half in the behaving compared with
the passive condition; Fig. 4, I–L).

However, when we consider the potential contribution of
neurons that encode modulation by decreasing firing for mod-
ulated sounds, a different picture emerges. The farther ROCa is
from 0.5, the better a unit is at discriminating a modulated from
an unmodulated sound. An ROCa of 1 means perfect ability to
discriminate AM from an unmodulated sound with increased
firing rate for AM; an ROCa of 0 means perfect ability to
discriminate AM from an unmodulated sound with decreased
firing rate for AM. Therefore reflecting ROCa around 0.5 (Fig.
4, E–H and M–P) for each neuron reveals how well they
discriminate AM from an unmodulated noise adjusting for
neurons that encode AM with decreased activity. It should be
noted that mathematically this is similar to taking the absolute
value, so all ROCas will increase, just as the mean of a series
of positive and negative numbers will always be smaller than
the mean of their absolute values. What is important in Fig. 4,
E–H and M–P, is how differences between active and passive
change with reflection and how shapes of functions change.
When we reflect ROCa in ML, we see significant improvement
during the first, and now also during the second, half (Fig. 4, G
and H) of the stimulus. Also, the function monotonically
increases for reflected ROCa as opposed to the nonmonotonic
functions for ROCa (Fig. 4, C and D). For A1, reflecting ROCa
(compared to not reflecting) resulted in smaller or no improve-
ments in the passive compared with the behaving condition
(Compare Fig. 4, I to M, J to N, K to O, and L to P). We further
probe this by analyzing population mean ROCas separately for
increasing and decreasing cells, which will allow a clearer
picture to emerge.

Separately analyzing cells whose firing rate either increases
or decreases as a function of modulation depth is important to
understand possible neural codes for AM. In ML some neurons
increase firing rate with increasing modulation depth while
others decrease firing rate with depth, but most A1 neurons
increase firing rate with modulation depth and few decrease
(Niwa et al. 2013). The brain could use the ML information for
AM discrimination by separately decoding increasing and
decreasing functions as two complementary populations of
neurons (or subtracting them). Improved AM discriminability
for neurons with increasing rate-depth functions would result
in increased ROCa (from 0.5), while for neurons with decreas-
ing rate-depth functions improved AM discrimination would
yield decreased values below 0.5. If both populations show
AM discrimination improvement, the net effect on ROCa of
the summed activity across the entire population of neurons
would be reduced because the increase in ROCa from cells
with increasing functions would cancel the decrease in ROCa
by cells with decreasing functions. Therefore, population sum-
maries are presented separately for increasing and decreasing

rate functions as well as for the entire ML population, i.e.,
combining “increasing” and “decreasing” cells (where an in-
creasing cell refers to a neuron with an increasing rate-depth
function).

Before showing the population summary for increasing and
decreasing functions, we need to discuss how these two groups
are defined. As shown by the three SU examples (Figs. 1–3),
the slope of neurometric curves for one neuron can change
signs between the first and second stimulus halves and between
behaving and passive conditions. Since a neuron’s response
depends on both the time during the stimulus and task condi-
tions, we needed a way to estimate their composite response to
modulation depth. To do this, we first created a neurometric
firing rate-based ROCa-depth function during the entire stim-
ulus separately for behaving and passive conditions. We then
averaged the two functions and calculated the slope with linear
regression (Fig. 5, top). We defined a response as “increasing”
if it had a positive slope and “decreasing” if it had a negative
slope. It is important to note that increases in ROCa from 0.5
correspond to increases in firing rate and decreases in ROCa
from 0.5 are decreases in firing rate. All ROCa-depth curves
start at 0.5 for 0% depth by definition, so an increasing
ROCa-depth curve also would result in an increasing firing
rate-depth curve (and vice versa for decreasing). The SU
examples from Figs. 1–3 are shown in red in Fig. 5, and all had
positive slopes (Fig. 5B; Figs. 1, 2, and 3 neurons’ slopes �
0.0023, 0.0041, and 0.0015, respectively). The distribution of
the slopes is shown for MUs (Fig. 5A) and for SUs (Fig. 5B) in
ML, where 72% of the MU and 63% of the SU recordings had
increasing functions. For comparison, the distribution of slopes
is also shown for MU (Fig. 5C) and SU (Fig. 5D) recordings in
A1, where 81% of MU and 78% of SU recordings had positive
slopes. The slope magnitudes in ML were significantly lower
than in A1 (P � 0.0013, rank sum test), and the proportion of
increasing SU functions in ML was significantly lower than in
A1 (P � 0.0067, 
2).

For the population of increasing units in ML, AM dis-
criminability is significantly better in the behaving than the
passive condition during the first half (0 – 400 ms) of the
stimulus. During this period, MU firing rate-based ROCa is
significantly greater in the behaving than the passive con-
dition for 16 –100% AM (Fig. 6A). SUs were also more
sensitive in the behaving condition, although fewer depths
reached significance (Fig. 6B). To test the overall effect of
task engagement, ROCa data were combined across depths
in each condition, and a single Wilcoxon signed-rank test
was performed. For MUs and SUs, we found a significant
increase in across-depth, rate-based ROCa in the behaving
compared with the passive condition (Fig. 6, A and B),
indicating that task engagement significantly improves neu-
ronal AM discriminability in the first half of the stimulus for
increasing cells.

On the other hand, during the second half of the test
stimulus there was no significant change in ROCa between
the behaving and passive conditions at any individual depth
or collapsed over depths for MUs and SUs with increasing
rate-depth functions, except for a small difference at 16%
(P � 0.0179) for SUs (Fig. 6D). Although no statistically
significant difference in ROCa was found between the
behaving and passive conditions at high modulation depths
(60 –100%) during the second half, the population mean
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ROCa in the behaving condition at these depths appears
lower than the ROCa in the passive condition (Fig. 6, C and
D). The lack of a significant difference might be due to the
large unit-to-unit variability in the change in ROCa between
the two conditions. Fig. 6, E and G (MUs) and F and H
(SUs), show pairwise comparisons of ROCa between the
behaving and passive conditions for all increasing MUs and
SUs at 60%, 80%, and 100% depths. Each point on these
plots represents a unit, whose ROCa in the behaving con-
dition is given on the y-axis and the passive ROCa on the
x-axis. Points falling on the diagonal line indicate no change
in ROCa between the two conditions. Points above the
diagonal line indicate increased ROCa in the behaving
compared with the passive condition, and those below
indicate a decrease during behavior. During the second half
of the stimulus, points are spread widely across the diagonal
line (Fig. 6, G and H), showing unit-to-unit variability in
how ROCa changes between the two conditions. However,
some neurons’ ROCas lie far below the diagonal line, falling
into the bottom right quadrant of the plots. These units are
largely responsible for pulling down the population mean
ROCa for the behaving condition. Units lying in this quad-
rant fire less to AM than to unmodulated noise in the
behaving condition (ROCa � 0.5) but fire more to AM than
to noise in the passive condition (ROCa � 0.5); they flip the
sign of their response to AM from “positive” (excitatory) in

the passive condition to “negative” (suppressive) in the
behaving condition during the second half of the stimulus. It
is important to remember that classifying a unit’s response
as increasing or decreasing is based on averaging ROCa for
behaving and passive conditions over the entire 800-ms
stimulus, which explains why units that decrease during the
final 400 ms in the behaving condition can be classified as
increasing. The examples shown in Figs. 1–3 are represen-
tative of SUs that decrease their activity during the second
half of the test stimulus only in the behaving condition (see
Figs. 1–3). Interestingly, when the same scatterplots are
made for the first half of the stimulus (Fig. 6, E and F), few
points fall into the fourth quadrant, suggesting that the
reversal of response sign occurs only later during the test
stimulus. This effect may occur because AM at the highest
modulation depths can be discriminated very easily, and the
decision to respond may be made during the stimulus. Also,
the fact that the animals are not permitted to respond until
after stimulus offset, requiring them to suppress early be-
havioral responses to AM at higher depths, may cause
sustained inhibition of firing to these AM stimuli as the test
stimulus continues in time.

For the population of ML units with decreasing rate-depth
functions, AM discriminability is significantly better in the
behaving than the passive condition during the second half
of the stimulus (Fig. 7, C and D); during the first half the
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effect is weaker for MUs (Fig. 7A) and nonexistent for SUs
(Fig. 7B). Remember that for decreasing units lower ROCa
(toward 0) means better AM discriminability. During the
first half, MU firing rate-based ROCa is significantly lower
in the behaving than the passive condition, but the effect is
relatively small and limited to near-threshold depths (Fig.
7A). During the second half of the stimulus, MU rate-based
ROCa is significantly lower (better) in the behaving than the
passive condition at most depths above behavioral threshold
(Fig. 7C). For SUs, engagement in the task significantly
improves AM discriminability only during the second half
of the test stimulus (Fig. 7D).

Together, these results demonstrate that rate-based AM
discriminability for ML cells with increasing rate-depth func-
tions improves under conditions of active engagement early
during the stimulus, but the improvement disappears later (Fig.
6). On the other hand, the improvement in rate-based AM

discriminability for ML cells with decreasing functions is more
pronounced later during the stimulus (Fig. 7).

Comparison of Change in Rate-Based AM Discrimination
Over Time Between A1 and ML

We conducted ROC analyses using several time windows
for A1 and ML and found that 1) the AM discriminability of
cells with increasing rate-depth functions in the behaving
condition is more strongly dependent on the time course of
stimulus presentation in ML than in A1 and 2) engagement in
the AM task affects the AM discriminability of cells with
decreasing functions differently in A1 and ML. For this anal-
ysis, rate-based ROC areas were calculated with 400-ms time
windows beginning at 0, 100, 200, 300, and 400 ms after
stimulus onset to determine the change in AM discriminability
over time.

po
pu

la
tio

n 
m

ea
n 

R
O

C
A

0 50 100 0 50 100

po
pu

la
tio

n 
m

ea
n 

R
O

C
A

Modulation depth (%)

0.5

0.6

0.7

C MUs

p = 0.896 

0.8

D SUs

*

p = 0.790 0.5

0.6

0.7

0.8

A MUs *
*

*

*
*

*
p = 
2.17 x 100.5

0.6

0.7

0.8

B SUs

*
*

*
p = 3.00 x 10 0.5

0.6

0.7

0.8
0 50 100 0 50 100

First half Second half

60% 80%

60% 80% 100%

MUs

SUs

G

H

0.5

1

0

0.5

1

0
0.5 10 0.5 10 0.5 10R

O
C

 a
re

a 
in

 b
eh

av
in

g 
co

nd
iti

on

ROC area in passive condition

60% 80% 100%

60% 80% 100%

MUs

SUs

E

F

0.5

1

0

0.5

1

0
0.5 10 0.5 10 0.5 10R

O
C

 a
re

a 
in

 b
eh

av
in

g 
co

nd
iti

on

First half

Second half

100%

passivebehaving

 -13

 -4

‘Increasing’ functions

ROC area in passive condition

Fig. 6. Summary of AM discrimination ability for the population of ML cells with increasing rate vs. modulation depth functions. A–D: data are presented
in the same format as in Fig. 4, A–D. *Individual modulation depths where a Wilcoxon signed-rank test yielded a value of P � 0.05. P values at bottom
right are the P values obtained by collapsing data across all depths. E and F: scatterplots of firing rate-based ROCas during 1st half of the stimulus for
60% (left), 80% (center), and 100% (right) AM for MUs (E) and SUs (F). Each unit’s ROCa in the passive condition is plotted on the x-axis and that
for the behaving condition on the y-axis. G and H: same as E and F but for ROCa during 2nd half of stimulus. Diagonal line is where ROCa is equal
for both conditions, and the quadrants are marked at ROCa � 0.5.

315TASK ENGAGEMENT AND NEURAL DISCRIMINATION IN A1 AND ML

J Neurophysiol • doi:10.1152/jn.00458.2013 • www.jn.org

on January 22, 2015
D

ow
nloaded from

 



For ML increasing units, the discriminability of 100–60%
AM stimuli in the behaving condition declines as the time
window slides from the start to the end of stimulus presentation
for both MUs (Fig. 8A) and SUs (Fig. 8B). Note that the ML
population mean AM discriminability in the behaving condi-
tion over time actually becomes worse than in the passive, as
indicated by the crossing of the two plots (60%-100% depth).
In contrast to ML, A1’s rate-based AM discriminability at
higher depths in the behaving condition always stays at or
above the level seen in the passive condition [Fig. 8, C (MUs)
and D (SUs)]. The decline in AM discriminability over time in
ML in the behaving condition is absent for 6–40% AM stimuli
(Fig. 8, A and B). Instead, AM discriminability in the behaving
condition appears constant or improves slightly over the time
course of stimulus presentation.

For ML decreasing units, the population mean ROCa in the
behaving condition declines steeply toward 0 as the time

window slides from the start to the end of stimulus for both
MUs (Fig. 8E) and SUs (Fig. 8F). The decline of ML ROCa in
the passive condition is not as steep as in the behaving
condition. The result is an increase in the difference in ROCa
between these two conditions over time; the improvement in
AM discriminability due to engagement in the task is greater
later during the stimulus at all depths, for both MUs and SUs
(recall that lower ROCa means better discriminability for
decreasing units). For A1 decreasing units, the population
mean ROCa at 60–100% depth in the behaving condition also
declines toward 0 as the time window slides from the start to
the end of stimulus (Fig. 8, G and H), while a decline is not
clearly seen for the passive condition. The key difference
between A1 and ML is that for decreasing functions in A1
ROCa at 60–100% depths in the behaving condition starts
much worse (closer to 0.5) than in the passive condition early
during the test stimulus and goes toward the passive level over
time. Thus in A1 AM discriminability during the early stimulus
period is worse in the behaving than the passive condition and
improves toward the passive level over time. In ML decreasing
functions at higher depths, ROCas for behaving and passive
conditions are similar early in the stimulus and over time the
behaving condition gains an advantage.

The aggregate results of Fig. 8 suggest that, in ML, decreas-
ing cells improve their AM discriminability throughout the test
stimulus, although the improvement is larger later. One inter-
pretation is that in ML both increasing and decreasing cells are
suitable and relevant for encoding AM depth.

Rate Response to Unmodulated Noise Increases Later
During Stimulus, Causing ROC Areas to Decrease Over
Time

Our analysis revealed that in ML ROCas in the behaving
condition appear to decrease over time at a faster pace than in
the passive condition. This is true for higher modulation depths
and for units with both increasing and decreasing rate-depth
functions. The ROCa quantifies the overlap between firing rate
distributions in response to AM and unmodulated noise, but it
does not explicitly tell us what caused the decline in ROCa.
Two possible sources that can cause ROCa to decline are 1)
decreased firing rate in response to AM and/or 2) increased
firing rate in response to unmodulated noise. The results
presented below indicate that the increase in the response to
unmodulated noise over time is a major contributor to the
decline in ROCa in the behaving condition.

The population average firing rate (relative to spontaneous
rate) in the behaving and passive conditions was analyzed with
the same time windows as in Fig. 8 and shown separately for
cells with increasing (Fig. 9, A–D) and decreasing (Fig. 9,
E–H) rate-depth functions. For ML increasing units the popu-
lation mean firing rate in the behaving condition shows a
decrease over time in response to 60–100% AM for MUs (Fig.
9A), while the rate decrease in the passive condition is lesser
than in the behaving condition. Thus this difference can con-
tribute to the faster decline in ROCas (steeper slope in curves
of Fig. 8) for the behaving condition compared with the passive
condition (Fig. 8A). For SUs, the change in population mean
firing rate in response to AM at higher modulation depth is
similar between behaving and passive conditions (Fig. 9B for
SUs), and it seems unlikely that the firing rate change to these
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AM stimuli is the sole cause of the faster decline (steeper
slope) in ROCas in the behaving condition. In response to
unmodulated noise (0%), the population average firing rate
drops after the 0–400 ms time window, which includes the
onset response, then increases over time in both behaving and
passive conditions (Fig. 9, A and B). However, the slope of the
increase is steeper in the behaving than passive condition for
both MUs and SUs. This differential rate of increase for firing
rate over time for unmodulated noise in behaving and passive
conditions (Fig. 9, A and B, 0%) likely contributes to the steep

decline in population average ROCa in the behaving condition
for ML cells with increasing functions at higher (60–100%)
modulation depths (Fig. 8, A and B).

For ML cells with decreasing functions, the population
average firing rate for unmodulated sound (0%) also in-
creases steeply over time in the behaving condition, while
the rate increase is less obvious in the passive condition
[Fig. 9, E (MUs) and F (SUs)]. This steep increase in
response to unmodulated noise over time (Fig. 9) likely
contributes to the steep decline of population average
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ROCas in the behaving condition for decreasing ML units
(Fig. 8, E and F).

In A1, we also observe a similar firing rate increase over
time in response to unmodulated noise in the behaving condi-

tion for both increasing and decreasing units (Fig. 9, C, D, G,
and H). Thus this property—increased responses to unmodu-
lated noise late in the behaving condition—seems general
because it is common to both A1 and ML. Note that we also
observe a similar increase in firing rate at lower modulation
depths (6–28%), suggesting that the increased activity over
time may be related to difficulty in detecting AM in these
stimuli (also refer to Figs. 1–3).

Which Area Discriminates AM Better Based on Firing Rate:
ML or A1?

In addition to the difference in time dependence of AM
discriminability, A1 and ML show a significant difference in
the overall level of AM discriminability. For increasing units,
rate-based ROCa in A1 is significantly greater than that in ML
for both MUs and SUs, during both the first and second halves
of the test stimulus and in both behaving and passive condi-
tions. In Fig. 10, this can be seen as the increasing functions for
all time periods having values significantly greater than 0 at all
suprathreshold depths for all four conditions. In contrast, ML
only shows an advantage in discrimination for decreasing units
during the second half in the behaving condition, while no
significant difference between A1 and ML was found for
decreasing units during the first half in the behaving condition.
In the passive condition, ROCa for 28% AM for decreasing
MUs and 60% AM for decreasing SUs was significantly better
in A1 than in ML during the first half of the test stimulus, while
a significant difference was not found during the second half.
Note that in Fig. 10 the scale is twice as large for MUs,
reflecting that ROCa differences between A1 and ML were
roughly twice as large for MUs as for SUs. The aggregate
results show that engagement in the AM task worsens the AM
discriminability of decreasing neurons in A1 but improves that
of ML decreasing neurons, especially during the later portion
of the stimulus, making AM discriminability in ML better than
A1 during the later time period. This also implicates the
importance of a decreasing rate code in ML but not in A1.

VSpp-Based AM Discriminability in ML Improves Because of
Animals’ Engagement in AM Discrimination Task

We examined whether AM discrimination based on phase-
locking improves when animals engage in the AM discrimina-
tion task. VSpp was used as a measure of phase-locking (see
MATERIALS AND METHODS for details). Figure 11 shows an ex-
ample SU in ML with improved VSpp-based AM discrimina-
tion due to task engagement. The SU robustly phase-locks to
20-Hz AM at higher modulation depths (Fig. 11, A and B).
VSpp was calculated for each trial in the time window with
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onset response excluded (time window � 80–800 ms). Trial-
averaged VSpp increased in the behaving condition compared
with the passive condition at all depths except 28% and 0%
(Fig. 11C). VSpp-based ROCa increased in the behaving com-

pared with the passive condition at all modulation depths (Fig.
11D), indicating that the AM discrimination based on phase-
locking improved for this SU when the animal engaged in the
AM task.

In ML, the population average VSpp-based ROCa signifi-
cantly improves in the behaving condition compared with the
passive condition at 100%, 80%, and collapsed depths for MUs
(Fig. 11E) and at 60% and collapsed depths for SUs (Fig. 11F).
These results indicate that AM discriminability based on
phase-locking significantly improves because of engagement in
the AM task. Unlike rate-based ROCa, we did not find a
decline in VSpp-based ROCa in the behaving condition during
the stimulus (Fig. 11, G–J). However, the improvement in
VSpp-based AM discrimination due to engagement appears to
be greater earlier during the stimulus.

Similar to rate-based AM discrimination, A1 and ML show
a significant difference in the overall level of AM discrimina-
tion based on phase-locking. When VSpp-based ROCas from
the behaving condition are compared, A1 had significantly
greater values than ML at 100%, 80%, 60%, 40%, 28%, and
16% for MUs and at 100%, 80%, 60%, and 6% for SUs. These
results show that neurons in A1 are significantly better at
detecting the presence of AM with phase-locking than those in
ML, regardless of the behavioral condition.

Synchronizing vs. Nonsynchronizing Responses

A proposed model of hierarchical processing of temporal
modulation involves a transformation from a temporal to a rate
code (e.g., from a phase-locking to an average firing rate code).
This model is supported by findings that the maximum mod-
ulation frequency to which neurons phase-lock decreases and
nonsynchronizing responses become more prominent with au-
ditory system ascension. Therefore, neural responses that en-
code AM exclusively by changing firing rate without synchro-
nizing to the stimulus envelope (nonsynchronized response)
are proposed to reflect coding at a more highly processed stage
and to have a special role in AM perception (Bartlett and Wang
2007; Bendor and Wang 2007; Liang et al. 2002; Lu et al.
2001). Note that for both synchronized and nonsynchronized
responses, some have “increasing” rate-depth functions while
others have “decreasing” ones. In the previous sections, we
have shown that neural responses with increasing and decreas-
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Fig. 11. Improved neural discrimination in the behaving compared with the
passive condition using vector strength (VS). A–D: example of ML SU that
improved phase-locking in the behaving condition. A and B: raster plots of SU
response to 15-Hz AM in the passive (A) and behaving (B) conditions. C:
phase-projected vector strength (VSpp) plotted as a function of modulation
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population mean ROCas based on VSpp during the entire stimulus duration
(80–800 ms, the onset response is excluded) plotted as a function of modu-
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and SUs (F). G and H: population mean ROCas based on VSpp during 1st half
of the stimulus (80–400 ms, the onset response is excluded) plotted as a
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ing rate-depth functions show different task engagement ef-
fects. Therefore, we subdivided neural response by type (syn-
chronizing vs. nonsynchronizing) and sign of the rate-depth
function slope (increasing vs. decreasing) and examined the
effect of task engagement on neuronal AM discrimination (Fig.
12: each row has a ROCa scale for optimum comparison of
behaving and passive conditions).

For increasing ML synchronizing responses, AM discrimi-
nation significantly improved with task engagement during the
first half of the stimulus, while no significant improvement was
found during the second half (Fig. 12, E–H, compare with Fig.
6, A–D, for similarity). In contrast, for ML nonsynchronizing
responses with increasing functions, improvements in the rate-
based AM discriminability due to task engagement persisted
later in the stimulus for AM, but this was true only at near-
threshold depths (Fig. 12, A–D). To quantify near-threshold
versus suprathreshold effects, we collapsed the three nearest-
threshold depths (6%, 16%, and 28%) and the most suprath-
reshold depths (60%, 80%, and 100%). We then compared
active and passive ROCa for ML increasing nonsynchronized
units. For both SUs and MUs, there was a significant difference
between behaving and passive near threshold (Wilcoxon paired
tests, P � 2.8 � 10�4 SU; P � 3.1 � 10�3 MU) but not
suprathreshold during the 2nd half of the stimulus (P � 0.16
SU, P � 0.34 MU). A possible interpretation relates to atten-
tion. It could be that attention is engaged longer for the more
difficult to discriminate, near-threshold, sounds.

For A1 responses with increasing functions, the improve-
ment for nonsynchronizing responses is more pronounced with
d= measures, because their AM discrimination ability is ex-
tremely good, and many units encounter a ceiling effect when
measured with ROCas (bounded by 1). However, regardless of
the measures used, A1 improvement (Fig. 12, M–T) of rate-
based AM discrimination does not show as clear or interesting
first- and second-half differences as in ML.

For both A1 and ML, nonsynchronizing responses show
much better AM sensitivity compared with synchronizing
responses regardless of behavioral state.

For responses with decreasing functions, task engagement
generally improves rate-based AM discriminability for ML
units but degrades it for A1. For ML synchronizing responses
with decreasing functions, task engagement significantly im-
proves AM discriminability during the second half of the
stimulus but less so during the first (Fig. 12, E–H). For ML
nonsynchronizing responses with decreasing functions task
engagement significantly improves AM discriminability during
the first and second halves of the stimulus, and the improve-
ment is larger during the later period (Fig. 12, A–D). In fact, in
the behaving condition during the second half of the stimulus,
the mean discrimination ability (distance from ROCa � 0.5)
for decreasing ML units is better than that for increasing
units. For A1 responses with decreasing functions, regard-
less of response type (synchronizing or nonsynchronizing),
task engagement worsens rate-based AM discrimination,
especially during the first half of the stimulus, and the
degradation diminishes or disappears in the second half
(Fig. 12, M–P and Q–T).

Additionally, we examined whether VSpp-based AM dis-
criminability improves because of task engagement for syn-
chronizing responses. Note that in the previous section the
entire ML population was analyzed (Fig. 11) but here we focus

only on units with significant synchronizing responses. We
found that VSpp-based ROCa significantly improved for ML
synchronizing responses during the first and the second halves
of the stimulus (Fig. 12, I–L). Once again, the effect size and
number of significant conditions for VSpp-based ROCa were
larger with d= because many units have an ROCa near 1. For
this measure the only condition of the eight conditions shown
in Fig. 12, I and J and U and V, not to reach significance was
for A1 SUs in the second half of the stimulus; all seven
remaining conditions did. Although task engagement has
slightly different effects on rate-based and VSpp-based discrim-
ination, their absolute discriminability levels are roughly com-
parable, i.e., the population average, rate-based ROCa is com-
parable to VSpp-based ones for synchronizing responses (com-
pare Fig. 12, E–H, with Fig. 12, I–L). This suggests that
synchronizing responses can encode AM equally well using
phase-locking and average firing rate.

DISCUSSION

Differences between A1 and ML were found by investigat-
ing how behavioral engagement in AM discrimination affects
neurons’ ability to discriminate the same sounds. While little is
known about attention- and state-related effects in higher
auditory areas, these differences appear related to three key
issues. First, they may relate to how attention modulates neural
responses. The differing response time courses and neural
response type differences between ML and A1 may relate to
the degree to which this study taps into more selective forms of
attention, and possibly the time course of attention including
disengagement after a decision is made. Second, the results
have implications regarding neural coding. In particular, these
results elucidate possible decoding differences, such as simply
pooling activity from A1 as opposed to ML, where both
increases and decreases in activity must be accounted for by
higher areas. Third, the results imply a special role for non-
synchronized responses. Before addressing these issues con-
trasting A1 and ML, we must relate the results to what is
already known in A1, because little is known of attention and
engagement effects beyond A1.

Comparing Neural Activity During Passive Listening and
Active Behavior in A1

Our results show that engagement in the AM task improves
A1 and ML neurons’ ability to discriminate AM based on both
firing rate and phase-locking. Compared with a passive condi-
tion, auditory task engagement can 1) change stimulus-evoked
and spontaneous firing rates of AC cells (Benson and Hienz
1978; Hocherman et al. 1976; Miller et al. 1972; Otazu et al.
2009; Pfingst et al. 1977), 2) create facilitative frequency
tuning of A1 neurons in tone detection (Fritz et al. 2003; Miller
et al. 1972), 3) sharpen spatial tuning of A1 neurons in sound
localization (Benson et al. 1981; Lee and Middlebrooks 2011),
4) sharpen frequency tuning (David et al. 2012), and 5)
increase neural selectivity for complex sounds (Knudsen and
Gentner 2013). Furthermore, Otazu et al. (2009) have shown
that the sound-evoked and spontaneous firing rate of A1
neurons is modulated by engagement in either an auditory or an
olfactory task, demonstrating that A1 neurons’ firing rate can
be modulated by attending to nonauditory attributes. It is
largely unknown what components in task engagement cause
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the myriad of observed changes in neural response properties.
There are multiple possible contributing sources to the changes
observed in our study, including general attention and feature-
selective attention.

In A1 attention might activate a multiplicative response
increase. Jaramillo and Zador (2011) have shown that temporal
expectation improves A1 neurons’ frequency discrimination
ability by increasing responses at the target frequency and
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decreasing responses at surrounding frequencies. They con-
clude that this is consistent with a multiplicative effect. The A1
data we present here and previously (Niwa et al. 2012a) are
also consistent with a multiplicative effect, since the engage-
ment effects appear larger for stimuli that evoke higher firing
rates. Such multiplicative effects are often thought to be
indicative of attention. Our ML data show something different,
suggesting feature-selective attention. We believe this because
some of the ML effects are most pronounced near threshold
and occur for time windows at which stimulus-specific atten-
tion is more likely engaged.

Recently, larger neural discrimination improvements have
been found for a feature that is selectively attended in contrast
to simply attending to sound. Spatial tuning of A1 neurons
improved when animals performed a sound periodicity detec-
tion task, suggesting a general attention effect rather than a
spatial feature-attention effect. However, engagement in a
sound localization task improved spatial tuning more than
performing the periodicity detection task (Lee and Middle-
brooks 2011). This suggests that attention’s effects were fea-
ture specific.

These results suggest that both general and feature-selective
attention influence A1 responses, and are consistent with our
A1 results.

Relationship to Plasticity in AC

Our results show rapid changes in neural discrimination
when an animal switches between behaving and passive con-
ditions. In addition to immediate attention effects, long-term
training could lead to plastic changes that are often highly
interrelated with plasticity (Fritz et al. 2007; Polley et al. 2006)
that can improve AC neuron discrimination ability (e.g.,
Jeanne et al. 2011; Thompson et al. 2013). In our animals,
plastic changes due to training might be dormant in the passive
condition and only activated when the animal engages in the task.
This would allow for the cortical circuit in the passive condition
to be in a state open to the analysis of many possible signals, but
during task performance the circuit is optimized for AM detection.

Comparisons Between A1 and ML

Phase-locking. An interesting finding in this and an earlier
study (Niwa et al. 2012a) is that phase-locking—the precision
with which a neuron follows temporal modulation—improves
with active engagement. Here we also find that, while in the
passive condition ML does not phase-lock as well as A1, ML
improves more than A1 with behavioral engagement. This is
consistent with A1’s ability to improve temporal precision of
firing due to training (Fritz et al. 2005; Kilgard et al. 2001;
Kilgard and Merzenich 1998; Schnupp et al. 2006). Further-
more, Jakkamsetti et al. (2012) have shown that a higher AC

area [rat posterior auditory field (PAF)] normally time-locks
worse than A1 but that environmental enrichment improves
temporal locking in PAF more than in A1. Finally, in our study
phase-locking improves with engagement and becomes as
sensitive to AM as firing rate. When combined, all the evidence
suggests that learning and attention can improve phase-locking
to sound, such improvements are more pronounced in higher
cortical areas, and phase-locking could play a meaningful role
in sound processing.

Possible implications about attention. ML increasing cells’
AM discriminability during behavior worsens later in the
stimulus (Figs. 1–4, Fig. 8), but no such effect was seen in A1.
A1 increasing cells’ AM discrimination during behavior re-
mains above the passive level throughout the stimulus. The late
decline in ML’s AM discrimination for increasing units ap-
pears greater at higher modulation depths (Fig. 6, C and D, and
Fig. 8, A and B). Raw firing rate to AM and unmodulated noise
(Fig. 9, A and B) indicates that the late ROCa decline in ML is
due to the combination of firing rate decreases to AM and
increases to unmodulated noise in the behaving compared with
the passive condition. At modulation depths far above the
animals’ behavioral thresholds, listening to the entire test
stimulus is not likely required before making a decision. The
observed decrease in AM discriminability may be due to a
decrease in attention to high-depth AM later during the stim-
ulus, combined with increased attention to unmodulated noise
(particularly later in the stimulus), where animals may be
attending more in an attempt to detect AM in the unmodulated
stimuli.

Other evidence supporting a different type of attention effect
in ML derives from partitioning our analyses by increasing and
decreasing units. Nonsynchronized increasing units show the
most improvement during behavior later in the stimulus near
behavioral threshold (Fig. 12, B and D, and Fig. 6, C and D,
show a small effect averaged for all units). This suggests that
engagement improves performance in the second half only for
the most difficult to discriminate sounds that require the most
and longest attention, reflecting its time course. In A1 this
effect was not observed.

Overall AM discrimination ability of units. AM discrim-
inability of units with increasing depth sensitivity functions
appears better in A1 than ML. A1 neurons better discriminate
AM using phase-locking than ML neurons in both behaving
and passive conditions. A1 neurons also better discriminate
AM with a rate code with increasing rate-depth functions in
both conditions. The exception to A1’s better performance is
for rate coding using decreasing rate-depth functions. AM
discrimination by decreasing cells was significantly better in
ML than in A1, although this occurs only during the second
half of the test stimulus in the behaving condition. The result

Fig. 12. Effect of task engagement on AM discriminability shown separately for synchronized/nonsynchronized and increasing/decreasing responses. A and B:
ML population mean rate-based ROCas for nonsynchronized responses plotted for increasing (dark blue lines) and decreasing (light blue lines) responses, during
1st half (0–400 ms, A) and 2nd half (400–800 ms, B) for MUs (C and D for SUs). *Depths at which the differences between active and passive were significant
(P � 0.05). P values at top of each subplot denote whether differences between active and passive were significant for increasing units collapsed across all depths,
and those at bottom of each subplot are for decreasing units collapsed across all depths. E and F: population mean rate-based ROCas for synchronized responses
plotted for increasing (dark green lines) and decreasing (light green lines) responses during 1st half (0–400 ms, E) and 2nd half (400–800 ms, F) for MUs in
ML (G and H for SUs). Asterisks and P values are formatted as in A–D. I and J: population mean VSpp-based ROCas for synchronized responses during 1st
half (80–400 ms, I) and 2nd half (400–800 ms, J) for MUs in ML (K and L for SUs). M–X: same as A–L, but for A1 units. In all panels, P values are denoted
showing Wilcoxon signed-rank test comparing collapsed-depth ROC areas between behaving and passive conditions. *Individual modulation depths where a
Wilcoxon signed-rank test yielded a value of P � 0.05.
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suggests that decreasing ML cells may be important for AM
detection.

AM coding schemes. Our results suggest that to decode the
population of A1 neurons’ activity, aggregate activity increases
correspond to more strongly modulated AM. In contrast, in ML
the output code is likely the difference in activity between
neurons that increase and decrease rate with modulation depth.
AM discriminability of decreasing cells in A1 significantly
worsens with task engagement (Fig. 8, Fig. 12), while discrim-
inability of ML decreasing cells improves with task engage-
ment (Fig. 7, Fig. 8, Fig. 12). This is another piece of evidence
supporting the importance of the rate code carried by decreas-
ing ML cells. It also suggests that, in A1, increases in activity
represent modulation, since task engagement actually reduces
the performance of decreasing cells in this region by increasing
the response to AM during behavior. Therefore, the “reduc-
tion” of AM discriminability in A1 decreasing cells is not
necessarily bad for AM coding. If one assumes that the brain
interprets an increase in A1’s aggregate pooled activity (by
indiscriminately pooling the activity of all A1 neurons) as
evidence of an AM signal, then the reduction of decreasing
cells’ discriminability can actually render a benefit to the AM
discriminability of an A1 population and ultimately to the
animal’s behavioral performance. The difference in behavioral
modulation of decreasing cells’ AM discriminability in ML
and A1 suggests that different coding schemes are used in these
areas; a “single mode” in A1, using only increasing rate, and a
“dual-polar mode” in ML, using both increasing and decreas-
ing rate.

The heightened importance of decreasing rate-depth func-
tions in ML is particularly interesting. The emergence of
decreasing functions in ML, and the fact that their ability to
discriminate AM improves with attention and that they are very
sensitive (Fig. 12), may be beneficial for AM coding in ML.
While it is well established that positively correlated noise in
the activity of similarly tuned neurons limits their coding
capacity (Shadlen et al. 1996; Zohary et al. 1994), it has been
shown that positively correlated noise among neurons with
increasing and decreasing functions can improve their coding
efficiency (Romo et al. 2003). Thus the apparent loss of AM
discriminability in ML can be at least partially compensated for
by the emergence of decreasing functions if the noise in the
activity of cells with increasing and decreasing functions is
positively correlated.

Comparison to Recent Study Looking at Attention and
Nonprimary AC

Recently Dong et al. (2013) compared neural responses in
multiple cortical areas while cats discriminated click trains to
responses in a passive condition. While some of their results
are similar to ours, one apparent discrepancy is that they report
increases and decreases in driven responses in lower AC
(dorsal tonotopic AC) but only increases in higher ventral
nontonotopic AC. Major differences in methods, species, and
analysis prevent direct comparison. Their dorsal “lower” cor-
tical area probably includes both A1 and ML in monkeys, and
their ventral area is probably much higher than any belt area
(perhaps similar to temporal pole or insular cortex in mon-
keys), so the hierarchical areas between the two studies are not
comparable. Their task is relatively easy from a sensory per-

spective (discriminating 15 Hz from 50 Hz, which is highly
suprathreshold) and is unlikely to place high demands on
feature-selective attention, whereas our animals are performing
around threshold level. For us, particularly in A1, decreases
refer to the slope of firing rate vs. modulation depth functions.
For them, decreases refer to decreases in activity to both
stimuli, not on changes in the neurometric (response vs. fre-
quency) function. Much of the complexity we see occurs
between 400 and 800 ms after stimulus onset, while their
stimuli are only 320 ms. Finally, comparisons are made diffi-
cult by numerous other differences in experimental design:
performance level, neuronal inclusion criteria (they only in-
clude neurons that fire at least 2 standard deviations above
spontaneous level to one of the two stimuli), and species. This
highlights that experimental differences can have large impacts
on physiological results, particularly attention-related effects
that depend critically on the difficulty of discriminating or
detecting stimuli.

Is There a Special Role for Nonsynchronized Responses?

AM encoding is hypothesized to transform from temporal to
rate-based representations as information is processed from
lower to higher auditory areas (Lu and Wang 2004; Nelson and
Carney 2004). This is supported by the decrease in the upper
limit of modulation frequency to which neurons phase-lock and
by the increase in prominence of rate-based AM coding when
ascending from lower to higher areas (Blackburn and Sachs
1989; Creutzfeldt et al. 1980; de Ribaupierre et al. 1980;
Frisina et al. 1990; Langner and Schreiner 1988; Lu and Wang
2004; Nelson and Carney 2007; Preuss and Muller-Preuss
1990; Rees and Moller 1983; Rouiller et al. 1981) and the
emergence of nonsynchronized firing rate encoding of tempo-
ral modulation in higher areas (Bendor and Wang 2007; Lu and
Wang 2004).

Several lines of evidence support a special contribution for
nonsynchronized responses in temporal discrimination. In A1,
nonsynchronized (increasing) responses are more sensitive to
AM than synchronized responses (Fig. 12) and the nonsyn-
chronized responses increase sensitivity with engagement.
Nonsynchronized increasing ML responses, although slightly
less sensitive than those in A1, yield similar early-stimulus
results. During the second half of the stimulus, ML nonsyn-
chronized increasing responses show depth-dependent im-
provement in the behaving condition (Fig. 12, B and D),
consistent with a more pronounced or longer-lasting attention
effect near threshold.

ML nonsynchronized decreasing responses also show large
improvements during behavior and are more AM sensitive than
synchronizing responses, particularly later in the stimulus (Fig.
12, A–D). Finally, during the entire stimulus, both increasing
and decreasing nonsynchronized ML responses improve during
behavior (Fig. 12, A–D), whereas for synchronized responses
improvements only occur in the first half for increasing and
only during the second half for decreasing functions (Fig. 12,
E–H). Together these findings suggest that increasing (A1 and
ML) and decreasing (ML) nonsynchronized responses have
properties that make them particularly well-suited for AM
processing. This is further supported by recent studies in
behaving cats showing that nonsynchronized responses’ dis-
crimination ability more closely match the animal’s behavioral
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performance than synchronized responses (Dong et al. 2011)
and nonsynchronized rate responses are modulated by attention
but synchronizing ones are not (Dong et al. 2013).

Comparison of ML Activity in Our Task to Somatosensory
Cortical Activity During Flutter Frequency Discrimination
Tasks

Our study shares similarities with results from the primary
and secondary somatosensory cortices (S1 and S2). Romo et al.
conducted extensive studies examining the neural codes un-
derlying perception, memory, and decision making during
vibrotactile discrimination, where monkeys were trained to
report whether the frequency of a first flutter stimulus is greater
than the flutter frequency of a second stimulus (Hernandez et
al. 2000, 2002, 2010; Luna et al. 2005; Romo et al. 1998, 2002,
2003; Salinas et al. 2000). First, S2 neurons’ flutter frequency
coding capacity was significantly lower than that of S1 neurons
(Salinas et al. 2000); similarly, we find that ML neurons
generally have lower AM discriminability than A1 cells. Sec-
ond, transformation of encoding schemes appears to occur
from a single mode of “increasing” rate response in S1 to a
dual mode of “increasing” and “decreasing” responses in S2
(Hernandez et al. 2002; Salinas et al. 2000). Salinas et al.
(2000) showed that 92% of S1 neurons encoded an increase in
flutter frequency with monotonically increasing firing rate and
only 8% used decreasing rate. In S2, 58% had increasing rate
vs. flutter frequency functions and 42% decreasing. Our results
also suggest that the primary sensory area, A1, employs a
single-mode encoding with mainly increasing rate-depth func-
tions while the secondary area, ML, employs a dual-polar
mode with both increasing and decreasing rate-depth functions.
Although our studies and those of the Romo group use differ-
ent behavioral tasks in different sensory modalities, there is a
general principle: a meaningful temporal feature (flutter fre-
quency or modulation depth) in primary sensory cortex is
encoded primarily by one type of response—an increase in
activity. But in the secondary area two types of responses—
activity increases or decreases—encode the feature. The sim-
ilarities in our results suggest a common scheme in hierarchical
processing of temporal information shared in sensory cortices
of different modalities.

Hierarchical Processing of Temporal Information in AC

Electrophysiological studies have examined SU responses to
AM and other types of temporal modulation across different
auditory areas (Bendor and Wang 2007, 2010; Bieser and
Müller-Preuss 1996; Eggermont 1991, 1994; Joris et al. 2004;
Joris and Yin 1992; Kajikawa et al. 2008; Liang et al. 2002; Lu
et al. 2001; Lu and Wang 2000; Malone et al. 2007; Nelson and
Carney 2004; Schreiner and Urbas 1988; Scott et al. 2010;
Wojtczak et al. 2011). Although we have yet to form a precise
understanding of how temporal sound properties are processed
in parallel and/or hierarchical AC networks, an interesting
trend is evident: a temporal resolution gradient may be present
along the posteromedial-to-anterolateral axis on primates’ su-
perior temporal gyrus (STG). For example, in awake, nonbe-
having squirrel monkey, a gradient of neuron ability to phase-
lock to AM was shown across cortical areas, where A1 had the
best temporal resolution (Bieser and Müller-Preuss 1996). The
areas anterior and lateral to A1 had lower phase-locking-based

BMFs, and thus lower temporal resolution. Scott et al. (2010)
also showed that in awake, nonbehaving macaques areas an-
terior and lateral to A1 (areas R and lateral belt cortices) have
lower phase-locking BMFs compared with A1 and with an area
posteromedial to A1 (CM). This gradient was also shown in
human epileptic patients, showing degradation of temporal
resolution along the posteromedial to anterolateral direction
over the Heschl’s gyrus (HG) (Brugge et al. 2009), implicating
a flow of temporal processing in the AC hierarchy in the
posteromedial-to-anterolateral direction (Gueguin et al. 2007).

Other temporal response properties besides the resolving
power for AM frequency exhibit gradients in posterior-to-
anterior and/or medial-to-lateral directions over the STG. Neu-
rons’ preferred frequency-modulated (FM) frequency de-
creases in a posterior to anterior direction in the lateral belt
(Tian and Rauschecker 2004). In addition, there may be a
posterior-to-anterior and/or medial-to-lateral gradient of re-
sponse latency (Kajikawa et al. 2005, 2008; Kusmierek and
Rauschecker 2009; Lakatos et al. 2005; Recanzone et al.
2000a; Scott et al. 2010). Our result showing lower AM
discriminability based on phase-locking in ML compared with
A1 may be consistent with the idea that temporal response
deteriorates in a medial-to-lateral direction.
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