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ARTICLE

Stress-induced RNA–chromatin interactions
promote endothelial dysfunction
Riccardo Calandrelli 1,5, Lixia Xu2,3,5, Yingjun Luo 3,5, Weixin Wu1, Xiaochen Fan1, Tri Nguyen1,

Chien-Ju Chen1, Kiran Sriram3,4, Xiaofang Tang3, Andrew B. Burns 3, Rama Natarajan 3,4,

Zhen Bouman Chen 3,4✉ & Sheng Zhong 1✉

Chromatin-associated RNA (caRNA) has been proposed as a type of epigenomic modifier.

Here, we test whether environmental stress can induce cellular dysfunction through mod-

ulating RNA-chromatin interactions. We induce endothelial cell (EC) dysfunction with high

glucose and TNFα (H+ T), that mimic the common stress in diabetes mellitus. We char-

acterize the H+ T-induced changes in gene expression by single cell (sc)RNA-seq, DNA

interactions by Hi-C, and RNA-chromatin interactions by iMARGI. H+ T induce inter-

chromosomal RNA-chromatin interactions, particularly among the super enhancers. To test

the causal relationship between H+ T-induced RNA-chromatin interactions and the

expression of EC dysfunction-related genes, we suppress the LINC00607 RNA. This sup-

pression attenuates the expression of SERPINE1, a critical pro-inflammatory and pro-fibrotic

gene. Furthermore, the changes of the co-expression gene network between diabetic and

healthy donor-derived ECs corroborate the H+ T-induced RNA-chromatin interactions.

Taken together, caRNA-mediated dysregulation of gene expression modulates EC dysfunc-

tion, a crucial mechanism underlying numerous diseases.
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Mammalian genomes are extensively transcribed to
RNAs, and a portion of RNAs are physically associated
with chromatins and thus are termed chromatin-

associated RNAs (caRNAs)1. However, the structural and func-
tional role of these caRNAs in 3D nuclear organization and
transcriptional regulation remains unclear. Despite the increasing
evidence supporting that caRNAs play important roles in reg-
ulating nuclear function and transcriptional output2, most of
these studies focused on individual caRNAs3–5. In contrast, there
is little information on global RNA–chromosomal interactions on
a genome-wide scale.

Recent technological developments have made it possible to
assay DNA–DNA and RNA–chromatin interactions in situ in a
genome-wide manner6–11. Among these tools, in situ mapping of
RNA–genome interactome (iMARGI) enables all-RNA-versus-
the-genome analyses that can simultaneously identify many
caRNAs and their respective genomic interaction loci7,8. This
feature helped to reveal a large number of caRNAs, including
those attached to other chromosomes7,12. However, it is unknown
whether these RNA–chromatin contacts are altered in a dynamic
cellular process, and how these interactions impact transcrip-
tional output and functional outcome in the context of health and
disease remains unclear.

Endothelial cells (ECs) lining the interface between circulating
blood and vascular wall are crucial for the vital function of every
tissue and organ with blood perfusion. Many pathological con-
ditions, including the epidemic diabetes that is associated with
hyperglycemia and chronic inflammation, can cause EC dys-
function. During EC dysfunction, ECs undergo transcriptional
changes that impair homeostatic function (e.g., nitric oxide pro-
duction and angiogenesis), while inducing pro-inflammatory and
pro-fibrotic responses. Although the importance of endothelial
dysfunction has been well documented in many diseases13, the
underlying molecular mechanisms, particularly those involving
changes in chromatin organization remain largely unknown. An
earlier work has underscored the importance of super enhancers
(SEs) in inflammatory transcription in ECs14. Our previous work
suggests that an enhancer-derived long noncoding RNA
(lncRNA) can promote the transcription of endothelial nitric
oxide synthase (eNOS) through interchromosomal RNA–DNA
interactions5. Given that many enhancers are actively transcribed
into RNAs that remain bound to chromatins15, it is curious what
regulatory role these enhancer/SE-embedded caRNAs play in
transcriptional regulation of EC dysfunction.

In this study, we leverage time-course iMARGI analysis
together with time-course Hi-C and single-cell transcriptome
analyses to interrogate how global RNA–chromosomal contacts
change in EC dysfunction associated with diabetes, and to what
extent these changes impact cell phenotype and function. We
first established an in vitro system where we induce EC dys-
function encompassing a robust pro-inflammatory activation and
endothelial–mesenchymal transition (EndoMT) phenotype. We
then employed a combination of single-cell RNA sequencing
(scRNA-seq), Hi-C, and iMARGI analysis to characterize tem-
poral changes in the transcriptome, genomic interactome, and
RNA–chromatin interactome. The dysfunctional ECs exhibit a
large number of interchromosomal RNA–chromatin interactions,
especially among the SEs from different chromosomes. These SEs
overlap with key regulatory genes promoting multi-facets of EC
dysfunction, including inflammation, extracellular matrix (ECM)
remodeling, and EndoMT. Among the emergent inter-
chromosomal interactions in dysfunctional ECs, we identified an
interaction involving a SE on chromosome 2 overlapping
LINC00607 (a long intergenic noncoding RNA with unknown
function), and a SE on chromosome 7 overlapping SERPINE1/
PAI-1 (plasminogen activator inhibitor, a crucial regulator in

endothelial dysfunction and many vascular diseases)16. Perturb-
ing the RNA-chromatin contacts by LINC00607 knockdown leads
to the suppression of SERPINE1 and other genes contributing to
endothelial dysfunction, as well as attenuation of monocyte
adhesion and EC senescence. Correlational analysis performed
with scRNA-seq data from H+ T-treated ECs and diabetic
donor-derived ECs reveal that LINC00607 and SERPINE1 are co-
expressed in the same single cells more often in the dysfunctional
ECs than in healthy control ECs. Collectively, our data suggest
that RNA–chromatin interactions contribute to transcriptional
regulation during endothelial dysfunction, a biological process
closely implicated in various diseases.

Results
High glucose and TNFα induce EC dysfunction. We first
established and characterized an in vitro model of endothelial
dysfunction by subjecting human umbilical vein endothelial cells
(HUVECs) to high glucose (HG, 25 mM D-glucose) and TNFα
(5 ng/mL, to mimic inflammation; H+ T) for 3 and 7 days
(abbreviated as H+ T Days 3 and 7). The control cells were kept
in 25 mM mannitol (NM control), denoted as Day 0. This design
is based on three premises: (1) hyperglycemia and chronic
inflammation are two key culprits in diabetes to cause EC
dysfunction17,18; (2) the prolonged and combined treatment
would induce robust EC changes, encompassing eNOS suppres-
sion, pro-inflammatory activation, ECM remodeling, and
EndoMT, in which ECs manifest a phenotypic transition into
mesenchymal-like cells19,20; and (3) the time course will allow
temporal mapping of EC changes in transcriptome, genomic
interactions, and RNA–genome interactions.

We first characterized this in vitro EC dysfunction model at the
single-cell transcriptome level. scRNA-seq revealed that ECs
underwent dramatic transcriptional changes under H+ T treat-
ment, evident by three separate clusters on the t-distributed
stochastic neighbor embedding (t-SNE) plot corresponding to
three different time points, i.e., Day 0, H+ T Day 3, and H+ T
Day 7 (Fig. 1b). However, principal component analysis (PCA)
showed that ECs across three time points were not clustered
separately (Fig. 1c), implying that ECs remain largely the same
population, despite clear differences in transcriptional states.
Differential expression analysis identified 457 genes between Day
0 vs. Day 3 (p value < 9.72e−27, Wilcoxon test) and 826 genes
between Day 0 vs. Day 7 (p value < 9.93e−115, Wilcoxon test).
Among these differentially expressed (DE) genes, 181 are
consistently upregulated and 173 consistently downregulated by
H+ T treatment (Supplementary Fig. 1).

Subsequent pathway enrichment analysis of DE genes demon-
strated a significant enrichment of key pathways contributing to
endothelial dysfunction, with a number of genes induced to
promote inflammatory response (e.g., intercellular adhesion
molecule (ICAM1), monocyte chemoattractant protein 1
(encoded by CCL2), PAI-1 (encoded by SERPINE1)), ECM
remodeling (e.g., fibronectin (FN1) and collagens (COL4, COL5,
and COL8)), and transforming growth factor (TGF-β) signaling
and fibrotic pathways (e.g., TGFB1, TGFB2, SMAD3, and
connective tissue growth factor (CTGF)), while eNOS, encoded
by NOS3, and many EC function markers decreased (Fig. 1d, e
and Supplementary Table 1). In addition to protein-coding genes,
several lncRNAs were also detected as DE genes. These include
the H+ T-upregulated LINC00607, LINC01013, and LINC02154,
and the downregulated LINC01235 (Fig. 1d, e).

scRNA-seq data also revealed the heterogeneity of EC
transcriptomic changes. For example, the expression of EC
hallmark gene eNOS was significantly decreased by H+ T,
evident not only by the reduced average mRNA level in single
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ECs, but also by the lowered percentage of ECs that express
eNOS, following a time-dependent manner. In the same time
course, pro-inflammatory and pro-fibrotic genes (e.g., ICAM1,
FN1, and SERPINE1) were increased in mRNA levels in single
ECs and in percentage of ECs with positive expression across time
(Fig. 1d, e). We also observed varied patterns of transcriptional
changes among DE genes engaged in different molecular
pathways and cellular functions. The most robust induction was
in the pro-inflammatory genes. For instance, ICAM1 was detected
in <2% of control ECs at Day 0, in 68% of ECs at Day 3, and 89%
of ECs at Day 7. Similar but less drastic dynamics were observed
for genes involved in ECM organization and remodeling. For
example, FN1 was expressed in 36% of control ECs, which
increased to 73% by Day 3 and then to 95% by Day 7. In contrast,
the mesenchymal marker smooth muscle cell actin (α-SMA,
encoded by ACTA2) was induced in a much slower pattern, i.e.,
from 0.2% of control ECs to 1.4% of cells after 7 days of H+ T
treatment (Fig. 1e). These results suggest a time-dependent
signaling cascade initiated by a strong inflammatory response,
which relays to substantial ECM remodeling and eventually
perpetuates TGF-β signaling and EndoMT.

To characterize the EC changes at the cellular level and confirm
that H+ T-treated cells undergo an EndoMT process, we verified
the expression of eNOS and α-SMA in bulk ECs using
quantitative PCR (qPCR; Fig. 1f). As a positive control, we
treated ECs with TGF-β and interleukin 1 beta (IL-1β), which has
been demonstrated to induce EndoMT21,22. Both treatments
caused apparent morphological changes in ECs, accompanied by
suppression of eNOS and induction of α-SMA at mRNA levels,
with H+ T inducing a stronger EC morphological change and a
higher induction of α-SMA (Fig. 1f, g and Supplementary Fig. 2).
Consistently, α-SMA was also progressively increased at the
protein level by H+ T, as visualized by immunofluorescent
staining, while VE-cadherin (VE-cad), an EC-specific membrane
marker, remained expressed in ECs (Fig. 1g). The morphological
change is also evident by phalloidin staining of cytoskeleton,
which demonstrates that ECs with the typical classic cobblestone,
began to transition into mesenchymal-like spindle shape by
3 days, which became more distinguished by 7 days (Fig. 1g).
Following experiments, including Hi-C and iMARGI assays were
performed with ECs treated by the same H+ T condition in the
same time course (i.e., Days 0, 3, and 7, Fig. 1a).
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Fig. 1 High glucose and TNFα induce a profound gene expression and phenotypic change. a HUVECs were treated in biological duplicates as Day 0:
25 mM mannitol as normal glucose and osmolarity control (NM); Day 3: combined treatment consisting 25mM D-glucose and 5 ng/mL TNFα (H+ T) for
3 days; and Day 7: H+ T treatment for 7 days. Each group of treated cells was subjected to single-cell RNA-seq (scRNA-seq), Hi-C, and iMARGI assays.
b t-SNE plot of scRNA-seq (4000–15,000 cells per sample) showed clear separation by treatment condition into three distinct clusters. c Principal
component analysis of scRNA-seq data: single cells are plotted in the first two PC space and are labeled in red (Day 0, i.e., NM), green (Day 3, i.e., 3-day
H+ T treatment), and blue (Day 7, i.e., 7-day H+ T treatment). d Expression heatmap (z-scaled) of top DE genes in single ECs grouped into functional
pathways. Cells were ordered by increasing SERPINE1 expression (per each sample separately) and binned per 100 cells for the analysis. A total of 269 bins
in Day 0, 177 bins in Day 3, and 148 bins in Day 7. e t-SNE plots of the expression level of selected genes in each single cell across the time course. The
RNA levels are represented by log-normalized unique molecular identifier counts. f mRNA levels of eNOS and α-SMA in NM vs. H+ T-treated HUVECs
and cells untreated (NT) or treated with TGF-β (10 ng/mL) and IL-1β (5 ng/mL; T+ I) for 3 or 7 days. The respective control was set as 1. Relative eNOS
level: data represent mean ± SEM from five independent experiments; relative α-SMA level in H+ T treatment: data represent mean ± SEM from seven
independent experiments; relative α-SMA level in T+ I treatment: data represent mean ± SEM from four independent experiments. *P= 0.0067, 0.0087,
0.0057, and 0.0017 from left to right based on ANOVA with Bonferroni as post hoc test. g Cell morphology under bright field (BF), immunofluorescent
staining of α-SMA, and VE-cadherin (VE-cad), phalloidin staining of cytoskeleton, and DRAQ5 (DRAQ) staining of the nuclei. Representative images from
five independent experiments are shown. Scale bar of BF= 100 µm; scale bars of (immuno)fluorescent staining= 50 µm. Source data are provided as a
Source data file.
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Lack of significant changes in 3D genome organization in ECs.
We investigated whether H+ T induced any changes in the 3D
genome structure by using in situ Hi-C. Among 164,585,295
uniquely mapped read pairs on average from each time point, the
proportions of intrachromosomal read pairs were 92.6%, 91.4%,
and 93.8% at Days 0, 3, and 7, respectively, which did not exhibit
a trend of change over time (Fig. 2a). The Hi-C-derived A/B
compartments and topologically associated domains (TADs) did
not exhibit notable changes either (Supplementary Fig. 3a, b). To
assess the degree of TAD changes at the genome scale, we cal-
culated the Measure of Concordance (MoC)23 between every two
time points (Supplementary Fig. 3c). The MoCs of the three
pairwise comparisons were all categorized as highly concordant
based on the cutoff of MoC > 0.75 as recommended23. These data
suggest that H+ T did not significantly perturb the major 3D
genome features. The lack of genome-wide changes in 3D gen-
ome structure is consistent with the observation that the single-
cell transcriptomes remained a single cluster in the same time
course (Fig. 1c).

Changes of RNA–chromatin interactions in dysfunctional ECs.
Next, we asked whether H+ T induces any changes in
RNA–chromatin interactions. We subjected ECs of the same H+ T
treatment to genome-wide RNA–chromatin interaction profiling
by iMARGI. To account for biological variability, we repeated
the experiment and generated a second iMARGI dataset from

Day 0 to Day 7 ECs (Supplementary Table 2). We describe two
types of robustness analyses within the results, based on (1)
comparing the H+ T-induced changes between Days 7 and 0,
each with two biological replicates, and (2) merging and splitting
the two time points after treatment (Days 3 and 7) for compar-
ison with Day 0.

In the control ECs (Day 0), 34.4% of the uniquely mapped
iMARGI read pairs were interchromosomal read pairs, which is
on a comparable scale but smaller than the previously reported
52% in human embryonic kidney cells7. After treatment,
interchromosomal read pairs increased to 62.7% (Days 3 and 7
combined; p value= 1e−4, d.f.= 1, chi-square test). Consistently,
when we separately analyzed the three time points, the trend of
increase from Day 0 to Day 3 persisted through Day 3 to Day 7
(Fig. 2b, c). Thus, H+ T treatment induced interchromosomal
RNA–chromatin interactions in ECs. Such a pronounced change
is in contrast to the lack of 3D genome structural changes (Fig. 2a
and Supplementary Fig. 3), begging the question whether the
interchromosomal RNA–chromatin interaction changes contri-
bute to the observed transcriptome changes in the same time
course (Fig. 1).

Enrichment of SE-derived RNAs in chromatin-associated
RNAs. We asked whether the RNA transcripts from intergenic
regulatory sequences, such as enhancer RNAs (eRNAs) are a
major component of caRNAs. To this end, we obtained the
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coordinates of 63,758 HUVEC enhancers from EnhancerAtlas24

and 912 HUVEC SEs from dbSUPER25. Read 1 and read 2 of
each iMARGI read pair are referred to the RNA end (read 1) and
the DNA end (read 2), because they are converted from the RNA
and the DNA7. A total of 7,704,090 (10%) iMARGI read pairs had
their RNA ends mapped to enhancer regions. Compared to the
total length of enhancers in HUVEC (120,382,426 bp, ~3.9% of
the genome), eRNA–DNA read pairs are enriched in iMARGI
data (odds ratio= 2.7, p value < 2.2e−16, d.f.= 1, chi-square test;
Supplementary Fig. 4a), suggesting eRNA–chromatin interactions
as a major component of RNA–chromatin interactions. Fur-
thermore, 5,936,114 (7.6%) of iMARGI read pairs had their RNA
ends mapped to SE regions, whereas the total length of SEs
(28,277,698 bp) only accounts for 0.9% of the genome size (odds
ratio= 9, p value < 2.2e−16, d.f.= 1, chi-square test; Fig. 2d, e),
suggesting that caRNAs are even more enriched in SEs than in
enhancers.

To test whether the detected enrichment is sensitive to the
precise boundaries of SEs, we extended the boundary of the SE to
the boundary of the overlapping gene whenever a SE is fully
embedded in a gene. This boundary extension resulted in 875
HUVEC SEs, covering 3.1% (94,493,925 bp) of the genome. These
extended SEs accounted for 15.1% of the RNA ends of iMARGI
read pairs, representing 4.9-fold increase of odds than genome
average (odds ratio= 5.6, p value < 2.2e−16, d.f.= 1, chi-square
test). The enrichment in the extended SEs (odds ratio= 5.6)
remained greater than the enrichment in all enhancers (odds
ratio= 2.7), suggesting that the enrichment of caRNAs in SEs is
not sensitive to the precise boundaries of SEs. Taken together,
iMARGI-identified caRNAs were enriched with eRNAs and even
more enriched with transcripts from SEs, i.e., seRNAs. From here
on, our analysis was based on the SEs with extended boundaries.
We call a SE as geneSE, where gene is the gene (or one of the
genes) overlapping with this SE. We call SE-derived caRNAs as
se-caRNAs.

Emergence of a RNA–chromatin interaction network among
SEs. More than 17% of the iMARGI read pairs have either the
RNA or DNA end mapped to SEs. The SEs were 1.7-fold more
likely to be mapped by the RNA ends than the DNA ends
(p value= 0.05, t test), suggesting that SEs contribute to caRNAs
more often than being the genomic targets of caRNAs. More
iMARGI read pairs mapped to SEs as compared to genome
average (odds ratio= 6.5, p value < 2.2e−16, d.f.= 1, chi-square
test). This enrichment suggests a subnetwork composed of SEs in
the RNA–chromatin interactome26.

To characterize this subnetwork, we counted the number of
iMARGI read pairs between any two SEs and normalized these
counts by the total number of uniquely mapped read pairs in each
sample. A pair of SEs was called interacting when their
normalized counts were above the 95th percentile of all the
normalized counts at Day 0. This analysis resulted in 1787, 2777,
and 3785 interacting SE pairs at Days 0, 3, and 7, respectively
(Supplementary Fig. 4d, e). Among these identified SE interac-
tions, the number of interchromosomal SE pairs increased from
506 (Day 0) to 2139 (Day 3) and subsequently to 3253 (Day 7;
Supplementary Fig. 4b, d). In comparison, the number of
intrachromosomal interactions did not increase (Supplementary
Fig. 4b, e). These data suggest that some changes of gene
expression in dysfunctional ECs are caused by interchromosomal
RNA–DNA interactions between SEs, i.e., an interchromosomal
RNA activation hypothesis.

Hubs of interchromosomal RNA–DNA interaction networks.
To provide further clues to test this hypothesis, we aimed to

identify a small portion of the SE interactions likely more
important for EC dysfunction. The degree distribution of these SE
networks followed the power law (Supplementary Fig. 4c). Thus,
these SE networks are hierarchical networks with a small number
of highly connected central nodes (a.k.a. hubs)27,28. We identified
the hubs as those SEs with degrees 60 or greater (≥95th percentile
of all the degrees). This analysis resulted in 1, 14, and 25 hubs
involved in 130, 1652, and 2514 interchromosomal connections at
Days 0, 3, and 7, respectively (Fig. 3a).

The only hub SE on Day 0 overlapped with MALAT1.
Following the rule defined above, we call this Malat1SE. The
large number of caRNAs transcribed from Malat1SE is expected
because the MALAT1 lncRNA interacts with a large amount of
transcription active genomic regions29. The number of hubs
increased from 1 (Day 0) to 14 (Day 3) and to 25 (Day 7; Fig. 3a).
Furthermore, every hub of the preceding time point appeared as a
hub in the following time point. Such continuity is reproduced in
biological replicates (Supplementary Fig. 4f). These data suggest a
continuous expansion of hubs over the progression of EC
dysfunction.

H+ T-induced hub SEs contain driver genes of EC dysfunc-
tion. We next asked whether the emergent hubs in the H+ T
treatment time course contribute to EC dysfunction. The H+ T-
induced hub SEs included Serpine1SE, Fndc3bSE, Thbs1SE,
Pvt1SE, Smad3SE, Runx1SE, and VwfSE (Supplementary Table 3).
The genes embedded in these hub SEs encode key activators of
inflammation and thrombosis, including SERPINE1, THBS1, and
VWF, all of which have also been shown to be elevated in dia-
betes30–34, inhibitors of angiogenesis, including THBS131 and
RUNX135, drivers of EndoMT including SMAD320, and several
others promoting EC dysfunction including TRIO36, EXT137, and
PDE4D38 (Fig. 3a). Thus, the genes embedded in the H+ T-
induced hub SEs are critical to the transition from healthy to
dysfunctional ECs, constituting a core feature of the inter-
chromosomal RNA–chromatin interactome.

Inhibition of selected caRNA suppresses EC dysfunction. The
aforementioned data, together with our previous study5, suggest a
model in which interchromosomal RNA–chromatin interactions
activate critical genes in the target genomic regions to contribute
to EC dysfunction. To test this thesis, we perturbed the
RNA–chromatin interaction between two SEs by inhibiting the
ncRNA transcribed from a SE. Among all the H+ T-induced
interacting SEs, 26 SEs do not contain any coding gene and
contain at least one lncRNA gene. Among the lncRNAs contained
in these SEs, only LINC00607 was reported as a H+ T-induced
lincRNA by scRNA-seq analysis with a threshold of FDR < 1e−32
(Fig. 1d, e).

The SE containing LINC00607 is Linc607SE (Supplementary
Fig. 6), which did not interact with the hub SE (Malat1SE) in
control ECs (Day 0), but exhibited H+ T-induced interactions
with several hub SEs, including Serpine1SE (Fig. 3a, b and
Supplementary Fig. 5). Serpine1SE contains the SERPINE1 gene,
which encodes PAI-1, a key regulator of EC dysfunction linking
hyperglycemia, inflammation, and EndoMT16,22. SERPINE1 is
also one of the top H+ T-induced genes in ECs from scRNA-seq
(Fig. 1d, e). Notably, Hi-C data did not reveal interactions
between Linc607SE and Serpine1SE in ECs from any time point
(Fig. 3c).

To test whether the transcripts derived from Linc607SE have
an effect on H+ T-induced SERPINE1 expression, we designed
two locked nucleic acid (LNA) GapmeRs targeting LINC00607
(Fig. 4a). Both LNAs significantly reduced the RNA levels of
LINC00607 in H+ T-treated HUVECs (Fig. 4b). SERPINE1
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expression was also reduced by both LNA1 and LNA2, although
only the reduction by LNA1 reached the statistical significance of
P < 0.05 (Fig. 4b).

To investigate why LNA2 did not affect the SERPINE1
expression as efficiently as LNA1, we queried whether the two
LNAs exerted differential effects on LINC00607 RNA depending
on its subcellular localization. Based on the ENCODE39 data,
among all the predicted LINC00607 transcripts, LINC00607:3 is
the most abundant and nucleus-enriched transcript in HUVECs,
which we confirmed in ECs (Supplementary Fig. 6). It is also the
only validated transcript on NCBI (reference sequence:
NR_037195.1), which the LNAs were designed to target. Using

subcellular fractionation, we found that LNA2 did not inhibit the
LINC00607 RNA level in the nucleus as efficiently as LNA1,
although both LNAs inhibited the levels of cytoplasmic
LINC00607, (Fig. 4c and Supplementary Fig. 6). These data
support that nuclear-localized LINC00607 RNA promotes
SERPINE1 transcription in dysfunctional ECs.

We also performed RNA-seq to obtain additional information
on the effect of LINC00607 knockdown. Consistently, RNA-seq
confirmed that H+ T-induced SERPINE1 mRNA level was
substantially inhibited by LNA1, but not as effectively by
LNA2. Moreover, genes known to be regulated by SERPINE1,
e.g., FN1 (refs. 40,41) and COL4 (refs. 40,42) were also suppressed
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by LNA1 (Fig. 4d). To link the molecular changes to EC function,
we assessed monocyte adhesion to ECs and senescence-associated
β-gal staining of ECs, two functional readouts of SERPINE1
induction43,44. In line with the gene expression change,
LNA1 suppressed donor-derived monocyte adhesion to HUVECs
and the EC senescence marker (Fig. 4e, f). Collectively, these data
support that perturbing the RNA–chromatin contacts, exempli-
fied by LINC00607 knockdown, led to the suppression of
SERPINE1 and endothelial dysfunction.

Co-expression of LINC00607 and SERPINE1 in dysfunctional
ECs. To explore an alternative approach for testing the regulatory
link between LINC00607 and SERPINE1, we reasoned that if
LINC00607 RNA promotes transcription of SERPINE1 in dys-
functional ECs, we shall expect LINC00607 and SERPINE1 co-
expressed in the same single cells more often in the dysfunctional
ECs than in control ECs. To this end, we compared the number
of single cells expressing both LINC00607 and SERPINE1 (co-
expression+) with the number of single cells expressing only
LINC00607 (co-expression−) between the H+ T-treated and the
control ECs (diamond dot, Fig. 5b). The H+ T-treated ECs
exhibited a 9.1-fold increase in the odds of co-expression than the
control ECs (odds ratio= 40.7, p value < 2.2e−16, d.f.= 1, chi-
square test), suggesting that H+ T-induced SERPINE1-expres-
sing cells tended to coincide with those single cells that expressed
LINC00607.

Next, we asked whether Linc607SE-interacting SEs contained
any other genes that also exhibited H+ T-induced co-expression
with LINC00607 in the same single cells. We identified all the 30
genes contained in Linc607SE-interacting SEs at H+ T Day 7
(Fig. 5a) and repeated the association test by replacing SERPINE1
with every other gene (dots, Fig. 5b). While SERPINE1 exhibited
the largest degree of H+ T-induced single-cell co-expression with
LINC00607 (diamond dot, Fig. 5b), 21 genes including RUNX1
and TRIO also exhibited increased co-expression with LINC00607
in H+ T-treated ECs, as compared to control ECs (odds ratio > 1,
Fig. 5b). These data suggest that the SEs exhibiting H+ T-
induced interactions are more likely to co-express their harbored
genes in the same single cells in dysfunctional ECs than in
healthy ECs.

Diabetes-associated co-expression in single cells. Next, we asked
if vascular endothelium from diabetic donors also exhibits

increased co-expression of LINC00607 and SERPINE1 in the same
single cells, as compared to vascular endothelium from healthy
control donors. To this end, we isolated ECs for scRNA-seq from
mesenteric arteries from two healthy and two type 2 diabetic
(T2D) donors (Supplementary Table 4). One of the T2D donors
had over 10 years of diabetic history and the other had untreated
T2D, both of which are expected to have impaired EC function.

The diabetic donors’ ECs exhibited a 3.8-fold increase in the
odds of co-expressing LINC00607 and SERPINE1 than the ECs
from healthy donors (odds ratio= 5.6, p value= 5e−7, d.f.= 1,
chi-square test), suggesting a corresponding increase of single-cell
co-expression in diabetes. Compared to the other 29 genes
embedded in the 12 Linc607SE-interacting SEs, again SERPINE1
ranked first by odds ratio in both cultured ECs and donor-derived
ECs (diamond dots, Fig. 5b, c), revealing another level of
consistence of diabetes-associated single-cell transcriptomes with
that of our in vitro model. Taken together, diabetic conditions
induced consistent single-cell co-expression changes of
LINC00607 and SERPINE1 in human donor-derived ECs as in
our in vitro model. Nevertheless, compared to data from cultured
ECs, in which RUNX1 ranked second by odds ratio, two other
genes in iMARGI-identified Linc607SE-interacting SEs exhibited
stronger single-cell co-expression with LINC00607 than RUNX1
in data from donors’ ECs (triangle dots, Fig. 5b, c). These data
reveal that our in vitro disease model does not completely
recapitulate the molecular changes in T2D patients.

Discussion
Global changes of RNA–chromatin interaction patterns suggest a
global force of nuclear reorganization. Although this global force
does not exclude any gene- or sequence-specific mechanisms that
specifically tether an RNA to a target genomic sequence, gene- or
sequence-specific tethering alone is unlikely to accumulate into
the observed global changes.

A conceivable model is a global relaxation of the globular
structure of each chromosome, obscuring the boundaries of
chromosome territories, thus making the transcripts from one
chromosome more likely to diffuse to the spatial proximity of
some genomic regions of another chromosome. This model can
be checked by three methods. First, assumption: there are two
competing physical means to organize the chromatin polymer
into a globular structure, specifically fractal globule that does not
form local knots and equilibrium globule with local knots that
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does not allow for a simultaneous global relaxation45. This global
relaxation model assumes that the chromosomes are folded as
fractal globule instead of as equilibrium globule. This assumption
is supported by independent confirmations of a reverse linear
relationship between the genomic interaction frequencies and the
genomic distances45–48.

Second, if this global relaxation model were correct, we would
expect a decrease in the intrachromosomal DNA contact fre-
quency at any given genomic distance in dysfunctional ECs.
Indeed, Hi-C data at Days 3 and 7 exhibited progressive decrease
of DNA contact frequency at any given genomic distance (Sup-
plementary Fig. 7a). Furthermore, we would expect to see that
TAD structures are weakened in dysfunctional ECs. Indeed, H+
T induced progressive decrease of proportions of reads mapped
within TADs (Supplementary Fig. 7b).

Third, if the increasing obscurity of chromosomal territories
allowed diffusion-based RNA access to a SE on another chromo-
some, we would expect the spatial distance between RNA-
producing genes and the target SEs to decrease. Indeed, the dis-
tances between Linc607SE and Serpine1SE are shortened in H+ T-
treated ECs based on DNA FISH assay (Supplementary Fig. 8).
Finally, because this distance change is mutual, we would expect
that the increase of RNA–chromatin interactions is bidirectional.
Indeed, both increasing amounts of LINC00607 RNA attached to
Serpine1SE and increasing amounts of Serpine1SE transcripts
attached to chromosome 2 near LINC00607 were detected (Fig. 2c
and Supplementary Fig. 5), suggesting that the emergent
RNA–chromatin interactions between the two SEs were reciprocal.

In the context of HG and TNFα-induced EC dysfunction, we
observed abundant interchromosomal RNA–DNA interactions
enriched among SEs that progressively increased as the treatment
prolonged (Fig. 2). Specifically, a number of EC dysfunction
driver genes (e.g., SERPINE1, THBS1, and VWF) are embedded in
the emergent hub SEs for these interactions (Fig. 3). These data
are in line with the previous study, emphasizing the central role of
inflammatory SEs in transcriptional induction during EC acti-
vation, the initial stage of EC dysfunction14. Compared to the use
of a much shorter time frame (1–4 h) and a high dosage of TNFα
in the previous study, our findings provided insights into sus-
tained transcriptional activation involving SE-derived caRNAs
that contribute to chronic EC dysfunction in disease states, such
as diabetes.

Using one of the emergent SE-derived interacting pairs (i.e.,
Linc607SE-Serpine1SE) as an example, we showed that pertur-
bation of a caRNA, putatively by disrupting the RNA–chromatin
interaction, suppressed the H+ T-induced SERPINE1 expression
(Fig. 4). Such mode of action is unlikely to be a unique case for
one particular gene, as inhibition of LINC00607 also leads to
suppression of other genes embedded in the SEs that exhibited
increased interactions with LINC00607 under H+ T treatment,
including TRIO, COL4, and THSD4 (Supplementary Table 5). In
line with this data, the correlation analysis using scRNA-seq data
from H+ T-treated ECs and diabetic donor-derived ECs also
showed an increase in the odds of co-expressing LINC00607 and
these genes in the same single cells (Fig. 5). In addition, the effect
of caRNAs most likely requires participation of other transcrip-
tional activators (e.g., transcriptional factors and co-activators)2

as overexpression of LINC00607 RNA alone did not result in a
significant induction of SERPINE1 (Supplementary Fig. 9).
Likewise, the proposed interchromosomal RNA–DNA interaction
mechanisms are unlikely to involve one specific lncRNA as there
are other lncRNAs embedded in the emergent hub SEs that form
increased RNA–chromatin interactions under H+ T treatment
(Supplementary Table 3). Compared to our previous study sug-
gesting the role of one enhancer-derived lncRNA in transcrip-
tional induction through an interchromosomal RNA–DNA

interaction5, our current study revealed genome-wide prevalence
of these RNA–chromatin contacts and provided evidence to
support their functional importance in EC biology. Future studies
are warranted to further dissect the molecular mechanisms
involving caRNAs, and delineate their functional relevance in
health and disease.

The single-cell transcriptome profiles in ECs clearly demon-
strate a time-dependent activation of pro-inflammatory response,
ECM remodeling, and pro-fibrotic TGF-β signaling (Fig. 1).
These disease-driving cell state transitions are a common theme
in many diseases, including those with EC dysfunction at play
and beyond49–51. However, the mechanisms linking inflamma-
tion and tissue fibrosis are not well understood. Among the genes
embedded in H+ T-induced hub SEs, the induction of SER-
PINE1, THBS1, and VWF typically promotes inflammation,
thrombosis, and ECM remodeling30–34, while SMAD3 is a
canonical activator for TGF-β signaling and fibrosis20 (Fig. 3).
The strong and sustained activation of these hub SEs for inter-
chromosomal RNA–DNA interactions may provide a mechan-
istic link at the 3D genome organizational level to connect these
prominent cellular pathways driving various diseases. It would be
interesting to explore in future studies whether the observed
emergence of SE network can be recapitulated in other cell types
and in other disease contexts.

Notably, HG can induce a metabolic memory, i.e., persistent
changes detectable even after the switch to normoglycemia52–54.
Interestingly, although replenishing ECs with control media after
3 days of H+ T treatment partially reversed the changes in cell
morphology (Supplementary Fig. 10a), and eNOS and ICAM1
mRNA levels, those of LINC00607 and SERPINE1 could not be
reversed (Supplementary Fig. 10b). These data suggest that the
mechanisms involving the RNA–chromatin contacts may be an
important, yet poorly elucidated, layer underlying the undesirable
metabolic memory associated with diabetic complications.

In conclusion, by using a systems biology approach, our study
provides an example of how RNA–chromatin contacts can affect
gene expression and cellular states, as exemplified by endothelial
dysfunction, a dynamic and vital process underlying a variety of
disease.

Methods
Cell lines. HUVECs (passages 5–8) from pooled donors were used in this study.
The cells have been tested negative for mycoplasma contamination and pre-
screened to demonstrate stimulation-dependent angiogenesis and key EC signaling
pathways. ECs were cultured at 37 °C with 5% CO2 in M199 (Sigma M2520)
supplemented with 20% FBS (Hyclone, SH30910.02), β-EC growth factor (Sigma,
E1388), and 100 units/mL penicillin and 100 mg/mL streptomycin (Thermo Fisher
Scientific).

Cell transfection and stimuli. For LINC00607 knockdown experiments, two
antisense LNA GapmeRs specifically targeting two different regions of LINC00607
(NR_037195.1) were designed and purchased from QIAGEN (Supplementary
Table 6). LNAs were separately transfected into HUVECs with Lipofectamine
RNAiMAX following the protocol provided by the manufacturer. The cells were
cultured in M199 complete medium 4–6 h after transfection, and then subjected to
HG and TNFα treatment. HG condition was generated by adding D-glucose into
the culture media to a final concentration of 25 mM. TNFα was added to the
culture media to a final concentration of 5 ng/mL. A total of 25 mM D-mannitol
was used as an osmolarity control. Typical EndoMT stimuli TGF-β and IL-1β were
added to the culture media at a final concentration of 10 and 1 ng/mL, respectively.

For LINC00607 overexpression, the cDNA of LINC00607:3 isoform was
amplified by using SMARTer® RACE 5′/3′ Kit (Takara Bio USA) from HUVEC
total RNAs, and cloned into a pcDNA3.1(+) vector. The sequence was confirmed
by Sanger sequencing by alignment to NR_037195.1. Plasmid transfection was
performed using the Cytofect™ HUVEC Transfection kit (Cell Applications)
following the manufacturer’s protocol in 6-well or 12-well plates. Cells were
harvested at 48 h post transfection.

RNA extraction and quantitative PCR. Total RNA was isolated using TRIzol
reagent. cDNAs were synthesized using PrimeScript™ RT Master Mix containing
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both Oligo-dT primer and random hexamer primers. qPCR was performed with
Bio-Rad SYBR Green Supermix following the manufacturer’s suggested protocol,
using the Bio-Rad CFX Connect Real Time system. All primer sequences used in
qPCR amplification are listed in Supplementary Table 6.

(Immuno)fluorescent staining. HUVEC cells were plated on coverslips (pre-
coated with poly-L-lysine and 0.1 M collagen or 50 μg/mL fibronectin solution),
and treated with HG and TNF-α, or cultured in control conditions. For VE-cad and
α-SMA immunostaining, cells were washed with PBS and fixed with 100%
methanol for 15 min in −20 °C. The fixed cells were rinsed three times with PBS
for 5 min each and incubated in a blocking buffer containing 5% BSA in PBST
(PBS with 0.1% Triton X-100) for 1 h. Mouse anti-human α-SMA antibody
(Abcam, ab124964, at 1:500 dilution) and rabbit anti-VE-cad antibody (Abcam,
ab33168, at 1:200 dilution) were added to cells in blocking buffer, and incubated
overnight at 4 °C. From this step on, cells were protected from light. After rinsing
in PBST three times (10 min each), cells were incubated with a cocktail of Alexa
Fluor 488-conjugated goat anti-mouse (for α-SMA staining, Fisher, A10680, 1:500
dilution) and Alexa Fluor 555-conjugated donkey anti-rabbit (for VE-cad staining,
Fisher, A31572, 1:500 dilution) antibody in blocking buffer at room temperature
(RT) for 1 h. Samples were washed three times in PBST for 10 min each, then
stained with DRAQ5 (Abcam, AB108410, 1:1000 dilution) in PBST at RT for 15
min. The fluorescence images were taken with an Echo revolve fluorescence
microscope.

scRNA-seq of HUVECs and data analysis. Mannitol control (Day 0), HG+ TNF
(Day 3), and HG+ TNF (Day 7) with biological duplicates were prepared as single-
cell samples for sequencing using Drop-seq protocol with 10× Genomics Chro-
mium 3′ expression protocol. There are >60M reads/sample, 4000–15000 cells/
sample. scRNA-seq data have been processed using the standardized pipeline
provided by 10× Genomics (v3.0) and aligned to human hg38 reference tran-
scriptome. The R package Seurat (v2.3.4) was used to analyze scRNA-seq data
following published guidelines55. First, we performed a filtering step using well-
established quality control metrics. Rare cells with very high numbers of genes
(potentially multiplets), as well as high mitochondrial percentages (low-quality or
dying cells often present mitochondrial contamination) were removed. We set the
upper threshold for both of those features as the 99th percentile of their dis-
tribution in each sample. In addition, cells exhibiting a gene count <300 were
filtered out as potential low-quality cells or empty droplets. Filtration led to the
removal of ~2% of the total cells (from 60,841 to 59,605 total cells across all the
samples).

Next, data were normalized by default in Seurat. We employed the global-
scaling LogNormalize method, which normalizes the gene expression
measurements for each cell by the cell total expression, multiplies it by a scale
factor (10,000 by default), and log-transforms as log(x+ 1) the result. We selected
highly variable genes (HVGs) and scaled the gene expression data for downstream
analysis. HVGs were calculated as default in Seurat by using the log(variance to
mean ratio) (logVMR) for each gene in the dataset. Genes were then sorted by
decreasing logVMR, from which we extracted the top 1000 HVG. Unwanted
sources of variation, such as mitochondrial expression and number of detected
molecules per cell, were regressed out and the expression of each HVG was scaled
to obtain a z-score for each gene across all the single cells in the dataset. PCA was
performed across all cells and the top 1000 HVGs using the scaled z-scored
expression values. The first 20 significant PCs were then used as input to the t-SNE
algorithm. t-SNE plots were used also to show the expression level of selected genes
in each single cell across the time course. The RNA levels are represented by log-
normalized unique molecular identifier (UMI) counts. Values below the 10th
percentile and above the 90th percentile were clipped using the appropriate
parameters in FeaturePlot.

Differential expression analysis was performed only using the subpopulation of
ECs extracted as described above. We used the nonparametric Wilcoxon test
(default in Seurat and one of those that globally perform the best according to
Soneson et al.)56. The test was performed using default parameters in Seurat. Thus,
only genes expressed in at least 10% of the cells in a sample were used in the
analysis. To extract differentially expressed (DE) genes, the threshold for the log
fold-change of the average expression (logFC_avg) between two samples was left to
0.25 (either for upregulated or downregulated genes). We used a pseudocount of 1
(as default) to be added to the averaged expression values when calculating logFC.
This prevents extremely lowly expressed genes from dominating the DE analysis.
The top DE genes in single ECs were plotted on a z-scaled binned expression
heatmap. In order to generate the heatmap, we started from the z-scaled data and
ordered all the cells by increasing SERPINE1 expression (per each sample
separately). Then, cells were binned per 100 cells for the analysis: 269 bins in Day 0,
177 bins in Day 3, and 148 bins in Day 7. Before plotting, we clipped values above
2.5 and below −2.5 as default in Seurat DoHeatmap. Pathway enrichment analysis
for DE genes was performed using the Database for Annotation, Visualization and
Integrated Discovery (DAVID, https://david.ncifcrf.gov/). DAVID uses a more
conservative modified one-sided Fisher Exact test for extracting enriched pathways
(number of genes in pathway minus 1 in the contingency table). Thus, a modified
Fisher Exact p value (named EASE score) is used to detect the significant
enrichment (EASE score < 0.1 as default).

scRNA-seq of donor-derived arterial ECs and data analysis. Human tissue
studies were conducted on deidentified specimens obtained from the Southern
California Islet Cell Resource Center at City of Hope. The research consents for the
use of postmortem human tissues were obtained from the donors’ next of kin and
ethical approval for this study was granted by the Institutional Review Board of
City of Hope (IRB #01046). All work presented was performed in compliance with
relevant ethical regulations. T2D was identified based on diagnosis in the donors’
medical records, as well as the measurement of 6.5% or higher of glycated
hemoglobin A1c.

Single-cell RNA-seq was performed in human mesenteric arterial ECs in two
healthy and two T2D donors, following the procedures we recently described57.
Briefly, the arterial intima was gently dissociated from the arterial wall using a
scalpel. The single-cell suspension and scRNA-seq libraries were prepared as
described above. There are >126M reads/sample and 1800–4400 cells/sample.
scRNA-seq data were processed using the standardized pipeline provided by 10×
Genomics (v3.0) and aligned to human hg38 reference transcriptome. The R
package Seurat (v2.3.4) was used to analyze scRNA-seq data following published
guidelines55. First, we performed a filtering step using well-established quality
control metrics. Rare cells with a very high number of genes (potentially
multiplets), as well as high mitochondrial percentages (low-quality or dying cells
often present mitochondrial contamination) were removed. We set the upper
threshold for the number of genes as the 98th percentile of its distribution in each
sample, while the maximum mitochondrial percentage per cell was set at 20%. In
addition, cells exhibiting a gene count lower than 300 were filtered out as potential
low-quality cells or empty droplets. Filtration led to the removal of ~12% of the
total cells (from 12,815 to 11,243 total cells across all the samples).

Next, data were normalized by default in Seurat following the same steps
performed for the HUVEC data: (1) global-scaling normalization using the
LogNormalize method, (2) selection of HVGs and scaling of the gene expression
data, also removing unwanted sources of variation, such as mitochondrial
expression and number of detected molecules per cell, and (3) performing PCA
across all cells and the top 1000 HVGs using the scaled z-scored expression values.
The first 20 significant PCs were then used as input to the t-SNE algorithm. In
order to select ECs for analysis, we performed shared nearest neighbor (SNN)
clustering and visually selected clusters showing high expression levels of CDH5,
which encodes VE-cad (Supplementary Fig. 11). SNN clustering was performed
using a resolution of 0.4. In Supplementary Fig. 11c, the RNA levels of CDH5 are
represented by log-normalized UMI counts. Values below the 10th percentile and
above the 90th percentile were clipped using the appropriate parameters in
FeaturePlot.

Differential expression analysis was performed only using the subpopulation of
ECs extracted as described above. We used the nonparametric Wilcoxon test
(default in Seurat and one of those that globally perform the best according to
Soneson et al.)56. The test was performed using default parameters in Seurat. Thus,
only genes expressed in at least 10% of the cells in a sample were used in the
analysis. To extract differentially expressed (DE) genes, the threshold for the log
fold-change of the average expression (logFC_avg) between two samples was left to
0.25 (either for upregulated or downregulated genes). We used a pseudocount of 1
(as default) to be added to the averaged expression values when calculating logFC.
This prevents extremely lowly expressed genes from dominating the DE analysis.

Hi-C. Hi-C was performed using an Arima-HiC kit (Arima Genomics, Inc.) fol-
lowing the manufacturer’s manual. Hi-C data were processed and plotted using
HiCtool (v2.2)58. Data were normalized with the matrix balancing approach per-
formed by Hi-Corrector59 and incorporated into HiCtool. TAD and compartment
analyses were performed as well using HiCtool. MoC among TAD boundaries was
calculated following the approach, as described by Zufferey et al.23 (Supplementary
Fig. 3c).

To avoid any bias given by the different sequencing depth among samples, we
randomly sampled 190 million read pairs from every Hi-C sequencing library
before performing the following analyses. Pearson correlation matrix was derived
from the observed/expected contact matrix at 1 Mb resolution, and the eigenvector
corresponding to the first principal component of the Pearson correlation matrix
was used to identify A/B compartments. We used normalized data binned at 40 kb
to calculate the average interaction frequency at each genomic distance between
40 kb and 20Mb. The curves (one per sample) show this function genome-wide,
meaning the average interaction frequency at each distance averaged across all
chromosomes (Supplementary Fig. 7a). Supplementary Fig. 7b shows the
distributions of the proportions of reads mapped within TADs for all the
chromosomes. The proportion of reads mapped within a TAD in a sample was
calculated on the normalized data at 40 kb by summing the number of interactions
within that TAD and dividing it by the total number of uniquely mapped read pairs
in that sample. TAD boundaries were calculated from normalized contact data at
40 kb resolution as well.

iMARGI assay and data analysis. iMARGI was performed as described in our
recent report7. Briefly, iMARGI started with crosslinking cells using 1% for-
maldehyde, collecting nuclei, followed by fragmenting RNA and DNA in nuclei
using RNase I and restriction enzyme AluI. A specifically designed linker sequence
was introduced to the permeated nuclei to ligate with the fragmented RNA and
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subsequently ligate with spatially proximal DNA. After the ligation steps, nuclei
were lysed and crosslinks were reversed. Nucleic acids were purified and subse-
quently treated with exonucleases to remove any linker sequences that were not
successfully ligated with both RNA and DNA. The desired ligation products in the
form of RNA–linker–DNA were pulled down with streptavidin beads. The RNA
part of the pulled down sequence was reverse transcribed into cDNA, resulting in a
complementary strand of (5′) DNA–linker–cDNA (3′). Single-stranded
DNA–linker–cDNA was then released from streptavidin beads, circularized and re-
linearized, producing single-stranded DNA in the form of left.half.
Linker–cDNA–DNA–right.half.Linker. The two halves of the linker (left.half.Lin-
ker and right.half.Linker) served as templates for PCR amplification. The linearized
DNA was amplified with NEBNext PCR primers for Illumina, size-selected, and
subjected to 100 cycles of pair-end sequencing with an Illumina Hi-seq 4000.
Approximately 300 million read pairs were obtained per sample. Sequencing data
were aligned to the hg38 reference genome using STAR (v2.5.4b). In-house scripts
were used to deduplicate (FastUniq v1.1) and parse (Samtools v1.6) the mapped
read pairs to obtain the BEDPE file with the uniquely mapped read pairs.

SEs for HUVECs were downloaded from dbSUPER25 and their genomic
coordinates were converted from hg19 to hg38 using the UCSC Lift Genome
Annotations tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The 912 SEs were
classified into three categories: not overlapping any gene (84), overlapping one or
more genes, but not fully embedded within any of them (449), and overlapping one
or more genes and fully embedded within at least one of them (379). For these 379
SEs, we extended the start and end coordinate per each SE SE_i as following: (1) we
extracted all the genes SE_i_genes embedding SE_i; and (2) we updated SE_i start
coordinate with the minimum start coordinate of SE_i_genes, and SE_i end
coordinate with the maximum end coordinate of SE_i_genes. In the end, we
obtained 875 SEs with extended boundaries that were used in the following
analysis. The sum of the lengths of these SEs is 94,493,925 bp with 875 SEs in total.
If we consider the entire genome length (3,088,286,401 bp), 3.1% of the entire
genome is occupied by SEs.

To characterize SE networks, we counted the number of iMARGI read pairs
between any two SEs and normalized these counts by the total number of uniquely
mapped read pairs in this sample. A pair of SEs was called interacting when their
normalized counts were above the 95th percentile of all the normalized counts at
Day 0 (i.e., 2e−7 for replicate 1, and 2.5e−7 for replicate 2). SE hubs were
identified as those SEs with degrees 60 or greater (≥95th percentile of all the
degrees). SE networks (Fig. 3a and Supplementary Fig. 4d, e) were plotted using
igraph, a custom function based on the R package (v1.2.4.1). The network in Fig. 5a
was plotted using Cytoscape (v3.5.1). The coverage plot (Supplementary Fig. 5a)
was generated using the R package karyoploteR (v1.10.5), while the iMARGI read
pair plot (Fig. 2c) was created using the R package “Gviz” (v1.28.3). Statistical
analyses were performed in R.

RNA-seq and data analysis. HUVECs were harvested for RNA extraction using
Trizol reagent. Total RNA (200 or 500 ng) per sample was subjected to library
construction using KAPA mRNA HyperPrep Kit (Roche Diagnostics) following the
manufacturer’s manual. The libraries were sequenced in HiSeq2500 using the
SR50 mode.

RNA-seq data (FASTQ files) were aligned to the hg38 reference genome using
STAR (v2.5.4b). Ensembl annotation data GRCh38.84 were used in the alignment
process (--sjdbGTFfile option). featureCounts from the Subread package (v2.0.0)
was used to count the number of features (uniquely mapped reads) over
the exons (-t exon, as default) summarized by gene ID (-g gene_id). The percentage
of uniquely mapped reads assigned to features was around 80%. The output raw
count matrices (genes-by-samples) were used as input data for the analysis,
performed with the R package DESeq2 (v1.24.0). We had eight samples and four
conditions (NM-scr, HT-scr, HT-LNA1, and HT-LNA2), each condition with two
biological replicates. Biological replicates were not merged together in the analysis,
whilst they were considered as a single condition for differential expression
analysis. As a first step, prefiltering was performed to remove genes with very low
counts. We performed a minimal prefiltering (default in DESeq2) by removing
genes with less than ten reads total across all the eight samples. From a total of
60,675 genes, we obtained 20,144 genes after filtering that were used for the
following analysis. Then, we performed the standard differential expression
analysis of DESeq2. Before performing the analysis, counts were normalized using
the median-of-ratios method, to take into account for sequencing depth and RNA
composition (possible presence of a few highly differentially expressed genes
between samples, differences in the number of genes expressed between samples,
presence of contamination, etc.). Gene length does not need to be considered given
that the analysis is performed comparing the normalized counts for the same gene
between conditions. After normalization, differential expression analysis was
performed using the Wald test with HT-LNA1 as reference condition. To call
differentially expressed genes, we used a threshold of 0.05 on the BH
(Benjamini–Hochberg) adjusted p values. Heatmap in Fig. 4d represents the z-
scaled gene expression levels and was generated as follows: (1) normalized counts
per each condition were calculated by averaging the normalized counts across the
two biological replicates; (2) normalized counts were log-transformed as log2(x+
1); and (3) z-scores for the four conditions were calculated using the
log-transformed values.

DNA FISH experiment and imaging analysis. DNA FISH probes were obtained
from Empire Genomics, LLC. and tested for hybridization specificity. Information
of DNA FISH probe design is listed in Supplementary Fig. 7. Probes used for DNA
FISH were designed against genomic regions overlapping LINC00607-SERPINE1
chimeric read aligned regions. Region of chromosome 2 that exhibited strong
hybridization signal in FISH, but do not show significant interacting signal with
Serpine1SE, was used as the control.

DNA FISH was performed by following probe manufacturer protocol (Empire
genomics) with minor modifications. Briefly, for imaging experiment, HUVEC
cells were seeded onto poly-L-Lysine pre-coated coverslips (Fisher Scientific,
#NC0326897), and treatment was performed as described. All incubation steps
were performed at RT unless otherwise indicated. On Days 3 and 7 of treatment,
cells were washed twice in PBS and fixed in fresh 4% paraformaldehyde (pH 7.2)
for 30 min.

Cells were permeabilized in 0.1% saponin (Sigma-Aldrich, #84510), 0.1% Triton
X-100 in PBS for 10 min at RT. Subsequently, cells were incubated in 20% glycerol
in PBS for 20 min, followed by three repetitions of freeze-thaw in liquid nitrogen.
The slides were then denatured in 0.1 M HCl for 30 min, and blocked in 3% BSA
and 100 μg/mL RNase A in PBS for 1 h at 37 °C. This was followed by a second
permeabilization step in 0.5% saponin/0.5 % Triton X-100 in PBS for 30 min. The
slides were then denatured sequentially in 70% formamide (Invitrogen, #AM9342)/
2× SSC (Sigma-Aldrich, #S6639) for 2.5 min, then 50% formamide/2× SSC for 1
min in 73 °C water bath, before immediately incubated with probe mixtures
denatured at 75 °C for 5 min. Probes were prepared according to manufacturer
protocol. After 18 h of hybridization in a dark humid chamber, the slides were
washed with agitation in the following solutions sequentially: 50% formamide/2×
SSC, 2× SSC (37 °C for both), and 4× SSC/0.1% Tween 20. DAPI staining and slides
mounting (Thermo Fisher Scientific, #00-4958-02) were performed after PBS rinse.

Slides were imaged using Perkin Elmer UltraView Vox Spinning Disk Confocal
63× oil immersion objective lens. Distance between red and green fluorescent FISH
signal spots in the nucleus was quantified using Fiji (http://fiji.sc/wiki/index.php/
Fiji) and Matlab software. P values were generated using nonparametric Wilcoxon
test with Bonferroni correction for multiple comparisons. Statistical tests were
performed in R.

RNA FISH experiment and imaging analysis. LNA GapmeR probes from QIA-
GEN were used. Sequence of RNA FISH probe targeting LINC00607 is listed in
Supplementary Table 6. HUVEC cells were seeded onto poly-L-Lysine pre-coated
coverslips and treated with mannitol or HG+ TNFα for 3 days. Cells were washed
twice in PBS and fixed in fresh 3.7% formaldehyde (pH 7.2) for 10 min. Cells were
permeabilized in 70% ethanol at least overnight at 4 °C. Slides were incubated with
1 mL of wash buffer A at RT for 2–5 min. Then the slides were incubated with
LNA-probes 1:100 dilute in the hybridization buffer (Biosearch Technologies).
After 16 h of hybridization in a dark humid chamber at 37 °C, the slides were
washed with wash buffer A (Biosearch Technologies) in the dark for 30 min.
Following washes, the cells on the slides were stained with DRAQ5 (Abcam,
AB108410, 1:1000 dilution) in dark for 30 min. The slides were incubated with
wash buffer B (Biosearch Technologies) at RT for 2–5 min and were imaged on a
Leica SP5 Confocal microscope using 63×/1.40 oil immersion objective lens.
Fluorescent FISH signal was captured using Leica LAS AF software in 1024 × 1024
format. All images were taken using the same power, gain, and collection bands for
respective fluorophores to allow equal comparison of fluorescence levels of
samples.

Subcellular fractionation and RNA isolation. Subcellular fractionation was per-
formed using HUVECs from three confluent 100 mm culture dishes as indepen-
dent triplicates. The cells were collected, washed in 5 mL cold PBS, and centrifuged
at 300 × g for 5 min at 4 °C. The cell pellets were lysed on ice for 10 min in 500 μL
cold cytoplasmic lysis buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM
DTT, 0.05% NP-40, and protease and RNase inhibitors; pH 7.9) and then cen-
trifuged at 1811 × g in a swing bucket centrifuge at 4 °C. After separating the
supernatant containing the cytosolic fraction, 3× volume of TRIzol LS was added
immediately for RNA extraction. The pellet containing the nuclear fraction was
gently resuspended in 400 μL cold nuclear buffer (5 mM HEPES, 1.5 mM MgCl2,
300 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT, 26% glycerol (v/v), and protease and
RNase inhibitors; pH 7.9), homogenized using a douncer, and lysed on ice for
30 min. Following the lysis, the nuclear fraction was centrifuged at 20,000 × g for
30 min at 4 °C. The supernatant containing the nucleoplasmic fraction was mixed
immediately with 3× volume of TRizol LS for RNA extraction. The remaining
pellet containing the chromatin fraction was resuspended in 50 μL of cold PBS and
used immediately for RNA extraction using TRIzol. The RNA extracted from the
three different fractions was dissolved in 20 μL of RNase-free water and equal
volumes of RNA were used for reverse transcription and qPCR.

Monocyte adhesion assay. Deidentified human peripheral blood mononuclear
cells (PBMCs) were obtained through leukocyte reduction system chambers/cones
routinely collected at City of Hope after plateletpheresis. The research consents
were obtained from the donors’ next of kin and ethical approval for this study was
granted by the Institutional Review Board of City of Hope (IRB #09025). PBMCs
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were isolated by density gradient centrifugation over Ficoll-Paque (GF Healthcare)
using SepMateTM tubes (STEMCELL Technologies Inc.) according to the protocol
provided by the manufacturer. Subsequently, monocytes were isolated from
PBMCs by immunomagnetic positive selection of CD14+ cells using CD14
microbeads (Miltenyi Biotec). Monocytes adhesion assay was performed using the
isolated monocytes from four different healthy donors, which were labeled with
CellTracker™ Green CMFDA Dye (Thermo Fisher Scientific) and incubated with
monolayer ECs (4 × 103 cells per cm2) for 15–30 min in a cell culture incubator.
The nonattached monocytes were then washed off with complete EC growth
medium. The attached monocyte numbers were evaluated on Cytation™ 1 Cell
Imaging Multi-Mode Reader (BioTek) using green fluorescent channel. Average
numbers per sample were calculated from five randomly selected fields.

SA-β-gal staining. Cytochemical staining for SA-β-galactosidase was performed
using the Senescence β-Galactosidase Staining Kit (Cell Signaling Technology)
following the manufacturer’s manual. Briefly, the ECs post transfection and H+ T
treatment were washed once with freshly prepared 1× PBS, fixed in 1× fixative
solution for 10–15 min at RT, and then rinsed twice with 1× PBS. The cells were
stained for 48 h in a dry incubator before viewing under a Leica DMi1 microscope
(Leica microsystems) at 50× magnifications. The percentage of SA-β-galactosidase-
positive cells was determined by counting the number of blue cells under bright
field illumination.

Statistical analysis. For all experiments in Figs. 1 and 4, at least three independent
experiments were performed unless otherwise specified. Statistical analysis was
performed using Student’s t test (two-sided) between two groups or ANOVA
followed by Bonferroni post-test for multiple-group comparisons. P < 0.05 was
considered as statistically significant. For other experiments, the quantification and
statistical analysis have been specified and detailed in the results, figure legends,
and methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All high-throughput data supporting the current study are accessible on GEO under
accession number GSE13535. Ensembl annotation data GRCh38.84 (Homo_sapiens.
GRCh38.84.gtf.gz) are publicly available at ftp://ftp.ensembl.org/pub/release-84/gtf/
homo_sapiens/Homo_sapiens.GRCh38.84.gtf.gz. HUVEC SE data (HUVEC.bed) were
downloaded from dbSUPER (https://asntech.org/dbsuper/data/bed/hg19/HUVEC.bed).
HUVEC enhancer data (HUVEC.fasta) were downloaded from EnhancerAtlas (http://
enhanceratlas.org/data/enhseq/HUVEC.fasta). Other data are available from the
corresponding authors upon reasonable request. Source data are provided with
this paper.

Code availability
The codes used for the analysis have been deposited and made publicly available on
GitHub at https://github.com/Zhong-Lab-UCSD/NCOMMS-19-24818.
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