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Racial/Ethnic Disparities in Cumulative Environmental
Health Impacts in California: Evidence From a
Statewide Environmental Justice Screening Tool
(CalEnviroScreen 1.1)
Lara Cushing, MPH, MA, John Faust, PhD, Laura Meehan August, MPH, Rose Cendak, MS, Walker Wieland, BA, and George Alexeeff, PhD

Communities of color in the United States often
reside in neighborhoods with worse air qual-
ity,1 more environmental hazards,2 and fewer
health-promoting environmental amenities
such as parks.3 This unequal distribution of
exposures may contribute to racial/ethnic
health disparities in environmentally sensitive
diseases such as cancer and asthma.4 Research
has shown that communities of color in Cal-
ifornia experience higher cancer risk from toxic
air contaminants5 and higher average levels of
nitrate contamination in their drinking water6

and that they live closer to hazardous waste
sites7 and traffic.8 However, less is known
about the extent to which communities of color
are simultaneously exposed to multiple poten-
tial sources of pollution and the implications of
such coexposures for health.

There is, thus, an increasing need for ana-
lytic frameworks and decision-making tools
that account for exposures to multiple envi-
ronmental hazards through a variety of routes.
Such frameworks should also consider differ-
ential vulnerability to the health effects of those
exposures, which can vary across the population
because of both individual and community-level
factors.9---11 For example, age and health status,
including suffering from preexisting cardiovas-
cular disease or asthma, have been shown to
increase susceptibility to the adverse health
effects of air pollution.12---14

Several studies suggest that an individual’s
educational attainment modifies the health
effects of air pollution: greater effects are
observed among the less educated.15,16 Poverty
can hinder access to adequate nutrition and
medical care to prevent and manage the health
impacts of pollution. At the community level,
the concentration of poverty in disadvantaged
neighborhoods can lead to conditions that

increase levels of chronic psychosocial stress
that weaken the body’s ability to defend against

external challenges.17 A cumulative impact

approach that considers differential vulnerabil-

ity and environmental stressors is particularly

important for assessing racial/ethnic environ-

mental health disparities because communities

of color in the United States experience lower

average levels of education18 and wealth19 and,

for some groups, higher rates of chronic health

conditions20 that increase susceptibility to

environmental health hazards.
Although the field is still in its infancy,

several proposed methods are used to better

reflect the cumulative impacts of environmen-

tal exposures and population vulnerabilities

and provide assessments that can support the

incorporation of equity and environmental

justice goals into policymaking.21---24 The

California Environmental Protection Agency
first released such a method—the California

Communities Environmental Health Screening
Tool, or CalEnviroScreen—in April 2013, and

an updated version, CalEnviroScreen 1.1, was

published in September 2013.25 CalEnviro-

Screen is a screening tool that considers both

pollution burden and population vulnerabil-
ity in assessing the potential for cumulative

impacts across California zip codes. It was

developed following consultation with govern-

ment, academic, business, and nongovern-
mental organizations and 12 public workshops

in 7 regions of the state that resulted in more

than 1000 oral and written comments on 2

preliminary drafts.26 The tool employs a model

that can be adapted to different applications
and as new information becomes available. For

example, subsequent iterations have been

Objectives. We used an environmental justice screening tool (CalEnviroScreen

1.1) to compare the distribution of environmental hazards and vulnerable pop-

ulations across California communities.

Methods. CalEnviroScreen 1.1 combines 17 indicators created from 2004 to

2013 publicly available data into a relative cumulative impact score. We compared

cumulative impact scores across California zip codes on the basis of their location,

urban or rural character, and racial/ethnic makeup.We used a concentration index

to evaluate which indicators weremost unequally distributed with respect to race/

ethnicity and poverty.

Results. The unadjusted odds of living in one of the 10%most affected zip codes

were 6.2, 5.8, 1.9, 1.8, and 1.6 times greater for Hispanics, African Americans,

Native Americans, Asian/Pacific Islanders, and other or multiracial individuals,

respectively, than for non-Hispanic Whites. Environmental hazards were more

regressively distributed with respect to race/ethnicity than poverty, with pesticide

use and toxic chemical releases being the most unequal.

Conclusions. Environmental health hazards disproportionately burden com-

munities of color in California. Efforts to reduce disparities in pollution burden

can use simple screening tools to prioritize areas for action. (Am J Public Health.

Published online ahead of print September 17, 2015: e1–e8. doi:10.2105/AJPH.
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developed using a finer geographic resolution
and the addition of new indicators.27 It pur-
posefully relies on publicly available data sets
for transparency and relatively simple methods
so that it can be understood by a general
audience.

We used CalEnviroScreen 1.1 to assess the
extent of geographic and racial/ethnic disparities
in the potential for cumulative environmental
health impacts from multiple environmental
hazards in California. We employed a concen-
tration index to examine which environmental
hazards are most inequitably distributed, and we
considered variations to CalEnviroScreen to
evaluate the sensitivity of our findings to the
structure of the model.

METHODS

CalEnviroScreen 1.1 consists of 17 indica-
tors related to the pollution burden or popu-
lation vulnerability of a community, which are
aggregated into a final, relative cumulative
impact score (Figure 1). We defined communities
geographically on the basis of the 2010 Zip

Code Tabulation Area of residence. Zip Code
Tabulation Areas are generalized areal repre-
sentations of US Postal Service zip code service
areas created by the US Census Bureau and are
delineated on the basis of the most common zip
code within each census block. We chose Zip
Code Tabulation Areas (hereafter “zip codes”)
for this analysis to mitigate the issue of chang-
ing zip code boundaries. A full description
of data sources and the rationale for each
indicator is available elsewhere.25 Briefly, Cal-
EnviroScreen includes 11 indicators of pollu-
tion burden and 6 of population vulnerability
chosen because of (1) their environmental and
public health relevance, (2) the availability of
statewide data with adequate geographic reso-
lution and variation to discern differences
between zip codes, and (3) the accuracy,
completeness, and currency of the data source
and the likelihood that it will be maintained in
the future (Table 1).

We sought to minimize the number of
indicators and the potential overlap be-
tween them for parsimony and to minimize
the potential for double counting. We

characterized pollution burden using 6 indica-
tors of exposure and 4 of environmental
effects. Exposure indicators include measures
of pollutant sources, releases, and environ-
mental concentrations. Environmental effects
indicators are measures of threats to the envi-
ronment and degraded ecosystems. We gave
the environmental effects indicators half the
weight of the exposure indicators in our cal-
culation of the cumulative impact score be-
cause the route of human exposure to these
hazards is less immediate. The 6 indicators of
population vulnerability include biological
traits (e.g., age and disease status) and factors
related to socioeconomic status (e.g., poverty
and education level) that can increase sus-
ceptibility to the adverse health impacts of
pollutants.10

To arrive at the cumulative impact score, we
assigned zip codes across California a percen-
tile ranging from 0 to 100 on the basis of their
value for each indicator. We then averaged the
percentiles and divided them by 10 to derive
separate scores for pollution burden (0---10)
and population vulnerability (0---10). We then

Educational attainment 

Linguistic isolation
Poverty

Age: children and elderly
Asthma 
Low birth weight 

Clean-up sites 
Groundwater threats 
Hazardous waste sites 
Impaired water bodies 
Solid waste sites 

Ozone 

PM 2.5 (g/m3)

Diesel PM 
Pesticide use 
Toxic releases  
Traffic density

age 

Pollution Burden

Score (0–10)

Exposures

Environmental Effects 
(1/2 weight) 

Socioeconomic Factors

Average Average 

Sensitive Populations 

Cumulative

Impact Score

(0–100)

Vulnerable Population

Score (0–10)×

Note. PM = particulate matter. The model combines 11 indicators of pollution burden and 6 indicators of population vulnerability into a relative cumulative impact score that can be used to identify

communities with higher potential for cumulative environmental health impacts.

FIGURE 1—The CalEnviroScreen 1.1 model: California, 2013.
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multiplied these scores to arrive at a final
relative cumulative impact score that ranged
from 0 to 100 (Figure 1). We chose a multipli-
cative model in keeping with other risk assess-
ment practices and epidemiological evidence of
effect modification of the health impacts of air
pollution by socioeconomic and disease status
on a multiplicative scale.28,29We also compared
the sensitivity of our findings to that of an
additive model in which we summed the pollu-
tion burden and population vulnerability scores.

We conducted all statistical analyses using R
version 3.0.1.30 We compared the distribution
of cumulative impact scores across geographic
regions of California and the urban versus rural
characteristics of communities. We defined
geographic regions of the state in county
groupings roughly corresponding to the extent
of regional governmental bodies. We used
Spearman correlation coefficients to compare
individual indicators to 2 measures we derived
from the 2010 US Census: population density
and the percentage of the zip code’s population
that lived in an unincorporated community

(i.e., census-designated places, which we con-
sidered an indicator of rural communities).

We visually compared the distribution of
cumulative impact scores across categories of
self-identified race/ethnicity from the 2010 US
Census using box plots (Figure 2). We calculated
the unadjusted odds of living in one of the
10% of zip codes with the highest cumulative
impact score for each racial/ethnic group and
used logistic regression to calculate the odds
adjusted for population density.

To assess which aspects of pollution burden
were most regressively distributed, we plotted
concentration curves and calculated a concen-
tration index for each indicator with respect to
zip code---level racial/ethnic makeup and the
percentage of the population living in poverty,
similar to the method of Su et al.31 (Figure 3).
We constructed the concentration curve by
ordering all zip codes across the x-axis from
lowest to highest in terms of the percentage
of the population that is either non-Hispanic
White or living above twice the federal poverty
line according to the US Census Bureau’s

American Community Survey 2007---2011
5-year estimates. We classified multiracial in-
dividuals and Hispanic individuals of any race
as non-White. The cumulative proportion of
the pollution indicator is graphed on the y-axis.
If an indicator is perfectly evenly distributed,
the line will equal a diagonal that crosses the
origin. Curves above the equality line indicate
a regressive distribution (zip codes with
a higher percentage of residents of color or
poor residents shoulder a disproportionate
burden of the environmental hazard), whereas
curves below the line indicate an unequal
distribution in which more advantaged (higher
percentage White or wealthy) zip codes are
more burdened.

We calculated a standard concentration
index proportional to the area between the
concentration curve and the diagonal line of
equality as follows:

ð1Þ C ¼ 2
n · l

Xn

i ¼ 1

xiRi � 1;

where n is the sample size, xi is the indicator
of pollution burden for each zip code i, l is the
mean of the pollution burden indicator, and Ri

is the fractional rank in percentage White or
percentage not poor of the ith zip code from
least (i= 1) to most (i= n) disadvantaged.32

The index ranges from –1 to 1, with zero
indicating equality; negative (positive) values
indicate that the environmental hazard dis-
proportionately affects less (more) advantaged
communities. The magnitude of C reflects
both the strength of the relationship between
socioeconomic status and pollution burden
and the degree of variability in the pollution
variable. We used the SE of C, also given by
Kakwani et al.,32 to test the null hypothesis
that C= 0.

Finally, we considered the sensitivity of our
results to the removal of any 1 indicator from
the CalEnviroScreen model and an additive
model in which we summed rather than mul-
tiplied the pollution burden and population
vulnerability scores. We focused on changes
within the decile of zip codes with the highest
cumulative impact score (hereafter “most
affected 10%”) because we are primarily con-
cerned with consistently identifying the
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FIGURE 2—Distribution of cumulative impact scores for racial/ethnic groups:

CalEnviroScreen 1.1, California, 2013.
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most affected communities. We used the
inverse-rank measure to compare the rankings
generated by the alternate models. The
inverse-rank measure provides a quantitative
measure of the degree of similarity between
ordered sets that do not necessarily share all
elements.33 It has been used to compare the
results of Internet search engines, and this is, to our
knowledge, a novel application of this measure.

The inverse-rank measure considers both
the elements that comprise the set and how
they are ordered and ranges from zero (no zip
codes in set A are contained in set B) to 1 (the
same zip codes are in both sets, and they are
ordered identically). Changes in rank that occur
near the top of the set (e.g., the 2% highest
scoring communities) are given more weight
than are changes in rank near the bottom of the
set (e.g., the highest 8%---10% of communities)
to, again, pay particular attention to our ability
to consistently identify the most affected

communities. We also compared the robustness
of our findings regarding the distribution of
cumulative impact score by race/ethnicity with
the model structure (multiplicative vs additive).

RESULTS

Ten of California’s 1769 zip codes did not
have a resident population in the 2010 Census
and we excluded them from the analysis,
leaving a sample size of 1759. Zip codes varied
greatly in area (0.01---1394.98 square miles)
and population (1---105 549). Data sources and
descriptive statistics for the 17 indicators con-
stituting the CalEnviroScreen model are given
in Table 1. Several indicators had a highly
right-skewed distribution, many zeroes, or
both. The percentage of the population living
below twice the federal poverty level exhibits
a bimodal distribution (peaks near 20% and
40%; data not shown), possibly indicating

residential income segregation at the zip code
level. The raw indicator values, percentiles, and
cumulative impact scores generated by
CalEnviroScreen are publicly available in
both spreadsheet and geospatial file formats.34

We found an uneven geographic distribu-
tion of the highest cumulative impact scores
across the state. The San Joaquin Valley and
Southern California (particularly the Greater
Los Angeles area) had the greatest proportion
of communities ranking among the most af-
fected 10% statewide (data available as a sup-
plement to the online version of this article at
http://www.ajph.org). Northern California,
Sacramento, the San Francisco Bay Area, and
San Diego were home to a smaller proportion
of these most affected communities, whereas
no such communities were found in the East-
ern Sierra and Central Coast regions.

The cumulative impact score was positively
correlated with population density (Spearman
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Note. PM = particulate matter. The concentration curves show the degree of inequality in the distribution of indicators of pollution burden across California zip codes with respect to their racial/

ethnic makeup (% non-Hispanic White) and wealth (% above twice the federal poverty line). Curves in the white area above the equality line indicate that communities of color or poor communities

host a disproportionate amount of the environmental hazards. Curves in the gray area below the equality line indicate that more privileged (more White or wealthy) communities are

disproportionately burdened. The point indicated by the arrow illustrates that the 60% of zip codes with the highest proportion of residents of color host > 95% of agricultural pesticide use in

the state. We used a concentration index proportional to the area between the concentration curve and the diagonal line of equality to assess the statistical significance of departures from

equality. No hazard disproportionately burdens zip codes with a higher proportion of White or wealthy residents at P < .05.
aZip codes with a higher proportion of residents of color are disproportionately burdened (P < .05).
bZip codes with a higher proportion of residents living in poverty are disproportionately burdened (P < .05).

FIGURE 3—Concentration curves illustrating the distribution of pollution indicators with regard to community (a) racial/ethnic makeup and (b)

poverty: CalEnviroScreen 1.1, California, 2013.
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correlation coefficient = 0.48; P< .001) and
negatively correlated with the percentage of
residents living in unincorporated communities
(Spearman correlation coefficient =–0.21;
P< .001), suggesting that urban areas tend to
be more highly affected.

The median cumulative impact score was
75% higher for Hispanics and 67% higher for
African Americans than it was for non-Hispanic
Whites, for whom the average score was lowest
(Figure 2). This pattern was driven jointly by
the pollution burden and the population vul-
nerability scores, which were both higher for
Hispanics and African Americans than for
other groups. Native Americans had the third
highest median population vulnerability score
but a lower median pollution burden score
than did other groups (data not shown). Asian/
Pacific Islanders had the third highest median
pollution burden score but lower median pop-
ulation vulnerability scores than did Hispanics,
African Americans, and Native Americans
(data not shown). Using an additive rather than
a multiplicative model attenuated the percent-
age differences in the median cumulative im-
pact score relative to Whites by about half but
did not change the ordering of racial/ethnic
groups with respect to average cumulative
impact score (data not shown).

The unadjusted odds of living in one of the
10%most affected communities was higher for
all non-White groups than Whites (Hispanics:
unadjusted odds ratio [OR] = 6.15; 95%
confidence interval [CI] = 6.14, 6.17; African
Americans: OR = 5.75; CI = 5.73, 5.77;
Native Americans: OR = 1.94; CI = 1.92,
1.94; Asian/Pacific Islanders: OR = 1.83;
CI = 1.83, 1.84; other or multiracial:
OR = 1.63; CI = 1.62, 1.64). ORs decreased
slightly when we adjusted for population den-
sity (Hispanics: OR=5.8; CI =5.5, 6.1; African
Americans: OR=5.2; CI=4.7, 5.7; Native
Americans: OR=1.8; CI=1.2, 2.6; Asian/
Pacific Islanders: OR=1.7; CI =1.6, 1.9; other
or multiracial: OR=1.6; CI =1.4, 1.9).

Concentration curves illustrating the distri-
bution of pollution indicators with regard to
community racial/ethnic makeup and poverty
are presented in Figure 3. Concentration in-
dices and their 95% CIs suggested that all
indicators except particulate matter (PM) 2.5
exhibit a statistically significant regressive
distribution with respect to race/ethnicity

(P< .05; data available as a supplement to the
online version of this article at http://www.
ajph.org). Pesticide use and toxic chemical
releases were the most regressively distrib-
uted with respect to race/ethnicity, closely
followed by cleanup sites, hazardous waste,
and diesel PM. Pesticide use, ozone, cleanup
sites, solid waste, and diesel PM were also
regressively distributed with respect to pov-
erty at P< .05. No pollution indicators dis-
proportionately burdened White or wealthy
zip codes at P< .05.

The results of the sensitivity analysis suggest
that the rankings generated by CalEnviroScreen
are most sensitive to the pesticide use, ozone,
toxic releases, and low birth weight indicators
(data available as a supplement to the online
version of this article at http://www.ajph.org).
Among the 176 zip codes originally identified as
the most affected 10%, 7 to 27 fell below this
benchmark when we removed 1 indicator from
the model. Using an additive rather than a mul-
tiplicative model resulted in 11 changes within
this group of zip codes. All the communities that
we no longer identified as among the most
affected 10% using the additive model were still
among the most affected 15%.

DISCUSSION

We have presented a screening tool that
produces a relative cumulative impact score that
can be used to rank communities in California
with regard to their potential for cumulative
environmental health impacts. The tool does not
quantify the probability of harm or health risk.
Instead, it identifies communities that warrant
further attention and can help policymakers and
decision makers prioritize their activities to
the benefit of communities disproportionately
burdened by multiple environmental health
hazards. It can and should be tailored to specific
uses by modifying the geographic units of anal-
ysis; adding, removing, or improving specific
indicators; or updating the indicators with sub-
sequent years of data to track progress toward
environmental justice goals.

We found that the potential for cumulative
environmental health impacts varies across
regions of California, with the Greater Los
Angeles area and San Joaquin Valley being
most heavily affected. We also observed
significant inequality in the distribution of

pollution and population vulnerability indi-
cators within regions. Although useful for
state-level agencies and decision making,
the statewide relative ranking produced by
CalEnviroScreen may not be as informative
about inequalities within regions, in part
because some indicators included in the
model are less relevant in some regions than
in others. Performing regional rankings may
be another way to inform regional authorities
about disproportionately affected areas
within their jurisdiction.

The correlation we found between cumula-
tive impact score and population density is
consistent with the presence of many pollution
sources, such as vehicles, in urban areas. It may
also indicate that CalEnviroScreen 1.1 does not
adequately capture unique exposure pathways
and vulnerabilities associated with rural living.
The choice of indicators is limited by the
availability of comprehensive, statewide moni-
toring and data gaps that are particularly
a problem in rural areas. Disparities in water
quality by ethnicity have been observed in
small drinking water systems, particularly in
rural California,6 and a drinking water quality
indicator has been incorporated into a more
recent iteration of CalEnviroScreen.27

We found a strong disparity in the cumula-
tive impact score with regard to community
racial/ethnic makeup, with all non-White
groups (and Hispanics and African Americans
in particular) being disproportionately affected.
The fact that people of color are more likely to
live in more densely populated communities
did not explain the disparity: controlling for
population density only slightly decreased the
odds of living in one of the most affected 10%
of communities relative to Whites. The results
were also qualitatively robust to the choice of
model structure. Using an additive rather than
a multiplicative model changed the unadjusted
ORs by less than 5% for all groups. Although
the percentage differences in median cumula-
tive impact scores were significantly smaller
(about half) using an additive model, substan-
tial differences between racial/ethnic groups
remained and their order relative toWhites did
not change.

The concentration indices further revealed
that disparities in pollution burden were gen-
erally greater with respect to race/ethnicity
than they were with respect to poverty (data
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available as a supplement to the online version
of this article at http://www.ajph.org). This
finding is consistent with the results of a meta-
analysis of 49 environmental equity studies
from the United States that concluded that the
evidence of class-based inequalities was less
consistent than was the evidence of race-based
inequalities.35 Nevertheless, we still found sta-
tistically significant evidence that pesticide use,
concentrations of ozone and diesel PM, and
cleanup and solid waste sites in California are
disproportionately located in communities with
higher levels of poverty.

The concentration indices also suggest that
some pollution sources are more unequally
distributed with regard to race/ethnicity than
are others, namely pesticide use, toxic releases
from industry, cleanup sites, hazardous waste,
and diesel PM. We caution that these indices
are metrics of relative difference and do not
give an indication of the health risk posed by
any single hazard in absolute terms. Although
useful as a starting point, more research on the
degree of risk posed by each hazard is needed
to prioritize action to reduce environmental
health disparities. The percentage of the envi-
ronmental indicator that would need to be
linearly redistributed from the less advantaged
to the more advantaged half of the zip codes to
arrive at an equal distribution (index of zero)
can be calculated by multiplying the concen-
tration index by 75.36 Using this property to
provide another perspective on the degree of
inequality, approximately a third of the most
regressively distributed pollution variables
would need to be transferred from the com-
munities with higher than average proportions
of people of color to those with less to achieve
a perfectly even distribution.

The sensitivity analysis suggested that the
CalEnviroScreen model is relatively robust to
changes associated with the removal of any
single indicator. Nonetheless, changes to which
zip codes we identified as the 10%most affected
communities were substantial enough to suggest
that each indicator makes a unique contribution
to our measure of cumulative impact. The
inverse-rank measure we used may be useful for
comparing the results of our findings with those
of other environmental justice screening tools.

As with any geographic analysis using dis-
crete areas, our results are sensitive to the
choice of geographic boundaries (the “modifiable

areal unit problem”
37). Others have found that

the strength and even the direction of the
association between race, income, and the loca-
tion of environmental hazards can change with
the geographic scale of the analysis.38 Zip codes
vary widely in terms of area and population size,
and visual examination shows that some zip
codes encompass distinct communities that differ
greatly in terms of socioeconomic status. How-
ever, preliminary analysis of a newer version of
CalEnviroScreen using census tract geography27

suggests that the strength of the associations
between race/ethnicity and cumulative impact
persists with themove to a smaller geographic unit
of analysis.

Together, our results provide evidence of
significant racial/ethnic inequalities in residen-
tial proximity to multiple environmental health
hazards in California. CalEnviroScreen is a
screening tool that can be used to help guide
regulatory, enforcement, and other efforts to
reduce cumulative environmental health bur-
dens in disproportionately affected communi-
ties. Specific indicators included in CalEnvir-
oScreen may have various levels of relevance
depending on the policy and jurisdictional con-
text in which it is applied, and the underlying
data were made publicly available to allow users
to tailor the tool for different applications. Future
research is needed to improve methods for
addressing the sensitivity of environmental jus-
tice screening tools to the geographic unit of
analysis; inform the approach to relative scoring,
including the way variables are standardized,
weighted, and combined; and, most importantly,
identify specific ways that cumulative impact
assessment can be most effectively used to
reduce environmental inequalities. j
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