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Navigation With Cellular CDMA Signals—Part I:
Signal Modeling and Software-Defined

Receiver Design
Joe Khalife , Student Member, IEEE, Kimia Shamaei , Student Member, IEEE,

and Zaher M. Kassas , Senior Member, IEEE

Abstract—A software-defined receiver (SDR) for navigation us-
ing cellular code-division multiple access (CDMA) signals is pre-
sented. The cellular forward link signal structure is described, and
models for the transmitted and received signals are developed.
Particular attention is paid to relevant information that could be
extracted and subsequently exploited for positioning and timing
purposes. The pseudorange from the proposed receiver is modeled
and the pseudorange error is studied in an additive white Gaus-
sian channel. Experimental results with aerial and ground vehicles
utilizing the proposed SDR are presented demonstrating a close
match between the variation in pseudoranges and the variation
in true ranges between the receiver and two cellular CDMA base
transceiver stations (BTSs). Moreover, the dynamics of the dis-
crepancy between the observed clock biases of different sectors of
the same BTS cell is modeled and validated experimentally. The
consistency of the obtained model is analyzed through experimen-
tal tests in different locations, at different times, and for different
cellular providers.

Index Terms—Radionavigation, signals of opportunity, oppor-
tunistic navigation, direct-sequence code-division multiple access,
software radio, system identification.

I. INTRODUCTION

TRADITIONAL approaches to enable navigation in global
navigation satellite system (GNSS)-challenged environ-

ments (e.g., indoors, deep urban canyons, and intentionally
jammed and spoofed environments) have focused on coupling
GNSS receivers with inertial navigation systems and advanced
signal processing algorithms [1]–[4]. Recently, considerable at-
tention has been devoted to exploiting ambient radio frequency
(RF) signals of opportunity (SOPs) as a stand-alone alternative
to GNSS or to complement GNSS-based navigation [5]–[8].

Different studies have been conducted for specific types of
SOPs including AM/FM radio [9], [10], iridium satellites [11],
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[12], digital television (DTV) [13], [14], cellular [15]–[19], and
Wi-Fi [20]–[22]. It has been demonstrated that AM signals could
potentially provide 20 meter positioning accuracy [9]. A better
localization performance could be achieved using DTV sig-
nals, where the average positioning error becomes less than 4
meters in certain favorable environments [13]. Experimental re-
sults for navigation using cellular code-division multiple access
(CDMA) fused with DTV signals showed a navigation solution
within 2 meters from that of a GPS solution and a maximum dif-
ference of 12 meters [17]. SOPs have also been used for indoor
positioning, where it has been shown that an average position-
ing error of 4 meters could be achieved by coupling Wi-Fi and
inertial measurement units (IMUs) in a SLAM framework [20].
Coupling observables from other signals such as GSM, digital
audio broadcasting, and cellular 3G with IMU measurements
also showed promising results [6]. Moreover, iridium satellite
signals were considered to improve navigation performance in
deep urban and indoor environments [23]. SOPs were also em-
ployed in timing applications, such as enabling longer integra-
tion time for GPS-assisted femtocells in indoor environments
[24]. Besides these experimental studies, the literature on SOPs
answers theoretical questions on the observability and estima-
bility of the SOP signal landscape [25], [26], motion planning in
the SOP landscape for optimal information gathering [27]–[29],
and collaborative SOP landscape map building [30], [31].

There are three main challenges associated with using SOPs
for navigation: (1) the unavailability of appropriate low-level
signal models for optimal extraction of states and parameters
of interest for positioning and timing purposes, (2) the absence
of published receiver architectures capable of producing nav-
igation observables, and (3) the lack of sources of error iden-
tification and error models for SOP-based navigation. To the
authors’ knowledge, while previous work demonstrated experi-
mental results for navigation via cellular CDMA signals, none
of these three challenges has been fully addressed. This paper,
the first in a series of two, addresses these three challenges for
cellular CDMA signals. Cellular CDMA signals are particularly
attractive SOPs due to their abundance, high carrier frequency,
large bandwidth, high received power, and CDMA modulation
structure, which is similar to the well-studied GPS signals.

Unlike GNSS signals, cellular CDMA signals are not in-
tended for navigation [32]. As such, to exploit these signals for
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navigation purposes, the received signals must be parameter-
ized in terms of relevant navigation observables. Subsequently,
an appropriate specialized receiver capable of extracting this
relevant positioning and timing information from the received
signals must be designed. The navigation observables produced
by these receivers can be used to either (1) map the states of the
transmitting base transceiver station (BTS) tower (i.e., estimate
the BTS’s position, clock bias, and clock drift) or (2) navigate
via the received BTS signals.

Cellular CDMA communication receivers are routinely im-
plemented in hardware in mobile phones; however, hardware
implementations limit the ability to extract or modify informa-
tion within the receiver. As such, a software-defined receiver
(SDR) becomes an attractive platform of choice for implement-
ing a cellular CDMA receiver for navigation purposes, because
of its inherent advantages: (1) flexibility: designs are hardware
independent, (2) modularity: different functions can be imple-
mented independently, and (3) upgradability: minimal changes
are needed to improve designs. Although most SDRs used to be
limited to post-processing applications, processor-specific op-
timization techniques allow for real-time operation [33]. Con-
sequently, SDR implementations are becoming more prevalent.
Moreover, graphical programming languages such as LabVIEW
and Simulink offer the advantage of a one-to-one correspon-
dence between the architectural conceptualization of the SDR
and software implementation [34]. An SDR for navigation with
cellular CDMA signals based on the IS-95 standard was pre-
sented in [18].

Sources of error and the so-called error budget for GNSS-
based navigation have been thoroughly studied [35], [36]. In
contrast, navigation sources of error for SOPs are not yet fully
characterized. It is important to note that while some of these er-
rors are not harmful for communication purposes, they severely
degrade the navigation performance if they are not modeled
and accounted for appropriately. In [18], a new navigation error
source corresponding to cellular CDMA signals was revealed,
namely bias mismatch for different sectors within the same BTS
cell. A rudimentary random walk (RW) model for the dynamics
of this error was identified in [37]. This bias discrepancy across
different sectors can be particularly harmful for navigation pur-
poses in two scenarios. In the first scenario, a receiver that has no
knowledge of its own states, nor has access to GNSS, is present
in a cellular CDMA environment and is making pseudorange
measurements to BTSs nearby. The receiver has access to esti-
mates of the BTSs’ states through a central database. These esti-
mates could be produced through a stationary mapping receiver
or crowdsourced from mobile receivers in the environment. In
some cases, while estimates of the BTS sector in which the nav-
igating receiver is located may not be available, estimates of a
different sector of the same BTS cell may be available in the
database. If the navigating receiver uses such estimates without
accounting for the fact that they are produced by a mapping
receiver in a different sector, the discrepancy between the sector
clock biases will introduce errors on the order of tens of me-
ters in the receiver’s position estimate and tens of nanoseconds
in the receiver’s clock bias estimate. A second scenario where
this discrepancy must be accounted for is when the receiver is

navigating in a simultaneous localization and mapping (SLAM)
framework. In the SLAM approach, the receiver does not need
access to the BTS state estimates from an external source; how-
ever, it must account for the aforementioned discrepancy when
transitioning from one sector of the BTS to another sector.

This paper makes four contributions. First, it extends the work
in [18] by presenting precise, low-level signal models for op-
timal extraction of relevant navigation and timing information
from received cellular CDMA signals compatible with the latest
cdma2000 standard. Second, the statistics of the pseudorange
error in an additive white Gaussian channel are derived. Third,
the paper presents experimental results validating this SDR by
comparing the variation in the pseudoranges obtained by the
proposed SDR and the true ranges to two BTSs. Fourth, the
paper identifies an elaborate exponentially correlated dynami-
cal model for the discrepancy in the clock biases in different
sectors of a BTS cell and discusses when this model could be
appropriately approximated by a RW model. The derived model
is validated experimentally in different locations, at different
times, and for different cellular providers.

The remainder of the paper is organized as follows. Section II
provides an overview of the cellular CDMA forward link pilot
signal structure. Section III presents a complete implementation
of the acquisition and tracking stages of a navigation cellular
CDMA SDR. Section IV analyzes the statistics of the pseudo-
range error of the CDMA SDR in an additive white Gaussian
channel. Section V models the discrepancy between the clock
biases of different sectors of the same BTS. Section VI validates
the proposed navigation SDR and analyzes the consistency of
the obtained clock bias discrepancy model experimentally. Con-
cluding remarks are given in Section VII.

II. CELLULAR CDMA FORWARD LINK SIGNAL STRUCTURE

In a cellular CDMA communication system, several logical
channels are multiplexed on the forward link channel, including:
a pilot channel, a sync channel, and 7 paging channels [38]. The
following subsection presents an overview of the modulation
process of the forward link pilot channel and provides models
of the transmitted and received signals from which timing and
positioning information can be extracted.

A. Modulation of Forward Link CDMA Pilot Signals

The data transmitted on the forward link channel in cellu-
lar CDMA systems (i.e., BTS to mobile receiver) is modulated
through quadrature phase shift keying (QPSK) and then spread
using direct-sequence CDMA (DS-CDMA). The in-phase and
quadrature components, I and Q, respectively, of the pilot chan-
nel carry the same message m(t). The spreading sequences cI

and cQ , called the short code, are 215-chip long pseudorandom
noise (PN) codes that are generated using linear feedback shift
registers (LFSRs). In order to distinguish the received data from
different BTSs, each station uses a shifted version of the PN
codes. This shift, known as the PN offset, is unique for each
BTS and is an integer multiple of 64 chips, hence a total of
512 PN offsets can be realized. It can be shown that the cross-
correlation of the same PN sequence with different pilot offsets
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is negligible [32], [39]. The transmitted pilot signal is nothing
but the short code; however, other channels, such as the sync
and paging channels, carry data and are furthermore spread by
Walsh codes. The CDMA signal is subsequently filtered using a
digital pulse shaping filter that limits the bandwidth of the trans-
mitted CDMA signal according to the cdma2000 standard. The
signal is finally modulated by the carrier frequency to produce
s(t).

B. Transmitted Signal Model

The transmitted pilot signal s(t) by a particular BTS can be
expressed as

s(t) =
√

C
{
c′I [t − Δ(t)] cos (ωct) − c′Q [t − Δ(t)] sin (ωct)

}

=
√

C

2
{
c′I [t − Δ(t)] + jc′Q [t − Δ(t)]

} · ejωc t

+
√

C

2
{
c′I [t − Δ(t)] − jc′Q [t − Δ(t)]

} · e−jωc t ,

where C is the total power of the transmitted signal; c′I (t) =
cI (t) ∗ h(t) and c′Q (t) = cQ (t) ∗ h(t); h is the continuous-time
impulse response of the pulse shaping filter; cI and cQ are the
in-phase and quadrature PN sequences, respectively; ωc = 2πfc

with fc being the carrier frequency; and Δ is the absolute clock
bias of the BTS from GPS time. The total clock bias Δ is defined
as

Δ(t) = 64 · (PNoffset Tc) + δts(t),

where PNoffset is the PN offset of the BTS, Tc = 1 × 10−6

1.2288 s is
the chip interval, and δts is the BTS clock bias. Since the chip
interval is known and the PN offset can be decoded by the
receiver, only δts needs to be estimated. While the clock bias of
the BTS can be neglected for communication purposes, it cannot
be ignored for navigation purposes and must be estimated in
some fashion. The sequel to this paper presents a framework
for estimating this clock bias that is based on mapping and
navigating receivers.

C. Received Signal Model After Front-End Processing

Assuming the transmitted signal to have propagated through
an additive white Gaussian noise channel with a power spectral
density of N0

2 , a model of the received discrete-time (DT) signal
r[m] after RF front-end processing: downmixing, a quadrature
approach to bandpass sampling [40], and quantization can be
expressed as

r[m] =
√

C

2
{
c′I [tm − ts(tm )] − jc′Q [tm − ts(tm )]

}

· ejθ(tm ) + n[m], (1)

where ts(tm ) � δtT OF + Δ(tk − δtT OF ) is the PN code phase
of the BTS, tm = mTs is the sample time expressed in re-
ceiver time, Ts is the sampling period, δtT OF is the time-of-
flight (TOF) from the BTS to the receiver, θ is the beat carrier
phase of the received signal, and n[m] = nI [m] + jnQ [m] with
nI and nQ being independent, identically-distributed (i.i.d.)

TABLE I
FIR OF THE PULSE-SHAPING FILTER USED IN CDMA2000 [38]

Gaussian random sequences with zero-mean and variance N0
2Ts

.
The receiver developed in Section III will operate on the samples
of r[m] in (1).

III. CELLULAR CDMA NAVIGATION RECEIVER

ARCHITECTURE

The cellular CDMA navigation receiver consists of three main
stages: signal acquisition, tracking, and decoding. The proposed
receiver will utilize the pilot signal to detect the presence of a
CDMA signal and then track it, as will be discussed in this
section. The next subsection gives a brief description of the
correlation process in the cellular CDMA navigation receiver.
The following subsections present a software implementation
in LabVIEW of the acquisition and tracking stages. Details on
decoding the sync and paging channel messages are provided in
[18], [41], [42].

A. Cellular CDMA Receiver Correlator

Given samples of the baseband signal exiting the RF front-
end defined in (1), the cellular CDMA receiver first wipes off
the residual carrier phase and match-filters the resulting signal.
The output of the matched-filter can be expressed as

x[m] =
[
r[m] · e−j θ̂(tm )

]
∗ h[−m], (2)

where θ̂ is the beat carrier phase estimate and h is a pulse
shaping filter, which is a DT version of the one used to shape
the spectrum of the transmitted signal, with a finite-impulse
response (FIR) given in Table I. The samples m′ of the FIR in
Table I are spaced by Tc

4 .
Next, x[m] is correlated with a local replica of the spreading

PN sequence. In a digital receiver, the correlation operation is
expressed as

Zk =
1

Ns

k+Ns −1∑

m=k

x[k]
{
cI [tm − t̂s(tm )] + jcQ [tm − t̂s(tm )]

}
,

(3)
where Zk is the kth subaccumulation, Ns is the number of
samples per subaccumulation, and t̂s(tm ) is the code start time
estimate over the kth subaccumulation. The code phase can be
assumed to be approximately constant over a short subaccumu-
lation interval Tsub = NsTs ; hence, t̂s(tm ) ≈ t̂sk

. It is worth
mentioning that theoretically, Tsub can be made arbitrarily large
since no data is transmitted on the pilot channel. Practically,
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Tsub is mainly limited by the stability of the BTS and receiver
oscillators. In this paper, Tsub is set to one PN code period. The
carrier phase estimate is modeled as θ̂(tm ) = 2πf̂Dk

tm + θ0 ,
where f̂Dk

is the apparent Doppler frequency estimate over the
ith subaccumulation, and θ0 is the initial beat carrier phase of
the received signal. As in a GPS receiver, the value of θ0 is set to
zero in the acquisition stage and is subsequently maintained in
the tracking stage. The apparent Doppler frequency is assumed
to be constant over a short Tsub. Substituting for r[m] and x[m],
defined in (1) and (2), into (3), it can be shown that

Zk =
√

C Rc(Δtk )

[
1

Ns

k+Ns −1∑

m=k

ejΔθ(tm )

]

+ nk , (4)

where Rc is the autocorrelation function of the PN sequences
c′I and c′Q , Δtk � t̂sk

− tsk
is the code phase error, Δθ(tm ) �

θ(tm ) − θ̂(tm ) is the carrier phase error, and nk � nIk
+ jnQk

with nIk
and nQk

being i.i.d. Gaussian random sequences with
zero-mean and variance N0

2Ts Ns
= N0

2T sub
.

B. Acquisition

The objective of this stage is to determine which BTSs are
in the receiver’s proximity and to obtain a coarse estimate of
their corresponding code start times and Doppler frequencies.
A search over the code start time and Doppler frequency is
performed to detect the presence of a signal. Based on exper-
imental data, the Doppler frequency search window is chosen
to be between −500 and 500 Hz at a carrier frequency in the
800/850 MHz cellular band, with a frequency spacing ΔfD be-
tween 8 and 12 Hz if Tsub is only one PN code period. The
code start time search window is naturally chosen to be one PN
code interval with a delay spacing of one sample. The proposed
receiver performs a parallel code phase search by exploiting the
optimized efficiency of the fast Fourier transform (FFT) [43]. A
hypothesis test on |Zk |2 could be performed to decide whether
the peak corresponds to a transmitted signal or to noise. Since
there is only one PN sequence, the search needs to be performed
once. Fig. 3(a) illustrates the front panel of the acquisition stage
of the LabVIEW cellular CDMA SDR showing |Zk |2 along
with t̂sk

, f̂Dk
, PN offset, and carrier-to-noise ratio C/N0 for a

particular BTS.

C. Tracking

After obtaining an initial coarse estimate of the code start
time and Doppler frequency, the receiver refines and maintains
these estimates via tracking loops. In the proposed design, a
phase-locked loop (PLL) is employed to track the carrier phase
and a carrier-aided delay-locked loop (DLL) is used to track the
code phase. The PLL and DLL are discussed next.

1) PLL: The PLL consists of a phase discriminator, a loop
filter, and a numerically-controlled oscillator (NCO). Since the
receiver is tracking the data-less pilot channel, an atan2 dis-
criminator, which remains linear over the full input error range
of ±π, could be used without the risk of introducing phase am-
biguities. It was found that the receiver could easily track the
carrier phase with a second-order PLL with a loop filter transfer

Fig. 1. Autocorrelation function of GPS C/A code and cellular CDMA PN
sequence according to the cdma2000 standard.

function given by

FPLL(s) =
2ζωns + ω2

n

s
, (5)

where ζ ≡ 1√
2

is the damping ratio and ωn is the undamped
natural frequency, which can be related to the PLL’s noise-
equivalent bandwidth Bn,PLL by Bn,PLL = ωn

8ζ (4ζ2 + 1) [36].
The output of the loop filter vPLL is the rate of change of the
carrier phase error, expressed in rad/s. The Doppler frequency is
deduced by dividing vPLL by 2π. The loop filter transfer function
in (5) is discretized at a sampling period Tsub and realized in
state-space. The noise-equivalent bandwidth is chosen to range
between 4 and 8 Hz.

2) DLL: The carrier-aided DLL employs the non-coherent
dot product discriminator. In order to compute the code phase
error, the dot product discriminator uses the prompt, early, and
late correlations, denoted by Zpk

, Zek
, and Zlk , respectively.

The prompt correlation was described in Subsection III-A. The
early and late correlations are calculated by correlating the re-
ceived signal with an early and a delayed version of the prompt
PN sequence, respectively. The time shift between Zek

and Zlk

is defined by an early-minus-late time teml, expressed in chips.
Since the autocorrelation function of the transmitted cellular
CDMA pulses is not triangular as in the case of GPS, a wider teml

is preferable in order to have a significant difference between
Zpk

, Zek
, and Zlk . Fig. 1 shows the autocorrelation function

of the cellular CDMA PN code as specified by the cdma2000
standard and that of the C/A code in GPS. It can be seen from
Fig. 1 that for teml ≤ 0.5 chips, Rc(τ) in the cdma2000 standard
has approximately a constant value, which is not desirable for
precise tracking. In this paper, a teml of 1 to 1.2 chips is chosen.

The DLL loop filter is a simple gain K, with a noise-
equivalent bandwidth Bn,DLL = K

4 ≡ 0.5 Hz. The output of
the DLL loop filter vDLL is the rate of change of the code phase,
expressed in s/s. Assuming low-side mixing, the code start time
is updated according to

t̂sk + 1 = t̂sk
− (vDLL,k + f̂Dk

/fc) · NsTs.

The pseudorange estimate ρ can therefore be deduced by mul-
tiplying the code start time by the speed-of-light c, i.e.,

ρ(k) = c · t̂sk
. (6)

Fig. 2 depicts a diagram of the tracking loops.
Fig. 3(b)–(e) shows the intermediate signals produced within

the tracking loops of the LabVIEW cellular CDMA naviga-
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Fig. 2. Tracking loops in the navigation cellular CDMA receiver. Thick lines
represent complex quantities.

Fig. 3. (a) Cellular CDMA signal acquisition front panel showing |Zk |2
along with t̂sk

, f̂D k
, PN offset, and C/N0 for a particular BTS. (b)–(e)

Cellular CDMA signal tracking: (b) Carrier phase error (degrees), (c) code
phase error (chips), (d) Doppler frequency estimate (Hz), and (e) measured
pseudorange (m).

tion receiver: phase error, code error, Doppler frequency, and
pseudorange.

In the next section, the tracking performance of the DLL
is studied and the closed-loop statistics of the code start time
estimate are derived.

IV. PSEUDORANGE ERROR ANALYSIS IN AN ADDITIVE

WHITE GAUSSIAN NOISE CHANNEL

Section III presented a recipe for designing a receiver that
can extract a pseudorange estimate from cellular CDMA sig-

nals. This section analyzes the statistics of the error of the
pseudorange estimate for a coherent DLL. It is worth noting that
when the receiver is closely tracking the carrier phase, the dot-
product discriminator and a coherent DLL discriminator will
perform similarly. Hence, the analysis is carried for a coherent
discriminator. Moreover, this subsection studies the statistics of
the pseudorange error in a coherent baseband discriminator. To
this end, it is assumed that ts is constant. Therefore, the car-
rier aiding term will be negligible and the code start time error
Δtk will be affected only by the channel noise. As mentioned
in Subsection III-C, it is enough to use a first-order loop for
the DLL yielding the following closed-loop time-update error
equation [44]

Δtk+1 = (1 − 4Bn,DLLTsub)Δtk + KDk, (7)

where Dk is the output of the code discriminator. The discrimi-
nator statistics are discussed next.

A. Discriminator Statistics

In order to study the discriminator statistics, the received
signal noise statistics must first be determined. In what follows,
the received signal noise is characterized for an additive white
Gaussian channel.

1) Received Signal Noise Statistics: In order to make the
analysis more tractable, the continuous-time (CT) received sig-
nal and correlation are considered. The transmitted signal is
assumed to propagate in an additive white Gaussian noise chan-
nel with a power spectral density N0

2 . The CT received signal
after downmixing and bandpass sampling is given by

r(t) =
√

C

2
[
c′I (t − ts) − jc′Q (t − ts)

]
ejθ(t) + n(t),

and the CT matched-filtered baseband signal x(t) is given by

x(t) =
[
r(t) · e−j θ̂(t)

]
∗ h(−t).

The resulting early and late correlations in the DLL are given
by

Zek
=

∫ T sub

0
x(t) [cI (t − τek

) + jcQ (t − τek
)] dt,

Zlk =
∫ T sub

0
x(t) [cI (t − τlk ) + jcQ (t − τlk )] dt,

where τek
� t̂sk

− teml
2 Tc and τlk � t̂sk

+ teml
2 Tc . Assuming the

receiver is closely tracking the carrier phase [36], the early and
late correlations may be approximated with

Zek
≈ Tsub

√
CRc

(
Δtk − teml

2
Tc

)
+ nek

� Sek
+ nek

,

Zlk ≈ Tsub

√
CRc

(
Δtk +

teml

2
Tc

)
+ nlk � Slk + nlk ,
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Fig. 4. Output of the coherent baseband discriminator function for the CDMA
shortcode with different correlator spacings.

where nek
and nlk are zero-mean Gaussian random variables

with the following variances and covariances

var{n2
ek
} = var{n2

lk
} =

TsubN0

2
∀k,

E{nek
nlk } =

TsubN0Rc(temlTc)
2

, ∀k,

E{nek
nej

} = E{nlk nlj } = E{nek
nlj } = 0, ∀k 	= j.

2) Coherent Discriminator Statistics: The coherent base-
band discriminator function is defined as

Dk � Zek
− Zlk√
C

=
(Sek

− Slk )√
C

+
(nek

− nlk )√
C

.

The normalized signal component of the discriminator function
(Se k

−Sl k )
T sub

√
C

is shown in Fig. 4 for teml = {0.25, 0.5, 1, 1.5, 2}.

It can be seen from Fig. 4 that for small values of Δtk

Tc
, the

discriminator function can be approximated by a linear function
given by

Dk ≈ αΔtk +
(nek

− nlk )√
C

,

where α is the slope of the discriminator function at Δtk = 0
[44], which is obtained by

α =
∂Dk

∂Δtk

∣
∣
∣
∣
Δtk =0

= Tsub

[
d

dτ
Rc(−τ) − d

dτ
Rc(τ)

]∣
∣
∣
∣
τ = t eml

2 Tc

.

Since Rc(τ) is symmetric,

d

dτ
Rc(τ)

∣
∣
∣
∣
τ =− t eml

2 Tc

= − d

dτ
Rc(τ)

∣
∣
∣
∣
τ = t eml

2 Tc

� R′
c

(
teml

2
Tc

)
,

and the linearized discriminator output becomes

Dk ≈ 2TsubR
′
c

(
teml

2
Tc

)
Δtk +

(nek
− nlk )√
C

. (8)

It is worth noting that Rc(τ) and R′
c(τ) are obtained by nu-

merically computing the autocorrelation function of the pulse-
shaped short code. Since the FIR of the pulse-shaping filter h[k]
is defined over only 48 values of k, the autocorrelation function
Rc(τ) will be defined over 95 values of τ . However, interpo-
lation may be used to evaluate Rc(τ) and R′

c(τ) at any τ . The

mean and variance of Dk can be obtained from (8), and are
given by

E{Dk} = 2TsubR
′
c

(
teml

2
Tc

)
Δtk , (9)

var{Dk} =
1
C

var{nek
− nlk }

=
1
C

[var{nek
} + var{nlk } − 2E{nek

nlk }]

=
TsubN0

C
[1 − Rc(temlTc)] . (10)

Now that the discriminator statistics are known, the closed-loop
pseudorange error is characterized.

B. Closed-Loop Analysis

In order to achieve the desired loop noise-equivalent band-
width, K in (7) must be normalized according to

K =
4Bn,DLLTsubΔtk

E{Dk}
∣
∣
∣
∣
Δtk =0

=
2Bn,DLL

R′
c

(
teml
2 Tc

) . (11)

In cellular CDMA systems, for a teml of 1.2, the loop fil-
ter gain becomes K ≈ 4Bn,DLL , hence the choice of K in
Subsection III-C. Assuming a zero-mean tracking error, i.e.,
E{Δtk} = 0, then the variance of the code start time error is
given by

var{Δtk+1} = (1 − 4Bn,DLLTsub)2var{Δtk}
+K2var{Dk}. (12)

At steady-state, var{Δtk+1} becomes

var{Δtk+1} = var{Δtk} = var{Δt}, (13)

where Δt is the steady-state code start time error. Combining
(11)–(13) yields

var{Δt} =
Bn,DLL q(teml)

2(1 − 2Bn,DLLTsub)C/N0
, (14)

where

q(teml) � 1 − Rc(temlTc)
[
R′

c(
teml
2 Tc)

]2 .

The pseudorange can hence be expressed as

ρ(k) = c · tsk
+ c · Δtk � c · tsk

+ v(k),

where v(k) is a zero-mean random variable with variance σ2 =
c2 · var {Δt}. Fig. 5 shows a plot of σ as a function of the
carrier-to-noise ratio C/N0 for teml = 1.25 chips.

V. CLOCK BIAS DISCREPANCY MODEL BETWEEN

DIFFERENT SECTORS OF A BTS CELL

A typical CDMA BTS transmits into three different sectors
within a particular cell. Ideally, all sectors’ clocks should be
driven by the same oscillator, which implies that the same clock
bias (after correcting for the PN offset) should be observed in
all sectors of the same cell. However, factors such as unknown
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Fig. 5. Plot of σ as a function of the carrier-to-noise ratio C
N 0

for teml = 1.25
chips and Bn ,DLL = {0.5 Hz, 0.05 Hz}.

distance between the phase-center of the sector antennas, de-
lays due to RF connectors and other components (e.g., cabling,
filters, amplifiers, etc.) cause the clock biases corresponding to
different BTS sectors to be slightly different. This behavior was
consistently observed experimentally in different locations, at
different times, and for different cellular providers [18], [45].
In this section, the model for the pseudorange produced by the
cellular CDMA navigation receiver developed in Section III is
given. Subsequently, a stochastic dynamic model for the ob-
served clock bias mismatch for different sectors of the same
BTS cell is identified and experimentally validated.

A. Pseudorange Measurement Model

The pseudorange can be obtained from the proposed cel-
lular CDMA navigation SDR by multiplying the code phase
estimate by the speed-of-light. A model for this produced pseu-
dorange can be parameterized as a function of the receiver and
BTS position and clock bias states. For simplicity, a planar
environment will be assumed, with the receiver and BTS three-
dimensional (3-D) position states appropriately projected onto
such planar environment. The subsequent discussion can be
straightforwardly generalized to 3-D. The state of the receiver

is defined as xr �
[
rT

r , cδtr
]T

, where rr = [xr , yr ]
T is the po-

sition vector of the navigator, δtr is the navigator’s clock bias,
and c is the speed-of-light. Similarly, the state of the ith BTS

is defined as xsi
�

[
rT

si
, cδtsi

]T
, where rsi

= [xsi
, ysi

]T is the
position vector of the ith BTS and δtsi

is the clock bias. After
mild approximations discussed in [26], the pseudorange mea-
surement to the ith BTS at time k, ρi(k), can be expressed
as

ρi(k) = ‖rr (k) − rsi
‖ + c · [δtr (k) − δtsi

(k)] + vi(k),
(15)

where vi is the observation noise, which is modeled as a zero-
mean white Gaussian random sequence with variance σ2

i .

B. Sector Clock Bias Discrepancy Detection

In order to detect the discrepancy between sectors’ clock bi-
ases, the proposed cellular CDMA receiver was placed at the
border of two sectors of a BTS cell and was drawing pseu-
dorange measurements from both sector antennas. The receiver

Fig. 6. (a) A cellular CDMA receiver placed at the border of two sectors of
a BTS cell, making pseudorange observations on both sector antennas simul-
taneously. The receiver has knowledge of its own states and has knowledge of
the BTS position states. (b) Observed BTS clock bias corresponding to two
different sectors from a real BTS (Verizon Wireless).

had full knowledge of its state and of the BTS’s position. Subse-
quently, the receiver solved for the BTS clock biases δt

(pi )
si and

δt
(qi )
si observed in sectors pi and qi , respectively. A realization

of δt
(pi )
si and δt

(qi )
si is depicted in Fig. 6.

Fig. 6 suggests that the clock biases δt
(pi )
si and δt

(qi )
si can be

related through

δt(qi )
si

(k) = δt(pi )
si

(k) + [1 − 1qi
(pi)] εi(k),

where εi is a random sequence that models the discrepancy
between the sectors’ clock biases and

1qi
(pi) =

{
1, if pi = qi,
0, otherwise,

is the indicator function.
Remark: The cdma2000 protocol requires all PN offsets to

be synchronized to within 10 μs from GPS time; however, syn-
chronization to within 3 μs is recommended [46]. Since each
sector of a BTS uses a different PN offset, then the clock bi-
ases δt

(pi )
si and δt

(qi )
si will be bounded according to −10 μs

≤ δt
(pi )
si (k) ≤ 10 μs and −10 μs ≤ δt

(qi )
si (k) ≤ 10μ s. There-

fore, εi will be within 20 μs from GPS time, namely

−20 μs ≤ εi ≤ 20 μs.

The discrepancy {εi}2
i=1 between the clock biases observed in

two different sectors of some BTS cell over a 24-hour period is
shown in Figs. 7(a) and (b) for two different BTSs. Both cellular
towers pertain to the U.S. cellular provider Verizon Wireless and
are located near the University of California, Riverside campus.
The cellular signals were recorded between September 23 and
24, 2016. It can be seen from Fig. 7 that |εi | is bounded by
approximately 2.02 μs and 0.65 μs, respectively, which is well
below 20 μs.

In what follows, a stochastic dynamic model for εi is
identified.

C. Model Identification

It is hypothesized that the discrepancy εi(k) = δt
(qi )
si (k) −

δt
(pi )
si (k) for pi 	= qi adheres to an autoregressive (AR) model
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Fig. 7. The discrepancies ε1 and ε2 between the clock biases observed in two
different sectors of some BTS cell over a 24-hour period. (a) and (b) correspond
to ε1 and ε2 for BTSs 1 and BTS 2, respectively. Both BTSs pertain to the
U.S. cellular provider Verizon Wireless and are located near the University
of California, Riverside campus. The cellular signals were recorded between
September 23 and 24, 2016. It can be seen that |εi | is well below 20 μs.

of order n [47], which can be expressed as

εi(k) +
n∑

j=1

ai,j εi(k − j) = ζi(k),

where ζi is a white sequence. The objective is to find the or-
der n and the coefficients {ai,j}n

j=1 that will minimize the sum

of the squared residuals
∑k

l=0 ζ2
i (l). To find the order n, sev-

eral AR models were identified and for a fixed order, a least-
squares estimator was used to solve for {ai,j}n

j=1 . It was noted
that the sum of the squared residuals corresponding to each
n ∈ {1, . . . , 10} were comparable, suggesting that the minimal
realization of the AR model is of first-order. For n = 1, it was
found that ai,1 = −(1 − βi), where 0 < βi � 1 (on the order of
8 × 10−5 to 3 × 10−4). This implies that εi is an exponentially
correlated random variable (ECRV) with the continuous-time
(CT) dynamics given by

ε̇i(t) = −αiεi(t) + ζ̃i(t), (16)

where αi � 1
τi

, τi is the time constant of the discrepancy dy-

namical model, and ζ̃i is a CT white process with variance σ2
ζ̃ i

.
Discretizing (16) at a sampling period T yields the DT model

εi(k + 1) = φi εi(k) + ζi(k), (17)

where φi = e−αi T . The variance of ζi is given by σ2
ζi

=
σ 2

ζ̃ i

2αi
(1 −

e−2αi T ). Fig. 8 shows an experimental realization of εi and the
corresponding residual ζi .

D. Model Validation

The identified model in (17) was validated through residual
analysis [47]. To this end, the autocorrelation function (acf) and
power spectral density (psd) of the residual error ei defined

Fig. 8. (a) A realization of the discrepancy εi between the observed clock
biases of two BTS sectors and (b) the corresponding residual ζi .

Fig. 9. The (a) acf and (b) psd of ei with a sampling frequency of 5 Hz.

Fig. 10. Distribution of ζi from experimental data and the estimated Laplace
pdf via MLE. For comparison purposes, a Gaussian (dashed) and Logistic
(dotted) pdf fits are plotted as well.

as the difference between the measured data ε′i and predicted
value from the identified model εi in (17), i.e., ei � ε′i − εi ,
were computed. Fig. 9 shows the acf and psd of ei computed
from a different realization of εi . The psd was computed using
Welch’s method [48]. It can be seen from Fig. 9 that the residual
error ei is nearly white; hence, the identified model is capable
of describing the true system.

E. Residual Statistics Characterization

Next, the probability density function (pdf) of ζi will be char-
acterized, assuming that ζi is an ergodic process. It was found
that the Laplace distribution best matches the actual distribution
of ζi obtained from experimental data, i.e., the pdf of ζi is given
by

p(ζi) =
1

2λi
exp

(
−|ζi − μi |

λi

)
, (18)

where μi is the mean of ζi and λi is the parameter of the Laplace
distribution, which can be related to the variance by σ2

ζi
= 2λ2

i .
A maximum likelihood estimator (MLE) was adopted to calcu-
late the parameters μi and λi of p(ζi) [49]. Fig. 10 shows the
actual distribution of the data along with the estimated pdf. For
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Fig. 11. Simulation of the distribution of cεi (expressed in meters) for φi =
0.95, μi = 0, and λi = 13 ns. The true distribution is fitted to a Gaussian
distribution (yellow) and a Laplace distribution (red).

comparison purposes, a Gaussian and Logistic pdf fits obtained
via an MLE are plotted as well.

It was noted that μi ≈ 0 from several batches of collected
experimental data; therefore, ζi is appropriately modeled as
a zero-mean white Laplace-distributed random sequence with
variance 2λ2

i .

F. Statistics of the Discrepancy Between Sector Clock Biases

The solution to the dynamic model (17) can be expressed as

εi(k) = φk
i εi(0) +

k−1∑

l=0

φk−1−l
i ζi(l),

where εi(0) is the known initial discrepancy. Without loss
of generality, εi(0) is assumed to be zero. Therefore,
εi(k) has mean E [εi(k)] = 0 and variance var [εi(k)] =
σ 2

ζ̃ i

2αi

(
1 − e−2αi kT

)
. Note that the discrepancy εi is the weighted

sum of uncorrelated Laplace-distributed random variables. The
central limit theorem asserts that the pdf of εi converges to a
Gaussian pdf. It was noted that the convergence happens for
k ≥ 9 for φi ≥ 0.95, as depicted in Fig. 11.

G. Approximation With a Random Walk

When αi → 0, the dynamics of εi(k) converge to that of a
random walk. Since the values of αi obtained experimentally
are very small, studying the RW model as an approximation
becomes relevant. The mean of the RW process is also zero
and the variance is given by σ2

ζ̃ i
kT . It can be readily shown

that σ2
ζ̃ i

kT >
σ 2

ζ̃ i

2αi

(
1 − e−2αi kT

)
,∀αi > 0, k > 0, and T > 0.

Denote the relative error between the variances of the ECRV
and RW models by γ, then the following can be established

1
2αikT

(
1 − e−2αi kT

) ≥ 1 − γ. (19)

Note that (19) may also be expressed as

f(x, γ) ≥ 0,

Fig. 12. (a) Plot of f (x, γ) for γ = {0.03, 0.05, 0.1}. (b) Plot of g(γ).

where

x � 2αikT and f(x, γ) � 1 − (1 − γ)x − e−x .

Fig. 12(a) shows f(x, γ) as a function of x for different values of
γ. Let x� = g(γ) denote the solution to f(x, γ) = 0 for a given
γ. According to Fig. 12(a), for a given γ, f(x, γ) ≥ 0 is satisfied
∀x ∈ (0, g(γ)]. Fig. 12(b) depicts the solution x� = g(γ) as a
function of γ. Note that g(γ) does not have a closed form but can
be calculated using iterative methods, e.g., Newton’s method.

Subsequently, for a desired γ and a known αi , one can solve
for k that guarantees the relative error between the RW and
ECRV variances to be less than γ using 2αikT ≤ g(γ). For
example, given that γ = 0.01 and αi = 3 × 10−4 Hz, then for
kT ≤ g(0.01)

2×3×10−4 = 33.55 s, the relative error between the RW
and ECRV variances will remain less than 1%.

VI. EXPERIMENTAL RESULTS

In this section, experimental results on an aerial and ground
vehicle, validating the proposed cellular CDMA navigation SDR
are presented. Next, the consistency of the clock bias discrep-
ancy model derived in Section V is analyzed experimentally.

A. Cellular CDMA Navigation SDR Experimental Results

In order to test the proposed cellular CDMA SDR, the varia-
tion in the pseudorange obtained by the receiver was compared
to the variation in true range between the moving receiver and
cellular CDMA BTSs. For this purpose, two experiments were
conducted where the proposed receiver was mounted on (1) an
unmanned aerial vehicle (UAV) and (2) a ground vehicle.

1) UAV Results: In the first experiment, a DJI Matrice 600
UAV was equipped with the proposed SDR, a consumer-grade
800/1900 MHz cellular antenna, and a small consumer-grade
GPS antenna to discipline the on-board oscillator. The cellu-
lar signals were down-mixed and sampled via a single-channel
universal software radio peripheral (USRP) driven by a GPS-
disciplined oscillator (GPSDO). The cellular receiver was tuned
to a carrier frequency of 883.98 MHz, which is a channel allo-
cated for the U.S. cellular provider Verizon Wireless. Samples
of the received signals were stored for off-line post-processing.
The cellular CDMA signals were processed by the proposed
LabVIEW-based SDR. The ground-truth reference for the UAV
trajectory was taken from its on-board navigation system, which
uses GPS, an inertial navigation system, and other sensors.
Fig. 13 shows the SOP BTS environment in which the UAV
was present as well as the experimental hardware setup.
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Fig. 13. SOP BTS environment and experimental hardware setup for the UAV
experiment. Map data: Google Earth.

Fig. 14. Trajectory taken by the UAV over the course of the experiment. Map
data: Google Earth.

Over the course of the experiment, the receiver was listening
to two BTSs, whose position states were mapped prior to the
experiment according to the framework discussed in [31]. The
distance D between the UAV and the BTS was calculated using
the navigation solution produced by the UAV’s navigation sys-
tem and the known BTS position, and the pseudorange ρ was
obtained from the proposed cellular CDMA SDR mounted on
the UAV over the trajectory shown in Fig. 14.

In order to validate the resulting pseudoranges, the variation
of the pseudorange Δρ � ρ − ρ(0), where ρ(0) is the initial
value of the pseudorange, and the variation in distance ΔD �
D − D(0), where D(0) is the initial distance between the UAV
and the BTS are plotted in Fig. 15 for the two BTSs.

It can be seen from Fig. 15 that the variations in the pseudor-
anges follow closely the variations in distances. The difference
between ΔD and Δρ for a particular BTS is due to the variation
in the clock bias difference c (δtr − δtsi

) and the noise terms vi .
2) Ground Vehicle Results: In the second experiment, a

car was equipped with the proposed SDR, a consumer-grade
800/1900 MHz cellular antenna, and a surveyor-grade GPS an-
tenna to collect GPS L1 signal and to discipline the on-board
oscillator. The cellular and GPS signals were down-mixed and
synchronously sampled via a dual-channel USRP driven by a
GPSDO. The cellular receiver was tuned to a carrier frequency of
882.75 MHz, which is also a channel allocated for the U.S. cel-
lular provider Verizon Wireless. Samples of the received signals

Fig. 15. Variation in pseudoranges and the variation in distances between the
receiver and two cellular CDMA BTSs for the UAV experiment.

Fig. 16. SOP BTS environment, true trajectory, and experimental hardware
setup for the ground vehicle experiment. Map data: Google Earth.

Fig. 17. Variation in pseudoranges and the variation in distances between the
receiver and two cellular CDMA BTSs for the ground vehicle experiment.

were stored for off-line post-processing. The cellular CDMA
signals were processed by the proposed LabVIEW-based SDR.
The GPS signal was processed by the Generalized Radionavi-
gation Interfusion Device (GRID) SDR [50] and the resulting
GPS solution was assumed to be the ground-truth reference for
the car trajectory. Fig. 16 shows the SOP BTS environment, car
trajectory, and the experimental hardware setup.

Over the course of the experiment, the receiver was listening
to two BTSs, whose position states were mapped prior to the
experiment according to the framework discussed in [31]. The
change in the true range and the change in pseudorange are
plotted in Fig. 17, similarly to the UAV experiment.

It can be seen from Fig. 17 that the variations in the pseudor-
anges follow closely the variations in distances. The difference
between ΔD and Δρ for a particular BTS is due to the variation
in the clock bias difference c (δtr − δtsi

) and the noise terms
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TABLE II
TEST DATES, LOCATIONS, AND CARRIER FREQUENCIES

Fig. 18. Locations of the cellular CDMA BTSs: Colton, CA; Riverside, CA;
and the University of California, Riverside (UCR). Map data: Google Earth.

vi . The sequel paper will study the navigation performance and
estimation of the clock bias in further detail.

B. Clock Bias Discrepancy Model Consistency Analysis

The consistency of the clock bias discrepancy model was an-
alyzed experimentally in different locations, at different times,
and for different cellular providers. The results are presented in
this section.

1) Cellular CDMA SOP Test Scenarios and Hardware Setup:
The tests were performed twice at three different locations.
There is a six-day period between each test at each of the three
locations. A total of three carrier frequencies were considered,
two of them pertaining to Verizon Wireless and one to Sprint.
The test scenarios are summarized in Table II and Fig. 18. The
date field in Table II shows the date in which the test was
conducted in MM/DD/YYYY format.

For the purpose of collecting data, a receiver that was placed
close to the border of two sectors for each BTS was equipped
with two antennas to acquire and track: (1) GPS signals and
(2) signals from the cellular CDMA BTS sector antennas. The
CDMA antenna used for the experiments in location 1 was a
consumer-grade 800/1900 MHz cellular antenna and a high-gain
tri-band cellular antenna for locations 2 and 3. Both GPS anten-
nas were surveyor-grade Leica antennas. The GPS and cellular
signals were simultaneously down-mixed and synchronously
sampled at 2.5 MS/s via a dual channel USRP driven by a
GPSDO. Samples of the received signals were stored for off-
line post-processing. The GPS signal was processed by GRID
and the cellular CDMA signals were processed by the proposed

Fig. 19. Experimental hardware setup for each location. Left: hardware setup
for locations 2 and 3. Center: data collection equipment. Right: hardware setup
for location 1.

Fig. 20. Six realizations, five minutes each, of the sector clock bias discrep-
ancy for the tests in Table II.

LabVIEW-based SDR. The receiver’s clock bias obtained from
the GPS solution was used to solve for the BTS sector clock
bias. Fig. 19 shows the experimental hardware setup.

2) Analysis of Sector Clock Bias Discrepancy Realizations:
Fig. 20 shows six realizations, five minutes each, of the dis-
crepancy corresponding to Tests (a)–(f) in Table II. It can
be seen from Fig. 20 that the behavior of the discrepancy
is consistent across the tests. The initial discrepancy is sub-
tracted out so that all realizations start at the origin. The in-
verse of the time constant for each realization was found to be
{αi}6

i=1 = {2.08, 1.66, 1.77, 1.70, 1.39, 2.53} × 10−4 Hz.
Next, the process noise driving the discrepancy is character-

ized. The process noise was calculated according to

ζi(k) = εi(k + 1) − φiεi(k),

where φi = e−αi T and T = 0.2 s. The acf of each of the six
realizations of ζi corresponding to the six realizations of εi

from Fig. 20 are shown in Fig. 21. Similarly to Fig. 9(a), the
shape of the acfs in Fig. 21 exhibits very quick de-correlation,
validating that ζi is approximately a white sequence.

Fig. 22 shows a histogram of each realization of ζi along with
the estimated pdf p(ζi). The pdfs were obtained by estimating
the μi and λi parameters associated with the Laplace pdf (18).
It can be seen that the Laplace pdf consistently matched the
experimental data.
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Fig. 21. The acf of the six realizations of the process noise ζi corresponding
to the discrepancies in Fig. 20.

Fig. 22. A histogram of each realization of the process noise along with the
estimated Laplace distribution.

VII. CONCLUSION

This paper presented an SDR architecture for cellular CDMA-
based navigation. Models of the cellular CDMA signals were
first developed and optimal extraction of relevant positioning
and timing information was discussed. Next, a description of
the acquisition and tracking stages of a LabVIEW-based SDR

was presented. The statistics of the pseudorange error of the
proposed SDR in an additive white Gaussian channel were de-
rived. Furthermore, the discrepancy between the clock biases
observed by a receiver in two different sectors of the BTS cell
was analyzed and modeled as a stochastic dynamic sequence.
The consistency of the obtained model was experimentally ana-
lyzed in different locations, at different times, and for different
cellular providers. Finally, experimental results validating the
pseudoranges produced by the proposed SDR were presented, in
which the SDR’s pseudoranges followed closely the true range
between mobile UAV-mounted and car-mounted receivers and
two cellular BTSs.
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