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ABSTRACT OF THE DISSERTATION 

 

Metabolomic and Epigenomic Assessment of Air Pollution and Pesticides Exposure in California 

 

by 

 

Qi Yan 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2021 

Professor Beate R. Ritz, Chair 

 

Air pollutants and pesticides, two major and widespread environmental exposures, have 

been shown to increase the risk of various health outcomes such as birth outcomes, cardiovascular 

diseases, neurodevelopmental disorders, and neurodegenerative diseases. The cumulative toxic 

effects of chronic air pollution and pesticide exposures are mediated through various biological 

processes, such as oxidative stress and inflammation, epigenetic alterations, mitochondrial 

dysfunction, altered intercellular communication, altered microbiome communities, and impaired 

nervous system function. Mapping the exogeneous exposures to endogenous responses facilitates 

the ability to identify the nongenetic drivers of health and disease, and ultimately lead to more 

effective and efficient disease prevention. In this dissertation, we investigate metabolomic and 

epigenomic signals associated with traffic-related air pollution and chronic ambient pesticide 

exposures to better understand pathogenic mechanisms underlying chronic health effects. 
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We first investigated perturbations of the maternal serum metabolome in response to 

traffic-related air pollution. We retrieved stored mid-pregnancy serum samples from 160 mothers 

who lived in the Central Valley of California known for high air particulate levels. We estimated 

prenatal traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate 

matter less than 2.5 microns) during the first trimester using the California Line Source Dispersion 

Model, version 4 (CALINE4) based on residential addresses recorded at birth. We used liquid 

chromatography-high resolution mass spectrometry (LC-HRMS) to obtain untargeted metabolic 

profiles. Multivariate and univariate analyses were conducted to select metabolomic features 

associated with air pollution exposure and pathway analyses identified biologic pathways related 

to air pollution exposure. In total, we identified 432 metabolomic features that discriminated 

between the high (n=98) and low air pollution exposed group (n=62). Pathway enrichment analysis 

for features associated with air pollution indicated that in maternal serum oxidative stress and 

inflammation related pathways were altered, including linoleate, leukotriene, and prostaglandin 

pathways.  

We also investigated perturbations in the serum metabolome for organophosphates (OPs), 

organochlorines (OCs), and pyrethroids (PYRs), all pesticides that have been widely used in the 

agricultural regions of the Central Valley of California. We conducted high-resolution 

metabolomic profiling of serum samples from 176 older adults and estimated each participant’s 

chronic ambient pesticide exposure (from 1974 to year of blood draw) to OPs, OCs, and PYRs 

with a geographic information system (GIS)-based model. We identified metabolites and 

metabolic pathways associated with one or multiple pesticide classes, including mitochondrial 

energy metabolism, fatty acid and lipid metabolism, and amino acid metabolism. Utilizing an 



 

 

iv 

 

integrative network approach, we found that disturbances in the fatty acid beta-oxidation pathway 

are shared across all three pesticide classes.  

Lastly, to investigate the systematic biological responses to chronic ambient OP exposure, 

we cross-sectionally integrated the methylome and metabolome measured in blood samples 

collected from older adults living in the Central Valley of California (n=176). Similarly, 

cumulative OP exposure over a ten-year period was estimated using a GIS-based model. The 

single-omics analyses showed both epigenomic and metabolomic signatures of OP as being 

enriched in the glycosphingolipid (GSL) biosynthesis pathway. Besides this common pathway, the 

metabolome and epigenome also exhibited distinct responses to OPs, with differently methylated 

CpGs being involved in intracellular membrane transport, cell adhesion, and carcinogenesis; and 

OP-related metabolites being involved in aromatic amino acids metabolism, neurotransmitter 

precursors, oxidative stress, and mitochondria function. Moreover, we illustrate possible 

interactions between these two molecular layers through metabolic processes and nutrient-sensing 

pathways when we integrated the epigenomic and metabolomic signals.  

In summary, our studies linked macro-level population exposures to micro-level biologic 

responses affecting the metabolome and the epigenome, to provide insight into molecular 

mechanisms underlying the chronic toxicity of air pollution and pesticide exposure and their 

interaction with health outcomes, thereby providing much-needed information for the prediction, 

prevention, and treatment of a variety of diseases. 
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1 Background and Introduction 

1.1 Dissertation objectives 

The aim of this dissertation is to investigate metabolomic and epigenomic signals 

associated with chronic ambient air pollution and pesticide exposures using population-based 

study design. The cumulative deleterious effects of these environmental exposures are mediated 

through a variety of biochemical mechanisms that can be comprehensively characterized with the 

rapid advances of omics technologies. In this dissertation, we hope to identify novel molecular 

fingerprints that reflect preclinical effects of chronic air pollution and pesticides among healthy 

population, which may offer opportunities for effective targets of disease prevention and control. 

Briefly, the first project examines changes in specific metabolomic profiles associated with 

air pollution exposure in pregnant women lived in Central Valley, California, and investigates 

potential biological mechanisms related to adverse health effects from air pollution exposure 

during pregnancy. The second project examines perturbations in the serum metabolome in 

response to chronic ambient organophosphates (OPs), organochlorines (OCs), and pyrethroids 

(PYRs) pesticide exposures typical for older adults living in heavily agricultural regions of Central 

California, and obtains a holistic view of the mutual influence between metabolome and various 

pesticides. The third project examines epigenetic as well as metabolomic changes induced by 

chronic low-level OP exposure, and integrates the information from OP-related epigenomic and 

metabolomic signals to improve our understanding of molecular mechanisms involved in the 

human response to chronic OP exposures. 

1.2 Air pollution and health background 

Air pollution is any substance or mixture in the air that may have adverse effects on humans, 

animals, vegetation or materials (Kampa and Castanas 2008). In our study, we focus on traffic 
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related air pollutants including nitrogen oxides (NOx), carbon monoxide (CO), and particulate 

matter less than 2.5 microns (PM2.5). The main anthropogenic sources of NOx are mobile and 

stationary combustion sources, and the major source of CO is also road transport as it is a product 

of incomplete combustion (Kampa and Castanas 2008; Katsouyanni 2003). PM2.5, on the other 

hand, is a complex and varying mixture of particles suspended in the air with aerodynamic 

diameter smaller than 2.5 µm. The major sources of particulate pollution include factories, power 

plants, refuse incinerators, transportation related combustion (motor vehicles, airplanes, shipping, 

trains), construction activity, fires, and natural windblown dust. 

Our study focuses on air pollution exposures in the California’s Central Valley area. The 

California’s Central Valley is known for having some of the nation’s worst air quality, failing to 

meet federal health standards for both ozone and particulate pollution due to mountain ranges 

trapping air pollutants originating from heavy truck traffic, diesel-burning locomotives, tractors 

and irrigation pumps, and wood-burning. We previously have used CA’s ambient air monitoring 

network extensively in our pregnancy outcome and childhood cancer studies (Heck et al. 2013; 

Ritz et al. 2007). 

Exposure to traffic-related air pollution has been shown to be associated with a broad range 

of health effects such as genetic damage, inflammation, and oxidative stress response 

(Katsouyanni 2003; Loomis et al. 2013). Air pollution can potentially damage various organs and 

systems in the human body including the respiratory, cardiovascular, and nervous system (Kampa 

and Castanas 2008). Also, it is important to note that the pregnancy period is critical for human 

organ development and may be exceptionally vulnerable to air pollutants that can affect both 

maternal health and the development of fetus (Schell et al. 2006). Numerous epidemiological 

studies have linked maternal exposure to air pollution during pregnancy with pregnancy 
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complications and adverse birth outcomes such as preeclampsia, gestational diabetes, preterm birth 

and low birth weight (Dadvand et al. 2013; Eze et al. 2015; Pedersen et al. 2013; Pedersen et al. 

2014; Ritz and Yu 1999; Ritz et al. 2000; Stieb et al. 2012). For example, studies have shown that 

exposure to high concentrations of carbon monoxide during the last trimester of pregnancy may 

increase the risk of being of low weight for term birth and that exposure to carbon monoxide and 

particulate matter <10 μm in aerodynamic diameter (PM10) either shortly after conception or 

before birth may trigger preterm birth (Ritz and Yu 1999; Ritz et al. 2000). Another study in 

Southern California linked more than 80,000 birth records with air pollution estimations during 

pregnancy and observed adverse effects of traffic-related nitrogen oxides (NOx) and PM2.5 

exposures on preeclampsia (Wu et al. 2009). 

In addition, several studies found prenatal traffic-related air pollution exposure to be 

associated with fetal development especially neurodevelopment disorders such as autism in 

offspring (Becerra et al. 2013; Glinianaia et al. 2004; Guxens et al. 2014; Suades-Gonzalez et al. 

2015). For example, one case-control study in California found associations between autism and 

prenatal traffic-related air pollution exposure (Becerra et al. 2013). In another study conducted in 

LA, air toxics from traffic and industrial sources, including benzene, 1,3-butadiene, and lead, have 

been shown to increase autism risk (von Ehrenstein et al. 2014). 

However, there is still not much data available to elucidate endogenous responses to 

adverse health effects of air pollution, even though it has been hypothesized that endocrine 

disruption, oxidative stress, inflammatory response, and DNA damage are major contributors 

(Hougaard et al. 2008; Kelly 2003; Risom et al. 2005). It is of great interests to investigate the 

mediated biological mechanisms of chronic air pollution exposure especially at pre-clinical stages, 

which may help prevent the development of related diseases. 
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1.3 Pesticide and health background 

Pesticides include all classes of chemicals used to kill or repel insects, fungi, vegetation, 

and rodents (Sanborn et al. 2007). California leads the US in agricultural production, which is 

mainly concentrated in its Central Valley with more than a quarter of total US agricultural 

pesticides being used in this region. People living near agricultural fields have increased exposures 

to pesticides outdoors (Lu et al. 2000; Ward et al. 2006) as well as indoors in air (Foreman et al. 

2000) or in dust (Curwin et al. 2007; Fenske et al. 2005). According to Pesticide Action Network 

(PAN) (Kegley et al. 2000), individual pesticides can be categorized by chemical classes such as 

organochlorines (OCs), organophosphates (OPs), and pyrethroids (PYRs). 

OCs are a group of chlorinated compounds that are highly persistent in the environment 

(Jayaraj et al. 2016). The modes of action of OC pesticides include opening of sodium ion channels 

in neurons (Dong 2007), as well as binding with the GABA chloride ionophore complex producing 

a decreased uptake of chlorine ions in neurons (Zuluaga et al. 2016). Many OCs have been 

classified as endocrine disruptors, as they can reduce the efficiency of thyroid hormones. Chronic 

OC exposure can also affect neurobehavioral development and the reproductive system. Due to 

their environmental persistence, ability to bioaccumulate in humans, and adverse impacts on health, 

the U.S. started to ban the use of OCs for agricultural use starting in the 1970s. Use of some OCs 

extended into the late 1980s. Despite bans, some pesticides are still detectable in most of the US 

and its population (Orta et al. 2020). 

OPs are one class of pesticides that work by damaging the acetylcholinesterase (AChE) 

which is a critical enzyme for controlling nervous system signaling in the body. Inhibition of AChE 

leads to accumulation of the neurotransmitter acetylcholine resulting in a variety of acute 

neurotoxic effects (Sultatos 1994). Chronic exposure has been shown to induce oxidative stress 
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leading to lipid peroxidation, DNA damage and protein oxidation (Zuluaga et al. 2016). 

Observational and experimental studies have shown detrimental health effects of OP exposures in 

adults ranging from effects due to acetylcholinesterase inhibition toxicity to long term and low-

level effects such as neurodegeneration, such as seen in Parkinson's disease (PD) (Paul et al. 2018a). 

Over the past decades, a less toxic insecticide, PYRs, has replaced OCs and OPs to become 

one of the most frequently used pesticides, and widely use in treated clothing, in mosquito control, 

and in agriculture. The main target of pyrethroids is the nervous system where it can disrupt sodium 

channels and also calcium channels in axons (Saillenfait et al. 2015). Epidemiological studies 

suggested that prenatal or postnatal exposure to pyrethroids is associated with low birth weight 

and higher risk of autism and developmental delay (Ding et al. 2015; Hanke et al. 2003; Shelton 

et al. 2014). Furthermore, pyrethroid can potentially contribute to neurological symptoms such as 

PD (Ritz et al. 2016).  

Chronic exposure of OPs, PYRs, and OCs have been shown to have a wide range of 

secondary or off-target effects, such as oxidative stress, immunotoxicity, mitochondrial 

dysfunction, and regulation of neuronal apoptosis (Banerjee et al. 2001; Costa 2006; Karami-

Mohajeri and Abdollahi 2011; Zuluaga et al. 2016). Numerous epidemiological studies, as well as 

in vitro and in vivo experimental evidence, suggests these three pesticide groups are associated 

with a wide range of adverse health effects including neurodegenerative disease, such as 

Parkinson's disease (PD) and Alzheimer’s disease (AD) (Blair et al. 2015). As chronic pesticide 

exposures may have profound effects on various biological systems, characterizing metabolic 

response to these chemicals and how they influence human health systemically is important. Most 

previous studies measured pesticide exposure levels via pesticide biomarkers in blood or urine 

samples. Although for most past and currently used pesticides this is an appropriate way of 
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measuring short-term acute pesticide exposures, it is rarely appropriate for measuring long-term 

exposures due to the relatively short biological half-lives of most chemicals. For OPs and PYRs, 

the half-lives are within several days. Although OCs have longer physiologic half-lives  of 

approximately 5-10 years (Jayaraj et al. 2016), it is still challenging to study these exposures as 

contributors to geriatric diseases when the most relevant exposures periods are decades in the past. 

To understand the detrimental biological effect of chronic long term and past pesticide exposure, 

it is important to use advanced geospatial exposure assessment models that can estimate such 

exposure over extended periods of time. Linking this kind of chronic exposure assessment to 

molecular profiles presents a great opportunity to estimate long-term health effects from chronic 

exposure in human populations. 

1.4 Metabolomics background 

The metabolome includes all low molecular weight (<2,000 Da) chemical species present 

in biological matrices, and it captures the interaction between the genome, diet, environment, and 

the biochemical processes required for life (Wishart et al. 2013). A recent study estimated that 

there are more than 1 million chemical compounds in the human metabolome (Uppal et al. 2016). 

The current untargeted high-resolution metabolomics platform is capable of simultaneously 

measuring more than 20,000 endogenous and exogenous chemical signals in biological samples, 

providing a unique opportunity to link environmental exposures to internal biological responses, 

thereby helping researchers to better understand the mechanisms of exposure-related diseases 

(Niedzwiecki et al. 2019).  

Plenty of studies have demonstrated the utility of untargeted high-resolution metabolomics 

(HRM) for environmental epidemiological research (Jones 2016; Niedzwiecki et al. 2019; 

Stingone et al. 2017). The unbiased profiling of the metabolome helps the identification of new 
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markers of biological response and the generation of new hypotheses, while improving 

metabolomic coverage and lowering the costs for omics scale population-based research. 

Several previous studies have used HRM as a tool to study the effect of air pollution on the 

human metabolome (Jin et al. 2021). For example, The Cooperative Health Research in the Region 

of Augsburg (KORA) study in Germany conducted targeted metabolomics for 138 metabolites in 

older adults’ serum samples and found lysophosphatidylcholines to be associated with short-term 

air pollution exposures, especially nitrogen dioxide (NO2) (Ward-Caviness et al. 2016). A panel 

study of healthy college students characterized the metabolomic profile of plasma and saliva 

samples after traffic-related air pollution exposure and identified metabolites and pathways 

associated with oxidative stress, inflammation, and nucleic acid damage and repair (Liang et al. 

2018). Two cross-sectional studies conducted in UK and Atlanta, respectively, found that oxidative 

stress and inflammation related metabolites were associated with both long term air pollution and 

(Menni et al. 2015; Walker et al. 2018). Another study estimated the association between long-

term exposure to PM2.5, NO2, and Ozone with metabolites quantified in plasma samples among 

men from the Normative Aging Study (NAS). The perturbed metabolomic pathways found in the 

study are mainly related to inflammation and oxidative stress (Nassan et al. 2021). 

Metabolomics has also been used to characterize biological disruptions caused by 

pesticides. Several studies used mouse models to investigate the effect of OPs exposure and found 

that exposure to OP mixtures (chlorpyrifos and carbaryl, or dichlorvos, dimethoate, acephate, 

phorate) induced perturbations in energy and lipid metabolism (Du et al. 2013; Wang et al. 2009; 

HP Wang et al. 2011). Another study focused on the prenatal and postnatal period and exposed 

female mice to single or a mixture of pesticides throughout gestation and lactation, and then used 

1H NMR-based metabolomics to analyze the plasma of the offspring. The results showed that 
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exposure to each pesticide produced a specific metabolomic fingerprint in the adult offspring. 

Metabolites that discriminated between groups were glucose or lactate, choline, 

glycerophosphocholine and phosphocholine, potentially due to oxidative stress producing 

disturbances (Demur et al. 2013).  Most previous studies using animal models relied on high-level 

pesticides exposure. Therefore, the biological mechanism underlying low-dose/daily-dose 

exposure to pesticides in the general population is unknown but of interest to evaluate the potential 

of low dose exposure to cause harm and chronic disease. One study based on the PELAGIE cohort 

(Brittany, France) assessed urine samples of 83 pregnant women in early pregnancy and associated 

their metabolomic profiles with the surface of land dedicated to agricultural cereal growing 

activities in their towns of residence as proxies for pesticides exposure. The results showed that 

exposure to complex pesticide mixtures from agricultural applications may have induced 

perturbations of glycine, threonine, lactate and glycerophosphocholine, again metabolites that are 

related to oxidative stress and energy metabolism (N. Bonvallot et al. 2013). 

1.5 Epigenomics background 

Another useful tool for investigating exposure-related biological processes is epigenomics. 

Gene expression can be modified through epigenetic changes without changing the DNA sequence 

itself. Epigenetics serves as a key mechanism controlling cell and tissue differentiation, and 

activation or inactivation of gene transcription through epigenetics can ultimately define the 

phenotype of a cell or tissue at specific developmental stages (Ho et al. 2012). 

The environment is a major contributor to distinct epigenetic signatures. Furthermore, 

modifications of the epigenome can persist for a long time after the initial event which make 

epigenetics a great measurement of long-term exposure histories (Go and Jones 2016; Niedzwiecki 

et al. 2019). DNA methylation, as one type of epigenetic change, occurs at the CpG dinucleotides 
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in the cytosine C5 position. Current high-throughput assays based on parallel sequencing of DNA 

with bisulfite conversions such as the Illumina EPIC BeadChip can provide measures of up to 

850,000 CpG sites. Epigenome wide association studies have been conducted to investigate the 

association between distinct CpGs methylation patterns and chemical exposures or diseases, 

providing insight into mechanisms underlying biological responses and disease (Hou et al. 2012; 

Niedzwiecki et al. 2019).  

To date, A few population-based studies have been conducted to investigate the 

epigenomic fingerprints of pesticide exposure. For example, in the Agricultural Health Study, 

DNA methylation changes were associated with high pesticide exposure events in applicators and 

suggested that acute pesticide exposure may have the capacity to alter DNA methylation (Rusiecki 

et al. 2017). Our own lab investigated residents of central California and reported that OP-related 

epigenetic changes could be related to their intended mechanisms of action inhibiting 

acetylcholinesterase by suggesting differential methylation patterns for acetylcholine receptors in 

the chronically exposed populations (Paul et al. 2018a). 
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2 Maternal Serum Metabolome and Traffic-Related Air Pollution Exposure in Pregnancy 

2.1 Introduction 

Maternal exposures to air pollutants including nitrogen oxides (NO2, NOx), particulate 

matter (PM10, PM2.5), carbon monoxide (CO) and ozone (O3) and their mixtures represented by 

various sources have been associated with pregnancy complications and adverse birth outcomes 

such as preeclampsia, gestational diabetes, preterm birth and low birth weight (Dadvand et al. 2013; 

Eze et al. 2015; Pedersen et al. 2013; Pedersen et al. 2014; Stieb et al. 2012; Wu et al. 2009). It 

has also been shown to affect fetal development especially neurodevelopment in offspring 

(Becerra et al. 2013; Glinianaia et al. 2004; Guxens et al. 2014; Suades-Gonzalez et al. 2015). 

However, there is still not much data available to elucidate relevant biologic pathways and 

mechanisms underlying air pollution related adverse pregnancy outcomes, even though it has been 

hypothesized that endocrine disruption, oxidative stress, inflammatory response, and DNA 

damage are major contributors (Hougaard et al. 2008; Kelly 2003; Risom et al. 2005).  

High resolution metabolomics (HRM) is a powerful analytical approach to profile 

thousands of chemicals in biological specimens and to identify metabolic disturbances. Recently, 

researchers have used HRM to study the effects of environmental exposures such as metals, 

tobacco smoking, and polycyclic aromatic hydrocarbons on human metabolism (Garcia-Sevillano 

et al. 2015; Gu et al. 2016; Jones et al. 2016; Wang et al. 2015).  

There are currently no metabolomics studies that focus on air pollution exposure in 

pregnant women, however several previous studies have used HRM as a tool to study acute effects 

of air pollution on the human metabolome. The Cooperative Health Research in the Region of 

Augsburg (KORA) study in Germany conducted targeted metabolomics for 138 metabolites in 

older adults’ serum samples and found lysophosphatidylcholines (LPCs) to be associated with 
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short-term air pollution exposures, especially nitrogen dioxide (NO2) (Ward-Caviness et al. 2016). 

A randomized, crossover trial that enrolled 55 healthy college students showed that short-term 

exposure to particulate matter less than 2.5 microns (PM2.5) induced metabolic changes associated 

with stress hormone levels, insulin resistance, and markers of oxidative stress and inflammation 

(H Li et al. 2017). Two other experimental studies using a crossover design to assess short-term 

ambient air pollution exposure identified a variety of metabolomic features (van Veldhoven et al. 

2018; Vlaanderen et al. 2017). One study utilized a multi-platform approach including gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-

MS), and nuclear magnetic resonance (NMR) to identify metabolites in bronchial wash and 

bronchoalveolar lavage fluid samples from fifteen healthy subjects exposed to biodiesel exhaust 

(Surowiec et al. 2016). Recently, a panel study of healthy college students characterized the 

metabolomic profile of plasma and saliva samples after traffic-related air pollution exposure and 

identified metabolites and pathways associated with oxidative stress, inflammation, and nucleic 

acid damage and repair (Liang et al. 2018). Most of the previous studies concentrated on short-

term (hours or days) air pollution exposure, had relatively small sample sizes and assessed healthy 

adults. 

Only two studies to date focused on long-term air pollution exposure. A cross-sectional 

study conducted within the TwinsUK cohort, found that oxidative stress and inflammation related 

metabolites such as α-tocopherol, benzoate, and glycine were associated with both long term air 

pollution (annual average PM2.5 concentration) and lung function (Menni et al. 2015). Another 

cross-sectional study with 59 healthy participants has linked year-long ultrafine particle exposure 

with metabolic variations related to antioxidant pathways and endothelial function (Walker et al. 

2018). 
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We conducted an untargeted metabolomics study focusing on pregnant women since they 

and their offspring might be more susceptible to the adverse effects of air pollution. Specifically, 

in our study population, serum samples from 160 pregnant women were collected during the 

second trimesters of pregnancy, and average air pollution exposures (CO, nitric oxides (NOx), and 

PM2.5) during the first trimester of pregnancy were estimated based on residential addresses using 

an emissions based dispersion model– i.e. the California line source dispersion model, version 4 

(CALINE4) (Benson 1984). We then utilized liquid chromatography with high-resolution mass 

spectrometry (LC-HRMS) to obtain maternal metabolomic profiles. The HRM platform we 

adopted has also been used in three previous studies that examined ambient air pollution exposure 

(Ladva et al. 2018; Liang et al. 2018; Walker et al. 2018), and been shown to be sensitive enough 

to capture metabolic perturbations in blood samples induced by air pollution. The aims of this 

study were to identify changes in specific metabolomic profiles associated with air pollution 

exposure in pregnant women, and to conduct comprehensive pathway analysis to investigate 

potential biological mechanisms related to adverse health effect from air pollution exposure during 

pregnancy.  

2.2 Methods 

2.2.1 Study population 

We utilized the California birth records to randomly select mothers of children born 

between 2005 and 2010 from a previous case-control study of autism, all of whom were controls 

matched to children with autism in a 1:10 ratio by sex and birth year. All eligible mothers lived in 

the California Central Valley region according to the residential address recorded on the birth 

certificate (n = 1,466). In addition, mothers were eligible for the present study if their live born 

autism-free children did not have a birth defect recorded, were born at a gestational age between 
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21-46 weeks and had a recorded birth weight between 500g and 6800g (n = 1,433). The California 

central valley is known for its extremely high use of agricultural pesticides. Here, we restricted 

our analyses to mothers who according to our geographic information system (GIS) and state 

mandated pesticide use report based assessments had not been exposed to suspected neurotoxic 

pesticides (organophosphates, pyrethroids, glyphosates, fungicides, or neonicotinoids) (Rull and 

Ritz 2003). Considering the limited number of serum samples available for analysis via HRM and 

the generally high air pollution exposure levels in the study region, we further selected mothers 

based on the air pollution levels we modeled at residences to increase the statistical power of our 

study. Specifically, we used the population of 1,433 women originally randomly selected from 

birth certificates to estimate percentiles of air pollution exposure,  and selected mothers from the 

extremes of the exposure distribution, considering women as “highly exposed” in the first trimester 

of pregnancy if three highly correlated CALINE4 modeled traffic related air pollutant levels (CO, 

NOx, and PM2.5) fell at or above the 75th percentile of the distribution, and as “low exposed” if 

their air pollutant levels fell below the 35th percentile. This was necessary because we did not have 

enough subjects available for a balanced selection of exposed and unexposed at the extremes of 

the air pollution distribution. Furthermore, mothers had to have utilized the California Prenatal 

Screening Program (CPSP) and their mid-pregnancy blood serum sample be stored and available 

(n = 160). About 74% of California women participate in the CPSP, which is a sequential serum 

screening program for birth defects during pregnancy that collects blood samples in mid-

pregnancy (around the 16th week of gestation) (Cunningham and Tompkinison 1999). Maternal 

serum samples were collected by obstetrical care service providers and mailed to the state 

laboratory for analyses when subjects participated in the CPSP and specimens leftover after testing 

were stored at -20 °C at the California Biobank.  
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From birth records we obtained information on child sex, birth year, maternal age, 

race/ethnicity, education, and parity. Other potential confounders such as BMI or diet were not 

available in the birth records limiting this type of study. 

2.2.2 Air pollution estimation 

Residential addresses as recorded on birth certificates were geocoded using OpenSource 

geocoding software (Goldberg et al. 2008). We estimated each woman’s average air pollutant 

exposure  (i.e. CO, NOx, and PM2.5) during the first trimester, using a modified version of the 

CALINE4 that estimates pollution from sources within 1500 m of residential locations as described 

in detail elsewhere (Heck et al. 2013). In brief, input data for the prediction process included 

roadway geometry, traffic counts, emission factors, and meteorological parameters (wind speed, 

wind direction, temperature, stability class, and mixing heights). Year and season (winter and 

summer) and emission factors for CO, NOx and PM2.5 were obtained from the EMFAC2011 

vehicle emissions model (California Air Resources Board 2013). CALINE4 predictions in this 

study do not incorporate background levels of pollutants, thus solely represent the contribution 

from local traffic emissions (Benson 1989; Broderick et al. 2005; Levitin et al. 2005; Marmur and 

Mamane 2003; Wu et al. 2016). 

Subjects were classified based on their air pollution levels such that 98 pregnancies were 

considered “highly exposed” in the first trimester, while 62 were “low exposed” (Supplemental 

Table 2-S1).  

2.2.3 High-resolution metabolomics  

HRM profiling was completed according to established methods (Walker et al. 2018; 

Walker et al. 2019b). Serum samples were transported from California Biobank to Emory and 

stored at -80 °C. Batches of 40 serum samples were removed from storage and thawed on ice. Each 
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sample was then thoroughly vortexed, and 65 μL of serum was treated with 130 μL of LC-MS 

grade acetonitrile. The extract was equilibrated for 30 min on ice and centrifuged at 16,100 × g for 

10 min to remove precipitated proteins. The resulting supernatant was transferred to an 

autosampler containing a low volume insert and maintained at 4ºC until analysis (<24 h). NIST 

1950 (Simon-Manso et al. 2013) was analyzed at the beginning and end of the entire analytical run 

and for additional quality control (QC) two replicate pooled human plasma samples were analyzed 

at the beginning, middle, and end of each batch of 40 samples for normalization and batch effect 

evaluation. 

Sample extracts were analyzed in triplicate using a dual column, dual polarity approach 

that includes hydrophilic interaction (HILIC) chromatography with positive ESI and C18 

chromatography with negative ESI (Ultimate 3000, Q-Exactive HF, Thermo Fisher, m/z range 85-

1275) (Walker et al. 2018). Following a 10 μL sample injection, HILIC separation was 

accomplished using a 2.1 cm x 5 cm x 2.5 μm HILIC column (Waters XBridge BEH Amide XP 

HILIC) and acetonitrile gradient (A= water, B= acetonitrile, C= 2% formic acid) consisting of an 

initial 1.5 minute period of 22.5% A, 75% B, 2.5% C, followed by linear increase to 77.5% A, 20% 

B, 2.5% C at 4 min and hold for 1 minute. Separation by C18 was with 2.1 cm x 5 cm x 3 μm 

column (Higgins endcapped C18) with C= 10mM ammonium and the following gradient: initial 

0.5 minute period of 60% A, 35% B, 5% C, followed by linear increase to 0% A, 95% B, 5% C at 

1.5 min and then held for an additional 3 minutes. Mobile phase flow rate was held at 0.4 mL/min 

for 1.5 minutes, and then increased to 0.5 mL/min. The mass spectrometer was operated using ESI 

mode at a resolution of 120,000 and mass-to-charge ratio (m/z) range 85-1275. Source tune settings 

included capillary temperature, sheath gas, auxiliary gas, sweep gas and spray voltage settings of 

300°C, 45 (arbitrary units), 25 (arbitrary units), 1 (arbitrary units) and +3.5 kV, respectively for 
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positive mode, and 200°C, 30 (arbitrary units), 5 (arbitrary units), 1 (arbitrary units) and +3.0 kV 

for negative mode. S-Lens RF level was maintained at 45. High-resolution detection of m/z 

features was accomplished by maximum injection time of 10 milliseconds and AGC target of 

1x106. Raw data files were extracted and aligned using apLCMS (Yu et al. 2009) with 

modifications by xMSanalyzer (Uppal et al. 2013). Uniquely detected ions consisted of m/z, 

retention time and ion abundance, referred to as m/z features. Prior to data analysis, m/z features 

were batch corrected using ComBat (Johnson et al. 2007). 

2.2.4 Statistical analyses 

For three replicates of each feature, intensities were summarized using the median, except 

when more than 50% of the replicates were missing (in this instance the value was set to missing). 

Metabolomic data was then filtered to keep only features present in at least 80% of one comparison 

group and >50% of all samples together. After filtering, missing values were imputed by one-half 

of the lowest signal detected for that feature across all samples. 

Feature intensities were log2 transformed before analyses. To control for potential 

confounding, we used residuals of intensities derived from linear regression against potential 

confounders including maternal age, maternal race/ethnicity, and maternal education. 

We performed partial least squares discriminant analysis (PLS-DA) to identify features 

associated with air pollution exposure. PLS-DA is a supervised, multivariate analysis approach for 

dimensionality reduction that maximizes covariance between intensities of metabolomic features 

and air pollution exposure (Wold et al. 2001).  We selected features with a Variable Importance in 

Projection (VIP) scores >= 2 (Le Cao et al. 2009). Fold change was calculated as the ratio of raw 

intensities between high and low-exposed groups. To evaluate the performance of selected features, 

we conducted 10-fold cross-validation tests utilizing the support vector machine (SVM) and 
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calculated the classification accuracy of the selected features. All feature selection approaches 

were implemented with the R package mixOmics v6.3.1. 

2.2.5 Pathway analysis and annotation 

Discriminative features selected by PLS-DA were annotated using xMSannotator (Uppal 

et al. 2017). Accurate mass m/z for adducts formed under positive/negative ESI mode was matched 

to the Human Metabolome Database (HMDB), Kyoto Encyclopedia of Genes and Genomes 

(KEGG), and LipidMaps with a mass error threshold of 10 ppm. xMSannotator also takes into 

consideration correlation of intensities and retention time, and assigns confidence scores based on 

a multilevel scoring algorithm which ensures the accuracy of annotation.  

In order to identify enriched metabolic pathways comparing high and low exposed groups, 

we conducted pathway enrichment analysis utilizing Mummichog (v. 1.0.10) (Li et al. 2013). All 

discriminating features previously selected by PLS-DA with VIP >= 2 were included in this 

pathway enrichment analysis. Mummichog is a novel pathway and module enrichment analysis 

algorithm designed specifically for high-resolution liquid chromatography-mass spectrometry. 

Although the tentative annotation results in mummichog may include false positives, the enriched 

pathways inferred by the algorithm have been proven to be valid and to reflect real biological 

activity (S. Li et al. 2016; Shuzhao Li et al. 2016; S Li et al. 2017; Uppal et al. 2016). All 

metabolites annotated by mummichog were required to present in at least their primary adduct 

(M+H or M-H for positive and negative mode respectively) to reduce the false positive match rate. 

The p-value threshold we relied on was 0.05. Only enriched pathways with at least 3 overlapping 

metabolites were kept for further evaluation and interpretation. 
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 Some discriminating features were further confirmed by matching the accurate mass m/z 

and retention time to authentic chemical standards analyzed using LC-MS/MS. The error tolerance 

was 5 ppm for m/z and 30 seconds for retention time. 

2.3 Results 

Demographics of the 160 subjects are provided in Table 2-1. Mothers who were younger, 

less educated, or of Hispanic origin were more likely to be highly exposed to air pollution in this 

study population. 

 In total, we detected 14,555 features (6,139 in HILIC column and 8,416 in C18 column), 

but after filtering for missing values, 8,995 features remained (4,038 in HILIC column and 4,957 

in C18 column). We identified 181 and 251 unique metabolomic features that were associated with 

air pollution exposure during pregnancy from both HILIC and C18 column respectively (Figure 

2-1 and Supplemental Figure 2-S1 to 2-S2) using PLS-DA and adjusting for maternal age, ethnicity 

and education while setting the VIP scores greater than 2. The balanced classification rate derived 

from 10-fold CV showed that both sets of discriminatory features effectively separate the classes 

(82.5% and 70.4% for HILIC and C18 respectively). 

Annotation of PLS-DA discriminatory features included 187 m/z features matching to one 

or more unique metabolites with medium or high confidence scores. Because compounds were 

present in the databases used for annotation that share the same chemical formula but different 

structure, we confirmed the annotation results by matching the retention time and m/z to 

authenticated chemical standards verified by tandem mass spectrometry. In total, we confirmed 6 

metabolites including serine, creatinine, L-histidine, myo-inositol, linoleic acid, and heptadecanoic 

acid (confidence level 1). Their chemical identities are shown in Table 2-2. Among them, 
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creatinine was positively associated, while four other metabolites were negatively associated with 

air pollution.  

Using mummichog, we examined whether the features that were selected by PLS-DA were 

enriched within specific metabolic pathways. The result indicated that 24 metabolic pathways were 

differentially enriched with a P-value < 0.05 (Table 2-3). Tentative annotation results of 

metabolites in each pathway are provided in Supplemental Table 2-S2 to Supplemental Table 2-

S28. Nine are lipid-related metabolic pathways including fatty acid activation, de novo fatty acid 

biosynthesis, and glycosphingolipid metabolism. Changes in these pathways may indicate 

associations between air pollution exposure and oxidative stress; features in the linoleate pathway 

were annotated as oxidative stress biomarkers or antioxidants including linoleic acid, 13-

hydroxyoctadecadienoic acid (13-HODE), 13-oxo-9,11-octadecadienoic acid (13-oxo-ODE), 

gamma-linolenic acid, and azelaic acid. Linoleic acid was further confirmed by an authentic 

standard (confidence level 1). Disruption of eicosanoid metabolism such as the leukotriene 

metabolism and prostaglandin formation from arachidonate indicates an inflammatory response. 

Putative annotations in the leukotriene metabolism pathway included 12-oxo leukotriene B4 (12-

oxo-LTB4) and 20-hydroxy-leukotriene E4 (20-OH-LTE4), all of which showed increased 

abundance in the high air pollution exposure group. Other pathways associated with oxidative 

stress included vitamin E metabolism, xenobiotic metabolism, urea cycle/amino group metabolism, 

and some amino acid metabolism pathways such as histidine metabolism and lysine metabolism. 

Perturbations were also observed in nucleotide metabolism and several carbohydrate metabolism 

related pathways. 
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2.4 Discussion 

The untargeted HRM approach we employed provided us with an opportunity to explore 

the relationship between traffic related air pollution exposures and metabolomic signatures in 

maternal blood in mid-pregnancy. Measuring more than 10,000 metabolomic features in serum 

samples using HRM and comparing metabolomic profiles according to exposure, we illustrated 

that high air pollution exposures during pregnancy are linked to widespread perturbations in the 

maternal serum metabolome. Sorting these features according to biologic pathways allowed us to 

identify potential mechanisms by which air pollution may affect pregnant women and fetuses. Of 

particular importance is that the enriched pathways identified were related to oxidative stress and 

inflammatory reactions, which have been implicated in many pathological conditions, including 

adverse birth outcomes such as preterm birth, intrauterine growth restriction, low birth weight, and 

preeclampsia (Sultana et al. 2017) as well as neurodevelopmental disorders (Patterson 2009).  

We observed alterations in fatty acid metabolism, phospholipid metabolism, linoleate 

metabolism, and eicosanoids including leukotriene and prostaglandin metabolism (see Table 2-3 

and Figure 2-2). Traffic-related air pollutants may act directly as free radicals or generate free 

radicals and cause oxidative stress (Kelly 2003). One of the primary targets of reactive oxygen 

species derived from air pollutants is the cell membrane. Oxidative stress can induce the activation 

of phospholipase A2 (PLA2) which then hydrolyze phospholipid (PL) from the cell membrane to 

generate polyunsaturated free fatty acid and lyso-PL (Anthonymuthu et al. 2018; Sato et al. 2016). 

Major polyunsaturated fatty acids (PUFA) released through this step include linoleic acid and 

arachidonate acid. Due to the existence of double carbon bonds, these fatty acids can be 

subsequently oxidized by oxygenase (Sato et al. 2016). As one of the omega-6 polyunsaturated 

fatty acids, linoleic acid generates 13-hydroperoxyoctadecadenoic acid (9-HPODE) and 13-
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HPODE through lipoxygenases. These products then convert to 9-hydroxyoctadecadienoic acid 

(9-HODE) and 13-HODE (Tam et al. 2013), and both are potential biomarkers for oxidative stress 

affecting lipids. In our study, we observed associations with the linoleate pathway, specifically, 

air pollution exposure increased metabolomic features we matched to 13-HODE; while linoleic 

acid and 13-keto-9Z,11E-octadecadienoic acid (13-oxo-ODE), a downstream product derived 

from 13-HODE were decreased in the highly exposed group. In particular, we were able to confirm 

the identification of linoleic acid and gamma-linolenic acid within the linoleate pathway using 

authentic standards. Gamma-linolenic acid is an anti-inflammatory metabolite that can inhibit the 

biosynthesis of leukotriene B4 (Horrobin 1992; Liang et al. 2018). Although below the 

discriminative feature selection threshold (VIP=1.31) in our data, we found gamma-linolenic acid 

to be negatively associated with air pollution exposure, which is consistent with previous studies 

(Liang et al. 2018; Walker et al. 2018).  

In addition to linoleic acid, arachidonic acid is another omega-6 PUFA affected by air 

pollution induced oxidative stress. As a key inflammatory intermediate, arachidonic acid is being 

released from cell membranes and converted to eicosanoids through several pathways including: 

the lipoxygenase (LOX) pathway, where arachidonic acid is dioxygenated to produce 

hydroperoxyeicosatetraenoic acid (HPETE) and then converted to leukotrienes and other lipoxins; 

and the cyclooxygenase (COX) pathway that produces prostaglandin (Tam et al. 2013). Both 

leukotrienes and prostaglandins are major proinflammatory mediators.  

In our study, two of the features found to be enriched in the leukotriene pathways were 

annotated as 12-oxo-leukotriene B4 and 10,11-dihydro-12-oxo-leukotriene B4. 12-oxo-LTB4 was 

found to be lower in the exposed group, while 10,11-dihydro-12-oxo LTB4 was increased. Both 

are downstream metabolites of LTB4, but possibly due to the rapid metabolism of 12-oxo-LTB4 
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to 10,11-dihydro-12-oxo-LTB4 by reductase (Powell et al. 1996; Wainwright and Powell 1991) 

only the end product in this pathway is found to be increased. LTB4 is a potent lipid 

chemoattractant that can induce an inflammatory response. It is synthesized through the LOX 

pathway and recruits leukocytes leading to inflammatory reactions (Ford-Hutchinson et al. 1980). 

Due to their pro-inflammatory effect, altered levels of LTB4 and its metabolites during pregnancy 

have been linked to various adverse health outcomes (e.g., asthma) and birth complications such 

as preterm birth and preeclampsia (Biagi et al. 1990; Busse 1998; Romero et al. 2007). Recently, 

a lipidomic study conducted in 197 mother-newborn pairs measured the association between in-

utero PM2.5 exposure and oxylipin profiles in newborns. Consistent with our study, they also 

found significant differences in cord blood levels for metabolites derived from the LOX pathway 

(Martens et al. 2017). 

Prostaglandins are a type of eicosanoid derived from arachidonic acids through COX. 

Mummichog annotated 8 features to be enriched in prostaglandin pathways including multiple 

prostaglandins and related metabolites. Previously, animal and human studies have linked 

excessive prostaglandins with NO2 inhalation (Yan et al. 2016), ozone (Peden 1999; Peden 2001), 

PM2.5, and sulfate (W Li et al. 2016). Increased levels of 8-epi-prostaglandin F2a are widely used 

as indicators of lipid peroxidation (Tacconelli et al. 2010), and the pro-inflammatory effects of 

prostaglandins are well documented (Funk 2001). Prostaglandins play important roles during 

pregnancy including vasodilatation and uterine contraction. Perturbations of the prostaglandin 

pathway are most likely responsible for abnormal placental and uterine blood flow. Several in-

vivo and in-vitro studies have associated prostaglandins with preeclampsia (Kaaja et al. 1995; 

Ogburn et al. 1984).  
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In addition to lipid-related pathways, vitamin E metabolism is also associated with 

oxidative stress. Vitamin E, including tocopherols and tocotrienols, are lipid-soluble antioxidants 

and lipid peroxy radical scavengers (Chow 1991; DellaPenna and Mène-Saffrané 2011; Noctor et 

al. 2015). Vitamin E can protect membrane lipids from oxidation by physically or chemically 

quenching singlet oxygen or by donating a hydrogen atom to the PUFA peroxy radical thereby 

interrupting the peroxidative reaction (DellaPenna and Mène-Saffrané 2011). Two previous 

metabolomics studies found the activity of vitamin E metabolism to be decreasing with air 

pollution exposure (Liang et al. 2018; Menni et al. 2015). In our study, metabolites of tocotrienols 

showed alterations with a decrease in antioxidant and increase in oxidized metabolites among the 

exposed. Within the Vitamin E metabolism pathway, a feature tentatively annotated as 13'-

carboxy-alpha-tocotrienol (mz:452.2952, M-H) was found to be higher while a feature tentatively 

annotated as alpha-tocotrienol (mz:423.3265, M-H) was lower in the exposed group. 

Several amino acid metabolism pathways were also enriched including the methionine, 

cysteine, and histidine pathways which are sulfur-containing amino acids that are readily oxidized 

(Berlett and Stadtman 1997; Pisoschi and Pop 2015). Previous studies described oxidation of 

methionine to be associated with ambient PM exposure in mice (Lai et al. 2016; Lee et al. 2014). 

In our samples, histidine and its pathway were found to be reduced among the air pollution exposed. 

Notably, we were able to annotate histidine with confidence level 1 using the authentic standard. 

Histidine has been reported to have anti-inflammatory effects, and previous studies found that 

histidine was negatively associated with inflammation and oxidative stress (Liang et al. 2018; Niu 

et al. 2012; Uchida 2003; Watanabe et al. 2008). 

Numerous in-vitro and in-vivo studies have shown that exposure to air pollution induces 

oxidative stress and inflammatory reactions (Daher et al. 2014; Dick et al. 2003; Ghio et al. 2012; 
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Guerra et al. 2013; Happo et al. 2013). Moreover, the pregnancy period is especially vulnerable to 

oxidative stress due to the necessary increased energy expenditure (Nagiah et al. 2015). Two 

studies measuring specific biomarkers for oxidative stress indicated that air pollution exposure 

during pregnancy elevated oxidative stress responses (Anderson et al. 2018; Nagiah et al. 2015). 

Consistent with these results, our untargeted systematic approach also identified pathways 

predominantly enriched for oxidative stress and inflammatory responses. Maternal oxidative stress 

may cause damage to all major cellular elements and might especially affect the placenta and its 

function, therefore contributing to adverse birth outcomes such as spontaneous abortion, 

preeclampsia, intrauterine growth restriction, low birth weight, and preterm delivery (Al-Gubory 

et al. 2010; Duhig et al. 2016; Lavigne et al. 2018; Peter Stein et al. 2008). 

Our study has some limitations. Although model-based air pollution estimation has a high 

spatial resolution, they do not necessarily translate into personal exposure because 1) there are 

inherent uncertainties in an emissions-based dispersion model; 2) emission sources other than local 

traffic are not addressed by the model; 3) lack of information about work location and subjects’ 

time-activity. Thus, we did not estimate ‘personal’ air pollution exposure but rather the 

contributions by local traffic sources to personal exposure. Local traffic noise might be a 

confounder, if it influences the same metabolic pathways as air pollution. However, we recently 

found that traffic noise estimates were only moderately correlated with CALINE4 estimates of 

traffic related air pollution (r=0.4) at the residences in Northern CA counties (unpublished data); 

most likely because air pollution and noise physically behave differently and CALINE4 estimates 

take factors such as meteorology into consideration. 

Besides air pollution exposure, active or passive smoking and diet may explain differences 

in metabolites. We did not have information on the subjects’ smoking behavior or dietary intake 
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during pregnancy, however in order for smoking or dietary differences to have confounded our 

analyses, they would have had to be related to air pollution exposures. By controlling for maternal 

age, maternal race/ethnicity, and maternal education, we hope to have at least partially addressed 

potential confounding. Additionally, while there is no active or second-hand smoking information 

on the birth records from these years, we were able to identify cotinine levels in the serum by 

matching the accurate mass m/z (177.1022) and retention time (32.8s) to authentic standards. 

Previous studies have shown that cotinine is a reliable marker of smoking [4-6]. Cotinine levels 

among women with high or low traffic-related air pollution exposure were generally extremely 

low, indicating that the percentage of active or passive smokers in our study is low - as expected 

in California. Also, the intensities of cotinine were not statistically significantly different (t-test p-

value=0.34) for exposed versus unexposed women’s samples.  Nevertheless, residual uncontrolled 

confounding is possible. Also, women with less than a high school education are likely more recent 

immigrants from Mexico (Hoggatt et al. 2012). If these women are introducing a ‘healthy migrant’ 

bias this may bias our results. 

To assess whether air pollution impacts on metabolomic profiles differed by ethnicity, we 

also conducted analyses in subgroups of Hispanic and Non-Hispanic women. We found that high 

level of traffic-related air pollution was associated with 9 metabolic pathways in both subgroups; 

importantly, we identified linoleate metabolism as well as methionine and cysteine metabolism 

pathways in both groups consistent with the induction of oxidative stress. 

Another limitation is an inherent challenge in the untargeted metabolomics analysis. 

Without further metabolite identification using tandem MS, we could only tentatively annotate the 

extracted features using computational approaches. Adopting a pathway and network analysis 

approach, we were able to improve annotation results, but there may still be some false matches 
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that could have influenced the interpretation. It is recommended to improve the identification of 

metabolites using either tandem MS or internal standards in future studies.  

2.5 Conclusions 

In summary, we applied HRM to identify perturbations in the serum metabolome 

associated with traffic-related air pollution exposure during pregnancy. We observed metabolic 

pathways consistent with oxidative stress and inflammatory reactions, which may contribute to 

adverse health outcomes in offspring and we corroborated previous results of metabolome studies 

conducted in air pollution exposed non-pregnant adults. 
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2.6 Tables and figures 

Table 2-1. Demographic characteristics of mothers and children 

  High Exposure n=98 Low Exposure n=62 

  n % n % 

Maternal age at time of pregnancy (years)     

    <= 18 18 18.4 5 8.1 

    19-25 42 42.9 17 27.4 

    26-30 24 24.5 20 32.3 

    > 30 14 14.3 20 32.3 

Maternal race/ethnicity         

    Non-Hispanic White 11 11.2 21 33.9 

    Hispanic  70 71.4 30 48.5 

    Others (African American/Black, Asian) 17 17.4 11 17.7 

Maternal education         

    Less than 12th grade 47 48.0 11 17.7 

    High school graduate or equivalent 24 24.5 22 35.5 

    Some college 20 20.4 12 19.4 

    College or more 7 7.1 17 27.4 

Mother born in the US         

    Yes 61 62.2 46 74.2 

    No  37 37.8 15 24.2 

    Missing 0 0.0 1 1.6 

Preterm birth         

    Yes 12 12.2 7 11.3 

    No  86 87.8 55 88.7 

Child sex     

    Male 79 80.8 46 74.2 

    Female 19 19.2 16 25.8 
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Table 2-2. Confirmed a chemical identity of the discriminatory metabolomic features 

associated with high traffic-related air pollution 

m/z RT (s) Adduct Form Metabolite Fold Change 

(Log2) 

Column 

106.0499 94.2 M+H[1+] Serine -0.05 HILIC 

114.0662 47.0 M+H[1+] Creatinine 0.45 HILIC 

156.0767 112.7 M+H[1+] L-Histidine -0.05 HILIC 

215.0328 28.6 M+Cl[1-] Myo-Inositol 1.24 C18 

269.2485 271.5 M-H[1-] Heptadecanoic acid -0.25 C18 

281.2474 33.6 M+H[1+] Linoleic acid -0.15 HILIC 
a Chemical identification was conducted by matching peaks by accurate mass and retention time 

to authentic reference standards in an in-house library run under identical conditions using 

tandem mass spectrometry. 
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Table 2-3. Enriched metabolic pathways associated with traffic-related air 

pollution  

Column Pathway 
Overlap 

size 

Pathway 

size 

P-

value 

a 

HILIC 

Urea cycle/amino group metabolism 7 40 0.001

5 
Glycosphingolipid metabolism 5 22 0.001

5 
Histidine metabolism 4 17 0.002

0 
Glycerophospholipid metabolism 4 30 0.008

1 
Linoleate metabolism 3 19 0.010

0 Glycine, serine, alanine and threonine 

metabolism 
4 36 0.016

2 
Pyrimidine metabolism 3 30 0.043

5 

C18 

Fatty acid activation 10 16 0.000

2 
De novo fatty acid biosynthesis 7 15 0.000

2 
Glycosphingolipid metabolism 7 24 0.000

3 
Keratan sulfate degradation 3 6 0.000

6 
Fatty Acid Metabolism 4 13 0.000

8 
TCA cycle 3 14 0.004

9 
Prostaglandin formation from arachidonate 8 54 0.006

1 
Lysine metabolism 4 24 0.007

4 
Glycerophospholipid metabolism 6 40 0.007

4 
Xenobiotics metabolism 8 59 0.011

0 
Glycolysis and Gluconeogenesis 4 27 0.012

3 
Methionine and cysteine metabolism 6 44 0.012

7 
Fructose and mannose metabolism 3 19 0.014

1 
Vitamin E metabolism 4 29 0.016

7 
Butanoate metabolism 3 20 0.016

8 
Linoleate metabolism 3 20 0.016

8 
Phosphatidylinositol phosphate metabolism 3 22 0.023

1 
Purine metabolism 5 42 0.027

6 
Leukotriene metabolism 5 43 0.030

7 
Sialic acid metabolism 3 28 0.049

1 
a P-value calculated by mummichog are gamma-adjusted p-values based on permutation tests by 

resampling from the reference list (Li et al. 2013). 
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Figure 2-1. Identification of metabolomic features associated with air pollution exposure 

during pregnancy. A) Type 1 Manhattan plot for features in the HILIC column (positive ion 

mode), VIP score vs m/z. 181 m/z features were found above the VIP >= 2 threshold. Red dots 

represent the features that were higher in the high air pollution exposure group and the green dots 

represent the features that were lower in the high air pollution exposure group; B) Type 1 

Manhattan plot for features in the C18 column (negative ion mode), VIP score vs mass-to-charge. 

251 m/z features were found above the VIP >= 2 threshold; C) Volcano plot for features in the 

HILIC column; D) Volcano plot for features in the C18 column. 
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Figure 2-2. Enriched metabolic pathways in response to air pollution induced oxidative stress. 

Pathways in blue boxes are significantly enriched pathways. 
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2.7 Supplemental materials 

Supplemental Table 2-S1. Distribution of traffic-related air pollution among two exposure groups 

Group n Air pollutant 
Lower 

Quartile 
Median 

Upper 

Quartile 
Mean 

High 

exposed 
99 

CO (ppb) 37.23 45.27 60.91 49.90 

NOx (ppb) 3.74 4.91 7.78 6.39 

PM25 (mg/m3) 0.25 0.33 0.48 0.42 

Low 

exposed 
62 

CO (ppb) 2.30 3.48 5.19 3.66 

NOx (ppb) 0.20 0.33 0.46 0.34 

PM25 (mg/m3) 0.01 0.02 0.03 0.02 
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Supplemental Table 2-S2. Mummichog matches for fatty acid activation pathway using 

C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

143.1077 260.8 M-H[-] Octanoic acid; Caprylic acid; Octylic acid 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

287.2226 223.8 M+CH3COO[-] Tetradecanoic acid; Tetradecanoate; Myristic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

323.2215 240.7 

M+HCOO[-] 

(9Z,12Z,15Z)-Octadecatrienoic acid; alpha-Linolenic 

acid; 9,12,15-Octadecatrienoic acid; Linolenate; alpha-

Linolenate 

M+HCOO[-] 

(6Z,9Z,12Z)-Octadecatrienoic acid; 6,9,12-

Octadecatrienoic acid; gamma-Linolenic acid; 

Gamolenic acid 

326.2205 236.3 M+Na-2H[-] 

(8Z,11Z,14Z)-Icosatrienoic acid; Dihomo-gamma-

linolenic acid; (Z,Z,Z)-8,11,14-Eicosatrienoic acid; 

(Z,Z,Z)-8,11,14-Icosatrienoic acid; (Z,Z,Z)-8,11,14-

Eicosatrienoate; (Z,Z,Z)-8,11,14-Icosatrienoate; 

8,11,14-Eicosatrienoate; 8,11,14-Icosatrienoate 

327.2541 260.9 M+HCOO[-] 
(9Z)-Octadecenoic acid; (Z)-Octadec-9-enoic acid; 

Oleate; Oleic acid 

329.2698 285.7 M+HCOO[-] Octadecanoic acid; Stearate; Stearic acid 

343.2854 287.4 M+CH3COO[-] Octadecanoic acid; Stearate; Stearic acid 

360.1641 88.4 
M+Br[-] vaccenic acid 

M+Br[-] octadecenoate (n-C18:1) 
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Supplemental Table 2-S3. Mummichog matches for de novo fatty acid biosynthesis 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic 

acid; Palmitic acid; Palmitate; Cetylic acid 

287.2226 223.8 M+CH3COO[-] Tetradecanoic acid; Tetradecanoate; Myristic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic 

acid; Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic 

acid; Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic 

acid; Palmitic acid; Palmitate; Cetylic acid 

323.2215 240.7 

M+HCOO[-] 

(9Z,12Z,15Z)-Octadecatrienoic acid; alpha-Linolenic 

acid; 9,12,15-Octadecatrienoic acid; Linolenate; 

alpha-Linolenate 

M+HCOO[-] 

(6Z,9Z,12Z)-Octadecatrienoic acid; 6,9,12-

Octadecatrienoic acid; gamma-Linolenic acid; 

Gamolenic acid 

326.2205 236.3 M+Na-2H[-] 

(8Z,11Z,14Z)-Icosatrienoic acid; Dihomo-gamma-

linolenic acid; (Z,Z,Z)-8,11,14-Eicosatrienoic acid; 

(Z,Z,Z)-8,11,14-Icosatrienoic acid; (Z,Z,Z)-8,11,14-

Eicosatrienoate; (Z,Z,Z)-8,11,14-Icosatrienoate; 

8,11,14-Eicosatrienoate; 8,11,14-Icosatrienoate 

327.2541 260.9 M+HCOO[-] 
(9Z)-Octadecenoic acid; (Z)-Octadec-9-enoic acid; 

Oleate; Oleic acid 

329.2698 285.7 M+HCOO[-] Octadecanoic acid; Stearate; Stearic acid 

343.2854 287.4 M+CH3COO[-] Octadecanoic acid; Stearate; Stearic acid 
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Supplemental Table 2-S4. Mummichog matches for fatty acid metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

287.2226 223.8 M+CH3COO[-] Tetradecanoic acid; Tetradecanoate; Myristic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

329.2698 285.7 M+HCOO[-] Octadecanoic acid; Stearate; Stearic acid 

343.2854 287.4 M+CH3COO[-] Octadecanoic acid; Stearate; Stearic acid 

360.1641 88.4 M+Br[-] octadecenoate (n-C18:1) 

 

Supplemental Table 2-S5. Mummichog matches for phosphatidylinositol phosphate 

metabolism pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

215.0328 28.6 

M+Cl[-] D-Galactose 

M+Cl[-] 

myo-Inositol; D-myo-Inositol; 1D-myo-Inositol; L-

myo-Inositol; 1L-myo-Inositol; meso-Inositol; 

Inositol; Dambose; Cyclohexitol; Meat sugar; Bios I 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 
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Supplemental Table 2-S6. Mummichog matches for linoleate metabolism pathway using 

C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

137.0971 45.0 
M-H2O-H[-] NA 

M-H2O-H[-] NA 

275.2015 216.0 

M-H2O-H[-] 
13-OxoODE; 13-KODE; (9Z,11E)-13-Oxooctadeca-

9,11-dienoic acid 

M-H2O-H[-] NA 

M-H2O-H[-] NA 

323.2215 240.7 M+HCOO[-] 

(6Z,9Z,12Z)-Octadecatrienoic acid; 6,9,12-

Octadecatrienoic acid; gamma-Linolenic acid; 

Gamolenic acid 

 

Supplemental Table 2-S7. Mummichog matches for linoleate metabolism pathway using 

HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

106.0499 94.2 M+H+Na[2+] Azelaic acid 

281.2474 33.6 M+H[1+] 

Linoleate; Linoleic acid; (9Z,12Z)-Octadecadienoic 

acid; 9-cis,12-cis-Octadecadienoate; 9-cis,12-cis-

Octadecadienoic acid 

281.2474 265.4 M+H[1+] 

Linoleate; Linoleic acid; (9Z,12Z)-Octadecadienoic 

acid; 9-cis,12-cis-Octadecadienoate; 9-cis,12-cis-

Octadecadienoic acid 

297.2422 239.1 

M+H[1+] 
13(S)-HODE; (13S)-Hydroxyoctadecadienoic acid; 

(9Z, 11E)-(13S)-13-Hydroxyoctadeca-9,11-dienoic acid 

M+H[1+] 
9(10)-EpOME; (9R,10S)-(12Z)-9,10-

Epoxyoctadecenoic acid 

M+H[1+] 
12(13)-EpOME; (12R,13S)-(9Z)-12,13-

Epoxyoctadecenoic acid 
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Supplemental Table 2-S8. Mummichog matches for glycerophospholipid metabolism 

pathway using HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

106.0499 94.2 M+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

107.0532 93.6 M(C13)+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

184.0734 91.4 M[1+] 
Choline phosphate; Phosphorylcholine; 

Phosphocholine; O-Phosphocholine 

241.0086 71.8 M+HCOONa[1+] 
sn-Glycerol 3-phosphate; Glycerophosphoric acid; D-

Glycerol 1-phosphate; Glycerol-3-phosphate 

281.2474 33.6 M+H[1+] 

Linoleate; Linoleic acid; (9Z,12Z)-Octadecadienoic 

acid; 9-cis,12-cis-Octadecadienoate; 9-cis,12-cis-

Octadecadienoic acid 

281.2474 265.4 M+H[1+] 

Linoleate; Linoleic acid; (9Z,12Z)-Octadecadienoic 

acid; 9-cis,12-cis-Octadecadienoate; 9-cis,12-cis-

Octadecadienoic acid 

 

Supplemental Table 2-S9. Mummichog matches for glycerophospholipid metabolism 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

90.0277 169.2 
M(C13)-H[-] 

Glycerone; Dihydroxyacetone; 1,3-Dihydroxyacetone; 

1,3-Dihydroxy-2-propanone; 1,3-Dihydroxypropan-2-

one 

M(C13)-H[-] D-Glyceraldehyde 

215.0328 28.6 
M+Cl[-] 

myo-Inositol; D-myo-Inositol; 1D-myo-Inositol; L-

myo-Inositol; 1L-myo-Inositol; meso-Inositol; Inositol; 

Dambose; Cyclohexitol; Meat sugar; Bios I 

M+Cl[-] Galactose 

323.2215 240.7 M+HCOO[-] 

(9Z,12Z,15Z)-Octadecatrienoic acid; alpha-Linolenic 

acid; 9,12,15-Octadecatrienoic acid; Linolenate; alpha-

Linolenate 

380.2556 287.8 M-H[-] 
Sphinganine 1-phosphate; Dihydrosphingosine 1-

phosphate 

447.0477 146.7 
M(S34)-H[-] CDP-ethanolamine 

M(Cl37)-H[-] CDP-ethanolamine 

472.1108 116.7 M-H[-] 
CMP-N-trimethyl-2-aminoethylphosphonate; CMP-2-

trimethylaminoethylphosphonate 
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Supplemental Table 2-S10. Mummichog matches for prostaglandin formation from 

arachidonate pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

370.1758 228.5 
M+Cl37[-] delta12-Prostaglandin J2 

M+Cl37[-] NA 

370.1931 87.7 M+Cl[-] 9-deoxy-delta12-PGD2 

379.2107 161.2 

M+HCOO[-] NA 

M+HCOO[-] NA 

M+HCOO[-] Prostaglandin A2; PGA2; Medullin 

M+HCOO[-] Prostaglandin C2; PGC2 

M+HCOO[-] Prostaglandin B2; PGB2 

M+HCOO[-] NA 

M+HCOO[-] NA 

M+HCOO[-] Prostaglandin J2; PGJ2 

383.2249 203.2 M+K-2H[-] 
Anandamide; Arachidonylethanolamide; N-

(5Z,8Z,11Z,14Z-icosatetraenoyl)-ethanolamide 

384.2449 200.3 M+Cl37[-] 
Anandamide; Arachidonylethanolamide; N-

(5Z,8Z,11Z,14Z-icosatetraenoyl)-ethanolamide 

405.2280 202.7 M-H2O-H[-] 15-oxo-Prostaglandin E2 glyceryl ester 

453.2853 249.0 M+CH3COO[-] 11-hydroxyeicosatetraenoate glyceryl ester 

456.2240 169.2 M(C13)-H[-] 1-lyso-2-arachidonoyl-phosphatidate 

 

Supplemental Table 2-S11. Mummichog matches for glycine, serine, alanine and 

threonine metabolism pathway using HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

88.0393 97.6 M+H[1+] 2-Aminoacrylate; Dehydroalanine 

106.0499 94.2 M+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

107.0532 93.6 M(C13)+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

134.0634 260.2 M(Cl37)+H[1+] 
5-Aminolevulinate; 5-Amino-4-oxopentanoate; 5-

Amino-4-oxovaleric acid 

185.0076 285.0 M[1+] 
O-Phospho-L-serine; L-O-Phosphoserine; 3-

Phosphoserine; Dexfosfoserine 

 

  



 

 

39 

 

Supplemental Table 2-S12. Mummichog matches for glycosphingolipid metabolism 

pathway using HILIC column with positive ion mode 

m/z 
RT 

(s) 
Adduct Form Tentative Match 

106.0499 94.2 M+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

107.0532 93.6 M(C13)+H[1+] 
L-Serine; L-2-Amino-3-hydroxypropionic acid; L-3-

Hydroxy-alanine; Serine 

184.0734 91.4 M[1+] 
Choline phosphate; Phosphorylcholine; 

Phosphocholine; O-Phosphocholine 

610.0854 26.1 

M(Cl37)+H[1+] UDP-N-acetyl-D-galactosamine 

M(Cl37)+H[1+] 
UDP-N-acetyl-D-glucosamine; UDP-N-

acetylglucosamine 

M(S34)+H[1+] UDP-N-acetyl-D-galactosamine 

M(S34)+H[1+] 
UDP-N-acetyl-D-glucosamine; UDP-N-

acetylglucosamine 

976.6181 30.2 M+HCOOK[1+] 
Sulfatide; Galactosylceramidesulfate; Cerebroside 3-

sulfate 

 

Supplemental Table 2-S13. Mummichog matches for glycosphingolipid metabolism 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

156.9810 136.5 M+CH3COO[-] Sulfate; Sulfuric acid 

215.0328 28.6 

M+Cl[-] D-Galactose 

M+Cl[-] D-Glucose; Grape sugar; Dextrose 

M+Cl[-] Galactose 

M+Cl[-] beta-D-Galactose 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

380.2556 287.8 M-H[-] 
Sphinganine 1-phosphate; Dihydrosphingosine 1-

phosphate 
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Supplemental Table 2-S14. Mummichog matches for keratan sulfate degradation 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

156.9810 136.5 M+CH3COO[-] Sulfate; Sulfuric acid 

204.0860 27.6 M+ACN-H[-] 6-Deoxy-L-galactose; L-Fucose 

215.0328 28.6 M+Cl[-] D-Galactose 

 

Supplemental Table 2-S15. Mummichog matches for glycolysis and gluconeogenesis 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

90.0277 169.2 M(C13)-H[-] (S)-Lactate; L-Lactate; L-Lactic acid 

215.0328 28.6 

M+Cl[-] alpha-D-Glucose 

M+Cl[-] D-Glucose; Grape sugar; Dextrose 

M+Cl[-] beta-D-Glucose 

227.0413 250.4 M+Na-2H[-] Dihydrolipoamide; Dihydrothioctamide 

248.0799 290.3 M-H[-] 
S-Acetyldihydrolipoamide; 6-S-

Acetyldihydrolipoamide 

 

Supplemental Table 2-S16. Mummichog matches for fructose and mannose metabolism 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

90.0277 169.2 M(C13)-H[-] D-Glyceraldehyde 

204.086 27.6 M+ACN-H[-] 6-Deoxy-L-galactose; L-Fucose 

215.0328 28.6 

M+Cl[-] alpha-D-Glucose 

M+Cl[-] D-Glucose; Grape sugar; Dextrose 

M+Cl[-] D-Fructose; Levulose; Fruit sugar; D-arabino-Hexulose 

M+Cl[-] D-Mannose; Mannose; Seminose; Carubinose 
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Supplemental Table 2-S17. Mummichog matches for leukotriene metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

147.0493 21.4 M(C13)-H[-] 
DL-Glutamate; DL-Glutaminic acid; 2-Aminoglutaric 

acid; Glutamate 

370.1758 228.5 

M+Cl37[-] 5-oxo-6E-12-epi-LTB4 

M+Cl37[-] 12-oxo-leukotriene B4 

M+Cl37[-] 5-oxo-6-trans-leukotriene B4 

370.1931 87.7 

M+Cl[-] 5,12-DiHETE 

M+Cl[-] 6E-12-epi-LTB4 

M+Cl[-] 10,11-dihydro-12-oxo-LTB4 

M+Cl[-] 6,7-dihydro-5-oxo-12-epi-LTB4 

M+Cl[-] 6-trans-leukotriene B4 

M+Cl[-] 6,7-dihydro-5-oxo-leukotriene B4 

M+Cl[-] NA 

456.2240 169.2 

M(Cl37)-H[-] 
20-Hydroxyleukotriene E4; 20-OH-LTE4; 20-OH-

Leukotriene E4 

M(S34)-H[-] 
20-Hydroxyleukotriene E4; 20-OH-LTE4; 20-OH-

Leukotriene E4 

464.1371 146.7 M+Br[-] 10,11-dihydro-20-trihydroxy-leukotriene B4 

 

Supplemental Table 2-S18. Mummichog matches for sialic acid metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

215.0328 28.6 

M+Cl[-] D-Galactose 

M+Cl[-] 

myo-Inositol; D-myo-Inositol; 1D-myo-Inositol; L-myo-

Inositol; 1L-myo-Inositol; meso-Inositol; Inositol; 

Dambose; Cyclohexitol; Meat sugar; Bios I 

M+Cl[-] alpha-D-Glucose 

M+Cl[-] Galactose 

M+Cl[-] beta-D-Glucose 

457.0549 174.2 M+Cl[-] Lactose 6-phosphate 

472.1108 116.7 M-H[-] 
CMP-N-trimethyl-2-aminoethylphosphonate; CMP-2-

trimethylaminoethylphosphonate 
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Supplemental Table 2-S19. Mummichog matches for TCA cycle pathway using C18 

column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

227.0413 250.4 M+Na-2H[-] Dihydrolipoamide; Dihydrothioctamide 

235.0085 26.9 M+HCOO[-] Oxalosuccinate; Oxalosuccinic acid 

379.2107 161.2 M+CH3COO[-] Ubiquinol; QH2; CoQH2 

 

Supplemental Table 2-S20. Mummichog matches for butanoate metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

143.0350 184.1 M+CH3COO[-] 3-Butynoate 

147.0493 21.4 M(C13)-H[-] 
L-Glutamate; L-Glutamic acid; L-Glutaminic acid; 

Glutamate 

204.086 27.6 M+HCOO[-] 5-Acetamidopentanoate 

 

Supplemental Table 2-S21. Mummichog matches for histidine metabolism pathway 

using HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

88.0393 97.6 M+2H[2+] 
N-Formimino-L-glutamate; N-Formimidoyl-L-

glutamate 

111.0553 262.0 M+H[1+] Imidazole-4-acetaldehyde; Imidazole acetaldehyde 

128.0544 215.3 M(C13)+H[1+] 
Imidazole-4-acetate; Imidazoleacetic acid; 4-

Imidazoleacetate 

156.0767 112.7 M+H[1+] 
L-Histidine; (S)-alpha-Amino-1H-imidazole-4-

propionic acid 

157.0801 103.1 M(C13)+H[1+] 
L-Histidine; (S)-alpha-Amino-1H-imidazole-4-

propionic acid 

 

 

Supplemental Table 2-S22. Mummichog matches for lysine metabolism pathway using 

C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

147.0493 21.4 M(C13)-H[-] 
L-Glutamate; L-Glutamic acid; L-Glutaminic acid; 

Glutamate 

197.0048 45.1 M+Cl37[-] 2-Oxoadipate; 2-Oxoadipic acid 

204.0860 27.6 
M+CH3COO[-] 

L-2-Aminoadipate 6-semialdehyde; 2-Aminoadipate 6-

semialdehyde 

M+CH3COO[-] 6-Amino-2-oxohexanoate; 2-Oxo-6-aminocaproate 

227.0413 250.4 M+Na-2H[-] Dihydrolipoamide; Dihydrothioctamide 
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Supplemental Table 2-S23. Mummichog matches for methionine and cysteine metabolism 

pathway using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

113.9889 41.0 M+ACN-H[-] hypothiocyanite 

147.0493 21.4 

M(C13)-H[-] 
DL-Glutamate; DL-Glutaminic acid; 2-Aminoglutaric 

acid; Glutamate 

M(C13)-H[-] 
L-Glutamate; L-Glutamic acid; L-Glutaminic acid; 

Glutamate 

156.981 136.5 M+CH3COO[-] Sulfate; Sulfuric acid 

197.0048 45.1 M+Cl[-] 1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one 

248.0799 293 M-H2O-H[-] Adenosine 

287.062 291.9 M+Na-2H[-] Adenosine 

 

Supplemental Table 2-S24. Mummichog matches for purine metabolism pathway using 

C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

147.0493 21.4 M(C13)-H[-] 
L-Glutamate; L-Glutamic acid; L-Glutaminic acid; 

Glutamate 

227.0413 250.4 M+CH3COO[-] Urate; Uric acid 

248.0799 293.0 
M-H2O-H[-] Deoxyguanosine; 2'-Deoxyguanosine 

M-H2O-H[-] Adenosine 

249.9638 28.3 M+K-2H[-] 
2-Deoxy-D-ribose 1-phosphate; 2-Deoxy-alpha-D-

ribose 1-phosphate 

287.062 291.9 
M+Na-2H[-] Deoxyguanosine; 2'-Deoxyguanosine 

M+Na-2H[-] Adenosine 

 

Supplemental Table 2-S25. Mummichog matches for pyrimidine metabolism pathway 

using HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

147.0493 21.4 M(C13)-H[-] 
L-Glutamate; L-Glutamic acid; L-Glutaminic acid; 

Glutamate 

227.0413 250.4 M+CH3COO[-] Urate; Uric acid 

248.0799 293.0 
M-H2O-H[-] Deoxyguanosine; 2'-Deoxyguanosine 

M-H2O-H[-] Adenosine 

249.9638 28.3 M+K-2H[-] 
2-Deoxy-D-ribose 1-phosphate; 2-Deoxy-alpha-D-

ribose 1-phosphate 

287.062 291.9 
M+Na-2H[-] Deoxyguanosine; 2'-Deoxyguanosine 

M+Na-2H[-] Adenosine 
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Supplemental Table 2-S26. Mummichog matches for urea cycle/amino group metabolism 

pathway using HILIC column with positive ion mode 

m/z RT (s) Adduct Form Tentative Match 

88.0757 224.1 M+H[1+] 
4-Aminobutanal; 4-Aminobutyraldehyde; 

Butyraldehyde, 4-amino- 

129.066 255.4 M+2H[2+] 

Peptide 2-(3-carboxy-3-aminopropyl)-L-histidine; 2-

(3-Carboxy-3-aminopropyl)-L-histidine; EF-2 2-(3-

carboxy-3-aminopropyl)-L-histidine; Elongation factor 

2 2-(3-carboxy-3-aminopropyl)-L-histidine 

132.0808 47.2 M(S34)+H[1+] N4-Acetylaminobutanal 

134.0634 260.2 M(Cl37)+H[1+] 
L-Glutamate 5-semialdehyde; L-Glutamate gamma-

semialdehyde 

190.9794 257.8 M+K[1+] Thiopurine 

271.04 73.1 M(C13)+H[1+] 
N-Acetyl-L-glutamate 5-phosphate; N-Acetyl-L-

glutamyl 5-phosphate 

565.4028 34.9 M(Cl37)+H[1+] 3-Hexaprenyl-4,5-dihydroxybenzoate 

 

Supplemental Table 2-S27. Mummichog matches for vitamin E metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

370.1758 228.5 M+Cl37[-] 7'-carboxy-gama-chromanol 

429.2859 174.4 M+ACN-H[-] 9'-carboxy-alpha-chromanol 

452.2952 260.9 M-H[-] 13'-carboxy-alpha-tocotrienol 

453.2853 249 M+ACN-H[-] 11'-carboxy-alpha-tocotrienol 
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Supplemental Table 2-S28. Mummichog matches for xenobiotics metabolism pathway 

using C18 column with negative ion mode 

m/z RT (s) Adduct Form Tentative Match 

164.9273 31.9 M+Cl[-] NA 

172.9413 26.7 

M(Cl37)-H[-] Bromobenzene-2,3-oxide; Bromobenzene-2,3-epoxide 

M(Cl37)-H[-] 4-Bromophenol 

M(Cl37)-H[-] Bromobenzene-3,4-oxide; Bromobenzene-3,4-epoxide 

M(S34)-H[-] Bromobenzene-3,4-oxide; Bromobenzene-3,4-epoxide 

M(S34)-H[-] Bromobenzene-2,3-oxide; Bromobenzene-2,3-epoxide 

M(S34)-H[-] NA 

M+HCOO[-] NA 

M(S34)-H[-] 4-Bromophenol 

M(Cl37)-H[-] NA 

271.2277 192.5 M-H+O[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

287.0620 291.9 M+Cl[-] Benzpyrene; Benzo[a]pyrene 

287.2226 223.8 M+CH3COO[-] Tetradecanoic acid; Tetradecanoate; Myristic acid 

291.2096 256.5 M+Cl[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

301.2384 261.0 M+HCOO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 

315.2541 259.7 M+CH3COO[-] 
Hexadecanoic acid; Hexadecanoate; Hexadecylic acid; 

Palmitic acid; Palmitate; Cetylic acid 
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Supplemental Figure 2-S1. Type II Manhattan plots of associations between changes in maternal 

serum feature intensities and air pollution using the HILIC column with positive ion mode; VIP 

score vs retention time. Red dots represent the features that were up-regulated in the high exposed 

group and the green dots represent the features that were down-regulated in the high exposed group 

  



 

 

47 

 

Supplemental Figure 2-S2. Type II Manhattan plots of associations between changes in maternal 

serum feature intensities and air pollution using the C18 column with negative ion mode; VIP 

score vs retention time. Red dots represent the features that were up-regulated in the high exposed 

group and the green dots represent the features that were down-regulated in the high exposed group. 
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3 High-resolution metabolomic assessment of pesticide exposure in Central Valley, 

California  

3.1 Introduction 

Agricultural pesticides are chemicals used for crop protection and combating animal pests 

and disease. California leads the U.S. in pesticide use, with a total of 205 million pounds of 

pesticides applied in 2017 (EPA 2017). In particular, the region of greatest pesticide use in 

California is the Central Valley area, including Fresno, Kern, and Tulare counties. Based on 

chemical properties, the main classes of insecticides used in California have historically included 

organophosphates (OPs), organochlorines (OCs), and pyrethroids (PYRs). 

OPs are widely used insecticides, and they are designed to inhibit acetylcholinesterase 

enzyme activity, which leads to accumulation of the neurotransmitter acetylcholine and results in 

neurotoxic effects in the peripheral and central nervous system (Paul et al. 2018a; Terry Jr 2012; 

van der Plaat et al. 2018). OCs are a group of chlorinated compounds that are highly persistent 

organic pollutants (POPs) in the environment (Jayaraj et al. 2016). The modes of action of OC 

pesticides include opening of sodium ion channels in neurons (Dong 2007), as well as binding 

with the GABA chloride ionophore complex producing a decreased uptake of chlorine ions in 

neurons (Zuluaga et al. 2016). Due to the toxicity of OPs and the persistence of OCs their use in 

agriculture has been restricted and in recent decades other types of insecticides, including PYRs, 

have been used more widely (Jellali et al. 2018). The primary targets of PYRs are the membrane 

sodium channels but they also act on potassium, chloride, and calcium channels (Bradberry et al. 

2005; Castellanos et al. 2018; Furlong et al. 2020). As a group they are known as axonic 

excitotoxins as they disturb sodium channels, leading to abnormal neural activity (Bradberry et al. 

2005; Zuluaga et al. 2016). Furthermore, chronic exposure of OPs, PYRs, and OCs have been 



 

 

49 

 

shown to have a wide range of downstream secondary effects, including genotoxicity and DNA 

damage, oxidative stress, immunotoxicity, mitochondrial dysfunction, and regulation of neuronal 

apoptosis (Banerjee et al. 2001; Costa 2006; Hossain and Richardson 2011; Karami-Mohajeri and 

Abdollahi 2011; Patel et al. 2006; Zuluaga et al. 2016). 

Numerous epidemiological studies, as well as in vitro and in vivo experimental evidence, 

suggests these three pesticide groups are associated with a wide range of adverse health effects 

including neurodegenerative disease, such as seen in Parkinson's disease (PD) and Alzheimer’s 

disease (AD), diabetes, and cancers (Blair et al. 2015). OC and PYR exposures have also been 

associated with neurodevelopmental impairment (Ferreira et al. 2013; Furlong et al. 2017; 

Weisskopf et al. 2010). 

As chronic pesticide exposures may have profound effects on various biological systems, 

characterizing metabolic response to these chemicals and how they influence human health 

systemically is important. High-resolution metabolomics (HRM) is a powerful analytical approach 

that can profile more than ten thousand endogenous and exogenous chemicals in biological 

specimens. Recently, HRM has been used to study the effects of environmental exposures such as 

metals, air pollution, tobacco smoking, and polycyclic aromatic hydrocarbons on human 

metabolism (Garcia-Sevillano et al. 2015; Gu et al. 2016; Jones 2016). 

A large number of metabolomic studies have employed animal models or cell lines to study 

the toxicity of different pesticides (Du et al. 2014; Gu et al. 2019; Jellali et al. 2018; F Li et al. 

2017; Xu et al. 2019; Yang et al. 2011; Yang et al. 2013). In recent years, metabolomics has also 

been applied to study the effect of OP, PYR, or OC pesticide exposure. For example, a cross-

sectional study of 83 pregnant women characterizing the urine metabolome found that pesticide 

mixtures increased oxidative stress and disturbed energy metabolism (N. Bonvallot et al. 2013), 
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while a larger study of 750 pregnant women identified mitochondrial catabolic pathways as being 

associated with low-level exposure to OCs (Maitre et al. 2018). OP and OC metabolomic profiling 

of 102 Chinese pregnant women found OP and OC exposures may disrupt thyroid hormone 

metabolism and glyceraldehyde metabolism (Yang et al. 2020). A Swedish study investigated 

dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) exposure using 

serum metabolomic profiles from 1016 elderly participants and identified lipid metabolism as an 

essential metabolic response to OC pesticides (Salihovic et al. 2016). Other studies focusing on 

persistent organic pollutants in general indicated that POPs disturb amino acid, lipid and fatty acid, 

and carbohydrate metabolism (Carrizo et al. 2017; Valvi et al. 2020). 

Most previous studies measured pesticide exposure levels via pesticide biomarkers in blood 

or in urine samples. While these biomarkers estimate exposure at the same time as the metabolome 

is being characterized, they may not be suitable for capturing the cumulative effects of low-level 

chronic past pesticide exposures or for chemicals with short biological half-lives. Also, POP 

exposures that occurred in the distant past may not be represented well in a recent blood draw, 

especially in older individuals. In addition, the majority of studies using biomarkers mostly 

focused on one or a few specific chemicals instead of integrating various types of pesticides. Here, 

we conducted an untargeted metabolomics study of exposure to three groups of pesticides (OPs, 

PYRs, and OCs) using metabolomes from serum samples from 176 older adults who were recruited 

as control subjects into a study of Parkinson’s disease in the California Central Valley.  Chronic 

pesticide exposure from ambient sources at homes and workplaces over decades was estimated 

with a geographic information system (GIS) based model for each type of pesticide. We utilized 

the same liquid chromatography high-resolution mass spectrometry (LC-HRMS) platform that has 

been used in several previous studies to examine the metabolomic response to environmental 
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toxicants including OCs (Li et al. 2019; Walker et al. 2019a). This platform has been shown to be 

sensitive enough to capture metabolic perturbations associated with low-level environmental 

exposures, a goal of our study. Furthermore, by conducting an integrative network analysis, we 

aim to provide a comprehensive view of the way in which these pesticides may influence the 

human metabolome and how this may result in potential adverse health effects. 

3.2 Methods 

3.2.1 Study population and samples collection 

The Parkinson’s Environment and Gene Study (PEG) is a community-based case-control 

study of Parkinson’s disease (PD) etiology in agricultural regions of the California central valley 

that recruited control subjects from Kern, Tulare, or Fresno counties between 2001 to 2007 (Ritz 

et al. 2016). Controls were randomly sampled either from Medicare rolls or from property tax 

assessor records listing residential parcels. Participation was limited to one person per household 

and eligibility criteria included being 35+ years of age, having lived in one of the three counties 

for the past five years or more, and not having received a Parkinsonism diagnosis. More detailed 

information has been provided elsewhere (Kang et al. 2005). 

Here, we used blood samples collected at enrollment from 176 adult controls, as well as 

demographic information, lifestyle and medical data collected in standardized interviews. Blood 

samples were collected by study staff during field visits in local clinics, centrifuged, transferred 

on ice, and stored in a -80°C freezer at UCLA. Serum samples were shipped frozen to Emory 

University on dry ice for metabolomics analyses, where they were stored at -80 0C until analyses. 

3.2.2 Pesticide assessment 

Pesticide exposure assessment was performed as previously described (Paul et al. 2016). 

Briefly, we estimated ambient pesticide exposure for each participant based on a GIS approach 
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(Cockburn et al. 2011). Participants’ residential and occupational address histories were used to 

assess proximity to commercial agricultural pesticide applications, which are reported in the 

California state-mandated pesticide use reports (CA-PUR). The CA-PUR is a state-wide registry 

of all commercial pesticide applications since 1974, and our GIS approach linked these data to 

land use surveys providing locations of specific crops, and eventually to participants’ geocoded 

residential and occupational address histories. 

Based on the California Department of Pesticide Regulation (CDPR) and the pesticide 

action network (PAN) pesticide database, we identified individual chemicals that were classified 

as one of three types of pesticides: organophosphates (OP), pyrethroids (PYR), and 

organochlorines (OC). Specifically, 36 different chemicals were classified as OPs, 14 chemicals 

as PYRs, and 8 chemicals as OCs. We calculated the total pounds of each chemical applied within 

500 m of the addresses annually from 1974 to the year of blood draw, and then averaged the pounds 

per acre for each pesticide across residential and occupational addresses over the entire period. 

Exposures at both residential and occupational addresses were included, and each participant could 

have been exposed at both locations, only one, or neither. To calculate the total number of 

individual OP, PYR, and OC pesticides a participant had been exposed to, we dichotomized 

exposure to each of the individual chemicals based on each chemical’s median exposure level, and 

then summed the number of chemicals that each participant was exposed to above the median, 

counting chemical exposures at both residences and workplaces.  

3.2.3 High-resolution metabolomics 

High-resolution metabolomics (HRM) profiling was completed according to established 

methods (KH Liu et al. 2020). Briefly, serum samples were collected during the interview and 

stored at -80 °C. Prior to HRM, batches of 40 serum samples were removed from storage and 
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thawed on ice. Each sample was then thoroughly vortexed, and plasma proteins were precipitated 

by diluting 65 μL of serum with 130 μL of LC-MS grade acetonitrile. We previously compared 

extraction efficiency using different volume equivalents of acetonitrile and methanol (Johnson et 

al. 2010). Comparison of protein removal using the Lowry method and by SDS-PAGE with 

Coomassie blue staining and densitometry showed a 2:1 ratio of acetonitrile removed 98% of 

plasma proteins, and has been used for all subsequent HRM studies. The extract was centrifuged, 

and the resulting supernatant was transferred to an autosampler vial containing a low volume insert 

and maintained at 4ºC until analysis (<24 h). To evaluate system performance, we used two 

separate quality assessment methods. Our first QC sample was NIST 1950 (Simon-Manso et al. 

2013) which was analyzed at the beginning and end of the entire analytical run. The second QC 

sample (Q-Std) included commercially purchased plasma pooled from an unknown number of 

males and females. Q-Std was analyzed at the beginning, middle, and end of each batch of 40 

samples for normalization and batch effect evaluation.  

Sample extracts were analyzed in triplicate using a dual-column, dual-polarity approach 

that includes hydrophilic interaction (HILIC) chromatography with positive ESI and C18 

chromatography with negative ESI (Ultimate 3000, Q-Exactive HF, Thermo Fisher, m/z range 85-

1275) (Walker et al. 2018). We chose HILICpos and C18neg because dual chromatography HRM 

with positive and negative electrospray ionization provides the optimal number of reproducible 

ions detected and matches to known chemicals in the KEGG Human Metabolite database (Liu et 

al. 2016). Following a 10μL sample injection, HILIC separation was accomplished using a 2.1 cm 

× 5 cm × 2.5 μm HILIC column (Waters XBridge BEH Amide XP HILIC) and acetonitrile gradient 

(A = water, B = acetonitrile, C = 2% formic acid) consisting of an initial 1.5 min period of 22.5% 

A, 75% B, 2.5% C, followed by linear increase to 77.5% A, 20% B, 2.5% C at 4 min and hold for 



 

 

54 

 

1 min. Separation by C18 was with 2.1 cm × 5 cm × three μm column (Higgins endcapped C18) 

with C = 10 mM ammonium and the following gradient: initial 0.5 min period of 60% A, 35% B, 

5% C, followed by linear increase to 0% A, 95% B, 5% C at 1.5 min and then held for an additional 

3 min. Mobile phase flow rate was held at 0.4 mL/min for 1.5 min and then increased to 0.5 mL/min. 

The mass spectrometer was operated using ESI mode at a resolution of 120,000 and mass-to-

charge ratio (m/z) range 85-1275. High-resolution detection of m/z features was accomplished by 

a maximum injection time of 10 milliseconds and an AGC target of 1x106. Raw data files were 

extracted and aligned using apLCMS (Yu et al. 2009) with modifications by xMSanalyzer (Uppal 

et al. 2013). Uniquely detected ions consisted of m/z, retention time (rt), and ion abundance, 

referred to as m/z features. Prior to data analysis, m/z features were batch corrected using a novel 

algorithm based on wavelet (Deng et al. 2019). For further analyses, we only included 

metabolomic features detected in > 25% of all plasma samples, with median coefficients of 

variation (CV) among technical replicates < 30% and Pearson correlation > 0.7. Following quality 

assessment, intensities of three replicates for each feature were summarized using the median value. 

In addition, we conducted a log2 transformation and auto-scaling. Missing values were imputed 

using k-nearest neighbors (k=10) (Troyanskaya et al. 2001) imputed in the impute R package. 

3.2.4 Metabolome-wide association analysis 

We are presenting the distributions of three pesticide classes and Pearson correlations for 

levels of pesticide exposure. All analyses were performed using R version 4.0.1. 

We conducted partial least squares (PLS) regression to identify metabolomic features 

associated with each pesticide group (i.e., OPs, PYRs, and OCs). PLS regression is a supervised, 

multivariate analysis approach for dimensionality reduction that maximizes covariance between 

intensities of metabolomic features and exposures (Wold et al. 2001). To adjust for potential 
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confounders, we regressed each feature's intensity on potential confounding variables (age, sex, 

and race/ethnicity) and formed residuals as the input matrix. Features with Variable Importance in 

Projection (VIP) scores > 2 were selected as significant. Ten-fold cross-validation was used to 

assess the performance of the selected features. We further applied linear regression to test for 

linearity between m/z features and pesticides. 

To assess the potential confounding effect of socioeconomic status, we conducted a 

sensitivity analysis by additionally adjusting for education. 

To gain a holistic view of the relationship between pesticides and the serum metabolome, 

we further conducted integrated network analysis using xMWAS (Uppal et al. 2018). xMWAS 

calculates the pairwise association scores (approximation of the correlation coefficient) between 

each metabolomic feature and each pesticide using partial least squares (Le Cao et al. 2008), and 

generates a multi-data integrative network. Only associations with both the |association score| > 

0.2 and p < 0.05 (by Student’s t-test) were included in the network. Finally, a multilevel 

community detection algorithm (Blondel et al. 2008) was used to identify metabolite and exposure 

clusters that are tightly connected with each other, but sparsely connected with the rest of the 

network. 

3.2.5 Annotation and pathway analysis 

HRM provides accurate mass (±5 parts-per-million; ppm) measures of ion m/z, which can 

be related to chemical monoisotopic mass. Significant features selected by PLS regression were 

first matched to a reference database of authenticated chemical standards previously characterized 

in our laboratory. Metabolites in the in-house database were confirmed using MS/MS and 

authentic standards; the detailed process has been published previously (Go et al. 2015; KH Liu et 

al. 2020). The error tolerance was 5 ppm and 30 seconds for m/z and retention time, respectively. 
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Additional m/z features not matching these metabolites were then annotated by xMSannotator 

(Uppal et al. 2017). Accurate mass m/z for adducts formed under positive/negative ESI mode was 

matched to the Human Metabolome Database (HMDB), KEGG, and LipidMaps with a mass error 

threshold of 10 ppm. xMSannotator also considers the correlation of intensities and retention time 

and assigns confidence scores based on a multilevel scoring algorithm (0-3, a higher score 

representing higher-confidence result), ensuring annotation accuracy. Only results with an 

annotation score >2 were kept. The metabolite identification confidence levels (Schrimpe-

Rutledge et al. 2016) were reported for all annotation results.  

We conducted pathway enrichment analysis utilizing mummichog version 2 (Nathalie 

Bonvallot et al. 2013) to identify perturbed metabolic pathways associated with pesticide exposure 

for each class of pesticides. All features previously selected by PLS regression with VIP ≥2, and 

features included in the integrated network analysis were included in this pathway enrichment 

analysis. Mummichog uses a permutation-based framework that accounts for the complexity of 

untargeted mass spectral data.  Although annotation results in mummichog may include false 

positives, the enriched pathways inferred by the algorithm have been shown to be valid and to 

reflect real biological activity (Uppal et al. 2016). All metabolites annotated by mummichog were 

required to present in at least their primary adduct (M+H or M-H for positive and negative mode, 

respectively) to reduce the false positive match rate. A pathway was considered significant if 

gamma adjusted p-values were smaller than 0.05. Only pathways that contained at least three 

discriminative metabolites were interpreted. 

3.3 Results 

3.3.1 Study population 
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Demographics of the 176 adult controls unaffected by Parkinson’s disease and the 

distribution of pesticide exposures are provided in Table 3-1. Lists of chemicals classified as OPs, 

PYRs, or OCs can be found in Supplemental Table 3-S1. Approximately half of the participants 

included in the study were male (51%), and a majority white (86%) with a mean age of 66 years. 

Participants who did not have metabolomics data available did not differ from participants we 

included in terms of age, sex, ethnicity, or pesticide exposure. OP exposure counts ranged from 0 

to 41; PYR from 0 to 10; and OC from 0 to 8. Exposure levels of pesticides in the 3 classes were 

moderately correlated (Supplemental Figure 3-S1). 

3.3.2 Metabolome-wide analysis 

We detected 12,925 metabolomic features from the HILIC column coupled with positive 

ionization mode (HILICpos) and 7,209 metabolomic features from the C18 column coupled with 

negative ionization mode (C18neg). After quality control steps, a total of 16,510 metabolomic 

features (10,959 HILICpos and 5,551 C18neg) were included in the analyses.  

After adjusting for potential confounding variables (age, sex, race/ethnicity), PLS 

regression selected 389 metabolomic features (254 HILICpos features and 135 C18neg features) 

across three components that were associated with OP exposure (Supplemental Figure 3-S2). 

Among these, 226 features (58%) were positively associated with OP exposure. Furthermore, 517 

metabolomic features (331 HILICpos features and 186 C18neg features) were associated with 

PYR pesticide, and 233 features (45%) increased with increasing levels of PYR exposure 

(Supplemental Figure 3-S2). We also identified 485 features (311 HILICpos features and 174 

C18neg features) related to OCs. Approximately half of the features (229 features, 47%) were 

positively associated with OCs (Supplemental Figure 3-S2).  A large proportion of metabolomic 
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features were uniquely associated with just one of the pesticide groups, but 72 statistically 

significant features were shared across all three pesticide classes (Figure 3-1). 

Based on xMSannotator, in total, 15.9% of the HILIC pos features and 16.2% C18 neg 

features matched compounds in the HMDB, KEGG, and LipidMaps databases. We matched 

metabolomic features related to at least one of the pesticide groups to known metabolites based on 

authenticated chemical standards verified by tandem mass spectrometry (identification confidence 

level 1). In total, we confirmed the identities of 12 metabolites (Table 3-2), including metabolites 

involved in the carnitine shuttle pathway and beta-alanine metabolism. 

Using mummichog, we examined whether the features that were selected by PLS regression 

were enriched within specific metabolic pathways. The result indicated that 33 metabolic pathways 

were significantly enriched with a p-value smaller than 0.05 (Figure 3-2, Supplemental Table 3-

S2). List of putatively annotated metabolites within each pathway can be found in Supplemental 

Table 3-S3. The majority of pathways were uniquely associated with exposure to one of the 

pesticide groups, whereas beta-alanine metabolism and glycine, serine, alanine and threonine 

metabolism were linked with all three classes i.e., OPs, PYRs, and OCs. Carnitine shuttle, 

glutamate metabolism, glycolysis and gluconeogenesis, butanoate metabolism, and pyruvate 

metabolism were related to both OPs and OCs. The enriched pathways are involved in a wide 

range of metabolic functions, including lipid metabolism, central carbon metabolism, amino acid 

metabolism, neurotransmitter precursors, cofactors, and nucleotide metabolism. 

To assess the potential for additional confounding, we adjusted for education information 

(Supplementary Figure 3-S3) which can serve as a surrogate for socioeconomic status. Enriched 

pathways identified in the sensitivity analysis were very similar to the original results. 

3.3.3 Integrated network analysis 
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To identify systemic metabolic alterations associated with different pesticides, we adopted 

a network-based approach to integrate metabolomic features with the three pesticide classes. In 

total, 383 features were included in the network, with an association score greater than 0.2 and a  

p < 0.05 (Figure 3-3). Unlike the previous MWAS approach in which most of the features 

identified were uniquely associated with one pesticide, this network was more densely connected, 

i.e., 187 out of 383 features within the network were correlated with all three pesticides. We 

identified two separate clusters using a community detection algorithm, including one cluster 

centered on OPs and a second cluster that included PYRs and OCs (Figure 3-3). Both clusters 

included pathways related to fatty acid beta-oxidation. In addition, the OP cluster consisted of 

several pathways involved in amino acid metabolism and neurotransmitter precursors 

(Supplemental Table 3-S4 to Supplemental Table 3-S6). 

3.4 Discussion 

Our community-based study provided us with a unique opportunity to link GIS derived 

pesticide exposure data with a high-resolution metabolomics approach thus allowing the external 

and internal exposome to inform on each other. Specifically, we first used a complex GIS approach 

to combine almost a half century of California pesticide application records spatially with home 

and work address histories to generate measures of long-term pesticide exposure from agricultural 

applications in older adults. Then we combined these exposure histories with data from high-

resolution metabolomics to interrogate links between complex patterns of pesticide exposure with 

metabolic responses. Our approach provided us with the opportunity to measure more than 10,000 

metabolomic features in serum samples simultaneously, and we found that chronic exposure to 

pesticides in three classes – OPs, PYRs, or OCs – seemed to perturb a wide range of metabolic 

pathways. Employing MWAS for these three pesticide groups as well as an integrative network 



 

 

60 

 

approach we identified metabolic pathways distinctly associated with only one group of pesticides, 

as well as metabolic response patterns shared across the pesticide classes that included fatty acid 

metabolism, central carbon metabolism, and amino acid metabolism. Specifically, we found that 

the beta-alanine metabolism, and glycine, serine, alanine and threonine metabolism, were related 

to all three pesticides. Also, several fatty acid metabolic pathways were associated with both OPs 

and OCs. Network analysis showed that the fatty acid beta-oxidation pathway was a common 

pathway shared by all three pesticide groups. More generally, the alterations we observed in these 

pathways suggested that chronic pesticide exposure may result in oxidative stress, inflammatory 

reactions, and mitochondrial dysfunction. These findings are informative as various pesticide-

related health outcomes, such as neurodegenerative disorders, diabetes, and cancer are related to 

these pathways (Barnham et al. 2004; Jenner 2003; Lin and Beal 2006; McGeer and McGeer 2004; 

Parrón et al. 2011). 

Previous epidemiological and experimental studies have shown that chronic exposure to 

OPs, PYRs, and OCs result in various secondary toxic effects, including mitochondria dysfunction 

and oxidative stress (Karami-Mohajeri and Abdollahi 2011; Parrón et al. 2011; Zuluaga et al. 

2016). In our study, we identified alterations in oxidative stress-induced fatty acid oxidation in 

peroxisomes as being associated with OP and PYR exposures, and glycerophospholipid 

metabolism as being associated with OC pesticide exposures. Based on our network analysis, di-

unsaturated fatty acid beta-oxidation was related to all three exposure types. This finding is 

consistent with previous findings that abnormal fatty acid metabolism and glycerophospholipid 

metabolism is correlated with persistent organic pollutant exposure (Carrizo et al. 2017; Valvi et 

al. 2020). A study that focused on polybrominated and polychlorinated biphenyl POPs also found 

alterations in fatty acid metabolism, including fatty acid activation and glycerophospholipid 



 

 

61 

 

metabolism (Walker et al. 2019a). Moreover, the same fatty acid metabolism pathways were 

associated with other environmental exposures such as trichloroethylene, benzo[a]pyrene, or air 

pollution (Walker et al. 2016a; Walker et al. 2016b; Yan et al. 2019). Oxidative stress and disturbed 

fatty acid metabolism are thought to underlie many adverse health outcomes such as heart disease, 

diabetes, and neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s 

disease (PD) (Fillmore et al. 2014; Foley 1992; Lane et al. 2015). The pathophysiology of PD 

involves the depletion of dopamine neurons, which is a neuronal population that is particularly 

susceptible to oxidative stress owing to its low antioxidant capacity (Gangemi et al. 2016). 

Pesticide-induced oxidative stress may lead to mitochondrial dysfunction and we observed 

enrichment of several pathways associated with mitochondrial energy metabolism. For example, 

the carnitine shuttle, short-chain fatty acid (butanoate) metabolism, glycolysis and 

gluconeogenesis pathway, and pyruvate metabolism were perturbed with higher OPs and OCs 

exposure. Fatty acid oxidation in the peroxisome was associated with both OPs and PYRs. 

Although the carnitine shuttle pathway was not significantly enriched with the PYR class 

pesticides, several acylcarnitines, including lauroylcarnitine and octanoylcarnitine were 

significantly decreased when PYR exposure levels increased. The carnitine shuttle refers to the 

process of transporting long-chain fatty acetyl coenzyme A (acyl-CoA) into mitochondria as 

acylcarnitines for fatty acid oxidation (Reuter and Evans 2012). This process is critical for energy 

supply in every tissue. Studies have shown that plasma acylcarnitine levels can serve as an 

indicator of mitochondrial function (Jarrell et al. 2020; Peng et al. 2018). Mitochondrial 

dysfunction contributes to diabetes, cardiovascular disease, cancer, metabolic syndrome, and 

chronic neurodegenerative disorders such as Parkinson’s disease and Huntington’s disease 

(Nicolson 2007; Soane et al. 2007; Swerdlow 2011). 
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There is also increasing evidence for immunotoxicity of certain pesticides (Furlong et al. 

2020; Gangemi et al. 2016). In our study, several inflammation-related pathways, including 

histidine metabolism, arachidonic acid metabolism, and prostaglandins metabolism, were 

associated with OPs and PYRs. Histidine has anti-inflammatory effects and is negatively 

associated with inflammation and oxidative stress (Liang et al. 2018). Oxidative stress can also 

induce the activation of phospholipase A2 (PLA2) and generate polyunsaturated free fatty acid 

(PUFA), including linoleic acid and arachidonate acid (Anthonymuthu et al. 2018). Arachidonic 

acid is an inflammatory intermediator and can be converted to prostaglandins, which has a major 

proinflammatory effect. In accordance with our results, previous studies also linked inflammation-

related pathways to environmental toxicants (Banks and Lein 2012).  

Perturbed glutamate metabolism was related to increased OPs and OC exposures, which 

was consistent with the results obtained in some animal models (Li et al. 2014; Torres-Altoro et 

al. 2011). Glutamate is a precursor for glutathione, the second major thiol redox couple for 

antioxidant defense. Moreover, glutamate serves as an excitatory neurotransmitter in the central 

nervous system. Previous studies have demonstrated a link between glutamate-mediated 

excitotoxicity and degeneration of dopamine neurons (Meredith et al. 2009; Sonsalla et al. 1998), 

and glutamate may play a role in the development of PD. Furthermore, we also observed an 

association between tyrosine metabolism and OP exposure and tyrosine is a precursor of dopamine 

i.e., tyrosine is converted to L-dopa by tyrosine hydroxylase (Walker et al. 2019a). Previous studies 

suggested that alterations of tyrosine hydroxylase can contribute to neurodegenerative diseases, 

including PD and AD because it affects the biosynthesis of dopamine (Priyadarshini et al. 2012; 

Tabrez et al. 2012). Studies also linked these pesticides to an increased risk of PD and other 
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neurodegenerative disorders. Our data suggest that dysregulation of these neurotransmitter 

precursors is tentatively associated with OPs or OCs. 

By utilizing an integrative network analysis, we obtained a holistic view of interactions 

between the metabolome and various pesticides. Even though there were distinct mechanisms of 

action for each pesticide class, most metabolic connections were shared across pesticide groups. 

A similar overlap of metabolomic responses has been described before for 

dichlorodiphenyltrichloroethane (DDT), poly and perfluoroalkyl substances (PFAS), 

oxychlordane, hexachlorobenzenes, and several polychlorinated biphenyl compounds; specifically, 

the metabolome-exposure network converged on oxidative stress, fatty acid metabolism, and 

mitochondrial energy metabolism (Li et al. 2019). Our findings and those of previous studies, 

might suggest general metabolic mechanisms an organism employs in response to the stress 

induced by various environmental toxicants.  

Two amino acid metabolism pathways, beta-alanine metabolism, and glycine, serine, 

alanine and threonine metabolism, were found to be associated with all three pesticide groups. 

Beta-alanine is a non-essential amino acid the human body makes by converting pyruvate (Li et 

al. 2014). Alanine has various biological functions in different tissues. For example, beta-alanine 

functions as a neurotransmitter or a neuromodulator in the brain, while in skeletal muscle, it is a 

major energy source and a component of carnosine (Shetewy et al. 2016; Tiedje et al. 2010). Using 

authentic standards, we were able to identify both alanine and carnosine within the beta-alanine 

metabolism pathway. Alanine increased with higher levels of OPs and OCs, and carnosine was 

significantly and positively associated with OPs and PYRs. Similarly, increased alanine levels 

have been found in the brain of goldfish after exposure to PYRs (Li et al. 2014). Rats exposed to 

OP pesticides expressed an abnormal level of alanine aminotransferase due to disturbances in the 
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oxidative-reductive hepatocyte system (Lukaszewicz-Hussain and Moniuszko-Jakoniuk 2005). A 

human study found elevated urine alanine levels in pesticide applicators compared to non-

applicators (Ch et al. 2019). Carnosine can function as an antioxidant that scavenges ROS 

(Baraniuk et al. 2013; Boldyrev et al. 1987). Similarly, glycine and serine also act as a 

cytoprotective agent (Ch et al. 2019). Therefore, the increased activity in alanine, glycine, and 

serine metabolism may indicate the activation of antioxidative defense mechanism in response to 

pesticide-induced oxidative stress, as has been shown in previous metabolomics studies of 

pesticide mixtures (N. Bonvallot et al. 2013). Vitamin C is a water-soluble antioxidant (Padayatty 

et al. 2003) and disturbances of vitamin C metabolism may also indicate responses to oxidative 

damage caused by OP exposure. Finally, there are several other amino acid metabolism and 

cofactor pathways related to OP pesticide exposure that are involved in oxidative stress and 

inflammation. Methionine is an essential amino acid that promotes ROS production, in line with 

chronic OP exposure inducing oxidative stress.  

Our study has some limitations. Our GIS model-based chronic pesticide exposure measure 

allowed us to investigate low level exposure that occurred over decades; however, it is challenging 

to estimate the absolute exposure levels for each chemical we investigated. In addition, our 

pesticide measure does not necessarily translate into total pesticide exposure levels as other sources 

of pesticide exposures may also contribute. Despite the inherent challenges in GIS model-based 

exposure estimation, our pesticide measurements have been associated with a number of prior 

health outcomes such as PD, autism spectrum disorders, and neural tube defects (Rull et al. 2006; 

Shelton et al. 2014; A Wang et al. 2011). Also, our previous epigenomic studies of OPs and PYRs 

identified critical genetic pathways consistent with the pathophysiology of each pesticide type of 

action, in support of the validity of our exposure assessment model. Diet may also explain 
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differences in metabolites, and we did not have information on the participants’ dietary intake; 

however, in order for dietary differences to have confounded our analyses, they would have had 

to be related to agricultural pesticide exposure, which would be more likely for dietary pesticide 

sources rather than ambient exposures due to agricultural applications near homes and workplaces. 

By controlling for age, sex, and race/ethnicity, we hope to have at least partially addressed potential 

confounding. Another limitation is the annotation of metabolomic features detected using 

untargeted analysis. Adopting a pathway and network analysis approach, we were able to improve 

annotation results, but there may still be incorrect matches that could have influenced the 

interpretation of our results. It is recommended to improve metabolite identification using either 

tandem MS or internal standards in future studies. 

3.5 Conclusion 

In summary, we utilized a high-resolution metabolomic approach to identify perturbations 

in the serum metabolome of older adults in response to long-term ambient OP, PYR, and OC 

exposures measured via a complex GIS approach and pesticide application records. We identified 

disturbances in metabolic pathways related to oxidative stress, inflammation, lipid and fatty acid 

metabolism, mitochondrial energy metabolism, and neurotransmitter precursors. Furthermore, by 

adopting integrative network analysis, we illustrated that different pesticides might share similar 

biochemical fingerprints at the metabolomic response level. Collectively, our study points to 

potential common molecular mechanisms of chronic pesticide toxicity, and thus may also shed 

light on the physiology these exposures affect that eventually can lead to various adverse pesticide-

related health outcomes. Most importantly, our approach for the first time informs the field of 

exposome research by moving from macro-level population exposures to micro-level biologic 
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responses thereby generating hypotheses about toxicological mechanisms that can be studied in 

vivo. 
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3.6 Tables and figures 

Table 3-1. Distribution of demographics and pesticide levels  
PEG study community controls (n = 176) 

Age   

Min 35 

Max 92 

Mean (SD) 66.13 (13.40) 

Sex 
 

Male (%) 90 (51) 

Female (%) 86 (49) 

Race/Ethnicity 
 

White (%) 159 (90) 

Hispanic (%) 17 (10) 

Education 
 

Less than high school 20 (11) 

High school 32 (18) 

More than high school 124 (71) 

Organophosphate count 
 

Min 0 

Max 41 

Mean (SD) 7.58 (8.46) 

Pyrethroid count 
 

Min 0 

Max 10 

Mean (SD) 0.94 (1.70) 

Organochlorine count 
 

Min 0 

Max 8 

Mean (SD) 1.23 (1.72) 
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Table 3-2. Confirmed chemical identity of metabolomic features associated with OP, PYR, or OC pesticide 

 
KEGGID m/z time OP PYR OC 

Name Coefficient P-value Coefficient P-value Coefficient P-value 

L-histidine C00135 154.0623 50.63 0.014 0.031 0.091 0.005 0.060 0.067 

Lauroylcarnitine c12 CA1406 344.279 48.7 -0.013 0.070 -0.077 0.027 -0.067 0.055 

Alanine C00041 90.055 97.36 0.014 0.044 0.059 0.072 0.065 0.050 

Octanoylcarnitine c8 C02838 288.2166 52.25 -0.011 0.114 -0.068 0.037 -0.068 0.039 

Sphinganine C00836 302.3049 46.12 -0.018 0.024 -0.044 0.255 -0.122 0.001 

Cytidine 2,3-cyclic monophosphate C02354 306.0489 118.2 -0.017 0.041 -0.039 0.338 -0.080 0.051 

Reichsteins substance S C05488 347.2207 47.92 0.016 0.078 0.091 0.043 0.087 0.054 

Pyruvate C00186 87.0087 38.65 0.019 0.032 0.064 0.131 0.065 0.133 

O-acetyl-L-carnitine C02571 204.123 70.68 -0.012 0.162 -0.069 0.107 -0.088 0.041 

L-methionine C00073 148.0439 47.27 0.012 0.156 0.100 0.013 0.053 0.197 

Carnosine C00386 227.1136 110.36 0.012 0.121 0.095 0.012 0.034 0.374 

Omega-hydroxydodecanoic acid C08317 217.1798 20.12 0.022 0.011 0.057 0.167 0.028 0.498 
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Figure 3-1. Venn diagram of pesticides-related HILICpos features (a) and C18neg features (b). 
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Figure 3-2. Metabolic pathways correlated with pesticides from a serum metabolome-wide association study. The vertical axis 

represents the pathways associated with pesticides. The circle radius is proportional to the number of correlated metabolite features 

within each pathway (ratio). The horizontal axis also represents the ratio. The color represents the negative log10 (p-value) of each 

pathway.
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Figure 3-3. Integrative network analysis with xMWAS. (a) Metabolome-pesticide network 

revealed 2 metabolomic communities. Only metabolomic features with an association score > 0.2 

and p < 0.05 were included in the network. Round nodes represent metabolomic features, and 

triangle nodes represent three pesticides. The edges' color represents the direction of association 

(red: positive, green: negative). Multilevel community detection algorithm identified clusters, 

represented by different node colors. (b) Heatmap of the association scores between metabolomic 

features and pesticides. Only features included in the network are shown here. (c) UpSet plot shows 

the number of features associated with each pesticide group and the intersection size. 
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3.7 Supplemental materials 

Supplemental table 3-S1. List of chemicals within OP, PYR, or OC groups 

Pesticide group Name Chemcode 

OPs 

Monocrotophos 52 

Bensulide 70 

Dicrotophos 72 

Trichlorfon 88 

Carbophenothion 110 

Ddvp 187 

S,S,S-Tributyl Phosphorotrithioate 190 

Dioxathion 192 

Diazinon 198 

Dimethoate 216 

Disulfoton 230 

Chlorpyrifos 253 

Ethion 268 

Merphos 293 

Azinphos-Methyl 314 

Phosmet 335 

Malathion 367 

Oxydemeton-Methyl 382 

Methyl Parathion 394 

Naled 418 

Parathion 459 

Phorate 478 

Phosalone 479 

Mevinphos 480 

Phosphamidon 482 

Sulfotep 558 

Demeton 566 

Tepp 577 

Ethephon 1626 

Leptophos 1676 

Acephate 1685 

Methidathion 1689 

Methamidophos 1697 

Dialifor 1799 

Fenamiphos 1857 

Profenofos 2042 

PYRs 

Fenvalerate 1963 

Permethrin 2008 

Phenothrin 2093 

Resmethrin 2119 

Flucythrinate 2168 

Cypermethrin 2171 

Tau-Fluvalinate 2195 
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Cyfluthrin 2223 

Fenpropathrin 2234 

Lambda-Cyhalothrin 2297 

Bifenthrin 2300 

Esfenvalerate 2321 

Tralomethrin 2329 

(S)-Cypermethrin 3866 

OCs 

Chlordane 130 

Dieldrin 210 

Endosulfan 259 

Dicofol 346 

Lindane 359 

Methoxychlor 384 

Dienochlor 468 

Toxaphene 594 
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Supplemental Table 3-S2. Mummichog annotated metabolites within significantly enriched pathways 

Pathway Name Adduct M/Z Time VIP_OP Coef_OP VIP_PYR Coef_PYR VIP_OC Coef_OC 

Metabolite 

Annotation 

Confidence 

Tyrosine 

metabolism 

3-(4-

Hydroxyphenyl)pyruvate 
M+2H[2+] 91.0275 289.3 2.97 -0.020 4.06 -0.118 2.11 -0.065 3 

3-Methoxy-4-

hydroxyphenylacetaldehyde 
M[1+] 166.0645 261.2 2.04 -0.009 2.05 -0.039 1.72 -0.034 3 

dGDP M(C13)+2H[2+] 215.0234 252.1 2.20 -0.017 1.94 -0.065 2.24 -0.081 3 

3'-monoiodo-L-thyronine M(C13)+H[1+] 401.0086 61.7 2.61 -0.024 0.48 -0.017 2.26 -0.098 3 

3,5,3',5'-tetraiodo-L-

thyronine-beta-D-

glucuronoside 

M+HCOONa[1+] 1020.704 59.7 2.57 0.008 1.80 0.022 2.42 0.034 3 

3-Methoxy-4-

hydroxyphenylethyleneglycol 
M+2H[2+] 93.0448 134.6 2.11 0.013 2.83 0.073 2.02 0.056 3 

Nitrogen 

metabolism 

L-Asparagine M+H[1+] 133.0603 131.5 1.73 0.011 2.35 0.062 1.22 0.032 3 

L-Asparagine M(C13)+H[1+] 134.064 112.7 1.58 0.010 2.14 0.054 1.14 0.028 3 

L-Asparagine M+Na[1+] 155.0427 114.9 1.99 0.011 2.03 0.045 1.58 0.038 3 

Vitamin B6 

(pyridoxine) 

metabolism 

Pyridoxal M[1+] 167.0566 116.3 1.12 0.010 2.17 0.085 1.05 0.043 3 

Pyridoxamine M[1+] 168.09 70.4 2.03 0.014 3.31 0.098 1.57 0.047 3 

Pyrimidine 

metabolism 

dTTP M+2H[2+] 241.9996 178.9 3.10 -0.032 3.46 -0.163 2.29 -0.113 3 

ITP M+2H[2+] 254.9993 97.3 1.02 -0.009 1.22 -0.046 2.02 -0.083 3 

CDP M(C13)+H[1+] 405.025 296.9 1.12 -0.011 0.49 -0.022 2.39 -0.118 3 

Carnitine shuttle 

Tetradecanoylcarnitine M+H_[+1] 373.3137 48 1.82 -0.017 1.50 -0.063 2.22 -0.099 3 

clupanodonyl carnitine M+Na[1+] 496.3398 58.1 2.42 0.009 2.06 0.030 2.05 0.030 3 

tetracosapentaenoyl carnitine M+Na[1+] 524.3714 57.1 2.16 0.009 1.66 0.024 2.07 0.035 3 

octadecenoyl carnitine M+Na-2H[-] 445.3166 206 2.60 0.031 2.73 0.149 1.37 0.077 3 

stearidonyl carnitine M+K-2H[-] 455.242 191.9 2.32 -0.016 3.05 -0.093 0.98 -0.030 3 

stearidonyl carnitine M+K-2H[-] 455.2468 52 2.03 -0.021 1.23 -0.056 2.21 -0.107 3 
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Linoelaidyl carnitine M+K-2H[-] 459.2725 114.9 2.19 0.021 0.75 0.024 2.42 0.108 3 

cervonyl carnitine M+K-2H[-] 507.2716 156.6 2.15 0.015 1.56 0.046 2.31 0.075 3 

pentadecanoyl Coenzyme A M+Na[1+] 1010.28 77 2.15 0.018 2.66 0.099 2.79 0.112 3 

Alanine and 

Aspartate 

Metabolism 

Pyruvic acid M-H 87.0087 38.6 2.02 0.019 1.54 0.064 1.67 0.065 1 

Aminosugars 

metabolism 

3-Oxopropanoate M-H+O[-] 103.0037 128.1 1.92 -0.016 1.41 -0.053 2.66 -0.104 3 

N-Glycoloyl-neuraminate M+Cl37[-] 362.0636 37 0.84 -0.007 1.69 -0.064 3.83 -0.150 3 

Arachidonic acid 

metabolism 

Glycerol M+CH3COO[-] 151.0612 275 1.69 -0.014 2.27 -0.086 0.87 -0.031 3 

12 hydroxy arachidonic acid M+CH3COO[-] 378.2392 241.7 1.82 -0.012 2.12 -0.068 1.81 -0.057 3 

Arginine and 

Proline Metabolism 

L-Methionine M+Cl[-] 184.0194 36.6 2.12 0.015 3.68 0.111 1.68 0.051 3 

N-(L-Arginino)succinate M+Cl37[-] 327.0905 36.5 2.31 -0.017 1.73 -0.053 1.38 -0.043 3 

Ascorbate (Vitamin 

C) and Aldarate 

Metabolism 

L-Gulonate M-H2O-H[-] 177.0405 282.6 2.59 -0.016 3.68 -0.102 2.46 -0.071 3 

D-Glucarate M-H+O[-] 225.0242 68.5 2.22 -0.012 1.15 -0.028 0.70 -0.017 3 

5,6-Dihydroxyindole-2-

carboxylate 
M+Cl37[-] 228.9944 28.4 2.69 0.024 0.73 0.030 1.57 0.066 3 

Beta-Alanine 

metabolism 

Beta-Alanine M-H 88.0404 47 2.47 0.018 2.90 0.096 2.47 0.082 3 

Dihydroxyacetone M+Cl[-] 125.0011 41.6 1.88 0.015 1.39 0.050 2.38 0.087 3 

L-Histidine M-H[-] 154.0623 50.6 1.85 0.014 2.65 0.091 1.69 0.060 1 

Butanoate 

metabolism 

2-Methyl-3-oxopropanoate M+CH3COO[-] 161.0456 278.2 0.68 -0.005 0.77 -0.025 2.50 -0.086 3 

4-Hydroxybutanoic acid M+CH3COO[-] 163.0613 136.8 0.76 -0.007 0.53 -0.023 2.02 -0.089 3 

Fatty acid activation 

Octanoic acid M+CH3COO[-] 203.129 91.6 2.82 -0.023 2.37 -0.087 1.93 -0.073 3 

pentadecanoate M(C13)-H[-] 241.2147 219.1 1.85 -0.017 2.34 -0.104 0.98 -0.042 3 

Elaidic acid M-H 281.2485 246 1.69 -0.012 2.00 -0.062 1.65 -0.050 1 

(9E)-Octadecenoic acid M+HCOO[-] 327.2541 244.5 1.75 -0.012 2.09 -0.067 1.69 -0.052 3 

Phytanate M-H+O[-] 327.2912 240.2 1.29 -0.011 2.65 -0.108 1.06 -0.044 3 
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(9E)-Octadecenoic acid M+CH3COO[-] 341.2699 232.9 1.77 -0.012 2.08 -0.066 1.70 -0.052 3 

Fructose and 

mannose 

metabolism 

Galactose M-2H[2-] 89.0244 41.1 1.95 0.018 1.50 0.062 2.36 0.098 3 

Glycerophospholipid 

metabolism 

3-beta-D-Galactosyl-sn-

glycerol 
M-H+O[-] 269.0878 45.7 2.33 0.017 1.42 0.046 2.04 0.066 3 

CMP-2-

aminoethylphosphonate 
M-H+O[-] 445.0537 76.8 1.40 -0.011 0.30 -0.007 2.17 -0.075 3 

CMP-2-
aminoethylphosphonate 

M+Na-2H[-] 450.037 48.6 1.49 -0.015 1.35 -0.062 2.00 -0.096 3 

Glycine, serine, 

alanine and 

threonine 

metabolism 

Phosphocreatine M+Br[-] 289.9565 66.4 1.59 0.008 1.39 0.032 2.58 0.061 3 

Glycolysis and 

Gluconeogenesis 

Dihydroxyacetone M+Cl37[-] 126.9982 42 2.01 0.016 1.53 0.057 2.45 0.092 3 

2,3-Bisphospho-D-glycerate M-H+O[-] 280.948 77.7 2.52 -0.013 2.40 -0.057 2.56 -0.063 3 

S-acetyldihydrolipoyllysine M+ACN-H[-] 289.1059 26.5 1.25 0.008 0.47 0.014 2.26 0.070 3 

Methionine and 

cysteine metabolism 

2-keto-4-methylthiobutyrate M+Cl[-] 182.9888 54.7 2.11 0.016 0.96 0.034 1.89 0.069 3 

Adenosine 5'-phosphosulfate M+K-2H[-] 462.9633 89.9 2.04 -0.010 1.86 -0.041 2.32 -0.052 3 

N-Glycan 

biosynthesis 
Isopentenyl diphosphate M+Cl[-] 280.9741 183.1 1.92 -0.005 1.40 -0.016 2.07 -0.023 3 

Pentose phosphate 

pathway 
L-Gulonate M+Na-2H[-] 216.0246 40.5 0.84 -0.008 1.24 -0.056 2.13 -0.100 3 

Prostaglandin 

formation from 

arachidonate 

Prostaglandin B1 M+HCOO[-] 381.2312 168.3 2.24 -0.022 1.20 -0.053 1.91 -0.087 3 

Prostaglandin E2 

ethanolamide 
M-H+O[-] 410.2575 200.6 2.28 -0.014 1.27 -0.036 2.06 -0.062 3 

(5Z)-(15S)-11alpha-

Hydroxy-9,15-
dioxoprostanoate 

M+Br81[-] 433.1403 263.5 2.40 -0.013 3.21 -0.078 1.85 -0.045 3 

15-oxo-Prostaglandin E2 

glyceryl ester 
M+Cl37[-] 461.2079 175.2 3.47 0.025 2.90 0.094 2.87 0.096 3 

Pyruvate 

Metabolism 
Dihydroxyacetone M-H[-] 90.0277 41.3 2.09 0.019 1.54 0.063 2.52 0.106 3 

Selenoamino acid 

metabolism 

Dithiothreitol M-H+O[-] 168.9993 290.5 1.67 0.012 0.30 0.010 2.21 0.074 3 

Oxidized dithiothreitol M+Br81[-] 232.9137 107.7 2.72 -0.013 3.46 -0.072 2.75 -0.059 3 

Starch and Sucrose 

Metabolism 
Cellobiose M+Na-2H[-] 362.0806 48 0.84 -0.005 1.01 -0.038 2.01 -0.075 3 
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Vitamin K 

metabolism 

Phylloquinone M+Br[-] 529.2684 248.4 3.44 -0.016 3.36 -0.069 2.14 -0.045 3 

Vitamin K1 epoxide M+Br[-] 545.2683 186.1 1.91 0.018 1.25 0.050 2.70 0.118 3 
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Supplemental Table 3-S3. Enriched pathways associated with pesticide exposures 

Pathways Overlap size Pathway size Ratio P-value Platform Pesticide 

Tyrosine metabolism 6 156 0.038 0.04857 HILICpos Organophosphate 

Beta-Alanine metabolism 6 34 0.176 0.00076 C18neg Organophosphate 

Glutamate metabolism 5 33 0.152 0.00345 C18neg Organophosphate 

Carnitine shuttle 6 53 0.113 0.00588 C18neg Organophosphate 

Glycine, serine, alanine and threonine metabolism 9 117 0.077 0.00933 C18neg Organophosphate 

Prostaglandin formation from arachidonate 7 79 0.089 0.01017 C18neg Organophosphate 

Histidine metabolism 5 45 0.111 0.0116 C18neg Organophosphate 

Arginine and Proline Metabolism 7 82 0.085 0.01176 C18neg Organophosphate 

Alanine and Aspartate Metabolism 5 46 0.109 0.01227 C18neg Organophosphate 

Pyruvate Metabolism 3 24 0.125 0.02849 C18neg Organophosphate 

Ascorbate (Vitamin C) and Aldarate Metabolism 5 62 0.081 0.03151 C18neg Organophosphate 

Butanoate metabolism 5 64 0.078 0.03445 C18neg Organophosphate 

Methionine and cysteine metabolism 7 109 0.064 0.03756 C18neg Organophosphate 

Fatty acid oxidation, peroxisome 2 13 0.154 0.04554 C18neg Organophosphate 

Glycolysis and Gluconeogenesis 4 49 0.082 0.04823 C18neg Organophosphate 

Glycine, serine, alanine and threonine metabolism 6 75 0.080 0.05697 HILICpos Pyrethroid 

Beta-Alanine metabolism 4 34 0.118 0.02521 C18neg Pyrethroid 

Arachidonic acid metabolism 5 53 0.094 0.03059 C18neg Pyrethroid 

Phytanic acid peroxisomal oxidation 3 22 0.136 0.03353 C18neg Pyrethroid 

Fatty acid activation 5 59 0.085 0.0405 C18neg Pyrethroid 

Carnitine shuttle 4 45 0.089 0.0105 HILICpos Organochlorine 
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Pyrimidine metabolism 4 74 0.054 0.04285 HILICpos Organochlorine 

Glycolysis and Gluconeogenesis 8 49 0.163 0.00034 C18neg Organochlorine 

Galactose metabolism 7 44 0.159 0.00092 C18neg Organochlorine 

Pentose phosphate pathway 7 50 0.140 0.00202 C18neg Organochlorine 

Fructose and mannose metabolism 5 28 0.179 0.00244 C18neg Organochlorine 

Propanoate metabolism 5 33 0.152 0.00521 C18neg Organochlorine 

Vitamin K metabolism 2 4 0.500 0.00563 C18neg Organochlorine 

Glycine, serine, alanine and threonine metabolism 10 117 0.085 0.0095 C18neg Organochlorine 

Sialic acid metabolism 5 37 0.135 0.0095 C18neg Organochlorine 

N-Glycan Degradation 3 14 0.214 0.01168 C18neg Organochlorine 

Starch and Sucrose Metabolism 3 14 0.214 0.01168 C18neg Organochlorine 

Hexose phosphorylation 4 28 0.143 0.01563 C18neg Organochlorine 

Glycerophospholipid metabolism 9 111 0.081 0.01773 C18neg Organochlorine 

Butanoate metabolism 6 64 0.094 0.02571 C18neg Organochlorine 

Glutamate metabolism 4 33 0.121 0.02647 C18neg Organochlorine 

Selenoamino acid metabolism 4 33 0.121 0.02647 C18neg Organochlorine 

Beta-Alanine metabolism 4 34 0.118 0.02857 C18neg Organochlorine 

Caffeine metabolism 3 23 0.130 0.04008 C18neg Organochlorine 

N-Glycan biosynthesis 3 24 0.125 0.04437 C18neg Organochlorine 

Pyruvate Metabolism 3 24 0.125 0.04437 C18neg Organochlorine 

Aminosugars metabolism 4 40 0.100 0.04638 C18neg Organochlorine 
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Supplemental Table 3-S4. Enriched metabolic pathways associated with xMWAS cluster 1 (OP) 

Pathways Overlap size Pathway size P-value Platform 

Pyrimidine metabolism 3 74 0.01613 HILICpos 

Aspartate and asparagine metabolism 3 98 0.0347 HILICpos 

Glycerophospholipid metabolism 3 109 0.04563 HILICpos 

Beta-Alanine metabolism 5 34 0.00017 C18neg 

Glutathione Metabolism 3 12 0.00017 C18neg 

Histidine metabolism 4 45 0.00109 C18neg 

Glycine, serine, alanine and threonine metabolism 6 117 0.00109 C18neg 

Glutamate metabolism 3 33 0.00412 C18neg 

Arachidonic acid metabolism 3 53 0.0116 C18neg 

Arginine and Proline Metabolism 3 82 0.03033 C18neg 
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Supplemental Table 3-S5. Enriched metabolic pathways associated with xMWAS cluster 2 (PYR, OC) 

Pathways Overlap size Pathway size P-value Platform 

Saturated fatty acids beta-oxidation 4 17 0.00025 HILICpos 

Di-unsaturated fatty acid beta-oxidation 4 20 0.00034 HILICpos 

Carnitine shuttle 3 45 0.01092 HILICpos 

Fatty Acid Metabolism 3 50 0.01319 HILICpos 

Pentose phosphate pathway 2 50 0.02017 C18neg 

Ascorbate (Vitamin C) and Aldarate Metabolism 2 62 0.02823 C18neg 

Butanoate metabolism 2 64 0.03017 C18neg 
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Supplemental Table 3-S6. Pathway enrichment analysis for features associated with all three pesticides in xMWAS 

Pathways Overlap size Pathway size P-value Platform 

Di-unsaturated fatty acid beta-oxidation 3 20 0.00143 HILICpos 

Carnitine shuttle 3 45 0.00933 HILICpos 

Selenoamino acid metabolism 2 33 0.0105 C18neg 

Glutamate metabolism 2 33 0.0105 C18neg 

Beta-Alanine metabolism 2 34 0.01084 C18neg 

Histidine metabolism 2 45 0.01706 C18neg 

Pentose phosphate pathway 2 50 0.02025 C18neg 

Ascorbate (Vitamin C) and Aldarate Metabolism 2 62 0.02664 C18neg 

Butanoate metabolism 2 64 0.02865 C18neg 
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Supplemental Figure 3-S1. Heatmap of pairwise correlations of pesticide counts. The heatmap color‐codes the pairwise Pearson 

correlations of organophosphates (OP), pyrethroids (PYR), and organochlorines (OC) counts. The shades of color (blue, white, and red) 

visualize correlation values from ‐1 to 1. Each square reports a Pearson correlation coefficient. 
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Supplemental Figure 3-S2. Identification of metabolomic features associated with pesticide 

exposure. (a) Type 1 Manhattan plot for OP-associated features in the HILIC column (positive ion 

mode), VIP score vs. m/z. Red dots represent features positively associated with OP exposure and 

green dots represent features negatively associated with OP exposure; b) Type 1 Manhattan plot 

for OP-associated features in the C18 column (negative ion mode), VIP score vs. mass-to-charge; 

c) Type 1 Manhattan plot for PYR-associated features in the HILIC column (positive ion mode); 

b) Type 1 Manhattan plot for PYR-associated features in the C18 column (negative ion mode); e) 

Type 1 Manhattan plot for OC-associated features in the HILIC column (positive ion mode); f) 

Type 1 Manhattan plot for OC-associated features in the C18 column (negative ion mode).
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Supplemental Figure 3-S3. Enriched pathways identified from the sensitivity analysis by additionally adjusting for education. The 

vertical axis represents the pathways associated with pesticides. Circle radius is proportional to the number of correlated metabolite 

features within each pathway (ratio). The horizontal axis also represents the ratio. The color represents the negative log10 (p-value) of 

each pathway.
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4 Towards epigenomic and metabolomic profiles of chronic organophosphate exposure in 

residents of California’s Central Valley 

4.1 Introduction 

Organophosphates (OPs) are non-persistent pesticides widely used for crop and 

agricultural food protection. The intended mechanism of action of OPs is damage to the peripheral 

and central nervous system of pests through the inhibition of acetylcholinesterase activity that 

leads to the neurotoxic accumulation of acetylcholine neurotransmitters (Terry Jr 2012; van der 

Plaat et al. 2018). While acute toxicity impacts mainly the cholinergic neurons of the nervous 

system, the toxicity of chronic and low-level exposure to OPs is likely mediated through a wide 

range of non-cholinergic mechanisms such as contributions to DNA damage, oxidative stress, 

immunotoxicity, mitochondrial dysfunction, and regulation of neuronal apoptosis 

(Androutsopoulos et al. 2013; Banerjee et al. 2001; Costa 2006; Farkhondeh et al. 2020; Zuluaga 

et al. 2016). Previous epidemiological studies have linked chronic low-level OP exposure to 

numerous adverse health effects, including neurodegenerative disease, such as seen in Parkinson's 

disease (PD) and Alzheimer’s disease (AD), diabetes, and cancers (Blair et al. 2015; Clary and 

Ritz 2003; Cockburn et al. 2011; Narayan et al. 2013; Paul et al. 2018b).  

Because of the rapid development of high-throughput analytical platforms such as high-

resolution metabolomics (HRM) and DNA methylation arrays in the past decades, we now have 

an opportunity to thoroughly investigate molecular responses related to OP exposures. 

Metabolomics technologies can simultaneously detect more than 10,000 chemicals, including 

endogenous molecules and exogenous chemicals or toxins, making this approach particularly 

effective for assessing environmental exposures (Bloszies and Fiehn 2018). For example, a cross-

sectional study characterized the urine metabolome of 83 pregnant women  finding that  pesticide 
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mixture exposures disturb energy metabolism (N. Bonvallot et al. 2013) and a study of 102 Chinese 

pregnant women suggested that OP and organochlorine (OC) exposures disrupt thyroid hormone 

metabolism and glyceraldehyde metabolism (Yang et al. 2020). Epigenomics provides another 

high-dimensional molecular approach that can improve our understanding of molecular 

mechanisms related to environmental pesticide exposures. For example, previously an in-vitro 

cancer cell line based study showed that three commonly used OP pesticides induce DNA 

methylation changes in 712 genes (Zhang et al. 2012). Furthermore, in the Agricultural Health 

Study, DNA methylation changes were associated with high pesticide exposure events in 

applicators suggesting that acute pesticide exposure may alter DNA methylation (Rusiecki et al. 

2017). In our California study, we previously illustrated that OP-related epigenetic changes are 

consistent with their intended mechanisms of action inhibiting acetylcholinesterase (Paul et al. 

2018a). To date, most studies using omics tools and investigating OP pesticides focused on a single 

molecular layer. Thus, it is yet unknown whether and how various molecular layers react to 

exposure or interact with each other generating a molecular cascade that mediates OP toxicity. 

Here, we aim to elucidate epigenetic as well as metabolomic changes induced by chronic 

low-level OP exposure typical for older adults living in heavily agricultural regions of Central 

California. We will also attempt to integrate the information from OP-related epigenomic and 

metabolomic signals to improve our understanding of molecular mechanisms involved in the 

human response to chronic OP exposures. To accomplish this, we utilized serum samples from 

176 control subjects recruited into a study of Parkinson’s disease with DNA methylation and 

metabolomics data.  In these residents we estimated chronic OP exposure from ambient sources at 

homes and workplaces using a geographic information system (GIS) based model and California 

pesticide use reporting data.  
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4.2 Methods 

4.2.1 Study population and samples collection 

The Parkinson’s Environment and Gene Study (PEG) is a case-control study designed to 

investigate PD etiology in agricultural regions of the California central valley. The study recruited 

PD cases and population-based non-PD controls from Kern, Tulare, or Fresno counties in central 

California from 2001 to 2007. Controls were identified from residential parcel listings from 

property tax assessor records and screened for eligibility by mail or telephone; participation was 

limited to one person per household. Eligibility criteria for controls included being over 35 years 

of age at enrollment, having lived in one of the three counties for at least the past 5 years, and not 

having received a Parkinsonism diagnosis. More detailed recruitment information has been 

provided elsewhere (Kang et al. 2005). 

For this study, we analyzed blood samples from 176 controls for whom we had both 

metabolomic and methylation data available. Demographic information was collected in 

standardized interviews. 

4.2.2 OP exposure assessment 

OP exposure assessment was performed as previously described (Furlong et al. 2020; Paul 

et al. 2018a). Briefly, we estimated ambient OP pesticide exposure for each participant from 

residential and occupational proximity to commercial agricultural pesticide applications using a 

geographic information systems (GIS) based model (Cockburn et al. 2011). This method links 

California state-mandated pesticide use reports (CA-PUR), a state-wide registry of all commercial 

pesticide applications, land use surveys providing locations of specific crops, and participants’ 

geocoded residential and occupational addresses. All records are available back to 1974. 
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Participants in our study population were assigned exposure to 25 different chemicals 

classified as OPs, based on the California Department of Pesticide Regulation (CDPR) and the 

pesticide action network (PAN) pesticide database. We calculated the total pounds of each 

chemical applied within 500 m of the participant’s residence and workplace based on their reported 

address histories for each year. For each individual OP pesticide, we averaged the pounds of 

pesticide applied per acre per year at each residential and occupational address over a ten-year 

period prior to enrollment and blood draw. As OPs have different toxicities that are not reflected 

in the amount (pounds) of pesticide applied, we then dichotomized this yearly-average pounds per 

acre at greater than the median levels, and opted for an overall OP count measure defined by 

summing the number of OP chemicals each participant was exposed to based on the dichotomized 

measure. Each participant could have been exposed at both residential and occupational addresses, 

only one, or neither Therefore, theoretically, the max OP count measurement is 50 if a participant 

were highly exposed to all OP chemicals at both addresses.  

4.2.3 DNA methylation quantification and preprocess 

For each participant, peripheral blood samples were collected, and we performed bisulfite 

conversion using the Zymo EZ DNA Methylation Kit (Zymo Research, Orange, CA, USA) as well 

as subsequent hybridization of the HumanMethylation450k Bead Chip (Illumina, San Diego, CA), 

and scanning (iScan, Illumina) according to the manufacturer’s protocols by applying standard 

settings.  

Raw methylation signal intensities were retrieved using the function read.metharray.exp 

of the minfi R package, followed by linear dye bias correction, noob background correction, and 

beta-mixture quantile normalization (BMIQ) for correcting probe design bias using the minfi and 

ChAMP R package (Aryee et al. 2014; Fortin et al. 2017; Fortin et al. 2014; Tian et al. 2017; Triche 
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et al. 2013). -values were used in all analyses. One sample was identified as low quality due to 

low median methylated and unmethylated signal intensities across the entire array and removed 

from the study population. Detection p-values were derived using the function detectionP as the 

probability of the total signal (methylated + unmethylated) being detected above the background 

signal level, as estimated from negative-control probes. All in all, 845 probes with a detection p-

value above 0.05 in at least 5% of samples were removed. Also, we removed 645 probes with a 

bead count <3 in at least 5% of samples; 11,334 probes on the X or Y chromosome; 7,306 probes 

containing a SNP at the CpG interrogation site and/or at the single nucleotide extension for 5% 

maf; and 27,332 cross-reactive probes. In total, 438,050 probes were included in downstream 

analyses. 

White blood cell composition was imputed for each study participant using our online 

published DNA Methylation Age Calculator, https://dnamage.genetics.ucla.edu/. The following 

imputed blood cell counts were included in downstream analyses: CD4+ T, naïve CD8+ T, 

exhausted cytotoxic CD8+ T cells (defined as CD8 positive CD28 negative CD45R negative, 

CD8+CD28-CD45RA-), plasmablasts, and granulocytes. Naïve CD8+ T, exhausted cytotoxic 

CD8+ T cells, and plasmablasts were calculated based on the Horvath method (Horvath and Levine 

2015). The remaining cell types were imputed using the Houseman method (Houseman et al. 2012). 

A potential batch effect (position on the array) was addressed using combat (Johnson et al. 2007). 

4.2.4 High-resolution metabolomics 

High-resolution metabolomics (HRM) profiling was completed according to established 

methods (Walker et al. 2018). Briefly, serum samples were collected during the interview and 

stored at -80 °C. Prior to HRM, batches of 40 serum samples were removed from storage and 

thawed on ice. Each sample was then thoroughly vortexed, and plasma proteins were precipitated 
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by diluting 65 μL of serum with 130 μL of LC-MS grade acetonitrile. The extract was centrifuged, 

and the resulting supernatant was transferred to an autosampler vial containing a low volume insert 

and maintained at 4ºC until analysis (<24 h). To evaluate system performance, we used two 

separate quality assessment methods. Our first QC sample was NIST 1950 (Simon-Manso et al. 

2013) which was analyzed at the beginning and end of the entire analytical run. The second QC 

sample (Q-Std) included commercially purchased plasma pooled from an unknown number of 

males and females. Q-Std was analyzed at the beginning, middle, and end of each batch of 40 

samples for normalization and batch effect evaluation. 

Sample extracts were analyzed in triplicate using a dual-column, dual-polarity approach 

that includes hydrophilic interaction (HILIC) chromatography with positive ESI and C18 

chromatography with negative ESI (Ultimate 3000, Q-Exactive HF, Thermo Fisher, m/z range 85-

1275) (Liu et al. 2016). The mass spectrometer was operated using ESI mode at a resolution of 

120,000 and mass-to-charge ratio (m/z) range 85-1275. High-resolution detection of m/z features 

was accomplished by a maximum injection time of 10 milliseconds and AGC target of 1x106. Raw 

data files were extracted and aligned using apLCMS (Yu et al. 2009) with modifications by 

xMSanalyzer (Uppal et al. 2013). Uniquely detected ions consisted of m/z, retention time, and ion 

abundance, referred to as m/z features. Prior to data analysis, m/z features were batch corrected 

using a novel algorithm based on wavelet (Deng et al. 2019). For further analyses, we only 

included metabolomic features detected in > 25% of all plasma samples, with median coefficients 

of variation (CV) among technical replicates < 30% and Pearson correlation > 0.7. Following 

quality assessment, intensities of three replicates for each feature were summarized using the 

median value. In addition, we conducted log2 transformation and auto-scaling. Missing values 
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were imputed using k-nearest neighbors (k=10) (Troyanskaya et al. 2001) imputed in the impute 

R package. 

4.2.5 Statistical analyses 

Epigenomic analyses 

The global mean methylation level was calculated by averaging genome-wide methylation 

levels across all 438,050 CpG sites. In addition, we calculated genomic region-specific mean 

methylation levels for CpGs within transcription start sites (TSS1500, TSS200), untranslated 

regions (5’UTR, 3’UTR), 1st Exon, and gene body. The association between OP exposure and 

global/genomic region-specific mean methylation levels were calculated using linear regression. 

We also conducted principal component analysis (PCA) for methylation data and the top 40 

principal components were correlated with the covariates including age, sex, education, 

race/ethnicity, and cell compositions. 

We identified CpG probes that are related to OP exposure by biweight midcorrelation 

(bicor) implemented in the WGCNA R package (Langfelder and Horvath 2008). Bicor  is a  

median-based measurement of correlation that is robust to outliers (Langfelder and Horvath 2012). 

We adjusted for potential confounders including age, sex, race/ethnicity, education, and cell 

compositions (naïve CD8 cells, CD8+CD28-CD45RA- T cells, Plasma Blasts, CD4 T cells, and 

Granulocytes) by regressing out the effects of these factors and retaining the residuals of DNA 

methylation levels for analyses. We accounted for the multiple testing via the false discovery rate 

(FDR)-adjusted p-values. 

CpGs were annotated using IlluminaHumanMethylation450kanno.ilmn12.hg19 R package. 

The Comparative Toxicogenomics Database (CTD) is a publicly available database that identifies 
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interactions between chemicals and genes (Mattingly et al. 2006). We searched on CTD to identify 

any previously known interaction between OP chemicals and selected CpG genes.  

In order to gain insight into the nature of the OP-related CpGs, we used the eFORGE 2.0 

(Breeze et al. 2016), which tests for enrichment of cell-type-specific DNase hypersensitive sites 

(DHS). This analysis was performed for DHS profiled in specific tissues and cell types generated 

by Roadmap (Kundaje et al. 2015). 

We conducted hypergeometric tests to test whether OP-related CpGs were randomly 

distributed across the genome or were more likely to be found in specific genomic regions (CpG 

islands, shores, shelves, or open sea area). We also conducted the gene ontology (GO) biological 

process, molecular function, and cellular component pathway enrichment analysis, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and disease ontology 

enrichment analysis using the clusterprofiler R package (Yu et al. 2012). GO terms were simplified 

for easier interpretation by calculating similarity of GO terms and removing those highly similar 

terms. In addition, we conducted genomic region enrichment analysis using a hypergeometric test 

to test for CpGs localization. 

Finally, we examined whether the OP-related CpGs were expression quantitative trait 

methylation loci (eQTMs) according to the Biobank-based Integrative Omics Study (BIOS) 

database. BIOS database is part of the Biobanking and BioMolecular Infrastructure of the 

Netherlands (BBMRI-NL), which captured meQTLs, eQTLs, and eQTMs from a genome-wide 

database of 3841 Dutch blood samples. 

Metabolomic analyses 
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To assess the relationship between the global metabolome and covariates, we first 

conducted principal component analysis (PCA) for metabolomic data, and the top 40 principal 

components were correlated with the age, sex, education, and race/ethnicity.  

We identified metabolomic features (m/z features) that are related to OP exposure by using 

a combination of multivariate and univariate approaches (Saccenti et al. 2014). We first filtered 

out features likely not associated with OP exposure by sparse partial least square regression 

analysis (sPLS). sPLS is a sparse version of the supervised, multivariate PLS method with a Lasso 

penalization that combines variable selection and modeling in a one-step procedure (Le Cao et al. 

2008). To adjust for potential confounders, we regressed the intensity of each feature on potential 

confounding variables (age, sex, education, and race/ethnicity) and formed residuals as the input 

matrix. The hyperparameters of the model were tuned by carrying out repeated cross-validations 

(50 x 5-fold CV). We then calculated bicor between OP exposure and metabolomic features 

selected by sPLS. We accounted for the multiple testing via the false discovery rate (FDR)-

adjusted p-values.  

HRM provides accurate mass (±5 parts-per-million; ppm) measures of ion m/z, which can 

be related to chemical monoisotopic mass. Discriminative features were first matched to a 

reference database of authenticated chemical standards previously derived with LC-MS/MS (Go 

et al. 2015). The error tolerance was 5 ppm and 30 seconds for m/z and retention time, respectively. 

Additional m/z features not matching these metabolites were then annotated by xMSannotator 

(Uppal et al. 2017). Accurate mass m/z for adducts formed under positive/negative ESI mode was 

matched to the Human Metabolome Database (HMDB), KEGG, and LipidMaps with a mass error 

threshold of 10 ppm. xMSannotator also considers the correlation of intensities and retention time 

and assigns confidence scores based on a multilevel scoring algorithm (0-3, a higher score 
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represents higher-confidence result), which ensures annotation accuracy. Only results with 

annotation scores greater than 2 were kept. 

We conducted pathway enrichment analysis utilizing mummichog version 2 to identify 

perturbed metabolic pathways associated with OP exposure (Nathalie Bonvallot et al. 2013). 

Although the tentative annotation results in mummichog may include false positives, the enriched 

pathways inferred by the algorithm have been proven to be valid and to reflect real biological 

activity (S Li et al. 2017; Mallozzi et al. 2016; Uppal et al. 2016). All metabolites annotated by 

mummichog were required to present in at least their primary adduct (M + H or M-H for positive 

and negative mode, respectively) to reduce the false positive match rate. The p-value threshold we 

relied on was 0.05. To include all possible metabolomic features involved in OP-associated 

metabolic pathways, all features previously selected by sPLS were included in pathway enrichment 

analyses. A pathway was considered significant if gamma-adjusted p-values were smaller than 

0.05. Only pathways that contained at least 3 discriminative metabolites were interpreted. 

4.2.6 Linking the epigenomic and metabolomic features 

To investigate the interplay between the metabolome and epigenome, we correlated OP-

related CpGs and OP-related metabolomic features with the metabolome and epigenome, 

respectively. Specifically, we calculated pairwise bicor measures between CpGs and metabolomic 

features. We additionally adjusted for our OP count measure to remove potential confounding. 

Multiple testing corrections were conducted using the Benjamini-Hochberg procedure, and 

significantly correlated CpG-metabolomic feature pairs were selected for downstream functional 

annotations. 

4.3 Results 

4.3.1 Study Population 
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The general workflow of the project is shown in Figure 4-1. Demographics of the 176 

healthy PEG1 controls are provided in Table 4-1. Approximately half of the participants included 

in the study were male (51%). Majority of the participants were elderly, with an average age of 66; 

and 90% of them were non-Hispanic whites. Participants who did not have both metabolomic and 

epigenomic data available were not different from participants who did with regards to age, sex, 

race/ethnicity, or exposure to OP pesticides. 

4.3.2 Epigenomic analyses for OP exposure 

Global methylation pattern 

OP exposure status was not associated with global mean methylation levels (averaged 

genome-wide methylation levels across the 438,050 CpG sites) (p-value = 0.43). In addition, mean 

methylation levels of CpG probes within specific genomic regions (TSS1500, TSS200, 5’UTR, 1st 

Exon, gene body, 3’UTR) were not significantly associated with OP exposure. 

 As shown in Figure 4-2, correlations between principal components (PCs) from the 

methylation data with OP exposure and covariates suggested that estimated cell types were 

strongly correlated with the top PCs. OP exposure was significantly correlated with the first and 

several other PCs, including PC 19, 29, 34, and 39. Consistent with previous studies (Cardenas et 

al. 2019), our result suggested that top PCs reflect DNA methylation differences in cell types and 

heterogeneity associated with covariates such as age, sex, race/ethnicity, and education. 

Epigenome-wide analyses 

We conducted biweighted midcorrelation analyses to identify CpGs related to OP exposure. 

After adjustment for multiple testing, none of the CpGs were significant at FDR < 0.05 level. Using 

a loose threshold, we identified 10 CpGs at a raw p-value = 1E-6 level (Table 4-2, Supplemental 

Figure 4-S1) and an additional 398 CpGs with a raw p-value < 5E-4 (Figure 4-3a), mapping to 356 
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genes. Approximately half of these 408 CpGs associated with OP exposure with P-value < 5E-4 

were hypermethylated (51.5% vs. 48.5%).  

The most significant CpG site is cg26835374 (intergenic, chr1:142,618,826), for which 

methylation was positively correlated with OP exposure (r = 0.36, p = 7.65E-07). Other top hits 

include cg09763120 in C11orf80 (r = 0.35, p = 1.87E-06), cg23037798 in HNRNPR (r = 0.35, p = 

2.24E-06), cg17559110 in AP2A2 (r = 0.34, p = 3.20E-06), and cg16471585 in KSR2 (r = 0.34, p 

= 3.22E-06), which were all positively associated with the OP exposure (Table 4-2). Based on the 

Comparative Toxicogenomics Database, OP chemicals (including monocrotophos, dicrotophos, 

dichlorvos, diazinon, chlorpyrifos, malathion, and phosalone) can affect the expression level of 92 

genes related to differentially methylated CpGs (Supplemental Table 4-S1). 

Functional analysis 

In order to gain insight into the nature of the 408 OP-related CpGs, we used the eFORGE 

v2 to test for the enrichment of tissue or cell-type specific DNase hypersensitive sites (DHS). None 

of the cell types was significantly enriched after multiple testing corrections. The strongest 

enrichment for the DHS was derived trophoblast cultured cells, fetal lung fibroblasts cell line, 

monocytes, and T cells, which we note is consistent with an OP pesticide-associated chronic 

inflammatory response (Supplemental Table 4-S2). 

We conducted genomic region enrichment analysis using the hypergeometric test. The 408 

differentially methylated CpGs in relation to OP exposure were significantly enriched for 

localization to CpG islands (44% of the 408 CpGs are in CpG islands, whereas 31% of all CpGs 

are in CpG islands, p-value = 1.0E-7), but not in shores, shelves, or open sea area. 

GO analyses of the genes annotated to the 408 OP-related CpGs identified 

overrepresentation of cellular components involving the acetyltransferase complex (GO:0000123, 
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GO:0031248, and GO:1902493) (Supplemental Table 4-S3). KEGG pathway enrichment analysis 

did not identify any statistically significant pathways after adjustment for multiple testing (Figure 

4-3b). The top enriched KEGG pathway is the glycosphingolipid (GSL) biosynthesis (hsa00604), 

followed by the bacterial invasion of epithelial cells (hsa05100). We also conducted disease 

ontology enrichment analysis and did not found any significantly enriched disease ontology. The 

majority of the top disease ontologies are related to cancer and skeletal muscle diseases (Figure 4-

3b). 

We also examined whether OP-related CpG sites were expression quantitative trait 

methylation loci (eQTMs), which means their methylation levels will affect the gene expression 

in blood. Based on the Biobank-based Integrative Omics Study (BIOS) database of the Biobanking 

and BioMolecular Infrastructure of the Netherlands (BBMRI-NL) (Bonder et al. 2017), we found 

that 3 of the 408 CpGs were identified as eQTMs, including cg17003212, cg26668919, and 

cg06639387 (Supplemental Table 4-S4). 

Sensitivity analysis 

We conducted a sensitivity analysis controlling for all covariates except cell compositions. 

In the sensitivity analysis, we identified 406 CpGs correlated with OP exposure with raw P-valve 

< 5E-4, 347 of which overlapped with the original result (Supplemental Table 4-S5). In addition, 

pathway enrichment analysis of these 406 CpGs showed the same set of enriched pathways as the 

original result. 

4.3.3 Metabolomic analyses for OP exposure 

Global metabolome pattern 

 Figure 4-4 displays the correlations between principal components (PCs) derived from the 

metabolomic data for OP exposure and covariates. The results suggest that covariates including 
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age, sex, and race/ethnicity are correlated with the top PCs. OP exposure was significantly 

correlated with several PCs – some of which were only correlated with OP exposures while others 

were correlated with OPs as well as all other covariates simultaneously - but not with the first PC. 

In line with our finding, previous studies (Li et al. 2019) also suggested that the influence of 

environmental exposure on the metabolome is not limited to the first component, and the small 

effect size might be masked by other variances. 

Metabolome-wide analysis and pathway enrichment analysis 

We detected 12925 metabolomic features from the HILIC column coupled with the 

positive ionization mode (HILICpos) and 7209 metabolomic features from the C18 column 

coupled with the negative ionization mode (C18neg). After quality control steps, a total of 16510 

metabolomic features (10959 HILICpos and 5551 C18neg) were included in the analyses.  

After adjusting for potential confounding variables (age, sex, and race/ethnicity), sPLS 

selected 1,367 metabolomic features (698 HILICpos features and 669 C18neg features) across 3 

components that are associated with OP exposure status (Figure 4-5a, Supplemental Figure 4-S2). 

We then conducted linear regressions for each of the metabolomic features on OP exposure. After 

adjusting for multiple comparisons, none of the features had FDR smaller than 0.05. Using less 

stringent criteria, we identified 99 features (7 HILICpos features and 92 C18neg features) with 

FDR smaller than 0.2 (Supplemental Figure 4-S2 and 4-S3).  

Using mummichog, we examined whether the features that sPLS selected were enriched 

within specific metabolic pathways. The result indicated that 14 metabolic pathways were 

differentially enriched with a p-value < 0.05 (Figure 4-5b, Supplemental Table 4-S6 and 4-S7). 

Top pathways included propanoate metabolism, fructose and mannose metabolism, cofactors such 
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as vitamin B5 and vitamin K, as well as lipid metabolism such as glycerophospholipid metabolism 

and glycosphingolipid biosynthesis.  

In total, 15.9% of the HILIC pos features and 16.2% C18 neg features were tentatively 

annotated to one or more unique metabolites with medium or high confidence scores based on 

xMSannotator. We further matched the metabolites with previously confirmed chemical identities 

using MS2 spectra compared with authentic compounds analyzed under the identical experimental 

condition according to the Metabolomics Standards Initiative (MSI) level 1 criteria. In total, we 

confirmed 23 metabolites (Table 4-3). Among them, 14 were positively associated with OP 

exposure, while other metabolites were negatively associated with OP. 

4.3.4 Multi-omics integration 

Biweighted midcorrelations 

We calculated pairwise Bicor correlations between 408 OP-related CpG sites and 99 OP-

related metabolomic features. Approximately half of the pairs (50.5%) were positively correlated 

(Figure 4-6a). After multiple comparison correction, none of the CpGs-metabolite correlations 

remained significant at FDR = 0.05 level.  One CpG (cg07385362) in UNKL was correlated with 

docosanamide (m/z = 374.3171, confidence level = 3) with FDR = 0.06 (bicor r = 0.35, see Figure 

4-6b and Supplemental Table 4-S8). UNKL (Unk Like Zinc Finger) encodes a RING finger protein 

that may function in Rac signaling and is related to the innate immune system. 

By correlating 408 OP-related CpGs with the whole metabolome, we additionally 

identified 1 CpG, cg08901151 in MAD1L1 as being significantly correlated with an unidentified 

metabolite (m/z = 261.1761) with FDR = 0.01 (bicor r = 0.43, see Figure 4-6b and Supplemental 

Table 4-S9). MAD1L1 (Mitotic Arrest Deficient 1 Like 1) is a component of the mitotic spindle-

assembly checkpoint. By correlating 99 metabolomic features previously associated with OP 
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exposure with all CpGs not OP-related, we identified 2 significant pairs with FDR < 0.05 (Figure 

4-6b). One CpG (cg09973663) in MYO1B was negatively correlated (bicor r = -0.43) with 

phenylacetic acid (m/z = 135.0452, confidence level = 1), and cg24365042 in ATF3 was positively 

correlated (bicor r = 0.43) with an unidentified metabolite (m/z = 241.2147). In addition, there 

were 515 pairs with FDR < 0.2 including 84 OP-related metabolomic features and 511 CpGs 

(Supplemental Table 4-S10). Pathway enrichment analyses showed that 515 CpG-metabolite pairs 

were involved in metabolic processes and nutrient-sensing, such as AMPK signaling pathway, 

glucagon signaling pathway, and type II diabetes mellitus (Figure 4-6c). 

4.4 Discussion 

Our study is mainly hypothesis-generating and serves as a proof of principle study for the 

usefulness of multi-omics approaches to address chronic, low level, and long-term environmental 

exposures and related health outcomes. Specifically, by linking GIS-modeled OP pesticide data 

with metabolomic and epigenomic data extracted from blood samples, we elucidated how different 

biological layers may respond to chronic low-level OP exposure. To obtain long-term OP exposure 

measurements for each participant, we combined California pesticide application records with 

home and work address histories. We then identified CpGs and metabolomic features and 

pathways significantly associated with OP exposure. The single-omics analyses showed both 

epigenomic and metabolomic signatures of OP as being enriched in the glycosphingolipid 

(GSL) biosynthesis pathway. Besides this common pathway, the metabolome and epigenome also 

exhibited distinct responses to OPs, with differently methylated CpGs being involved in 

intracellular membrane transport, cell adhesion, and carcinogenesis; and OP-related metabolites 

being involved in aromatic amino acids (AAA) metabolism, neurotransmitter precursors, oxidative 

stress, and mitochondria function. Moreover, we illustrated the possible interaction between these 
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two molecular layers through metabolic processes and nutrient-sensing pathways when we 

integrated the epigenomic and metabolomic signals. Our findings may facilitate a better 

understanding of the pathophysiology that eventually may lead to pesticide-related health 

outcomes (Barnham et al. 2004; Jenner 2003; Lin and Beal 2006; McGeer and McGeer 2004; 

Parrón et al. 2011). 

4.4.1 The glycosphingolipid biosynthesis pathway identified in both epigenomic and metabolomic 

analyses 

Both epigenomic and metabolomic analyses in our study suggest that chronic OP-exposure 

is involved in a wide range of molecular function and disease states. By comparing pathway 

enrichment results derived from single-omics analyses, we identified the GSL biosynthesis 

pathway as a shared mechanism identified with both our epigenomic and metabolomic approaches. 

OP-related CpGs within GSLs biosynthesis pathway were in B4GALNT1, HEXA, and ST3GAL1 

genes, respectively while metabolomic features involved in the pathway were annotated as 

cytidine-5'-monophosphate (CMP), galactose, and guanosine 5'-diphosphate (GDP). Previous 

studies have associated GSLs with environmental exposures such as air pollution and 

polybrominated biphenyls (PBBs) (Jeong et al. 2018; Walker et al. 2019a). GSLs play an important 

role in membrane organization and as signaling molecules. It has been shown that GSLs are 

involved in the regulation of cell properties such as adhesion, growth, apoptosis, and senescence 

(Garcia-Ruiz et al. 2015). Moreover, GSLs are potent regulators of the inflammatory process. 

Subtypes of GSLs are differentially expressed throughout the immune system and altered genes 

within the GSL pathway could be modulated through differentiation and activation of immune 

cells, suggesting a potential role for GSL in regulating immune functions. For example, 

monosialodihexosylganglioside (GM3) synthase B4GALNT1 is differentially activated through 



 

 

103 

 

activation and maturation of human B cells (Zhang et al. 2019). In our study, we observed negative 

correlations between OP exposure and CpGs involved in GSL biosynthesis, which might suggest 

the alteration of the immune system in response to these pesticides. Interestingly, GSLs have also 

been implicated in a variety of neurodegenerative diseases (Kolter 2012). A previous study 

reported higher levels of GSLs in the plasma from PD patients compared to controls (Mielke et al. 

2013), which is in line with the proposed role of neuroinflammation in the pathophysiology of PD 

(Horvath and Ritz 2015). Overall, our data suggest that OP exposure may alter the immune system 

in older adults and possibly this may contribute to neurodegenerative diseases such as PD. Future 

studies focusing on how GSLs pathways work together across different molecular layers in 

response to OP exposure are needed. 

4.4.2 Epigenomics and metabolomics suggested various distinct mechanisms in response to 

chronic OP exposure 

We also observed various distinctive signals for OP exposures that were not shared across 

the two molecular layers. For example, based on epigenomics, we identified several CpGs 

annotated to genes related to the membrane trafficking, such as AP2A2 (Adaptor Related Protein 

Complex 2 Subunit Alpha 2), DNM3 (Dynamin 3), Rab5A (Member RAS Oncogene Family), 

DYNC2H1 (Dynein Cytoplasmic 2 Heavy Chain 1), and VPS45 (Vacuolar Protein Sorting 45 

Homolog). It has been well-documented that dysfunction of intracellular membrane trafficking 

plays an important role in several neurodegenerative diseases such as AD, dementia, and especially 

PD (Abeliovich and Gitler 2016; Bandres-Ciga et al. 2019; Hunn et al. 2015). Many PD-related 

genes are directly involved in synaptic vesicle trafficking, and some well-known PD genes, such 

as LRRK2, have also been found to interact with genes such as DNM3 and AP2A2 (Bandres-Ciga 

et al. 2019; Beilina et al. 2014) involved in intracellular trafficking.  
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We also observed DNA methylation changes in genes related to carcinogenesis and tumor 

metastasis. Several top CpGs were located within genes involved in cell adhesion, such as JUP 

(Junction Plakoglobin), LPP (LIM Domain Containing Preferred Translocation Partner In 

Lipoma), and PTK2 (Protein Tyrosine Kinase 2). Growing evidence suggests that chronic pesticide 

exposure may increase the risk of various cancers (Weichenthal et al. 2010). Furthermore, several 

in vitro and in vivo studies have shown that epigenetic mechanisms may play an important role in 

pesticide-related carcinogenesis (Rusiecki et al. 2017; Zhang et al. 2012). 

In our metabolomics analysis, the most significantly enriched pathway was propanoate 

metabolism. Propanoate is a short-chain fatty acid derived from both endogenous and exogenous 

sources (Frye et al. 2016). Also, propanoate is a vital metabolite produced by the gut microbiome 

(Louis and Flint 2017). Propanoate metabolism has been reported to be associated with 

mitochondria function. Therefore, our result was in line with previous findings that chronic OP 

exposure may induce neurotoxicity mediates through mitochondria dysfunction (Farkhondeh et al. 

2020; Leung and Meyer 2019), which may contribute to cardiovascular disease, cancer, metabolic 

syndrome, and chronic neurodegenerative disorders such as PD and Huntington’s disease 

(Nicolson 2007; Soane et al. 2007; Swerdlow 2011). 

We also identified enrichment for metabolomic pathways involved in aromatic amino acids 

(phenylalanine, tryptophan, and tyrosine) metabolism, and we were able to confirm several 

metabolites within these pathways, such as phenylacetic acid and tyrosine. Phenylalanine is a 

metabolic precursor of tyrosine. Furthermore, tyrosine is a precursor of dopamine i.e. tyrosine is 

converted to L-dopa by tyrosine hydroxylase  (Y Liu et al. 2020). Previous studies suggested that 

alterations of tyrosine hydroxylase can contribute to PD risk because it affects the biosynthesis of 

dopamine (Priyadarshini et al. 2012; Tabrez et al. 2012). In addition, we also observed perturbed 
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glutamate metabolism related to OP exposure. Glutamate is an excitatory neurotransmitter in the 

central nervous system, and glutamate-mediated excitotoxicity has been linked to the etiology of 

PD (Meredith et al. 2009; Sonsalla et al. 1998). Collectively, our data suggest that OP-induced 

dysregulation of these neurotransmitter precursors could contributing to the etiology of PD.  

Our metabolomics analysis also identified alterations in several oxidative stress-related 

pathways, including vitamin C metabolism and glycerophospholipid metabolism. Previous studies 

have associated fatty acid oxidation and glycerophospholipid metabolism with numerous 

environmental exposures that are known to cause oxidative stress, such as persistent organic 

pollutant exposures, trichloroethylene, benzo[a]pyrene, and air pollution (Carrizo et al. 2017; 

Walker et al. 2016a; Walker et al. 2016b; Yan et al. 2019). Oxidative stress is also thought to play 

an important role in adverse health outcomes such as diabetes and neurodegenerative diseases, 

including AD and PD (Fillmore et al. 2014; Foley 1992; Lane et al. 2015). 

In summary, apart from the GSL biosynthesis pathway implicated by both the epigenome 

and metabolome as being altered by OP exposures, our approach also implicated distinct 

mechanisms within each omics layer in response to chronic OP exposure. The non-convergence 

of signals from the two molecular layers suggests that the epigenomic and metabolomic profiles 

reflect different aspects of the human system responding to chronic OP exposure. Interestingly, 

many of the pathways are indeed connected. For example, oxidative stress can influence membrane 

trafficking and eventually lead to neurodegenerative diseases (Lie and Nixon 2019). Thus, 

metabolomic and epigenomic profiles may inform on different aspects of a molecular cascade that 

reflects pathogenic mechanisms triggered by chronic OP exposure. It should be noted that other 

omics layers such as the transcriptome and proteome may be more proximal to the mechanisms 

invoked by the changes in the epigenome or metabolome. A cross-sectional study examining 
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biologic correlates of birthweight integrated the methylome with the transcriptome and 

metabolome, as well as a set of inflammatory proteins in cord blood samples and showed – as one 

would expect - stronger correlations between gene expression and methylation and also between 

gene expression and metabolites than between the more distal omics layers (Alfano et al. 2020). 

4.4.3 The epigenome and metabolome were connected through pathways involving metabolic 

processes and nutrient sensing 

To investigate how DNA methylation and metabolism are possibly mutually regulating 

each other in response to chronic OP exposure, we correlated OP-related signals identified within 

one omics layer with signals from the other layer while adjusting for OP exposure and other factors. 

We identified very few significantly associated CpG-metabolite pairs (at FDR < 0.05 level), 

possibly due to limited statistical power or the inherent properties of these two molecular layers. 

A previous study assessed 640 blood metabolites from 1814 participants of the Kooperative 

Gesundheitsforschung in der Region Augsburg (KORA) population for their association with 

457,004 CpG sites.  Not surprisingly, the effect of DNA methylation on the metabolome was not 

as strong as the effect of the genome, and many DNA methylation-metabolite associations were 

confounded by environmental factors (Petersen et al. 2014). In our integration analysis, we 

controlled for OP exposure and other potential confounders by calculating partial correlations and 

observed only weak associations between the two molecular layers which might indicate that the 

responses are mostly independent from each other. Also, it is worth noting that our DNA 

methylation data were extracted from whole blood, while metabolites found in the serum are 

largely subject to the metabolic function of other tissues, such as liver, kidney, or muscle (Petersen 

et al. 2014). 



 

 

107 

 

Due to the limited metabolite annotation ability and the risk of type I error, it is not 

appropriate to discuss correlations between specific molecules in detail as targeted analyses with 

larger sample size and experimental validation are required. Nevertheless, it is worthwhile noting 

that DNA methylation signals associated with OP-related metabolomic features were mainly 

involved in metabolic processes and nutrient-sensing. For example, AMPK (AMP-activated 

protein kinase) is one of the central regulators of cellular metabolism (Mihaylova and Shaw 2011). 

Also, AMPK is involved in the rate-limiting steps for fatty-acid and sterol synthesis (Sato et al. 

1993). Our finding that AMPK signaling pathway is associated with OP-related metabolomic 

changes coincides with the molecular function of AMPK. Meanwhile, the glucagon signaling 

pathway and Type II diabetes mellitus pathway are involved in regulating energy and glucose 

homeostasis. Thus, the epigenetic pathways found associated with OP-related metabolomic 

signaling are well-known metabolic regulators and, correspondingly, can be regulated by 

metabolic pathways. Although not directly associated with OP exposure, these CpG sites and 

epigenetic pathways may regulate the metabolome’s response to OPs or might be subject to the 

perturbations of the metabolism, and these pathways are also associated with diseases that have 

been related to OP-exposures previously. Although we cannot draw causal inferences from these 

epigenomic-metabolomic associations, our pilot study demonstrates the feasibility of using 

epigenomic-metabolomic integration in environmental epidemiological studies of long-term 

chronic low-level exposures. 

4.4.4 Limitations 

Our study has several limitations. First, our sample size was limited to 176 participants due 

to the availability of both metabolomics and epigenomics data. The relative sample size could limit 

the statistical power, especially when assessing the effect of low-level OP exposure on high-
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dimensional multi-omics datasets containing many noises. Nonetheless, as a hypothesis-

generating and proof of principle study, our result elucidated the feasibility of utilizing multiple 

omic datasets to study chronic environmental exposure. Second, although our GIS-based pesticide 

estimation allowed us to investigate chronic exposure over decades, assigning absolute exposure 

levels for each OP chemical to each participant is challenging. Also, ambient pesticide estimation 

does not reflect other sources of exposure, for example, diet. Still, it is unlikely for exposure from 

diet to be associated with ambient pesticides. Therefore, it will not bias the ambient pesticide-

epigenome relationship. Another limitation is that our epigenomics and metabolomics were 

measured within the blood. Although the blood can be an ideal surrogate tissue because it is readily 

available, future studies using other tissues, such as cerebrospinal fluid, could provide additional 

information. Finally, the limited metabolite annotation ability could influence the interpretation of 

our results. Adopting pathway and network analyses could improve annotation results, but it is still 

necessary to improve metabolite identification using either tandem MS or internal standards in 

future studies. 

4.5 Conclusion  

In summary, we linked GIS-modeled chronic low-level OP pesticide data with blood 

metabolomic and epigenomic data in an older adult population. Our findings suggest that OP 

exposure may alter the glycosphingolipid biosynthesis pathway as implicated by epigenome and 

metabolome profiles we identified. In addition, DNA methylation changes were involved in 

membrane trafficking and cell adhesion related mechanisms, while OP-related metabolites were 

involved in aromatic amino acid metabolism, oxidative stress, and mitochondrial function. 

Integrating epigenomic and metabolomic signals, we found that the metabolome and epigenome 

may mutually regulate each other through signaling pathways involved in metabolic processes and 
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nutrient sensing. Thus, it seems feasible to use multi-omics integration in studies of chronic 

environmental exposures in humans to gain a better understanding of the pathophysiology 

involved in pesticide-related chronic health outcomes. 
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4.6 Tables and figures 

 

 

  

Table 4-1. Distribution of demographics and OP pesticide level 

 PEG1 (n = 176) 

Age   

Min 35 

Max 92 

Mean (SD) 66.13 (13.40) 

Sex  

Male (%) 90 (51) 

Female (%) 86 (49) 

Race/Ethnicity  

White (%) 159 (90) 

Hispanic (%) 17 (10) 

Education  
Less than 12 years (%) 20 (11) 

12 years (%) 32 (18) 

More than 12 years (%) 124 (71) 

Organophosphate  

Min 0 

Max 24 

Mean (SD) 2.38 (4.00) 
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Table 4-2. Top 20 differentially methylated CpGs associated with OP exposure 

ID Bicor r Unadjusted P-value CHR MAPINFO UCSC gene UCSC Group Island 

cg26835374 0.362511739 7.65E-07 1 142618826 
  

Island 

cg09763120 0.350369446 1.87E-06 11 66529822 C11orf80 Body Island 

cg23037798 0.347832816 2.24E-06 1 23650159 HNRNPR Body 
 

cg17559110 0.342802282 3.20E-06 11 984447 AP2A2 Body S_Shelf 

cg16471585 0.342731919 3.22E-06 12 118199103 KSR2 Body Island 

cg06279535 0.339835049 3.94E-06 21 45135999 
  

N_Shelf 

cg13282252 0.338653294 4.28E-06 3 188581493 LPP Body 
 

cg04724556 0.332028496 6.74E-06 15 44507997 
   

cg17339258 -0.329151283 8.18E-06 14 59655074 DAAM1 TSS1500 Island 

cg02308245 -0.327067115 9.40E-06 16 85833143 COX4I1;EMC8 1stExon Island 

cg18642271 -0.324439596 1.12E-05 19 46180314 GIPR Body Island 

cg08166232 -0.323879446 1.16E-05 12 89918718 WDR51B;GALNT4 Body;TSS200 N_Shore 

cg19832597 -0.323842372 1.16E-05 7 30634132 GARS TSS200 Island 

cg16170490 0.3213646 1.37E-05 22 42302146 SREBF2 3'UTR N_Shelf 

cg16266672 0.318256415 1.67E-05 8 22461575 KIAA1967;C8orf58 TSS1500;3'UTR N_Shore 

cg12593608 -0.315103206 2.05E-05 15 72668042 C15orf34;HEXA TSS1500;Body Island 

cg13639866 0.311990878 2.50E-05 14 101430211 SNORD114-8 TSS1500 
 

cg24350213 -0.311029792 2.65E-05 17 39943012 JUP TSS200 Island 

cg05008688 0.309917102 2.84E-05 5 121464372 ZNF474 TSS1500 
 

cg26016985 0.309374376 2.94E-05 8 141821152 PTK2 Body 
 

Chr: chromosome 
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Table 4-3. Confirmed a OP-related metabolites 

m/z RT (s) Adduct Form Metabolite Bicor r b Platform 

110.0601 272.5 M+H 4-Aminophenol -0.163 HILIC 

142.0976 29.6 M+H L-Histidinol 0.049 HILIC 

153.0772 102.6 M+H L-Arabitol 0.014 HILIC 

181.0720 196.9 M+H D-Galactose -0.177 HILIC 

227.1136 110.4 M+H Carnosine 0.169 HILIC 

306.0489 118.2 M+H Cytidine 23-cyclic phosphate -0.130 HILIC 

347.2207 47.9 M+H Cortexolone 0.157 HILIC 

88.0404 47.0 M-H Beta-Alanine 0.156 C18 

88.9880 123.7 M-H Oxalic acid 0.019 C18 

116.0353 37.7 M-H Acetylglycine 0.017 C18 

129.0922 279.0 M-H Heptanoic acid -0.150 C18 

135.0452 252.4 M-H Phenylacetic acid -0.192 C18 

154.0623 50.6 M-H L-Histidine 0.128 C18 

158.0612 74.9 M-H Indoleacetaldehyde -0.002 C18 

159.0650 89.8 M-H Pimelic acid 0.000 C18 

164.0717 47.2 M-H L-Phenylalanine 0.016 C18 

165.0558 177.7 M-H 3-(2-Hydroxyphenyl) propanoic acid 0.106 C18 

177.0405 282.6 M-H L-Gulonolactone -0.127 C18 

178.0510 41.8 M-H Hippuric acid 0.157 C18 

187.1340 38.1 M-H 9-Hydroxydecanoic acid -0.048 C18 

191.0198 42.7 M-H Citric acid 0.001 C18 

203.0825 46.6 M-H L-Tryptophan 0.026 C18 

583.2554 127.8 M-H Bilirubin -0.006 C18 
a Chemical identification was conducted by matching peaks by accurate mass and retention time to authentic reference standards in 

an in-house library run under identical conditions using tandem mass spectrometry. 
b Correlations derived from biweighted midcorrelations. 
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Figure 4-1. Analytical workflow. Our study population includes 176 control participants residing in the Central Valley of California, 

from 2001 to 2007. Ambient OP pesticide exposure for each participant was estimated in a GIS-based model. Metabolomic and 

epigenomic profiles were extracted from blood. We first identified CpGs and metabolomic features significantly associated with OP 

exposure, and subsequently integrated OP-related features from the two molecular layers by calculating pairwise bicor correlations. 
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Figure 4-2. Associations with blood DNA methylation variability. Principal components (PCs) were correlated with OP exposure and 

covariates with bicor. Bicor p-values color-coded by smallest p-value (dark red; P < 0.001) to largest (blank; P > 0.10). The top 40 PCs 

explained approximately 50% of the variance in blood DNA methylation. The contribution of PCs to the variance explained is shown 

on the top. 
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Figure 4-3. Identification of CpGs and genetic pathways associated with OP pesticides exposure. Manhattan plot (a) showing the 

significance of associations between methylation levels of CpGs and OP exposure during the 10 years prior to the blood draw. The y-

axis shows the -log10(p-value) after adjustment for covariates and estimated cell proportions. Red dots represent CpG sites 

hypermethylated, and green dots represent CpG sites hypomethylated, respectively. And dot plots (b) show results of functional 

enrichment analyses. The left panel shows the top ten enriched KEGG pathways based on 408 OP-related CpGs. And the right panel 

shows the top ten enriched disease ontologies. The size of the dot represents the enrichment ratio.  
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Figure 4-4. Associations with serum metabolome variability. Principal components (PCs) were correlated with OP exposure and 

covariates with bicor. Bicor p-values color-coded by smallest p-value (dark red; p < 0.001) to largest (blank; P > 0.10). The top 40 PCs 

explained approximately 50% of the variance of the blood DNA methylation data. The contribution of PCs is shown on the top. 
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Figure 4-5. Identification of metabolomic features and pathways associated with OP pesticides 

exposure. (a) Left: Type 1 Manhattan plot for features in the HILIC column (positive ion mode), 

-log10(p-value) vs mass-to-charge (m/z). Only features selected by sparse PLS were included here. 

7 m/z features were found with FDR < 0.2. Red dots represent the features that were positively 

correlated with OP, and the green dots represent the features that were negatively correlated with 

OP; Right: Type 1 Manhattan plot for features in the C18 column (negative ion mode), -log10(p-

value) vs. mass-to-charge. 92 m/z features were found with FDR < 0.2. Dot plot (b) shows the 

results of mummichog pathway enrichment analyses. The size of the dot represents the enrichment 

ratio. 
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Figure 4-6. Metabolomics-driven and methylation-driven integration. (a) Heatmap showed the 

biweighted midcorrelations between OP exposure, 99 OP-related metabolomic features (columns), 

and 408 OP-related CpGs (rows). The color of the cell indicates the correlation between OP-related 

CpGs and OP-related metabolites; the row and column annotations indicate the correlation 

between OP and CpGs or metabolites, respectively. (b) scatter plots of CpG methylation levels 

and relative intensities of metabolomic features. Upper left: between OP-related CpGs and OP-

related metabolomic features, we identified one pair, cg07385362 (UNKL) and docosanamide, 

with FDR = 0.06; upper left: between OP-related CpGs and the rest of the metabolome, we 

identified one pair, cg08901151 (MAD1L1) and an unidentified m/z feature (m/z = 261.1761), with 

FDR = 0.01; bottom: between OP-related metabolomic features and the rest of the methylome, we 

identified two pairs with FDR < 0.05, including cg09973663 (MYO1B) with phenylacetic acid, 

and cg24365042 (ATF3) with an unidentified metabolite (m/z = 241.2147). (c) Dot plot shows 

results of functional enrichment analyses. By correlating OP-related metabolomic features with 

the rest of the methylome, we identified 515 pairs with FDR < 0.2 involving 84 OP-related 

metabolomic features and 511 CpGs. We conducted KEGG pathway enrichment analysis and 

mummichog enrichment analysis to identify genetic and metabolomic pathways significantly 

enriched. 
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4.7 Supplemental materials 

 
Supplemental Table 4-S1. Interaction between OP-related CpG genes and OP chemicals based on CTD database 

Chemical Name Gene Symbol Interaction PubMedID 

Monocrotophos APEX1 Monocrotophos results in increased expression of and affects the localization of APEX1 protein 28887667 

Monocrotophos APEX1 Monocrotophos results in increased expression of APEX1 mRNA 28887667 

Monocrotophos SREBF2 Monocrotophos results in increased expression of SREBF2 mRNA 32267039 

Dicrotophos AGPS dicrotophos results in decreased expression of AGPS mRNA 28302478 

Dicrotophos AHDC1 dicrotophos results in increased expression of AHDC1 mRNA 28302478 

Dicrotophos AKAP9 dicrotophos results in decreased expression of AKAP9 mRNA 28302478 

Dicrotophos ANKRD11 dicrotophos results in increased expression of ANKRD11 mRNA 28302478 

Dicrotophos AP2A2 dicrotophos results in increased expression of AP2A2 mRNA 28302478 

Dicrotophos AP3D1 dicrotophos results in increased expression of AP3D1 mRNA 28302478 

Dicrotophos ASAP1 dicrotophos results in increased expression of ASAP1 mRNA 28302478 

Dicrotophos B4GALNT1 dicrotophos results in increased expression of B4GALNT1 mRNA 28302478 

Dicrotophos BLM dicrotophos results in decreased expression of BLM mRNA 28302478 

Dicrotophos C1GALT1 dicrotophos results in decreased expression of C1GALT1 mRNA 28302478 

Dicrotophos C1QTNF6 dicrotophos results in increased expression of C1QTNF6 mRNA 28302478 

Dicrotophos CASZ1 dicrotophos results in increased expression of CASZ1 mRNA 28302478 

Dicrotophos CCDC126 dicrotophos results in decreased expression of CCDC126 mRNA 28302478 

Dicrotophos CHD6 dicrotophos results in increased expression of CHD6 mRNA 28302478 

Dicrotophos CNN2 dicrotophos results in increased expression of CNN2 mRNA 28302478 

Dicrotophos CNOT8 dicrotophos results in decreased expression of CNOT8 mRNA 28302478 

Dicrotophos COL9A3 dicrotophos results in decreased expression of COL9A3 mRNA 28302478 

Dicrotophos CREBBP dicrotophos results in increased expression of CREBBP mRNA 28302478 

Dicrotophos FAM118B dicrotophos results in decreased expression of FAM118B mRNA 28302478 

Dicrotophos FRAS1 dicrotophos results in increased expression of FRAS1 mRNA 28302478 

Dicrotophos GTF2H5 dicrotophos results in decreased expression of GTF2H5 mRNA 28302478 

Dicrotophos GTF3C6 dicrotophos results in decreased expression of GTF3C6 mRNA 28302478 

Dicrotophos HADHB dicrotophos results in decreased expression of HADHB mRNA 28302478 

Dicrotophos HERC4 dicrotophos results in decreased expression of HERC4 mRNA 28302478 

Dicrotophos IFT140 dicrotophos results in increased expression of IFT140 mRNA 28302478 

Dicrotophos INCENP dicrotophos results in increased expression of INCENP mRNA 28302478 

Dicrotophos JAKMIP2 dicrotophos results in decreased expression of JAKMIP2 mRNA 28302478 

Dicrotophos KDM6B dicrotophos results in increased expression of KDM6B mRNA 28302478 

Dicrotophos KIF20B dicrotophos results in decreased expression of KIF20B mRNA 28302478 

Dicrotophos LOX dicrotophos results in increased expression of LOX mRNA 28302478 

Dicrotophos LPP dicrotophos results in increased expression of LPP mRNA 28302478 

Dicrotophos NBPF1 dicrotophos results in increased expression of NBPF1 mRNA 28302478 

Dicrotophos NCLN dicrotophos results in increased expression of NCLN mRNA 28302478 

Dicrotophos OMA1 dicrotophos results in decreased expression of OMA1 mRNA 28302478 

Dicrotophos OSMR dicrotophos results in increased expression of OSMR mRNA 28302478 

Dicrotophos PAK1IP1 dicrotophos results in decreased expression of PAK1IP1 mRNA 28302478 

Dicrotophos PDHB dicrotophos results in decreased expression of PDHB mRNA 28302478 

Dicrotophos PKD1 dicrotophos results in increased expression of PKD1 mRNA 28302478 

Dicrotophos PLEKHA6 dicrotophos results in increased expression of PLEKHA6 mRNA 28302478 

Dicrotophos POLD4 dicrotophos results in decreased expression of POLD4 mRNA 28302478 

Dicrotophos PPARD dicrotophos results in increased expression of PPARD mRNA 28302478 

Dicrotophos PSMB1 dicrotophos results in decreased expression of PSMB1 mRNA 28302478 

Dicrotophos RAB1A dicrotophos results in decreased expression of RAB1A mRNA 28302478 

Dicrotophos RAB8B dicrotophos results in decreased expression of RAB8B mRNA 28302478 

Dicrotophos RARS2 dicrotophos results in decreased expression of RARS2 mRNA 28302478 

Dicrotophos RELA dicrotophos results in increased expression of RELA mRNA 28302478 

Dicrotophos RIOK2 dicrotophos results in decreased expression of RIOK2 mRNA 28302478 

Dicrotophos RPL26 dicrotophos results in decreased expression of RPL26 mRNA 28302478 

Dicrotophos SERINC1 dicrotophos results in decreased expression of SERINC1 mRNA 28302478 

Dicrotophos SETD1B dicrotophos results in increased expression of SETD1B mRNA 28302478 

Dicrotophos SLC9A1 dicrotophos results in increased expression of SLC9A1 mRNA 28302478 

Dicrotophos SMTN dicrotophos results in increased expression of SMTN mRNA 28302478 

Dicrotophos SMYD3 dicrotophos results in decreased expression of SMYD3 mRNA 28302478 

Dicrotophos SNX13 dicrotophos results in decreased expression of SNX13 mRNA 28302478 

Dicrotophos SPCS2 dicrotophos results in decreased expression of SPCS2 mRNA 28302478 

Dicrotophos SPRED2 dicrotophos results in increased expression of SPRED2 mRNA 28302478 

Dicrotophos SREBF2 dicrotophos results in increased expression of SREBF2 mRNA 28302478 

Dicrotophos SSH2 dicrotophos results in increased expression of SSH2 mRNA 28302478 

Dicrotophos TAF1D dicrotophos results in decreased expression of TAF1D mRNA 28302478 

Dicrotophos TAPBP dicrotophos results in increased expression of TAPBP mRNA 28302478 

Dicrotophos TERT dicrotophos results in increased expression of TERT mRNA 28302478 

Dicrotophos TP53INP2 dicrotophos results in increased expression of TP53INP2 mRNA 28302478 

Dicrotophos TUBD1 dicrotophos results in decreased expression of TUBD1 mRNA 28302478 

Dicrotophos UNKL dicrotophos results in increased expression of UNKL mRNA 28302478 

Dicrotophos VPS45 dicrotophos results in decreased expression of VPS45 mRNA 28302478 

Dicrotophos WASF2 dicrotophos results in increased expression of WASF2 mRNA 28302478 

Dicrotophos WDR92 dicrotophos results in decreased expression of WDR92 mRNA 28302478 

Dicrotophos YEATS2 dicrotophos results in increased expression of YEATS2 mRNA 28302478 
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Dicrotophos ZFP36L2 dicrotophos results in increased expression of ZFP36L2 mRNA 28302478 

Dicrotophos ZNF680 dicrotophos results in decreased expression of ZNF680 mRNA 28302478 

Dicrotophos ZNF70 dicrotophos results in increased expression of ZNF70 mRNA 28302478 

Dichlorvos GZMA Dichlorvos results in decreased expression of GZMA mRNA 16002202 

Dichlorvos GZMA Dichlorvos results in decreased expression of GZMA protein 16002202 

Diazinon BMP6 Diazinon results in increased expression of BMP6 mRNA 29108742 

Diazinon CDKN1C Diazinon affects the expression of CDKN1C mRNA 22546817 

Diazinon CX3CR1 Diazinon results in decreased expression of CX3CR1 mRNA 24356939 

Diazinon ETS1 Diazinon affects the expression of ETS1 mRNA 22546817 

Diazinon GNA11 Diazinon results in decreased expression of GNA11 mRNA 17452286 

Diazinon KIF20B Diazinon affects the expression of KIF20B mRNA 22546817 

Diazinon LATS2 Diazinon affects the expression of LATS2 mRNA 22546817 

Diazinon PKD1 Diazinon affects the expression of PKD1 mRNA 22546817 

Diazinon PKIB Diazinon results in increased expression of PKIB mRNA 17452286 

Chlorpyrifos AKAP9 [Copper co-treated with Chlorpyrifos] results in decreased expression of AKAP9 mRNA 21356183 

Chlorpyrifos APEX1 Chlorpyrifos results in increased expression of and affects the localization of APEX1 protein 28887667 

Chlorpyrifos APEX1 Chlorpyrifos results in increased expression of APEX1 mRNA 28887667 

Chlorpyrifos ATF3 Chlorpyrifos results in increased expression of ATF3 mRNA 21356183 

Chlorpyrifos CLIP3 Chlorpyrifos results in increased expression of CLIP3 protein 16790487 

Chlorpyrifos CPEB2 Chlorpyrifos results in decreased expression of CPEB2 mRNA 30621213 

Chlorpyrifos CPEB2 Chlorpyrifos results in increased expression of CPEB2 mRNA 30621213 

Chlorpyrifos DLGAP2 Chlorpyrifos results in decreased expression of DLGAP2 mRNA 18668222 

Chlorpyrifos FNTB Chlorpyrifos results in increased expression of FNTB mRNA 18668222 

Chlorpyrifos GTF3C6 Chlorpyrifos affects the expression of GTF3C6 mRNA 27905518 

Chlorpyrifos GTF3C6 [Chlorpyrifos co-treated with Ethylenethiourea] results in decreased expression of GTF3C6 mRNA 27905518 

Chlorpyrifos HTRA2 Chlorpyrifos results in decreased expression of HTRA2 mRNA 20350560 

Chlorpyrifos NDUFS3 3-methyladenine inhibits the reaction [Chlorpyrifos results in decreased expression of NDUFS3 protein] 26070385 

Chlorpyrifos NDUFS3 Chlorpyrifos results in decreased expression of NDUFS3 protein 26070385 

Chlorpyrifos NDUFS3 PRKN protein inhibits the reaction [Chlorpyrifos results in decreased expression of NDUFS3 protein] 26070385 

Chlorpyrifos PHLDA2 Chlorpyrifos results in increased expression of PHLDA2 mRNA 21356183 

Chlorpyrifos PKIB Chlorpyrifos results in increased expression of PKIB mRNA 17452286 

Chlorpyrifos PTK2 Chlorpyrifos results in increased expression of PTK2 mRNA 20691718 

Chlorpyrifos RELA Chlorpyrifos results in decreased expression of RELA mRNA 30621213 

Chlorpyrifos SSH2 Chlorpyrifos results in increased expression of SSH2 mRNA 21356183 

Chlorpyrifos ST8SIA3 Chlorpyrifos results in decreased expression of ST8SIA3 mRNA 18668222 

Chlorpyrifos TTF1 [Copper co-treated with Chlorpyrifos] results in decreased expression of TTF1 mRNA 21356183 

Chlorpyrifos ZFP36L2 Chlorpyrifos results in decreased expression of ZFP36L2 mRNA 27905518 

Chlorpyrifos ZFP36L2 Chlorpyrifos results in increased expression of ZFP36L2 mRNA 30621213 

Chlorpyrifos ZFP36L2 Chlorpyrifos results in decreased expression of ZFP36L2 mRNA 27905518 

Malathion EPS8L1 Malathion results in increased expression of EPS8L1 mRNA 32069766 

Malathion RELA Malathion results in increased expression of RELA mRNA 28987951 

Malathion RELA Taurine inhibits the reaction [Malathion results in increased expression of RELA mRNA] 28987951 

Phosalone RELA Ellagic Acid inhibits the reaction [phosalone results in increased expression of RELA protein] 27965107 

Phosalone RELA phosalone results in increased expression of RELA protein 27965107 
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Supplemental Table 4-S2. OP-related CpGs enrichment analysis of tissue or cell-type specific DNase hypersensitive sites in 

Roadmap 

Cell Tissue Datatype Accession Unadjusted P-value 

E005 H1 BMP4 Derived Trophoblast Cultured Cells ES Cell DHS E005 0.00379 

E017 IMR90 fetal lung fibroblasts Cell Line Lung DHS E017 0.00731 

E029 Primary monocytes from peripheral blood Blood DHS E029 0.00868 

E028 Breast variant Human Mammary Epithelial Cells Breast DHS E028 0.00983 

E094 Gastric Gastric DHS E094 0.0103 

E046 Primary Natural Killer cells from peripheral Blood DHS E046 0.0184 

E033 Primary T cells from cord blood Blood DHS E033 0.0272 

E034 Primary T cells from peripheral blood Blood DHS E034 0.0297 

E056 Foreskin Fibroblast Primary Cells skin02 Skin DHS E056 0.0336 

E100 Psoas Muscle Psoas Muscle DHS E100 0.0459 
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Supplemental Table 4-S3. Top enriched GO terms based on 408 OP-related CpGs 

KEGG ID Pathway Name Background Ratio P Value Q Value Count Type 

GO:0000123 histone acetyltransferase complex 77/17403 5.83E-04 1.30E-01 7 CC 

GO:0031248 protein acetyltransferase complex 86/17403 1.13E-03 1.30E-01 7 CC 

GO:1902493 acetyltransferase complex 86/17403 1.13E-03 1.30E-01 7 CC 

GO:0030914 STAGA complex 12/17403 1.25E-03 1.30E-01 3 CC 

GO:0014704 intercalated disc 49/17403 2.14E-03 1.77E-01 5 CC 

GO:0005795 Golgi stack 127/17403 2.66E-03 1.84E-01 8 CC 

GO:0042575 DNA polymerase complex 20/17403 5.81E-03 3.11E-01 3 CC 

GO:0001725 stress fiber 66/17403 7.77E-03 3.11E-01 5 CC 

GO:0097517 contractile actin filament bundle 66/17403 7.77E-03 3.11E-01 5 CC 

GO:0030117 membrane coat 94/17403 8.35E-03 3.11E-01 6 CC 

GO:0048475 coated membrane 94/17403 8.35E-03 3.11E-01 6 CC 

GO:0044291 cell-cell contact zone 69/17403 9.34E-03 3.11E-01 5 CC 

GO:0070461 SAGA-type complex 24/17403 9.77E-03 3.11E-01 3 CC 

GO:0032432 actin filament bundle 72/17403 1.11E-02 3.28E-01 5 CC 

GO:0032580 Golgi cisterna membrane 74/17403 1.24E-02 3.43E-01 5 CC 

GO:0031984 organelle subcompartment 346/17403 1.36E-02 3.50E-01 13 CC 

GO:0016342 catenin complex 28/17403 1.50E-02 3.52E-01 3 CC 

GO:0042641 actomyosin 78/17403 1.53E-02 3.52E-01 5 CC 

GO:0098791 Golgi apparatus subcompartment 326/17403 2.00E-02 3.72E-01 12 CC 

GO:0015629 actin cytoskeleton 484/17403 2.01E-02 3.72E-01 16 CC 

GO:0060249 anatomical structure homeostasis 412/16658 5.50E-04 5.30E-01 18 BP 
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GO:0071214 cellular response to abiotic stimulus 314/16658 6.39E-04 5.30E-01 15 BP 

GO:0104004 cellular response to environmental stimulus 314/16658 6.39E-04 5.30E-01 15 BP 

GO:0061013 regulation of mRNA catabolic process 192/16658 7.78E-04 5.30E-01 11 BP 

GO:0051489 regulation of filopodium assembly 41/16658 8.32E-04 5.30E-01 5 BP 

GO:0035721 intraciliary retrograde transport 12/16658 1.15E-03 5.51E-01 3 BP 

GO:0061614 pri-miRNA transcription by RNA polymerase II 46/16658 1.41E-03 5.51E-01 5 BP 

GO:0036376 sodium ion export across plasma membrane 14/16658 1.85E-03 5.51E-01 3 BP 

GO:0006363 termination of RNA polymerase I transcription 30/16658 2.00E-03 5.51E-01 4 BP 

GO:0051291 protein heterooligomerization 125/16658 2.00E-03 5.51E-01 8 BP 

GO:0031667 response to nutrient levels 470/16658 2.41E-03 5.51E-01 18 BP 

GO:0042339 keratan sulfate metabolic process 32/16658 2.55E-03 5.51E-01 4 BP 

GO:0055117 regulation of cardiac muscle contraction 77/16658 2.73E-03 5.51E-01 6 BP 

GO:0006883 cellular sodium ion homeostasis 16/16658 2.77E-03 5.51E-01 3 BP 

GO:0055119 relaxation of cardiac muscle 16/16658 2.77E-03 5.51E-01 3 BP 

GO:0120032 regulation of plasma membrane bounded cell projection assembly 164/16658 3.07E-03 5.51E-01 9 BP 

GO:0046847 filopodium assembly 55/16658 3.14E-03 5.51E-01 5 BP 

GO:0035994 response to muscle stretch 17/16658 3.32E-03 5.51E-01 3 BP 

GO:0060491 regulation of cell projection assembly 166/16658 3.33E-03 5.51E-01 9 BP 

GO:0034660 ncRNA metabolic process 448/16658 3.46E-03 5.51E-01 17 BP 

GO:0003730 mRNA 3'-UTR binding 82/16050 1.63E-04 8.49E-02 8 MF 

GO:0035925 mRNA 3'-UTR AU-rich region binding 26/16050 1.37E-03 1.90E-01 4 MF 

GO:0001098 basal transcription machinery binding 68/16050 1.83E-03 1.90E-01 6 MF 

GO:0001099 basal RNA polymerase II transcription machinery binding 68/16050 1.83E-03 1.90E-01 6 MF 

GO:0017091 AU-rich element binding 28/16050 1.83E-03 1.90E-01 4 MF 
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GO:0003924 GTPase activity 299/16050 4.86E-03 3.19E-01 13 MF 

GO:0008373 sialyltransferase activity 20/16050 6.10E-03 3.19E-01 3 MF 

GO:0045182 translation regulator activity 120/16050 8.00E-03 3.19E-01 7 MF 

GO:0016757 transferase activity, transferring glycosyl groups 265/16050 1.27E-02 3.19E-01 11 MF 

GO:0003713 transcription coactivator activity 305/16050 1.41E-02 3.19E-01 12 MF 

GO:0005525 GTP binding 342/16050 1.41E-02 3.19E-01 13 MF 

GO:0008236 serine-type peptidase activity 166/16050 1.41E-02 3.19E-01 8 MF 

GO:0017166 vinculin binding 10/16050 1.46E-02 3.19E-01 2 MF 

GO:0000993 RNA polymerase II complex binding 50/16050 1.48E-02 3.19E-01 4 MF 

GO:0032550 purine ribonucleoside binding 346/16050 1.54E-02 3.19E-01 13 MF 

GO:0019888 protein phosphatase regulator activity 77/16050 1.56E-02 3.19E-01 5 MF 

GO:0051059 NF-kappaB binding 28/16050 1.57E-02 3.19E-01 3 MF 

GO:0016825 hydrolase activity, acting on acid phosphorus-nitrogen bonds 170/16050 1.61E-02 3.19E-01 8 MF 

GO:0017171 serine hydrolase activity 170/16050 1.61E-02 3.19E-01 8 MF 

GO:0001883 purine nucleoside binding 349/16050 1.64E-02 3.19E-01 13 MF 
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Supplemental Table 4-S4. Identified eQTMs from 408 OP-related CpGs 

PValue CpG 
CpG_C

hr 

CpG_ChrP

os 

CpG_ge

ne 

Gene_C

hr 

Gene_CenterChr

Pos 

CisTra

ns 

SNPTy

pe 

AlleleAssess

ed 

HGNCNa

me 

1.62E-

09 

cg170032

12 
10 97054967 TNXB 10 97050781 cis C/T C PDLIM1 

1.87E-

06 

cg266689

19 
6 35311486 TNXB 6 35310335 cis C/T C PPARD 

2.83E-

04 

cg066393

87 
1 228594973 TNXB 1 228823162 cis C/T C FTH1P2 
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Supplemental Table 4-S5. Sensitivity analysis: top 20 differentially methylated CpGs associated with OP exposure, 

unadjusted for cell compositions 

ID Bicor r Unadjusted P-value CHR MAPINFO UCSC gene UCSC Group 

cg16471585 0.34634389 2.49E-06 12 118199103 KSR2 Body 

cg09763120 0.34374536 3.00E-06 11 66529822 C11orf80 Body 

cg23037798 0.34193852 3.40E-06 1 23650159 HNRNPR Body 

cg26835374 0.34029754 3.82E-06 1 142618826   

cg13282252 0.33754001 4.62E-06 3 188581493 LPP Body 

cg06279535 0.33642282 4.99E-06 21 45135999   

cg17339258 -0.3324684 6.54E-06 14 59655074 DAAM1 TSS1500 

cg04724556 0.33051965 7.46E-06 15 44507997   

cg19832597 -0.3259911 1.01E-05 7 30634132 GARS TSS200 

cg05008688 0.32324406 1.21E-05 5 121464372 ZNF474 TSS1500 

cg16170490 0.32132282 1.37E-05 22 42302146 SREBF2 3'UTR 

cg17559110 0.32095833 1.40E-05 11 984447 AP2A2 Body 

cg12593608 -0.3186597 1.63E-05 15 72668042 HEXA TSS1500 

cg13639866 0.31626334 1.90E-05 14 101430211 AL132709.8 TSS1500 

cg08166232 -0.3146495 2.11E-05 12 89918718 GALNT4 Body 

cg24350213 -0.3136159 2.25E-05 17 39943012 JUP TSS200 

cg16656979 -0.3133645 2.29E-05 15 37403242   

cg25470741 -0.3132502 2.30E-05 19 44617434 ZNF225 TSS200 

cg26016985 0.31186559 2.51E-05 8 141821152 PTK2 Body 

cg13699934 -0.3115614 2.56E-05 9 93956018     
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Supplemental Table 4-S6. Enriched metabolic pathways associated with OP exposure 

Pathways Overlap size Pathway size p-value platform 

Propanoate metabolism 4 18 0.00958 HILICpos 

Fructose and mannose metabolism 5 27 0.00958 HILICpos 

Bile acid biosynthesis 5 36 0.03008 HILICpos 

Glycerophospholipid metabolism 10 109 0.05344 HILICpos 

Vitamin K metabolism 3 4 0.01034 C18neg 

N-Glycan biosynthesis 7 24 0.0258 C18neg 

Phosphatidylinositol phosphate metabolism 10 42 0.03159 C18neg 

Tyrosine metabolism 37 221 0.03235 C18neg 

Ascorbate (Vitamin C) and Aldarate Metabolism 13 62 0.03865 C18neg 

Vitamin B5 - CoA biosynthesis from pantothenate 4 11 0.0389 C18neg 

Glutamate metabolism 8 33 0.04529 C18neg 

Glycosphingolipid biosynthesis 3 7 0.04621 C18neg 

Blood Group Biosynthesis 3 7 0.04621 C18neg 

Phytanic acid peroxisomal oxidation 6 22 0.04748 C18neg 
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Supplemental Table 4-S7. Mummichog annotated metabolites within significantly enriched pathways 

pathway Name Chemical ID Formula ion mz time coef pvalue 
Platfor

m 

Metaboli

te 

Annotati

on 

Confiden

ce 

Ascorbate (Vitamin C) and 

Aldarate Metabolism 

Oxalic acid C00209 C2H2O4 M-H[-] 88.988 123.7 0.019 8.06E-01 C18neg 1 

L-Gulonolactone C01040 
C6H10O6 M-H[-] 177.0405 282.6 

-

0.127 9.28E-02 C18neg 1 

Citric acid C00158 C6H8O7 M-H[-] 191.0198 42.7 0.001 9.89E-01 C18neg 1 

Phenylacetaldehyde C00601 
C8H8O M+Br[-] 198.9756 45.3 

-

0.069 3.61E-01 C18neg 3 

cis-Aconitate C00417 
C6H6O6 M+Cl37[-] 210.9837 54.8 

-

0.131 8.21E-02 C18neg 3 

L-Gulonate C00800 C6H12O7 M+HCOO[-] 241.0563 40.5 0.007 9.26E-01 C18neg 3 

Bile acid biosynthesis 

Calcidiol C01561 
C27H44O2 M+H+Na[2+] 212.1645 22.6 0.109 1.49E-01 

HILICp

os 3 

7alpha-Hydroxy-3-oxo-4-cholestenoate C17337 
C27H42O4 M+2H[2+] 216.1594 25.5 0.074 3.28E-01 

HILICp

os 3 

Cholesterol ester C02530 
 

C28H45O2R M+2H[2+] 324.2893 30.3 

-

0.144 5.60E-02 

HILICp

os 3 

3alpha,7alpha-Dihydroxy-5beta-cholestan-26-

al 
C05445 

C27H46O3 

M+HCOONa[

1+] 487.3371 47.1 

-

0.089 2.39E-01 

HILICp

os 3 

3alpha,7alpha,24-Trihydroxy-5beta-

cholestanoyl-CoA 
C05448 

C48H80N7O20P3S M+2H[2+] 600.7209 79 

-

0.148 5.05E-02 

HILICp

os 3 

Blood Group Biosynthesis 

CMP 

C00055 
C9H14N3O8P M-H+O[-] 338.0362 49.5 

-

0.019 8.01E-01 C18neg 3 

C00055 
C9H14N3O8P M+K-2H[-] 358.9951 67.8 

-

0.121 1.09E-01 C18neg 3 

GDP C00035 
C10H15N5O11P2 M+Na-2H[-] 462.9889 38.1 

-

0.134 7.53E-02 C18neg 3 

Fructose and mannose 

metabolism 

L-Fucose 1-phosphate C02985 
C6H13O8P M+2H[2+] 123.0247 250.3 

-

0.159 3.53E-02 

HILICp

os 3 

D-Glyceraldehyde C00577 
C3H6O3 

M+HCOONa[

1+] 159.0262 108.9 0.062 4.15E-01 

HILICp

os 3 

Galactose C01582 
C6H12O6 M+H[1+] 181.072 196.9 

-

0.177 1.84E-02 

HILICp

os 1 

GDP-D-mannose C00096 
C16H25N5O16P2 

M(C13)+H[1+

] 607.0916 43.8 0.080 2.89E-01 

HILICp

os 3 

Glutamate metabolism 

Bicarbonate C00288 HCO3 M+Cl37[-] 97.9594 28.9 0.046 5.45E-01 C18neg 3 

2-Methyl-3-oxopropanoate C00349 
C4H6O3 M(C13)-H[-] 102.0277 24.3 

-

0.192 1.05E-02 C18neg 3 

Succinate C00042 C4H6O4 M+Cl[-] 152.9959 36.5 0.099 1.92E-01 C18neg 3 

L-Glutamate C00025 C5H9NO4 M+Cl37[-] 184.0194 36.6 0.021 7.86E-01 C18neg 3 

gamma-L-Glutamyl-L-cysteine C00669 
C8H14N2O5S 

M+CH3COO[-

] 309.0781 80.3 0.198 8.52E-03 C18neg 3 

Glycosphingolipid 

biosynthesis - 

(neo)lactoseries/ganglioseries 

CMP 

C00055 
C9H14N3O8P M-H+O[-] 338.0362 49.5 

-

0.019 8.01E-01 C18neg 3 

C00055 
C9H14N3O8P M+K-2H[-] 358.9951 67.8 

-

0.121 1.09E-01 C18neg 3 

Galactose C01582 
C6H12O6 M+H[1+] 181.072 196.9 

-

0.177 1.84E-02 

HILICp

os  
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GDP C00035 
C10H15N5O11P2 M+Na-2H[-] 462.9889 38.1 

-

0.134 7.53E-02 C18neg 3 

N-Glycan biosynthesis 

Isopentenyl diphosphate 

C00129 C5H12O7P2 M-H[-] 244.9974 267.8 0.154 4.12E-02 C18neg 3 

C00129 
C5H12O7P2 M+Cl[-] 280.9741 183.1 

-

0.182 1.57E-02 C18neg 3 

C00129 
C5H12O7P2 M+Br[-] 324.9215 45.2 

-

0.079 2.97E-01 C18neg 3 

CMP 

C00055 
C9H14N3O8P M-H+O[-] 338.0362 49.5 

-

0.019 8.01E-01 C18neg 3 

C00055 
C9H14N3O8P M+K-2H[-] 358.9951 67.8 

-

0.121 1.09E-01 C18neg 3 

GDP C00035 
C10H15N5O11P2 M+Na-2H[-] 462.9889 38.1 

-

0.134 7.53E-02 C18neg 3 

CTP C00063 
C9H16N3O14P3 M+ACN-H[-] 523.0008 68.6 

-

0.083 2.73E-01 C18neg 3 

Nucleotide Sugar 

Metabolism 

dTTP C00459 
C10H17N2O14P3 M+2H[2+] 241.9996 178.9 

-

0.233 1.86E-03 

HILICp

os 3 

4,6-Dideoxy-4-oxo-dTDP-D-glucose C11907 
C16H24N2O15P2 M[1+] 546.0627 103.8 0.211 5.03E-03 

HILICp

os 3 

Phenylalanine metabolism 
L-Phenylalanine C00079 C9H11NO2 M-H[-] 164.0717 47.2 0.016 8.31E-01 C18neg 1 

3-(2-Hydroxyphenyl)propanoic acid C01198 C9H10O3 M-H[-] 165.0558 177.7 0.106 1.63E-01 C18neg 1 

Phosphatidylinositol 

phosphate metabolism 

Hexadecanoate (n-C16:0) C00249 C16H32O2 M+Cl[-] 291.2093 38.6 0.030 6.89E-01 C18neg 3 

CMP 

C00055 
C9H14N3O8P M-H+O[-] 338.0362 49.5 

-

0.019 8.01E-01 C18neg 3 

C00055 
C9H14N3O8P M+K-2H[-] 358.9951 67.8 

-

0.121 1.09E-01 C18neg 3 

Cellobiose C00185 
C12H22O11 M-H+O[-] 357.1037 226 

-

0.139 6.50E-02 C18neg 3 

CMP C00055 
C9H14N3O8P M+K-2H[-] 358.9951 67.8 

-

0.121 1.09E-01 C18neg 3 

1D-myo-Inositol 1,3,4-trisphosphate 

C01243 C6H15O15P3 M-H2O-H[-] 400.9459 67.7 0.116 1.24E-01 C18neg 3 

C01243 
C6H15O15P3 M+HCOO[-] 464.9585 59.5 

-

0.064 4.02E-01 C18neg 3 

1-Phosphatidyl-1D-myo-inositol 3-phosphate C04549 
C11H18O16P2R2 M+K-2H[-] 505.9605 56.8 

-

0.075 3.19E-01 C18neg 3 

1D-myo-Inositol 1,3,4,5,6-pentakisphosphate 

C01284 
C6H17O21P5 M+HCOO[-] 624.8963 55.8 

-

0.089 2.38E-01 C18neg 3 

C01284 
C6H17O21P5 

M+CH3COO[-

] 638.9116 55.8 

-

0.089 2.43E-01 C18neg 3 

phosphatidylinositol-3,4,5-trisphosphate 

C05981 
C11H20O22P4R2 M+HCOO[-] 688.9671 69.6 

-

0.071 3.52E-01 C18neg 3 

C05981 
C11H20O22P4R2 

M+CH3COO[-

] 702.983 69.6 0.049 5.21E-01 C18neg 3 

Phytanic acid peroxisomal 

oxidation 

Succinate C00042 C4H6O4 M+Cl[-] 152.9959 36.5 0.099 1.92E-01 C18neg 3 

Phytanate 

C01607 
C20H40O2 M-H+O[-] 327.2912 240.2 

-

0.164 2.98E-02 C18neg 3 

C01607 
C20H40O2 M+HCOO[-] 357.301 268.2 

-

0.021 7.85E-01 C18neg 3 

Propanoate metabolism 

4-Hydroxybutanoic acid C00989 
C4H8O3 M+H[1+] 105.0547 18.5 0.155 3.95E-02 

HILICp

os 3 

D-Glyceraldehyde C00577 
C3H6O3 

M+HCOONa[

1+] 159.0262 108.9 0.062 4.15E-01 

HILICp

os 3 

Propinol adenylate C05983 
C13H18N5O8P 

M+HCOONa[

1+] 472.0838 83.8 

-

0.173 2.13E-02 

HILICp

os 3 

Tyrosine metabolism Beta-Alanine C00099 C3H7NO2 M-H[-] 88.0404 47 0.156 3.83E-02 C18neg 1 
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2-Methyl-3-oxopropanoate C00349 
C4H6O3 M(C13)-H[-] 102.0277 24.3 

-

0.192 1.05E-02 C18neg 3 

Sulfate C00059 H2SO4 M+Cl[-] 132.9368 34.6 0.023 7.65E-01 C18neg 3 

Phenylacetic acid C00548 
C8H8O2 M-H[-] 135.0452 252.4 

-

0.192 1.08E-02 C18neg 1 

Indole-56-quinone C05579 C8H5NO2 M-H[-] 146.0248 180.6 0.019 7.98E-01 C18neg 3 

2-Aminoacrylate C02218 
C3H5NO2 M+Br[-] 165.9509 25.2 

-

0.228 2.33E-03 C18neg 3 

Hippuric acid C01586 C9H9NO3 M-H[-] 178.051 41.8 0.157 3.74E-02 C18neg 1 

L-Glutamate C00025 C5H9NO4 M+Cl37[-] 184.0194 36.6 0.021 7.86E-01 C18neg 3 

2-Phenyl-13-propanediol monocarbamate C16586 
C10H13NO3 M-H[-] 194.0823 162.8 

-

0.107 1.58E-01 C18neg 3 

Phenylacetaldehyde C00601 
C8H8O M+Br[-] 198.9756 45.3 

-

0.069 3.61E-01 C18neg 3 

cis-Aconitate C00417 
C6H6O6 M+Cl37[-] 210.9837 54.8 

-

0.131 8.21E-02 C18neg 3 

2-Carboxy-2,3-dihydro-5,6-dihydroxyindole C05604 C9H9NO4 M+Na-2H[-] 215.0225 262 0.097 2.03E-01 C18neg 3 

3,4-Dihydroxy-L-phenylalanine C00355 
C9H11NO4 M+Na-2H[-] 217.0369 39.2 

-

0.171 2.36E-02 C18neg 3 

Homovanillate C05582 C9H10O4 M+ACN-H[-] 222.0767 39.4 0.023 7.62E-01 C18neg 3 

Oxalosuccinate C05379 
C6H6O7 M+Cl37[-] 226.9778 286.7 

-

0.142 5.93E-02 C18neg 3 

Formyl-N-acetyl-5-methoxykynurenamine 

C05642 C13H16N2O4 M(C13)-H[-] 264.1066 37.7 0.119 1.16E-01 C18neg 3 

C05642 
C13H16N2O4 M+Cl[-] 299.0807 173.7 

-

0.031 6.83E-01 C18neg 3 

C05642 C13H16N2O4 M+Cl37[-] 301.0771 281.5 0.055 4.66E-01 C18neg 3 

Vitamin B5 - CoA 

biosynthesis from 

pantothenate 

Pantetheine 4'-phosphate C01134 
C11H23N2O7PS M(S34)-H[-] 359.0832 184.1 

-

0.145 5.49E-02 C18neg 3 

CTP C00063 
C9H16N3O14P3 M+ACN-H[-] 523.0008 68.6 

-

0.083 2.73E-01 C18neg 3 

Vitamin K metabolism 

Vitamin K1 epoxide 
C05849 C31H46O3 M+K-2H[-] 502.2881 196.7 0.118 1.20E-01 C18neg 3 

C05849 C31H46O3 M+Br[-] 545.2683 186.1 0.134 7.53E-02 C18neg 3 

Phylloquinone C02059 
C31H46O2 M+Br[-] 529.2684 248.4 

-

0.072 3.42E-01 C18neg 3 
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Supplemental Table 4-S8. Biweighted midcorrelations between OP-related CpGs and OP-related metabolomic features (top 20 pairs) 

CpG 

Metab

olite 

CpG-

Metabolit

e_cor 

CpG-

Metabolite_

pvalue 

CpG-

Metabolite

_FDR 

OP-

CpG_c

oef 

CpG

_CH

R 

CpG_M

APINF

O 

CpG_ge

ne_nam

e 

OP-

Metabolit

e_coef 

Metabo

lite_mz 

Metabol

ite_time Metabolite_Name 

cg073

85362 

met_33

24_c18 0.354 1.48E-06 5.99E-02 0.260 16 1417710 UNKL -0.200 

374.317

1 285.1 Docosanamide 

cg243
50213 

met_14
0_c18 -0.282 1.46E-04 3.18E-01 -0.311 17 

3994301
2 JUP -0.192 

102.027
7 24.3 2-Methyl-3-oxopropanoate 

cg047

01182 

met_43

0_c18 0.313 2.28E-05 2.18E-01 -0.266 10 

6983435

3 HERC4 -0.192 

135.045

2 252.4 Phenylacetic acid 

cg220

16716 

met_43

0_c18 -0.290 9.38E-05 3.05E-01 0.290 6 

4515297

4 SUPT3H -0.192 

135.045

2 252.4 Phenylacetic acid 

cg166
55166 

met_43
0_c18 -0.302 4.73E-05 2.18E-01 0.263 2 8063199 

LINC00
298 -0.192 

135.045
2 252.4 Phenylacetic acid 

cg167

68320 

met_43

0_c18 -0.289 1.01E-04 3.05E-01 0.264 17 

5796669

1 TUBD1 -0.192 

135.045

2 252.4 Phenylacetic acid 

cg139

10460 

met_43

0_c18 -0.281 1.60E-04 3.18E-01 0.274 3 

1120596

76 CD200 -0.192 

135.045

2 252.4 Phenylacetic acid 

cg010
10012 

met_10
46_c18 0.306 3.54E-05 2.18E-01 0.275 13 

2993353
7 MTUS2 0.194 

194.905
9 114  

cg136

99934 

met_17

70_c18 -0.286 1.16E-04 3.13E-01 -0.307 9 

9395601

8  -0.168 

254.025

6 47.3 Brassicanal B 

cg188

03171 

met_17

70_c18 -0.290 9.50E-05 3.05E-01 -0.289 22 

2409342

9 ZNF70 -0.168 

254.025

6 47.3  
cg101
33171 

met_17
70_c18 0.288 1.06E-04 3.05E-01 0.281 4 

1885344
48 

RP11-
565A3.1 -0.168 

254.025
6 47.3  

cg119

87576 

met_17

70_c18 -0.281 1.57E-04 3.18E-01 -0.273 13 

5237829

4 DHRS12 -0.168 

254.025

6 47.3  
cg159

18732 

met_21

24_c18 0.284 1.33E-04 3.18E-01 0.262 11 

5736493

9 

SERPIN

G1 -0.182 

280.974

1 183.1 Isopentenyl diphosphate 

cg148
18343 

met_27
60_c18 -0.301 4.86E-05 2.18E-01 0.262 11 

1148317
91  -0.195 

328.984
2 54.1 

2-[(5-Methylsulfinyl)-4-penten-2-ynylidene]-
1,6-dioxaspiro[4.4]non-3-ene 

cg029

09136 

met_44

65_c18 -0.302 4.55E-05 2.18E-01 -0.270 20 

4494154

2  0.197 466.274 213.9 N-Oleoyl phenylalanine 

cg077

01049 

met_45

91_c18 -0.303 4.48E-05 2.18E-01 0.268 8 

1415599

46 AGO2 -0.183 

476.914

9 52 

[2,6-dihydroxy-3-(3,5,7-trihydroxy-4-oxo-

4H-chromen-2-yl)phenyl]oxidanesulfonic 

acid 

cg063

94887 

met_51

43_c18 0.312 2.45E-05 2.18E-01 -0.298 7 

7293712

0 BAZ1B -0.177 

528.320

6 202.5  
cg041
21028 

met_51
70_c18 -0.291 8.91E-05 3.05E-01 0.261 1 

1816226
55 

CACNA
1E -0.170 

530.888
5 57.1  

cg227

21765 

met_64

58_c18 -0.281 1.55E-04 3.18E-01 -0.287 5 

1493802

33 

HMGXB

3 -0.228 

696.317

2 231.7  
cg170
03212 

met_64
58_c18 0.308 3.27E-05 2.18E-01 -0.262 10 

9705496
7   -0.228 

696.317
2 231.7   
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Supplemental Table 4-S9. Biweighted midcorrelations between OP-related CpGs and the metabolome (top 20 pairs) 

CpG 

Metaboli

te 

CpG-

Metabolite_

cor 

CpG-

Metabolite_p

value 

CpG-

Metabolite_

FDR 

OP-

CpG_co

ef 

CpG_

CHR 

CpG_MA

PINFO 

CpG_gene_na

me 

OP-

Metabolite

_coef 

Metabol

ite_mz 

Metaboli

te_time Metabolite_Name 

cg089
01151 

met_387
8_hilic 0.434 1.81E-09 1.19E-02 0.261 7 2172260 MAD1L1 0.221 

261.176
1 215   

cg114

96747 

met_4_hi

lic -0.367 5.24E-07 2.32E-01 0.285 3 

12278532

8 PDIA5 -0.035 85.0523 109.8  
cg144

15214 

met_205

9_hilic 0.361 8.51E-07 2.80E-01 -0.265 11 2950403 PHLDA2 0.048 

174.112

5 253.4 N-Acetylleucine 

cg204
97205 

met_215
9_hilic 0.372 3.58E-07 2.32E-01 0.283 6 47754005 OPN5 0.038 

177.986
9 219.1  

cg219

15368 

met_223

8_hilic 0.370 4.21E-07 2.32E-01 0.295 1 60166962 FGGY -0.035 

181.122

3 271.2 

4-

(Butoxymethyl)phenol 
cg070

19072 

met_597

5_hilic -0.371 3.88E-07 2.32E-01 0.274 6 27215328 PRSS16 -0.076 384.295 44.5  
cg276
46848 

met_640
4_hilic 0.369 4.49E-07 2.32E-01 -0.260 11 62389601 B3GAT3 -0.022 

416.120
3 85.6  

cg133

72862 

met_806

7_hilic 0.367 5.52E-07 2.32E-01 0.267 8 

14523532

8 MROH1 0.003 549.718 43.5  
cg147

77817 

met_870

5_hilic -0.367 5.39E-07 2.32E-01 -0.266 13 80055594 

NDFIP2;NDFI

P2-AS1 -0.004 

598.724

1 79.1  
cg128
61193 

met_889
3_hilic -0.361 8.42E-07 2.80E-01 0.267 7 62693631 

PHKG1P1;RP5
-905H7.3 0.022 

611.409
4 56.8  

cg070

19072 

met_926

3_hilic -0.372 3.78E-07 2.32E-01 0.274 6 27215328 PRSS16 -0.027 

634.433

5 54.3  
cg133

72862 

met_976

8_hilic -0.380 1.91E-07 2.32E-01 0.267 8 

14523532

8 MROH1 0.058 

663.624

3 41  
cg133
72862 

met_106
77_hilic 0.361 8.48E-07 2.80E-01 0.267 8 

14523532
8 MROH1 -0.034 

721.503
1 46.8 PG(16:016:1(9Z)) 

cg266

68919 

met_115

62_hilic 0.378 2.25E-07 2.32E-01 0.261 6 35311534 PPARD 0.095 

818.562

1 74.3 

PE(20:1(11Z)22:6(4Z7Z

10Z13Z16Z19Z)) 
cg098

62076 

met_157

7_c18 -0.371 4.14E-07 2.32E-01 -0.265 3 

11895984

0 

B4GALT4;B4

GALT4-AS1 0.058 

238.937

7 81  
cg000
19137 

met_157
7_c18 -0.367 5.65E-07 2.32E-01 -0.270 19 41103107 LTBP4 0.058 

238.937
7 81  

cg089

33615 

met_167

2_c18 -0.365 6.49E-07 2.51E-01 0.274 1 

14914661

8  -0.036 

245.175

4 143.9  
cg162

66672 

met_196

5_c18 0.390 9.06E-08 2.32E-01 0.318 8 22461575 

C8orf58;CCAR

2 0.032 

268.901

3 107.1  
cg082
39375 

met_423
0_c18 -0.378 2.34E-07 2.32E-01 0.267 2 27887547 

SLC4A1AP;SU
PT7L -0.053 445.244 206  

cg270

88191 

met_622

5_c18 0.370 4.28E-07 2.32E-01 -0.262 18 46065262 CTIF -0.027 

654.905

9 59.1   
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Supplemental Table 4-S10. Biweighted midcorrelations between OP-related metabolomic features and the methylome (top 20 pairs) 

CpG 

Metabolit

e 

CpG-

Metabolite_c

or 

CpG-

Metabolite_pv

alue 

CpG-

Metabolite_F

DR 

OP-

CpG_co

ef 

CpG_

CHR 

CpG_MA

PINFO 

CpG_gene_nam

e 

OP-

Metabolite_

coef 

Metaboli

te_mz 

Metabolit

e_time 

Metabolite

_Name 

cg0997
3663 

met_430_
c18 -0.433 2.04E-09 4.84E-02 0.079 2 192115168 MYO1B -0.192 135.0452 252.4 

Phenylaceti
c acid 

cg2436

5042 

met_1620

_c18 0.432 2.23E-09 4.84E-02 0.072 1 212780517 ATF3 -0.184 241.2147 219.1  
cg1559

0780 

met_3172

_c18 0.421 6.17E-09 8.91E-02 0.052 1 216596639 USH2A -0.179 361.9381 34.8  
cg1093
3002 

met_3324
_c18 0.417 8.84E-09 9.58E-02 -0.006 11 78780983 TENM4 -0.200 374.3171 285.1  

cg2546

7493 

met_1770

_c18 -0.409 1.78E-08 1.20E-01 -0.064 2 55845064 

RP11-

554J4.1;SMEK2 -0.168 254.0256 47.3  
cg0754

0722 

met_430_

c18 0.405 2.45E-08 1.20E-01 -0.080 2 70056697 GMCL1 -0.192 135.0452 252.4 

Phenylaceti

c acid 

cg2305
5315 

met_4323
_c18 -0.403 2.92E-08 1.20E-01 -0.031 8 56792234 LYN -0.168 452.4562 204.3  

cg1915

6483 

met_3264

_hilic 0.403 2.94E-08 1.20E-01 -0.007 2 164592571 FIGN -0.248 230.1215 103.7  
cg2429

5424 

met_6631

_c18 0.402 3.27E-08 1.20E-01 -0.030 12 106530091 NUAK1 -0.169 746.8558 55.6  
cg1136
5617 

met_1770
_c18 -0.402 3.31E-08 1.20E-01 0.038 12 110174620 

FAM222A;FAM
222A-AS1 -0.168 254.0256 47.3  

cg2364

4795 

met_1770

_c18 -0.400 3.85E-08 1.20E-01 0.006 18 267711 

RP11-

705O1.8;THOC1 -0.168 254.0256 47.3  
cg0058

5621 

met_1305

_c18 -0.398 4.41E-08 1.20E-01 -0.006 4 100868748 DNAJB14 -0.214 216.9709 39.1  
cg2251
3528 

met_5636
_hilic -0.398 4.47E-08 1.20E-01 -0.002 15 77861673 RP11-307C19.2 -0.233 362.2166 31  

cg2695

4751 

met_3960

_c18 -0.397 4.74E-08 1.20E-01 0.062 6 107506867 PDSS2 -0.183 423.2601 235.1  
cg1960

9284 

met_430_

c18 0.397 5.07E-08 1.20E-01 -0.111 5 72143978 TNPO1 -0.192 135.0452 252.4 

Phenylaceti

c acid 

cg1033
5659 

met_1770
_c18 -0.396 5.48E-08 1.20E-01 -0.110 2 99757356 

C2orf15;TSGA1
0 -0.168 254.0256 47.3  

cg0407

2270 

met_4172

_c18 -0.396 5.50E-08 1.20E-01 0.041 2 15190874 NA -0.170 439.718 41.4  
cg0951

5262 

met_430_

c18 -0.395 5.58E-08 1.20E-01 0.129 8 77927788 NA -0.192 135.0452 252.4 

Phenylaceti

c acid 

cg1631
7457 

met_1170
0_hilic -0.395 5.62E-08 1.20E-01 0.060 11 123173103 NA 0.232 843.901 106.1  

cg1588

4430 

met_2248

_c18 -0.395 5.78E-08 1.20E-01 0.038 5 170819088 NPM1 0.169 289.9565 66.4   
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Supplemental Figure 4-S1. Scatter plots showed top 10 CpGs correlated with OP exposure based 

on bicor p-value  
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Supplemental Figure 4-S2. Identification of metabolic features associated with OP pesticides exposure. (a) Type 2 Manhattan plot for 

features in the HILIC column (positive ion mode), -log10(p-value) vs retention time. Only features selected by sparse PLS were included 

here. 7 m/z features were found with FDR < 0.2. Red dots represent the features that were positively correlated with OP, and the green 

dots represent the features that were negatively correlated with OP; (b) Type 2 Manhattan plot for features in the C18 column (negative 

ion mode), -log10(p-value) vs. retention time. 92  m/z features were found with FDR < 0.2 
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Supplemental Figure 4-S3. Scatter plots showed top 5 metabolites correlated with OP exposure 

based on bicor p-value from HILICpos and C18neg platforms, respectively. 
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5 Public Health Relevance and Expected Contributions 

This dissertation investigated the metabolomic and epigenomic changes associated with 

traffic-related air pollution and chronic environmental pesticide exposures to better understand the 

underlying molecular mechanisms of harmful environmental exposures. In the first project, we 

found that metabolomic features and pathways associated with maternal air pollution exposure 

during pregnancy were primarily involved in oxidative stress and inflammatory responses that 

have been previously implicated in pregnancy complications and adverse outcomes. In the second 

project, we identified alterations in serum metabolome associated with chronic organophosphates 

(OPs), organochlorines (OCs), or pyrethroids (PYRs) exposure. Perturbed metabolomic pathways 

included mitochondrial energy metabolism, fatty acid and lipid metabolism, and amino acid 

metabolism. In addition, we found that the fatty acid beta-oxidation pathway is a common pathway 

shared across all three pesticide classes. In the third project, we demonstrated that chronic OP 

exposure could affect the glycosphingolipid biosynthesis pathway at both DNA methylation and 

metabolome level. We also showed that epigenome and metabolome exhibiting various distinct 

mechanisms in response to chronic OP exposure. For example, epigenomic signals were involved 

in intracellular membrane transport, cell adhesion, and carcinogenesis; while metabolomic 

responses included aromatic amino acids metabolism, oxidative stress, and energy metabolism. 

Over the past decade, numerous research efforts have pioneered various omics 

technologies, and brought us into an era where various "omes" can be readily characterized. The 

integration of omics approaches into environmental epidemiological studies can go a long way in 

helping researchers better trace environmental exposures and understand underlying biological 

mechanisms. Investigating the cumulative effects of environmental exposures across the lifespan 

or during specific vulnerable periods during development and capturing their multifactorial 
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etiology for health and disease has always been a major challenge for traditional epidemiological 

and toxicological studies. Our studies utilized a state-of-art GIS-based exposure assessment model 

linking macro-level population exposure to individual addresses, making it possible to study 

chronic, real-world levels of air pollution and pesticide exposures’ contributions to health in 

human populations. We further mapped chronic exposures to the micro-level metabolome and 

epigenome, delineating a holistic picture of the deleterious effects of air pollution and pesticide 

exposure at the molecular level, thus potentially providing new insights into the pathogenesis of 

environmental exposure-related diseases. 

Our studies identified altered molecular signals in response to chronic air pollution or 

pesticide exposures, some of which, if confirmed in future studies, can be used as easily obtainable 

biomarkers (by standard blood draw). Biomarkers that reflect chronic persistent adverse exposures 

are vital for developing targeted prevention efforts and to detect environmental damage at pre-

clinical stage. Prevention and remediation could then be started for at-risk individuals before 

significant deleterious health effects leading to a variety of chronic diseases are detected. 

Complementing traditional environmental epidemiology studies, our findings also allow 

regulatory agencies to understand the adverse effects of air pollution and pesticide exposures in 

human populations and thus support the decision-making process. For example, some pesticides 

may be considered safe in terms of acute toxicity or at low levels in animal models but when they 

are shown to alter a wide range of molecular pathways that are known to lead to adverse health 

outcomes in the long run, long term human studies should be conducted and these pesticides should 

be regulated, and fall under a ‘pesticidovigilance’ clause, or be removed from the market.  

In summary, by combining large-scale population-based exposure data with multiple omics 

approaches, our studies facilitate a novel understanding of mechanisms through which the 
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exposure, the epigenome, and the metabolome interact and affect health, producing urgently 

needed information for translation and prevention, and eventually guide policy making.
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