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The deformations of several slender structures at
nano-scale are conceivably sensitive to their non-
homogenous elasticity. Owing to their small scale, it
is not feasible to discern their elasticity parameter
fields accurately using observations from physical
experiments. Molecular dynamics simulations can
provide an alternative or additional source of data.
However, the challenges still lie in developing
computationally efficient and robust methods to solve
inverse problems to infer the elasticity parameter field
from the deformations. In this paper, we formulate an
inverse problem governed by a linear elastic model
in a Bayesian inference framework. To make the
problem tractable, we use a Gaussian approximation
of the posterior probability distribution that results
from the Bayesian solution of the inverse problem
of inferring Young’s modulus parameter fields from
available data. The performance of the computational
framework is demonstrated using two representative
loading scenarios, one involving cantilever bending
and the other involving stretching of a helical
rod (an intrinsically curved structure). The results
show that smoothly varying parameter fields can be
reconstructed satisfactorily from noisy data. We also
quantify the uncertainty in the inferred parameters
and discuss the effect of the quality of the data on the
reconstructions.
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1. Introduction
The mechanics of deformable solids is governed by three sets of equations, namely the equations
of equilibrium, compatibility conditions and constitutive laws. The constitutive laws describe
the elasticity of material and capture the restoring effects of internal stresses on the deformation
(or strains) [1]. Of the three sets of equations, only the constitutive law varies from material
to material and needs to be identified by measurements. Identifying elasticity parameters
of the constitutive law from noisy measurements of deformation field (or other directly
observable quantities) presents several mathematical challenges in the field of inverse methods
that are reviewed in [2,3]. These inverse methods leverage the other two sets of equations—
equilibrium and compatibility—to discern the elasticity parameters from the observable
data [4].

More recently, the need to formulate and solve inverse problems to identify elasticity
parameters has extended beyond engineering problems to several biomechanical problems
too [5–9]. For example, identifying the elasticity of tissues from their medical imaging helps
detect certain illnesses [5]. For non-invasive characterization of biological materials via medical
imaging, the inverse method described in [7–9] estimates their elastic properties by using
finite element formulation of steady-state dynamic response of deformable solids immersed
in fluids.

This paper particularly targets inverse elasticity problems involving slender structures, which
are ubiquitous in nature. Continuum mechanics-based models of slender structures [10,11] are
being increasingly employed to simulate the deformations of nano-scale biological filaments
[12–14] (e.g. microtubules [15,16], DNA molecule [17,18], flagella or cila [19] and several others
[20–22]), soft and active filaments [23,24], silver nano-wires [25] and carbon nano-tubes (CNTs)
[26]. Many of these slender structures have non-homogenous elasticity, which may strongly
influence the dynamics of their functionally relevant deformations such as looping in DNA
[27]. The non-homogeneity in their constitutive law originates from their heterogenous atomistic
structure. For example, in the case of DNA, the chemical sequence of different base-pair units
along its length, which is primarily attributed to the genetic code, also dictates the variation of
the constitutive law along the filament (referred to as secondary layer of code [28]), and thus
governs its mechanical deformability.

However, at such small length scales, the identification of non-homogenous elasticity
parameter field to date is not feasible from experimental measurements alone because physical
experiments provide very limited information at that scale. For example, single-molecule
experiments that use magnetic or optical tweezers to measure or prescribe the dynamics of
micron-size beads attached to filaments such as microtubules [29] or DNA [30,31] provide data
to estimate flexural and torsional rigidities averaged over their entire lengths [32–34], but not
their variation along the length. Thermal fluctuations and imaging techniques also provide data
to estimate only the average flexural rigidity; for example, refer to [35,36] in the context of
actin filaments or microtubules. Likewise, atomic force microscopy can provide data to identify
homogenous elasticity of silver nano-wires [25]. For identifying non-homogenous elasticity from
experiments, perhaps the most useful information will be available from a futuristic imaging
technique that attempts to observe dynamically deforming filaments at sufficiently high space
and time resolutions [37,38]. In the case of DNA, thoughtfully designed cyclization experiments
[39,40] together with a non-homogeneous rod model are also useful to identify the base-pair
sequence-dependent constitutive law. Molecular dynamics (MD) simulations provide another
option to generate informative data taking into account the atomistic structure that can be
used with inverse methods to identify the constitutive law [41]. For example, in the context
of nano-scale filaments, Kumar et al. [42] have shown how MD simulations may be used with
Cauchy–Born rule to identify the constitutive law of nano-rods. Continuum modelling of CNTs
from MD data and its successful prediction of experimentally observed shapes [43] presents a
promising example of how informative MD data can be used for identifying elasticity parameters.
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The variety of research efforts described above have spurred the need for development of
systematic and robust methods in the inverse elasticity problems of slender structures. For
example, Hinkle et al. [44] developed an inverse rod model to identify homogeneous constitutive
laws of filaments from their deformations in cantilever equilibria. The cantilever equilibria are
solved as an initial-value problem in the state-space form [45], which provide a framework
for developing robust state estimation techniques and input reconstruction methods for the
underlying inverse problem [46]. The possibility of extending this approach to use data from
dynamic equilibria was explored by Gray et al. [47]. The inverse elasticity problems in the context
of cantilevers are relevant to other applications as well. For instance, Barcilon [48] focuses on
finding the flexural rigidity of cantilevers from vibration data for geo-physical applications. Such
inverse problems of beams have also been considered for applications involving non-destructive
testing by accounting for the limited measurements possible at the domain boundaries [49].

Inverse elasticity problems inherently tend to have several computational challenges
stemming from the quality of data, and the large-scale nature of the unknown parameters
(stemming from discretization). In this paper, we formulate two simple but representative inverse
elasticity problems governed by the linear elastic equation with non-homogeneous coefficient
field. In particular, we discuss the inversion of Young’s modulus parameter field from synthetic
observations of the displacement field under two loading scenarios: (i) cantilever bending and
(ii) stretching of a helical elastic rod. Helical rods have relevance to several applications, such as
[50–52] and require modelling intrinsic or stress-free curvature. To also quantify the uncertainties
in our reconstruction, we formulate the inverse problem in a Bayesian inference framework. There
is a wide range of literature on Bayesian inference applied to a variety of applications, for example
we refer to [53–55] and citations therein.

To compute the solution of a Bayesian inverse problem (i.e. the posterior probability density)
can become prohibitive, due to the expense of solving the forward model and the high
dimensionality of the uncertain parameters (which are discretizations of Young’s modulus field).
To cope with the infinite-dimensional (i.e. large-scale) character of the parameter field, it is
common to construct a Gaussian approximation to the posterior at the maximum a posteriori
probability (MAP) point (see [56] and references therein). The MAP point in the Gaussian case
coincides with the mean and it is given by the solution of the deterministic inverse elasticity
problem. In this paper, we extend our previous work [57] where we solved the underlying
least-squares minimization problem using an adjoint-based inexact Newton-conjugate gradient
method, which uses first and second derivative information of the least-squares cost functional.
The posterior covariance matrix (of the Gaussian approximation of the posterior) can be
computed using the inverse of the Hessian of the least-squares cost functional of the deterministic
inverse elasticity problem. We apply this method to quantify uncertainties in the inference of
Young’s modulus parameter field from synthetic observations of the deformation field in the
cantilever and in the helical rod. In a deterministic setting, we have previously reported [57]
results that show that the reconstructions of Young’s modulus converge to the exact parameter
as the observation error decreases. In the same paper, we have also shown that the number of
Newton iterations is insensitive to the dimension of the parameters, i.e. the computational cost of
solving the inverse problem stays constant as the size of the problem is increased. Therefore, the
computational framework we propose for inverse elasticity problems has the potential to solve
high-dimensional inverse elasticity problems that are of practical interest, such as those discussed
above.

The paper is organized as follows. Section 2 introduces the forward linear elastic problem
governing the mechanics of two-dimensional cantilevers or three-dimensional helical rods.
Section 3 presents the inverse elasticity problem constrained by the linear elastic partial
differential equation (PDE) formulated in a Bayesian framework. In §4, we present two
model problems with smooth non-homogeneity in the elastic coefficient field and discuss the
quality of the reconstructions of Young’s modulus field and quantify the uncertainties in these
reconstructions. We also discuss the quality of the data across the domain. Finally, §5 provides
concluding remarks.
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2. Forward problem: linear elastic model
The theory of elasticity models deformable bodies in the continuum limit. We model the
mechanical deformation and stress distribution of deformable bodies using the balance of linear
momentum [1] that states that

− ∇ · σ u = f , (2.1a)

where σu denotes the stress tensor and the body force is denoted by f . We employ a constitutive
law that relates the stress tensor σ u and the strain tensor εu = 1

2 (∇u + ∇uT) by

σu = exp(E)
1 + ν

εu + exp(E)ν
(1 + ν) (1 − 2ν)

tr(εu)I, (2.1b)

where u is the displacement, exp(E) is Young’s modulus, ν is Poisson’s ratio, and I is the second-
order unit tensor. We use the exponential form, exp(E) to define Young’s modulus in order to
ensure the positivity of this parameter as will be discussed further in the paper.

In this paper, we assume a model domain represented by Ω with boundary ΓD ∪ ΓN , such that
ΓD ∩ ΓN = ∅. On ΓD we impose the Dirichlet boundary condition, while on ΓN a traction-free (i.e.
Neumann) boundary condition, namely

u = 0 on ΓD (2.1c)

and

σun = 0 on ΓN . (2.1d)

Here n is the outward normal vector. We note that the boundary value problem (2.1a–d) is the
Navier–Lamé model of linear elasticity that describes the deformation of a body given by Ω (e.g.
cantilever) [1].

The numerical solution of the boundary value problem (2.1a–d) can be obtained via the finite-
element method [58], which requires the derivation of the so-called weak form of (2.1). This weak
form is obtained by multiplying (2.1a) with a test function v from Vd = {v = [v1, v2, v3] ∈ H1(Ω) ×
H1(Ω) × H1(Ω) : v = [0, 0, 0] in ΓD} combined with Green’s second identity [58]. This reads: Find
u ∈ Vd such that ∫

Ω

σ u : εv dx =
∫
Ω

f · v dx, ∀v ∈ Vd. (2.2)

3. Inverse problem: Bayesian inversion for Young’s modulus parameter field
for a linear elastic model

The mechanical properties of a linearly elastic material, which can be described by Young’s
modulus exp(E) and Poisson’s ratio ν parameters, cannot be directly observed or measured
in an experiment hence these are typically unknown or uncertain. However, in experimental
techniques—such as elastography [59]—it is common to measure the components of the
displacement field across the domain, which can be used to infer these parameters. Inferring the
mechanical properties of a material using the measurements, such as the displacement field uobs,
can be formulated as an inverse problem. In this section, we formulate an inverse problem for the
elasticity parameter field E, and describe an efficient numerical technique to solve the resulting
optimization problem. In addition, to answer the question of what confidence we have in the
inverse solution we turn to the framework of Bayesian inference [53,55]. In this framework, the
inverse problem is formulated as a problem of statistical inference over the space of uncertain
parameters. The solution is the posterior probability distribution function that expresses how
likely it is that a set of candidate parameters gives rise to the observed data via the physical model.
To find the posterior distribution πpost(E|uobs), i.e. the probability of parameter field E given the
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observed data uobs, we rely on Bayes’ theorem that combines the prior probability distribution,
πprior(E), with a likelihood, πlike(uobs|E), namely

πpost(E|uobs) ∝ πprior(E)πlike(uobs|E). (3.1)

The prior captures any knowledge, information or assumption about the parameter field E, and
the likelihood encodes the probability of observing data uobs, given a parameter field E. In this
work, we use an additive Gaussian noise model that gives

uobs = F(E) + η, η ∼N (0, Γnoise) , (3.2)

where Γnoise ∈ R
q×q is the measurement noise covariance matrix, q represents the number

of observation points, and F(·) is the parameter-to-observable operator that maps model
parameters E to observable u. Here, evaluation of this map requires solution of the Navier–
Lamé PDE problem (2.1). To extract the observation points we apply the observation operator B.
Furthermore, since the noise η is independent of E, thus uobs|E ∼N (F(E), Γnoise), the likelihood
is given by

πlike(uobs|E) ∝ exp
(

− 1
2

〈
BF(E) − uobs, Γ −1

noise(BF(E) − uobs)
〉 )

, (3.3)

where 〈·, ·〉 represents the L2 inner product. We use a Gaussian prior defined by the mean Epr and
the covariance Γpr where we define the covariance as the inverse of the square of a Laplacian-like
operator, namely Γpr = (−γ�E + δE)−2 as in [56]. The parameters γ and δ control the correlation
length and the variance of the prior operator and � represents the Laplacian differential operator.
We note that in finite dimensions the square root of the Γ −1

pr becomes γ K + δM where K is a
stiffness matrix and M is a mass matrix [60–63]. The prior can therefore be written as

πprior(E) ∝ exp
(

− 1
2

〈
E − Epr, Γ −1

pr (E − Epr)
〉 )

. (3.4)

Assuming Gaussian noise and prior, using Bayes’ theorem the posterior is given by [53,55]

πpost(E) ∝ exp
(

− 1
2

〈
BF(E) − uobs, Γ −1

noise(BF(E) − uobs)
〉
− 1

2

〈
E − Epr, Γ −1

pr (E − Epr)
〉 )

. (3.5)

We note that if the parameter-to-observable map is linear the posterior probability density is
Gaussian. In general however this is not the case. To cope with the large-scale character of the
parameter field, it is common to construct a Gaussian approximation of the posterior at the MAP
point (see [56], and references therein). This MAP point is the parameter vector maximizing the
posterior (3.5). It can be found by minimizing the negative log of (3.5), which amounts to solving
the optimization problem

EMAP = arg min
E

J (E) := − log πpost(E). (3.6)

Various optimization methods can be used to solve (3.6), e.g. gradient-based methods such
as steepest descent or nonlinear conjugate gradient, or second derivative-based (i.e. Hessian)
methods [64,65]. For an efficient computation of the MAP point, here we use adjoints- and
Hessian-based methods, as we will show in the next section. One of the advantages in doing so,
besides the fast convergence of second derivative-based methods, is that the posterior covariance
matrix Γpost of the Gaussian approximation can then be obtained by computing the action of the
inverse of the Hessian (of J at EMAP) on vectors [53,55], and the cost of such action is only two
linear(ized) PDE solves.

To ensure that Young’s modulus is positive, we use the parametrization exp(E) for the
inversion [56]. Alternatively, one can impose bound constraints (for example combined with the
maximum entropy principle [66–69]) to construct probability distributions that exclude negative
values of the inversion parameter. By using a Gaussian prior our method remains versatile for
various inverse problems that involve parameters such as Poisson’s ratio [70,71] or those in
coupled [26] or nonlinear (softening-hardening) forms of constitutive law [72] and allows us to
achieve scalability with respect to the size of inversion parameter space. To mitigate the influence
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of using a Gaussian prior, we use a large variance for the prior and let the observation data inform
the posterior.

(a) Calculating the MAP points: adjoint-based inexact Gauss–Newton-CG
To solve (3.6) efficiently, here we focus on the Gauss–Newton method, which is known to converge
fast [64,65]. Starting with an initial guess for the parameter E, Newton’s method iteratively
updates this field by Ek+1 = Ek + αÊk, where Ek is the current parameter and the Newton direction
Êk is obtained by solving the linear system

H(Ek)Êk = −G(Ek). (3.7)

Here, G is the gradient of the objective functional J in (3.6), and H is its Hessian operator.
To guarantee convergence, the new value of the parameter is found by damping the Newton
direction, i.e. by choosing a step length α via an Armijo line search for example, such that the cost
functional in (3.6) sufficiently decreases at each iteration [64,65].

To derive the gradient and Hessian-vector product, we use the Lagrangian formalism [73–75],
in which the Lagrange multiplier function p ∈ Vd takes the role of the test function in enforcing
the weak form of the elastic problem (2.2). The Lagrangian functional is given by

L (u, E, p) = J (E) + 〈
σu, εp

〉 − 〈
f , p

〉
. (3.8)

The gradient of J can be found as the variation of the Lagrangian L with respect to E, provided
variations of L with respect to u and p vanish. Thus, the gradient G(E) is found by taking the
Fréchet derivative of the Lagrangian functional in the directions p̃, ũ and Ẽ and is shown with Lp,
Lu and LE, respectively

〈
σ u, εp̃

〉 − 〈
f , p̃

〉 =Lpp̃, (3.9a)〈
σ ũ, εp

〉 + 〈
B∗Γ −1

noise(Bu − uobs), ũ
〉
=Luũ (3.9b)

and
〈
Γ −1

pr (E − Epr), Ẽ
〉
+

〈
Ẽ exp(E)

1 + ν
εu, εp

〉
+

〈
Ẽ exp(E)ν

(1 + ν)(1 − 2ν)
tr(εu)I, εp

〉
=LEẼ, (3.9c)

where B∗ is the adjoint of the observation operator, B. We note that the left-hand side of (3.9a) is
the weak form of the underlying forward problem, and the left-hand side of (3.9b) represents the
weak form of the corresponding adjoint equation, which is obtained by invoking the stationary
of L with respect to the forward variable u (or Lu = 0). The strong form (obtained by integration
by parts) of the adjoint equation reads

− ∇ · σp = −B∗Γ −1
noise(Bu − uobs) in Ω , (3.10a)

p = 0 on ΓD (3.10b)

and σpn = 0 on ΓN . (3.10c)

We note that, as expected, the adjoint equation is driven by the negative misfit between the
solution u of the forward problem and the observational data uobs.

Once we have u and p, we can evaluate the gradient, which is given in the left-hand side
of (3.9c). To enforce the stationary of the gradient (or LE = 0) we use Newton’s method, as
explained above, where to compute the direction Êk we solve equation (3.7). The action of the
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Hessian operator H(Ek) in a direction Êk is obtained by taking second variations of L with respect
to all variables [76,77]. This can be expressed as

〈
σ û, εp̃

〉 =Lpuû, (3.11a)〈
B∗Γ −1

noiseBû, ũ
〉
=Luuû, (3.11b)〈

Ẽ exp(E)
1 + ν

εû, εp

〉
+

〈
Ẽ exp(E)ν

(1 + ν)(1 − 2ν)
tr(εû)I, εp

〉
=LEuû, (3.11c)

0 =Lppp̂, (3.12a)〈
σ ũ, εp̂

〉
=Lupp̂, (3.12b)〈

Ẽ exp(E)
1 + ν

εu, εp̂

〉
+

〈
Ẽ exp(E)ν

(1 + ν)(1 − 2ν)
tr(εu)I, εp̂

〉
=LEpp̂, (3.12c)

〈
Ê exp(E)

1 + ν
εu, εp̃

〉
+

〈
Ê exp(E)ν

(1 + ν)(1 − 2ν)
tr(εu)I, εp̃

〉
=LpEÊ, (3.13a)

〈
Ê exp(E)

1 + ν
εũ, εp

〉
+

〈
Ê exp(E)ν

(1 + ν)(1 − 2ν)
tr(εũ)I, εp

〉
=LuEÊ, (3.13b)

〈
Ê, Γ −1

pr Ẽ
〉
+

〈
Ẽ Ê exp(E)

1 + ν
εu, εp

〉
+

〈
Ẽ Ê exp(E)ν

(1 + ν)(1 − 2ν)
tr(εu)I, εp

〉
=LEEÊ. (3.13c)

Equations (3.11)–(3.13) sequentially represent the derivatives of equation (3.9) with respect to u, p
and E. With some abuse of notation, the above system can be summarized as

H

⎡
⎢⎣û

Ê
p̂

⎤
⎥⎦ =

⎡
⎢⎣Luu LuE Lup

LEu LEE LEp
Lpu LpE Lpp

⎤
⎥⎦

⎡
⎢⎣û

Ê
p̂

⎤
⎥⎦ =

⎡
⎢⎣−Lu

−LE

−Lp

⎤
⎥⎦ . (3.14)

To solve the above system, we assume that u and p satisfy the state and the adjoint equations such
that Lu = Lp = 0. Then by using block elimination we arrive at the so-called incremental forward
problem (derived from the third row of equation (3.14)), which in strong form reads

− ∇ · σ û = −∇ ·
(

Ê exp(E)
1 + ν

εu + Ê exp(E)ν
(1 + ν)(1 − 2ν)

tr(εu)I
)

in Ω , (3.15a)

û = 0 on ΓD, (3.15b)

σ ûn = 0 on ΓN , (3.15c)

and the incremental adjoint problem (derived from the first row of equation (3.14)), which in strong
form reads

− ∇ · σ p̂ = −B∗Γ −1
noiseBû in Ω , (3.16a)

p̂ = 0 on ΓD, (3.16b)

σ p̂n = 0 on ΓN . (3.16c)

For a discussion on practical implementation of the Gauss–Newton-CG optimization method
in finite dimensions, we refer the reader to the technical report [77].
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4. Results
This section presents two model problems to illustrate the performance of the inverse method
described in §3. The first problem focuses on the inversion of a smoothly non-homogenous
Young’s modulus field for planar bending of a cantilever beam. The second problem targets the
same inversion parameter but for a three-dimensional helical structure. The observation data
uobs are synthesized by solving the forward problem described in §2 and adding a noise level
of 1% to the solution. In other words, the signal-to-noise ratio is equal to 100. For both numerical
studies, we consider measurement points everywhere in the domain (i.e. these are taken at all
discretization points). In what follows, the traction t on the boundary ΓN is zero, and we consider
a nonzero body force f to be applied on the structure.

To solve the inverse problems, we used hIPPYlib [63,78], an inverse problem python-based
library. This library contains scalable algorithms for PDE-based deterministic and Bayesian
inverse problems. It builds on FEniCS [79,80] for the discretization of the PDEs and on PETSc [81]
for scalable and efficient linear algebra operations and solvers needed for the solution of the PDEs.
An online repository is also made publicly available that entails the python scripts as well as the
mesh files for the following simulations [82].

In a previous work [57], we demonstrated the scalability of the computational framework (in a
deterministic setting), which shows that the computational cost does not scale with the mesh size.
We measure this cost in terms of the number of PDE solves required for the algorithm to converge
to a given tolerance. Here we stop the optimization iterations when the norm of the gradient at
the current iteration compared with the norm of the initial gradient falls below 10−9. With this
criteria, the planar bending scenario presented in the following section requires 35 PDE solves,
and the helical rod scenario that follows next requires 161.

(a) Planar bending of a cantilever beam
The domain Ω = [0, 8] × [0, 0.5] for this model problem is a two-dimensional rectangular section
of a cantilever (as shown in figure 1). The boundary conditions are the following. On the left
boundary, ΓD, we impose a homogeneous Dirichlet condition to model a clamped end, and on
ΓN we impose a traction-free, i.e. homogeneous Neumann boundary condition. The goal of this
model problem is to identify Young’s modulus parameter field when Poisson’s ratio ν is known
(here taken as 0.25). The synthetic observation data uobs for the inversion of E is obtained by
simulating the cantilever bending subject to uniform body force f = (0, 6.5 × 10−3) and with a
‘true’ parameter field

Etrue = 3.0 − sin
[
π

(
x
8

− 1
2

)]
. (4.1)

The prior is chosen as follows. The prior mean is chosen to be zero and the prior covariance
matrix is constructed by using the inverse of a Laplacian-like operator, as explained in §3. For the
cantilever bending example, the parameter γ , which controls the smoothness of the parameter
field E, has a constant value 0.4, and δ is also chosen to be constant 0.1. We choose these values
so that the prior distribution is not too rough over the domain, yet has a large enough measure
of uncertainty everywhere. For a more systematic approach for selection of γ and δ see [83,84].
A one-dimensional representation (at y = 0.25 m) of the prior mean, standard deviation and
samples from the Gaussian prior distribution are illustrated in figure 2a.

Figure 3 shows the synthetic observation data uobs, the ‘true’ state variable, utrue, obtained
with the true (proposed) parameter field, and the recovered state solution uMAP obtained with
the inversion result along the bending neutral axis of the beam (i.e. y = 0). This figure shows
that the difference (i.e. the misfit) between uMAP and u is larger towards the right side of
the beam.

In figure 4, we compare the variance of the prior with that of the posterior. This result shows
that the variance is reduced, which can be attributed to the information gained from the data in
solving the inverse problem. We note however that improvement in the variance of the posterior
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x

y
GN

GN

GN
GD
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The boundary ∂Ω = ΓN ∪ ΓD (with ΓN ∩ ΓD = ∅), where ΓN and ΓD are boundaries with Dirichlet and Neumann
boundary conditions, respectively, defined in (2.1c–d).
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is reduced as we move toward the free end (right end) of the cantilever. This is because the
dependence of the deformation field on E is captured by the constitutive law, implying that
the higher the stress and strain the more sensitive the solution of the elastic problem is to E.
In the cantilever loading scenario, bending curvature and therefore the stress and strain decrease
as we move from the clamped end (left) to the free end (right). Consequently, the sensitivity of
the deformation field to the parameter (E) diminishes toward the free end, and therefore the data
becomes increasingly less informative in that region. Furthermore, since the sensitivity depends
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(c). MAP points versus true parameter field (d). (Online version in colour.)

on strain, and in turn on the gradient of the deformation field, at the clamped end the variance of
the posterior is still slightly larger than what one would expect from the above argument, due to
the boundary effect on the gradient information.

(b) Stretching of a helical spring
In this section, we define a model problem for the identification of the elastic properties of a
more realistic rod, namely of the helical proteins (sheath) that play a key role in the genome
injection mechanism of the bacteriophage T4 virus [85]. The helical sheath proteins on the viral
tail are stretched before injection. When the virus attaches to a target cell, the elastic energy
of the helical proteins is used to inject the DNA into the target cell. Continuum rod theory is
shown to be capable of capturing the important features of this mechanism [85], however the
accuracy of continuum modelling is strictly determined by accurate knowledge of the constitutive
law. The methodology presented here can be used not only to estimate the constitutive law of
such structures, but also to quantify the degree of uncertainty in the estimations. The problem
presented in this section shows how the constitutive law of a helical rod can be estimated using
the measurements of the displacement field.

The Poisson ratio ν in this model problem is constant, e.g. ν = 0.25, and the sinusoidal Young’s
modulus, E, is given by

Etrue = 3.0 − sin
[
π

(
x

20
− 1

2

)]
. (4.2)

The geometry for this problem is a helix with radius R = 1 mm and pitch P = 2 mm as shown
in figure 5. The synthetic observations uobs for this case are generated by stretching the helical
structure under a uniform body force f = (2.2 × 10−3, 0, 0). In this example, the parameter γ has a
constant value 1.0, and δ is also chosen to be constant 0.1.

In figure 6, we show the variance and samples from the prior and posterior probability
distributions. The results show that the variance of the posterior is smaller than that of the prior,
which is due to the information we learned from the observations. However, toward the free end
of the structure (right-hand side in figure 5) as the stress and strain decline to zero, the data is
not informative for accurate identification of the parameter field, therefore the posterior shows a
larger variance in this region.
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with radius r = 0.25 mm.
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5. Discussion and conclusion
This paper presents a Bayesian inversion approach to estimate Young’s modulus parameter field
in an elastic model of slender structures. To illustrate the performance of the inverse method, we
formulated two model problems, one employing planar bending of a cantilever beam and the
other employing stretching of a helical spring. Our observation data are synthetic measurement
of the deformation field obtained by solving the forward problem and adding noise to the data.

We compute the inverse solution via an inexact Gauss–Newton-CG method and quantify
the uncertainties in the reconstruction via a Bayesian framework. The inversion results closely
reconstruct Young’s modulus field with low uncertainties in parts of the domain undergoing high
stress and strain. Reconstructions deteriorate, i.e. the uncertainties increase in parts of the domain
subject to low stress and strain, implying low sensitivity of the observable data to the inversion
parameter.

The results in this paper employ synthetic observations on two simple model problems to
study the performance of the proposed method. As a part of our future work, we intend to
apply this inversion approach to realistic applications, such as uncertainty quantification of the
constitutive law parameters for microtubules and nano-wires using MD simulations and data
obtained from physical experiments. In real applications depending on the availability of the
measurements, the observation data can be in both static or dynamic equilibrium. Moreover, for
nano-scale filaments such as DNA, the effect of thermal fluctuations in the observation data, on
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one hand introduces uncertainty in the data and, on the other hand, provides information by itself
on the deformability of the filaments. Finally, future developments should consider nonlinearity
in the constitutive laws without any a priori assumption on its form. This necessitates formulating
a computationally efficient forward model that can simulate the deformations with any user-
specified nonlinear constitutive law [51]. Therefore, the inverse models for nonlinear constitutive
laws have to evolve together with the development of corresponding forward models.
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