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Abstract 
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A brief discussion is given of the long-term stability of particle 
motions through pe riodic focusing structures containing lumped nonlinear 
elements. A method is presented whereby one can specify the nonlinear 
elements in such a way as to generate a variety of structures in which the 
motion has long-term stability. 
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1.. Introduction 

The stability of the m.otion of a partiele through a periodically 
repeated focusing system. (or of a light ray through a repeated sequence 
of lenses) poses a difficult and fascinating problem., Let us im.agine a 
s-et of planes intersecting the path and spaced with the sam.e periodicity 
as the system., and exam.ine the coordinates of the deflection at these 
planes. One degree of freedom. will be.considered, with the coordinate 
x and the conjugate m.om.entum. y. (The neglect of coupling with other 
degrees of freedom. is already anoversim.plification of the real physi<;:al 
problem..) As we go from. one plane to the next, the new values x', y' 
are given as functions of x, y. If the equations of m.otion are derivable 
from. a Hamiltonian, the Jacobian of this tran,sform.ation is unity; this is 
assum.e.d. (Effects of scattering and radiation dam.ping are thereby ex-. 
eluded.) We now look for fixed points of the transform.ation, that is, for 
values of x, y for which x' = x, y' .. = y. In the im.m.ediate vicinity of a 
fixed point, the transform.ation can be linearized to 

Xl = ax + by, 
y' = cx + dy, 

(ad- bc - 1). 

The results of the continued iteration of (1) are well known. 

( 1) 

Stability is determ.ined by a + d, the trace of the transform.ation m.atrix. 
Three cases can occur: 

(a) If - 2 < (a + d) < 2, the m.otion is~table, and points in the phase 
plane tend to m.ove around the fixed point. If n is the num.ber of iter­
ations, x and y can be expres sed as linear com.binations of cos fJ.n and 
sin fJ.n, with 2 cos fJ. = a +d. 

(b) If (a + d) > 2, the m.otion is unstable, and points tend to m.ove away 
from. or toward the fixed point. . In this case, x and y can be expres sed . 
as linear com.binations of e Xn and e- Xn, with 2 cosh X = a + d. 

(c) If (a + d) < -2, the m.otion is again unstable, but with a superim.­
pose:; 0Asncillat~on; n~ _t:gd y. can be, expresse~as line,ar c.om.binations of 
( - 1) e and (- 1) e...; wIth' - 2 coshA = a +d. ThIS WIn be _called .an 
os cillatory instability. 

In cases (b) and (c) two lines can be drawn through the fixed 
point, which have the property that points on these lines rem.ain on them., 
that is, y'/x' = y/1.' The sloRes of t~se lines (i. e., y/x) are given by 
the two values of 2b (d - a ±;J(a + d) -4); the product of the two values 
is -c/b. Looking at the lines as broken into segm.ents by the fixed 
points, we have four directions to consider: along one pair of opposite 
directions, phase points are m.oving away from. the fixed point, and along 
the other.pair they are approaching it asym.ptotically. These lines are 
called invariant lines. 
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When we ITlove into the cold nonlinear world beyond the linearized 
region, the invariant lines persist. Points along a short linear segITlent 
trarisforn1 into points beyond, allowing extension of the line; these go to 
still'farther points, and so on. (Invariant lines on which the points: move 
inward can be extEmded byus'ing the inverse transforITlation.) Be'cause 
the transforITlation is single-valued, an invariant 'line can never crosS it­
self. It can proceed to infinity, or it 'can joirisITloothlyonto another in.:. 
variant line having the saITle seriseof ITlotion of phase points; this other 
liriecan originate frOITl the saITle 'fixed point froITl which the ,first line 
started, or froITl a different one. Or it can cross a different invariant 
line; then something very cOITlplicated happens. The crossing point is 
COITlITlon to both lines; the transfor'ITlation must carry this point to both 
lines, so they ITlust cros s again, and this ITlust be repeatable indefiriitely 
on both directions. FurtherITlore, the lines: atcorres'ponding intersections 
rnustcros's in the saITle sense; therefore there must be another cr'ossing 
point between, which ITlust also be repeated. A dollar sign with a single 
barg~ves a picture of the behavior for three successive crossings. The 
unity Jacobian requires preservation of areas, therefore all the loops on 
the saITle side ITlust have the saITle area. A symITletry which will be dis­
cussed later assures that at one crossing point the adjacent loops are 
ITlirror iITlages, therefore all loops have the saITle area. As the infinite 
sequence of crossing points ITloves toward a fixed point; ,the crossing 
points 'get very close together, and the loops get very long and thin. 

What is the relation of all this to stability? It can be shown that, if 
a stable fixed point is completely surrounded bysITloothly joined invariant 
lines, all points inside the enclosure will remain inside indefinitely, guar­
anteeing stabilityu:nderan unliITlited riuITlber of iterations of the transfor­
ITlation. On the other hand, if the invariant lines cross, there will be a 
breach in the wall. Loops which enter the interior, where they curl up in 
a complicated fashion as they get longer and'thinner, will on later iter­
ationsfind a way through the 'breach and carry points 'outside. This pro­
cess ITlay, however, require'a very large number of iterations" and ,sit­
uations which are in principle unstable ITlay be stable for practical pur­
poses. 

Various questions can be asked: ,What determines the SITlooth 
JOInIng of invariant lines? Can one find nonlinear focusing systeITls where 
the SITlooth joining is guaranteed? In case a SITlooth join is not achieved, 
do the loops always invade the whole interior, or can a finite sanctuary 
reITlain? .. If it is achieved, will all or SOITle of the points in the interior be 
confined to ITlotion on SITlooth closed curves? 

In the work that! have see:non this subjeCt, the nonlinear trans­
forITlation has beeh simplified to 'a fo'rITl which represents physically a 
lUITlped nonlinear iITlpulse' applied at a' single plane in. each rep'eat unit of an 
otherwise linear focusing system. ' An exaITlpleis the trarisfbrITlation iri-
troduced by Professor de Vogelaere: _,c 

2 
- x + (y + x 2 ) . (2 ) 
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Extensive numerical calculations' with this~transformation have given 
valuable insight into the behavior of the' invari'an"t lines when the invciri~ 
ant lines cross at a large angle, making loops of considerable area. 
L; Jackson Laslett has investigated another form with a quadratic non­
linear term, which gives very small loops. I wish to thank both these 
men for introducing me to this suhject, and for manydisctissions and 
arguments about it. 

2. The Transformation Used 

I started with the form 

Xl:::: y, 
y,1 :::: - X + f (y) (3 ) 

mainly on the grounds that it is simple, and that it allows the introduc­
tion of an arbitrary function f(y) without disturbing the unity value of the 
Jacobian. (Later I realized that de Vogelaere's and Laslett l s forms 
could be converted to this form by a coordinate transformation.) For 
physical justific'ation, one can start with a linear system represented by 
(1). Let the spacing between measurement planes be taken as unity. 
Into this system the nonlinear impulse is added by introduCing a thin non­
linear lens immediately before each measurement plane. This lens is 
specified by the change in slope of path y when a particle pas ses through 
at a displacement x: ' < ' , , 

6. Y :::: -(a + d) x+ f (x). ( 4) 

In each section, the particle pas ses through the lens just before it leaves 
the section, so that the first equation of (1) remains unchanged while 
;6, y from' (4) (as a function of Xl), is added to the right side of the second 
equation. Now make the coordinate transformation x:::: x,' 'y :::: ax + by. 
This ~eads to' , 

XI:::: Y, 
yl - - X + (a + d) Y - (a + d) XI + f (XI). (5) 

Substituting XI from the first into' the second equation, arid reverting to 
the lower- case notation for' the variables, we get Eq. (3). ' The inverse 
transformation can be obtained by replacing Xl with y, yl with x, x 
with y',and y with Xl in(3}.'" 

[For fu"i-ther physical insight, :dote that (3) can represent a linear 
,thin lens with ~ y :::': - x pl~ced just after the measurement plane, plus a 
lens with t::,. y :::: - X + f (x) placed justbefbre it. The combined effeCt of 
these lenses is 6. y :::: - 2x + f (x). Thus f (x) :::: 2x corresponds to free 
motion of the particle. The resulting transformation looks unfamiliar be­
cause y is measured between two canceling lenses in immediate contact. 
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If we introduce Y = slope outside the gap betweE;n.1enses,.then Y SY + x, 
and the transformation takes th,e familiar· form Xl= x + Y, yl = Y.] 

3. A Useful Property of the Transformation 

The great virtue of the transformation in the form (3) is the prop­
erty to be described, which allows one to construct lens functions f (x) 
leading to prescribed invariant lines x = <I> (y). If a point lying on the 
line x = <I> (y) is subjected to the transformation, we get 

Xl = y, 
yl =_ <I> (y) + f (y) . ( 6) 

Now we require that Xl = <I> (yl), the condition that the transformed point 
lies on the same line. Write this in the inverted form yl = <1>-1 (Xl), 
andsubstitute~ Xl and yl from (6), giving 

," , '''" 1 
f(y) =c\>(y)+ cj> (y) . (7) 

. ' ,." 

Therefore if we use for the lens functIon f the sum of any function and 
its inverse,hoth the function and its inverse are,invariantlines of the 
resulting transformation. 

This leads. to a simple geoITletrical construction. The inverse of 
x = <I> (y)is obtained by interchanging x and y and solving for x. The 
interchange corresponds to a reflection about the positive diagonal x = y. 
Anarbitrary monotonic curve crossing the diagonal in two points can now 
be drawn and its reflection constructed. The midpoints of horizontal 
segments joining the curve and its reflection lie on x = i £(y) .. Because 
of the symm~try, y =i £ (x) is given 1;>y the line of midpoints of ve rtical 
segments. Fixed points are at.f (x) = 2x, that is, at the intersections of 
i f (x) with the ,diagonal. The trace of the matrix of the linearized trans­
formation at an intersection is equal to d f (x)/ dx. If i f (x) crosses. the 
diagonal in the upward direction, the fixed point is unstable, if down­
ward, stable, unless the slope lies below that of the negative diagonal, 
when oscillatory instability occurs. 

An example based on the . rectangular, hyperbolas' <I> (x) =, 1-a/(x + 1), 
<1>- 1 (x) = - 1. - a/ (x - 1)" with f (x) = 2 ax/ (1- x 2), is plotted, in Fig. 1, for 
a = i. The arrows show the results of the transformation applied to var­
ious points. A point starting at the intersection of y = f (x) with x = 'if (y) 
returns to the same place after 8 iterations. Sim,ilarly, a point starting 
at the intersection of y = f (x) with the diagoncl.l would return after 6 ' 
iterations, but this point has moved tO,the origin with the choice of ·.a = i. 
The value of !J. at the stable .fixed point is 'IT /3. 



-5- UCRL-17795 

4. A Proof of Unlimited Stability 

The form of (3) is such that a point lying on a given horizontal 
line transforms to a point lying on a vertical line intersecting the horizon­
tal line at the diagonaL Displacement of the first po'int to the right leads 
to an equal downward displacement of the second. In Fig. 1, A and B 
are two such points on an invariant line. By the symrnetry of the figure, 
the segments AA' and BBl. are of equal length. Therefore any point on 
AA' transforrns to a point on BB ' , and all points lying in the region en­
closed by the two invariant lines remain inside this region. 

5. Clos ed Curves 

In Section 3 it was specified that cj> should be a monotonic funct!~n. 
If this is not true, its inverse is multivalued. The condition f = cj> + cj> 
must be satisfied.on both branches, w.hich requires the addition of ~Ifother 
branch to cj>. ThIS leads to a second Intersection between cj> and cj> ,and 
we are drawn inexorably into the complication of an infinite series of in­
tersections. This difficulty does not occur if cj> and cj>-1 join smoothly at 
their intersection on the dia;gonal. The portion of cj> on one side of the 
diagonal can then be combined with the portion of cj>- 1 on the other into a 
single curve which is its own inverse, and the function t f (x) is given by 
the line of midpoints of segments between the upper and lower branches. 
(Curves that are reentrant in such a way that they are more than double~ 
valued' require satisfaction of f = cj> + cj>-1 on all branches. Suchcurves 
can exist without leading to intersections, but they cannot be drawn 
arbitrarily.) Cases like those illustrated in Fig. 2 c~m occur. In case 
2b, the clos ed curve does not pas s through a fixed point ,and is not an in­
variant line in the "classical" sense. There is no place where the trans­
formation leads to an immediately adjacent point, and therefore no way 
to establish an initial direction for computing the further progress of the 
line. Nevertheless, it is invariant in the sense that points remain on it 
indefinitely, and it is equally effective in ensuring that interior points 
remain inside, giving indefinite stability. 

As an example, we can use the central conics. Let X, Y be co­
ordinates parallel and pe rpendicular to the positive diagonal. The conic 
y2 = a +bX2 , expressed in terms of x and y, is 

y = 1 \ [(1 + b) x ± -V 4 bx
2 + 2a (1 - b)] . 

The function y = f (x) is given by the sum of the two branches, 

1+1;> 
y = 2 1-:b x. 
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x =~ f (y) 

x =f (y) 

XBL679- 5216 
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~-y=~f{x) 

(0) ( b) 

XBl679 - 5217 

Fig. 2 
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These curves therefore apply to the case of liIlear f (x), a result already 
well known but interesting to derive in a new way. If b < 0, the "in­
variant lines" are ellipses (or circles at b = -1) and the parameter a 
can have any positive value. If b >0 the lines are hyperbolas, and the 
parameter a is allowed both positive and negative values, giving both 
sets of branches of the hyperbolas. Thus a family of "invariant lines II 
resulting from a single f (x) is generated by the variation of a single 
parameter. Whether such families can exist in more complicated cases 
remains an open question. 

6. A Generalization 

If f (y) = cp(y) + -V (y) in: (3), and x = cp (y), the transformation leads 
to Xl = -V'- 1 (yl). ?his relation is reciprocal; a point on ,x = -V (y) goes to 
a point on Xl = cp-(yl). The case considered in (3) corresponds ito putting 
-V = cp-1. Another case of interest occurs when cp-1=cp and -V- = -V. 
Geometrically, this means that '<\> and -V are curves with reflection sym­
metry about the positive diagonal, each crossing the diagonal once, as 
illustrated in Fig. 3a. The transfo rmation moves a point from cp to -V, 
the next iteration returns it to cp, and so on. The two curves are now 
second-order invariant lines and their intersections are second-order 
fixed points. These lines are again a solid barrier against the escape of 
points from the interior. 

Closed curves can also be made by requlrlng that cp and -V JOIn 
smoothly at their intersections, as in Fig. 3b. Now cp and -V can be 
considered together as forming a single curve, which forms a first-order 
"invariant line" of the type of Fig. 2b. In 3b, It has been given a shape 
such that i f (x) at the center is sloping downward faster than the negative 
diagonal, giving a fixed point with oscillary instability at the origin. Here 
we have a particieconfined forever in a region with no stable first-order 
fixed point ! When the figure is also symmetrical about the ne~ati ve di­
agonal, second-order fixed points occur at the intersection of "2 f (x) with 
the negative diagonal. In this case, the outer ones are stable (the stable 
motion consists of jumping back and forth between these points) while the 
central one is unstable. From the origin there will proceed four second­
order invariant lines, which must not cross the smooth outer boundary. 
Whether these will succeed in joining smoothly, or whether they will fill 
the interior with a snaky tangle, remains an open question. 

7. Construction of Invariant Lines 

We have seen that a set of invariant lines has two symmetries, mir­
ror symmetry about the positive diagonal and vertical symmetry above and 
below the curve y = i f (x). (The transformation is equivalent to succes­
sive performance of these symmetry operations.) If the invariant lines' 
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y=cp(x) 

y=!f(x) 

(a) (b) 

XBL679-5218 

Fig. 3 
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are given, f {x} is easily constructed. A closed invariant boundary having 
the diagonal symmetry can be drawn arbitrarily so long as it is not more 
than double-valued; if it is there is a requirement of self-consistency in 
that the various branches must lead to the same t f (x), and the curves 
cannot be drawn arbitrarily. 

The inverse problem of finding the invariant lines from a given 
if {x} is not soluble in such a simple way. The only approach seems to be 
that used in computing invariant lines, to start at a fixed point and build 
from there. The construction described here is closely related to the 
computation procedure, but is useful in visualizing the process. It is illus­
trated in Fig. 4. One starts with a computed finite segment, marked 1. 
(The construction in principle could be started from a very small straight 
segment.) Diagonal reflection gives segment 2; Vertical reflection of 2 
repeats 1 and adds 3. From here on, alternate performance oJ the two 
kinds of reflections leads to segments 4, 5, 6,···. Segmen.t 6, in the 
case drawn, intersects if{x}. The next two 'reflections lead to 7 and 8, 
completing the first two loops. The symmetry making their areas equal 
is apparent. For further iterations complete loops can be used. Two ad­
ditional loops are shown as dotted lines. Both types of reflection pre­
serve areas, in consistency with the unity Jacobian of the transformation. 
If it had happened that segments 7 and 6 had joined smoothly, one would 
have had a case like that in Fig. 2a. This occurs if segment 6 has a ver­
tical tangent where it intersects i f {x}. The property of joining smoothly 
clearly depends on an overall property of i f (x), which could in principle 
be described by a single parameter, but it is not clear how this param-
ete r can be dete rmined except by 11 expe riment" with a compute r. 

If there are two unstable fixed points bracketing a stable fixed 
point, the construction should be started at both points. The invariant 
lines proceeding from the two points can join smoothly, or they can inter­
sect; then systems of loops are started that move toward both fixed points. 

8. Dis cus sion 

Some of the questions asked in the Introduction have been answered 
at least partially. Methods of finding lens functions that lead to wide 
classes of arbitrarily chosen invariant boundaries have been found. The 
inverse problem remains at the mercy of the computer. However, it 
seems likely that the adjustment of a single parameter can convert a sys­
tem without indefinite stability into one with indefinite stability, which fact 
may have practical importance. It is obvious that regions of indefinite 
stability can exist inside regions with only short-term stability, since one 
can find a function if (x) to give a prescribed smooth closed boundary, 
then extend it beyond, toward fixed points, in such a way that the invariant 
lines do not meet smoothly. No prescription is given for finding 'whether, 
inside a closed invariant boundary, there exist other closed invariant 
boundaries, or whether the motion inside is ergodic. 
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Fig. 4 
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