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Abstract

We present a connectionist model of children's developing
reliance on object labels as opposed to superficial
appearance when making inductive inferences. The model
learns to infer a fact about an object based on the object’s
label (and not percept) even though that fact has never been
previously associated with the label, The shift in reliance
from perceptual to label information is found to depend on:
(a) the presence of a pre-linguistic ability to categorize
perceptual information, and (b) the greater variability of
percepts than labels The model predicts that children will
shift their inductive basis at different ages depending on
the perceptual variability of the test categories. This
prediction is discussed with respect to studies of children’s
induction and with particular reference to conflicting
results reported in the literature concerning the onset of
label use.

Introduction

This paper presents a connectionist model of the child’s
developing reliance on object labels as opposed to
appearance when making inductive inferences. Early studies
of categorization and induction in young children have
suggested that judgements regarding an object’s category
membership, or the likelihood of its sharing a property with
another object, are made on a different basis depending on
the child’s age. Younger children apply a new fact to
perceptually similar objects, whilst older children or adults
utilise more profound conceptual information. This account
of the perceptual/conceptual shift can be found throughout
Piaget’s work. The younger child is perceptually bound,
and only after entering a subsequent stage of development
can the child utilise abstract, categorical information
(Inhelder & Piaget, 1964).

Since Piaget, this view of the perceptual/conceptual shift
has been undermined as younger and younger children have
been shown to behave in ways that Piaget would not have
expected. Counter examples to Piaget are the induction
studies discussed below (Gelman & Markman, 1986; Carey,
1985; Keil, 1989). These authors have shown that children
as young as three and a half years old are able to make
inferences that Piaget would have considered to be
characteristic of much older children.

The fact that children's induction behavior changes
earlier than Piaget expected has been used as support for the
view that conceptual development is fundamentally a formal
process of the growth of theory-like structures (Gelman &
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Markman, 1986). Thus, development is taken to consist of
changes in symbolic structures, and not the emergence of the
ability to wuse such structures (Carey, 1985; Murphy &
Medin, 1985). Whilst concepts are able to develop, the
ability to modify abstract, symbolic representations is seen
as a prerequisite throughout development.

Although Gelman and Markman (1986) found that
young children rely on object labels as opposed to
perceptual information when making inductions about
natural kinds, studies with children younger their subjects
are more equivocal. For example, McCarrell and Callanan’'s
two year old subjects found perceptual information to be a
more robust basis for induction than object labels
(McCarrell & Callanan, 1995). Other induction studies
using different (though still natural kind) stimuli have found
a shift in the basis of induction across development, but that
the onset of this shift depends on the concepts under
investigation (Keil, 1989).

To understand these diverse findings, we must know
why younger children are sometimes observed as being
more perceptually reliant.  Either they have difficulty
comprehending label information, or (more likely) they
simply value perceptual information more than verbal
information in certain contexts and with certain concepts
(Freeman & Sera, 1996). Unfortunately this account does
not answer the question of how and why a child’s bias
might change. Thus, we are left with two issues. First,
how might we account for the changing emphasis on
perceptual and symbolic information? And secondly, must
such an  account presuppose an ability to manipulate
abstract symbolic information?

We developed a connectionist model to address the issue
of transition. The model makes spontaneous inferences, and
changes the basis of its inferences over the course of learning
from a reliance on perceptual information to a reliance on
object labels.

The rest of this paper unfolds as follows. First, we present
in greater detail the inductive reasoning paradigm used to
explore children’s conceptual knowledge. This paradigm will
form the basis of the training regime used to model the
perceptual / label shift. Next, we present the model
architecture and training regime. The model’s performance is
then reported in terms of its behavior when (a) the percept
and label information do not conflict, and (b) the percept and
label information are in conflict. The next section explores
how the variability of the perceptual category impacts on the
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onset of a percept to label shift. The effect of multiple
categories is also addressed. Finally, the results are discussed
in terms of the implications for theories of children's
concept acquisition,

The Inductive Reasoning Paradigm

The model presented in this paper focuses on an
experimental paradigm often used in exploring the
development of inductive inference (Gelman & Markman,
1986; Freeman & Sera, 1996). The paradigm is best
explained with reference to Gelman and Markman (1986).

Gelman and Markman presented four year olds and
adults with pairs of pictures of natural kind objects.
Underneath each picture was written a fact about the object.
The example given is the presentation of a flamingo, and a
bat. Written under the picture of the flamingo was, “This
bird’s heart has a right aortic arch,”” whilst under the bat
was written “this bat’s heart has a left aortic arch.”” Having
thus labeled the objects and provided a fact about them, a
third picture is presented. The third picture is of an object
which is perceptually similar to one of the objects already
presented, but shares its label with the other. Thus, in the
flamingo / bat example, the final picture is of a blackbird,
labelled ‘bird’. Perceptual and label information are in
conflict as predictors of the fact. The child must tell the
experimenter which fact is true of the final object (blackbird),
and in so doing reveal whether he or she is relying on
perceptual similarity or shared identity in making such
inferences.

The Model

A successful model of this paradigm should begin by
demonstrating a reliance on perceptual information then, at
the end of training, demonstrate a reliance on label
information instead. We start from the assumption that the
child is able to perceptually categorise objects before being
able to label them. It is now clear that even very young pre-
linguistic children (infants) have impressive perceptual
categorisation abilities (Quinn & Eimas, 1996). To capture
this, we begin our simulations at a point where perceptual
categorization abilities are already present (see Quinn &
Johnson, 1996 for an example of how these early abilities
can be modelled in connectionist networks). In contrast to
many contemporary accounts of children’s inductive
reasoning (Gelman & Markman, 1986; Carey, 1985), our
model does not presuppose any prior abstract or symbolic
processing system.
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Figure 1 shows a schematic outline of the model. It
consists of a fully connected back propagation network with
a single hidden layer. The input and output layers have been
split into 3 banks
representing  perceptual
information, label
information, and a fact
associated  with an
object. Note that figures
2 4 present simulation
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representation of  the
hidden units. A similar
approach has been used
to model early language
acquisition.  (Chauvin,
1989; Plunkett,
Marchman, Moller & Stransby, 1992). This is a model of
cognitive processing and we would not necessarily equate the
input to raw perceptual uptake and the output to observable
behavior.

There are 48 units in the percept and prototype banks,
and 16 units in each of the label and fact banks. The
number of hidden units used depends on the number of
patterns to be learned, and is kept as low as possible. In the
initial example, only a single hidden unit is required.
Leamning rate and momentum are set to 0.25 and 0.9
respectively. Unit activation varies within the range 0—1
and does not decay. Weights are unbounded, and are
initialised to random values in the range +0.5.

Figure 1 Schema of the model
architecture

The perceptual prototypes were defined as binary vectors,
constrained to be greater than a certain fixed distance apart
(i.e. minimum hamming distance = 36) with 50% of all
values set to ‘1°. The percept inputs were generated on the
fly by adding Gaussian noise (mean = 0, variance = 0.6) to
each component of a prototype vector.

Different phases of training were used to model the
different steps in the inductive reasoning paradigm described
previously. First, the network is trained only on the percept
to prototype association. This phase of training stops when
the network is able to produce appropriate prototypes
regularly with an error less than a fixed criterion (SSE =
0.6). The training is meant to capture the fact that the
children in these studies arrive with the ability to categorise
complex perceptual information. Note that during this
phase, there is no training on either the label or fact
pathways. The label and fact inputs are set to 0.5. Since
activation ranges from 0-1, a value of 0.5 provides the
network with no information.

The second phase involves training the network on the
percept-and-label to prototype-and-label association. During
this phase there is no training on the fact pathway. This
phase of training is meant to capture the fact that older
children have had more opportunity to learn which labels go
with which percepts. Thus minimal training in this phase



(=1000 epochs) represents a child early in development,
whilst a much longer period of training (=30,000 epochs)
represents a child later in development.

The third phase involves training the percept-and-fact to
prototype-and-fact associations, but nor the label. This
time, it is the label inputs that are set to 0.5 (no
information). Weight changes do not occur in that pathway.
This is meant to capture the experiment itself, in which the
child, coming to the task with the ability to perceptually
categorize plus some ability with label information, is
taught to associate a fact with a particular object. The
amount of training required at this point is significantly less
than that required to model the development of percept/label
associations (typically =100 epochs).

Note that the networks are never trained on the label to
fact association. This association emerges by virtue of
learning about percepts + labels, and percepts + facts
separately. The network’s inductive ability (i.e. its ability
to produce a fact when presented with perceptual and label
information) is probed by presenting both percept and label
inputs and observing the fact response at the output. Since
the networks have always experienced the fact in association
with the percept and never in association with the label, one
might expect the fact “inductive inference’’ to be driven by
the percept input. As will be shown in the results, this is
not always the case. We report on 3 types of testing. The
first involves presenting the network with a new percept
only. The second involves presenting the network with a
label only. These tests are intended to model the first
statements of the experimental paradigm in which a new
exemplar of a familiar category (e.g. bird) is presented to the
child. This tests whether the network is able to make
“inductive inferences’ based on either the percept or the
label. The third test involves presenting the network with
conflicting percept and label input and observing the fact
produced at the output. This test provides a measure of the
basis of the “inference’’—i.e. a percept or label driven
“inference’’. This test corresponds to the third statement in
the paradigm used to evaluate the inferential basis of
children.

Results

Percept only Inferences

Figure 2 shows the network's performance when
presented with perceptual information alone. The left side of
the figure shows performance early in development whereas
the right side shows performance late in development. Each
of the four sections of the figure shows the activation states
of the inputs and outputs when a particular percept is
presented to the network. The top row corresponds to
performance when percept (A) is presented and the bottom
row corresponds to performance when percept (B) is
presented. As in figure 1, unit activations are represented by
small squares. Dark squares correspond to high activations
and light squares correspond to low activation. When no
input is presented the squares are an intermediate shade,

456

signifying an activation of 0.5. In this condition neither the
label nor the fact inputs are presented to the network.

Figure 1 demonstrates that both early and late in
development, the network can produce the appropriate label
(a) and fact (o) when presented only with percept (A), as
well as label (b) and fact (B) when presented only with
percept (B). The networks successfully infers label and fact
information from percepts only;'
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Figure 2 Input/Output mappings demonstrating correct
induction performance when given percept information
alone.Throughout development, a perceptual input leads to
recognition of the appropriate prototype, label and fact.

Label Only Inferences

Figure 3 shows the network's performance when
presented with labels only at the inputs. The top row
shows performance when presented with label (a) and the
bottom row when presented with label (b). Both early and
late in development, the network produces the appropriate
prototype and fact from the label only. Presentation of label
(b) results in prototype (B) and fact (B) while presentation of
label (a) results in prototype (A) and fact ().

The fact that presenting any known percept or label
produces the appropriate prototype, label and fact output
reveals how the model is working. The model only has a
single internal representation that is required to encode
multiple mappings. It does not have separate
representations of what an object looks like, what it is
called, and what is true about it. =~ When learning to
categorize perceptually, the model develops a representation
of distinct objects on the basis of perceptual information.
When subsequently trained on label and fact information,
this new information is incorporated into the existing
internal representation. The result is an internal
representation that is constrained by both the perceptual and
label information.
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Figure 3 Input / Output mappings demonstrating
spontaneous induction when given label information alone.
Throughout development, a label input leads to recognition
of the appropriate prototype, label and fact.

Percept and Label Conflict Inferences

Figure 4 shows the crucial conflicting percept and label
condition. The top of the figure shows percept (A)
presented alongside label (b) while the bottom of the figure
shows percept (B) presented alongside label (a). The
principle guiding the network’s induction in the conflict
condition shifts over the course of development from a
reliance on perceptual information to a reliance on label
information.

Early in development, presentation of percept (A) and
label (b) results in the production of prototype (A), label (a)
and fact (o). The presentation of percept (B) and label (a)
results in the production of prototype (B), label (b) and fact
(B). In both cases, the network is relying on the percept
information only to infer the object category, label, and fact.
The reader may wish to compare with figures 2 and 3 to
verify what the expected (A—a—<) and (B—b—) percept-
label-fact associations are.

A very different thing happens later in development.
The basis on which the network makes an inference has
shifted. When presented with percept (A) and label (b), the
network now produces prototype (B), label (b) and fact ().
Similarly, when presented with percept (B) and label (a) the
network produces prototype (A), label (a) and fact (o).
Again, the reader may wish to verify this against
performance depicted in figures 2 and 3.
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Figure 4 Input / Output mappings demonstrating a shift in
the basis of induction when presented with conflicting
percept / label information. Early in development the
output is determined by the perceptual input, but later on,
the output is determined by the category label.

This performance can be explained as a combination of
two factors. First, the single hidden unit bank used to map
multiple sets of information. This fact implies that a single
internal representation will be developed for any
prototype/label/fact combination, and all outputs will be
triggered by the same internal (hidden unit) representation.
Second, perceptual input rarely corresponds perfectly to the
prototype, whilst labels are invariant. As the network seeks
to reduce error, it will inevitably discover that the best
trigger of the appropriate internal representation is the label
input. Thus the weights between the perceptual input and
the hidden representation should gradually reduce in
magnitude whilst the weights between the label input and
the hidden representation should gradually increase during
development.

The Role of Perceptual Variability

Variability across percepts seems to lead to a shift in
reliance from percept to label when performing induction.
We constructed a smaller network to test the role of variable
percepts more precisely. This network had 12 units for the
percept / prototype representation, and 2 for each of the label
and fact representations. The network showed the same shift
in behaviour as the larger network when given the same
I?ve] of noise (Noise taken from a Gaussian distribution,
5=0.6).
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Figure 5 Plots of average absolute weights from percept
input to hidden layer (thin), and label input to hidden

layer (thick) averaged over 5 simulations

The results of the previous section suggest that a reliance
on percept or label depends on which set of units most
effectively triggers the appropriate internal representation.
The reliance on percept vs. label can be measured by
comparing the average absolute size of the weights between
the hidden layer and the percept inputs with the average
absolute size of the weights between the hidden layer and
the label inputs. Figure 5 shows this as a function of
epochs for different levels of variance.

The two prototypes used in these simulations were the
inverses of each other (i.e. hamming distance between
patterns = 12). [t is worth noting that the average of the
label weights grows to exceed the average of the perceptual
weights for variances exceeding 0.5. At this point, the level
of variability in percepts means that some will actually be
more similar to the opposite prototype. The shift is not
driven by percepts that are slightly different from the
prototype, but by percepts that are more similar to another
prototype than to their own category prototype. A second
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point to note is that as the variance level increases, so the
earlier the network shifts to label inferences. This is less
obvious at very high variability levels, since as noise
increases the number of epochs required for learning
perceptual categorization becomes less predictable and also
tends to increase. Hence, the model makes the strong
prediction that a shift from perceptual reliance to label
reliance will occur earlier for perceptually similar objects
with different labels,

The Effect of Multiple Prototypes

This section briefly focuses on the effects of multiple
prototype/label mappings.  Although the Gelman and
Markman studies focused on the use of two percepts and
facts, in the real world children have knowledge of many
more. All of these could interact with performance in the
simplified inductive reasoning task. To explore possible
interaction effects, we trained the full scale model (64 percept
units, 16 label units, 16 fact units) with 10 prototypes each
associated with its own fact and label. To accommodate
this number of patterns, 4 hidden units were used. The
prototype patterns are all greater than a certain fixed
(hamming) distance apart Two important findings emerge
from this work. First, the shift from percept reliance to
object label reliance in induction does not occur at the same
point in training for all objects. Second, objects which are
perceptually more similar tend to shift earlier. The reason
for this is that the network will tend to shift patterns that
reduce more of the error earlier in training. The implication
of this for child development research is that perceptually
more similar patterns shift at a younger age.

Discussion

We present a connectionist model of the development of
a reliance on label information as opposed to perceptual
information when making inductive inferences. This model
performs the shift without any ability to manipulate formal
systems as is the suggestion of the ‘concepts as theories’
view. Evidence that younger children rely on labels is often
taken as support for this view, however we show that the
development of label reliance may be seen as a product of a
confusing perceptual environment, as opposed to an innate
need for structure. We would not want to deny that such
structures do develop. Rather, we suggest that they emerge
from simple systems such as the one described here. This
work may be viewed within the context of the growing body
of work utilising connectionist principles to develop a new
understanding of ideas critical to developmental psychology
- particularly what it means for a behavior to be either
learned or innate (e.g., Elman, Bates, Karmiloff-Smith,
Johnson, Parisi, & Plunkett, i996). Our model makes
architectural assumptions which may reflect innate structure
- however such structure would be of a very different kind
from what might be proposed outside a connectionist
framework,

Our model predicts that differently labelled objects that
are nevertheless perceptually confusable will promote
induction on the basis of label earlier than objects that are



easier to distinguish perceptually. This prediction may
shed some light on the contrasting results of different
induction paradigms. The original studies by Gelman et al
(Gelman & Markman, 1986; Gelman & Markman, 1987)
did not find significant evidence of a percept / label shift in
subjects as young as 3.5 years old. Given their stimuli this
result is not surprising. Their studies rely on perceptually
confusable natural kind stimuli (for example, blackbirds and
bats). Our model predicts that these are the very cases that
are most likely to promote reasoning on the basis of labels
early on.

Some studies do not rely on perceptually confusable
examples. Keil (1989) asked children older than Gelman’s
subjects to say whether a Skunk that had been surgically
transformed to look exactly like a Racoon was in fact a
Racoon or not. In these studies, Keil found that young
children were still reliant on perceptual information in
making inductions, and only later did they realise that the
truly salient characteristic for induction was the animal’s
label. This is what our model would predict—the basis of
induction will take longer to shift when perceptual
categorization is more clear cut.

However, other studies involving still other stimuli do
not report the same findings (Keil, 1989). Even young
children rely on object kind (label) as opposed to perceptual
similarity when presented with a toy dog and a real dog.
Note, however, that whilst in our study all stimuli were
presented equally often to the network, this is not true of
children’s learning. We might propose that toy dogs are
precisely the kinds of objects that young children would
have had a great deal of experience of - and thus the basis of
induction with such objects would be more likely to have
shifted. Our work with multiple prototypes demonstrates
that the basis of induction for different objects will shift at
different times. An alternative simple account of this is to
say that the stuffed dogs and real dogs are perceptually
similar and, therefore, will be differentiated by label use
early in development. Again, this is compatible with the
behaviour of our model.

The question arises as to whether this model might also
be applicable to novice/expert shifts in adult leaming (e.g.
Slotta, Chi, & Joram, 1995). The data suggests that this
may be the case. In future, however, we intend to extend
the model to cover a broader spectrum of the child data in
detail. We expect the analogy between adult learning and
child development to be strained by such progress.

The principles embodied in this model are inadequate to
fully explain the richness of children’s induction. However,
the model demonstrates that simple mechanisms can cover
broad sections of data without requiring complex, structured
internal representations, and provides support for the view
that the genesis of conceptual thought need not require a
fully developed representational system.

References

Carey, S. (1985) Conceptual Change in Childhood.
Cambridge, MA, MIT Press,

459

Chauvin, Y. (1989) Toward a connectionist model of
symbolic emergence. In Proceedings of the [1lth
Conference of the Cognitive Science Sociery, p. 580-587.

Elman, J.L., Bates, E.A., Karmiloff-Smith, A., Johnson,
M.H., Parisi, D, & Plunkett, K. (1996); Rethinking
Innateness: Connectionism in a developmental
framework. Cambridge, MA., MIT Press.

Freeman, K. & Sera, M. (1996) Reliance on visual and
verbal information across ontological kinds: What do
children know about animals and machines? Cognitive
Development, 11, 315-341.

Gelman, S. & Markman, E. (1986) Categories and Induction
in Young Children. Cognition, 23, 183-209.

Gelman, S & Markman, E. (1987) Young children's
inductions from natural kinds: The role of categories and
appearances. Child Development, 57, 1532-1541,

Inhelder, B. & Piaget, 1. (1964) The Early Growth of Logic
in the Child. New York, Norton.

Keil, F (1989) Concepts, Kinds and Cognitive
Development. Cambridge, Cambridge, MA, MIT Press.
McCarrell, N. & Callanan, M. (1995) Form-function
correspondences  in  children’s  inference. Child

Development, 66(2), 532-546.

Murphy, G. & Medin, D (1985) The Role of Theories in
Conceptual Coherence, Psychological Review, 92, 289-
316.

Plunkett, K., Sinha, C., Moller, M., and Strandsby, O.
(1992) Symbol grounding or the emergence of symbols?
Vocabulary growth in children and a connectionist net.
Connection Science, 4:293-312.

Quinn, P. and Eimas, P. (1996) Perceptual organization and
categorization in young infants. In Rovee-Collier, C. and
L.P.Lipsitt, editors, Advances in Infancy Research,
volume 10, p. 1-36. Norwoods, NJ, Ablex.

Quinn, P. and Johnson, M. (1996) The emergence of
perceptual category representations during early
development: A connectionist analysis. In Cottrell, G.,
editor, Proceedings of the 18th Annual Conference of the
Cognitive Science Society, p 638-643, Hillsdale,
NIJ:LEA.

Slotta, J.D., Chi, M.T.H., Joram, E. (1995) Assessing
students’ misclassifications of physics concepts: An
ontological basis for conceptual change. Cognition and
Instruction, 13(3), 373-400.



	cogsci_1997_454-459



