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Abstract

This paper analyzes a model of early morning traffic congestion, that is a special

case of the model considered in Newell (1988). A fixed number of identical vehicles

travel along a single-lane road of constant width from a common origin to a common

destination, with LWR flow congestion and Greenshields’ Relation. Vehicles have a

common work start time, late arrivals are not permitted, and trip cost is linear in travel

time and time early. The paper explores traffic dynamics for the Social Optimum, in

which total trip cost is minimized, and for the User Optimum, in which no vehicle’s

trip cost can be reduced by altering its departure time. Analytical and, when possible,

closed-form solutions are presented, along with numerical examples.

Keywords: corridor, morning commute, social optimum, user optimum
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1 Introduction 1

In recent years considerable theoretical work has been done on the dynamics of rush-hour

traffic congestion. Most of this work has applied the basic bottleneck model (Vickrey (1969),

as simplified in Arnott, de Palma and Lindsey (1990)), in which congestion takes the form of

a queue behind a single bottleneck of fixed flow capacity. A strength of the bottleneck model

is its simplicity, which permits many extensions. A weakness is that the technology of traffic

congestion may not be well described by queues behind bottlenecks. This paper replaces

bottleneck congestion with LWR (Lighthill and Whitham (1955) and Richards (1956)) flow

congestion, which combines the equation of continuity (conservation of mass for a fluid) with

an assumed technological relationship between local velocity and local traffic density, and

covers bottleneck congestion as a limiting case.

Newell (1988) (herein referred to as Newell) considered a model of the morning commute

in which a fixed number of identical commuters must travel along a road of constant width

subject to LWR flow congestion, from a common origin to a common destination, and in

which trip costs are a linear function of travel time and schedule delay. He allowed for a

general distribution of desired arrival times and a general technological relationship between

local velocity and local density, and precluded late arrivals by assumption. He obtained

qualitative properties of both the social optimum (SO) in which total trip cost is minimized,

and the user optimum (UO) in which no commuter can reduce their trip cost by altering

their departure time. While a tour de force, his paper has been overlooked by the literature,

likely because of the density of its discussion and analysis.

Our paper provides a detailed analysis of a special case of Newell’s model, assuming that

commuters have a common desired arrival time and that local velocity is a negative linear

function of local density (Greenshields’ Relation). It complements Newell’s paper in three

1Richard Arnott thanks the US Department of Transportation, grant #DTRT07-G-0009, and the Cali-
fornia Department of Transportation, grant #65A0216, through the University of California Transportation
Center (UCTC) at UC Berkeley. Elijah DePalma thanks the University of California Transportation Center
(UCTC) for the dissertation fellowship award.
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respects. First, it is more accessible, laying down arguments in greater detail and providing

numerical solutions. Second, by restricting the analysis to Greenshields’ Relation, the paper

obtains a closed-form solution to the SO problem, and a complete analytical solution to the

UO problem, which provide additional insight. Third, unlike Newell, it discusses economic

properties of the solutions.

We came to the topic of this paper indirectly. Interested in the spatial-temporal dynamics

of rush-hour traffic congestion in a metropolitan area, Arnott posed the Corridor Problem,

which is identical to the model considered in this paper except that traffic enters at all

locations along the road. In the process of studying the Corridor Problem (Arnott and

DePalma (2010) gives some preliminary results), Arnott and DePalma came to appreciate

its difficulty, and decided to investigate a sequence of simpler problems, the first having cars

enter at only one location. Thus, the problem addressed in this paper might be termed the

Single-Entry Corridor Problem.

Section 2 presents the model and notation, introduces the components of LWR traffic

flow theory used in the paper, and illustrates how they are applied by solving for the traffic

dynamics along a uniform point-entry, point-exit road, in response to an increase in the entry

rate from zero to a constant level for a fixed time period. Sections 3 and 4 contain the main

results of the paper, presenting the SO and UO solutions respectively. Section 5 investigates

the model’s economic properties, and contrasts them with those of the bottleneck model.

Section 6 discusses directions for future research and concludes.

2 Model Description

Consider a road of constant width that connects a single entry point to a point central

business district (CBD) that lies at the eastern end of the corridor. Since the primary results

of this paper are derived from Newell, we adopt the notation and terminology used there,

with the following exception: We use the word departure to indicate a vehicle’s departure
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from the origin and consequent entry into the corridor, and the word arrival to indicate

a vehicle’s arrival at the CBD and consequent exit from the corridor, whereas Newell uses

these words in the opposite manner2.

Location is indexed by x, with the entry point located at x = 0 and the CBD at x = l.

The corridor consists of a road from x = 0 to x = l, and possibly a queue at x = 0 as well.

At time t, let A(t) denote the cumulative inflow into the corridor (including those that may

be in a queue), AR(t) the cumulative inflow into the road, and Q(t) the cumulative outflow

at x = l. Let a(t) = dA
dt

denote the inflow rate into the corridor, aR(t) = dAR

dt
the inflow rate

into the road, and q(t) = dQ

dt
the outflow rate at x = l.

Let N denote population, tf the time of the last vehicle departure into the corridor, tR

the time of the last vehicle departure into the road, and t̄ the time of the last vehicle arrival

at the CBD. If a queue is present at time tf , then tR > tf . We will normalize time such that

the first departure occurs at time t = 0; consequently, tf , tR and t̄ are endogenous times that

provide alternative measures of the duration of the morning rush hour and are not specified

a priori.

2.1 Trip Cost

All vehicles have a common desired arrival time, the work start-time, which coincides3 with

the time of the last vehicle arrival, t̄.

Let τ(t) denote the travel time of the vehicle departing at time t (which includes time

spent in a queue), α1 the per unit cost of travel time, α2 the per unit cost of schedule delay

2As indicated in Lago and Daganzo (2007), in queueing theory it is customary to use the terms arrivals

to and departures from a server, whereas in the economics literature the terms are used in reverse, referring
to departures from an origin and arrivals at a destination.

3The final departure at time tf arrives at the CBD at time t̄. Since late arrivals are not permitted, t̄

cannot occur later than the work start-time. If t̄ occurs earlier than the work start-time, then a constant
schedule delay cost will be added to each vehicle’s trip cost, which can be eliminated without changing
the traffic dynamics by uniformly translating the entire system in time so that t̄ coincides with the work
start-time.
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(i.e., time early arrival), and C(t) the trip cost:

Trip Cost = Travel Time Cost + Schedule Delay Cost

C(t) = α1τ(t) + α2 (t̄ − [t + τ(t)]) , 0 ≤ t ≤ tf .

(2.1.1)

Denote the sum of all trip costs as the total trip cost, TTC:

Total Trip Cost = Total Travel Time Cost + Total Schedule Delay Cost

TTC = α1(Total Travel Time) + α2(Total Schedule Delay)

= α1

∫ tf

0

τ(t)a(t) dt + α2

∫ tf

0

(t∗ − [t + τ(t)]) a(t) dt.

(2.1.2)

Throughout this paper we assume that α1 > α2, which is supported by empirical evidence

in Small (1982), and which is a necessary condition for constructing a UO solution, as is

explained in a more general setting in Section 4 of Newell.

2.2 Traffic Dynamics

Following Newell, let k(x, t), v(x, t) and q(x, t)4 denote traffic density, velocity and flow,

respectively. As does most of the literature, we assume that the velocity-density relationship

has the following features:

• v achieves a maximum value of v0 (free-flow velocity) when k = 0.

• v is a non-increasing function of k and equals zero when k = kj (jam density).

• q achieves a maximum value of qm (capacity flow) at a unique density value, k = km.

• q is an increasing function of k for 0 ≤ k ≤ km (ordinary flow).

• q is a decreasing function of k for km ≤ k ≤ kj (congested flow).

4As in Newell, the symbol q has different interpretations depending on context: i) q(x, t) denotes the flow
rate at the spacetime point (x, t); ii) q(t) denotes the outflow rate out at x = l; iii) q denotes the flow rate
used as a dependent or independent variable with other quantities, such as v and k.
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Throughout the paper all analytic results are derived using Greenshields’ Relation, i.e., the

linear velocity-density relationship, v
v0

= 1 − k
kj

(see A-1).

2.2.1 Continuity Equation, Characteristics and Shocks

The continuity equation, its solution using the method of characteristics, and the formation

of shock and rarefaction waves, are explained in detail in books such as Matheij and Rienstra

(2005). Here we briefly sketch the concepts that are relavant to our paper.

The LWR traffic flow model is formulated in terms of a hyperbolic partial differential

equation known as the continuity equation, which is a statement of conservation of mass of

a fluid:

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0.

Inserting a functional relationship between flow and density, q(k), into the continuity equa-

tion yields

∂k(x, t)

∂t
+ q′(k)

∂k(x, t)

∂x
= 0. (2.2.1)

The method of characteristics for solving (2.2.1) is to reduce the PDE to a pair of ODE’s:

i) dx
dt

= q′ (k(x, t)); and ii) dk(x,t)
dt

= 0. The solutions to this pair of ODE’s are called

characteristic curves, or characteristics, and are straight lines in the spacetime plane along

which k is constant. In t-x space, a characteristic line with density k has slope ∆x
∆t

= q′(k),

which is termed its wave velocity. As in Newell, it is more convenient to work in x-t space and

to deal with the reciprocal of the wave velocity normalized by free-flow velocity, w = v0

q′(k)
.

Greenshields’ Relation yields w = 1
1− k

km

, and in the ordinary flow régime, k ≤ km, we can

write w in terms of q as

w =
1

√

1 − q

qm

. (2.2.2)

When characteristic lines intersect, the density becomes discontinuous, resulting in what

is called a shock wave, which propagates through spacetime along a curve called the shock

wave path, i.e., a path of intersecting characteristic lines. Although the continuity equation,
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(2.2.1), is not satisfied along a shock wave path, a weak, integral-form of the continuity

equation is satisfied. However, to uniquely determine a solution to the weak form of the

continuity equation an additional condition is required, called the entropy condition.5 This

condition requires that, for fixed t, as x increases from left to right across a shock wave path

the density across the shock wave path must discontinuously increase, i.e., kl < kr where kl

is the density to the left of the shock wave path and kr is the density to the right of the

shock wave path. As shown in Matheij and Rienstra (2005), the speed of the shock wave

path must satisfy
(

dx

dt

)

Shock

=
qr − ql

kr − kl

, (2.2.3)

where flows ql and qr are defined similarly to kl and kr.

2.2.2 Trajectory of Last Vehicle Departure is a Shock Wave Path

If the last vehicle to depart does not travel at free-flow velocity, then its trajectory coincides

with a shock wave path. To see this, consider a point on the trajectory of the last vehicle

to depart. For fixed t, to the left of this point flow and density are both zero, whereas to

the right flow and density are both greater than zero, qr > 0 and kr > 0, so that the point

lies on a shock wave path. Since, from (2.2.3), the speed of the shock wave at this point is

qr

kr
, which coincides with the velocity of the vehicle at this point, the vehicle’s trajectory is

a shock wave path.

2.2.3 Corridor and Road Inflow Rates, and Queue Development

Since the inflow rate into the road cannot exceed capacity flow, a queue develops if and only

if the inflow rate into the corridor, a(t), is greater than capacity flow. If a queue is present,

then the inflow rate into the road, aR(t), is capacity flow. Furthermore, since entries do not

occur at any other point along the road, the traffic dynamics along the road will be in the

5As discussed in Section 4.4.2 of Daganzo (1997), the entropy condition is equivalent to requiring that
each interior spacetime point be connected to a point on the boundary through a truncated characteristic
which does not intersect any other characteristics or shocks.
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ordinary flow régime for all time.

2.2.4 Method of Characteristics for the Single-Entry Corridor Problem

The following discussion is relevant to Figures 2.1, 3.3 and 4.3. Given a road inflow rate,

aR(t) for 0 ≤ t ≤ tR, to determine the traffic dynamics throughout spacetime we draw a half-

line characteristic emanating from each point (0, t) on the t-axis with slope ∆t
∆x

= 1

v0

√

1−
aR(t)

qm

.

Along this line density, flow and velocity are all constant, with flow being the constant value

aR(t), and density and velocity being derived from the flow value via Greenshields’ Relation.

Provided that this line does not intersect any other characteristic line, the density along this

line is constant from x = 0 to x = l.

In spacetime regions of zero density the characteristic lines have slope 1
v0

and coincide

with vehicle trajectory curves corresponding to free-flow travel. Since the corridor is initially

empty, the first vehicle departure at t = 0 travels at free-flow velocity, arriving at the CBD

at time t = l
v0

.

If the inflow rate discontinuously increases at a point in time, then the slope of the

characteristic lines emanating just below and just above that point on the t-axis also discon-

tinuously increases. A fan of characteristic lines emanates from this point, referred to as a

rarefaction wave.

After drawing all characteristics and determining all shock paths, density is determined

for all spacetime points (x, t), 0 ≤ x ≤ l and −∞ < t < ∞. Using Greenshields’ Relation

we can determine the velocity at each spacetime point, from which we can obtain vehicle

trajectory curves and trip costs. Although this solution method works in principle, it is

computationally difficult to calculate shock paths; however, some recent work has been done

in designing a robust algorithm for use with Greenshields’ Relation, Wong and Wong (2002).

A much simpler method is to use the cell-transmission model, (Daganzo (1995)), which uses a

finite-difference-equation approximation to the continuity equation to determine the density

at all spacetime points. The cell-transmission model does not permit the exact solution
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of shock wave paths, but given any initial inflow rate and any flow-density relationship,

it permits numerical determination of the outflow rate, trajectory curves and trip costs.

Throughout the paper we have repeatedly used the cell-transmission model to numerically

verify the theoretically derived results.

2.2.5 Cumulative Inflow and Outflow Curves

The following discussion is relevant to Figures 2.2, 2.4, 3.1, 3.2 and 4.2. Section 2 of Newell

determines relations which, in the absence of shocks, must be satisfied by cumulative inflow

and outflow curves, and we restate those relations here. Let (t, A(t)) and (t′, Q(t′)) be points

on the cumulative inflow and outflow curves, respectively, such that the flow rates at both

points are equal, i.e., a(t) = q(t′). These two points are related via equations (2.7) and (2.14)

from Newell:

t = t′ −
l

v0
w(q) (2.2.4a)

A(t) = Q(t′) −
l

v0
q

[

w(q) −
v0

v(q)

]

, (2.2.4b)

where w(q) is given in (2.2.2). In a graph of cumulative inflow and outflow curves, we use

a dashed line to connect these related points of equal flow rate, and therefore these dashed

lines have slope

Q(t′) − A(t)

t′ − t
= q

[

1 −
v0

w(q)v(q)

]

. (2.2.5)

2.3 Scaled Units

Throughout the paper we utilize the following system of scaled units:

• Choose length units such that l = 1.

• Choose time units such that l
v0

= 1, so effectively v0 = 1.
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• Choose population units such that qml

v0
= 1, so effectively qm = 1. Under Greenshields’

Relation, this choice of population units is equivalent to kj = 4.

• Choose cost units such that α1
qml

v0

l
v0

= 1, so effectively α1 = 1.

Given an equation in scaled units, we can recover the unscaled equation by dividing each

term by the appropriate scaling factor. For example, in the SO we determine the time of

the last vehicle arrival at the CBD in scaled units:

t̄ = 1 +
1

2
N +

√

1

α2
N +

(

1

2
N

)2

.

Since t̄ has units of time, N has units of population and α2 has units of cost per population

per time, to recover the unscaled equation we replace t̄ with t̄
v0
l

, N with N
qml

v0

, and α2 with

α2

qml
v0

l
v0

α1
qml

v0

l
v0

= α2

α1
. Inserting these replacements into the previous equation yields

t̄ =
l

v0
+

1

2

N

qm

+

√

α1

α2

l

v0

N

qm

+

(

1

2

N

qm

)2

.

Unless otherwise specified, all of the results which follow are in scaled units.

2.4 Constant Inflow Rate

In this section we analyze the traffic dynamics resulting from a constant inflow rate into the

corridor, a(t) = qc from t = 0 to t = tf . We analytically derive vehicle trajectories and their

associated trip costs, the outflow rate, and total trip cost.

If qc > 1, a queue develops at the entry point and the road inflow rate is capacity flow,

1. In this case, for t > tf the corridor inflow ceases, the queue dissipates, and the road

inflow rate is capacity inflow until time tR > tf , at which point the entire population has

entered the road. The resulting traffic dynamics are identical to a situation in which an

identical size population enters the corridor at capacity inflow from t = 0 to t = tR. The
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only differences between the two situations are the individual vehicle trip costs and total

trip cost, since in the former situation vehicles in a queue incur an additional travel time

cost. In the following derivations we initially presume that the constant inflow rate satisfies

qc ≤ 1, and later remark on how total trip cost is affected if qc > 1.

2.4.1 Characteristic Curves

Vehicles depart at a constant inflow rate, qc ≤ 1, during the time interval 0 ≤ t ≤ tf . Since a

population N departs, tf = N
qc

. For t < 0 and t > tf the characteristic lines emanating from

the t-axis have slope 1, representing free-flow traffic, and for 0 < t < tf the characteristic

lines have slope wc = 1√
1−qc

> 1. Thus, at t = 0 we obtain a rarefaction wave, and at

t = tf we obtain a shock wave whose path coincides with the trajectory of the last vehicle

departure. The following analysis is split into two separate cases:

Case 1 All vehicle trajectories intersect the rarefaction wave.

Case 2 Not all vehicle trajectories intersect the rarefaction wave.

Vehicles departing at time t > 0 travel with constant velocity

vc =
1 +

√
1 − qc

2
=

wc + 1

2wc

,

until reaching either the upper boundary of the rarefaction wave (Cases 1 and 2) or the CBD

(Case 2 only). Since the upper boundary line of the rarefaction wave has slope wc, the time

point at which the upper boundary line reaches the CBD is wc. Let tc denote the departure

time of a vehicle that would reach the CBD at time wc if it traveled at constant velocity vc,

so that

tc = wc −
1

vc

=
wc(wc − 1)

wc + 1
.

Thus, a vehicle departing earlier than tc travels at constant velocity vc until reaching the

upper boundary of the rarefaction wave (Cases 1 and 2), whereas a vehicle departing later
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than tc travels at constant velocity vc until reaching the CBD (Case 2 only). Case 1 occurs

if tf ≤ tc, or, equivalently, N
qc

≤ wc(wc−1)
wc+1

. Since wc = 1√
1−qc

, this condition reduces to

qc ≥ 1 −
1

(

1 + N
2

+
√

N + (N
2
)2
)2 . (Case 1)

Thus, Case 1 occurs if the inflow rate qc is sufficiently large relative to the population.

Figure 2.1 plots characteristic lines and the trajectory of the final vehicle departure for

Cases 1 and 2.

Figure 2.1: Dashed lines are characteristics corresponding to a constant inflow rate from
t = 0 to t = tf , and the solid line is the trajectory of the final vehicle departure. The bold,
dashed lines are characteristics corresponding to the boundaries of the rarefaction wave
arising from the initial discontinuous increase in the inflow rate. Case 1 occurs if the inflow
rate is sufficiently large relative to the population. In Case 1 the upper boundary of the
rarefaction wave does not reach the CBD since it intersects the shock wave corresponding
to the trajectory of the final vehicle trajectory, although we indicate its intended path using
a dotted line.
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2.4.2 Vehicle Trajectories

Denote the departure time of a vehicle as td, 0 ≤ td ≤ tf , and its arrival time as ta, 1 ≤ ta ≤ t̄.

The first vehicle departure occurs at td = 0, with corresponding arrival at ta = 1, and its

trajectory is a straight line coinciding with the lower boundary of the rarefaction wave. If

td > 0, then the vehicle initially travels at constant velocity vc = wc+1
2wc

, so that the trajectory

is a straight line whose spacetime coordinates, (x, t), satisfy

x(t) =
wc + 1

2wc

(t − td).

If td ≥ tc (Case 2 only), then the vehicle’s straight-line trajectory arrives at the CBD at time

ta = td +
2wc

wc + 1
.

If td < tc (Cases 1 and 2), then the vehicle’s straight-line trajectory intersects the upper

boundary of the rarefaction wave at the spacetime point

(x0, t0) =

(

td
wc + 1

wc(wc − 1)
, td

wc + 1

wc − 1

)

.

Upon entering the interior of the rarefaction wave the vehicle’s speed at a spacetime point

depends upon the flow value at that spacetime point through Greenshields’ Relation, and

the flow value at that spacetime point is determined by the characteristic line upon which

it lies. If we denote the spacetime point of the vehicle trajectory as (x, t), then since the

characteristic line along which it lies is generated from a fan of characteristic lines emanating

from the origin, the flow along the characteristic line, q, satisfies 1√
1−q

= t
x
. From Green-

shields’ Relation (A-1) the vehicle’s speed satisfies v = 1
2

[

1 +
√

1 − q
]

, and combining these

two equations yields a differential equation for the vehicle’s trajectory curve in the interior

of the rarefaction wave:

dx

dt
=

1

2

[

1 +
x

t

]

. (2.4.1)
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This equation can be solved by making the substitution y = x
t
, resulting in the general

solution x(t) = t + A
√

t, where A is an arbitrary constant determined from the initial

condition that the trajectory curve originates from the spacetime point (x0, t0). After some

algebraic simplifications we obtain the trajectory within the interior of the rarefaction wave

as

x(t) = t −
√

tdqc

√
t,

which arrives at the CBD at time

ta = 1 +
tdqc

2
+

√

tdqc +

[

tdqc

2

]2

.

In Table 1 we summarize, providing expressions for the vehicle trajectories and their arrival

times in terms of their departure times, td. The last departure occurs at time tf = N
qc

, and

arrives at time t̄. Replacing td with tf in the arrival time expressions determines t̄ for Cases

1 and 2, and these results are also provided in Table 1.

2.4.3 Outflow Rate

Figure 2.1 provides a graphical method to determine the outflow rate at the CBD, q(t),

by determining the constant flow value on each characteristic line. The characteristic lines

corresponding to free-flow travel have zero flow value, so that q(t) = 0 for t < 1 or t > t̄. The

characteristic lines that are generated from the rarefaction wave at the origin have flow value

q and slope w = 1√
1−q

= t
1
, so that q(t) = 1− 1

t2
for 1 < t < t̄ (Case 1) and 1 < t < wc (Case

2). We conclude that the outflow rate in this time period depends only upon the existence

of a discontinuity in the inflow rate at the origin, and does not depend upon the magnitude

of the discontinuity, qc. In Case 2, for wc < t < t̄ the outflow rate is qc. Integrating q(t)

yields the cumulative outflow curve, Q(t). These results are summarized in Table 1.

In Figure 2.2 we plot the cumulative inflow and outflow curves for Cases 1 and 2. The

dashed lines are constant-flow lines (whose slope is determined from (2.2.5)), and show how
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the inflow generates the outflow. In Case 1 the cumulative outflow curve is generated by the

initial discontinuity in the inflow rate, and the subsequent inflow does not affect the outflow

rate. In Case 2 the first portion of the cumulative outflow curve from time t = 1 to t = wc

is generated by the initial discontinuity in the inflow rate, and the second portion of the

cumulative outflow curve from t = wc to t = t̄ is generated by the inflow from t = 0 up to

some point in time, which we denote as t′. The subsequent inflow after t = t′ does not affect

the outflow rate.

Figure 2.2: Sample cumulative outflow curves corresponding to a constant inflow rate for
Cases 1 and 2. The dashed lines are constant flow lines, and show how the inflow generates
the outflow. Note that in Case 1 the outflow is completely determined by a portion of the
rarefaction wave arising from the initial discontinuity in the inflow rate, and does not depend
upon the magnitude of the inflow rate, qc.
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2.4.4 Trip Costs

For a departure at time td, the travel time cost is ta − td, schedule delay cost is α2 (t̄ − ta),

and trip cost is C = ta − td + α2(t̄− ta). In Figure 2.3 we graph these costs as functions of

departure time for capacity inflow and α2 = 0.5.

Figure 2.3: Schedule delay cost, travel time cost and trip cost as functions of departure time
for capacity inflow rate, with N = 1 and α2 = 0.5 (Case 1 applies).

In Figure 2.2 the total schedule delay is the area under the cumulative outflow curve

from t = 1 to t = t̄,

Total Schedule Delay =

∫ t̄

1

Q(t) dt, (2.4.2)

the total travel time is the area between the cumulative inflow and outflow curves,

Total Travel Time =

∫ tf

0

A(t) dt + N (t̄ − tf) −
∫ t̄

1

Q(t) dt, (2.4.3)
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and the total trip cost is

TTC = Total Travel Time + α2 (Total Schedule Delay) . (2.4.4)

Since A(t) = qct for 0 < t < tf , using the expression for Q(t) given in Table 1, we analytically

determine the total schedule delay, total travel time and total trip cost, which are also

provided in Table 1.

2.4.5 Queue Development

Suppose that a population of size N enters the corridor at an inflow rate greater than capacity

flow, qc > 1. Since the inflow into the road cannot exceed capacity flow, a queue develops

at the entry point. The road inflow rate remains constant at capacity inflow until the queue

has dissipated. Thus, the total population enters the corridor by time tf = N
qc

, but does not

enter the road until the later time, tR = N
1

= N . We can write the cumulative inflow curve

into the corridor as

A(t) = qct, 0 ≤ t ≤ tf ,

and the cumulative inflow curve into the road as

AR(t) = t, 0 ≤ t ≤ tR.

The resulting traffic dynamics along the road are identical to a situation in which the total

population enters the corridor at capacity inflow from t = 0 to t = N . However, queueing

time adds to travel time. In Figure 2.4 we plot the cumulative corridor and road inflow

curves, along with the cumulative outflow curve. The traffic dynamics along the road are

determined by the inflow rate into the road, indicated by the lightly dashed lines. For a

departure at time t, the horizontal distance between the cumulative corridor and road inflow

curves is qc(t− 1), which is the queueing time. The total queueing time is the area between
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Case 1: tf ≤ tc ⇔ qc large Case 2: tf > tc ⇔ qc small

tc = wc(wc−1)
wc+1

, where wc = 1√
1−qc

Inflow Rate, qc qc ≥ 1 − 1
(

1+ N
2

+
√

N+(N
2 )

2
)2 0 < qc < 1 − 1

(

1+ N
2

+
√

N+(N
2 )

2
)2

Arrival Time
if 0 ≤ td ≤ tc

ta = 1 + tdqc

2
+
√

tdqc +
[

tdqc

2

]2

Vehicle Trajectory
if 0 ≤ td ≤ tc

x(t) =







(

wc+1
2wc

)

(t − td) , td ≤ t ≤ td

(

wc+1
wc−1

)

t −
√

tdqc

√
t, td

(

wc+1
wc−1

)

< t ≤ ta

Arrival Time
if td > tc

- ta = td + 2wc

1+wc

Vehicle Trajectory
if td > tc

- x(t) =
(

wc+1
2wc

)

(t − td) , td ≤ t ≤ ta

Time of Last
Vehicle Arrival

t̄ = 1 + N
2

+
√

N +
(

N
2

)2
t̄ = N

qc
+ 2

1+
√

1−qc

Outflow Rate q(t) =

{

0, t ≤ 1 or t ≥ t̄

1 − 1
t2

, 1 < t < t̄
q(t) =











0, t ≤ 1 or t ≥ t̄

1 − 1
t2

, 1 < t ≤ wc

qc, wc < t ≤ t̄

Cumulative
Outflow Rate

Q(t) =











0, t ≤ 1

t + 1
t
− 2, 1 < t ≤ t̄

N, t > t̄

Q(t) =























0, t ≤ 1

t + 1
t
− 2, 1 < t ≤ wc

(t − wc)qc + (wc−1)2

wc
, wc < t ≤ t̄

N, t > t̄

Total Schedule
Delay

TSD = 1
2
(t̄2 − 1) − 2 (t̄ − 1) + log t̄ TSD = 1

2
(w2

c − 1)
(

t̄
wc

)2

− 2 (wc − 1)
(

t̄
wc

)

+ log wc

Total Travel
Time

TTT = Nt̄ − N2

2qc
− TSD TTT = Nt̄ − N2

2qc
− TSD

Total Trip
Cost

TTC = Nt̄ − N2

2qc
− (1 − α2)TSD TTC = Nt̄ − N2

2qc
− (1 − α2)TSD

Table 1: Table of results for a constant inflow rate, qc (scaled units).
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the two cumulative inflow curves, 1
2
N2
(

1 − 1
qc

)

. Thus, for an inflow rate of qc > 1, the total

trip cost is greater than that with capacity flow by 1
2
N2
(

1 − 1
qc

)

.

Figure 2.4: If the corridor inflow rate is greater than capacity inflow, then a queue develops
and the road inflow rate equals capacity inflow for the duration of the queue. The traffic
dynamics along the road are identical to the entire population entering at capacity inflow,
but an additional total travel time is incurred equalling the area between the curves A(t)
and AR(t).

3 Social Optimum

Given population, N , and unit schedule delay cost, α2, the social optimum (SO) solution

for the Single-Entry Corridor Problem with no late arrivals is the inflow rate function, a(t),

that minimizes total trip cost. Newell provides a method for constructing the solution for

an arbitrary arrival demand curve. In this section we apply his results to the Single-Entry

Corridor Problem in which the demand curve consists of zero arrivals before the work-start
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time, t̄, and the total population at the work-start time. As noted earlier, we normalize time

so that the first departure occurs at t = 0; consequently, the length of the corridor rush

hour, t̄, is endogeneous.

3.1 Outflow Curve of Maximal Growth

Section 3 of Newell first determines the inflow rate function that minimizes total schedule

delay, showing that the area under the cumulative outflow curve is minimized if Q(t) is a

cumulative outflow curve of maximal growth. To construct this curve, Newell first rewrites

the flow-density relationship in terms of w instead of k to obtain flow as a function of w,

q∗(w), and subsequently determines the nondimensional cumulative outflow curve of maximal

growth, denoted as Q∗(w) =
∫ w

1
q∗(z) dz. Greenshields’ Relation, (2.2.2), allows Newell to

determine

q∗(w) = 1 −
1

w2
,

from which Newell obtains

Q∗(w) =

∫ w

1

q∗(z) dz = w +
1

w
− 2. (3.1.1)

Section 2 of Newell outlines a geometric procedure for constructing the cumulative outflow

curve of maximal growth, Q(t′), using Q∗(w). In this procedure, a segment of the Q∗ curve

must be drawn so that it is tangent to the (scaled) arrival-demand curve at some time t′0,

and intersects the arrival-demand curve at some later time. Equation (2.12) from Newell

determines the cumulative outflow curve, restated here using our scaled units:

Q(t′) = Q(t′0) + Q∗ (w0 + t′ − t′0) − Q∗(w0). (3.1.2)

In the Single-Entry Corridor Problem, the arrival-demand curve is a horizontal line with

value zero for t < t̄, and a horizontal line with value N for t ≥ t̄. Thus, the Q∗ curve must
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be drawn with slope zero at (t′0, 0), and must intersect the (scaled) arrival-demand curve at

(t̄, N). The first condition implies that q(t′0) = 0, so w0 = 1. Since the first departure travels

at free-flow velocity, the first arrival occurs at time t′0 = 1. Inserting these values and (3.1.1)

into (3.1.2) yields the cumulative outflow curve of maximal growth,

Q(t′) = t′ +
1

t′
− 2, 1 ≤ t′ ≤ t̄, (3.1.3)

where t̄ is determined such that Q(t̄) = N . (3.1.3) is identical to the cumulative outflow

rate for Case 1 in Table 1, which is generated as a result of a sufficiently large discontinuous

increase in the inflow rate. Thus, the cumulative outflow curve of maximal growth, (3.1.3),

does not uniquely generate an inflow rate. However, as indicated at the end of Section 2

in Newell, since the outflow rate at t̄ discontinuously drops to zero, a cumulative inflow

curve can be uniquely generated as a backwards fan of waves originating from the point of

discontinuous decrease in outflow rate. Specifically, let (t, A(t)) be a point on the cumulative

inflow curve generated from a backwards fan of waves emanating from the discontinuity in

the outflow rate at (t̄, N) on the cumulative outflow curve. From (2.2.4a) we obtain:

t = t̄ −
1

√

1 − a(t)
⇒ a(t) = 1 −

1

(t̄ − t)2 . (3.1.4)

Since A(0) = 0, we can integrate a(t) to determine A(t),

A(t) = N −
(

t̄ − t +
1

t̄ − t
− 2

)

for 0 ≤ t ≤ tf , (3.1.5)

and A(tf ) = N implies tf = t̄ − 1. In Figure 3.1 we graph the cumulative outflow curve

of maximal growth, along with the uniquely generated cumulative inflow curve. Comparing

Figure 3.1 and Figure 2.2, Case 1 enables the following observations:

• The outflow curves in both figures are identical, each being generated by the discontin-

uous inflow rate at t = 0. Figure 2.2, Case 1 occurs if the inflow rate is sufficiently large,
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Figure 3.1: Q(t) is the cumulative outflow curve of maximal growth. A(t) is a cumulative
inflow curve generated from the discontinuity in the outflow rate at t̄. Any other cumulative
inflow curve which lies above A(t) generates the same Q(t); however, the A(t) shown is the
only cumulative inflow curve for which no shock waves are present in the system, and thus
the traffic dynamics of the system are symmetric in the sense that we can equivalently view
the time reversal of the outflow rate as generating the inflow rate. Furthermore, the A(t)
shown is the SO solution in the case when α2 = 1, i.e., the A(t) shown minimizes the sum
of the area between A(t) and Q(t) plus the area under Q(t), from t = 0 to t = t̄.

qc ≥ 1− 1
(

1+N+
√

N+(N
2 )

2
)2 , which is precisely the slope at t = 0 of the cumulative inflow

curve in Figure 3.1. As indicated in the last paragraph of Section 2 in Newell, any cu-

mulative inflow curve lying above the cumulative inflow curve in Figure 3.1 generates

the same cumulative outflow curve, being the cumulative outflow curve of maximal

growth, but with a deceleration shock wave forming at some x, 0 ≤ x ≤ 1. For the

cumulative inflow curve in Figure 2.2, Case 1, a shock forms at (x, t) = (0, tf), and the

shock wave path corresponds the the trajectory of the final vehicle departure. For the

cumulative inflow curve in Figure 3.1, the shock forms at spacetime point (x, t) = (1, t̄)

22



(indicated in Figure 3.1 by the converging dashed lines), the final departure travels at

free-flow velocity, and a shock does not occur on its trajectory.

• If shocks are not present for all t and 0 < x < 1, then (2.2.1) will be strictly satisfied.

As indicated in Section 2 of Newell, since (2.2.1) is invariant to changing (x, t) to

(1−x, t̄−t), if shocks are not present then there is a one-to-one correspondence between

the inflow rate, a(t), and the time reversal of the outflow rate, q(t̄ − t). Intuitively, in

a system with no shocks we can equivalently consider the time reversal of the outflow

rate as generating the inflow rate.

• If the unit travel time cost equals the unit schedule delay cost (α2 = 1 in scaled units),

then the SO solution minimizes the sum of the area under the cumulative outflow

curve and the area between the cumulative inflow and outflow curves. Section 3 of

Newell proves that this area is minimized if the cumulative inflow curve is given as in

Figure 3.1. Thus, this cumulative inflow curve is also the SO solution for α2 = 1.

3.2 Inflow and Outflow Rates

If α2 < 1, then minimizing the total trip cost is equivalent to minimizing the sum of the area

between the cumulative inflow and outflow curves, plus α2 multiplied by the area under the

cumulative outflow curve. Newell reduces this minimization problem to a calculus of variation

problem for the optimal cumulative outflow curve, which he solves in his Appendix, resulting

in (3.2) of his paper which we restate in our scaled units:

Q(t′) = Q(t0) +
1

α2
[Q∗ (w0 + α2 (t′ − t′0)) − Q∗(w0)]

=
1

α2
Q∗ (1 + α2 (t′ − 1)) ,

Here Q∗ is the same nondimensional cumulative outflow curve of maximal growth from

the previous section. Using the functional form in (3.1.1) determined from Greenshields’
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Relation, we determine the optimal cumulative outflow curve, Q(t), take its derivative to

determine the corresponding outflow rate, q(t), and solve the relation Q(t̄) = N to determine

the length of the rush-hour in the corridor, t̄. These results are provided in Table 2.

Inserting these outflow relationships into (2.2.4) determines the corresponding cumulative

inflow curve, where v(q) and w(q) are determined via Greenshields’ Relation, (A-1) and

(2.2.2), respectively. Combining (2.2.2) and q(t) from Table 2 yields

w (q) =
1

√

1 − q(t′)
= 1 + α2(t

′ − 1), 1 ≤ t′ ≤ t̄. (3.2.1)

Inserting this relation into (2.2.4a) yields

t = (1 − α2) (t′ − 1) , 1 ≤ t′ ≤ t̄ ⇔ 0 ≤ t ≤ (1 − α2) (t̄ − 1) , (3.2.2)

from which we can rewrite w in terms of t:

w (q(t)) = 1 +
α2t

1 − α2

, 0 ≤ t ≤ (1 − α2) (t̄ − 1) . (3.2.3)

To determine the cumulative inflow curve up to time t = (1 − α2) (t̄ − 1), insert (3.2.1) into

Q(t) from Table 2 to write Q(t′) in terms of w, use this expression in (2.2.4b) to write A(t)

in terms of w, and finally use (3.2.3) to determine A(t):

A(t) =
1

α2

[

w +
1

w
− 2

]

−
(

1 −
1

w2

)[

w −
2

1 + 1
w

]

=

(

1

α2
− 1

)[

w +
1

w
− 2

]

=
t2

t + 1
α2

− 1
, 0 ≤ t ≤ (1 − α2)(t̄ − 1).

The remaining portion of the cumulative inflow curve from t = (1 − α2)(t̄ − 1) to t = tf is

generated from the discontinuity in the outflow rate at the point (t̄, N) on the cumulative

outflow curve, yielding the same expressions as in (3.1.4) and (3.1.5), and yielding the same

24



conclusion that tf = t̄ − 1, since A(tf) = N . We summarize in Table 2, providing the

cumulative inflow curve, A(t), along with its derivative, a(t).

In Figure 3.2 we graph the cumulative inflow and outflow curves for the social optimum

for α2 < 1. Consider the limiting case as α2 → 0, so that the total trip cost is determined

entirely by total travel time. From the results in Table 2, as α2 → 0, t̄ → ∞ and a(t) → 0.

Thus, as α2 → 0 the inflow is spread over an infinitely long departure interval, so that all

vehicles travel at free-flow velocity, thereby minimizing total travel time.

Figure 3.2: Social optimum cumulative inflow and outflow curves for α2 < 1. As α2 decreases,
the area between the inflow and outflow curves (total travel time) decreases, approaching
the limiting case in which all vehicles travel at free-flow velocity over an infinitely long rush
hour.

25



3.3 Vehicle Trajectories

Each point, (x, t), along a vehicle trajectory intersects a characteristic curve with slope w.

Under Greenshields’ Relation, (A-1) and (2.2.2) determine a differential equation for the

trajectory path,

dx

dt
=

1

2

[

1 +
1

w

]

. (3.3.1)

In Figure 3.3 we graph the characteristic curves in a spacetime diagram for the social opti-

mum, which naturally divide the traffic dynamics into two regions: an upper region consisting

of a backwards fan of characteristics, and a lower region. In the upper region the slope of a

Figure 3.3: Social optimum spacetime diagram. Dashed lines are characteristic lines, which
subdivide the traffic dynamics into the two regions indicated with bold dashed lines: an upper
region consisting of a backwards fan of characteristics originating from the discontinuity in
the flow rate at t̄, and a lower region. We have graphed in bold the trajectory curve of a
vehicle that departs departs at td > (1 − α2)(t̄ − 1), traverses the upper region, enters the
lower region at point (x0, t0), and arrives at time ta.
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characteristic line through a point (x, t) satisfies

w =
t̄ − t

1 − x
,

and from (3.3.1) a trajectory curve in this region satisfies the differential equation

dx

dt
=

1

2

[

1 +
1 − x

t̄ − t

]

.

The general solution to this equation is

1 − x = t̄ − t + A
√

t̄ − t, (3.3.2)

where the arbitrary constant A is determined from the starting point of the trajectory.

In the lower region, by (3.2.3), a characteristic line that originates from (0, t0) has slope

w = 1 + α2t0
1−α2

. If the characteristic line passes through the spacetime point (x, t), then

t − t0

x
= 1 +

α2t0

1 − α2
,

from which we can solve for t0, and thus express the slope of the characteristic in terms of

x and t as

w = 1 +
t − x

x + 1
α2

− 1
.

Inserting this expression into (3.3.1) yields the differential equation that is satsified by tra-

jectory curves in the lower region,

dx

dt
=

1

2

[

1 +
x + 1

α2
− 1

t + 1
α2

− 1

]

,

whose general solution is

x = t + A

√

t +
1

α2
− 1, (3.3.3)
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where the arbitrary constant A is determined by the trajectory starting point.

For a departure at time td ≤ (1 − α2)(t̄ − 1), the trajectory is specified in (3.3.3), where

the arbitrary constant is chosen so that the trajectory originates from (0, td). For a departure

at time td > (1 − α2)(t̄ − 1), the trajectory is specified in (3.3.2) until it enters the lower

region at some point (x0, t0) (see Figure 3.3), at which point the trajectory is speficied in

(3.3.3). We summarize in Table 2, providing explicit expressions for the vehicle trajectories

and their arrival times in terms of their departure times, td.

3.4 Trip Costs

For a departure at time td and arrival at time ta, travel time is ta−td, schedule delay is t̄−ta,

and trip cost is C = ta − td + α2(t̄ − ta). Clearly, schedule delay is a decreasing function of

departure time. However, travel time is not an increasing function of departure time, since

both the first and last departures travel at free flow velocity. In Figure 3.4 we graph schedule

delay cost, travel time cost and trip cost as functions of departure time. For any choice of

N and α2, the graph of these costs has the same qualitative features.

Using the expressions for A(t), Q(t) and t̄ from Table 2, the area under the cumulative

outflow curve and between the cumulative inflow and outflow curves can be calculated, and

hence the total schedule delay, total travel time and total trip cost can be determined, from

(2.4.2), (2.4.3) and (2.4.4), respectively. The results are provided in Table 2.

3.5 Reduction to Bottleneck Model

The bottleneck model (Arnott, de Palma and Lindsey (1990)) is the special case of the Single

Entry Corridor Problem with l = 0, so that travel time costs are incurred only from time

spent in a queue. Arnott, de Palma and Lindsey (1990) provides a heuristic derivation of

the social optimum, concluding that the departure rate, with no late arrivals, is capacity

flow and that the total travel time cost is α2

2
N2

qm
. We now show how our results for the social

optimum with l = 0 reduce to these results.
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Figure 3.4: Travel time cost, schedule delay cost and trip cost as functions of departure time
for the social optimum, with N = 1 and α2 = 0.5.

In unscaled units, the expressions for t̄, tf , q(t) and TTC from Table 2 become:

t̄ =
l

v0
+

N

2qm

+

√

α1

α2

l

v0

N

qm

+

(

N

2qm

)2

tf = t̄ −
l

v0

q(t) =



















qm

(

1 − 1
[

1+
α2
α1

(
v0
l

t−1)
]2

)

l
v0

≤ t ≤ t̄

0 otherwise

TTC = α1qm

[

N

qm

(

l

v0
+

α2

α1
tf

)

−
1

2

α2

α1
t2f +

l

v0
tf −

(

l

v0

)2
α1

α2
log

(

1 +
α2

α1

v0

l
tf

)

]

.
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Taking the limit as l → 0 yields t̄ = N
qm

and q(t) = qm for 0 ≤ t ≤ t̄, so that the departure

rate is capacity flow, as in the bottleneck model. As l → 0, tf = N
qm

and, using the fact that

lim
x→0

x2 log
(

1 + 1
x

)

= 0, total trip cost reduces to TTC = α2

2
N2

qm
, as in the bottleneck model.

4 User Optimum

Given population, N , and unit schedule delay cost, α2, the user optimum, or no-toll equi-

librium, is an inflow rate, a(t), such that no individual has an incentive to change their

departure time. This condition can be achieved by imposing the trip-timing (TT) condition

that no vehicle can experience a lower trip cost by departing at a different time. A simple

consequence of the TT-condition is that trip cost must be identical for all departure times,

td.

Let td, t′d denote the departure times of two vehicles that arrive at times ta, t′a, respectively.

Since their trip costs must be equal,

ta − td + α2 (t̄ − ta) = t′a − t′d + α2 (t̄ − t′a) .

Assume td < t′d, so ta < t′a, and let ∆td = t′d − td and ∆ta = t′a − ta. The above equation can

be rewritten as

∆ta =
1

1 − α2
∆td. (4.0.1)

Since ∆ta, ∆td > 0, from (4.0.1) we conclude the TT-condition can be satisfied only if α2 < 1.

Section 4 of Newell argues that, for an arbitary arrival-demand curve, this is a necessary

condition for constructing a user optimum. For the specific arrival-demand function for the

Single-Entry Corridor Problem with no late arrivals, the previous argument yields the same

result.

Since the first departure at time t = 0 arrives at time t = 1, (4.0.1) implies that a
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Time of Last
Vehicle Arrival

t̄ = 1 + N
2

+
√

1
α2

N +
(

N
2

)2

Time of Last
Vehicle Departure

tf = t̄ − 1

Inflow Rate a(t) =



















t
[

t+2
(

1
α2

−1
)]

[

t+ 1
α2

−1
]2 , 0 < t < (1 − α2)(t̄ − 1)

1 − 1
(t̄−t)2

, (1 − α2)(t̄ − 1) ≤ t < tf

0, otherwise

Cumulative
Inflow Rate

A(t) =























0, t ≤ 0
t2

t+ 1
α2

−1
, 0 < t ≤ (1 − α2)(t̄ − 1)

N −
(

t̄ − t + 1
t̄−t

− 2
)

, (1 − α2)(t̄ − 1) < t ≤ tf

N, t > tf

Outflow Rate q(t) =

{

1 − 1
[1+α2(t−1)]2

, 1 ≤ t ≤ t̄

0, otherwise

Cumulative
Outflow Rate

Q(t) =















0, t ≤ 1
1

α2

[

1 + α2(t − 1) + 1
1+α2(t−1)

− 2
]

, 1 < t ≤ t̄

N, t > t̄

Arrival Time if
0 ≤ td ≤ (1 − α2)(t̄ − 1)

ta = 1 + 1
2

(

t2
d

td+ 1
α2

−1

)

+

√

1
α2

(

t2
d

td+ 1
α2

−1

)

+ 1
4

(

t2
d

td+ 1
α2

−1

)2

Vehicle Trajectory if
0 ≤ td ≤ (1 − α2)(t̄ − 1)

x(t) = t − td

√

t+ 1
α2

−1

td+ 1
α2

−1

Spacetime Point where
Vehicle Trajectory Enters

Lower Region of
Characteristics if

(1 − α2)(t̄ − 1) < td ≤ t̄ − 1

(x0, t0) =

(

1 − α2(t̄−1)+1

(α2(t̄−1))2
(t̄−1−td)2

t̄−td
, t̄ −

(

1 + 1
α1(t̄−1)

)2
(t̄−1−td)2

t̄−td

)

Arrival Time if
(1 − α2)(t̄ − 1) < td ≤ t̄ − 1

ta = 1 + 1
2

[

(t0−x0)2

t0+ 1
α2

−1

]

+

√

1
α2

[

(t0−x0)2

t0+ 1
α2

−1

]

+ 1
4

[

(t0−x0)2

t0+ 1
α2

−1

]2

Vehicle Trajectory if
(1 − α2)(t̄ − 1) < td ≤ t̄ − 1

x =











1 − (t̄ − t) + (t̄ − 1 − td)
√

t̄−t
t̄−td

, td ≤ t ≤ t0

t − (t0 − x0)

√

t+ 1
α2

−1

t0+ 1
α2

−1
, t0 < t ≤ ta

Total Schedule
Delay

TSD = 1
2
t2f − 1

α2
tf + 1

α2
2
log (1 + α2tf)

Total Travel
Time

TTT = N (1 + α2tf ) − α2t
2
f + 2tf − 2

α2
log (1 + α2tf )

Total Trip
Cost

TTC = N (1 + α2tf ) − 1
2
α2t

2
f + tf − 1

α2
log (1 + α2tf)

Table 2: Table of results for the social optimum (scaled units).
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departure at time t = td satisfies

ta = 1 +
1

1 − α2
td. (4.0.2)

Since cumulative flow is constant along a trajectory,

∫ td

0

a(t) dt =

∫ ta

1

q(t) dt,

and differentiating with respect to td yields

a(td) =
1

1 − α2

q(ta). (4.0.3)

Thus, along a vehicle trajectory, from the corridor entry-point to the CBD the flow rate

decreases by the multiplicative factor 1
1−α2

.

4.1 Qualitative Features

In the following lemmas we show that a consequence of (4.0.3) is that a(0) = 0 and that

a(t) is a continuously increasing function from time t = 0 up to the final departure at time

t = tf , at which time a(t) discontinuously decreases to zero.

Lemma 4.1.1. The corridor inflow and outflow rates discontinuously decrease to zero at

times tf and t̄, respectively.

Proof. Since schedule delay is a decreasing function of departure time, and since trip cost is

constant, travel time must be an increasing function of departure time. As a consequence,

the final departure does not travel at free-flow velocity; thus, its trajectory coincides with a

shock wave path (see Section 2.2.2).

Lemma 4.1.2. The corridor inflow rate, a(t), must be an increasing function of departure

time from t = 0 to the final departure at time t = tf .
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Proof. We use proof by contradiction. Since the first departure occurs at t = 0, a(t) = 0 for

t < 0. Denote the first time for which a(t) is nonincreasing by td1 , and let ta1 denote the

arrival time of a vehicle that departs at time td1 . The outflow rate at ta1 is determined by

characteristic lines that originate from x = 0 at times earlier than td1 ; thus, the outflow rate

must be increasing at time ta1 . However, by (4.0.3), since the inflow rate is nonincreasing at

td1 , the outflow rate is also nonincreasing at ta1 , which is a contradiction.

Lemma 4.1.2 implies that, except for the trajectory of the last departure, shocks do not

occur in the UO solution.

Lemma 4.1.3. The corridor inflow rate, a(t), does not discontinuously increase.

Proof. By Lemma 4.1.2, since a(t) is increasing, the outflow rate, q(t), is also increasing.

If a(t) discontinuously increased, then q(t) would be obtained from a rarefaction fan of

characteristic waves, so q(t) would increase continuously. Thus, q(t) increases continuously,

whether or not a(t) has a discontinuous increase. From (4.0.3), the continuity of q(t) implies

the continuity of a(t).

In particular, since a(t) = 0 for t < 0, Lemma 4.1.3 implies that a(0) = 0.

4.2 Inflow and Outflow Curves

For the following discussion, refer to Figure 4.1. A departure at time td arrives at the CBD

at time ta. Using (2.2.4) we can draw a line of constant flow from (ta, Q(ta)) to a point

(t0, A(t0)), where a(t0) = q(ta). (2.2.4a) yields t0 in terms of ta as

t0 = ta −
1

√

1 − q(ta)
,

which can be rewritten in terms of td using (4.0.2) and (4.0.3)

t0 =
1

1 − α2

td −

(

1
√

1 − (1 − α2)a(td)
− 1

)

. (4.2.1)
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Figure 4.1: Cumulative corridor inflow, road inflow, and corridor outflow curves, A(t), AR(t),
and Q(t), respectively. The slope of AR(t) cannot exceed capacity flow. The horizontal
distance between A(t) and AR(t) is time spent in a queue. A departure at time td arrives at
the CBD at time ta, indicated by the horizontal dashed line. The diagonal dashed line is a
line of constant flow, so the slope of A(t) at t0 equals the slope of Q(t) at ta.

Since a(t0) = q(ta), (4.0.3) can be rewritten as a(td) = 1
1−α2

a(t0), and substituting t0 with

(4.2.1) yields an implicit expression for a(td) in terms of td:

a(td) =
1

1 − α2
a

(

1

1 − α2
td −

[

1
√

1 − (1 − α2)a(td)
− 1

])

. (4.2.2)

(4.2.2) is satisfied by the corridor inflow rate, a(t), for all departure times, td. If a(t) exceeds

capacity flow, then a queue develops since the road inflow rate cannot exceed capacity flow.

We use an iterative procedure6 to analytically solve (4.2.2) for a(td), 0 < td < tf . To

simplify the notation, we replace td with t, denote 1
1−α2

by σ, and denote 1√
1−a(t)

− 1 by

6The following iterative procedure is based on work in Danqing Hu’s Ph.D. dissertation, Three Essays on

Urban and Transport Economics, Department of Economics, University of Wisconsin-Madison.
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g (a(t)), so (4.2.2) becomes

a(t) = σa

(

σt − g

(

1

σ
a(t)

))

. (4.2.3)

In Table 3 we repeatedly iterate (4.2.3) n times, yielding the following n-th iterated expres-

sion for a(t):

a(t) = σna

(

σn

[

t −
n
∑

j=1

1

σj
g

(

1

σj
a(t)

)

])

. (4.2.4)

From the lemmas of the previous section, a(t) is a continuously increasing function on

0 ≤ t < tf ; thus, its inverse is well-defined on this interval, so (4.2.4) may be rewritten as

(1 − α2)
na−1 [(1 − α2)

na(t)] = t −
n
∑

j=1

(1 − α2)
j

[

1
√

1 − (1 − α2)ja(t)
− 1

]

.

Since a(0) = 0, taking the limit as n → ∞, the left-hand side becomes zero and we obtain

an expression for the inverse of the inflow rate, t = t(a),

t(a) =

∞
∑

j=1

(1 − α2)
j

[

1
√

1 − (1 − α2)ja
− 1

]

, (4.2.5)

which is a convergent series for 0 ≤ a < 1
1−α2

. The inflow rate, a(t), increases up to some

final value, af , at time tf , when the entire population has departed, i.e.,
∫ tf

0
a(t) dt = N ,

which is equivalent to
∫ af

0

t(a) da + N = tfaf .

Integrating (4.2.5), replacing tf with t(af), and algebraically solving for N yields

N =
∞
∑

j=1

2
[

1 −
√

1 − (1 − α2)jaf

]

− (1 − α2)
jaf

√

1 − (1 − α2)jaf

, 0 ≤ af <
1

1 − α2

. (4.2.6)

Given a population size, N , (4.2.6) must be numerically solved to determine af , which is

inserted into (4.2.5) to determine tf . If af > 1, then a queue develops at some time, denoted
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a(t) = σa
(

σt − g
(

1
σ
a(t)

))

= σa(u1), where u1 = σt − g
(

1
σ
a(t)

)

a(t) = σ2a
(

σu1 − g
(

1
σ
a(u1)

))

= σ2a
(

σ2t − σg
(

1
σ
a(t)

)

− g
(

1
σ2 a(t)

))

= σ2a(u2), where u2 = σ2t − σg
(

1
σ
a(t)

)

− g
(

1
σ2 a(t)

)

a(t) = σ3a
(

σu2 − g
(

1
σ
a(u2)

))

= σ3a
(

σ3t − σ2g
(

1
σ
a(t)

)

− σg
(

1
σ2 a(t)

)

− g
(

1
σ3 a(t)

))

= σ3a(u3), where u3 = σ3t − σ2g
(

1
σ
a(t)

)

− σg
(

1
σ2 a(t)

)

− g
(

1
σ3 a(t)

)

...

a(t) = σna

(

σn

[

t −
n
∑

j=1

1
σj g
(

1
σj a(t)

)

])

= σna(un), where un = σn

[

t −
n
∑

j=1

1
σj g
(

1
σj a(t)

)

]

Table 3: Repeated iteration of (4.2.3), which yields the n-th iterated expression for a(t).
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as tQ. For a given value of α2, if N is sufficiently large then a queue develops. Let us

temporarily denote the critical value of N such that a queue develops as Nc, i.e., if N > Nc

then a queue develops. From (4.2.6),

Nc =
∞
∑

j=1

2
[

1 −
√

1 − (1 − α2)j

]

− (1 − α2)
j

√

1 − (1 − α2)j
. (4.2.7)

From (4.2.7) it can easily be shown that Nc is a decreasing function of α2 which satisfies

lim
α2→1

Nc = 0, and lim
α2→0

Nc = ∞.

Using the above procedure one may numerically construct the inflow rate for the UO

solution, a(t). Numerically integrating a(t) yields the cumulative inflow rate, A(t), from

which we obtain the cumulative outflow rate Q(t) via Q(ta) = A(td), where ta = 1 + 1
1−α2

td.

In Figure 4.2 we graph the numerically obtained cumulative corridor inflow, road inflow and

outflow curves for given values N = 0.8 and α2 = 0.5. We chose N large enough (relative to

α2) so that a queue develops. The dashed lines are lines of constant flow, and show how the

population inflow determines the outflow. In particular, note that the outflow is completely

determined by the inflow that occurs before the queue develops, i.e., before capacity inflow

is reached. The trajectory of the final departure is a shock wave path of decreasing shock

strength.

4.3 Vehicle Trajectories

Given values for the population size, N , and unit schedule delay cost, α2, we use the pro-

cedure outlined in the previous section to numerically construct the inflow rate. The inflow

rate allows us to determine the slope of the characteristic lines in spacetime emanating from

the t-axis, from which we numerically determine vehicle trajectory curves. Since we do not

have an analytic expression for the inflow rate, a(t), we are not able to analytically construct

the differential equation which is satisfied by vehicle trajectory curves.

Recall that, if N is sufficiently large relative to α2, then the corridor inflow rate reaches
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Figure 4.2: Cumulative corridor inflow, road inflow, and corridor outflow curves, A(t), AR(t),
and Q(t), respectively, with N = 0.8 and α2 = 0.5. A queue develops at time tQ, indicated
by the solid dot, when the corridor inflow rate reaches capacity flow. As indicated by the
dashed lines of constant flow, the outflow is completely determined by the inflow that occurs
before the queue develops.

capacity flow at time tQ, and continues to increase until the final departure at time tf . The

road inflow rate remains at capacity flow from time tQ until time tR > tf , where tR is the

time the final vehicle departure enters the road. All departures after tQ enter a queue before

entering the road, and queueing time increases with departure time. In Figure 4.3 we have

graphed characteristic lines and vehicle trajectory curves for a user optimum solution in

which a queue develops.
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Figure 4.3: Dashed lines are characteristics whose slope depends upon the road inflow rate
at the entry point at x = 0. For tQ < t ≤ tR a queue is present and the road inflow
rate is capacity flow, so that characteristics are vertical lines. We have plotted four vehicle
trajectory curves in bold: The first vehicle departure that travels at free-flow velocity; a
departure that occurs before tQ and does not experience a queue; a departure that occurs
after tQ and experiences a queue; and the final vehicle departure at time tf that experiences
a queue until entering the road at time tR.

4.4 Trip Costs

From (4.0.2) the travel time for a departure at time td is a linear function of td,

ta − td = 1 +
α2

1 − α2
td.
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Since trip cost is constant, schedule delay is also a linear function of td, summarized in

(4.4.1), and graphed in Figure 4.4:

C = Travel Time + α2(Schedule Delay)

= 1 +
α2

1 − α2
td + α2

(

t̄ − 1 −
1

1 − α2
td

)

= 1 + α2(t̄ − 1)

(4.4.1)

Figure 4.4: Travel time cost, schedule delay cost and trip cost as functions of departure time
for the user optimum, with N = 1 and α2 = 0.5. The trip-timing condition requires that trip
cost is constant and travel time cost is a linear function of departure time, so that schedule
delay is also a linear function of departure time.

Since we have not obtained closed-form expressions for the cumulative inflow and outflow

curves, we cannot obtain a closed-form expression for the total travel time or schedule delay.

However, since the trip cost is constant for all vehicles, we can analytically determine the
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total trip cost, in terms of either the final departure time, tf , or the final arrival time, t̄:

TTC = N

[

1 +
α2

1 − α2
tf

]

= N [1 + α2 (t̄ − 1)] .

(4.4.2)

4.5 Reduction to Bottleneck Model

Arnott, de Palma and Lindsey (1990) show that the user optimum for the bottleneck model

with no late arrivals entails a constant inflow rate of 1
1−α2

α1

qm, with a resulting total trip cost

of α2
N2

qm
. We now show that the UO solution for the Single-Entry Corridor Problem with no

late arrivals reduces to the bottleneck model as l → 0.

Since road inflow cannot exceed capacity flow, the outflow, q(t), cannot exceed capacity

flow. Rewriting (4.0.3) in unscaled units, we conclude that corridor inflow cannot exceed

1
1−α2

α1

qm. In (4.2.5) we provided an expression for the inverse of the inflow rate, which in

unscaled units becomes

t =
l

v0

∞
∑

j=1

(1 −
α2

α1
)j





1
√

1 − (1 − α2

α1
)j a

qm

− 1



 .

The infinite sum in this equation converges if a < 1
1−α2

α1

qm. In the limit as l → 0, to ensure

that the right-hand side of this equation does not equal zero, the infinite sum must diverge.

Since (4.0.3) implies a ≤ 1
1−α2

α1

qm, we conclude that as l → 0, a(t) = 1
1−α2

α1

qm, reproducing

the UO solution for the bottleneck model. Since, in the limit as l → 0 the inflow rate is

constant, the final departure time is

tf =
N

1
1−α2

α1

qm

.
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Rewriting the expression for the total trip cost, (4.4.2), in unscaled units yields

TTC = N

[

α1
l

v0
+

α2

1 − α2

α1

tf

]

,

and taking the limit as l → 0 we obtain TTC = α2
N2

qm
, as in the bottleneck model.

5 Economic Properties

This section provides a brief discussion of some economic properties of the SO and UO of

the single-entry corridor problem. In particular, it will examine: i) the properties of the

cost functions for the SO and UO (the supply side of the transportation market); ii) the

properties of the time-varying toll that decentralizes the social optimum; and iii) how these

properties differ from the corresponding properties of the bottleneck model.

5.1 The SO Cost Function

The total trip cost function relates total trip cost to the number of users. The total variable

trip cost equals total trip cost minus the cost that would be incurred were there no congestion,

which is the cost of users’ free-flow travel time. There are two components of total variable

trip cost, total schedule delay cost and total variable travel time cost. We employ standard

notation with respect to costs. As prefixes to symbols, T denotes total, A average, M

marginal, F fixed, and V variable, and as a suffix C denotes cost. The core of a symbol

indicates the nature of the quantity or cost. Thus, for example, TTC denotes total trip cost,

while MV TC denotes marginal variable trip cost.

To simplify the algebra, we retain the normalization from the earlier sections of the paper.

Length units are chosen such that the length of the road equals 1.0, time units such that the

free-flow travel time on the road equals 1.0, population units such that N = 1.0 corresponds

to the road’s capacity flow per unit time, and cost units such that the value of travel time
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equals 1.0

Table 4 records the relevant algebraic results for the social optimum. All results are

presented in normalized form, and are obtained straightforwardly from previous results.

Row 1 records the algebra for schedule delay cost, row 2 for variable travel time cost (travel

time in excess of free flow travel time), and row 3 for variable trip cost (the sum of schedule

delay and variable travel time cost). Column 1 gives the expression for total cost (e.g., total

schedule delay cost), column 2 for marginal cost, column 3 for private cost, and column 4 for

externality cost, which equals the difference between marginal cost and private cost. Note

that the marginal costs are independent of departure time but that the private costs and the

externality costs depend on departure time.

Figure 5.1: Marginal costs as functions of population for the social optimum, with α2 = 0.5.

Figure 5.1 plots marginal variable travel time cost, marginal schedule delay cost, and

marginal variable trip cost for the social optimum, as functions of population, and records
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Total Cost
Schedule Delay 1

2
α2t

2
f − tf + 1

α2
log (1 + α2tf)

Variable Travel Time Nα2tf − α2t
2
f + 2tf − 2

α2
log (1 + α2tf)

Variable Trip Nα2tf − 1
2
α2t

2
f + tf − 1

α2
log (1 + α2tf )

Marginal Cost Private Cost Externality Cost

Schedule Delay
N(1+α2tf )

2tf−N
α2(t̄ − ta)

N(1+α2tf )

2tf−N
− α2(t̄ − ta)

Variable Travel Time N
2tf−N

ta − td − 1 N
2tf−N

− (ta − td − 1)

Variable Trip α2tf α2(t̄ − ta) + ta − td − 1 td − (1 − α2)(ta − 1)

Table 4: Normalized Cost Formulae: Social Optimum (t̄ = tf + 1 and tf = N
2

+
√

N
α2

+
(

N
2

)2
).
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the asymptotic value of each marginal cost as N approaches infinity. Consider first marginal

variable travel time cost. In the limit as N approaches zero, vehicles travel at free-flow travel

speed, and both private and marginal variable travel time costs are zero. As N increases,

mean travel time increases, until in the limit marginal variable travel time cost equals 1.0,

which with Greenshields’ Relation is the variable travel time cost when traveling the entire

length of the road at capacity flow. Consider next marginal schedule delay cost. In the limit

as N approaches zero, marginal schedule delay cost is of order N
1
2 and so approaches zero.

In the limit as N approaches infinity, marginal schedule delay cost equals7 α2tf − 1 = α2N .

Since the social optimum entails the minimization of total variable trip costs, the Envelope

Theorem can be applied to compute marginal variable trip cost. In particular, it can be

computed as the variable trip cost of a vehicle added just before the first vehicle to depart,

holding fixed the departure pattern of all other vehicles. This vehicle travels at free-flow

travel speed, does not affect the traffic flow of later vehicles, and incurs a schedule delay

of tf . Thus, marginal variable trip cost equals α2tf . From the expression for tf given

in Table 4, it follows that the elasticity of marginal variable trip cost with respect to N ,

EMV TC:N , increases monotonically in N , rising from 0.5 when N is zero to 1.0 when N is

infinite.

An important implication of this result is that at the social optimum the average exter-

nality cost imposed by a vehicle on other vehicles is strictly less than the average variable

trip cost. Put alternatively, on average, the externality cost a vehicle imposes on other ve-

hicles is less than the increase in cost it experiences due to congestion. In contrast, in the

bottleneck model, on average, the externality cost a vehicle imposes on other vehicles equals

the increase in cost it experiences due to congestion, while in the conventional static model

the externality cost a vehicle imposes on other vehicles is several times the increase in cost

it experiences due to congestion.

7Note that one cannot apply the Envelope Theorem to derive the marginal variable travel time cost and
marginal schedule delay cost. The addition of a vehicle alters the time pattern of inflows and outflows of
inframarginal drivers, and these adjustments do not net out.
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5.2 The First-Best, Time-Varying Toll

Economists use the term first best to refer to a situation where the only constraints the

policy maker/social planner faces are technological and resource constraints, as is the case

in this paper. The first-best, time-varying toll decentralizes the social optimum; that is,

imposition of this toll results in a user optimum allocation that coincides with the social

optimum allocation. This occurs when each vehicle faces the social costs of its actions, and

is achieved by imposing a toll at each point in time equal to the externality cost imposed

by the vehicle, evaluated at the social optimum. The externality cost in turn equals the

difference between the marginal variable trip cost and the private variable trip cost (the

variable travel time cost incurred by a vehicle, ta − td − 1, plus the schedule delay cost it

incurs, α2(t̄ − ta)). Thus, as a function of departure time, the first-best time-varying toll

equals

τ(td) = α2tf − [α2 (t̄ − ta(td)) + (ta(td) − td − 1)] . (5.2.1)

The expression for tf is given in Table 4, and the form of the function ta(td), which relates

arrival time to departure time, is given in Table 2.

Figure 5.2 plots marginal variable trip cost, private variable trip cost, and the decentral-

izing toll, as functions of departure time with α2 = 0.5 and N = 1. The toll equals zero for

the first vehicle to depart since that vehicle imposes no externality cost on other vehicles,

experiencing the entire marginal variable trip cost as its private schedule delay cost. The

toll increases at an increasing rate over the morning rush hour. The last vehicle experiences

no schedule delay cost and no variable travel time cost, so that its externality cost equals

the entire marginal variable trip cost.

Results on first-best optimal capacity with inelastic demand can be obtained straight-

forwardly. First-best optimal capacity minimizes the total cost associated with transporting

the N vehicles from the origin to the destination, including the cost of constructing the road.

The self-financing results carry through. Since the congestion technology has the property
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Figure 5.2: Marginal and private variable trip costs, and the toll, as functions of departure
time for the social optimum, with N = 1 and α2 = 0.5.

that velocity depends on density per unit area, the average trip cost function is homogeneous

of degree zero in the volume/capacity ratio, where here volume is population. From famil-

iar statements of the Self-Financing Theorem, it follows that the revenue from the optimal

toll covers the cost of constructing optimal capacity if there are constant costs to capacity

expansion.

5.3 User Optimum/No-Toll Equilibrium

Since the user optimum does not admit a neat analytical solution, we proceed using heuristic

argument. We continue to apply the normalizations employed in the previous sections, so

that solutions differ according to only two parameters, N and α2.

The first person to depart experiences zero variable travel time. If it were otherwise, a

person departing infinitesimally earlier would experience a lower trip cost, which is incon-
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sistent with equilibrium. Consistency with the trip-timing equilibrium condition requires as

well that travel time, as a function of departure time, increase as the rate α2

1−α2
. These two

results imply that the departure rate function (with t = 0 denoting the time of the first

departure) is independent of N . Extra vehicles are accommodated through a lengthening

of the rush hour, with the entry rate of these vehicles being determined by the trip-timing

condition . Thus, a vehicle imposes a schedule delay externality on those vehicles that depart

earlier and a travel time externality on those vehicles that depart later. The common trip

price, in excess of free-flow travel time costs, p(N), equals the schedule delay cost of the first

person to depart and also the variable travel time cost of the last person to depart:

p(N) = α2 (t̄(N) − 1) = t̄(N) − tf (N) − 1. (5.3.1)

From the first of these equations

p′(N) = α2t̄
′(N). (5.3.2)

Since adding a vehicle changes traffic conditions only at the end of the rush hour,

t̄′(N) =
1

q (t̄(N))
; (5.3.3)

in words, adding a vehicle increases the length of the rush hour by the reciprocal of the

arrival rate. Thus,

p′(N) =
α2

q (t̄(N))
(5.3.4)
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and8

p′′(N) = −
α2q

′ (t̄(N)) t̄′(N)

q (t̄(N))2

= −
α2q

′ (t̄(N))

q (t̄(N))3 (5.3.5)

Since the arrival rate is increasing over the rush hour, the trip price function is concave.

Total variable trip costs are Np(N). Thus, marginal variable trip cost as a function of

N is

MV TC(N) = p(N) + Np′(N)

= t̄(N) − tf (N) − 1 +
α2N

q (t̄(N))
. (5.3.6)

Since trip price and marginal variable trip cost are independent of departure time, the

congestion externality cost too is independent of departure time, and equals α2N
q(t̄(N))

. Consider

adding the marginal vehicle at the end of the rush hour. Because this additional vehicle has

no effect on traffic conditions for inframarginal vehicles, it does not affect their travel time

cost, but instead increases each vehicle’s schedule delay by 1
q(t̄(N))

at a social cost of α2N
q(t̄(N))

.

For the same reason, marginal schedule delay cost is α2N
q(t̄(N))

and marginal variable travel time

cost is p(N). Since marginal variable travel time cost is p(N) and marginal schedule delay

cost in Np′(N), and since p(N) is concave, for each level of population marginal variable

travel time cost exceeds marginal schedule delay cost. And since marginal variable travel

time cost equals trip price, and since marginal schedule delay cost equals the congestion

externality cost, at each level of population trip price exceeds the congestion externality

cost.

8For some pairs of N and α2, satisfaction of the trip-timing condition requires the development of a
queue. One may distinguish two different trip cost régimes, according to whether the last person to depart
does not face a queue (régime 1 - low congestion) or faces a queue (régime 2 - high congestion). In α2-N
space, the boundary between the two régimes is negatively sloped, with high congestion occurring above the
boundary and low congestion below it (since an increase in α2 causes more weight to be placed on schedule
delay, which compresses the rush hour).

49



Figure 5.3: Marginal costs as functions of population for the user optimum, with α2 = 0.5.

Figure 5.3 is analogous to Figure 5.1 for the social optimum, except that it adds the trip

price function. The marginal variable trip cost function is the vertical sum of the marginal

schedule delay cost and marginal variable travel time cost functions, and the trip price func-

tion coincides with the marginal variable travel time cost function. All four functions equal

zero at zero population. In the limit as N approaches infinity, the arrival rate approaches

1. The marginal schedule delay function approaches α2N , the slope of the price function (=

travel time cost function) approaches α2, and the slope of the marginal variable trip cost

function approaches 2α2.

5.4 Comparison of the Social Optimum and User Optimum

Figure 5.4 displays cumulative departures and arrivals, for both the social optimum and the

no-toll equilibrium, with N = 0.8 and α2 = 0.5. Although N = 8 is consistent with the level
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of rush-hour congestion found in large metropolitan areas that are moderately congested

by international standards9, the qualitative features of the graph can be better viewed with

smaller values of N . α2 = 0.5 is consistent with the empirical evidence. The curves for

the social optimum are shown with solid lines, those for the no-toll equilibrium with dashed

lines. The shapes of the two cumulative arrival curves are similar, though the rush hour is

somewhat longer in the social optimum than in the no-toll equilibrium, resulting in higher

total schedule delay in the social optimum than in the no-toll equilibrium. The cumulative

departure schedules, however, have different shapes. In the social optimum, the schedule

has a sigmoid shape, while in the no-toll equilibrium it is convex. Total travel times are

considerably lower in the social optimum than in the no-toll equilibrium, partly because

travel on the road is more congested in the no-toll equilibrium and partly because queuing

occurs in the no-toll equilibrium but not in the social optimum.

Figure 5.5 superimposes Figures 5.1 and 5.3. The solid lines are for the social optimum

and the dashed lines for the user optimum. Five points bear note.

1. The marginal schedule delay cost function for the social optimum lies above that for

the user optimum. This occurs because, at each level of population, the arrival rate at

t̄ is lower in the social optimum than in the user optimum.

2. The marginal variable travel time cost function for the social optimum lies below that

for the user optimum. For small N , this arises because, at each level of population,

travel is less congested in the social optimum than in the user optimum. Furthermore,

for large N , there is no queuing in the social optimum, but there is in the user optimum.

3. The marginal variable trip cost function for the social optimum lies below that for the

9Because the paper is already long, we have avoided providing numerical examples. However, it will be
useful to illustrate how the model can be calibrated. Consider a metropolitan area in a poorer country,
where infrastructure is low relative to traffic volume over the rush hour. N

qm
is how long the rush hour

would be if traffic were at capacity flow for the entire rush hour, and provides an exogeneous measure of
infrastructure capacity relative to population. Suppose this equals 2.0 hours. Suppose too that l

v0

= .25
hours (the average trip would take 15 minutes at free-flow speed). Then, in scaled units the population is
NScaled = N

qm
l

v0

= 2.0
.25

= 8.

51



Figure 5.4: Cumulative inflow and outflow curves for the social optimum (solid lines) and
user optimum (dashed lines), with N = 0.8 and α2 = 0.5. In the user optimum a queue
develops when inflow into the corridor exceeds capacity, so that A(t)UO is the cumulative cor-
ridor inflow curve, AR(t)UO is the cumulative road inflow curve, and the horizontal distance
between these curves is the queueing time.

user optimum.

4. At a given level of population, the deadweight loss in the user optimum compared

to the social optimum, due to the underpricing of congestion in the user optimum,

equals the area between the two marginal variable trip cost functions up to that level

of population.

5. In the decentralized social optimum, the trip price equals MV TCSO, while in the

no-toll equilibrium it equals MV TTCUO. Since the MV TCSO curve lies above the

MV TTCUO curve for all levels of N , the toll revenue collected from the optimal time-

varying toll exceeds the efficiency gain from applying it10.

10The revenue collected from the optimal time-varying toll can be calculated from the relationship for the
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Figure 5.5: Marginal costs for the social optimum (solid lines) superimposed with the
marginal costs for the user optimum (dashed lines), as functions of population, with α2 = 0.5.

5.5 Comparison of the Single-Entry Corridor Model to the Bot-

tleneck Model

The basic bottleneck model, with identical individuals, a common desired arrival time, and

no fixed component of trip cost, is starkly simple. All congestion takes the form of queuing

behind a bottleneck of fixed flow capacity, and the arrival rate equals bottleneck capacity over

the arrival interval in both the social optimum and user optimum. In the social optimum,

variable travel time costs are zero, and marginal schedule delay cost (and hence marginal

decentralized social optimum that toll revenue, R, plus total variable trip costs equals trip price times popu-

lation. Thus, for the level of population N ′, R = MV TCSO (N ′) N ′−
∫ N ′

0
MV TCSO(N) dN . The efficiency

gain from applying the optimal time-varying toll, G, equals the total variable trip cost in the no-toll equilib-

rium minus total variable trip cost in the social optimum: G = MV TTCUO (N ′)N ′−
∫ N ′

0
MV TCSO(N) dN .

Thus, R − G = [MV TCSO (N ′) − MV TTCUO (N ′)] N ′.
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variable trip cost) is linear in population. In the user optimum, total variable travel time

cost equals total schedule delay cost. The marginal schedule delay cost curve is the same

as in the social optimum and coincides with the marginal variable travel time cost curve, so

that the marginal variable trip cost curve has double the slope of both. In a decentralized

environment, imposition of the optimal time-varying toll has no effect on the length of the

rush hour or on total schedule delay cost but completely eliminates variable travel time cost,

so that the deadweight loss in the user optimum due to unpriced congestion equals total

variable travel time cost in the user optimum. Since the optimal time-varying toll simply

replaces the user optimum’s variable travel time costs - queuing costs - the revenue raised

from the optimal time-varying total equals the user optimum’s total variable travel time

costs and also the deadweight loss in the user optimum due to unpriced congestion. Thus,

imposition of the optimal time-varying toll would benefit users as long as part of the revenue

it generates is used to their benefit.

The single-entry corridor model takes a step towards realism by treating LWR flow con-

gestion. Like the bottleneck, the road in the single-entry corridor has a fixed flow capacity;

but unlike the bottleneck, the road becomes congested at flow rates below capacity. In a

decentralized environment, imposition of the optimal time-varying toll reduces congestion

but does not eliminate it and causes the rush hour to lengthen. In the social optimum,

marginal schedule delay cost, marginal variable travel time cost, and marginal variable trip

cost, are all concave functions of population. Since there is neither hypercongestion nor

queuing in the social optimum, marginal variable travel time cost has an upper bound, but

marginal schedule delay cost and marginal variable trip cost do not. In the user optimum

too, marginal schedule delay cost, marginal variable travel time cost, and marginal variable

trip cost, are all concave functions of population. Since there is queuing in the user optimum

for sufficiently large N , although no hypercongestion, marginal variable travel time cost has

no upper bound. The trip price function coincides with the marginal variable travel time

cost function, the congestion externality cost function coincides with the marginal sched-
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ule delay cost function, and the marginal variable travel time cost function lies above the

marginal schedule delay cost function. As in the bottleneck model, the time-varying toll

rises monotonically from zero at the beginning of the departure interval to marginal variable

trip cost at the end, but is convex in departure time, whereas it is linear in departure time

in the bottleneck model. Imposition of the optimal time-varying toll alters the departure

function, as in the bottleneck model, but unlike the bottleneck model also alters the arrival

function.

The single-entry corridor model provides a more realistic treatment of congestion than

the bottleneck model, but this comes at the cost of increased complexity and/or the need to

resort to numerical solution. Which model is preferable depends on context. The bottleneck

model has the advantage that its simplicity admits numerous analytical extensions, but this

same simplicity leads to some unrealistic properties that can be misleading in policy analysis.

Assuming bottleneck congestion facilitates the computation of dynamic network equilibrium

but treating each link as being subject to LWR flow congestion should lead to more accurate

results.

Like the basic bottleneck model, the single-entry corridor model treats demand as being

inelastic. And as with the basic bottleneck model, the extension to treat price-sensitive

demand would be straightforward. Like the basic bottleneck model, the single-entry corri-

dor model treats the desired arrival time distribution as exogenous, whereas it should be

endogenous and derived from employers’ profit-maximizing decisions concerning employee

start time. In assuming that no vehicle can lower its trip cost by altering its departure time,

both the basic bottleneck model and the single-entry corridor model assume that trip-timing

decisions are based on perfect information.

Despite their differences, the single-entry corridor model is far more similar to the bot-

tleneck model than either is to the static model of congestion. In the single-entry corridor

and the bottleneck model with (as assumed) inelastic demand, tolling is effective through

altering the timing of departures over the rush hour. In the static model of congestion,
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in contrast, tolling is effective through altering the number of vehicles. Empirically, since

demand for commuting trips is highly inelastic, it appears that the welfare gains from al-

tering the timing of departures are quantitatively more important than those from reducing

demand. Furthermore, through ignoring the trip-timing margin of adjustment, application

of the standard model has likely resulted in overstating the benefits from reducing overall

traffic volume.

6 Concluding Remarks

6.1 Directions for Future Research

The basic bottleneck model has been extended in numerous ways. Some of these extensions

would be straightforward to undertake for the current model, such as allowing for price-

sensitive demand, determining optimal capacity, treating users who differ continuously in

unit travel time and schedule delay costs, and considering routes in parallel. Others would

not be straightforward. The first is to treat late, as well as early, arrival. The difficulty here

derives from the analytical complexity of dealing with the discontinuity in the departure

rate at the boundary between early and late arrivals. The second is to treat a road of non-

uniform width. The third is to treat merges. Merges occur along a traffic corridor with more

than one entry point, and also on networks in which two or more directional links meet at

a common node. Once the non-uniform road width and merge problems have been solved,

it should be possible to determine the SO and UO with LWR flow congestion on a general

corridor and a general network.

An undesirable property of the current model is that travel is not congested in the UO.

But congested travel is ubiquitous. We strongly suspect that congested travel will emerge

in the UO but not in the SO once the model is extended to treat either non-uniform road

width or merges.

The model assumes that commuters know perfectly how congestion evolves over the rush
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hour. All congestion is recurrent, and all commuters recognize that it is recurrent. But in

fact much congestion is non-recurrent due to variable weather conditions, traffic accidents,

and road construction, about which commuters are imperfectly informed. Some work has

been done on non-recurrent congestion in the context of the bottleneck model. DePalma

is currently working on extending this paper’s model to treat randomly occurring incidents

along the road. How they will affect the SO and UO will depend on how well informed

commuters are of their occurrence. However well informed they are, in both the SO and UO,

incidents will lead to congested travel.

6.2 Conclusion

Because of its simplicity, the bottleneck model has been widely employed in theoretical anal-

yses of rush-hour traffic congestion. But this simplicity is attained at the cost of providing

an unrealistic treatment of the congestion technology. One wonders which of the bottle-

neck model’s properties are robust, and which derive from the simplicity of the assumed

congestion technology. Newell took a step towards remedying this deficiency by replacing

the bottleneck with a single-entry corridor of uniform width that is subject to LWR flow

congestion, for which the bottleneck is a limiting case. His paper has been rather overlooked

by the literature, probably because of its density. This paper considered a special case of

Newell’s model in which local velocity is a negative linear function of local density, and all

commuters have a common desired arrival time at the central business district. These sim-

plifying assumptions permitted complete, closed-form solutions for the social optimum and

an analytical solution for the user optimum departure rate. Providing detailed derivations

and exploring the model’s economic properties added insight into rush-hour traffic dynamics

in the social optimum and user optimum with this form of congestion, and into how the

dynamics differ from those of the bottleneck model.
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Glossary

SO Social Optimum

UO User Optimum

CBD Central Business District

x, t Space and time coordinates

l Spatial location of the CBD

a(t), A(t) Corridor inflow and cumulative inflow rates

aR(t), AR(t) Road inflow and cumulative inflow rates

q(t), Q(t) Corridor outflow and cumulative outflow rates (at x = l)

N Size of population

tf , tR Time of final departures into the corridor and road, respectively

t̄ Time of final arrival at the CBD

τ(t) Travel time of a departure at time t (includes queueing time)

α1, α2 Per unit population costs of travel time and schedule delay

C(t) (Per unit population) Trip cost for a departure at time t

TTC Total Trip Cost (aggregate sum of trip costs for entire population)

k(x, t), v(x, t), q(x, t) Density, velocity and flow rate at spacetime point (x, t)

v0 Free-flow velocity

kj Jam density

qm Capacity flow

km Density at which capacity flow is reached

w Reciprocal of wave velocity normalized by v0, w = v0

q′(k)

kl, kr Densities to the left and right of a shock wave path

ql, qr Flow rates to the left and right of a shock wave path

qc Constant inflow rate

wc Characteristic slope for a flow rate of qc
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vc Velocity for a flow rate of qc

tc Departure time for arrival at time wc under constant velocity, vc

td, ta Departure and arrival times, respectively

(x0, t0) Spacetime intersection point of a trajectory with a rarefaction wave boundary

A Arbitrary constant of integration in an ordinary differential equation

TSD Total Schedule Delay (aggregate sum of schedule delays for entire population)

TTT Total Travel Time (aggregate sum of travel times for entire population)

q∗(w) Nondimensional outflow rate of maximal growth

Q∗(w) Nondimensional cumulative outflow of maximal growth

t′0 Time of the first arrival in the SO

w0 Characteristic slope at the CBD at time t′0

TT Trip-Timing Condition

σ Shorthand notation for 1
1−α2

in the UO

g (a(t)) Shorthand notation for 1√
1−a(t)

− 1 in the UO

af Inflow rate at time tf

tQ Time at which a queue develops in the UO

Nc Critical population value such that a queue develops if N > Nc in the UO

T Total (Section 5)

A Average (Section 5)

M Marginal (Section 5)

F Fixed (Section 5)

V Variable (Section 5)

C Cost (Section 5)

E Elasticity (Section 5)

τ(td) Toll at departure time td (Section 5)

p(N) Trip price in excess of free-flow travel time cost (Section 5)
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Appendix

Greenshields’ Relation

In (A-1) we summarize the relationships for Greenshields’ Relation between k, v and q

assuming ordinary (uncongested) flow, k ≤ km (see section 2.2):

v

v0
= 1 −

k

2km

⇔
k

km

= 2

(

1 −
v

v0

)

q

qm

= 2
k

km

[

1 −
k

2km

]

⇔
k

km

= 1 −
√

1 −
q

qm

q

qm

= 4
v

v0

(

1 −
v

v0

)

⇔
v

v0
=

1

2

[

1 +

√

1 −
q

qm

]

km =
1

2
kj, qm =

1

2
v0km, vm =

1

2
v0.

(A-1)
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