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Abstract

Motivation: Alternative polyadenylation (polyA) sites near the 30 end of a pre-mRNA create mul-

tiple mRNA transcripts with different 30 untranslated regions (30 UTRs). The sequence elements of a

30 UTR are essential for many biological activities such as mRNA stability, sub-cellular localization,

protein translation, protein binding and translation efficiency. Moreover, numerous studies in the

literature have reported the correlation between diseases and the shortening (or lengthening) of

30 UTRs. As alternative polyA sites are common in mammalian genes, several machine learning

tools have been published for predicting polyA sites from sequence data. These tools either con-

sider limited sequence features or use relatively old algorithms for polyA site prediction.

Moreover, none of the previous tools consider RNA secondary structures as a feature to predict

polyA sites.

Results: In this paper, we propose a new deep learning model, called DeepPASTA, for predicting

polyA sites from both sequence and RNA secondary structure data. The model is then extended to

predict tissue-specific polyA sites. Moreover, the tool can predict the most dominant (i.e. frequently

used) polyA site of a gene in a specific tissue and relative dominance when two polyA sites of the

same gene are given. Our extensive experiments demonstrate that DeepPASTA signisficantly out-

performs the existing tools for polyA site prediction and tissue-specific relative and absolute dom-

inant polyA site prediction.

Availability and implementation: https://github.com/arefeen/DeepPASTA

Contact: gxxiao@ucla.edu or jiang@cs.ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

According to the central dogma of molecular biology, the genomic

sequence of an eukaryotic gene is transformed into the correspond-

ing protein by the transcription, post-transcriptional and translation

processes. Initially, the transcription process converts a gene into a

pre-mRNA, then this pre-mRNA is transformed into a mature

mRNA by the post-transcriptional process and finally the mRNA is

translated into the corresponding protein by the translation process.

One of the important steps of the post-transcriptional process is the

addition of a polyadenylation (polyA) tail at the 30 end of a pre-

mRNA. More specifically, the polyadenylation process consists of

two steps (Wahle and Kühn, 1997): cleavage near the 30 end of a

pre-mRNA and addition of a polyA tail at the cleavage site or polyA

site.

Alternative cleavage sites near the 30 end of a pre-mRNA create

more than one mRNA transcript containing 30 untranslated regions

(30 UTRs) of different lengths. A 30 UTR is a suffix of an mRNA

sandwiched between the stop codon and polyA site of the mRNA.
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The length of a 30 UTR as well as some sequence elements (such as

those AU and GU rich elements) may have impact on mRNA stabil-

ity, mRNA localization, protein translation, protein binding and

translation efficiency (Barrett et al., 2012). For example, longer 30

UTRs may have additional destabilization elements that alter the re-

spective transcript’s stability (Shaw and Kamen, 1986) and in can-

cers, transcripts with shorter 30 UTR can escape regulation from

microRNAs (Di Giammartino et al., 2011; Lin et al., 2012).

Moreover, the secondary structure of a 30 UTR is also important for

translation efficiency and disruption of expression (Barrett et al.,

2012). Alternative polyadenylation is very common in mammalian

genes (Tian et al., 2005) and more than a half of human genes have

alternative polyadenylation in their post-transcription process

(Mayr, 2016). Moreover, errors in 30-end processing may cause sev-

eral inherited diseases (Danckwardt et al., 2008). Therefore, the pre-

diction and analysis of polyA sites would be of great importance in

the study of mammalian genes.

Several cis-elements and trans-factors influence the choice of a

polyA or cleavage site (Barrett et al., 2012; Pichon et al., 2012). The

most important cis-element for a polyA site is the hexamer or polya-

denylation signal (PAS), which usually occurs 10–30 nt upstream of

the cleavage site (Akhtar et al., 2010; Bajic et al., 2012; Cheng et al.,

2006; Derti et al., 2012; Liu et al., 2005; Salamov et al., 1997;

Tabaska et al., 1999; Tian et al., 2005; Yada et al., 1994). The PAS

serves as a binding site for the cleavage and polyadenylation specifi-

city factor (CPSF) (Colgan et al., 1997). A polyA site also depends

on the U or U/G-rich elements and these elements occur 20–40 nt

downstream of that polyA site (Akhtar et al., 2010; Cheng et al.,

2006; Derti et al., 2012; Tian et al., 2005). These U or U/G-rich ele-

ments serve as the binding sites for the cleavage stimulation factor

(CstF) (Colgan et al., 1997). In addition, some auxiliary elements

upstream of the PAS and downstream of the cleavage site may en-

hance the polyadenylation process (Akhtar et al., 2010; Hu, 2005;

Tian et al., 2005). Therefore, a polyA site typically depends on four

different cis-elements: auxiliary upstream elements (AUEs), the up-

stream hexamer signal (i.e. PAS), downstream U/GU rich elements

and auxiliary downstream elements (ADEs). Moreover, the RNA

secondary structures near the downstream region of mammalian

PASs impact the choice of polyA sites (Brown et al., 1991; Wu et al.,

2004).

Several tools have been introduced in the literature to predict

polyA sites or PASs from human genomic sequences. DNAFSMiner

(Liu et al., 2003; Liu et al., 2005) predicts PASs from sequences

using k-mer features in a support vector machine (SVM) model.

Dragon PolyA Spotter (Bajic et al., 2012) also predicts PASs from

sequences using both an artificial neural network and a random for-

est. POLYAH (Salamov et al., 1997) discriminates real PASs from

other hexamer signals using a linear discriminant function. It focuses

on only one PAS (AATAAA) in its analysis, although other PASs

(variants of AATAAA) may influence polyA site selection. Polyadq

(Tabaska et al., 1999) uses a quadratic linear discriminant function

to predict real PAS regions. This tool considers only two signals

(A(A/T)TAAA) in its analysis. However, a polyA site not only

depends on the upstream PAS but also downstream U/GU rich ele-

ments, AUEs and DAEs. Polya_svm (Cheng et al., 2006) predicts

polyA sites from sequences using a SVM model. PolyAR (Akhtar

et al., 2010) also predicts polyA sites from sequences using a linear

discriminant function. However, these tools use hand-picked se-

quence features. In order to overcome the limitation of hand-picked

sequence features, deep learning models such as DeepPolyA (Gao

et al., 2018), DeeReCT-PolyA (Xia et al., 2018) and Conv-Net

(Leung et al., 2018) have been recently introduced to predict polyA

sites, PASs and relatively dominant polyA sites (i.e. more frequently

used polyA sites in a given gene). These models use all convolution

neural networks (CNNs) to extract features from the input genomic

sequence. Although the secondary structure near a polyA site is es-

sential for the polyA site to be selected for the polyadenylation pro-

cess (Bar-Shira et al., 1991; Brown et al., 1991; Wu et al., 2004),

none of these tools consider RNA secondary structures in their pre-

diction procedures.

Polyadenylation occurs in a tissue specific manner (Hafez et al.,

2013; Tian and Manley, 2017; Weng et al., 2016; Zhang et al.,

2005). Different tissues show bias in selecting the locations of polyA

sites within a gene, such as sites located in introns, internal exons

and the last exon (Zhang et al., 2005). Different polyA sites in the

last exon may result in mRNAs with different 30 UTRs. On the other

hand, the usage of polyA sites located in introns or internal exons

may lead to the creation of premature stop codons or truncated pro-

teins. Therefore, predicting the locations of tissue-specific polyA

sites is important for understanding tissue-specific behaviors, vari-

able 30 UTRs and protein products (Zhang et al., 2005).

One way to study tissue-specific choices of polyA sites is to con-

sider the usages of different polyA sites. In a last exon, polyA sites

closest to the 50 and 30 ends are called the proximal and distal polyA

sites, respectively (Zhang et al., 2005). There are other polyA sites

in between proximal and distal polyA sites, and these sites are called

middle polyA sites (Zhang et al., 2005). Placenta, retina, blood,

testis and ovary tissues show preference for proximal polyA sites,

i.e. high usage of proximal and low usage of distal polyA sites.

On the other hand, bone marrow, uterus, ear, brain, the nervous sys-

tem and pancreatic islet show high usage of distal polyA sites

(Zhang et al., 2005). Therefore, it would be interesting to predict

relatively dominant polyA sites for a given gene to understand tissue

specific behaviors. Conv-Net (Leung et al., 2018) is the first pub-

lished tool to analyze relative dominance of polyA sites in human

tissues. More specifically, the tool takes a couple of polyA sites with-

in a 30 UTR and predicts the dominant polyA site using a deep learn-

ing algorithm.

In this paper, we introduce a new tool, called DeepPASTA (i.e.

Deep neural network-based PolyA SiTe Analysis), to predict polyA

sites from sequences and RNA secondary structures. As secondary

structure near a polyA site is important for the polyA site selection

(Brown et al., 1991; Wu et al., 2004), DeepPASTA is the first tool to

consider both sequence and RNA secondary structure in polyA site

prediction. It employs both a CNN and a recurrent neural network

(RNN). The CNN extracts features from sequences (Alipanahi

et al., 2015; Angermueller et al., 2017; Kelley et al., 2016; Zhou

et al., 2015) and secondary structures. On the other hand, the RNN

is used to combine the effects of upstream and downstream signals

(Colgan et al., 1997; Wahle et al., 1995) in polyA site prediction. As

the polyadenylation process is tissue-specific, we also formulate

tissue-specific polyA site prediction as a multi-label classification

problem where the usage of a polyA site is simultaneously analyzed

for multiple tissues, and extend DeepPASTA to solve this problem.

Similar to Conv-Net (Leung et al., 2018), DeepPASTA can also pre-

dict relatively dominant polyA sites of a gene in a specific tissue. We

further generalize the relative dominance problem so DeepPASTA

can also predict the most dominant polyA sites for each gene (i.e.

the absolute dominance problem).

To assess the performance of DeepPASTA, we have conducted

extensive experiments on human genomic sequence data and com-

pared DeepPASTA with the above mentioned tools including

PolyAR, Dragon PolyA Spotter, DeepPolyA, DeeReCT-PolyA and

Conv-Net for polyA site prediction or relative dominance. As none
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of the existing tools are able to perform all four types of polyA site ana-

lysis that DeepPASTA can do, we organize the comparisons as four

groups: (i) prediction of human polyA sites (between DeepPASTA,

PolyAR, Dragon PolyA Spotter, DeepPolyA, DeeReCT-PolyA and

Conv-Net), (ii) prediction of human tissue-specific polyA sites (between

DeepPolyA, the tissue-specific and non-tissue-specific DeepPASTA

models), (iii) prediction of relatively dominant polyA sites (between

DeepPASTA and Conv-Net) and (iv) prediction of absolute dominant

polyA sites (between DeepPASTA and Conv-Net). The tools are com-

pared in term of area under the curve (AUC) and area under the preci-

sion recall curve (AUPRC). Based on these two performance measures,

DeepPASTA outperforms the other tools significantly in polyA site pre-

diction. For tissue-specific relatively dominant polyA site prediction,

DeepPASTA achieves better AUCs and AUPRCs than Conv-Net most

of the human tissues. In tissue-specific absolute dominant polyA site

prediction, DeepPASTA again outperforms Conv-Net on all human

tissues.

The rest of the paper is organized as follows. The four different

models of DeepPASTA are discussed in Section 2. The experimental

results and comparisons with the other tools are discussed in Section

3. Section 3 also explains the sequence and secondary structure data

generation procedure. At the end, conclusion is drawn in Section 4.

2 Materials and methods

In this section, we describe the four models of DeepPASTA for pre-

dicting polyA sites, tissue-specific polyA sites, tissue-specific relative

dominance between polyA sites, and tissue-specific absolutely dom-

inant polyA sites from human genomic sequence and RNA second-

ary structure data. The four prediction problems are formally

defined as follows. The first problem is a binary classification prob-

lem that takes a genomic sequence of 200 nt (Akhtar et al., 2010;

Leung et al., 2018) and some probable secondary structures pre-

dicted by RNAshapes (Steffen et al., 2006) as the input and expects

a score as the output indicating the likelihood for the middle pos-

ition of the input sequence to be a polyA site. Note that RNAshapes

is used here because it is one of the most popular tools for RNA sec-

ondary structure prediction (Maticzka et al., 2014; Zhang et al.,

2015). The second problem is a multi-label classification problem

that takes a sequence and some corresponding RNA secondary

structures as the input and asks which tissues may have polyA sites

in the input sequence for a given set of tissues. The third problem in

a multi-class classification problem that takes two polyA sites sur-

rounding sequences (200 nt) as well as corresponding RNA second-

ary structures of a gene as the input and estimates the relatively

dominant polyA site in a particular tissue. The final problem is a

binary classification problem that takes a polyA site and its sur-

rounding sequence (200 nt) as well as corresponding RNA second-

ary structure of a gene as the input and outputs a score indicating

the likelihood for the input polyA site to be the absolutely dominant

polyA site of the gene. The detailed input and output of the above

four models are illustrated in Supplementary Figure S1.

Recently, deep learning has been applied in bioinformatics with

superior performance over conventional learning methods on many

prediction/classification problems, such as protein-nucleotide bind-

ing prediction (Alipanahi et al., 2015; Pan and Shen, 2017; Zhang

et al., 2015), functional genomic data prediction (Eser and

Churchman, 2016), translation initiation site (Zhang et al., 2017a)

and ribosome stalling prediction (Zhang et al., 2017b). Following

these state-of-the-art methods, DeepPASTA also uses deep learning

algorithms in its prediction models. Each of the four models of

DeepPASTA employs both a CNN for extracting features and an

RNN for combining the effects of these features. The four models

are explained in detail in Sections 2.1–2.4.

2.1 Predicting polyA sites
The first model of DeepPASTA is the polyA site prediction model.

The model takes a genomic sequence of 200 nt and some corre-

sponding RNA secondary structures as the input to predict whether

that sequence has a polyA site in the middle or not. Following the lit-

erature (Zhang et al., 2015), three energy efficient RNA secondary

structures are generated by RNAshapes (Steffen et al., 2006) from

the sequence and given as a part of the input. Supplementary Figure

S2 shows the overall architecture of the model. The model consists

of four sub-models: a sequence sub-model and three identical sec-

ondary structure sub-models. The sequence sub-model starts with a

convolution layer (LeCun et al., 1998). Following the work

(Alipanahi et al., 2015; Angermueller et al., 2017; Kelley et al.,

2016; Zhou et al., 2015), the convolution layer of DeepPASTA is

used to extract features from the input sequence based on a sliding

window. It uses a rectified linear unit (ReLU) (Nair and Hinton,

2010) as the activation function to set negative values to zero. The

next layer is a max pooling layer (Ciregan et al., 2012) that picks

the maximum feature value within a window. After the max pooling

layer, a bidirectional LSTM (long short term memory) recurrent

layer (Gers et al., 2000; Hochreiter and Schmidhuber, 1997;

Schuster and Paliwal, 1997) is used to consider both upstream and

downstream signals for polyA site prediction. The last layer of the

sequence sub-model is a fully connected layer. Each of the three in-

put RNA secondary structures is fed to a secondary structure sub-

model. Similar to the sequence sub-model, each secondary structure

sub-model starts with a convolution layer to extract features from

the input secondary structure. This convolution layer is followed by

an average pooling layer. The average pooling layer calculates the

average of all the feature values within a window. The next two

layers of the sub-model are a bidirectional LSTM and a fully con-

nected layer. The three secondary structure sub-models are com-

bined using an addition layer and then concatenated with the

sequence sub-model. The concatenation layer is followed by mul-

tiple fully connected layers. The fully connected layers of the polyA

site prediction model use ReLUs as the activation function. The

model ends with a single neuron output layer with a sigmoid activa-

tion function. In order to prevent data overfitting, dropouts

(Srivastava et al., 2014) are used in some of the layers.

Separate training and validation data are used to train the model,

while some test data is used to evaluate the performance of the

trained model. Ground truth values of the training and validation

data are taken from the PolyA-Seq data in Derti et al. (2012).

The PolyA-Seq data provide tissue specific polyA sites in human.

For the basic (i.e. non-tissue specific) polyA site prediction problem,

we take the union of all the tissues to construct the ground truth

data. Supplementary Figure S3 shows the steps of the training phase.

The model is trained using the Adam RMSprop with Nesterov mo-

mentum (Dozat, 2016) optimizer. It uses a minibatch size of 1000 to

minimize the average multi-task binary cross entropy loss on the

training data. At the end of each training epoch, the validation loss

is evaluated to monitor convergence. In order to expedite the learn-

ing process, a graphic processing unit (GPU) is used.

2.2 Predicting tissue-specific polyA sites
If a sequence and its corresponding RNA secondary structures are

given as the input, the tissue-specific polyA site prediction model
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asks in which tissues the sequence contains a polyA site. The model

is a multi-label classifier (Aly, 2005) that simultaneously considers

nine different human tissues: brain, kidney, liver, maqc_brain1,

maqc_brain2, maqc_UHR1, maqc_UHR2, muscle and testis (Derti

et al., 2012). Following the literature (Leung et al., 2018), we con-

sider the four samples maqc_brain1, maqc_brain2, maqc_UHR1

and maqc_UHR2 as four different tissues. The output from the

multi-label classifier is a vector of nine values for the nine tissues.

If a tissue has a polyA site in the input sequence then the tissue’s cor-

responding value in the vector should be 1, otherwise 0. Note that

the model also works for input sequence that does not contain any

polyA site for the nine tissues. Here, our model considers nine tissues

because the ground truth data, PolyA-Seq (Derti et al., 2012),

involve nine tissues, but it can be applied to any set of tissues that

has ground truth data.

Supplementary Figure S4 shows the overall architecture of the

model. Similar to the basic (i.e. non-tissue-specific) polyA site pre-

diction model described in Section 2.1, this model has one sequence

and three identical secondary structure sub-models. The sequence

and secondary structure sub-models are similar to the sequence and

secondary structure sub-models of the basic polyA site prediction

model, but they use parametric ReLUs (PReLU) (He et al., 2015) as

the activation functions in its convolution and fully connected

layers. The four sub-models are then combined using two concaten-

ation layers. The latest concatenation layer is followed by multiple

fully connected layers and these fully connected layers use ReLUs as

the activation functions. The final layer of the model has nine output

neurons for the nine tissues and it uses a sigmoid activation function.

Dropouts are used in some of the layers to prevent overfitting.

The training process of this model is similar to the training pro-

cess of the basic polyA site prediction model.

2.3 Predicting tissue-specific relatively dominant polyA

sites
When a couple of sequences of 200 nt (and corresponding RNA

secondary structures) containing polyA sites of some gene in a par-

ticular tissue are given as the input, this model predicts which polyA

site is more dominant in the tissue [i.e. more frequently used; (Leung

et al., 2018)]. Note that we do not define this model as a multi-label

classifier because the input sequence may not contain polyA sites in

all tissues. Supplementary Figure S5 shows the overall architecture

of the model. The (relative dominance) strength value of each input

sequence (and RNA secondary structure) is calculated using a sub-

unit of the model. This sub-unit consists of two sub-models: se-

quence and secondary structure sub-models. The sequence sub-

model consists of one convolution layer with a PReLU activation

function, one max pooling layer, one bidirectional LSTM recurrent

layer and one fully connected layer with a ReLU activation function.

The architecture of the secondary structure sub-model is similar to

the sequence sub-model, but uses an average pooling layer in place

of the max pooling layer. The sequence and secondary structure

sub-models are combined using a concatenation layer. The concat-

enation layer is followed by multiple fully connected layers.

The sub-unit ends with an output layer with a single neuron that

provides the strength value of the input sequence. At the end, the

relatively more dominant polyA site is determined by comparing the

output strength values of the two input sequences from the two sub-

units using softmax (Bishop, 2006).

In order to train the model, the read counts of the two input

sequences from the PolyA-Seq data (Derti et al., 2012) are used to

construct the ground truth. More specifically, if the input sequences

S1 and S2 have R1 and R2 read counts, then the ground truth

strengths of these two sequences are 1þR1

ð2þR1þR2Þ and 1þR2

ð2þR1þR2Þ, respect-

ively. A similar procedure is also followed to calculate the ground

truth in Conv-Net (Leung et al., 2018). The training process of the

relative dominant polyA site prediction model is similar to the train-

ing process of the polyA site prediction model.

2.4 Predicting tissue-specific absolutely dominant polyA

sites
When a sequence of 200 nt (and corresponding RNA secondary

structure) containing a polyA site of some gene in a particular tissue

is given as the input, this model predicts whether the polyA site is a

most dominant site (i.e. the most frequently used) of the gene or not

in the involved tissue. Usually, the most dominant polyA sites of a

gene are more likely selected for the polyadenylation process.

Again, we do not define this model as a multi-label classifier because

the input sequence may not contain polyA sites in all tissues.

Supplementary Figure S6 shows the overall architecture of the

model. The absolutely dominant prediction model has two sub-

models: sequence and secondary structure sub-models. The sequence

and secondary structure sub-models of this model are similar to the

sequence and secondary structure sub-models of the relative domin-

ance prediction model. These two sub-models are also combined

using a concatenation layer. The concatenation layer is followed by

multiple fully connected layers with ReLU activation functions. The

final layer of the model has one output neuron and the activation

function of this layer is sigmoid.

The read count values of polyA sites from the PolyA-Seq data are

used to determine one or more absolutely dominant polyA sites of a

gene. PolyA sites with the maximum read counts within a gene are

considered as the (absolutely) dominant polyA sites and rest are con-

sidered as the non-dominant sites. The model is trained using similar

steps as the other models described above.

3 Experimental results

In this section, we compare the performance of DeepPASTA with

that of some state-of-the-art methods for predicting polyA sites,

tissue-specific polyA sites as well as relatively/absolutely dominant

polyA sites. We also compare the tissue-specific polyA site predic-

tion model with the non-tissue-specific model.

In order to construct the sequence data for DeepPASTA’s mod-

els, polyA sites are collected from the PolyA-Seq experiments in

Derti et al. (2012). As AUEs, the PAS, U/GU rich elements and

ADEs are typically within 100 nt upstream and downstream of a

polyA site (Akhtar et al., 2010; Hu, 2005), the genomic sequence of

length 200 nt centered around a polyA site is taken from the human

GRCh37 (hg19) reference genome (similar to Leung et al., 2018).

These sequences are considered as the positive examples for the deep

learning models. The models also need negative examples for train-

ing and testing. Therefore, four different sets of negative examples

are constructed: two sets obtained by shifting each positive example

left and right by 50 nt (Leung et al., 2018), random sequences con-

taining upstream hexamer signals, and random sequences from cod-

ing and noncoding regions of genes (Akhtar et al., 2010). The length

of each of these negative examples is 200 nt. In the shifted negative

examples, the polyA sites are not in the middle of the 200 nt sequen-

ces. In the negative examples with hexamer signals, the hexamer sig-

nals are in the upstream region of the sequences. Similar to the

literature (Gao et al., 2018; Leung et al., 2018; Zhang et al., 2017a),

these sequence examples are then fed to DeepPASTA by using the
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one-hot encoding representation. As there are four possible nucleoti-

des (A, C, G and T) in DNA sequences, the dimensionality of a se-

quence example is 4 � 200.

Since the selection of polyA sites in polyadenylation process also

depends on the RNA secondary structures near the polyA sites

(Brown et al., 1991; Wu et al., 2004). DeepPASTA considers both

sequences and their corresponding RNA secondary structures for its

prediction tasks as mentioned above. RNAshapes (Steffen et al.,

2006) is used to predict the probable secondary structures of each

sequence example (Maticzka et al., 2014; Zhang et al., 2015). More

specifically, the sequence is scanned using a sliding window (of size

100 nt) and a step size (of 100 nt) to predict first level abstract (i.e.

the most detailed) representation/secondary structures (Lange et al.,

2012). As done in Zhang et al. (2015), the three most energy effi-

cient secondary structures of the sequence are recorded for future

analyses. Each position of the secondary structure is represented by

one of seven symbols, i.e. L, R, U, M, H, I and E, which stand for

left hand base of a double strand, right hand base of a double strand,

unpaired base, multiloop, hairpin loop, internal loop and external

region, respectively. Similar to the sequence input, the secondary

structure input uses a one-hot encoding representation. Therefore,

the dimensionality of a secondary structure input is 7 � 200.

3.1 Performance on predicting polyA sites
In this experimental study, we compare DeepPASTA with five exist-

ing tools: PolyAR (Akhtar et al., 2010), Dragon PolyA Spotter (Bajic

et al., 2012), DeeReCT-PolyA (Xia et al., 2018), Conv-Net (Leung

et al., 2018) and DeepPolyA (Gao et al., 2018) for predicting polyA

sites on three datasets (to be introduced below). In order to train the

model of DeepPASTA, we partition the human chromosomes into

three groups: chromosomes 1 to 8 as group 1, chromosomes 9 to 14

as group 2 and chromosomes 15 to Y as group 3. Homologous genes

from BioMart of Ensembl are considered to prevent potential data

leak (i.e. training data containing information of test data). Using

the genes from chromosomes 1 to 8, homologous genes are

extracted from chromosomes 9 to Y and are added into group 1.

Similarly, using the genes from chromosomes 9 to 14, homologous

genes are extracted from chromosomes 15 to Y and are added into

group 2. The polyA sites in groups 1, 2 and 3 are collected from the

PolyA-Seq data. Before homologous genes are moved, group 1, 2

and 3 have 251 726, 125 665 and 144 208 polyA sites, respectively.

After moving homologous genes, the number of polyA sites in group

1, 2 and 3 are 326 695, 99 498 and 95 406, respectively. We then

construct training, validation and test data from groups 1, 2 and 3,

respectively. As mentioned above, four different types of negative

sequences and their corresponding RNA secondary structures are

collected from group 1 and down-sampled to make the ratio of posi-

tive and negative example as 1 : 1 in the training data. The down-

sampling helps make the prediction model more robust (Akhtar

et al., 2010; Bajic et al., 2012; Liu et al., 2003). A similar procedure

is also followed to construct the validation data. The polyA site pre-

diction model of DeepPASTA is then trained using the training and

the hyperparameters of the model are tuned empirically using held-

out validation data. The test data are constructed similarly, but we

do not down-sample the negative examples (thus keeping the ratio

of positive and negative examples as 1:4).

We use three test datasets to evaluate the performance of the

tools. Datasets 1 and 2 are constructed from the test data and data-

set 3 is taken from the literature (Leung et al., 2018). Dataset 1 is

constructed using the whole test data. Therefore, it contains 95 406

positive and 381 555 negative examples (ratio 1 : 4). Dataset 2 is a

subset of dataset 1 and it consists of 95 406 (i.e. all) positive

examples and 95 406 random sequences as the negative examples.

We include both balanced data (dataset 2) and unbalanced data

(dataset 1) in the performance evaluation because PolyAR and

Dragon PolyA Spotter use balanced datasets in their performance

evaluations (Akhtar et al., 2010; Bajic et al., 2012) but in reality, the

number of polyA sites is very small compared to the whole human

genome. Note that datasets 1 and 2 do not contain any information

about the training and validation data.

In order to compare with the most recent method Conv-Net

(Leung et al., 2018) directly, we construct dataset 3 by considering

only chromosomes 15 to Y. We do not consider chromosomes 1 to

14 because the polyA site prediction model of DeepPASTA is trained

on those chromosomes. We introduce dataset 3 in the performance

evaluation because we want to show the performance of

DeepPASTA not only on the PolyA-Seq data but also on the dataset

from Conv-Net literature. We collect the positive sequences of data-

set 3 from Leung et al. (2018). As in Leung et al. (2018), the nega-

tive sequences are constructed by shifting each positive example left

and right by 50 nt. Therefore, the numbers of positive and negative

sequences in dataset 3 are 6018 and 12 036, respectively. For each

sequence, three energy efficient RNA secondary structures are con-

structed using RNAshapes.

As the Conv-Net model is not publicly available, we construct

the model using the description in Leung et al. (2018) and train it

using the sequences of the above training and validation data.

We also train DeepPolyA using the same training and validation

data because the tool was initially developed for plants. Since the

tool Dragon PolyA Spotter needs sequences of length more than 200

nt as the input, we extend each sequence by 50 nt in both directions

to make it 300 nt for Dragon PolyA Spotter. The performance of all

the tools is compared using AUC and AUPRC.

From Table 1, it can be seen that DeepPASTA clearly outper-

forms the other tools in polyA site prediction. DeepPolyA and

Conv-Net perform better than PolyAR, Dragon PolyA Spotter and

DeeReCT-PolyA because they also use machine extracted features

and deep learning algorithms. DeepPolyA preforms slightly better

than Conv-Net perhaps because Conv-Net was originally designed

to predict relatively dominant polyA sites. Dragon PolyA Spotter

and DeeReCT-PolyA only predict hexamer signals in sequences, but

Table 1. Performance comparison between DeepPASTA, PolyAR,

Dragon PolyA Spotter, DeeReCT-PolyA, Conv-Net and DeepPolyA

in polyA site prediction on the three datasets introduced in the be-

ginning of Section 3.1 in terms of AUC and AUPRC

Tool name Performance Dataset 1 Dataset 2 Dataset 3

Metric

DeepPASTA AUC 0.972 0.958 0.930

AUPRC 0.921 0.962 0.875

PolyAR AUC 0.630 0.713 0.673

AUPRC 0.296 0.749 0.489

Dragon PolyA AUC 0.609 0.711 0.639

Spotter AUPRC 0.261 0.693 0.421

DeeReCT-PolyA AUC 0.637 0.711 0.659

AUPRC 0.261 0.695 0.421

Conv-Net AUC 0.910 0.899 0.907a

AUPRC 0.782 0.913 0.853

DeepPolyA AUC 0.925 0.913 0.906

AUPRC 0.804 0.922 0.854

aThe AUC performance of Conv-Net on dataset 3 is taken from Leung

et al. (2018).
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a polyA site depends on other signals as well as the hexamer signal.

As a result, Dragon PolyA Spotter and DeeReCT-PolyA perform the

worst among the tools. Because PolyAR considers other signals

along with the hexamer signal in its prediction process, it is able to

perform better than Dragon PolyA Spotter and DeeReCT-PolyA.

Moreover, all the tools generally perform better on dataset 2

than on dataset 1 as expected, but DeepPASTA drops slightly in

AUC on dataset 2. In order to explain this, we conduct several

experiments with different sets of negative examples as described

above. We find that DeepPASTA performs the best on the shifted

negative examples and it performs better on negative examples with

hexamer signals than random negative examples (Supplementary

Fig. S7). As dataset 2 does not contain shifted negative examples

and negative examples with hexamer signals, its AUC drops slightly.

On the dataset from the Conv-Net work (dataset 3), DeepPASTA

clearly performs better than Conv-Net in both AUC and AUPRC.

Hence, although both DeepPASTA, Conv-Net and DeepPolyA use

deep learning algorithms, DeepPASTA performs significantly better

than Conv-Net and DeepPolyA on all three datasets. The use of

RNA secondary structures and recurrent neural networks in the

model architecture may have helped improve the performance of

DeepPASTA.

Two examples illustrating the contribution of RNA secondary

structures are given in Supplementary Figure S8. Moreover, the hex-

amer signals that contributed to the performance of DeepPASTA in

polyA site prediction are analyzed in Supplementary Figure S9.

3.1.1 Effect of data leak on polyA site prediction

In order to test the effect of data leak on our polyA site prediction

method, we compare the performance of our DeepPASTA model

trained in the above (where all homologous genes were consolidated

in the training and validation data to prevent potential data leak in

testing) with another one where the homologous genes are not con-

solidated. More specifically, we construct the training and valid-

ation data based on chromosomes similarly as above but we do not

move homologous genes from dataset 1 to the training and valid-

ation data. As a result, the numbers of positive examples in the

training and validation data are 251 726 and 125 665, respectively.

Again, the negative examples are down-sampled to make the ratio

of positive and negative examples 1 : 1 in this training and valid-

ation data. For convenience, let us refer to the DeepPASTA model

trained with the new data as M2. The performance of the two mod-

els are compared using AUC and AUPRC on dataset 1 in Table 2.

As shown in the table, there is only slight performance difference be-

tween the models. This negligible difference demonstrates that hom-

ology does not cause serious data leak in our polyA site prediction

method.

3.1.2 Performance improvement using an RNN and RNA secondary

structures

In order to test how the use of an RNN and RNA secondary struc-

tures may contribute to the performance of DeepPASTA, we con-

sider three polyA site prediction models (see Supplementary Fig. S2):

(i) the full polyA site prediction model of DeepPASTA, (ii) the model

that uses only the sequence features (called M3) and (iii) the model

that uses the sequence features and CNN (called M4). The models

M3 and M4 are trained using the same training and validation data

as in the training of full model of DeepPASTA. Note that these mod-

els have much less network complexity than DeepPASTA. The per-

formance of the models is evaluated using AUC and AUPRC on

datasets 1 and 2 in Table 3. The table shows that both RNN and

RNA secondary structures make small (but non-negligible) contribu-

tions to the improved performance of DeepPASTA.

3.2 Performance on predicting tissue-specific polyA

sites
Different human tissues can have different polyA sites (Tian and

Manley, 2017) and the tissue specificity of polyA sites has been

studied extensively in the literature (Hafez et al., 2013; Tian and

Manley, 2017; Weng et al., 2016; Zhang et al., 2005). In this sub-

section, we analyze the performance of the DeepPASTA (multi-

label) model for tissue-specific polyA site prediction and compare it

with that of the basic (i.e. non-tissue-specific) model and DeepPolyA

(Gao et al., 2018). Similar to the training of the basic model, the

tissue-specific polyA site prediction model is also trained by consoli-

dating homologous genes to prevent potential data leak. The train-

ing and validation data of this model are similar to the training and

validation data of the basic model, but their ground truths are differ-

ent. For each example in the training and validation data, the

ground truth consists of nine labels (actually, score values) for nine

tissues (brain, kidney, liver, maqc_brain1, maqc_brain2,

maqc_UHR1, maqc_UHR2, muscle and testis), indicating if a tissue

is likely to have a polyA site or not. Similar to the basic model, the

hyperparameters of the tissue-specific model are tuned empirically

using held-out validation data. The performance of the tissue-

specific model is compared with DeepPolyA and the basic model on

datasets 1 and 2 using AUC and AUPRC in Table 4. While evaluat-

ing the tissue-specific performance, if an input sequence contains a

polyA site in the middle for a given tissue then the sequence is a posi-

tive example for that tissue, otherwise it’s a negative example.

From the table, we can see that the tissue-specific model of

DeepPASTA performs better than DeepPolyA and the non-tissue-

specific model (of DeepPASTA) in predicting tissue-specific polyA

sites. In fact, the two DeepPASTA models significantly outperform

DeepPolyA in tissue-specific polyA site prediction. Although the

AUC differences between the DeepPASTA models are very small,

the improvements in AUPRC are quite significant. Clearly, the use

of all nine tissues simultaneously in training of the tissue-specific

model has helped its performance. Although, the AUCs of both

models decrease from dataset 1 to dataset 2, their AUPRCs increase

slightly. The reason of this performance variation between datasets

1 and 2 is due to the types of negative examples in the datasets

Table 2. The effect of data leak on DeepPASTA in polyA site predic-

tion on dataset 1 in terms of AUC and AUPRC

PolyA site prediction model AUC AUPRC

DeepPASTA (homologs consolidated) 0.9724 0.9210

M2 (homologs not consolidated) 0.9725 0.9211

Table 3. Contributions of the RNN and RNA secondary structures in

polyA site prediction on datasets 1 and 2 in terms of AUC and

AUPRC

PolyA site prediction model Dataset AUC AUPRC

DeepPASTA Dataset 1 0.972 0.921

(sequences þ RNA secondary structures) Dataset 2 0.958 0.962

M3 (sequences with CNN and RNN) Dataset 1 0.960 0.893

Dataset 2 0.938 0.947

M4 (sequences with CNN) Dataset 1 0.951 0.871

Dataset 2 0.931 0.940
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(similar to the AUC variation observed in Section 3.1). Here, a se-

quence with the PASs may not have polyA sites in every tissue. This

makes the prediction task much harder for the tissue-specific model

of DeepPASTA on both datasets. Moreover, the AUPRC values are

much lower than the AUC values because the negative examples

greatly outnumber the positive examples on both datasets. Similar

to the basic model, the hexamer signals that contributed to the per-

formance of DeepPASTA in tissue-specific polyA site prediction are

analyzed in Supplementary Figures S10–S18.

3.3 Performance on predicting tissue-specific relatively

dominant polyA sites
In this subsection, we compare DeepPASTA with Conv-Net in pre-

dicting relatively dominant polyA sites in a particular tissue on two

datasets: datasets 4 and 5. Dataset 4 contains nine tissues studied

above (Derti et al., 2012) and for each tissue, the human chromo-

somes are partitioned into three groups: chromosomes 1 to 6 as

group 1, chromosomes 7 to 12 as group 2 and chromosomes 13 to Y

as group 3. Again, homologs are consolidated to prevent potential

data leak. All pairs of polyA sites of a particular gene from the

PolyA-Seq data in a specific tissue are considered as examples

(ordered by their genomic locations). We construct training, valid-

ation and test data from the examples in groups 1, 2 and 3, respect-

ively. The tissue-specific read counts (from the PolyA-Seq data) are

used to define the true relative dominance. For simplicity, we do not

consider examples consisting of polyA sites with equal read counts.

For each tissue, a model is trained and tested using the data of that

tissue. Dataset 5 is taken from Leung et al. (2018). The training, val-

idation and test parts of dataset 5 are constructed following the

same construction steps as for dataset 4. Note that homologs are not

consolidated in this dataset. There are eight tissues in this dataset

and for each tissue, a model is again trained and tested using the

data of that tissue. Again, the hyperparameters of the models are

tuned empirically using held-out validation data. For each tissue of

datasets 4 and 5, a Conv-Net model is trained with the same training

and validation data as DeepPASTA. Supplementary Figure S19

shows the numbers of training and validation examples in datasets 4

and 5. The performance of DeepPASTA and Conv-Net in predicting

tissue-specific relative dominance is compared using AUC and

AUPRC in Table 5 and Supplementary Table S2. Clearly,

DeepPASTA achieves a better overall performance and its improve-

ment over Conv-Net is consistent across both datasets.

3.4 Performance on predicting tissue-specific absolutely

dominant polyA sites
In this subsection, we compare the performance of DeepPASTA and

Conv-Net in predicting absolutely dominant polyA sites in a particu-

lar tissue. Similar to dataset 4 constructed in a Section 3.3, the

human chromosomes are partitioned and homologs are consolidated

to construct a new dataset, called dataset 6. Among all the polyA

sites of each gene, those that have the highest read counts in the

Table 4. Performance comparison between the tissue-specific model of DeepPASTA, DeepPolyA and basic (i.e. non-tissue-specific) polyA

site prediction models of DeepPASTA on datasets 1 and 2

Tissue Data DeepPolyA Tissue-specific Basic model

AUC AUPRC AUC AUPRC AUC AUPRC

Brain D1 0.883 0.202 0.921 0.296 0.916 0.244

D2 0.777 0.224 0.823 0.313 0.804 0.250

Kidney D1 0.892 0.214 0.927 0.301 0.921 0.255

D2 0.789 0.235 0.834 0.316 0.811 0.261

Liver D1 0.878 0.170 0.916 0.251 0.910 0.207

D2 0.767 0.189 0.813 0.265 0.792 0.213

MAQC_Brian1 D1 0.899 0.220 0.938 0.328 0.926 0.270

D2 0.801 0.241 0.857 0.344 0.822 0.275

MAQC_Brian2 D1 0.898 0.207 0.937 0.314 0.924 0.258

D2 0.799 0.227 0.855 0.329 0.820 0.263

MAQC_UHR1 D1 0.892 0.237 0.928 0.336 0.920 0.287

D2 0.791 0.261 0.839 0.354 0.812 0.294

MAQC_UHR2 D1 0.892 0.250 0.928 0.348 0.921 0.299

D2 0.792 0.276 0.840 0.367 0.813 0.306

Muscle D1 0.877 0.207 0.910 0.272 0.912 0.251

D2 0.765 0.232 0.806 0.302 0.792 0.258

Testis D1 0.876 0.211 0.908 0.265 0.910 0.253

D2 0.764 0.237 0.802 0.299 0.789 0.261

Note: Supplementary Table S1 shows the numbers of positive and negative examples in the test datasets. Datasets 1 and 2 are represented as D1 and D2,

respectively, in the table.

Table 5. Performance comparison between DeepPASTA and Conv-

Net in relatively dominant polyA site prediction on dataset 4 in

terms of AUC and AUPRC

Tissue # of Test DeepPASTA Conv-Net

Examples AUC AUPRC AUC AUPRC

Brain 38 726 0.748 0.729 0.728 0.716

Kidney 44 363 0.708 0.694 0.699 0.679

Liver 39 832 0.713 0.698 0.676 0.664

MAQC_Brian1 44 242 0.723 0.707 0.714 0.693

MAQC_Brian2 40 878 0.709 0.694 0.690 0.673

MAQC_UHR1 62 064 0.704 0.704 0.689 0.696

MAQC_UHR2 62 946 0.721 0.707 0.691 0.682

Muscle 49 528 0.719 0.706 0.717 0.716

Testis 53 820 0.733 0.714 0.721 0.709

Note: The performance of Conv-Net is based on our implementation of the

method described in Leung et al. (2018).
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PolyA-Seq data with respect to a particular tissue are considered as

the absolutely dominant polyA sites of the gene (in the tissue). The

rest of the polyA sites are considered as non-dominant polyA sites of

the gene (i.e. negative examples) in the tissue. Supplementary Figure

S20 shows the numbers of training and validation examples in data-

set 6. The performance of DeepPASTA in predicting absolutely

dominant polyA sites is compared with Conv-Net using AUC and

AUPRC on the test data of dataset 6, as shown in Table 6.

DeepPASTA clearly outperforms Conv-Net in all tissues. This sig-

nificant performance improvement of DeepPASTA can be partially

attributed to its use of RNA secondary structures.

4 Discussion

In this work, we introduced DeepPASTA, a deep learning-based tool

for predicting polyA sites from genomic sequence and RNA second-

ary structure data. The tool is also capable of predicting tissue-

specific polyA sites as well as tissue-specific relatively and absolutely

dominant polyA sites. Our extensive experiments show that

DeepPASTA performs better than all existing tools in all four polyA

site analyses. Supplementary Table S3 illustrates that the four polyA

site prediction models of DeepPASTA can be trained in a reasonable

amount of time. Hence, we expect that DeepPASTA will serve as a

useful polyA site analysis tool in biological research.
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