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Abstract

Rationale & Objective: Biomarkers that provide reliable evidence of future diabetic kidney 

disease (DKD) are needed to improve disease management. In a cross-sectional study, we 

previously identified thirteen urine metabolites that were reduced in DKD compared with healthy 

controls. Here, we evaluated associations of these thirteen metabolites with future DKD 

progression.

Study Design: Prospective cohort.

Setting & Participants: 1001 Chronic Renal Insufficiency Cohort (CRIC) participants with 

diabetes with estimated glomerular filtration rate (eGFR) between 20 and 70 ml/min/1.73m2 were 

followed prospectively for a median of 8 (range: 2–10) years.

Predictors: Thirteen urine metabolites, age, race, sex, smoked >100 cigarettes in lifetime, body 

mass index, hemoglobin A1c, blood pressure, urine albumin, and eGFR.

Outcomes: Annual eGFR slope and time to incident kidney failure with replacement therapy 

(KFRT; ie, initiation of dialysis or receipt of transplant).

Analytical Approach: Several clinical-metabolite models were developed for eGFR slope as the 

outcome via stepwise selection and penalized regression, and further tested on the time-to-KFRT 

outcome. A best cross-validated (final) prognostic model was selected based on high prediction 

accuracy for eGFR slope and high concordance statistic for incident KFRT.

Results: During follow-up, mean eGFR slope was −1.83 +/−1.92 (SD) ml/min/1.73m2 per year; 

359 (36%) subjects experienced KFRT. Median time-to-KFRT was 7.45 years from the time of 

entry to the CRIC Study. In our final model, after adjusting for clinical variables, metabolites 3-

hydroxyisobutyrate (3-HIBA) and 3-methylcrotonyglycine had a significant negative association 

with eGFR slope, whereas citric and aconitic acid were positively associated. Further, 3-HIBA and 

aconitic acid were associated with higher and lower risk of KFRT, respectively (HRs of 2.34 [95% 

CI, 1.51–3.62] and 0.70 [95% CI, 0.51–0.95]).

Limitations: Subgroups for whom metabolite signatures may not be optimal, non-targeted 

metabolomics by flow-injection analysis and two-stage modeling approaches.

Conclusions: Urine metabolites may offer insights into DKD progression. If replicated in future 

studies, aconitic acid and 3-HIBA could identify individuals with diabetes at high risk of GFR 

decline, potentially leading to improved clinical care and targeted therapies.

INDEX WORDS:

Biomarker; chronic kidney disease (CKD); Chronic Renal Insufficiency Cohort (CRIC); diabetes; 
end-stage renal disease (ESRD); estimated glomerular filtration rate (eGFR); incident kidney 
failure; kidney disease progression; kidney function decline; longitudinal study; metabolomics; 
multivariate model; prediction; prognosis; risk factor

Introduction

Diabetes accounts for nearly 40% of chronic kidney disease (CKD) cases in the United 

States general adult population for the past two decades, with reportedly > 90% of diabetic 
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cases being type 2 diabetes1–3. Patients with diabetic kidney disease (DKD) are at high risk 

for hospitalization, morbidity, and mortality4. While clinical markers such as albuminuria 

level are prognostic for kidney disease progression, these markers exhibit high 

intraindividual variability5 and patients may exhibit nonalbuminuric kidney disease with 

progressive glomerular filtration rate (GFR) decline even preceding the onset of 

albuminuria6. Hence, there is an urgent need for identifying new biomarkers that are 

prognostic for future DKD and/or provide biological insights that could inform clinical care.

The metabolome provides a direct and sensitive measure of the phenotype at the molecular 

level, which makes it a powerful tool for informing physiological and pathological effects of 

chronic diseases7. Urine metabolomics offers direct insights into biochemical pathways 

potentially associated with kidney dysfunction since the kidney is responsible for 

concentrating and excreting a variety of metabolites from the human body. Recent 

systematic reviews noted several candidate urine metabolites that discriminated DKD from 

controls8–12, but few studies have prospectively examined urine metabolomics for DKD 

progression. In one prospective study of 90 patients with type 2 diabetes13, tyrosine, hexose, 

and glutamine were associated with progression from moderate to severe albuminuria, but 

none were associated with progression from normal to moderate albuminuria. We previously 

identified thirteen metabolites that were consistently and reliably reduced in patients with 

DKD compared with healthy controls in cross-sectional analysis14. Given the cross-sectional 

design, we could not infer whether metabolomic differences were precursors to or a 

consequence of DKD. Hence, in the current study, we evaluated associations of these 

previously identified thirteen metabolites with future kidney function decline. Our objective 

was to develop multivariate models of DKD progression, to identify which among the 

thirteen metabolites were associated with GFR decline, after adjusting for known clinical 

variables, with the ultimate goal of improving risk prediction and offering insights into the 

pathophysiology of DKD.

Methods

Study Cohort

Our study cohort is a subsample of the Chronic Renal Insufficiency Cohort (CRIC) Study. 

Details on the rationale and design of the CRIC Study have been previously 

published15,16,17. Briefly, the CRIC Study recruited a racially and ethnically diverse group 

of adults aged 21 to 74 years with a broad spectrum of kidney disease severity, half of whom 

had diagnosed diabetes. Participants underwent extensive clinical evaluation at baseline and 

at annual intervals. Sociodemographic information, medical and family history, medications 

used in the previous 30 days, anthropometric parameters (weight, height), resting blood 

pressure, and heart rate were collected from CRIC participants. In addition, blood specimens 

and 24-h urine samples were also obtained. Our analytic cohort comprised 1001 enrolled 

CRIC participants with diabetes, sampled across albuminuria and eGFR categories 

essentially equivalent to CKD A1–A3 and CKD G2–G4. Specifically, these categories were 

urinary albumin levels of <30, 30-<300, and >=300 mg/d, and eGFR categories of 60-<70, 

45-<60, 30-<45, and 20-<30 mL/min/1.73 m2. Participants were followed prospectively for 

a median of 8 (range: 2–10) years.
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Individual-level informed consent was obtained on all CRIC participants. The protocol/

methods were approved by each local center’s Institutional Review Board (IRB) as well as 

the Scientific and Data Coordinating Center (SDCC; IRB approval number, 807882).

Non-targeted Metabolomics

Non-targeted metabolome profiling in urine was performed for 1001 samples collected at 

study entry. Aliquots of urine samples stored at −80 °C and limited to less than 3 freeze-

thaw cycles were used in this study. Samples were thawed at room temperature, centrifuged 

for 5 min at 5000g and precipitate-free supernatants were diluted 1:50 in double-distilled 

H2O and stored at −80°C in 96-well polypropylene storage microplates (Abgene) sealed 

with easy-peel heat sealing foil (Abgene) until measurement. Quantification of relative ion 

abundance was carried out with an MPS3xt autosampler (Gerstel) coupled to an Agilent 

6550 Q-TOF mass spectrometer (Agilent Technologies) by non-targeted flow injection 

analysis as described previously18. Briefly, the flow rate was 150 μL/min of mobile phase 

consisting of isopropanol and water (with a volume ratio of 60:40) buffered with 5 mM 

ammonium fluoride and for online mass axis correction, homo-taurine and hexakis (1H, 1H, 

3H-tetrafluoropropoxy) phosphazine (Agilent Technologies) were added to the mobile 

phase. Profile mass spectra were recorded in 4Ghz acquisition mode from 50 to 1000 m/z in 

negative ionization mode with the following source settings: temperature 225° C, drying gas 

11 l/min, nebulizer 20 psig, sheath gas temperature 350° C, sheath gas flow 10 l/min, Vcap 

3500 V, nozzle 2000 V, fragmentor 350 V and Oct 1 RF Vpp 750V. All steps of data 

processing and analysis were performed with Matlab R2017b (The Mathworks) using 

functions embedded in the bioinformatics, statistics, database and parallel computing 

toolboxes. After sample alignment, correction for ion intensity drift over time and between 

plates was performed and the common mass axis was recalibrated using known frequently 

occurring ions. Raw mass spectrometry data was normalized based on creatinine ion 

abundances. Final annotation of approximately 15k ions common to all datasets were done 

based on accurate mass comparison using 1 mDa mass tolerance against Human 

Metabolome Database HMDBv4.0 assuming single deprotonation.

The relative, creatinine normalized ion abundances for the thirteen metabolites of interest 

were extracted and used for the current analysis. The metabolites (and related pathways) 

were: aconitic acid, citric acid (nucleotide metabolism: tricarboxylic acid [TCA] cycle); 

uracil (nucleotide metabolism: purine); 3-hydroxyisobutyrate, 2-methylacetoacetate, 3-

hydroxyisovalerate, 2-ethyl-3-hydroxypropionate, 3-methylcrotonyglycine, tiglyglycine 

(amino acid metabolism: valine, leucine, and isoleucine); homovanillic acid (amino acid 

metabolism: phenylalanine and tyrosine); glycolic acid, 3-methyladipic acid, and 3-

hydroxypropionate. A single ion could annotate multiple metabolites, resulting in 

ambiguities in the assignments. In our analysis, the following four pairs were 

indistinguishable: 3-hydroxypropionate or lactic acid, 3-hydroxyisobutyrate or 2-

hydroxybutyrate, 2-ethyl-3-hydroxypropionate or 3-hydroxyisovalerate and 3-

methylcrotonyglycine or tiglyglycine. Lactic acid and 2-hydroxybutyrate were not part of 

the thirteen urine metabolite set14, and, to simplify notation in subsequent sections, we will 

generally only refer to a single feature in each pair according to its membership in the 13-

metabolite set.
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Disease Outcomes: eGFR Slope and Time to Incident Kidney Failure With Replacement 
Therapy

We evaluated two outcomes: the annual rate of eGFR change (eGFR slope) ml/min/1.73m2 

per year, and time to incident kidney failure with replacement therapy (KFRT) from entry 

into the CRIC Study, with drop-out or death prior to KFRT as censoring events. We used the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation19 to 

calculate eGFR. For sensitivity analyses, we replicated our analysis using the CRIC eGFR 

equation20, which was developed specifically for the CRIC Study, and compared results to 

those obtained using the CKD-EPI equation.

In order to calculate eGFR slope for our cohort, we fit a linear mixed-effects model21 using 

repeated GFR estimates over time with a median of 7 (range, 1–11; IQR, 4–9) repeats per 

participant. The model consisted of a fixed effect for time (i.e. year of follow-up) and 

random intercept and slope terms. Based on previous findings,22,23 we included race as a 

covariate in the linear mixed-effects model. Model-based estimates of individual-level 

slopes, namely the best linear unbiased predictor slopes, were derived and constituted the 

outcome for developing prognostic models for annual rate of eGFR decline.

We evaluated Pearson correlations between the thirteen (log-transformed) metabolites and 

eGFR slope and examined hazard ratios (HR), unadjusted and adjusted for clinical variables, 

of each of the thirteen metabolites for KFRT. The clinical variables are baseline data of age, 

race, sex, smoked >100 cigarettes in lifetime, BMI, HbA1c, mean arterial pressure, urine 

albumin, and eGFR. We used a 2-sided 5% significance level for hypothesis testing.

Multivariate Model Development and Validation Strategy

Linear Models—Several types of prognostic models for DKD progression, using the 

eGFR slope outcome, were developed: clinical variables only (C), clinical variables + 

metabolites (CM), and metabolites only (M). The first set of models (C or CM) included all 

the clinical variables, and then performed variable selection on the thirteen metabolites. 

Next, to evaluate the prognostic value of metabolites alone (M), we fit a second set of 

models that excluded clinical variables, and only selected from among the thirteen 

metabolites. Stepwise selection under Akaike Information Criteria (AIC,-S) and penalized 

regression under the L1-penalty, i.e. LASSO (-L)24, were used for metabolite selection. 

Models that included all metabolites (-A) was also fitted for comparison. Accurate model(s) 

to predict eGFR slope were identified as having low 5-fold cross-validated mean square 

error (MSE).

Cox Models—The set of clinical variables and selected metabolites from the most accurate 

(i.e., lowest MSE) eGFR-slope model(s) were identified and used as predictors (without 

further model selection) of KFRT as the right-censored outcome in Cox regression models. 

A best cross-validated (final) prognostic model was selected based on high prediction 

accuracy reflected by high concordance (Harrell’s C-statistic) for incident KFRT. We 

conducted F- and likelihood ratio tests for assessing the goodness-of-fit of the final model 

compared to the clinical variables-only model. These statistical tests are the most powerful 

when comparing nested model25. In the incident KFRT analysis, no further tuning or 
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variable selection was conducted. Thus the overfitting problem associated with variable 

selection would be mitigated and coefficient estimates for the incident KFRT models should 

have minimal bias.

Validation Strategy—We conducted one-hundred repeats of 5-fold cross-validation for 

MSE and the C-statistic to correct for potential overfitting, and provide optimism-corrected 

estimates of model performance on future samples.

To aid in interpretation of the final multivariate model(s), we calculated Pearson, point 

biserial and polyserial correlations between metabolites and clinical variables.

Statistical Software

All statistical analysis was conducted using the R (version 3.6.1) programming 

environment26.

Results

Baseline Characteristics and Disease Outcomes

Baseline characteristics (Table 1) indicate that at study entry, subjects (N=1001) had a mean 

age of 59.89 +/− 9.44 (SD) years, 44% were white, 44% were female and 57% smoked > 

100 cigarettes in lifetime. Furthermore, subjects had mean BMI 34.19 +/−7.93 kg/m2, 

HbA1c 7.57% +/− 1.54% and eGFR 40.59 +/− 11.19 ml/min/1.73m2. A large proportion had 

moderate or severe albuminuria (69%) and hypertension (93%). The eGFR slope outcome, 

derived from the mixed model analysis, showed notable variation [Figure 1] with mean of 

−1.83 +/1− .92 ml/min/1.73m2 per year. During the 10 years of follow-up, with median 7.45 

(IQR, 4.46–9.13) years to KFRT event, there were 359 cases of incident KFRT observed 

(36%); 159 deaths prior to KFRT (16%), 78 of which were attributed to cardiovascular 

disease (CVD); and 28 (3%) drop-outs/lost-to-follow-up.

Metabolite Univariate Association with Kidney Disease Progression

Seven metabolites were significantly correlated with eGFR slope, five with risk of incident 

KFRT unadjusted for clinical variables and six when adjusted for clinical variables (p < 

0.05) in the single-metabolite univariate analysis [Table 2]. Of these, 3-hydroxypropionate 

and 3-hydroxyisobutyrate were significant risk factors for eGFR decline in all single-

metabolite analyses. Aconitic acid, citric acid, and uracil had significant positive correlations 

with eGFR slope and unadjusted HRs for incident KFRT < 1, indicating that these features 

associate with renal protection when not controlling for clinical variables. Associations of 

these three metabolites with incident KFRT were attenuated after adjusting for clinical 

variables; however, in contrast, 2-methylacetoacetate, glycolic acid, 3-

methylcrotonylglycine, and 3-methyladipic acid had significant adjusted associations with 

incident KFRT with HRs > 1. Clinical variable-metabolite (Figure S1) correlations shed 

some light on these discrepancies: e.g., aconitic acid, citric acid, and uracil were positively 

associated with baseline eGFR (Pearson correlation > 0.2), so that inclusion of eGFR in the 

models attenuated the associations of these metabolites with outcomes. Similarly, 2-

methylacetoacetate, glycolic acid, 3-methylcrotonylglycine, and 3-methyladipic acid are all 
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associated with race (point biserial correlation > 0.15), suggesting confounding by race in 

the unadjusted models.

Multivariate Models and Metabolite Selection

Metabolites selected in the multivariate analysis for the eGFR slope outcome using stepwise 

selection under AIC (model CM-S) and penalized regression under the L1-penalty, i.e. 

LASSO (CM-L) for metabolite selection are shown in Table 2. In the CM-S model, selected 

metabolites were aconitic acid, citric acid, 3-hydroxyisobutyrate, and 3-

methylocrotonyglycine. In addition to these, uracil, glycolic acid and 3-methyladipic acid 

were also selected in the CM-L model. The metabolite-only models (which did not adjust for 

clinical variables) selected additional metabolite features as shown in Table 2. Of note, 

aconitic acid, citric acid, and 3-hydroxyisobutyrate were consistently selected in the 

stepwise and penalized approaches regardless of adjusting for clinical variables.

Model Prediction Performance

One-hundred repeats of 5-fold cross-validated MSEs for eGFR slope noticeably stratifies the 

prediction performance into two similarly performing groups: (1) Models with clinical 

variables and (2) models with only metabolite predictors [Figure 2A]. The models with 

clinical variables displayed greater cross-validated test accuracy, MSE range 2.15–2.26 

across the four models (C, CM-A, CM-L and CM-S), than those with only metabolite 

predictors, MSE range 3.38–3.51 across the three models (M-A, M-L and M-S). Since all 

four models with clinical variables had equally competitive prediction accuracies for eGFR 

slope, we evaluated these in the survival setting with incident KFRT as the right-censored 

outcome. The comparison of one-hundred repeats of 5-fold cross-validated C-statistics for 

time-to-incident-KFRT revealed that all four models (C, CM-A, CM-L and CM-S) also had 

comparable C-statistics with value range 0.846–0.854 [Figure 2b].

Multivariate Metabolite Models and Association with Kidney Disease Progression

The CM-A, CM-L, and the CM-S models all displayed similar model prediction 

performances for the eGFR slope and incident KFRT outcomes, with CM-S having the 

fewest predictors, i.e., the CM-S was the most parsimonious model. Hence we selected the 

CM-S model as our final best prognostic model [Table 3]. The clinical variables race, mean 

arterial pressure, and urine albumin were significantly associated with eGFR decline and 

incident KFRT, controlling for all other variables. As noted previously, Blacks had worse 

prognosis compared to Whites, and as expected high blood pressure and moderate or severe 

albuminuria (compared to normal albuminuria) were associated with greater eGFR decline 

and higher hazard of incident KFRT.

Associations of the four selected metabolites with eGFR slope were consistent in direction 

between the adjusted [Table 3] and unadjusted [Table 2] models, whereby higher levels of 

aconitic and citric acids were associated with slower decline, whereas higher levels of 3-

hydroxyisobutyrate and 3-methylocrotonyglycine acid were associated with faster decline. 

When evaluating incident KFRT, two of these four metabolites retained significant 

associations after adjusting for clinical variables: higher aconitic acid levels were associated 

with lower hazard and higher levels of 3-hydroxyisobutyrate with higher hazard of incident 
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KFRT. Of note, both the F- and likelihood ratio tests revealed that the CM-S model was a 

better fit for the data than the C (F = 6.79, p < 0.001; χ2 = 21.16, p < 0.001), CM-L (F = 

0.54, p = 0.7; χ2 = 7.37, p = 0.06), and CM-A (F = 0.42, p = 0.9; χ2 = 12.17, p = 0.1) 

models for both eGFR slope and time-to-incident KFRT outcomes. Thus adding these 

metabolites to the clinical model improved prognostication25.

Sensitivity Analysis

Using our final CM-S model, results did not change substantially when a competing risks 

analysis was undertaken, with (i) any death and (ii) death-due-to-CVD each defining the 

competing risk. The metabolite hazard ratios were similar in the competing risks and crude 

analyses. Also, given the similar C-statistics for the CM-S and CM-L models, we also 

examined the CM-L model on the incident KFRT outcome. Of the seven features selected in 

the CM-L model, glycolic acid (HR, 1.84 [95% CI, 1.09–3.09]; p = 0.02) and aconitic acid 

(HR, 0.65 [95% CI, 0.47–0.90]; p = 0.009) were significantly associated with incident 

KFRT, whereas in contrast, the 3-hydroxyisobutyrate association with incident KFRT was 

attenuated (HR, 1.57 [95% CI, 0.91–2.70]; p = 0.1) compared to that of the CM-S model 

(HR, 2.33 [95% CI, 1.51–3.62]; p < 0.001).

Using the CRIC equation to estimate GFR did not change our results. Therefore, we report 

the results with the CKD-EPI equation since it is more widely used in clinical and research 

settings.

Discussion

Our study extended earlier work by evaluating associations between thirteen (previously 

identified14) urine metabolites and future kidney disease. Multivariate analysis identified 

several metabolites associated with eGFR decline, after adjusting for clinical variables. 

Survival analysis provided further validation of these models for a clinically important 

outcome, time-to-incident KFRT. Cross-validated accuracy of models were comparable, 

suggesting that clinical variables alone can achieve high model discrimination. Nevertheless, 

inclusion of selected metabolites improved overall fit of the models, as evidenced by 

likelihood ratio and F statistics, indicating that these markers improved prognostication and 

might provide potentially relevant biological information over and above clinical variables.

Two of the selected metabolites, citric acid and aconitic acid, are part of the TCA pathway. 

Reduction of these two metabolites in the twenty-four hour urine may reflect a reduction of 

TCA cycle activity due to reduced mitochondrial function or content14,27. Additional studies 

to evaluate genes involved in citrate production and conversion to aconitate will shed light 

on our current findings. The other two metabolite features are annotated as (i) 3-

hydroxyisobutyrate (3-HIBA) or 2-hydroxybutyrate and (ii) 3-methylcrotonylglycine or 

tiglylglycine. In a previous study with a small sample-size14, 3-HIBA was reduced in 

patients with established DKD, whereas in the present study, higher 3-HIBA was associated 

with progressive DKD and time-to-incident KFRT. 3-HIBA is a catabolic intermediate of 

branched chain amino acid (BCAA) valine and previous studies have shown that it drives 

vascular fatty acid transport and uptake into cardiac endothelial cells28,29. Furthermore, in 

endothelial cells 3-HIBA levels increase in response to pathways induced by the 
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transcriptional coactivator PGC1a, and thus 3-HIBA may be a biomarker for PGC1a 

activity28. Elevated plasma levels of BCAA30 and 3-HIBA29 have been shown to be 

associated with obesity and incident type 2 diabetes in humans29 and rodents31. 3-HIBA has 

also been associated with excess angiogenesis which could be a contributing factor to 

progressive DKD. Notably, 3-HIBA is indistinguishable from 2-hydroxybutyrate in our 

assay, and the latter, a hydroxy acid involved in propanoate metabolism, has a well-known 

positive association with insulin resistance and ketoacidosis32–34. Finally, the two metabolite 

features annotated as 3-methylcrotonylglycine or tiglylglycine are metabolites of BCAA 

degradation and were reduced in our prior study in established DKD14. Elevation of these 

metabolites indicates that shunting of BCAA catabolism is a risk factor for kidney disease 

progression. Detailed pathway information on these selected metabolites has been 

previously published by our group (see the second and third figures in Sharma et al14). 

Additional research using independent cohorts and targeted assays are needed to clarify 

these associations and shed further light on biological mechanisms underlying metabolite 

levels and DKD progression.

Our study addresses several gaps in current DKD research. While a few prospective 

studies7,12,13,35,36 have evaluated urine or plasma metabolites for future kidney disease, 

small sample-sizes have hampered the ability to validate results. Furthermore, statistical 

methods for building cross-validated multivariate models of multiple urine metabolites to 

classify and predict DKD, have not been fully exploited37,38. Our CRIC sample of diabetic 

patients is one of the largest in the US, with comprehensive data on clinical factors, 

metabolite profiles, and extended follow-up with multiple longitudinal assessments of 

kidney function. We implemented rigorous statistical methods to select metabolites for 

eGFR decline, and these selected features were then tested for associations with incident 

KFRT. Notably, models were not trained on the incident KFRT outcome, so that overfitting 

is less likely for this outcome, and thus our hazard ratio estimates should be unbiased. We 

used likelihood ratio tests, the most powerful statistical approach for evaluating the 

prognostic value of metabolite features when added to a model with clinical variables alone. 

We also calculated a cross-validated C-statistic, a popular measure of model discrimination; 

use of cross-validation reduces overfit and provides a more accurate assessment of how well 

the model will perform on independent test samples. For future work, we will use 

independent cohorts with varying clinical risk profiles to further evaluate our findings.

We acknowledge some limitations. First, given the substantial heterogeneity of DKD 

progression, there may be subgroups for whom our signatures may not be optimal. A future 

aim is to evaluate our models on clinically distinct patient populations (e.g., by albuminuria 

group), and develop new signatures using an expanded set of metabolites. Second, non-

targeted metabolomics by flow-injection analysis cannot distinguish between metabolites 

with identical sum formula and only reports relative abundance change. In future work, we 

will use targeted gas chromatography-mass spectrometry or liquid chromatography–tandem 

mass spectrometry methods to replicate these findings. Third, our “two-stage” approach to 

modeling kidney disease progression via eGFR slope has the advantage of being easy to 

interpret and analyze since standard statistical methods can be employed. However, this 

approach could entail an efficiency loss when there are missing data or irregular spaced 

repeated measures. A future aim is to develop appropriate weighting methods for 
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unbalanced data. Finally, eGFR decline may not always be linear. However, despite the 

linearity assumption, eGFR slope offers ease of biological interpretation, and permits 

application of standard statistical modeling methods. Importantly, the CRIC Study has 

produced notable findings with eGFR slope as a marker for kidney disease progression39,40. 

Nevertheless, we aim to examine nonlinear trajectories in future work.

While our study demonstrated that the clinical-variables only model had competitively good 

discrimination compared to other metabolite models, we identified several metabolites that 

offer biological insights in DKD. We identified key pathways including TCA cycle features 

and amino acid metabolism, further implicating mitochondrial function as a key parameter 

to monitor chronic organ dysfunction, as well as features linked with angiogenesis and/or 

insulin resistance and ketoacidosis. If replicated in other cohorts, these metabolites and 

related pathways could inform therapeutic targets for DKD, and improve clinical 

management of DKD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Histogram of predicted eGFR slopes (N=1001). The eGFR slopes were estimated via linear 

mixed effects model with a mean of −1.83 +/− 1.92 (SD) ml/min/1.73m2 per year.
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Figure 2: 
Boxplots of model prediction performance: 100 repeats of 5-fold cross-validated (a) Mean-

squared error (MSE) for eGFR slopes and (b) C-statistics for time-to-incident KFRT.

Model type:

C: Clinical-variables only

CM-A: Clinical-variables + All 13 metabolites

CM-L: LASSO – Forced clinical-variables + Selection from 13 metabolites

CM-S: Stepwise AIC – Forced clinical-variables + Selection from 13 metabolites

M-A: All 13 Metabolites

M-L: LASSO – Selection from 13 metabolites

M-S: Stepwise AIC - Selection from 13 metabolites
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Table 1:

Baseline clinical and metabolomic
a
 characteristics of 1001 CRIC Study participants with diabetes.

Characteristic Value

Age (years) 59.89 ± 9.44

Race

 White 443 (44)

 Black 422 (42)

 Other 136 (14)

Male Sex 564 (56)

Smoked >100 cigarettes 568 (57)

BMI (kg/m2) 34.19 ± 7.93

HbAlc (%) 7.57 ± 1.54

Diastolic BP (mmHg) 68.78 ± 12.27

Systolic BP (mmHg) 132.23 ± 21.42

Mean Arterial Pressure (mmHg) 89.93 ± 13.36

Serum Creatinine (mg/dL) 1.92 ± 0.6

Urine Creatinine (mg/dL) 66.21 ± 32.13

Urine Albumin

 <30 mg/d 294 (29)

 30-<300 mg/d 275 (27)

 ≥300 mg/d 421 (42)

Baseline eGFR (ml/min/1.732) 40.59 ± 11.19

Hypertension 926 (93)

ACE Inhibitor or ARB use** 804 (80)

3-hydroxypropionate* 10.14 ± 0.58

Aconitic acid 13.16 ± 0.44

Homovanillic acid 12.29 ± 0.6

Citric acid 14.8 ± 0.79

3-hydroxyisobutyrate* 10.51 ± 0.31

Uracil 10.93 ± 0.56

2-methylacetoacetate 9.87 ± 0.31

2-ethyl-3-hydroxypropionate* 10.19 ± 0.38

Glycolic acid 9.72 ± 0.3

3-methylcrotonyglycine* 10.54 ± 0.37

3-methyladipic acid 11.28 ± 0.36

Values are expressed as mean ± SD or count (%). BMI, body mass index; HbA1c, hemoglobin A1c; BP, blood pressure; eGFR, estimated 
glomerular filtration rate; ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; CRIC, Chronic Renal Insufficiency Cohort.

a
Metabolite ion abundances were creatinine normalized and natural log transformed.
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*
Single ion can correspond to multiple metabolites, which resulted in some ambiguities for identifying metabolites.

**
information missing for 3 participants
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Table 2:

Associations of baseline urinary metabolite excretion with eGFR slope and time to incident KFRT, and 

multivariate model selection.

Metabolite Ion
a

Pearson Corr. w/ 
eGFR slope (95% 
CI); p

Unadj HR for 
incident KFRT 
(95% CI); p

Adj HR for incident 

KFRT
b
 (95% CI); p

Multivariate Model Selection
c

CM-L CM-S M-L M-S

3-hydroxypropionate* −0.13
(−0.19, −0.06);

<0.001
+

1.34
(1.14, 1.58);

<0.001
+

1.35
(1.12, 1.62);

0.001
+

✘ ✘ ✓ ✓

Aconitic acid 0.13
(0.07, 0.19);

<0.001
+

0.52
(0.41, 0.65);

<0.001
+

0.85
(0.64, 1.13);
0.3

✓ ✓ ✓ ✓

Homovanillic acid 0.00
(−0.06, 0.06);
0.9

1.12
(0.95, 1.33);
0.2

1.14
(0.96, 1.36);
0.1

✘ ✘ ✓ ✘

Citric acid 0.12
(0.06, 0.18);

<0.001
+

0.69
(0.61, 0.78);

<0.001
+

0.96
(0.84, 1.11);
0.6

✓ ✓ ✓ ✓

3-hydroxyisobutyrate* −0.12
(−0.18, −0.06);

<0.001
+

1.4
(1.01, 1.95);
0.04

2.11
(1.43, 3.11);

<0.001
+

✓ ✓ ✓ ✓

Uracil 0.08
(0.01, 0.14);
0.02

0.79
(0.64, 0.97);
0.02

1.11
(0.91, 1.34);
0.3

✓ ✘ ✓ ✓

2-methylacetoacetate −0.04
(−0.1, 0.02);
0.2

1.24
(0.88, 1.73);
0.2

1.6
(1.12, 2.29);
0.01

✘ ✘ ✓ ✘

2-ethyl-3-

hydroxypropionate*
−0.1
(−0.16, −0.04);

0.001
+

1.03
(0.78, 1.36);
0.8

1.28
(0.97, 1.7);
0.08

✘ ✘ ✓ ✘

Glycolic acid −0.03
(−0.09, 0.03);
0.4

1.21
(0.85, 1.7);
0.3

2.14
(1.49, 3.07);

<0.001
+

✓ ✘ ✓ ✓

3-methylcrotonyglycine* −0.06
(−0.13, 0.00);
0.04

1.18
(0.9, 1.55);
0.2

1.37
(1.03, 1.83);
0.03

✓ ✓ ✓ ✘

3-methyladipic acid −0.01
(−0.07, 0.05);
0.7

1.05
(0.8, 1.39);
0.7

1.51
(1.13, 2.01);
0.005

✓ ✘ ✘ ✘

a
Metabolite ion abundances were creatinine normalized and natural log transformed.

b
Values adjusted for age, race, sex, smoked >100 cigarettes, BMI, HbA1c, mean arterial pressure, urine albumin, and baseline eGFR.

LASSO, least absolute shrinkage and selection operator; AIC, Akaike information criterion.

c
Model type:

CM-L: LASSO – Forced clinical-variables + Selection from 13 metabolites

CM-S: Stepwise AIC – Forced clinical-variables + Selection from 13 metabolites

M-L: LASSO – Selection from 13 metabolites

M-S: Stepwise AIC - Selection from 13 metabolites

KFRT: kidney failure with replacement therapy; unadj, unadjusted; adj, adjusted
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✓ -
Selected in model,

✘-
Not selected in model

*
Single ion can correspond to multiple metabolites, which resulted in some ambiguities for identifying metabolites.

+
Significant p-value after Bonferroni correction (p < 0.05/11).
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Table 3:

Final model based on stepwise selection with annual eGFR slope outcome and time-to-incident KFRT 

outcome (right).

Variable Linear Regression Coef. for annual eGFR slope 
(95% CI); p

HR (95% CI) for time to incident KFRT; p

Age, per 1-y older 0.00 (−0.01, 0.01); 0.5 0.98 (0.97, 0.99); <0.001

Race

 White Reference 1.00 (reference)

 Black −0.65 (−0.87, −0.43); <0.001 1.33 (1.02, 1.72); 0.03

 Other −0.46 (−0.76, −0.16); 0.003 1.28 (0.91, 1.81); 0.2

Female sex −0.21 (−0.43, 0.00); 0.05 1.02 (0.8, 1.3); 0.9

Smoked >100 cigarettes −0.02 (−0.22, 0.17); 0.8 0.98 (0.79, 1.23); 0.9

BMI per 1-kg/m2 greater 0.01 (0.00, 0.02); 0.2 0.98 (0.97, 1.00); 0.05

HbAlc, per 1 percentage point greater −0.08 (−0.14, −0.01); 0.02 0.99 (0.92, 1.06); 0.8

MAP, per 1 mmHg greater −0.02 (−0.02, −0.01); <0.001 1.02 (1.01, 1.03); <0.001

Urine Albumin

 <30 mg/d Reference 1.00 (reference)

 30–300 mg/d −0.79 (−1.04, −0.53); <0.001 3.7 (2.1, 6.51); <0.001

 ≥300 mg/d −2.14 (−2.4, −1.87); <0.001 11.79 (6.85, 20.31); <0.001

Baseline eGFR, per 1 ml/min/1.732 0.00 (−0.01, 0.01); 0.6 0.92 (0.91, 0.93); <0.001

3-methylcrotonyglycine* −0.35 (−0.62, −0.08); 0.01 1.16 (0.84, 1.6); 0.4

Citric acid 0.16 (0.03, 0.3); 0.02 0.97 (0.84, 1.12); 0.6

3-hydroxyisobutyrate* −0.57 (−0.94, −0.21); 0.002 2.33 (1.51, 3.62); <0.001

Aconitic acid 0.32 (0.06, 0.58); 0.01 0.7 (0.51, 0.95); 0.02

Linear regression coefficient and hazard ratio are per unit increase in (log)-metabolite abundance. MAP, Mean Arterial Pressure

*
Single ion can correspond to multiple metabolites, which resulted in some ambiguities for identifying metabolites.
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