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assurnes any legal responsibility for the accuracy, completeness, Or usefulness of any
information, apparatus, product, Or process disclosed, or represents that its use would not
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"tion, - The existence of a unique solution to the ND

A STUDY OF MULTI-CHANNEL bYNAMICS
IN THE NEW STRIP APPROXIMATION

Shu=yuan Chu
(Ph.D. Thesis)

Lawrence Radiation Laboratory
University of Californis
Berkeley, Californis

May 13, 1966
ABSTRACT

A systematic study of the dynamics of scattering with several

coupled two~particle channels is made using the new strip approxima=.
l
-l

used is an extension of Jones' proof in the single=-channel case,

making use of an explicit expression for the determinant of D con-

structed by Gross. The general method is then applied to the partic-
ular case of a mn-KK two-channel calculation of the p-meson, first
with fixed-spin particle and then with Reggeized particle exchange as

generalized potential, A detailed discussion of the numericel result

, is'presented with the conclusion that the effect of the inelastic

- channel (KK) is not important in the present approximation scheme,

equations is

- established from maximal analyticity of the second degree. The method _ 

the



' sentation, A typical ~s-channel Regge-trajectory a(s) that can

-l=

'S
I. INTRODUCTION

_The.-strip concept regarding the foﬁr line connectéd parté-ii 

can be stated most easily in terms of the usual inverients 8, t and

"u. In the physical region of the s-channel, we have resonance peaks

in the low energy region‘ (s smaller than a few Gevg)’and'for’high .8

" we have diffraction peaks in the foreward and backward direction with

- width less than a few Gevzin tle momentum transfer variables (t or u).

Otherwise the four line connected part is small., Similar statements

can be nade for the physical region of the t- and uucpannels. On

- 8 Mandelstam diagram the regions where the four line connected part

is large will be strip-like regions. If we assume the same strip

- structure for the unphysical regions we will require the four line

‘connected part to be small unless the magnitude of at least one of

the invariants is small. The new strip a.pproxime.tionl is based on’
the observation that this strip structure can be achieved very natue

rally if we epproximate the four line connected parts as the sum of

direct and crossed channel Regge poles satisfying the Mandelstam Repre=

. reach the right half angular-momentum-plane is shown in Fig, 1. The

 strip region will be the finite interval of s for which Rea(s) > O

with Imo(s) € 1 where the Regge pole contribution of the general form:

| P,y (=z)
- ~n{2a(s) + 1] 8(s) -—L"-Zii - :s

Cwill dominagé the amplitudes



(1) with s > 0, we have resonance poles when -Re a(s)_ tekes

(dO.(S)

, integral value =

> 0), If Ima(s) > 1 ﬁhe resonance becomes
~too brdad to be recognizable.

(2) With s < 0, we are in the physical region of the crossed
channels; since Re afs) > b the Regge pole will dominate the high

.t (or u) behavior.

Furthermore if we require B8(s) to fall off rapidly for large

s we have the strip struction in the unphysical region. Similar ar-

guments can be eapplied to t; and u-channel Regge poles,

Assuming (multl-channel) two-particle unitarity in the direct
channel across the strip, a reasonable approximation for & strip width
' of a few Gev if we include channels with unstable external particles,
we can wriie down a set of coupled ND"l integral equations, with the
exchange of crossed channel Regge poles as generalized potentials
analytic in the angular momentum variable. From these equatiénb we
.can calculate the Regge poles in the direct channel,

Teplitz and Collins>®»2P
the single-channel case of nn .scattering. In thié report we study
the effect of additional inelaétic channels, We derivevin Section I
" the multi-channel ND'l equations and prove the existence of a unique
solution from maximal analyticity of the second degree.3 In Section

11T, after justifying the numerical method used in solving the Np™t

- equations, we meke a detailed calculation of the nm=KX model of the

p-meson, In the concluding section, we discuss the unsatisfactory

aspects of ¢gr scheme and how they may be improved,

jegs
LRl
3

W
¥
§

have made a very extensive study.in
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- Gross,

3=

%

II. THE EXISTENCE OF A UNIQUE SOLUTION TO THE
. MULTI-CHANNEL STRIP EQUATION

'In & recent paper Jonesh gives a rather complete discussion

. of the single-channel N/D equations when the D=~function has only

a finite cut. In particular he shows that & unique solution exists

by assuming maximum analyticity of the second degree (MASD), or ana-

lyticity in angular momentum,

We generalize his results to the Multi-Channel ¥t equa=

;.tions in the new strip approximation. The ambiguity in the solution

can be removed in the same way as in the single-channel éase by

v using an explicit form for the determinant of D constructed by

5

The logic of the problem is as follows. We want to calculate
the partial-wave scattering emplitude B, (Bn is a matrix), from an.

input BQP vhich carries all the left hand cut of B, and the right

- hand cut above s = ¢ , where o is the strip boundary common to all

channels, and the requirement that Bz satisfy unitarity from s = 5

to s = ¢ , where 8 is the threshold of the lowest channel, Ve
try to solve this problem by writing B, = wp™, vith the matrix D

v>carrying the right hand cut of Bz from s = sl' to s =0 and the
matrix N carrying all the other cuts, The justification for this

v decompositié@ can be accomplished in two ways., We can show that for

any given ﬁz we can construet D explicitly (for example through

the Omnes fﬁ?mula in the single channel case); we then get N from

can be written as ND'l. We then

¥,

N=38D, Qf we assume that B

4 L

s
e

5



" our assumption a posﬁeriori by proving that solutions to the integral - y

e

Es

-

derive the integrel equations satisfied by N and D , and justify

equations for N or D actually exist., In the multi-channel case

'we have to rely on the second approach. Mandelstam6 has shown the

W

existence of D in the case when o + « , and the eigenphase shifts

satisfy § (o) ~ & (sl) = 0 . For the case vhen o 1is finite the

latter conditions about the eigenphase shifts are not sétisfied unless

2 - = 3 however, we can prove the existence of N at least for large

% o+ The matrix ND'l will then have the correct cut structure, To

establish the-uniqueness of our solution we have to remove the CDD
émbiguity, that is, the possibility of addiﬁg arbitrary poles into

the dispersion relation for D and N, This is accomplished for

large £ by using the Gross formula, The continuation to lower values
of 2 can be done in exactly thg same fashion as for the single-channel"

case,

A. The Derivation of the Strip Equation

The partial-wave scattering émplitude from the ith channel to

the jJth channel is defined by the following equations: E

[A(s,t)]M = §(22+1) (Ag)gy Py(2)
(A,)1 ) S ot
(Bz)ij L% : o
A 9 2 o

" In the following we will use matrix'notafion and suppress the , T



Ll

index ¢ except when we discuss properties concerning the angular

‘momentum,

' Our basic problem is to calculate B , assumihg that we are

given B® which carries the left hand cut of B and the right hand

- cut above s =g ,

o -

B(s) = BP(s) + %- Ifgéiél ds' . (I1-A:1)
s % -
1

end that B satisfies the multi-channel twoubody uniterity from

.8 =35 to s =0 -

1

In B'l =« 0 'sl,i 8 <o " (II-A32)

- where p and O are diagonal matrices (we restrict ourselves to-

spinless particles):

20 +1
2qi
8

P19 BVARRRE R

@
I

9(8 - si) 613.0

B = N, © (II-A:3)



G

where D carries the right'hénd cut from s = 5y to s =0 ; and
N carries all the other cuts.
We then have, on the right hand cut
- ol “ly,,
ImD = Im(B"N) = (ImB™)! = -p 8 Ns

1 $8<0 FIlfgeh)'

B and on rest of the cuts of B

ImN¥ = IM(BD) = (ImB)D = (ImBP)D  (IT-A:5)
I
If we normalize D to the unit matrix at infinity, we can

write (we defer the discussion of CDD poles to Section II—C),

| o | o E
.D(S) = .l - %j das! p(?') Z'(i'l N(s') . (I1-A:6) -
s1 | -

‘N(s) = B(s) D(s)

.

' , o ‘
s )
1

N(s) is real by assunption for 8, <8 <0 , and since the second

term on the right vanishes at infinity es %-, we must have

¢

o
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L

g E B« §
'y - R ' : '
D(s)f ds’ Im'B(s ) . _Lf 4t B (s ? Im D(s')
. , v n S e 8 "n . S = 8 .

" Thus we have, using (II-A:G)

, o o , S v _ o
N(s) =‘ Bp(S),+ %5Jr ds’ Bp(s;z : EP(S) p(s').e(s') N(s') - (II-A:?); . 

51

We now proceed to show that (II=A:7) is soluble at least for
. l ’
large % and defines a unique N(s) ,

B, The Existence of N

For the present discussion7 is is more convenient to rewrite

the equations for N +to display the channel indices explicitly,

| ° 52 (s') - B (s) .
Nyy(8) = B} (s) + -}I e :, —L - p (') W (e")  (II-A:T)!
S .
33

with the convention that repeated Greek indices are aumhed over all
channels,
As explained in Reference 1, Biup(s) will have a logerithmic

singularity near s = g 3

B, P(s8) —> = L Im B, (o) 2n{o=-s) (11-Bs1)
iy g + g n iu : :

‘f'



,-8_

. & . o
Preparatory to removing the singular part, we define new funce- S i
~tions N'J by.
Nyts) = 0, %) 1y () N ¢ & % 33)

The reason for doing this will become cleaf in the followingzk

We have for N!

iy

. i 911/2<s>[a (s') = 2% (a)]o, M2en
- 0 = ? '
e = <s)+"f ast L s (")
‘ s ‘
H .
(1I-B:3)
where
B%s) = 0,/%(s) B, P(a)
4 Separating out the singular part déwn to the highest threshold
SM_" we have:

P - 7.
' N' (s) = B’p(s) + ,[.- ds? Uiu(s,s')N;J(sf) - .[. ds! Kiu(s,s') N&J(S'T

u _ . SM
g (IT-Bsh)
Aiu .
- :Ef ds' k(s,s') H;j(a')

Sy | | e

where

e



-9-

£

bil/z(s)LBipp(s') - éiup(s);] 0 1/2(80)

N | u
U, (8,8') = =
It ‘v" : g' - s
Xiu
' = ' als '
o B Kiu(s,s ) Uiu(s,s ) + = k(s,s"')
_ n(o=s') - tn(o-s)
- 1

]

k(s,s") —

Ay = "11/2(") [I’.“ Biup(")] "ullz(")

)
'Note that now A = ) , & relation not true if we use ﬂid instead

in ui
8

ﬁof. Nid . )
In the single-channel case, we can use the Wiener=Hopf method

jto get a unique solution if the phase shift. (o) < .hrlIn the multi-_‘
1 ‘channel case, we expect the eigenphase shifts to play a similar-role,
To facilitate future discussion, we specify the eigenphase shifts in
the following way. |
The matrix

s = 1421 0% o p1/2

which 4{s unitary and symmetric for s, < s < ¢ , can be diagonalized

1
by an orthogonal matrix T(s), For By <8 <8, {with Bpgp 9 0
M is the number of channels), The first i1 eigenvalues can be vrite

ten as



) Qo

21 5, My o -
efs) = e J= 10 L

where dj(i) are the eigenphase shifts of the interfal 8, <8< Si+l
Because of the step functions @ , the eigenphase shifts of different

_intervals are not analytic continuations of one another. But also

because of the step function, we have

.siJ(Sk) = GiJ if 4 or 3>k

b
which implies ’

(£ y o . )
Gi (si) . nilw
- A > 1= 1,0, M
: i) 1+1 S _
_ 53( (si) = aJ( )(si) 3= 1,000, 1, -

Thus we can write all the eigenphése shifts in terms of M real con-

tinuous, piecewise analytic functions:

1 341

5,(s) = 5,4 (s) sy <8 <s

J = dgeee, M 1 = 1,000, M

At =g » the orthogonal transformation T = T(g) thot

diegonalizes S also diagonalizes the matrix A , whose elements are

the A, 's ,. We have
in ‘

[}



.

W

Tt = 1421 T[?l/e(ReB) ol/?]w'l PL

Ataking the real pdrt of both sides, we get -

215, (o)
e - -l
2

or‘ o . Ai [sin 51(0)]2 i= l,o.o. M :

where ), is the ith eigenvalue of A . S |

j After intfoducing the matrix T , as explained in Reference T,

we can use the Wiener-Hopf method to get the following coupled integral -

- equations:
Su | -
' - 3% ' ' ' ' -
ny,(s) = Bye) + Jf a8 Uy, (3,8°) 112 (1) ,
8 ’ .
u
o ' : S
M as' (U, 0 Y(s,s') ¥ o(s')
. uv 5 SRRV I vJ
1
‘for 8 < Sy

.

: %y
_o .
NiJ(B) = Biﬁ(g) + Tiu ‘[. ds' Uuy(s,s') N;d(s')

o

u . - . . .

+7, T =L om'm 0 Ms,s") T Os')
iy “vp “PTuv p 4 pd
. .

T Ty

for s,6<s8 ' (1I-B:5)



where: (i)-fhe' ﬁoid'é are related to N'ij'é by the Wiener-Hopf
- equations ' ' ' '
o . v
T, = B, =2 ds' K(s,s') T, (s').. -~ (II=B:6)
1} P13 =M Ss 13'8 /-
Sy _ '
with
W, =T, N',. II-B:
13 1 My (11-2:7)
Just as in the single-channel case we can invert (II-B:6) to give

o
ﬁ;d(s) = .;. as! Oi(g,s') ﬁgj(s')

Su

.where Oi(s,s') is the Wiener-Hopf resolvent kernel.9

SR p
(11) Byy = Ty, By

. o o
(Uiuov)(s,s') = ~/1 ds".Uiu(s,s") Ov(s"?s')
M
o

(Kuvop)(sfs') = ds" Kuv(s,s") Op(sf,s')

SM.

As discussed in Reference 4, the function W J(s) will have -

the folioﬁinéﬁ%ehavior near s = g

G



1 o V(I.I-B:IB-);

~with ‘a, = %-Iai(o) * miwl < %-, unless we fix the arbitrary cone

_stant in the general solution of (II-B:6) to a particular value, then

—ai .
14(8) = (o - a) (11-B:9)

8+ 0

To find the correct behavior near s = g , we make use of

* the explicit expression for the determinant of D , In the next section,

: }
we will show that for large & , when there are no bound states

M g s (s')

Zlfds- TR

U= - 8' = 8
U

det D(s) = exp(-

A j

i ‘w;th di(si) = 0

" and 51(0) +0 as 4 » w',

1

Tt follows that the determinant of ‘D has the following behavior

near the strip boundary

- —-E:G (o)

det D(s) =——> (g = 8)
8 »+ 0o

~ Because of;Eq. (II-A:6), we have

R det N(g8) w3 (g = s)
s +g.

L e S

+



) -1hu i

But N, 1s related to ‘ffid? through (II-B:2) and (II-B:7), so we -

- have:

l/é

det T = det(TN') = (det T) det(p™'“) det N (I1-B:10)

8o o ‘ ' ‘

K<

Ny -

det N(8) w=—==e> (g = 8)
' s+ 0 ‘

A |-

) Gu(cX

i

" Since each térm'of the determinant of N involves‘one oglthe elements
Qf each column of U , by comparing Eqs. (II-B:8), (II-B:9) and (II-
'B:10), bearing in mind that Gi(o) +0 ag L+ o we.conclude that
Eq. (II-B:9) is the correct behavior for each 1§ ,v and we can make

the identification
B, = —— ' - (II-B:1l1)

Thus all the arbiérary,constants in éhe solutionvare fixed, Once the .
-identification (II-B:ll) is made end analyticity in 2 " is assumed,

we have a unique solution to (II-A:7) for all & 'as,long as all eigen-
phase shifts at s = ¢ are less than w , because (1) if 61(0) <<%

Egs. (II-B:5) are Fredholm, ' (i1) ir %-< Gi(a) <, we may define

. - - €
e = Fy(e)o-e) L 7 2



with

>e >0

. and the integral equations for ,Ega(s) are Fredholn'i'.h -
In the next section we will discuss the CDD ambituities and

.continuation to lower g values.

C. CDD Ambiguities and Maximal Analyticity of the Second Degree

Just as in the single channel caselo we might have written

for Dz and 1\19v

a ‘ .

(s') 8(s') N _(s') n r »
D(s) = 1% [ agr 22 — ) e S (11-A36)"
% T s' = s . i=l 8“61 ' '

51 : ;
. . noT, 1 £ RPN -BPLY -
: = e -~ ¢ ] 3 ]
vllz(s) B [l + A =) - [ ds — pz(s Ye(s )Nz(s )
. N . _ _

(IT-A:T)"

.

.if fi (the residue matrix) and Biv are suitably chosen so that

Dz(s) is real outside the interval .sl < 8<g¢0 . Itis clear that

(II=A:T)* will have a solution, at least if all the 8; are outside

the interval 8, <8 <o, These are the well known CDD ambiguities,
We choose our convention for the eigenphase shifts as

L 8;(s;) = 0 for L =1,ec0,n,

)
% b
S



;16-_.‘_

w
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‘The most general.expiession for the determinéﬁt of D is

n

I (seu,) ".o '
. 1=1 i nem Mo ' Gu(s )
det D(s) = (s = 0) exp{ - = A" cermem
n | = s' = g
T | S

. . . P
For any physically reasonable BZP we expect Bz’(s) + 0 for

'ﬂsl <3<¢o as L -+« (e.g. through Froissart~Cribov transformation

. as In the Single channel case).u With our convention we then have

61(0) + 0 for i=1,¢se, M, In this limiting case, we expect

D, ——> l+2‘i -—2?-
L > {=1 8 -Fky
é [ n Pi
Ny =33 1+;l .....__..,] :

So there shouldn't be any singularity at s =o¢ , ihus_ n=m,
Furthermore there 'are no bound states for large % , som = O,
.which implies n =0 , ‘Therefore wé conclude that for large 2‘ we
have a unique solution with no CDD poles in D ,

Now we will establish that Nz and Dg are analytic in 2 ,
then we can infer from MASD that we have a uhique solution for lower.
values of £ :

From the discussion in Reference 4, we are assured of 2

analyticity fgr Nl(s) when s, <8 <s, and for ﬁg(s) vhen

M

A



£,

5,<8<0,

B )

~(we suppress the channel indicés), The ﬁ; defined by °

are analytic in & for 62(0) <m ., Finélly the functions D

defined by

—T-:
)

' 6£(0) <m, Similarly N - for s

1=

%y

at least fof % values such that Re £ > =l and Gz(o) <.

(8) = f'ds' Oz(s‘,sb').'ﬁzo_(S') 8y <8< o

' are'analytic functions of ¢ as long as the integrals exist, é;ge ir

% M < 8 <o defined by

Nz(sj. - 92-1/2(0).¢£°1{a) T(s) |

L

s!' - g

. ,
p,(s') 8(s*" ) (s°) 3
Dy = 1= %-.jn dg! == L2

Sl

are analytic in £ " when the ¢Nz are analytic, provided the integrals

exist, The integrals certainly exist for 62(0) < nw , therefore it is

L]

_obvious that D, cannot develop any singularity (or poles) as long as

£

62(0) < 7 and will alvays maintain the same normalization at infinity,

The question éf what happens, if 62(0) >n as 2 decreases and if

Gi(d) < 7 oncé again when we continue to decrease £ , has been dis=

*

cussed in_Reférence 4. The conclusion is that the solution to our

_problem, wheééver 61(0) < n , is correctly  given by the unique solu-

& . .
tion to the ihtegral equations satisfied by N, and D, with no CDD poles,

% 2



various authors.

 the 1I/D method,
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ITI, A mn-KK MODEL OF THE p-MESON

~The dynamic calculation of the p-meson, considered as a

» resonance in channels consisting of two pseudoscalar mesons with '

vector meson exchange as the main binding force, has been made'by :

12a,12b The inherent difficulty in all models using

12a is that the output p-width is too large. (The

' o
- calculations by Baldézs and by Finkelstein,l“b using an equivalent
" potential approach which perhaps is equivalent to a partial Mandelw
_ stam iteration, seems to show substantial improvement in this aspect,).
| ‘

~ As it turns out, our method suffers the same difficulty,

First we Justify the numerical method by applying a result

. obtained by Jones and TiktOpoulos.l3 Then as a preliminary step be=

'fore the fully Reggeized calculation, we consider the case when fixed-

spin particles are being exchanged, We thus.develop a basis of com-
pariéon against which we can test the effect of Reggeization. Next
we construct the generalized potential from Regge-pole exchange,
There is somé complication because the n- and K-meson masses are -

different and we have to make an approximation. The numerical results

_are discussed in detail, The unsatisfactory aspects of our scheme

and how they may be improved will be discussed in the concluding section,

A, Justification of the Numerical Method

The theorem proved by Jones and Tiktopoulosl3 can be étated as

follows. The integral equation

.

‘.
R



. N - . : S
v(s) = ¢(s)‘i+”'vf ds' K(s,s')y(s')
. ) o
. . : b
1s given where o(x) iisfin'1L2(&,b) , l.e. ,/~ dsl¢(s)l2 <« and

the resolvent (1 -.kﬂ*lv of the integral operator K eéxists. Sup-

. pose further that J =W + C where the norm of W is less than 1 and

!

b
" C is square integrable (;]’ [C(s,s')lzdsds'.< w), Then the method
a

,

of matrix inversion can be used io‘invert the integral equétion (for
this we need K to be piecewise continuous) provided'ﬁe choose the |
mesh points carefully near fhe singular point,

The muiti-channel equations for N can be easily shown to

satisfy the above conditions. Disgonalizing Eq. (II-B:l4), we have

- g

» M | :
' ﬁ;J(s) = E;J(s)-+ “[. ds' ﬁ;u(s,s')ﬁ;a(s') + ./‘ ds!' Elu(s,s’)ﬁhd(s')

Su M
Ay -
-2 f aa’ k(s,s' )T, (s") 13 = 1,000,
T 8
M

where

ﬁ;dts)' s -Tiug'uj(s)



. We can rewrite the above equations for each fixed column index J as

a single integral equation

Mg = (Mpl)sl : .
vyls) = ¢,(s) + .]. Jls,s'ly,(st) g = Lyooey M
5 |

"where

by(s) = ﬁkj[s - (i'l)(°'§i)].
¢J(s) = ‘ﬁ.id[s - (i"'l)(c"sl)] ‘

;!_ X(s,s') = ﬁ;u[s = (1-1)(o-s, ), 8' = (u=1){o-s )1o[sy = (u-i)(owglf - 8']
+ K;u[s - (i~l)(c-sl). 8' - (u-l)(o-sl)leis' ~ By + (u-l)(ousl)]

Ay .
- 5 kls = (1-1)(0mg )y 8' = (u1)(o=s;)J6ls" = 5y + (u=1)(c=s,)]

n .

for

8 + (i“l)(U'sr) <8 <8 +i(g-s) |

51 + (u=1)(o-s;) < 8' < 8, + u(o-s,)

and [
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mass mp , the scattering amplitude

Now the existence of the resolvent (1 14&)-1 as well as the square-

Integrability of the Uiu and f;u's has been esfablished in Sec~ '

~tion IX of this report. Since Ay = si_n2 Gi(c) are less than 1 for

all i , the operator A dis the sum of two operators: one with norm

less than 1 3 the other, square integrable, Therefore the theorem

of Jones and Tiktopoulos applies,

B, Fixed-spin Particle Exchange

' 1. Generalized Potential

Near a- t-channel pole of definite spin ¢

N ;sospin It _and

- - R,,(t) ‘
AiJ(s,t_) -~ (2zt + l,) ’%:'Pzt(zt),

By crossing, the generalized potential in the swchannel for

. angular momentum zs and isospin Ié from exchange of this particle

~in the btnchannel in the zero width approximation is given by

I : | 1
BP(s)| ® = B _ (2¢,+41)R,,(t=m_ )P (t=n.%)| Q [ (t 2)]-—--—-~—--
[ g ]id RERN =R | zt[;t TR ] O RN 2(aga)s

T+l -
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. where BI y 1is the 'isospin crossing matrix element, The ékpliéit
- I ‘ o
form of the crossing matrices used is as follows:

for nm > nm

I, = 0 1 2.
1t
S
(i
4 \
. 1 5
0 = 1 =
an 3 _ 3
35 J -
s°t” 1 1 1 2
3 2 "%
1 1 1 )
2 - e
2 [
\ )
'IHT"IQ?
. 3
I, = = =
1t 2 2
s -
i
B;KI = 0 -\-/—g-. M
st ) 3
) 2
1 T -3
KK » KK
I, = 0 1
1t
S
fl
KK 1 3
g . o= 0 - =
II, .2 2
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We list Bélow the generaliied potential'érisihgvfrom the exchange of

_particlés shown in Fig. 2. (Channel indices 1 _ for #r channel,

2 for KK channel.)

o 2 L | 2
' b Is n } nb “hmw 28 ’ -y
s 11 3 N \ m -hm" 8 s-hm"
l .
X
+
2(q))%*s™
' |
_where )
Y = I' n £ is the reduced residue,
11 p P _ _ T
2 ), 2 L
m =hm
o .
: 2
5 s-hmﬂ )
ql = S——————

i

The factor of 2 comes from the u=-channel contribution which Bose=

statistics requires to be the same as that of the t—-channel contribu-

- tion for allowed 28 . IB combination,

s2

' 1 K 3 mK - (m +mK2)2
Ef(”]s = 2X By X 3NFH Yy X
- ~"s Y12 I L

: S
2 2 2 2 -2

- | . |
) 8 - e ou]l] ™
“(as Tr 2 ) [ nmx) A

2(qlq2

[mxi-(mw*mx)z][mxf-(m"-mx)z] 2qlg2

yes*l
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.

where:

| | h"a_ | - |
- , _ . S

The factor %-‘15 the ratio of reduced residues givén,by exact SU

3
symmetry.l5
I m “b 2s 2m <0y
[Bp(s)}s = BKK x 3 x ']:""Y x—e.n-:-n}-{—. 1 + ‘ 0 l+=-—-9—-3
zs 22 Isl _ 2 11 " n 2‘h“2 £8 goli 2
: . o Tk e
|
2 2 2
m mh 2s 2m .
o+~ smc X 3-x -3-;(-Y xmﬁ———m}—c—- 1+-—-———-Q 1l + ¢
I0 2 11 l n 2_), 2 s gk 2
8 o "k =g
1
x "
The factors %- and -%- in the curly brackets are again the SUB

ratios of reduced residues., HNotice that we do not hgve a factor of .
2 :here>since p- and ¢-mesons cannot be exchanged in the u=channel,
We treat the ¢-meson purely as e member of'the’same octet which cone.
-.tains the p-meson, and.the w-meson as & singlet entirely decoupled
to the octet. The actual w-¢ mixing will make little difference

to the output as will become apparent from the discussion in the fol=-

lowing section,
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2.  Results

The numerical results comparing the single-channel and two-
channel cases for various values of the strip width ¢ , the input
. p=width ré“ , the K*vidth réﬁ and the ¢=width r;’“

"marized in Table 1 and Figs. 3=5.

are Sule

We conclude that the one-channel and two=-channel cases are
' qualitatively very much the same, In order to'get 8 resonaﬁce'peak i
‘in the p-wave cross section at the experimental pnmass,lh we need‘:
-an input p-width several times larger than the experimental value or  |
a strip width much larger than one might expect from the }act ihat -
fesqnance peaks die out when s 1is larger than a few cev?. " The oute
put p-width is always several times larggr than the experimental
~value (see, however, discussion in (e) beloQ). .The "I = i‘ trajectory
is too‘flat ana the intercept too high, while the I = 0 trajggtory
violates the Froissart limiﬁ slightly; Both kinds of trajectories
‘turn over too soon, if we take values given by the zero of the real
- part of the determinant of D (see Footnote 1h), These qualitative °
features of the output are not sensitive to the changes in the input
pﬁrameters.

The inclusion of the inelastic channel does give some addi«
ﬁional binding and,a§ exﬁected,will narrow the output p-width, thoughi
‘not by a large amount, - The details are as follows,

(a) The spacing between the I =0 and I =1 trajectories

is smaller in the two-channel case, thus' the Froissart limit is

" violated no v&rse than in the oneuchannel case, although the correspond», v-f"

g,
ing I =1 tthectory intercept is larger.



~ the values given by SU

" more effective.

. .Y

in. at the experimental value, in order to. get

(v) Keeping 'P
the p-peak at the right position. Ws =53m ) we need a much higher

o for the one-channel case (1280 ) than for the two-channel case

(600 m ); also the output o-width is narrower and the trajectory

steeper in the latter case,

(¢) If we allow both o and _rzn to vary, keeping the cor-

.~ rect output p-peak ﬁbsition, we notice that for larger ¢ we get a

a narrower output' p-width but flatter trajectories.

(d) To see the effect of - Pin Pin

g s Ty and the pncontribution

- in KK -+ Kf', we allow them to vary independently instead of using

3 Because their contributions are small

compared to the p-contribution in 7#n -+ 7r , unless we assign them

.-values drastically different from those given by SU3 there will be

no appreciable changes, Increasing P; .. Pég will narrow the out=
put p-width and flatten the output trajectory, Chaﬁgiﬁg' Pi s

- ¢

(e) If we use ?én 7 times and Pin

we could get an output p-width of 0.9 ﬁﬁ s although

0.46 times the value.

given by SU3

the intercept of the p=trajectory is very large (0.9) . This con=-

firms that one way of achieving the experimental op~width is to get

the pe-meson primarily as a bound state of an inelastic channel weakly

coupled to the mn channel, though it is not possible to do so with.

. reasonable 1::':‘:\:.'_5 in our scheme, Netice in Fig, 4 that we have two

I =1 trajeééories in this latter case, The leading trajectory is
£ : '

primarily a ﬁ@und state of the KK channel due to the unusually large

&
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w2T=

s

_attraction of the ¢-éxchange; the secondéry 6hé,'presumably due to

.p-exchahge in the wm channel, is mainly & resonance of the wn

v

channel,

C. Reggeized Particle Exchange

‘l, The Generalized Potentials

The potentials were obtained following the Chew=Jones pree

scription.l We assume that the double spectral functions.arevlarge"

only in the strip like regions indicated with i , J , k in Fig, 6.

In the case of an equal mass channel the contribution to the amplitude

' _in the s-channel from a Regge pole in the J-region can be written

"~ (omitting signature and isotopic spin éomplication):

- =P, (oy(-L - 2 -
o 1 01 tCuli )
RJ(s,t) = grj-(t) . das* . (I1I=C:1) |

g

where
: o : o ad(t) .
rj(t) = '[2%(?.) + HYJ(”("% ) (IXII=C32)

ad(t) and yj(t) are the trajectory and reduced residue functions of

‘the Regge pole under consideration, The integral in Eq. (III-C:l) is

defined by analytic continuation when it does not converge.

The full amplitude can then be written as the sum of Regge
g‘« .

iy
poles in all strip regions:

B



. =28a

i

o

Aa,t) = 5 [R(s,8) + €, RO(s,u)]
)=

+ )3“ [Rg(t,s) + € Rg(t,u)]

J

+ Z [R:.(u.s) "'Ek Rz(u,t)] ;l(iII.-(.::BW ;-

®

wherevthg' £'s are the signature factors of the Regge poles and 6
is the strip width, taken to be the same for all channels, The 1so=-
topic spin crossing matrix élements have been omitted, Tbe amplitudg
thus constructed will ha#e a double spectral function different from
zero in the shaded regions of Fig., 6, The Reggeized potential for an
equal mass channel can now ﬁe obtained directly from this amplitude
by separating the apprépriate terms from the partial wave projection
of the amplitude, Usiné the Wong projection formulae we can yrtte
2a

the contribution of a single Regge pole in the 4n + nr case as:

(mTr taken to be 1)

1 | g _ % | .
'[BQ'(S)]IJ. : Z 21r‘q,29'"+2 .!;.dt [MQI(I +-—5)] " o -

3 1e

x -~

g R )
877 I (t) at P ;.\ |1 - S + —
Irt . 5 alt) 5 2f |ut=s  u'eu
_uqt | q

»
o0 :

. . ( l)I. Bnﬂ du'”r(t')P 1 _:Si 1 ( l)I 1 i
o, II' - a(t')-." ) 2 2 —Ti—u = - - -—;——-u -t -
. o o _
g :

R . C -



?feithéf ?';"°

T .ff sin naZts -1

cot

;3 1?§{ jf;ﬁ' + r(t)e I* aP (t)(’l -a—.;) |
e T T S |~ten -

C(IITCab)

‘where

o 4 t+u g-V'B'. '-}.,t' + u! =; h ‘ g

:'A similar expression can be written for the case KK -+ KK o

e

-In~the case of':ﬁﬂ + KK the external particles have different

IE:j'masaes,_ The more complicated functional relation between qt ‘and. t

’-'means that an»expression of the type Bq. (III—C 1) will fail to have

the ccrrect analytic properties in 8 and ¢ becsuse the double

' “spectral function will be non-zero outside the shaded regions shown - .

N T S . -t

:‘_”in Fig. 6. ibe procedure adopted to avoid this difficulty is fé,f
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.approximate qﬁ byn )

[t - (m, + 221002 o (m, - 5)?)
i u0m)?

vhere M* 1is the mass of the resonance being exchanged in the te- |
channel, In the same spirit, we define the cosine of the scattéringAv

angle in the t-channel as

8
z% = 1 +

With the above approximation we can rewrite Eq. (III-C:1l) to fead.

(su?press the subscript J )

r*9(g,t) = ds'  (IIT-C:5)

where now |
re(t) = [2G(t) + 1}Y(t){n(q;)2]a(t)

It is readily seen that this expression has the correct analytic

2

properties, and when t -+ (M*)° 4t reduces to Eq, (IIX~C:l). As wve

expect the main contribution to the potential should come from values
of ¢ closef@o (M*)2 , ‘this seems to be a reasonable approximation, -

¥

With this neé ?orm for Rgo(s,t) » the same steps as led to Eq.



~ culty is to "renormalize" the potential

3

. (III-C 4) can be carried out and an expression for the potential in

the "mn > KK case can thus be derived,

The potential due to exchange of the Pomeranchuk trajectoif;f
which is present in both the =n and XX channels, is very»repul-.
sive in our scheme, As pointed out by Collinsaa a combination of an
attractive and a repulsive potential can give rise to poles on the .*.
physical sheet in the present method. One way to avold this diffi-
16 by subtracting from the
potential its value at s = 0 and adding back the same'quantity noﬁ

computed from a partial wave projection of the amplitude,, In the

Tr -+ 7wt case, we have

0
- '[Bf(s)}I ' = .....;T;_.l. f dt InQ (1 + -E- [Vp(s,t) -V (8 t)]

11 ~2nqs 2q
an . .
: 10
+ -[ dt Ql(l + ---) Z' (20 + 1) ImAz,(t)
2nqs ' even

where: Vp(s,t) is the contribution from exchange of the Pomeranchuk

_trajectory to the potential in the #n + nvr case, It has been shown

by Collins2b that the second term is negligible, and the "renormali-

zation" can be carried out using only the first term, He also

pointed out that this renormelizing technique can lead to difficultieé.
and is not entirely Jjustifiable. We shall use it in the following

because it is ‘the only way to prevent the potential from being over-

whelmed by ?aexchange.



"2. Results
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[T

In the one-channel cdlculation2a’2b it has been noted that

we cannot get enough attraction from either a fixed-spiﬁ particle

exchange or a Regge-pole exchange with input p-width equal to the

" experimental value. Thus in order to get the peak in the cross sec--
. tion at the correct p-mass, we have to use an input p-width several

. times larger than the experimental value. In the fixed-spin case

this leads to an I = 0 trajectory with intercept larger than 1 ,

violating the Froissart bound, In the Reggeized case we have an
]

 additional restriction, i.e. the imaginary part of the po%ential at

the stfip boundary is .required by unitarity to satisfy the relation

0 < bz(c) InBP(0) ¢ 1 , which will be violated usually before we

~‘violate the Froissart bound, especially in the lower & values, the

other difficulties are large output p-width and flat output trajectory.

.. From the two~-channel fixed-spin particle exchange case discussed

in
K*

» provides additional attraction and narrows the output p-width’

above we find that the inelastic channel Kf', through T and

in
r

Q
a little, - We now investigate whether we can get the same kind of

effect with various types of parametrization of the input trajectories

and residues in the Reggeized case,
(a) Reproducing the fixed-spin particle exchange case: we use
extremely flat linear trajectories for p , K* and ¢ passing through

1 at the corrésponding resonance energies, The residues, taken to be

constant, are adjusted to give respectively the experimental p=-width,

¢E%
' .
"x.

- the K*-widtﬂéand the ¢-width with ratios to the p-width fixed by



'f'UBL symnetry.; We get very much the same potentials as from the fixed-

S o spin particle exchange° in particular there are very small imaginary
_}s?;}. Ji'w5:7{parts. B

(b) Various pesrametrizations of the input trajectories and
“f:*residue'functions: ‘we use a one-pole formula for the various trajec-
© o toriess?

al) = dp-ag-

:QQwherep”J - a gives the intercept at t =0

R 1s the square of the

”,._,mass of the resonance,. JR the. spin of the resonance and tB is the pole-
ﬁif¢ ut;i§,;prosition. Two forms of the residue functions have been used°

. Teplitz formule.l8

S ' - - a(t)+l'-
v1'__Y(t)' - Ca! (t)[t - t]Q alt) (l * ) (- )

.+ <which has been used?in Ref, éb to,get'a‘selfeconsistent solutidn, and
Y ;:the Qhe;pole formula

B H r-’u‘B

. which can give a steeply-falling residue function as suggested by
”Quigthe resultsf

f fitting the high energy scattering data.l9

- To ?tart with we use the _same parametrization for apf;sndsﬁf
:fap_ and the residue functions for y

_snd anu which_gives af- B




_the . KK- and the mm-channels but with Yo

—3’4—

e

self-consistent solution in the one-channel calculation as explained |

- ,in:Ref,'Qb, and assume ﬁhe‘ P and p contribution in XX to be of-_

the same form as that in nn, with P coupled equally strongly to

Your 0.5, the SUg

o Gpy WE take the

pole position tB -to be the same as for ao but adjust the interw

ratio for all t. As for the frajectorieé a

| ‘cept at t = 0 so that they run more or less parallel to the p-

trajectory., For the residue functions Y¢Kf' and fK*ﬂK we again

use the same form as for ann with the magnitu@e fixed by SU3
ratios, The resulting output,as cohpared to the one~chanhel result

is shown in Figs. T~-9. We notice that the output is very similar

to the one~channel case and we still get approximately self-consistent .
o énd P in the #n channel, This result presumably is due to

the fact that the K* and ¢ trajectories, lying lower than the
p~trajectory, are dominated by the p-contribution in the nn= )

channel, The p- &and P-contribution in the KX channel is small

as compared to that in the wr channel because the KK threshold .

-1s much higher and we ceannot exchange p and P in the u-channel,

_The output in this case gives Y, -Jypﬂﬂav 0.15 and YPKE/Yin‘V 0.09‘!

KK

far smaller than the SU3 ratios of 0,5 and 1 respectivély.
 Although these ratios are not directly subject to experimental test,

we know that the K¥*wwidth and ¢-width calculated from SU_, ratios

3
agree reasonably well with the op~width, These departures from the -

SU3 .ratios éﬁgrefcre seen tbrindicate a defect in ouf'calculafion

scheme, Howé#er, if we increase the ¢-contribution in the !df

L
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o

Lf,fchanhel by'a'factof of 6, we find Y,

=

L

(V 0 2 -and YPKK

KK/ pﬁn /YPnu

0.1 This slight improvement suggests that, if in a better dynamic

' model (see discussion in Section IV below) the attraction in the KK

channel can be greatly éﬁhanced, which we know will improve the out-
put p-width, the above defect may also be cured, The output also

suffers the same difficulties as the one-channel case: large output

p-width, flat trajectories, violation of unitarity for lower £ valﬁesg':‘

Since these qualitative features apparently are not sensitive to the

-presence of the XK channel, a completely self-consistent solution is

considered as not significant,

We next try to see whether we can improve the output by change

- ing the input drastically. As it turns out, mainly because uhitarity '
‘at the strip boundary puts such a stringent restriction on the imag-

- inary part of the potential, we are unable to improve our result in

~any satisfactory way. We explain the details as follows:

(1) The strip width: In contrast to the fixed-spin particle
exchange case, the potential, now depending on the strip width, de-

creases when we increase the latter., The additional attraction we can

get by increasing o is thus very limited,

(11) The trajectory: A steeper input trajeétory will decrease

the potential and flatten the output trajectory; the approximately selfw

consistent p-trajectory used is about the best compronige we can
m&nﬁge .

(111) The residues: A steeply~falling residue function gives

 steep output'trajectory and satisfies unitarity better for all values
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%

of % , dut the output residue function is ne@er:steeply-falling_i_}_
-and, if we try to keep the op-peak in the cross section at the right':
position, the trajectory develops a large imaginary part so fast that

we are unable to follow it above & = 0.4 , If we allow the p-pesk -

"~ to appear at much lower energy we can get steeper trajectories (Fig.

10).
"(iv) The effect of X* and ¢ : In the fixed-spin particle

exchange case we found that we could narrow the output .p-width by,

.changing the contribution of X*~ and ¢-exchange, if we made the
- p-meson as a bound state of the KK channel weakly coupléd to thé

vnw channel, There we had to use a Y¢Kf' too large to be acceptable;

in the present case we find that unitarity at the strip boundary rules
out such a possibility. In Fig. 11 we plot two illustrative cases

where we increﬁse the attraction in the XX channel by very large

factors. Even though unitarity is violated severely already at 2 =.1 ,

we still cannot get the experimental p-width,

<o



‘§-width for fixed-spin particieAexchange agrees with earlier results

of better moééis.

=3T= .

.
IV, . CONCLUSION

 Our two-channel calculation in Section ITI-B of the output -~
| 12a

1based on the same N/D model (Regge trajectories were not considered

'in the earlier publications), From the discussion of Section IIT~C

it is evident that Reggeiiation, because of the restriction imposed

. by unitarity at the strip boundary, does not improve the result in any

appreciable way in our approximation schenme,

Three immediate possible improvements in the dyna?ics cone to
nind: (a) Iterate the potential to get additional strength without
violating unitarity. (b) Include additional inelasticity through a
complex generalized potential within the strip. This, furthermore,
will allow a smooth transition across the strip boundary, avoiding
the artificial singularity. (c) Treat properly the long range .
Pomeranchuk repulsion20 in order to narrow the output p-width, All
these aspects can be handled very naturally using the Mandelstam itere.
ation scheme, 1In view of Finkelstein's resultslzb, using the equi=- _Q

valent potential method by Baldzs, we know that ﬁoint (e) is signifi-

-cant, The importance of (c) is established in Ref, 20 Thus we need

not be too discouraged by our results here, Adding one more channel

has not in itself turned out to cure the 1lls of a particular strong‘
interaction mgdel, but we have shown that it is computationally feasible
to include multi-channel effects in a Reggeized system, The qualita-:

tive resultsiﬁeported here should be of assistance in the construction

gl
pEY
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MUB-11186

Pig. 1 A typical Regge trajectory that reaches the right-half

angular-pomentum plane,
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oo ' ‘ ’
‘Fig., 2  Thé particles being exchanged that give rise to the

generalized potential,



T | T T | T
o L_1 | | | P

- 200 -100 o - . 100
' s (m2) R '

MUB-11188

c | Fig. 3 - . Some I = 1 outpu'c trajectories from fixed-spin particle

excha.nge labeled by the case numbers as listed in Table l.
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' P-"aioc'oly
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Input . .
Violotes p _ trajectory
- unitarity /g
Violates
unitority
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2-Channe!
0.5F i-Channel -
) ) Output t-Channe! 0uteut { 2_channel
(14
0 - 1 1 L 1 —
- 200 -100 , . O | 100

MuUB-11185

Fig. 7 The approximately self-consistent pe and P-trajectories

(parameters taken from Ref. 2b). (These are the input

2y

trajectories we used in all cases below.) (¢ = 100 m

- t
az(t) = 0,625 + 0.375/(1 - 110
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MUB-11184
'Fié, 8  The approximately self-consistent residue functions Yonx
and Ypan (parameters taken from Ref. 2b), (o0 =100 m 2)
- (t)+1
'.Y"’F" = 125 a' (‘\ (hO-t) Q, (t) (2, 55)/(9) P
| ap(t)+l
o = 230 a'0) 00 q, (. ee)/(n 5) 2

Other residuea are given by 3U3 .
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Fig. 9 The I =1, £ =1 cross section for the approxi-

mately self-consistent case,
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'
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— unitarity
-
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unitarity .
(c) |
(b) (a) 7 Does not violate
| - | unitarity
i 0 . ] { i l
- -200 -100 | 0
2
S (m3%)
| MUB-11189
Fig. 10 Output I =1 trajectories for steep input residue |

functions (the trajectories are the same as the approxi-

|

mately self-consistent case) (o = 200 mng).

v(a), Youn = 0. 0375/(1 - —- -pea.k at ?8(mn2)) |
(13) Youn = O 05/ (1 - —-) ( ~peak at 22(m_ )) |
} . - .
(¢) Youn = O 06)/ (1 - — -peak at vlS(m"“))

Other residues are fixed’ by - Sb3 ratios,
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Vs | (m)

?ig. 11 The I =1, &£ =1 cross section,

(a) o =100 m 2 | MUB-11183
g

p(s) . Blg(s) same as the approximately self-consistent case,

(s) is 15 times the approximate self-consistent case.

The kink in the cross section is due to the presence of a secondary trajectofy
which is mainly & resonance of the wm channel, (As a measure of violation of unitarity

we have 1\, = 0, 61 112 =1,23 for L =1,)

(v) o = k00 mf2 . .
Y = 0 0136/.1. -"— and - Y.I:_nn = 0.0038/(1 - -5-6'

pnN

t

Yox% 18.10 times the value given by SU3 . (Al'= 0.52 1\, =41;77 for 2 = 1)
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