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ABSTRACT 

A systematic study of the dynamics of scattering with several 

• coupled two-particle channels is made using the new strip approxima- 

tion. The existence of a unique solution to the ND 1  equations 1s 

• established from maximal analyticity of the second degree. The method 

used is an extension of Jones proof in the single-channel case, 

making use of an explicit expression for the determinant of D con- 	• 

structed by Gross. The general method is then applied to the partic-

ular case of a irir-Ki two-channel calculation of the 0-meson, first 

with fixedspin particle and then with Reggeized particle exchange as the 

generalized potential. A detailed discussion of the numerical result 

is presented with the conclusion that the effect of the inelastic 

channel (19) is not important in the present approximation scheme. 
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• 	 I. INTRODUCTION 	 : 

The strip concept regarding the four line connected parts 

• 	can be stated most easily in terms of the usual invariants s, t and 

u In the physical region of the s-channel, we have resonance peaks 

in the low energy region (s smaller than a few GeV) and for high s 

• 	we, have diffraction peaks in the foreyard and backward direction with 

width less than a few GeV2 jn the momentum transfer variables (t or u). 

Otherwise the four line connected part is small. Similar statements 

can be made for the physical region of the t- and u-channels. On 

• 	a Mandeistam diagram the regions where the four line connected part 

is large will be strip-like regions. If we assume the same strip 

structure for the unphysical regions we will require the four line 

connected part to be small unless the magnitude of at least one of 

the invariants is small. The new strip approximation1  is based, on 

the observation that this strip structure can be achieved very natu-

rally if we approximate the four line connected parts as the sum of 

direct and crossed channel Regge poles satisfying the Mandeistam Repre. 

sentation. A typical s-channel Regge-trajectory a(s) that can 

reach the right half angular-momentum-plane is shown in Fig. 1. The 

• 	strip region will be the finite interval of s for which • Rea(s) > 0 

• 	with Iria(s) 4 1 where the Regge pole contribution of the general form: 

P(-z ) 
-7r[2a(s) + 1] s(s) 

will domina'è the wnolitude: 
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With s > 0, we have resonancepbles when Re a(s) takes 

integral value 	> 0). If Irna(s) 1. the resonance becomesds  

too broad to be recognizable. 

With s < 0, we are in the physical region of the crossed 

channels; since Re a(s) > 0 the Regge pole will dominate the high 

t (or u) behavior. 

Furtheore if we require 8(s) to fall off rapidly for lrge 

s we have the strip struction in the unphysical region. Similar ar-

guments can be applied to t- and u-channel Regge poles. 

Assuming (multi-channel) two-particle unitarity in the direct 

channel across the strip, a reasonable approximation for a strip width 

of a few Gev if we include channels with unstable external particles, 

we can write down a set of coupled ND 1  integral equations, with the 

exchange of crossed channel Regge poles as generalized potentials 

analytic in the angular momentum variable. From these equations we 

can calculate the Regge poles in the direct channel. 

2b Teplitz and Collins 2a, have made a very extensive studyin 

the single-channel case of lilT scattering. In this report we study 

the effect of additional inelastic channels. We derive in Section II 

the multi-channel ND equations and prove the existence of a unique 

solution from maximal analyticity of the second degree. 3  In Section 

III, after justifying the numerical method used in solving the ND 1  

• 	 • equations, we make a detailed calculation of the irir-KIZ model of the 	• 

• 

	

	 p-meson. In the concluding section, we discuss the unsatisfactory 

aspects of our scheme and how they maybe improved. 



II. THE EXISTENCE OF A UNIQUE SOLUTION TO THE 
MULTI-CHAfl1EL STRIP EQUATION 

In a recent paper Jones gives a rather complete discussion 

of the single-channel N/D equations when the D-function has only 

a finite cut. In particular he shows that a unique. solution exists 

by assuming maximum analyticity of the second degree (MASD), or ana-

lyticity in angular momentum. 

We generalize his results to the Multi-Channel ND 	equa- 

tions in the new strip approximation. The ambiguity in the solution 

can be removed in the same way as in the single-channel 6ase by 

using an explicit form for the determinant of D constructed by 

Gross. 5 	 . 

The logic of the problem is as follows. We want to calculate 

the partial-wave scattering amplitude B (B Z is a matrix), from an 

input B 	which carries all the left hand cut of 	and the. right 

hand cut above s = a , where a. is the strip boundary common to all 

channels, and the requirement that BZ 
 satisfy wiitarity from s = S1  

to s = c , where s l 
 is the threshold of the lowest channel. We 

try to solve this problem by writing B = ND 1 , with the matrix D .  

carrying the right hand cut of BL  from a = s to a = a and the 

matrix N carrying all the other cuts. The justification for this 

decomposition can be accomplished in two ways. We can show that for 

any given D 
i 
 we can construct D explicitly (for exwuple through 

the Orxines fmula in the single channel case); we then get N from 

N = BD • Or we assume that BL  can be written as ND. We then 
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derive the integral equations satisfied by N and D , and justify 

our assumption a posteriori by proving that solutions to the integral 

equations for N or D actuallyexist, In the multi-channel case 

we have to rely on the second approach. Mandelstam 6  has shown the 

existence of D in the case when a - 	, and the eigenphase shifts 

satisfy . & (o') — is (si ) 	0 • For the case when a is finite the 

latter conditions about the eigenphase shifts are not satisfied unless 

2. 	; however, we can prove the existence of N at least for large 

2. • The matrix ND 1  will then have the correct cut structure. To 

• establish theuniqueness of our solution we have to remove the CDD 

ambiguity, that is, the possibility of adding arbitrary poles into 

the dispersion relation for D and N. This is accomplished for 

large 2. by using the Gross formula. The continuation to lower values 

of. 2. can be done in exactly the same fashion as for the single-channel 

case, 	 S  

A. The Derivation of the Strip Equation 

The partial-wave scattering amplitude from the ith channel to 

the jth channel is defined by the following equations: 

[A(s.t)] 	= E(22.+l) (A2.) 	P2.(z)
ij 	2. 

- 

qjqj 

In the following we will use matrix notation and suppress the 
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• 	index L except when we discuss properties concerning the angular 

• 	
momentthn 

Our basic problem is to calculate B 	assuming that we are 

given B which carries the left hand cut of B and the right hand 

• 	 • cutabove s= 	, 

CY 

B(s) = B1'(s) 
+ . f 	IflIB(S') ds'  

and that B satisfies the multi—channel two—body unitarity from 

to sa : 

Im B 1  = -p e 	s c a 	 (II-.A:2) 

where p and e are diagonal matrices (we restrict ourselves to 

spinless particles): 

2L+l 
qi 

p 	 - ii 	 ii 

aij = 0(s - s) 

We proceed by writing 

B = ND 1  , 	 (I1A:3) 
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where D carries the right hand cut from a 
s  to a 	, and 

N carries all the other cuts. 

We then have, on the right hand. cut 

Im D = Ini(BN) = (Im B)N 	8 N s < s <c'  

and on rest of the cuts of B 

Im N 	IM(BD) =. .(Irn B)D 	(Im B)D  

If we normalize D to the unit matrix at infinity, we can 

write (we defer the discussion of CDD poles to Section lI-c), 

D(s) 	 f ds' N(s') 
 

S J_ 	 - 

and 

B(s) 1)(s) 

= Br(s) D(s) + D(s) 	ds' 

N(s) is real by assumption for a 1  < a < a , and since the second 

term on the right vanishes at infinity as 	, we must have 
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D(s) 	de' ImB(!) d 	
B1'(s) Ip() 

Thus we have, using (II-A:6) 

N(s) 	Br(s) 

+ 	

, B(s') : 
	 6(g') N(s')  

We now proceed to show that (II-A:7) is soluble at least for 

large 9 and defines a unique N(s) . 

• 	 B. The Existence of N 

For the present discussion7  is is more convenient to rewrite 

the equations for N to display the channel indices explicitly. 

op 	, 	p 

N(s) 	B(s) + 
	

Bs) : :-- ø(s') N(e') 	(Il-A:?)' 

with the convention that repeated Greek indices are sunned over all 	* 

channels, 

As exjlained in Reference l B1 (s) will have a logarithmic 

singularity near s a : 

13 p(s)

.4  

- 2. Im 31 (a) £n(o-s)  
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• 	 Preparatory to removing the singular part, we define new func- 

• 	
tions N! 	by 

• •: * 
	 N(s) 	Q1/2(S) Ne (s) 	 (II-B:2) 

• 	 The reason for doing this will become clear in the following: 

• 	 We have for N! 
ij 

N(s) = B(s) + 

	

l/2(5)[BP(9) : 

where 

B(s) 	 B1 (s 

Separating out the singular part down to the highest threshold 

S}f 	we have: 	• 

S 	 .• 	 a 

N(s) 	B(s) + 

	

ds' 	 + f ds' K1 (a,s') N II 

(II-B: 1 ) 	• 

- -1- 

 

f d' k(s,s') N'(a') 

where • 	 • 
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U1(s,s') 	
pih/2(8)tBi(5')BiP(5)] 	

1/2() 

A 
I(1 (s,s') 	U1 (s,s') + —.k(s,s') 

71 

k(s,s') = 2n(c,—s 	
: 

tn(a—s)  

1/2(e) [Im BP(a)] p 1/2 ( a ) 

Note that now A
iii 	ii 	 ii .  A 	, a relation not true if we use N 	instead 

of.N 	. 
ij 

In the single-channel case, we can use the Wiener-Hopf method 

to get a unique solution if the phase shift (a) < it 	In the multi- 

channel case, we expect the eigenphase shifts to play a similar-role. 

To facilitate future discussion, we specify the eigenphase shifts in 

the following way. 

The matrix 

S 	1 + 2L 112e Be l'2 

which is unitary and symmetric for a c s < a , can be diagonalized 

by an orthogonal matrix T(s). For s < s <(with s a, 

MA is the number of channels). The first I elgenvalues can be writ-

tenas 



(1 2i 	s 
ej (s) = e 	 i = 	1 

where 	are the eigenphase shifts of the interval 	s < s 

• 	 : Because of the step functions 0. the eigenphase shifts of different 

intervals are not analytic continuations of one another. But also 

because of the step function, we have 

= 	if i or j > It 

which implIes 

(.i) & 	(s)= n1 ir 

i 	M - 

(I+1)) 	
= 1,846, J. 	 - 

Thus we can write all the eigenphase shifts In terms of M real con 

tinuous piecewise analytic functions: 

= 	
Sj < S < 

j =1 1,064
0  M 	 i = l a ..., M 

! 

At 	, the orthogonal transformation T T(a) that 

diaonalIzes S also diagonalizes the matrix A , whose elements are 

the A Is ,. We have 
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TST 1  = 1 + 21 T[ 112 (n B) ph/23T1 - 2TAT 1  

taking the real part of both sides, we get 

• 	 r21;(c) 1 1 	.lI Re • 
L 2 

or . 	 x 	= [ in 6 	 ]2 	= 1,060
9 
 M 

where X is the. ith eigenvalue of A 

After introducing the matrix T , as explained in Reference 7, 

we can use the Wiener-Hopf method to get the following coupled integral • 

equations: 

Nj(s) = Bj(s) 
+ f 	ds' U1  (s,s') 

+ TJds' (U1 0)(s,s') 11 j 0 (SI) 

for S<SM 	 . 	 . 	. 

S 

+ 
	f 	 ds' U(6,s')  N,,(s') 

	

+ T 
ii V 

T 	r ds' (K 
I.LV 	 oi 

	

0 )(s,a') 	
• 	• 

J •  	 . 	 . 	 . 	 . 	 . 	 . 

- 

for s M < s 	 (II-B:5) ... 
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where 	(i) the 110  s are related to N''s by the Wiener-Hope 

euations 

N 
ij 	i - 	ds' k(s,s') TT j  (s) 	(11-B 6) 

with 

ij 
= T1  N' , 	 (IL.B 7) 

Just as in the single-channel case we can invert (II-B:6) to give 

f ds' o(s,s') N j (S') 

where O(ss') is the Wiener-Hopf resolvent kernel. 9  

(ii) Eijp = ' T
ill 

B' 
 Uj  

(Ujo)(s,s') = f ds" U1(s,s") O(s",$) 
(KO)(s.s') 
	f ds" K( s , st) 0 ( 5 Ia ,5 ) 

As discussed in Reference 14, the function TT(s) will have 

the following behavior near s = a : 	 - - 



i jj (S) -----) (a - 	 (II..B:8) 

with a1  = 	I5(a) ± m1 1r1 c 	, unless we fix the arbitrary con- 	 = 

stant in the general solution of (11-13:6) to a particular value, then 

(a 
- 5)

i 

To find, the correct behavior near s = a , we make use of 

the explicit expression for the determinant of D • In the next section, 

we will show that for large £ , when there are no bound states 

det D(s) 	ex{_ 	f ds' 
with 	 0 

and 	0 as g, 	• 

It follows that the determinant of D has the following behavior 

near the strip boundary 

det D(s) 	(a - 	
'IT 

Because of Eq. (II-A•6), we have 

det N(s) ---- 	(a - s) 
•'I 	ii 

80. 



But N1  is related to Nij  through (II-B.2) and (lI-B 7), so we 

have: 

det 	= det(TN') = (det T) det(01s/2)  det N 	(II-B10) 

so 

Tr 

det!T(s) 	(a-s) 	" 

Since each term of the determinant of iT involves one of the elements 

of each column of N , by comparing Eqs. (II-B:8), (IIB:9) and (II-

B:lO), bearing in mind that 5 1 (a) 	0 as 2. 	, we conclude that 

Eq. (11-3:9) is the correct behavior for each I , and we can make 

the identification 

6(a) 
a1  

Thus all the arbitrary constants in the solution are fixed. Once the 

identification (1I-B:11) is made and analyticity in L is assumed, 

we have a unique solution to (Il-A:?) for all 2. as long as all eigen.. 

phase shifts at s = a are less than w , because (1) if 45 	< 1 (a)  

Eqs. .(II-B:5) are Fredholm. 7  (ii) if 	< 6(a) < vr , we may define 

	

f6j(c) 	I 
-, 	 - i - 	

+ 
N(S) = 	 - 3) 	 J 



with 

	

1- 	>c>O 

and the integral equations for ,i(s) are FredholniY 

• 	In the next section we will discuss the CDD ambituities and 

continuation to lower . values 

C. CDD Ambiguities and Maxira1 Analyticity of the Second Degree 

Just as in the single channel case' °  we night have,  written 

for D and N 

(s') 8(s') N (s') 	n 	r 
D (s) = 1 - 	ds' 	 4- -s--- 	(II-A:6)' 

i=l 1i 	 - 

N9.(s) 	B [1 
+ 	 + 	- f da' B9.P(B$).._B9.r'(3) p9.(s')e(s')N9.(s') 

(II-A:7)' 

	

(the residue matrix) and 	are suitably chosen so that 

D9.(s) is real outside the interval a < a < a • It is clear that 

(II-A:7)' will have a solution, at least' if all the are outside 

the interval s1 < a < q • These are the well known CDD ambiguities. 

We choose our convention for the eigenphase shifts as 

	

0 	for 1=1,..., n 
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The most general expression for the determinant of D Is 

in 

det D(s) = 	 (s - 
	

exp - 	f ds' 	-:4 
fl (s_.) 

1=1 	 ii 

For any physically reasonable B' we expect B(s) - 0 for ,  

• 	s < S < a as 2.. - 	(e.g. through Froissart-Gribov transformation 

• 

	

	as in the single channel case). With our convention we then have 

iS(a) - 0 for i = 1,.. 9  M. In this limiting case, we 6xpect 

n 	r 
D -41+r 

iL 

13P 	+ 

So there shouldn't be any singularity at s = a , thus n = in 

Furthermore there are no bound states for large 2. , so in 0, 

which implies n = 0 • Therefore we conclude that for large 2. we 

have a unique solution with no CDD poles in D 

Now we will establish that N 2. and D 2. are analytic in 2. , 

then we can infer from AAASD that we have a unique solution for lower. 

valuesof 2.: 

From the discussion in Reference 1,  we are assured of P. 

analyticity r N 2.(s) when s < 8 <and for 	when 
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< s < a , at least for 2. values such that Re 2. > -1 and 5,(a) < n 

(we suppress the channel indices). The N 2. defined by 1  

= f ds' 02.(s,s') 	
O() 	

< 8 < a 

are analytic functions of 2. as long as the integrals exist, e.g. if 

• Similarly N2. for s c s < a defined by 

N2.(s) 	p(a) T(a) TT(s) 

are analytic in R for %(a) < it • Finally the functions Dt  

defined by 

C 
r (5 )T(s ) 

l 	ds' - 	I 
2. 	 it 	I 

	

J 	 Se-S 

are analytic in 2. when the 	are analytic, provided the integrals 

exist. The integrals certainly exist for 6 2.(a) < it , therefore it is 

obvious that D cannot develop any singularity (or poles) as long as 

it and will always maintain the ssme normalization at infinity 0  

• 	 The questiondf what happens, if 6(a) > it as 1. decreases and if 

it once again when we continue to decrease 2. , has been dis- 

• 

	

	 cussed in Reference 14  The conclusion is that the solution to our 

problem, whetiever 6 2.(a) < it , is correctly ,  given by the unique solu- 

tion to the ihtegral equations satisfied by AN and D with no CDD poles. 
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Iii. A nir-1& MODEL OF THE p-MESON 

The dynamic calculation of the p-meson, considered as a 

resonance in channels consisting of two pseud.oscalar mesons with 

vector meson exchange as the main binding force, has been made by 

various authors. 12a '12b  The inherent difficulty in all models using 

• the N/D method,12a is that the output p-width is too large. (The 

calculations by Balzs and by Finkelstein,12'D using an equivalent 

potential approach which perhaps is equivalent to a partial Mandel 

• stain iteration, seems to show substantial improvement in this aspect.). 

• As it turns out, our method suffers the same difficulty. 

First we justify the numerical method by applying a result 	• 

obtained by Jones and Tiktopoulos. 13  Then as a preliminary step be-

fore the fully Reggeized calculation, we consider the case when fixed-

spin particles are being exchanged. We thus develop a basis of com-. 

parison against which we can test the effect of Reggeization. Next 

we construct the generalized potential from flegge-pole exchange. 

There is some complication because the ir- and K-meson masses are 

different and we have to make an approximtton. The numerical results 

are discussed in detail. The unsatisfactory aspects of our scheme 

and how they may be improved will be discussed in the concluding section, 

A. Justification of the Numerical Method 

The theorem proved by Jones and Tiktopoulos 13  can be stated as 

follows. The integral equation 
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+ f ds'X(s,s')(s') 

is given where •(x) is in L2(a,b) , i.e. f dsI+(s)12 < 	and 

the resolvént C). —X) 	of the integral operator K exists. Sup- 
pose further that X W + C where the norm of W is less than 1 and 

C is square integrable (f IC(s9s')I 2dsds' < ). Then the method 

of matrix inversion can be used to invert the integral equation (for 

this we need K to be piecewise continuous) provided we choose the 

mesh points carefully near the singular point. 

The multi-channel equations for N can be easily shown to 

satisfy the above condition. Diagonalizing Eq. (II-B:iL), we have 

= 	i(s) 
+ f ci:' tT (ss')T(s') 

+ f d' ç(s.s')!ç 1 (s') 

- - 	f ci:' k(:s)T(s) 	ij 	H 
Tr 
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(s o s') = T U (s,s')T 
iIL 	 iVVp 

= 

We can rewrite the above equations for each fixed column index j as 

e single integral equation 

Ma — (-l)s 

= •J(S) + f 	l,•.., M 

= 	 where 

N(s 	(i-l)(a-s)] 

• j (S) 	(s  

111 ts 	(i-l)(a-s1 ),s' 	(u—l)(a—sl )lO(SM 	(-1)a) 	s') 

+ K, Is—  (i-l)(a-s), 5' — ( j-l)(-s)]ø[s' — s m  + 

A. 

	

—k(s — (i_l)(a_s), s' — (-l)(a-s1))O[s' 	5M + (u-1)(as1)j 

for 

+ (i._1)(ci-s1 ) (. S < S,+ 	 -, 

+ 	a-s1 ) < s' < S]•  + (c_) 

and 	 .. 
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Ii if s>O 	 V  
0(s) = 

• 	 1 01fs< 0  

Nov the existence of the resolvent (1 -.X) 	as well as the square 

integrability of the U,,  and K 
ip  Is hasbeen established in Sec... 

tion II of this report. Since X. = sin 2 6 (o)  are less than 1 for 

all i , the operator .X is the sum of two operators: one with norm 

less than 1 ; the other, square integrable. Therefore the theorem 

of Jones and Tiktopoulos applies. 

B. Fixed-spin Particle Exchange 

• 	 1. Generalized Potential 	• 

Near a t-channel pole of definite spin R. , isospin I and 

riass mR , the scattering amplitude 

R(t) 
A.(st)' (2z. + 1) 	P (z) 	 • 

V 	 mRtt 

By crossing, the generalized potential in the s-channel for 

V 	
angular niomentuxn Z and isospin I. from exchange of this particle 

V 	 • 	

in the t-channel in the zero width approximation is given by 

[B 
Z '(s)] 

8

5 	ij 	 s t 	 t 	

a  [Zs  (t.MI12) 2(q

iq ) t s'+1  
= 	

1 1 (2Z  t  +1)R  ij 
 (t=:N 2  ) PZ  [zt(t:::N2 )] ,t 
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where 
81 1 is the isospin crossing matrix element. The explicit st 

form of the crossing matrices used is as follows: 

for 	rriritir 

	

I = 0 	1 	2. 
I 

S 

U 

1 

's1t 	 1 	1 	5 

	

1 	l 2 

1r719'Ki 	 S 

ZX
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.. 
t 	2 	2. 

S 

U 	
S 

t/ 	2-g 

's1t 	 . 	3 	3 

	

2 	2 1 	
3 

S 	 I 	=0 	1 
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• 	We list below the generalized potential arising from the exchange of 

particles shown in Fig. 2. (Channel indices 1 for iflT channel, 

2 for KK channel.) 

• 	 in 	2 	,. 	2i 	 2tn 2 i 

	

= 2 x 	x3 X{y}X 
( 	) ( + m 2_ m 2 ) 	+ 

2t +2 
2(q1 ) 

where 

i 1 	/in 2 -J4m  2  

	

= r m 2 	/ 0 
	 is the reduced residue. 

11 	 2 / 	
14 

s-14m 2  2 
-- 

14 

The factor of 2 comes from the u-channel contribution which Bose 

statistics requires to be the same as that of the t-channel contribu-. 

• tion for allowed Z 
S 
, I S  combination0 

[B? 	]I = 2 
x 	x 3 

• 	s 	12 	I. 	 14 

	

1 + 	 (* _''  
2q1q2 
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where 

2. 
S_14!flK 2 

24 

The factor 	is the ratio of 'reduced residues given by exact 	SU3  

symmetry. 15  . 

S 	 KK x 3 	
{ 

Bp (s)] + zs(l + 242) 2) 

- 	 2s 

+ 	
x 3 .x 

ii 	 } 	
( 	

+ 

2) 	+ s 24 	 m 	..24rn 	s 3 -14 

1 

2L+2 2(q)s 

The factors 	and 	in the curly brackets are again the 	ST)3  

ratios of reduced residues. Notice that we do not have a factor of 

.2 	here since 	p- 	and 	-mesons cannot be exchanged in the 	uchanne1. 

We treat the 	-meson purely as a member of the same octet which con-. 

tains the 	p-meson, andthe u-meson as a singlet entirely decoupled 

to the octet. 	The actual 	w-0 	mixing will make little difference 

to the output as will become apparent from the discussion in the fol- 

lowing section. 
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2. Results 

The numerical results comparing the single-channel and two 

channel cases for various values of the strip width a , the input 

p-width r 1  , the K*_width r and the 4width r in are sum-

marized in Table 1 and Figs. 3-5. 

We conclude that the one-channel and two-channel cases are 

qualitatively very much the same. In order to get a resonance peak 

14 in the p-wave cross section at the experimental pmass, weneed 

an input p-width several times larger than the experimental value or 

a strip width much larger than one might expect from the fact that 

resonance peaks die out when s is larger than a few GeV2 , The out 

put p-width is always several times larger than the experimental 

value (see, however, discussion in (e) below). The "I 1, trajectory 

is too flat and the intercept too high, while the I = 0 trajectory 

violates the Froissart limit slightly. Both kinds of trajectories 

turn over too soon, if we take values given by the zero of the real 

part of the determinant of D (see Footnote 11). These qualitative 

features of the output are not sensitive to the changes in the input 

parameters. 

The inclusion of the inelastic channel does give some addi-

tional binding and, as expectecL, will narrow the output p-width, though 

• 	not bya large amount. The details are as follows. 

(a) The spacing between the I 0 and I = 1 trajectories 

is smaller in the two-channel case, thus the Froissart limit is 

violated no Vcse than in the one-channel case, although the correspond-

ing I 1 tjectory intercept is larger. 
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weeping r 	at the experimental value, in order to get 

the p-peak at the right position. GAs = 5.3 m) we need. a much higher 

a for the one-channel case (1280 m 2 ) than for the two-channel case 

(600 m 2 ); also the output p-width is narrower and the trajectory -
IT 

steeper in the latter case, 	 . 

in 
If we allow both a and r 	to vary, keeping the cor- 

rect output ppeak position, we notice that for larger a we get a 

narrower output' p-width but flatter trajectories. 

To see the effect of r 	$ r 	and the p-contribution 

in KK - 	we allow them to vary independently instead of using 

the values given by SU3  . Because their contributions are small 

compared to the p-contribution in irrr - lflT • unless we assign them 

values drastically different from those given by SU 3  there will be 

in 
no appreciable changes. Increasing in , r' 	will narrow the out- 

in 
put p-width and flatten the output trajectory. Changing 	is 

more effective. 

If we use r 	 7 times and r 	 0,16 times the value., 

given by SU3  wecould get an output p-width of 0.9 m, , although 

the intercept of the ptrajeCtory is very large (0.9) . This con-

firms that one way of achieving the experinenta1 'pwidth is to get 

the p-meson primarily as a bound state of an inelastic channel weakly 

coupled to the irir channel, though it is not possible to do so with 

reaeona1c irpt in our scheme. Notice in ?i. •  ii that we have two 

.1 1 trajeories in this latter case. The leading trajectory is 

primarily a und state of the l& - channel due to the unusually large 
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attraction of the -exchange; the secondary one, presumably due to 

p-exchange in the irir channel s  is niainlya resonance of the irir 

channel. 

C. Reggeized Particle Exchange 

1. The Generalized Potentials 

The potentials were obtained following the ChevJones pre 

scription. 1  We assume that the double spectral functions are large 

only in the strip like regions indicated with I 	j , k in Fig. 6. 

In the case of an equal mass channel the contribution to the amplitude 

in the s-channel from a Regge pole in the j-region can be written 

(omitting signature and isotopic spin complication): 

Go  1' 	
_ 2s 

a (t)l 
R(st) 4r'(t)J 	1 —ds' 	- (IIIC:l) 

Cr 

where 

aCt) 
r(t) 	•(2cx j (t) + i]y(t)(q2) ' 	 '(III-C;2) 

cz(t) and y (t) are the trajectory and reduced residue functions of 

the Regge pole under consideration. The integral in Ec. (IIIC:l) is 

defined by analytic continuation when it does not converge. 

The full amplitude can then be written as the sum of Regge 

poles in all strip regions' 



A(s,t) =• 

j 

(r(st) + 
j 

+ j 
R11  

(R(u,$) + ç. R(u,t)) 
k 	-. 

where the F's are the signature factors of the Regge poles and a 

is the strip width, taken to be the same for all channels. The iso-

topic spin crossing matrix elements have been omitted.. The amplitude 

thus constructed viil have a double spectral function different from 

zero in the shaded regions of Fig. 6. The Reggeized potential for an 

equal mass channel can now be obtained directly from this amplitude 

by separating the appropriate terms from the partial wave projection 

of the amplitude. Using the Wong projection formulae we can wrtte 

the contribution of a single Regge pole in the *n - rir case as: 2  

(m taken to be 1)
Tr 

0  
[Bp(s)l dt

1]. 	21Tql 	 f . {ImQ(l + 2
tql

x  

u t 

• 	

x {ar(t) f dt 	(-1 	
) 	 + =-ul 

f du' r(t')P(f) (_i -  lit 	
CY 





• 	
where M*,  is the mass of the resonance being exchanged in the t- 

channel. In the same spirit s  we define the cosine of the scattering 

angle in the t-channel as 

S 

= 1+ 
t • 	 2q) 

With the above approximation we can rewrite Eq. (III-C:l) to read 

(suppress the subscript j ) 

- 

2( 	) ) 

.4r*(t) f 	
2 q
—da' 	(III-C:5) 

where now 

r*(t) = (2a(t) + l) y(t)[_() 2)t) 

It is readily seen that this expression has the correct analytic 

properties, and when t - 	it reduces to Eq. (IIIC:l), As we 	 -• 

expect the main contribution to the potential should come from values 

of t closeo (1111*
) 4  , this seems to be a reasonable approximation. 	. 

With this nei' torm for fl 0 (s,t) , the same steps as led to Eq. 	'. 	 • 
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(IIIC.) can be carried, out and an expression for the potential in 

the nir- KK case can thus be derived 1  

The potential due to exchange of the Pomeranchuk trajectory,: 

which is present in both the iTii and }' channels, is very repul-

sive in our scheme. As pointed out by CO1IIflS2a  a combination of an 

attractive and a repulsive potential can give rise to poles on the 

physical sheet in the present method. One way to avoid this diff i-

culty is to "renormalize" the potential16 by subtracting from the 

potential its value at s . = 0 and adding back the sanequantity now 

computed from a partial wave projection of the amplitude.1 In the 

+ irr case, we have 

• 	[(s)] 	
2nq, 	f dt ImQ9,(l + 
	.) IVP

got) - V0 ( s ,t)] 

+ f 	
+ 	

( 2' + 1) IhAq  1 (t) 
• 	 2; 2.  even 

where V'(s,t) is the contribution from exchange of the Pomeranchuk 

trajectory to the potential in the irir int case. It has been shown 

by couins2b  that the second term is negligible, and the "renormali-

zation" can be carried out using only the first term. He also 

• 

	

	 pointed out that this renorntalizing technique can lead to difficulties, 

and is not entirely justifiable. We shall use it in the following 

because it is the only way to prevent the potential from being over-

whelmed by 	Lexchange, 
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2. Results 

In the one-channel cacuiation2a,2b  it has been noted that 

we cannot get enough attraction from either a fixed-spin particle 

exchange or a Regge-pole exchange with input p-width equal to the 

experimental value. Thus in order to get the peak in the cross sec- 

tion at the correct p-mass', we have to use an input p-width several 

times larger than the experimentalvalue. In the fixed-spin case 

this leads to an I 0 trajectory with intercept larger than 1 , 

violating the Froissart bound. In the Reggeized case we have an 

additional restriction, i.e, the imaginary part of the potential at 

the strip boundary is .required by unitarity to satisfy the relation 

o 4 p(o) Im'(a) 4 1 , which will be violated usually before we 

violate the Froissart bound, especially in the lower 9 values, the 	' 

other difficulties are large output p-width and flat output trajectory. 

From the two-channel fixed-spin particle exchange case discussed 

above we find that the inelastic channel I& , through r 	 and 

in 
, provides additional attraction and narrows the output p-width 

a little. We now investigate whether we can get the same kind of 

effect with various types of parametrization of the input trajectories 

and residues in the Reggeized case, 

(a) Reproducing the fixed-spin particle exchange case:' we use 

extremely flat linear trajectories for p , K* and $ passing through 

1 at the corresponding resonance energies. The residues, taken to be 

constant, are adjusted. to give respectively the experimental p-width, 

the K*_vidtiand the +-wjdth with ratios to the p-width fixed by  
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• 	self-consistent solution in the one-channel calculation as explained 

in Ref. 2b, and assume the P and p contribution in Ki to be ofH. 

the same form as that in ww, with P coupled equally strongly to 

• 	the KK- and the tnt-channels but with 	 = 0.5 , the SU3  

ratio for all t. As for the trajectories a , aK* we take the 

pole position tB  to be the same as for a but adjust the inter- 

capt at t 0 so that they run more or less parallel to the p-

trajectory. For the residue functions yff and 	we again 

use the seine form as for y 	with the magnitude fixed by St13
PITIr 

ratios 0  The resulting outputas compared to the one-chanhel result 

is shown in Figs. 7-9. We notice that the output is very similar 

to the one-channel case and we still get approximately self-consistent 

p and P in the wff channel. This result presumably is due to 

the fact that the K and • trajectories, lying lower than the 

ptrajectory, are dominated by the p-contribution in the mi-

channel. The p- and P-contribution in the KK channel is small. 

as compared to that in the mr channel because the KK threshold 

is much higher and we cannotexchange p and P in the u-channel. 

The output in this case gives 	 0.15 and 	 0.09 ,. 

• far smaller than the StJ3  ratios of 0.5 and 1 respectively. 

• Although these ratios are not directly subject to experimental test, 

we know that the K*_width and -width calculated from SU 3  ratios 

agree reasonably well with the p-width 0  These departures from the 

SU3  ratios therefore seem to indicate a defect in our calculation 

scheme. Howë.er, if we increase the -contribution in the KK 
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• channel by a factor of 6 , we find
PKK/y0.2 and 	 -PKK 

:0.1 • This slight improvement suggests that, If in a better dynamic 

model (see discussion in Section IV below) the attraction 'in the KK 

channel can be greatly enhanced, which we know will improve the out-

put p-width, the above defect may also be cured. The output also 

suffers the same difficulties as the one-channel case: large output 

p-width, flat trajectories, violation of unitarity for lower t values. 

Since these qualitative features apparently are not sensitive to the 

'presence of the IT channel, a completely self-consistent solution is 

• 	considered as not significant 

We next try to see whether we can improve the output by chang-

ing the input drastically. As it turns out, mainly because unitarity 

at the strip boundary puts such a stringent restriction on the imag- 

• 	mary part of the potential, we are unable to improve our result in 

• 	 •. any satisfactory way. We explain the details as follows: 

(i) The strip width: In contrast to the fixed-spin particle 

exchange case, the potential, now depending on the strip width, de- 

• 	• 	creases when we increase the latter. The additional attraction we can 

get by increasing a is thus very limited. 	 • 

• 	 (ii) The trajectory: A steeper input trajectory will decrease 

the potential and flatten the output trajectory., the approximately self.!. 

consistent p-trajectory used is about the best compromise we can 

• 	 manage. 

(iii) The residues: A steeply-falling residue function gives 

steep output 'trajectory and satisfies unitarity better for all values 
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of £ , but the output residue function is never steeply-falling 

• and, if we try to keep the p-peak in the cross section at the right 

position, the trajectory develops a large imaginary part so fast that 

we are unable to follow it above L = 0.4 . If we allow the p-peak 

V 

 to appear at much lower energy we can get steeper trajectories (Fig. 	 V 

10). 	
V 	

V 

V V 

	

V 

 (iv) The effect of K and • : In the fixed..spin particle 

exchange case we found that we could narrow the output p..width by. 

V 	changing the contribution of. K*. and -exchange, if we made the 	. 	
V 

p-meson as a bound state of the id? channel weakly coupld to the 

wir channel. There we had to use a y,ff too large to be acceptable; V 

• 	in the present case we find, that unitarity at the strip boundary rules 

V out such a possibility. In Fig. 11 we plot two illustrative cases 

where we increase the attraction in the Iff channel by very large 

, 

	

	factors. Even though unitarity is violated severely already at £ V1 , 

we still cannot get the experimental p-width. 

VV 
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• 	 .5. 	
5 	

5 	
.5 

• 	IV, CONCLUSION 	 S  

Our two-channel calculation in Section Ill-B of the output 

p-width for fixed-spin particle exchange agrees with earlier resultsl2a 

• based on the same N/D model (Regge trajectories were not considered 

in the earlier publications). From the discussion of Section Ill-C 

it is evident that Reggeization, because of the restriction imposed 

by unitarity at the strip boundary, does not improve the result in any 

appreciable way in our approximation scheme. 

• 	 Three immediate possible improvements in the dynamics come to 

mind: (a) Iterate the potential to get additional strength without 

violating unitarity. (b) Include additional inelasticity through a 

complex generalized potential within the strip. This, furthermore, 	S 

will allow a smooth transition across the strip boundary, avoiding 

the artificial singularity, (c) Treat properly the long range. 

20 
Pomeranchuk repulsion in order to narrow the output p-width. All 

these aspects can be handled very naturally using the Mandeistam iter.. 

ation scheme. In view of Finkeistein's results 12b 9  using the equi.. 

• valent potential method by BaAzs, we know that point (a) is signifi-

cant. The importance of (c) is established in Ref. 20 Thus ye need 

not be too discouraged by our results here. Adding one more channel 

has not in Itself turned out to cure the ills of a particular strong • . 

• 

	

	 interaction model, but we have shown that it is computationally feasible 

to include multi-channel effects in a Reggeized aystem. The qualita.. 

• 	
tive results zéported here should be of assistance In the construction 

of better modd.s, 	 S 	

• 
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Fig 8 	The approximately self-consistent residue functions Y 71  
and y 	(paranieters taken from Eef. 2b). (a 100 ni 2 ) 

- 	
•a(t)+l 

y125 a'(t) (o-t) % 
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Other residues are given by SU3 



too 

-50- 

2 -Channel 

-Channel 

0 	 -10 

(m7) 

MUB-11182 

Fig. 9 	The I = 1, Z = 1 cross section for the approxi- 

inately self-consistent case. 
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Fig. 10 	Output 1 1 trajectories for steep input residue 

functions (the trajectories are the same asthe approxi-

mately self-consistent case) (a = 200 rn 2 ), 

(a), y 	= 0.0375/(1 - 
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p-peak at 22Cm 2)) 

() y 	o.o/ (i - f) (P_Peak at 15(2)) 

Other residues are fixed by SU 3  ratios. 
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Fig. 11 	The I = 1 , 2. = 1 cross section. 
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B1 (s) , B1 (s) same as the approximately self-consistent case, 

B2 (s) is 15 times the approximate self-consistent case. 

The kink in the cross section is due to the presence of a secondary trajecto±y 
vhich is mainly a resonance of the lilT channel. (As a measure of violation of tinitrity± 
wehave .x1 0,6i ,X2 l,23 for L1.) 

(b) 	= 4O0 j2 	 . 

= 0.0136/(i - 	and 	 o.003C/(3. 
-50  

	

PnIl

is 10 times the value given by St)3 . 	= 0.52 A2  = 1,77 for 2. = 1) 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission: 

Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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