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Age-Dependent Analysis and Stochastic Generation of Child-Directed Speech  

Okko Räsänen (okko.rasanen@tuni.fi) & Daniil Kocharov (daniil.kocharov@tuni.fi)  
Signal Processing Research Centre, Faculty of Information Technology and Communication Sciences,  

Tampere University, P.O. Box 553, FI-33101 Finland 
 
 

Abstract 
Child-directed speech (CDS) is a particular type of speech that 
adults use when addressing young children. Its properties also 
change as a function of extralinguistic factors, such as age of 
the child being addressed. Access to large amounts of 
representative and varied CDS would be useful for child 
language research, as this would enable controlled 
computational modeling experiments of infant language 
acquisition with realistic input in terms of quality and quantity. 
In this study, we describe an approach to model age-dependent 
linguistic properties of CDS using a language model (LM) 
trained on CDS transcripts and ages of the recipient children, 
as obtained from North American English corpora of the 
CHILDES database. The created LM can then be used to 
stochastically generate synthetic CDS transcripts in an age-
appropriate manner, thereby scaling beyond the original 
datasets in size. We compare characteristics of the generated 
CDS against the real speech addressed at children of different 
ages, showing that the LM manages to capture age-dependent 
changes in CDS, except for a slight difference in the effective 
vocabulary size. As a side product, we also provide a 
systematic characterization of age-dependent linguistic 
properties of CDS in CHILDES, illustrating how all measured 
aspects of the CDS change with children’s age. 

Keywords: child-directed speech; language acquisition; 
language models; data generation; statistical modeling 

Introduction 
Child-directed speech (CDS), also known as infant-directed 
speech in case of infant addressees, is a particular speaking 
style that adults commonly use when addressing young 
children. CDS comes with acoustic and linguistic 
characteristics that differ from adult-directed speech (see, 
e.g., Soderstrom, 2007, for a review). However, CDS is not a 
monolithic construct, but its properties and quantity can vary 
from one speaker and context to another and change as the 
child ages, indicating talker adaptation to the communicative 
situation and listener characteristics (e.g., Farran et al., 2016). 

Since CDS is the primary input from which children learn 
their native language, it has become a topic of interest to 
researchers working on computational models of language 
acquisition. Modern computational models are typically 
implemented as machine learning algorithms that try to learn 
statistical regularities from language data in an unsupervised 
manner. These models can be roughly categorized to those 
operating on speech audio (e.g., Cruz Blandón, Cristia & 
Räsänen, 2023; de Seyssel, Lavechin & Dupoux, 2023) and 
those operating on text transcripts of CDS (e.g., Huebner et 
al., 2021; Yedetore et al., 2023). The idea in such models is 
to explore to what extent child language development can be 
explained in terms of learning from (limited) language input 
accessible to real infants, or, alternatively, to what extent 

speech and language technology tools could be made as data 
efficient as human learners. In this work, we are interested in 
the former, modeling of infant speech learning, where the key 
challenge is to explain how infants can bootstrap language 
learning from the continuous speech signal that lacks 
universal or otherwise transparent cues to the underlying 
linguistic structure (see, e.g., Dupoux, 2018).  

Notably, the current research on computational models of 
speech learning is hindered by the lack of ecologically 
plausible training data. Existing modeling studies are largely 
based on unrealistically small CDS datasets or larger read 
speech datasets in adult-directed speech (ADS) style (e.g., 
Khorrami & Räsänen, 2021; Lavechin et al., 2022; see also 
Dunbar, Hamilakis & Dupoux, 2022). This is since there are 
no large enough good-quality CDS speech corpora to 
represent infant language experience at a realistic scale, nor 
is there enough transcribed CDS data to support speech 
synthesis to create age-appropriate CDS to cover the first 
years of infant life. Child-centered long-form audio 
recordings could otherwise be an option, but the extremely 
low speech-to-noise ratio (Räsänen et al., 2019), lack of 
annotations, and the general uncontrolled nature of the data 
complicates their use in modeling studies (e.g., de Seyssel et 
al., 2023; Lavechin et al., 2024). Moreover, pre-recorded 
finite-scale data cannot be easily manipulated to study how 
individual differences in language experiences affect learning 
outcomes, a central issue in language acquisition research and 
in validating computational models of learning. 

In this paper, we propose a conceptual solution to the CDS 
data availability problem through stochastic generation of 
synthetic yet realistic CDS at a natural scale; first generating 
transcripts of parents’ verbal interactions with their children, 
and then synthesizing the transcripts into CDS with a text-to-
speech (TTS) system. We ask whether new naturalistic and 
age-appropriate CDS transcripts can be created with the help 
of the finite data that currently exists for CDS, and in such a 
way that the generation also produces new utterances instead 
of being limited to the forms attested in the training data. 
Novel utterances are crucial for ensuring that the generated 
input is linguistically and acoustically more variable than 
simple repetition of the original CDS data to obtain the 
desired quantity of words or speech hours. To this end, we 
describe a language model (LM) based system for recipient 
age dependent CDS generation and evaluate it against real 
CDS on various linguistic properties. We only focus on the 
transcript-level, leaving CDS-style TTS for future work.  

As our second main contribution, we also provide an 
overall analysis of how basic linguistic properties of CDS 
vary with infant age, as performed on the North American 
English parts of the CHILDES dataset.  
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Background 
Recent work on text-based models of language acquisition 

has focused on training LMs on “small” data comparable in 
size to that of available to language learning children. The 
typical aim of LM-based studies is to investigate what aspects 
of grammar the LMs can acquire from finite data (Linzen & 
Baroni, 2021). In this context, a popular resource for text-
based CDS data is the CHILDES database of infant-caregiver 
interactions (MacWhinney, 2000). The North American 
English section of CHILDES consists of approximately 5M 
words, which translates into approximately up to 1 year’s 
worth of language input to a child (Gilkerson et al., 2017), 
but of which only a small fraction corresponds to speech 
directed at infants younger than 12 months. The previous 
research with CHILDES data has shown that neural LMs can 
learn grammatical abstractions from the data, as either 
evaluated from synthetic transcripts sampled from the model 
(Pannito & Herbelot, 2020) or by exposing the models to 
NLP benchmarks probing various grammatical phenomena 
(Huebner et al., 2021; Yedetore et al., 2023). Beyond 
CHILDES, the current best-performing LMs can achieve 
close-to-human grammatical competence when trained with 
a comparable number of words to that heard by an 
approximately 12–14 years old child (Warstadt et al., 2023).  

However, the earlier LM-based studies are by no means 
conclusive as models of human learning. First, the existing 
studies with LMs do not model the developmental trajectory 
of child language skills as a function of learner’s age, even 
though this would be essential for a comprehensive model of 
learning (see Cruz Blandón et al., 2023; but see Huebner et 
al., 2021, for work in this direction). Instead, repeated batch 
training is typically used to train the LMs with all the 
available data, after which grammatical benchmarks compare 
models’ behavior to adult-like linguistic definitions of 
appropriate syntax in the language. In reality, the language 
heard by a learner depends on her linguistic competence, and 
this competence evolves with age. To model this process in 
detail, suitable language input data in terms of quality and 
quantity would be needed throughout the developmental age-
range of interest, and for which CHILDES is too sparse.  

Second, infants and young children do not perceive speech 
in terms of discrete invariant units, such as letters or words, 
but in terms of complicated and variable acoustic speech 
where nothing repeats the same and where the underlying 
linguistic units and structures are not directly accessible. In 
fact, how infants manage to acquire useful and sufficiently 
invariant speech representations, what these representations 
might be, and at what age they emerge, are major modeling 
research questions in themselves (Dupoux, 2018). These 
questions require answers before the LM-based models of 
learning can be linked to language acquisition in children. 

Third, the input a learner receives varies from a child and 
family to another. The way how the quality and quantity of 
language input varies between children and how it affects 
their learning outcomes is an active topic of research (e.g., 
Cychosz et al., 2020; Gilkerson et al., 2017). Computational 
modeling could be a powerful tool to study individual 

variability in language learning, but so far there is little work 
on the topic due to lack of sufficient data. Also, robustness of 
developed models should be tested against a variety of 
alternative yet realistic language exposures to properly 
validate their feasibility and scalability with realistic input.  

All these shortcomings could be addressed if the modeling 
research community had access to realistic but controlled 
CDS at a scale comparable to several years of child language 
input. Then we could start asking questions such as how 
phonemic perception, word recognition, or syntactic skills 
emerge from the finite and varying speech input available to 
children, what are the developmental trajectories of the 
involved capabilities, and at what point such representations 
might become invariant enough to connect with the findings 
from LM-based language acquisition studies. By having 
control over CDS properties as a function of extralinguistic 
factors, one could also use computational models to study of 
how individual variability in the linguistic and/or acoustic-
phonetic properties of input affects the learning process (e.g., 
linguistic variability and complexity in different families, 
age-dependent properties of the input, number of speaker 
voices, speaker intelligibility etc.). 

Being limited in size, CHILDES does not provide enough 
data for modeling studies with realistic amounts of input 
across the developmental timeline. Besides CHILDES, so-
called long-form child-centered audio recordings collected 
from children’s everyday environments exist (e.g., Cychosz 
et al., 2020). However, these data are still sparse in terms of 
individual children’s language experiences, as pooling of 
audio from multiple children results in multiple speaker 
voices, acoustic environments, and speaking styles. As 
mentioned in the introduction, long-form audios are also very 
challenging to work with, causing problems with automated 
analysis (e.g., Cristia et al., 2021) and computational 
modeling experiments (e.g., de Seyssel et al., 2023). 

In order to run realistic simulations of language acquisition 
across the developmental timeline while simulating different 
learners, an ideal dataset would: 1) consist of qualitatively 
representative CDS in terms of text transcripts and 
corresponding speech audio, 2) be large enough to support 
incremental acquisition from birth up to several years of age, 
3) have proper characteristics and input density for different 
child ages, 4) contain numerous different versions of the data 
as a function of other extralinguistic factors that affect 
properties of the language, and 5) contain complete 
annotations of all properties of the data. To this day, no such 
data exists. 

Our present aim is to address the data limitation problem 
by proposing a pipeline for stochastic generation of 
representative CDS as a function of extralinguistic factors. 
We do this by acknowledging that, even though a 
contemporary text-based LM is not a realistic model of an 
infant language learner, an LM trained on CDS can be a good 
model of the data without having to worry about the 
ecological plausibility of the model. Moreover, since our 
ultimate interest lies in generation of acoustic speech, an LM 
might be powerful enough to create novel utterances that 
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follow the (simplified) syntax and vocabulary of CDS while 
resulting in novel acoustic patterns (phones, syllables, and 
words in new coarticulatory contexts). Hence, we test 
whether an LM can be trained to generate authentic-looking 
but novel CDS so that the generation is modulated by 
extralinguistic factors, here using recipient child’s age as a 
proof-of-concept for the controllability. As a result, we 
quantitatively demonstrate how the LM indeed manages to 
generate authentic-looking CDS while capturing age-
dependent changes of the data. We also verify that the model 
generates previously unseen utterances at a rate comparable 
to empirical data.  

Methods 
The ultimate long-term motivation for the CDS generation 
pipeline, referred to as “Generator of Infant Language 
Experiences” (GILES), is to enable perfectly controlled 
computational modeling experiments of child language 
acquisition using CDS speech audio in terms of linguistic 
content and speaking style, but secondarily also enabling 
experiments on text-level transcripts or their phonemized 
representations (Fig. 1). By having a system for generation of 
realistic yet richly varying CDS at a scale comparable to 
speech heard by human children, and by being able to control 
properties of CDS in terms of age, parental education, 
number of siblings, or other potential extralinguistic factors, 
we can also start to systematically model and thereby study 
individual variation in language experiences and the 
corresponding learning outcomes between simulated 
learners. In the present study, however, we do not focus on 
the speech synthesis but describe and evaluate the first 
component of the GILES pipeline: a generator for CDS 
utterance transcripts that can be controlled with external 
factors, such as infant age. 

An overview of the pipeline is shown in Fig. 1. The aim is 
to train a language model that can be used to create realistic 
but novel-in-content CDS at scales beyond the original 
CHILDES, and such that the properties of the generated CDS 
can be varied through extralinguistic factors that can also 
affect CDS in reality. To verify that the generated data is 
realistic, we can compare the generated transcripts to those in 
the training data across any measures of interest. 
 
Data and pre-processing 
Since the work deals with transcripts of spoken language, we 
will use the term utterance for the basic unit of transcribed 
speech in both training and generated data, as delimited by 
full stops in the transcripts. We utilized the same North-
American corpora of AO-CHILDES (Huebner & Willits, 
2021), but accessed a more recent database version (v2021.1) 
using childes-db interface (Sanchez et al., 2019), as some age 
information were missing in the original AO-CHILDES.  

Using only the speech by mothers and fathers, the 
utterance-level transcripts were then assigned to 3-month age 
bins, centered at [3, 6, 9, …, 84] months, for age-dependent 
training, evaluation, and model age-conditioning purposes. 

 
Figure 1: Schematic view of the “Generator of Infant 
Language Experiences” (GILES) pipeline. An LM is trained 
for stochastic generation of CDS transcripts to simulate child 
language input at a realistic scale and as controlled by factors 
that affect properties of the input. The transcripts can be 
synthesized to speech audio for controlled computational 
modeling experiments on learning from speech. The speech 
synthesis module is not covered by the present study. 
 

After exclusion of utterances without child age information 
or transcription markers for incomprehensible speech, this 
resulted in transcripts with a total of 3.82 million word tokens 
and 862 992 utterances. 

For training and validation, all transcripts were converted 
to lower case, using whitespace to separate words, and with 
full stop as the utterance delimiter. The resulting word strings 
were then tokenized using BERT word piece tokenizer 
(Devlin et al., 2019) with a vocabulary size of 8000 tokens.  

For LM training, we used data from all the age bins except 
the 57-month age bin, which was used as a validation set for 
model selection. The training data tokens were concatenated 
into a long string, which was then split into a total of 51740 
samples of 100 word-piece tokens (approx. 74 words) each.  
 
LM architecture, training, and text generation 
The used LM architecture is a Transformer-based deep neural 
network that follows the basic GPT-2 architecture (Vaswani 
et al., 2017) but using the decoder module only. It consists of 
learnable 512-dimensional embedding layers for word tokens 
and token positions, where token and positional embeddings 
are combined through summation. A separate embedding 
layer is included for the age conditioning, where the scalar 
age value corresponding to the recipient of the current input 
(and thereby of the generated output) is mapped into a 512-
dim embedding vector using a feed-forward layer with ReLu 
activations. This age embedding is then concatenated in front 
of the positionally-encoded word token embeddings (in 
time). The embeddings are then processed by 5 standard 
Transformer blocks, each with 512 dimensional latent and 
output layers, 8 self-attention heads, and a dropout rate of 
0.05 between the blocks. The final layer is a softmax layer 
that maps the output from the last Transformer block into a 
posterior probability distribution across the token 
vocabulary.  
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In our experiments, the input sequence length was set to 

100 word piece tokens, and the task of the model was to 
predict the next token for each of the input tokens, as 
implemented by causal masking of the self-attention layers of 
the network. The model was trained with categorical cross-
entropy loss using minibatches of 64 samples, Adam 
optimizer, and learning rate of 0.0001. Validation loss was 
used for early stopping of training with patience of 15, and 
the best model was selected based on the validation loss.  

During text generation, a seed prompt of 1–4 contiguous 
tokens from a random position of the original training data 
was provided to the model as the initial input (the number and 
position sampled randomly from a uniform distribution). 
Given the seed, forward pass of the model was used to create 
a posterior distribution of over the next token, and the word 
was chosen by sampling from this distribution. The 
temperature of the distribution was not altered, but we limited 
the number of choices to top 500 most likely tokens. The 
chosen word was added to the input, and word-by-word 
generation was continued until a total of 60 tokens were 
reached, after which the last utterance was discarded unless 
it finished with a full stop. The first utterance containing the 
seed was also discarded. The sampling procedure was 
repeated 2000 times with different seed prompts and for each 
of the age bins of interest. Transcripts were generated for ages 
of 6, 9, 12, 15, 18, 21, 24, 36, and 48 months using the 
corresponding age as the conditioning variable for the model. 
After converting the BERT-encoded tokens back to words, 
this resulted in synthetic transcripts with a total of 
approximately 75,000 words generated per age bin.  

 
Evaluation  
To assess how the statistics of the CDS available in 
CHILDES change with age, and whether synthetic CDS 

transcripts exhibit similar patterns, several metrics were 
calculated from the original and generated data. The 
measured properties included type-to-token ratio (TTR) of 
lexemes as a measure of lexical richness, and the mean 
number of words and the mean number of dependencies of 
the root as a proxy for syntactic complexity. Mean utterance 
perplexity was calculated as a holistic measure for syntax, 
lexicon, and general acceptability of the generated output. 
Perplexity was obtained from an LM pre-trained on large-
scale English texts (GPT-2 small by OpenAI). We also 
compared frequency distributions of lexemes (“lexical 
divergence”) against the CHILDES 60-month-old bin to see 
whether relative lexeme frequencies and thereby their 
frequency ranks were comparable in the synthetic and 
original data. This was done by taking a fixed-size sample of 
CDS transcripts and from the CHILDES 60-mo bin, 
calculating frequencies of all lexemes that occur at least twice 
in the data, and then calculating Jensen-Shannon divergence 
between the frequency distributions of the two samples 
(where a lower value means more similar distributions). 
Finally, the occurrence rates of different part-of-speech 
(POS) categories were measured. For conciseness, we report 
the relative proportions for nouns, verbs, pronouns, 
adjectives, and interjections. Stanza toolkit (Qi et al., 2020) 
was used to perform data tokenization, POS tagging, 
lemmatization, and syntactic parsing, and treating utterances 
as sentences. This resulted in tree representations following 
the Universal Dependencies formalism. 

Since some of the metrics can be affected by the dataset 
size (e.g., TTR), we calculated all the metrics for 100 equal-
size random sub-samples of the data when sampling with 
replacement. For each sampling, 10000 words were 
randomly sampled for word-level measures (e.g., POS rates) 
and 1000 utterances were sampled for utterances-level 
measures (e.g., mean length). For perplexity evaluation, we  

Figure 2: Statistical characteristics of the generated (blue) and original CDS transcripts (red) as a function of simulated/real 
infant age. Violin plots show the distributions of measure values from 100 random sub-samplings. Dashed lines denote 2nd-
order polynomial fits to the model (blue) and original data (red). Note the non-linear spacing of the age-bins on the x-axes. 
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sampled 100 strings of at least 50 words so that the strings 
consisted of contiguous complete utterances.  

To ensure that the model is not simply memorizing the 
input, we also calculated the proportion of generated 
utterances (word strings without the final stops) that never 
occur as (sub)strings in the training data. The proportion is 
reported as a function of utterance length (in words), as 
shorter utterances are likely to recur more often.  

Results 
Fig. 2 shows the evaluation outcomes for the original and 
generated transcripts as a function of real/simulated child age. 
Regarding the original CDS in CHILDES, the results reveal 
several age-dependent patterns that qualitatively align with 
earlier research on change of CDS with age (Soderstrom, 
2007): caregiver utterances become longer, vocabulary 
becomes richer (increasing TTR), and language becomes 
generally more complex (higher perplexity, more 
dependencies per root) while the proportion of interjections 

 
 

Figure 3: Proportion of generated utterances (blue) and 
CHILDES utterances (red) that consist of word strings that 
never appear (or recur) in the used CHILDES training data. 
The error bars denote ±1 SD across the age bins. 
 
decreases systematically. Notably, there is a non-linear U-
shaped curve for several of the metrics, typically with a 
turning point around 15 to 21 months of age. While this could 
partially be an artifact of the heterogenous corpora included 
in CHILDES, we hypothesize that this may also reflect the 
rapidly evolving and observable infant communication skills 
around this age range (compare, for example, CDI 
vocabulary norms in WordBank; Frank et al., 2016). If the 
caregivers are adapting their speech to the infants’ language 
skills, the temporary drop in adjective and pronoun rates 
around this age might be a trade-off for rapidly increasing 
naming of different objects and events to the learner. In fact, 
when we excluded single-word utterances from the analysis, 
complexity measures (perplexity, number of dependencies 
per root, utterance length) also showed slight U-shaped 
behavior, where the more complex multi-word utterances 
used during the pre-linguistic stage become simpler around 
12 months of age, and before starting the gradual growth 
towards more complex adult-like language after that (not 
shown separately). 

As for the LM, the model manages to replicate the basic 
age-dependent patterns of the original data, albeit with some 
minor differences. The model shows smoother changes in 
statistics as a function of age than CHILDES (see, e.g., 
number of dependencies per utterance root), where some of 
the sudden changes in CHILDES may originate from the 
heterogeneity of the included corpora for different age bins. 
On the absolute scale, most of the measure values are very 
similar between the generated and real CDS. Utterance 
length, perplexity, lexical divergence, and most of the POS 
rates are nearly identical between the empirical and generated 
data. A slight difference is observed for the number of 
dependencies per utterance root, where there are somewhat 
more dependencies for the generated data for the youngest 
age groups. The most striking difference is in type-to-token 
ratio (TTR), where the model has a smaller effective 
vocabulary size than the original data, and in perplexity, 
where the language generated by the model is easier to 
predict than that of the original CHILDES. This is an 
expected tendency of a small-scale LM, where averaging of 
statistics results in less varied use of rare words than in the 
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Table 1: Examples of typical (green) and manually identified 
ungrammatical automatically generated transcripts (red) for 
6-, 15-, and 48-month age conditioning. Capitalization and 
question marks inserted as a post-processing step. 
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original data. Since the other metrics on syntax (utterance 
length, number of dependencies per root, POS rates) are 
generally similar between the datasets, this suggests that the 
lower perplexity of the generated data is primarily driven by 
the less variable vocabulary of the generator. 

Fig. 3 shows the proportion of generated utterances that 
never occur in the training data together with the proportion 
of unique utterances in CHILDES itself. Approx. 60% of the 
generated 4-word utterances and nearly all utterances longer 
than 8 words are completely new. The result shows that the 
model is not memorizing the training data but is using 
compositional knowledge to create new messages that follow 
the statistics and linguistic acceptability of the real CDS (cf. 
perplexity and grammatical measures in Fig. 1). Moreover, 
the rate at which the model generates completely novel 
utterance forms is very similar to the proportion of utterances 
that only occur once in CHILDES. This shows that real 
speakers and the model are equally creative in generating new 
messages from a finite vocabulary they’ve been previously 
exposed to, introducing linguistic variability to the data that 
did not exist in the original CHILDES. We also manually 
analyzed the unique words or utterances from the model and 
in CHILDES, and we did not find obvious qualitative 
differences between the two sources. 

Finally, Table 1 shows semi-randomly chosen examples of 
typical generated transcripts together manually identified 
cases with atypical characteristics compared to 
grammatically correct written English. However, definition 
of what constitutes a clearly erroneous generated text is 
challenging, as the original conversational CDS speech also 
contains various non-words, repetitions, hesitations, and 
various grammatical idiosyncrasies, such as:  “gnagnagna”, 
“toochoochoo”, “pushy pushushushushushushush”, "Is my 
dog got lost?", "Well he'd be lost together.", "So there'll be 
wee crying around here Saturday morning.", "Well well put 
that han put the handle in the room.", and "What's the matter 
with you is you just haven't got enough attention lately?" 
(examples from Soderstrom and Brown corpora of 
CHILDES). Note that the sequences of generated utterances 
(here separated by punctuation) are not supposed to represent 
continuous speech acts, but each utterance should be viewed 
as a speaker turn in a dyadic interaction instead. 

Discussion and Conclusions 
The present study provides three main contributions: First, it 
proposes a conceptual approach to generate CDS training 
data for computational models of language learning from 
speech by stochastic generation of synthetic yet naturalistic 
CDS with LMs and TTS. Second, it demonstrates that a 
Transformer-based LM trained on real-world CDS from 
CHILDES can generate transcripts comparable to the original 
ones, and these transcripts include new unattested and 
linguistically appropriate CDS utterances at the same rate as 
new forms observed in CHILDES. Third, the paper describes 
how several linguistic properties of North American English 
CDS in CHILDES change with infant age.  

Overall, the developed system is a step towards flexible, 
controlled, and stochastic generation of representative CDS 
addressed at children of different ages and at a desired data 
scale. The next step is to pair the text-generation pipeline with 
a high-quality TTS system capable of producing realistic 
prosody, coarticulatory effects and context-dependent 
variability, and other central factors of conversational speech 
in general and CDS in particular. By doing so, the approach 
enables computational modeling studies to use correct 
amounts of learning data to simulate language learning from 
input, and to vary the data properties between learners or 
model training runs. The future aim is to expand the system 
to model, and thereby generate, variation in CDS also due to 
other extralinguistic factors than child age. This opens new 
avenues for systematic exploration of how different factors 
affect learning outcomes in models of learning.  
 
Limitations 
One limitation of the present system is that the generated 
vocabulary is somewhat smaller than that of the original data 
(as indicated by TTR), and as predicted by theoretical and 
empirical considerations (see Dohmatob et al., 2024). In post-
hoc tests, we explored increasing the sampling temperature 
during generation to add more variability to the vocabulary. 
While this can be used to increase TTR to a CHILDES-
compatible range, the perplexity also increases due to 
increasing grammatical errors.   

We also did not evaluate whether the linguistic measures 
scale similarly with increasing sample sizes in the real and 
generated data. For instance, the vocabulary of the LM is 
largely determined by the vocabulary present in CHILDES 
(although new words are invented at times; see the new 1-
word rates in Fig. 3), whereas real caregivers will have a 
broader vocabulary of English at their disposal.  

Since the primary use case is to use GILES to produce 
ecologically plausible CDS on scales beyond the size of 
CHILDES, future work should study additional techniques 
for vocabulary enrichment and thereby ensuring accuracy of 
TTR and realism of data size scaling. These could include, 
e.g., original and synthetic data mixing (cf. Dohmatob et al., 
2024), injecting additional vocabulary at training time or as 
post-processing step, or via inclusion of additional training 
corpora, such as those in the BabyLM Challenge datasets 
(Warstadt et al., 2023). In general, scaling law issues in the 
context of synthetic data (Dohmatob et al., 2024) should be 
carefully analyzed and addressed in our particular use case. 

Finally, it should be noted that CHILDES is a heterogenous 
collection of CDS corpora collected from various settings 
(lab vs. home, free play vs. scripted tasks). This may impose 
different biases to the type of CDS in each of the age bins. 
Yet, the studied age bins contained data on average from 10.6 
different corpora (min 2, max 17), which alleviates the effects 
of corpus-specific factors. This is also indicated by the 
relatively smooth age-dependent trends of the linguistic 
measures. However, future work should replicate the 
analyses with statistical models that control for the potential 
known factors of the individual corpora. 
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