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A B S T R A C T

The last decade has seen numerous record-shattering heatwaves in all corners of the globe. In the aftermath of
these devastating events, there is interest in identifying worst-case thresholds or upper bounds that quantify
just how hot temperatures can become. Generalized Extreme Value theory provides a data-driven estimate of
extreme thresholds; however, upper bounds may be exceeded by future events, which undermines attribution
and planning for heatwave impacts. Here, we show how the occurrence and relative probability of observed
yet unprecedented events that exceed a priori upper bound estimates, so-called ‘‘impossible’’ temperatures, has
changed over time. We find that many unprecedented events are actually within data-driven upper bounds,
but only when using modern spatial statistical methods. Furthermore, there are clear connections between
anthropogenic forcing and the ‘‘impossibility’’ of the most extreme temperatures. Robust understanding of
heatwave thresholds provides critical information about future record-breaking events and how their extremity
relates to historical measurements.
1. Introduction

In recent years, our planet has experienced a growing number of
record-breaking heatwaves that have a devastating impact on human
health and infrastructure. Western Russia experienced temperatures
in June, 2010, that were unprecedented since at least the 19th cen-
tury (Rahmstorf and Coumou, 2011), which contributed to significant
loss of human life (Dole et al., 2011). A deadly heatwave impacted
much of western Europe in June and July, 2019, breaking previous
records in metropolitan France by nearly 2 ◦C and directly causing
hundreds of excess deaths (Mitchell et al., 2018; Vautard et al., 2020).
In late June, 2021, an unprecedented heatwave struck the United States
Pacific Northwest and western Canada that broke all-time records by
more than 15 ◦C (Bercos-Hickey et al., 2022) and was among the most
extreme events ever recorded globally (Thompson et al., 2022), causing
over 500 deaths (Popovich and Choi-Schagrin, 2021) and significant
agricultural losses (Baker and Sergio, 2021). These and many other sim-
ilarly devastating heatwaves are termed ‘‘low likelihood, high-impact’’
(LLHI) weather events by the sixth Intergovernmental Panel on Climate
Change Report, which furthermore states that we currently have low
confidence in current and future projections of LLHIs (Seneviratne
et al., 2021). It is now clear that large swaths of the globe are vulner-
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E-mail address: mdrisser@lbl.gov (M.D. Risser).

able to LLHI heatwaves (Thompson et al., 2023), which poses serious
problems for adaptation and impacts planning.

In the aftermath of a devastating heatwave event, there is consid-
erable interest in quantifying worst-case upper bounds on extreme hot
temperatures as well as their frequency or return interval. Atmospheric
theory provides physical upper bounds on extreme temperatures (see,
e.g., Zhang and Boos, 2023), but these generally correspond to ideal-
ized conditions that may rarely occur in reality. Generalized extreme
value (GEV) theory provides a data-driven estimate of thresholds for
extremes: when the GEV shape parameter is negative, the distribution
has a finite upper bound (Coles, 2001). When the shape parameter is
less than −0.3, the distribution is very sharply bounded. However, for
the aforementioned heatwaves in Russia, France, and British Columbia,
the hottest temperatures experienced during the event exceeded a priori
GEV-based upper bounds. This leads us to define a so-called ‘‘impossi-
ble’’ temperature: measurements that are extreme enough relative to
more typical extrema that they exceed what was previously thought to
be the hottest possible temperatures. We use ‘‘impossible’’ informally
since, of course, the temperatures actually occurred in Nature. Impos-
sible temperatures defined this way pose serious problems to planning
for the impacts of extreme heatwaves: the best estimate is that these
events have a zero probability, meaning we cannot assess their rarity
https://doi.org/10.1016/j.wace.2025.100743
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or return interval much less determine the extent to which human
activities affected the statistics of the event.

In many cases, the data-driven upper bounds used to qualify a
emperature as ‘‘impossible’’ are derived using traditional extreme
alue methods: non-stationary GEV analysis with a monotonically in-
reasing covariate such as time or greenhouse gas concentrations to
ccount for climate change, applied independently to the records at
ach weather station (see, e.g, Van Oldenborgh et al., 2019; Philip

et al., 2021; Bercos-Hickey et al., 2022). It has been shown that
augmenting time trends with additional physically-based covariates
can often help anticipate the most extreme temperatures (Zeder and
ischer, 2023). While the traditional approach (even when augmented
ith additional covariates) is relatively straightforward to implement
nd hence broadly used, it ignores an obvious source of informa-
ion: measurements of temperature extremes from nearby locations.
ne solution to address this limitation leverages a relatively old idea,
herein one ‘‘trades space for time’’ as is done in regional frequency
nalysis (Hosking and Wallis, 1993). This is particularly important
iven that the relatively short observational record can lead to real-

world events being deemed impossible (Zeder et al., 2023). The broad
statistical literature on novel extreme value techniques (see, e.g., Huser
and Wadsworth, 2019; Zhang et al., 2021, 2023) allows us to use
information from spatially-nearby sites and provides a path forward
for assigning non-zero probabilities to the most extreme temperatures,
even from a data-driven perspective.

In this paper, we explore how methodological choices impact data-
riven upper bound thresholds for the most extreme temperatures,
hat we refer to as unprecedented heatwaves. We specifically focus on

one-day temperature extremes, since their underlying analyses com-
monly form the basis for climate change adaptation, mitigation, and
attribution. ‘‘Unprecedented’’ is defined as annual maximum daily max-
imum temperatures that are at least 4𝜎 events relative to other annual
maxima (see Section 2.2). Our approach leverages in situ records and
is distinct from dynamical model-based studies to assess statistics of
impossible temperatures (e.g., McKinnon and Simpson, 2022; Fischer
et al., 2023). We explicitly demonstrate that, using the same input
ata, it is very likely that state-of-the-art methods can explain 69.5%
ore of the impossible temperatures from the historical record relative

to the traditional approach. Equipped with quantitatively non-zero
robabilities for these events, we then revisit the attribution prob-

lem and propose a metric to quantify the relative rarity of the next
unprecedented heatwave event.

2. Materials and methods

2.1. Data sources
We analyze measurements of daily maximum temperature (◦C)

from the Global Historical Climate Network-Daily (GHCN-D) database
(Menne et al., 2012) over the historical record, defined as 1901 to
022. We identify a high-quality set of records based on a minimum
hreshold of non-missing daily measurements as follows: first, we define
nnual ‘‘blocks’’ as January–December for stations in the Northern
emisphere and July–June for stations in the Southern Hemisphere.
ext, we calculate and store the maximum daily maximum temperature

denoted ‘‘TXx’’) in each block-year so long as that block-year had at
east 66.7% non-missing daily measurements. We also require that the

TXx occurs in the warm season, i.e., April–September for the Northern
Hemisphere and October–March for the Southern Hemisphere. We
then select stations that have at least 50 years of non-missing TXx
measurements over 1901–2022. We acknowledge that allowing for
as many as one-third of missing measurements in a given year is
anti-conservative; this choice was made to ensure we have as many
measurements for analysis as possible. Finally, we remove stations
that have less than one other station within approximately 500 km,
since this prevents us from leveraging spatially-nearby measurements

(this step removes 121 stations from the 8113 records with at least

2 
50 years of data). Ultimately, this yields 𝑁 = 7992 gauged locations
for analysis, denoted , the geographic distribution of which is shown
in Supplemental Figure S3. Denote the TXx measurements as {𝑌 (𝒔, 𝑡)}
in year 𝑡 = 1901,… 2022 for station 𝐬 ∈ . Across all stations and years,
this yields 𝑛 = 612, 735 non-missing TXx measurements for analysis.
It is important to note that the temperature records we analyze are
of differing length: of the 7992 records, only around 2000 have non-
missing TXx measurements in the early 1900s and only around 4000 in
2022; the highest density of non-missing records was in the 1960s (see
Fig. 1a). The geospatial distribution of the overall length of temperature
records and for each decade is shown in Supplemental Figure S4.

Physical information about the Earth system is a useful tool for
describing spatial and spatio-temporal variability in the behavior of
weather extremes (see, e.g., Zhang et al., 2010; Risser et al., 2021;
Zeder and Fischer, 2023; Zhang et al., 2024). First, we use five co-
variates to describe year-to-year variability and secular trends in the
TXx climatology: a time series of the radiative forcing from greenhouse
gases (GHGs) to describe human-induced secular trends (following
seminal work from Arrhenius, 1897); the ENSO Longitude Index (ELI,
Williams and Patricola, 2018) to account for the El Niño-Southern
Oscillation (ENSO); the Standardized Precipitation Evapotranspiration
Index (SPEI; Vicente-Serrano et al., 2010) to account for the effect of
evapotranspirative cooling from the surface soil moisture content and
local vegetation (Domeisen et al., 2023); and the Pacific-North Amer-
ican (PNA) teleconnection pattern and the North Atlantic Oscillation
(NAO) to account for large-scale modes of climate variability (Kenyon
nd Hegerl, 2008). While the SPEI covariate is temperature depen-

dent, in general there is a separation of time scales between long-
erm drought metrics and short term heatwaves. Second, we utilize
levation (meters above sea level) to describe orographically-driven
eterogeneity in the statistical parameters that define the climatological
istributions. For more information, see Section 1.2 of the Supporting
nformation and Supplemental Figure S5.

2.2. Selecting a test set of unprecedented temperatures

To assess the efficacy of data-driven upper bounds derived using
tatistical methods, we need a set of test events that are excluded from
he analysis – those that are very extreme (and hence ‘‘unprecedented’’)
ven relative to more typical annual maxima. (As an aside, note that
ur use of the term ‘‘unprecedented’’ does not necessarily imply that the
emperatures of interest have never before occurred, but instead is used
o represent the most extreme events.) For our analysis, it is particularly
mportant to avoid the selection bias associated with so-called ‘‘trigger
vents’’ (Miralles and Davison, 2023), which can lead to errors in return

level estimates of the most extreme events. In selecting a set of test
events from gauge-based records, however, it is critical to ensure that
he selected events arereal and do not correspond to measurement
rrors. We therefore propose a threshold-based algorithm to identify

the unprecedented events used to test our statistical methods; see
Section 2.1 of the Supporting Information for complete details. In short,
the method requires that the selected TXx measurements are larger
han the 95th percentile of all TXx at the station, at least 4𝜎 larger
han typical extreme temperatures at the gauged location, and have at
east one neighboring spatial or temporal measurement that is at least
 1𝜎 extreme. We explored various combinations of these subjective
hresholds and found that our results were insensitive to these specific
hoices (see Section 2.1 of the Supporting Information). This approach

yields a total of 1692 candidate events out of the more than 600,000
measurements from all 7992 stations. Our algorithm further determines
that 𝑛err = 147 are measurement error events (which are discarded
from the analysis altogether) leaving 𝑛real = 1545 real unprecedented
events (representing less than 0.3% of all TXx measurements). The
unprecedented events are withheld from our various statistical analyses

and used as out-of-sample test data. The real vs. measurement error
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Fig. 1. The number of unprecedented measurements and measurement errors in each year (panels a. and b., respectively), along with the geographic distribution of GHCN-D
gauged locations (gray points, all records) with at least one unprecedented event (red circles; panel c.). Recall here that ‘‘unprecedented’’ refers to annual maximum daily maximum
temperatures that are at least 4𝜎 events relative to other annual maxima (see Section 2.2 for more details). Boundaries for five continental summaries are also shown in panel (c)
along with the fraction of stations in each region with at least one unprecedented event. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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events are tallied for each year in Fig. 1(b)–(c); the geographic distri-
ution of where the unprecedented events occur are shown in Fig. 1(e);
upplemental Table S1 categorizes the number of stations with real

and measurement error events. In light of the differing record lengths
discussed in Section 2.1 and shown in Fig. 1(a), we also show the
occurrence rates of unprecedented events each year, normalized by the
total number of non-missing TXx records; see Fig. 1(d). Note that both
the number and relative rate of unprecedented events appears to be
increasing since about 1960, with trends earlier in the record obscured
by large spikes in 1934 (108 events), 1936 (342 events), and 1954 (93
events). Furthermore, the unprecedented events occur across all global
land areas that are sampled by the GHCN-D database.

2.3. Extreme value analysis

As described in Section 1, our hypothesis is that many extreme
temperatures are deemed ‘‘impossible’’ largely because of methodolog-
ical choices. Specifically, the traditional approach ignores (at least)
three important sources of information: (1) year-to-year variability in
temperature extremes, (2) nearby locations will experience the same
3 
types of heatwaves (climatological dependence, over long time scales),
and (3) nearby locations will also experience the same heatwave events
weather dependence, over short time scales). We briefly describe how
e account for each of these sources of information.

First, we suppose the TXx measurements in year 𝑡 at gauged loca-
tion 𝒔, denoted 𝑌 (𝒔, 𝑡), arise from a Generalized Extreme Value (GEV)
distribution whose parameters depend on space- and time-varying co-
variates. The cumulative distribution function for 𝑌 (𝒔, 𝑡) is

P(𝑌 (𝒔, 𝑡) ≤ 𝑦) = exp
{

−
[

1 + 𝜉(𝒔, 𝑡)
(

𝑦 − 𝜇(𝒔, 𝑡)
𝜎(𝒔, 𝑡)

)]−1∕𝜉(𝒔,𝑡)
}

(Coles, 2001, Theorem 3.1.1, page 48), defined for {𝑦 ∶ 1 + 𝜉(𝒔, 𝑡)(𝑦 −
𝜇(𝒔, 𝑡))∕𝜎(𝒔, 𝑡) > 0}. Following, e.g., Zhang et al. (2010), Sillmann et al.
(2011), and Risser et al. (2024), we utilize covariates to describe year-
o-year changes in different aspects of the extreme value distribution,

assuming
𝜇(𝒔, 𝑡) = 𝜇0(𝒔) + 𝜇1(𝒔)GHG𝑡 + 𝜇2(𝒔)ELI𝑡 + 𝜇3(𝒔)SPEI(𝒔, 𝑡)+

𝜇4(𝒔)PNA𝑡 + 𝜇5(𝒔)NAO𝑡
log 𝜎(𝒔, 𝑡) = 𝜙0(𝒔) + 𝜙1(𝒔)GHG𝑡

(1)
𝜉(𝒔, 𝑡) ≡ 𝜉(𝒔)
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In other words, the center of the GEV distribution 𝜇(𝒔, 𝑡) is modeled
statistically as a linear function of GHG forcing, the ENSO longitude in-
dex (ELI), the Standardized Precipitation Evaporation Index (SPEI), the
Pacific-North American teleconnection pattern (PNA), and the North
Atlantic Oscillation (NAO). The natural logarithm of the year-to-year
variability log 𝜎(𝒔, 𝑡) is modeled statistically as a linear function of GHG
forcing. The shape parameter, 𝜉(𝒔), governs the upper tail behavior and
varies across space but is otherwise time-invariant (as is standard prac-
tice for heatwaves; see, e.g., Philip et al., 2020). The GEV formalism
allows us to quantify extreme heatwaves using three quantities:

1. Data-driven upper bounds: 𝑏(𝒔, 𝑡) = 𝜇(𝒔, 𝑡) − 𝜎(𝒔, 𝑡)∕𝜉(𝒔). This
quantity is well-defined when 𝜉(𝒔) < 0. Note that the estimated
upper bound will always be larger than the largest TXx measure-
ment, reiterating the importance of treating the unprecedented
measurements as out-of-sample when fitting GEV distributions.

2. Risk probabilities, denoted 𝑝(𝒔, 𝑡; 𝑢), which quantify the likeli-
hood of exceeding a given temperature threshold 𝑢 at a location
𝒔 and year 𝑡. Alternatively, the risk probability can be defined as
the inverse of the return interval for 𝑢.

3. The 𝜎-event threshold 𝜏(𝒔) = [𝑏(𝒔, 𝑡) − 𝑚(𝒔, 𝑡)]∕𝜎(𝒔, 𝑡) =
−𝛤 (1 − 𝜉(𝒔))∕𝜉(𝒔), where 𝛤 (⋅) is the gamma function and 𝑚(𝒔, 𝑡) =
𝜇(𝒔, 𝑡) +𝜎(𝒔, 𝑡)[𝛤 (1 −𝜉(𝒔)) − 1]∕𝜉(𝒔) is the GEV mean. This threshold
quantifies how extreme a temperature measurement must be
(number of 𝜎’s) relative to the GEV mean to be considered
‘‘impossible’’. Note that 𝜏(𝒔) is time-invariant because the shape
parameter 𝜉(𝒔) is time-invariant.

Second, we propose a statistical framework to account for the fact
hat nearby stations will experience similar heatwave climatologies:
n other words, the spatially-varying quantities on the right-hand side
f Eq. (1) should be spatially coherent (i.e., spatially dependent). This
dea leverages the intuition of Tobler’s first law of geography: ‘‘every-
hing is related to everything else, but near things are more related than
istant things’’ (Tobler, 1970). We thus develop an approach related to
onditional independence methods (see, e.g., Cooley et al., 2007; Risser
t al., 2019) wherein the GEV coefficients are a linear combination of
patially-coherent, compactly supported basis functions. The centroid
f each basis function corresponds to the center of an equal-area
exagonal global grid (each cell with area approximately 200,000 km2)
ith nominal spacing of approximately 500 km; 356 of the cells have

at least one station. Our approach mimics that of regional frequency
nalysis (Hosking and Wallis, 1993), which borrows strength across

a group of (presumably nearby) sites to estimate extreme statistics.
nlike regional frequency analysis, however, our approach does not

equire one to identify homogeneous regions and instead simply re-
tricts the GEV coefficients to vary smoothly according to geospatial

coordinates (longitude, latitude, and elevation). This restriction ensures
hat nearby stations will have similar climatological properties.

Finally, we account for the fact that nearby stations will experience
the same heatwave events (i.e., accounting for weather dependence)
sing modern techniques from the spatial extremes literature (Zhang
t al., 2023). This approach accounts for spatial structure in the re-
lized TXx values in a given year using a flexible copula model. The
opula can account for spatially- and temporally-varying dependence
n extreme events (e.g., heatwaves may have different spatial structures
n the tropics versus the midlatitudes, and also the beginning versus

the end of the record) while also allowing the dependence to vary as
a function of how extreme the measurements are. The copula is the
mbedded within a variational autoencoder (an unsupervised learning
echnique; see, e.g. Doersch, 2016) to enable scalability to the large,

global data set that we set out to analyze in this paper.
Ultimately, we consider a set of statistical models for estimating

pper bound thresholds, starting with the traditional approach with
nly a single covariate, here GHG forcing (denoted ‘‘M1’’), and sequen-
ially increasing the complexity: adding additional physical covariates
 t

4 
(denoted ‘‘M2’’), accounting for climatological dependence only (de-
noted ‘‘M3’’), and furthermore accounting for weather dependence
(denoted ‘‘M4’’); see Supplemental Table S2. For each statistical model,
all components will be integrated within a Bayesian framework for
uncertainty quantification. For each of the statistical models we use
proper but non-informative prior distributions for all statistical pa-
rameters. The one exception is the GEV shape parameter, for which
we use the maximal data information (MDI) reference prior (Northrop
and Attalides, 2016; Zhang and Shaby, 2024) which is the optimal
‘‘noninformative’’ prior distribution. We note that the MDI prior is an
‘‘improper’’ prior, meaning that it is not a valid probability distribution;
however, the underlying theory guarantees that it will yield a valid
osterior distribution (Zhang and Shaby, 2024). Our expectation is that
4 will perform the best because it captures the most known structure

in the data; however, the hierarchy of models allows us to explicitly
ssess the relative importance of each innovation. Note that we could
ave considered other combinations of methodologies, e.g., accounting
or weather and climate dependence but only using the GHG covariate.
owever, the spatial aspects of M3 and M4 impose regularization on

he covariate coefficients (as with statistical learning methods; see,
.g., Gareth et al., 2013), wherein the regression coefficients can be
ssentially zeroed out in a data-driven manner when they do not
mprove the fit of the statistical model. More details on all aspects of

the statistical methods are provided in Section 2.2 of the Supporting
Information.

2.4. Upper bound uncertainty and containment of unprecedented events

Recall that our main objective is to assess the extent to which
tatistical methodology impacts the ‘‘impossibility’’ of each unprece-
ented event identified in Section 2.2. In other words, we want to

compare the data-driven upper bound estimates with the temperature
thresholds experienced in the unprecedented events and determine

hether or not the upper bound is larger than the actual observed
temperatures. Given a finite amount of data (e.g., roughly 120 years
f TXx measurements), estimates of the statistical parameters of a GEV
istribution are uncertain, such that each GEV parameter 𝜇, 𝜎, and

𝜉 are not perfectly known. The implication, then, is that functions of
these parameters (e.g., risk probabilities and upper bounds) will also
be uncertain. This concept is illustrated in Fig. 2(a), where we show
how the TXx measurements imply a statistical fit with uncertainty and
how uncertain GEV parameters imply uncertain upper bounds.

Hence, answering the question ‘‘is event 𝐸 contained by upper
bound 𝑈?’’ must account for uncertainty innate to the data-driven
upper bound. In a Bayesian sense, all uncertainty is summarized by the
posterior distribution of the upper bound, which is used to calculate best
estimates, uncertainty measures, and credible intervals (the Bayesian
version of a confidence interval). For the purposes of this analysis,
we use the posterior distribution to calculate the probability that a
unprecedented event is contained by a given upper bound estimate. We
subsequently map the estimated probabilities onto the IPCC likelihood
scale (Mastrandrea et al., 2010) in order to assign each probability a
ualitative label. Throughout this manuscript, we use the IPCC likeli-

hood language as a convenient way to map probabilities into categories
for ease of aggregation across many events and to avoid the ‘‘𝑃 -
value trap’’ (Wasserstein and Lazar, 2016) associated with dichotomous
conclusions based on fixed significance levels. We note that this is most
certainly not equivalent to carefully pondered and peer-reviewed IPCC
assessments. Also, we note that there is alternate yet complementary
way to frame quantifying uncertainty in the upper bounds based on
pper confidence limits (see Supporting Information Section 2.3); our

results are the same regardless of which perspective is taken.
This approach is illustrated in Fig. 2(b), where we plot the posterior

distributions of the GEV upper bound from statistical models M1-M4
or the year 2021 at a gauged location near Nanaimo, BC, Canada,
hat experienced a unprecedented event of 38.0 ◦C during the Pacific
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Fig. 2. Demonstration of our approach to account for GEV upper bound uncertainty in determining whether a unprecedented temperature is contained by a given statistical
ethod. Panel (a) shows TXx records from a gauged location near Nanaimo, BC, Canada that experienced a unprecedented event of 38.0 ◦C in 2021 (red dot), as well as the best

stimate (colored dashed lines) and uncertainty intervals (shaded bands) for the mean, 95th percentile, and upper bound threshold of the fitted GEV distribution from M1. Panel
b) shows posterior distributions of the year-2021 upper bound for each statistical method M1-M4 with the corresponding probability that the unprecedented event is contained.
anel (b) also shows the associated likelihood category (Mastrandrea et al., 2010). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Northwest and British Columbia heatwave in the same year (shown in
Fig. 2a and denoted by the vertical dashed line in Fig. 2b). The right
side of each panel quantifies the posterior probability that the event is
contained by the GEV upper bound, which is the area of the posterior
ensity to the right of the unprecedented event threshold. These prob-
bilities are mapped onto the likelihood categories to summarize our
tatistical confidence that the event is contained, which is shown in the

blue boxes in the top right of each panel. We return to this framework
in Sections 3.2 and 3.3 to tally the evidence for containment using each
tatistical model across all unprecedented events.

2.5. Statistical counterfactuals for event attribution

Using covariates to describe year-to-year variability and long-term
trends in extreme temperatures yields space- and time-varying esti-
mates of the risk probabilities, such that we can use the fitted statis-
tical models to isolate the human influence on extreme temperatures.
This approach follows the ‘‘statistical counterfactual’’ methodology pro-
osed in Risser and Wehner (2017) to make Granger-causal (Granger,

1969) attribution statements: calculate risk probability estimates using
 desired combination of GHG forcing, ELI, SPEI, PNA, and NAO. Here,

we use the GHG forcing time series as a proxy for anthropogenic influ-
ence and ELI, SPEI, PNA, and NAO to describe ‘‘natural’’ or background
conditions associated with extreme temperatures. For each unprece-
dented event, we calculate risk probabilities for two climate ‘‘scenarios’’
described by specific combinations of the physical covariates: pre-
industrial, with natural conditions (ELI, SPEI, PNA, and NAO) from the
year of occurrence and 1901 anthropogenic GHG forcing levels, and
present-day, with natural conditions from the year of occurrence and
2022 GHG forcing levels. Both scenarios are counterfactual in the sense
that they correspond to climate conditions that did not occur in reality.

The risk probabilities are then used to quantify the effect of human-
nduced GHG forcing on the most extreme temperatures. Specifically,
e conduct extreme event attribution (EEA; Attribution of Extreme
 e

5 
Weather Events in the Context of Climate Change, 2016) systemat-
cally across all unprecedented events to compare the present-day

probability of experiencing temperatures at least as extreme as the
bserved TXx with corresponding pre-industrial probabilities via the

‘‘risk ratio’’ 𝑅𝑅 (Paciorek et al., 2018). 𝑅𝑅 > 1 implies that increases
to GHG forcing cause temperatures at least as large as the observed
TXx to become more common, while 𝑅𝑅 < 1 implies the opposite.
Three other cases are possible, all involving cases where the risk
robabilities are zero (and hence the event is ‘‘impossible’’): 𝑅𝑅 = ∞
eans that the TXx measurement is impossible without climate change

i.e., it has non-zero probability under present-day conditions but zero
robability under pre-industrial conditions); 𝑅𝑅 = 0 means that the
Xx measurement is made impossible by climate change (i.e., it has
ero probability under present-day conditions but non-zero probability
nder pre-industrial conditions); and finally 𝑅𝑅 = 0∕0 wherein the risk
atio is mathematically undefined (i.e., the event is impossible in either

climate).

3. Results

3.1. Checking GEV assumptions and quality of fitted distributions

The fundamental challenge in modeling the far upper tail and
whether a statistical model can adequately represent the behavior of
unobserved extremes beyond the support of the data rests in determin-
ing whether the underlying postulates under which the distribution of
lock maxima may converge to the GEV distribution hold in nature.
t is therefore critical to ensure that the GEV assumptions are reason-
bly satisfied (i.e., that the GEV distribution provides a suitable fit to
he data) by the various statistical models proposed in Section 2.3.

First, in order to safely extrapolate beyond the support of the data,
t is important to ensure that our sampling of extreme temperatures
aintains max-stability, i.e., that a block size of one year is large

nough. The convergence rate of block maxima to a GEV distribution
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Table 1
In-sample predictive information criteria and out-of-sample log scores for each fitted
statistical model. The WAIC, an in-sample metric, is calculated as two times the sum
of the log pointwise predictive density (lppd), which summarizes how well the model
fits the data, and the effective number of parameters (𝑝WAIC) to guard against for
overfitting (Gelman et al., 2013); smaller scores indicate a better fit. The out-of-sample
log pointwise predictive density (lppd-out) summarizes predictive skill for data held
out from the process of fitting, here the unprecedented events; larger lppd indicates a
better fit. For each metric, the best model is highlighted with bold text.

Model # of GEV lppd 𝑝WAIC WAIC lppd-out
parameters (in-sample) (out-of-sample)

M1 31,968 −1,022,407 20,090.3 2,084,995 −10,090.5
M2 71,928 −1,003,502 49,878.7 2,206,761 −9470.3
M3 6052 −1,117,785 9409.2 2,254,388 −8097.5
M4 6052 −1,491,363 214,437.1 3,411,600 –6821.4

is determined by the proximity of the daily weather distribution to
the GEV domain of attraction (see Chapter 2 of de Haan and Ferreira,
2006). Recent work (Dombry and Ferreira, 2019) derives a closed-form
xpression for the rate of convergence to GEV based on the number
f blocks (here, 𝑇 = 122 years) and the block size (here, the length
f the warm season); we argue that these are more than sufficient for
he asymptotic behavior to manifest, particularly since we find that in
lmost all cases extreme temperatures are bounded (see Supplemental
igure S13). Additionally, we use quantile–quantile (Q–Q) plots to
heck the goodness of fit for a statistical distribution to an empirical

sample. Q–Q plots compare the sample quantiles of the data with the
corresponding ‘‘theoretical’’ quantiles of the fitted distribution. Points
falling along the 45 ◦ (1–1) line (and within the statistical uncertainty)
are evidence of a good fit, i.e., that the sample quantiles are statistically
indistinguishable from the theoretical quantiles. Results shown in Sec-
tion 2.2.5 of the Supporting Information provide strong evidence that
the GEV assumptions are satisfied for all four statistical models, and we
an be confident in using the fitted distributions to assess the upper tail
ehavior of extreme daily temperature measurements.

Next, we assess the relative quality of the fitted GEV distributions
for statistical models M1-M4. We use two quantitative metrics for
this evaluation: the Watanabe–Akaike information criterion (WAIC;
Watanabe and Opper, 2010; Gelman et al., 2013) to assess the in-
ample performance of each statistical model; and the out-of-sample
og pointwise predictive density (lppd-out). The WAIC is defined as

WAIC = −2lppd + 2𝑝WAIC,

where ‘‘lppd’’ is the log pointwise predictive density (summarizing the
fit of the statistical distribution to the TXx measurements) and 𝑝WAIC
is the ‘‘effective’’ number of statistical parameters (used to penalize
more flexible statistical models as a way to guard against overfitting).
Both quantities are calculated using the fitted posterior distribution
nd aggregated over all space–time measurements; see Gelman et al.

(2013) and Vehtari et al. (2017) for further details. Smaller WAIC
ndicates a better model fit. WAIC is commonly used for Bayesian
odel comparison because it fully captures posterior uncertainty, and

t is particular helpful in examining the goodness-of-fit for the en-
ire distribution (including the far upper tail). Therefore, it has been

adopted extensively in spatial extremes literature; e.g., R-INLA (Rue
et al., 2017), skew-𝑡 process (Hazra et al., 2020), conditional extremes
modeling (Simpson et al., 2023), to name just a few. Since the WAIC
evaluates in-sample performance, we also calculate the out-of-sample
lppd (i.e., the lppd calculated for the held-out unprecedented events);
larger lppd-out indicates better model fit.

WAIC and lppd-out results are given in Table 1. For statistical
odels M1-M4, Table 1 shows the number of statistical parameters

n the marginal GEV model, the WAIC and its components (lppd and
WAIC), and the out-of-sample lppd. The best model is highlighted in
old text for WAIC and lppd-out. First, comparing M1 and M2, note

hat the lppd for M2 is actually better (larger) than that of M1, which

6 
is a direct consequence of M2 having more than twice the number of
GEV parameters (71,928 versus 31,968). However, the improvement in
the lppd is not enough to offset the increased complexity of the model,
such that the WAIC metric prefers M1 over M2. Somewhat surprisingly,
the WAIC for M3 and M4 are worse than M1, which indicates that
the simplest model provides the best in-sample fit to the data. It is
noteworthy, however, that the lppd for M3 is not that much worse than
M1 with only about 1/5 as many GEV parameters. When assessing the
ut-of-sample fit, it is clear that M3 and M4 significantly outperform
1 and M2, with M4 being the best model by a wide margin.

In summary, the statistical models that account for climate (M3) and
weather (M4) dependence yield lppd and WAIC scores that are not too
much worse than the baseline model M1 while providing a much better
fit to the far upper tail of the fitted GEV distributions. As such, we argue
that M3 and M4 have important benefits relative to simpler approaches
and provide the best statistical fit for the most extreme temperature
events.

3.2. Case study events

While our final results involve a systematic assessment of extreme
events, to demonstrate our methodology we assess three unprecedented
temperatures recorded in the historical record corresponding to the
evere heatwave events described in Section 1; see Table 2. Historical

TXx measurements and the unprecedented event of interest are shown
in Fig. 3(a). In this section, we focus on the event-year upper bound
estimates because, as mentioned above, they correspond to the real
conditions present during each event.

Following the framework outlined in Section 2.4 and visualized
in Fig. 2(b), we tally the the probability that the GEV upper bound
contains the unprecedented TXx in Fig. 3(b). The bar height in Fig. 3(b)
corresponds to the posterior density to the right of the unprecedented

Xx (blue shading) in Fig. 2(b). The plotted colors in Fig. 3(b) map
he probability that events are contained by the upper bound onto
he IPCC likelihood categories, where darker colors indicate better
erformance (i.e., higher probability of containment) of the statistical
ethod. Generally speaking, we can see that increasing complexity

f the statistical model results in more probable containment of the
nprecedented TXx. Moving from left (more traditional, M1 and M2)
o right (more novel, M3 and M4) across the 𝑥-axis, the probability

of containment for each unprecedented TXx increases. For all three
events, M1 and M2 have low containment probabilities (unlikely or very
unlikely). Notably, M4 contains all three unprecedented temperatures
with a probability of 1. M3 has similarly strong performance except
for the Russian heatwave, for which it fails to contain the observed
TXx. Finally, it is notable that for the French and BC heatwaves, M1
outperforms M2; in other words, including more covariates results
in a smaller probability of containment. This suggests that a spatial
analysis is required when introducing multiple covariates: without the
‘borrowing of strength’’ enabled by trading space for time (à la Hosking
and Wallis, 1993), the loss of degrees of freedom caused by adding
covariates results in additional statistical noise.

Why are the upper bounds from statistical methods M3 and M4 so
uch more likely to contain the unprecedented events? To explore this

more carefully, Supplemental Figure S14 shows how the GEV location
𝜇, scale 𝜎, shape 𝜉, and upper bound 𝑏 depend on methodology for the
hree case study events as well as three other unprecedented events
rom Western Australia (1933), the Central U.S. (1936), and Mexico
1971). There is no systematic way in which the GEV parameters

change to increase the upper bounds for M3 and M4 relative to M1
and M2: in some cases it is due to a larger location parameter (e.g., the
events in Mexico and Kostomuksha, RUS); in other cases a larger scale
(e.g., the events in Australia and Montpellier, FRA); in yet others a
larger shape (e.g., the events in Central U.S. and Nanaimo, CAN). In
all cases, these changes result in larger upper bound thresholds and

larger return levels (return level curves for each of these events are
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Table 2
Three unprecedented temperatures selected as case studies to demonstrate our methodology. The event refers to the annual maximum daily
maximum temperature (TXx) recorded at each GHCN gauged measurement site. For reference we also provide the nearest large city to each
GHCN site.
Date GHCN ID Coordinates Elevation Nearest city Event

29 Jul 2010 RSM00022602 (30.82◦E, 63.82◦N) 180.0 m Kostomuksha, RUS 35.5 ◦C
28 Jun 2019 FRE00106207 (3.96◦E, 43.58◦N) 2.0 m Montpellier, FRA 43.5 ◦C
27 Jun 2021 CA001021830 (124.9◦W, 49.72◦N) 26.0 m Nanaimo, CAN 38.0 ◦C
Fig. 3. Summary of results for the three unprecedented events in Table 2. Panel (a) shows the historical TXx measurements with the unprecedented event indicated by a red
ot. Panel (b) shows the probability that the unprecedented event is contained by the GEV upper bound, where the plotted color maps the probability of containment onto IPCC

likelihood categories. Darker colors indicate better performance. Panel (c) tallies the posterior probability that the risk ratio is in each of a set of categories. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown in Supplemental Figure S15). These examples illustrate how the
GEV upper bound can be influenced by any one of the three statistical
parameters of which it is a function of, and how accounting for de-
pendence (weather and climate) can influence the GEV parameters in
unpredictable ways.

Finally, equipped with more robust estimates of data-driven upper
bounds, we return to the attribution question and assess the extent to
which anthropogenic climate change (via increases to GHG forcing)
nfluences the probability of experiencing events that are at least as
xtreme as the unprecedented temperatures. Since we have posterior
istributions of the GEV parameters, we can similarly obtain posterior
istributions of the risk probabilities and hence risk ratios, from which
e can calculate posterior probabilities that the risk ratio is in one of

ive non-overlapping categories: 𝑅𝑅 = 0∕0, 𝑅𝑅 = 0, 0 < 𝑅𝑅 < 1,
< 𝑅𝑅 < ∞, and 𝑅𝑅 = ∞. As with upper bounds, there is a big impact
f statistical methodology on risk ratio estimates. In particular, M3 and
4 completely side-step the challenge of the risk ratio being undefined
𝑅𝑅 = 0∕0), except for M3 and the Russian heatwave. Furthermore,
4 is able to estimate non-zero risk probabilities for both scenarios,

voiding even the 𝑅𝑅 = 0 and 𝑅𝑅 = ∞ outcomes. Focusing in on M4,
he best estimates of the risk ratios (posterior median) are 0.87, 0.96,
nd 6.39 for the three events, respectively, although in each case there
s a large probability that 𝑅𝑅 > 1 (0.42, 0.495, and 0.992, respectively).
 c

7 
We reiterate that these event attribution statements are conditional on
the background conditions (e.g., ENSO, SPEI, etc.), which may explain
the fact that the best estimates of the risk ratio are less than one for
the France and Russian events.

3.3. Upper bound thresholds for all unprecedented events

Next, we step back and assess the extent to which all 𝑛real =
1545 unprecedented temperatures are contained by the upper bound
estimates from each statistical model (M1-M4) following the framework
proposed in Section 2.4. Fig. 4 tallies the percentage of events overall
and in each continental subregion that are contained for each IPCC like-
lihood category, determined from probability that the unprecedented
TXx is less than the GEV upper bound. Darker colors indicate better
erformance of the statistical methodology, wherein the unprecedented
vents are contained with higher probability.

Three important results emerge from our analysis. First, as with the
ase studies in Section 3.2, it is clear that increasing the complexity of

the statistical model results in better containment of the unprecedented
Xx and therefore fewer ‘‘impossible’’ events. Overall, the percentage
f events for which the unprecedented temperatures are very likely con-

tained goes from just 16.2% for M1 to 85.7% for M4. However, adding
omplexity does not always improve performance: in many cases the
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Fig. 4. The impact of statistical methodology on the probability of containment for unprecedented temperatures using data-driven GEV upper bound thresholds, aggregated globally
nd for the continental subregions shown in Supplemental Figure S1. Darker colors indicate better performance (i.e., larger containment probabilities) of the statistical methodology.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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single-station analysis with multiple covariates but no spatial statistics
(M2) does not present an improvement over the traditional single-
station analysis with only a time trend (M1). For example, the percent
of events that are very likely contained decreases from M1 (16.2%) to
M2 (11.8%). It is, however, always true that M3 and M4 outperform
M1 and M2. This suggests that a spatial analysis is required when
introducing multiple covariates: without the ‘‘borrowing of strength’’
nabled by trading space for time (à la Hosking and Wallis, 1993),

the loss of degrees of freedom caused by adding covariates results in
additional statistical noise.

Second, the effect of statistical methodology is the same regardless
of what probability threshold is chosen (0.66, 0.9, etc.). For example,
the overall percentage of events that are contained depends quite a lot
n choice of IPCC confidence category, but for a given category M3 and
4 always represent an improvement over M1 and M2. The largest

mprovements emerge as one moves from M2 to M3: the percent of
vents that are (at least) very likely contained goes from just 11.8%

for M2 to 93.9% for M3. This demonstrates that even accounting for
climatological dependence only allows us to explain many more events
that is otherwise possible.

Third, our general conclusions hold regardless of what corner of the
globe we are considering. For each of the continental subregions shown
in Fig. 4, as one moves from left (more traditional, M1 and M2) to right
(more novel, M3 and M4) across the 𝑥-axis the colors darken, indicating
that more events are contained with less certainty and a higher proba-
bility. Furthermore, in all subregions the addition of multiple covariates
(M2) degrades performance relative to excluding the drivers of large
scale climate variability (as in M1). The unprecedented events are the
most ‘‘explainable’’ in Eastern North America, where 94.4% of events
are ‘‘about as likely as not contained’’ (at least) under M4. On the other
hand, unprecedented are events are less ‘‘explainable’’ in Australia,
where just 50% of events are ‘‘about as likely as not contained’’ (at
least) under M4.

In conclusion, it is clear that whether or not a given historical event
s deemed ‘‘impossible’’ is largely a function of what statistical methods
re used: it is very likely that 69.5% more events are contained by
ata-driven upper bounds when accounting for both climatological and
eather dependence, relative to the traditional approach (16.2% for
1, compared to 85.7% for M4).

3.4. Changes in the likelihood of unprecedented events

Next, for all 𝑛real = 1545 unprecedented events we calculate best
stimates of the risk ratios, here taken to be the posterior mode. The
osterior mode is a useful summary when we have ‘‘non-numeric’’
utcomes such as 𝑅𝑅 = ∞ and 𝑅𝑅 = 0∕0; intuitively, the posterior
mode is the risk ratio value that is most probable. We then categorize

8 
the best estimates into the same non-overlapping categories used in
Section 3.2: 𝑅𝑅 = 0∕0, 𝑅𝑅 = 0, 0 < 𝑅𝑅 < 1, 1 < 𝑅𝑅 < ∞,
nd 𝑅𝑅 = ∞. When considering all of the events globally, we both

aggregate the individual events (i.e., with no averaging, ignoring the
geographic sampling of events) while also area-averaging the category
probabilities into 200,000 km2 equal-area hexagonal cells. The latter
summary accounts for the non-uniform sampling of the unprecedented
events (see panel e. of Fig. 1). The percent of risk ratio best estimates
in each category is shown in Fig. 5(a) for all unprecedented events
(with and without area averaging), while Fig. 5(b) shows the events
tallied separately in each continental subregion. Similar to our results
n Section 3.3, there is a clear effect of methodology on the resulting
ttribution statements: statistical models M3 and M4 yield uniformly
arger numbers of well-defined risk ratios (i.e., not the indeterminate
∕0). This is a direct consequence of the fact that these methods account
or weather and climatological dependence and are hence much more
ikely to yield non-zero risk probability estimates for pre-industrial and
resent-day conditions. Also notable is the fact that the dark green
𝑅 = 0 and dark pink 𝑅𝑅 = ∞ categories are generally smaller for
odels M3 and (especially) M4, again implying that more sophisticated

tatistical methods allow us to obviate many of the (potentially) hyper-
olic statements about climate change making certain events possible
r impossible. Similar conclusions hold when considering probabilities
f risk ratio categories instead of single-number best estimates; see
upplemental Figure S12.

Interestingly, a large number of risk ratio best-estimates in Fig. 5 are
less than one, i.e., many of the unprecedented events are more likely in
 pre-industrial climate. Risk ratios of less than 1 are due to decreasing
rend estimates in GEV statistics, particularly in Eastern North America
here the GHCN records are densely sampled. A major reason for

his has to do with the geographic sampling of the unprecedented
vents: for M4, the fraction of events with 𝑅𝑅 < 1 drops from 65%
ithout area-averaging to less than 37% when accounting for the

rregular sampling (see Fig. 5a). This sensitivity of attribution results
o regional aggregation has been observed elsewhere; see, e.g., Mindlin

et al. (2023). Nonetheless, the surprisingly large fraction of risk ratio
stimates less than one is robust across statistical models and has been
erified in different analyses that use independent methods and data

sets, see e.g., Zhang and Boos (2023). Negative trends in the GEV
distribution parameters imply negative trends in the risk probabilities
for a fixed threshold, which implies that the unprecedented events
are more probable with the lower 1901 levels of GHG forcing (par-
icularly those towards the beginning of the record). Negative trends

in temperature extremes in Eastern North America are in part due
to the well-documented ‘‘global warming hole’’ in this part of the
world (Mascioli et al., 2017). The causes of this local cooling are
actively debated as to whether it is a manifestation of internal climate



M.D. Risser et al.

o

v

e
i

f
n
f

o
f
a

b
u
q
d

o
t
s

c
(

d

Weather and Climate Extremes 47 (2025) 100743 
Fig. 5. The impact of statistical methodology on risk ratio best-estimates (posterior mode) for unprecedented events for five risk ratio categories. Panel (a) summarizes all
unprecedented events globally, with and without area-weighted averaging (area averaging accounts for the non-uniform sampling of events). Panel (b) tallies the events separately
for each continental subregion shown in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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variability (Deser et al., 2014; Sun et al., 2022; Kumar et al., 2013)
r an externally forced signal (Keil et al., 2020; Chemke et al., 2020;

Qasmi, 2023). The contrary appears to be occurring in Europe where
ery large increases in extreme temperatures have recently been at-

tributed to anthropogenically-driven local circulation changes (Vautard
t al., 2023). Hence, a large fraction of European events are deemed
mpossible without climate change (see Fig. 5). Note that while a large

majority of the Eastern North American unprecedented events occur
in the first half of the record (see Supplemental Figure S10), the large
raction of risk ratios of less than one in this region persists whether or
ot we separately consider events from the full record (as in Fig. 5) or
rom the first half versus second half of the record (see Supplemental

Figure S13).
Ultimately, these regions illustrate both the strength and weakness

f Granger causal attribution. In our case, the causal influence of
orced local circulation changes are only indirectly represented by our
nthropogenic covariate (here, GHG forcing, but equivalently global

mean temperature). Granger attribution alerts us to complex changes
ut does not explain them. On the other hand, with some a priori
nderstanding and confidence that the anthropogenic covariates ade-
uately represent the forced changes, Granger causal attribution allows
efensible estimation of event probabilities and risk ratios.

In summary, using the best statistical model (M4), the best-estimate
f the risk ratio is ∞ for 21 of all 1545 unprecedented events, meaning
hat only about 1.4% of the unprecedented events are, in fact, ‘‘impos-
ible’’ in a pre-industrial climate. However, when we consider only the

314 unprecedented events from the 21st century, when anthropogenic
limate change is at its maximum, this percent more than doubles
3.5% or 11 of the 314 events). Even applying our best statistical

methodology, there are still 51 unprecedented events that have a best
estimate of the risk ratio that is undefined, meaning the events are
‘‘impossible’’ (i.e., have a probability of zero) in either a pre-industrial
or present-day climate. However, this is a significant improvement over
the 406 unprecedented events with 𝑅𝑅 = 0∕0 under the traditional
approach (M1).

3.5. Relative extremity of the most severe temperatures

In light of our results on the changing probabilities of unprece-
ented heatwaves, a final question is: just how extreme may the next
9 
record-breaking heatwave be? This is clearly a challenging question
from the annual perspective taken in this paper, e.g., the dependence
of heat extremes on climate change, large-scale modes of climate
ariability, and drought conditions — not to mention the complicated

meteorological conditions associated with the most extreme temper-
atures (see, e.g., McKinnon and Simpson, 2022; Wang et al., 2022;
Mo et al., 2022) which are not considered in our analyses. To obviate
spects of this challenge, we return to the 𝜎-event threshold, denoted

𝜏(𝒔), which defines a time-invariant relative threshold for the hottest
emperatures based on how many ‘‘𝜎’s’’ that temperature is from a

typical extreme (see Section 2.3). This metric is already utilized in the
iterature on the most extreme temperatures: for example, McKinnon

and Simpson (2022) found that the 2021 Pacific Northwest heatwave
as a 4.5𝜎 event and that such events are represented in a large

limate model ensemble. As a metric, 𝜏(𝒔) is useful from an adaptation
erspective: together with 𝜏(𝒔), knowledge of a typical extreme (a proxy
or 𝑚(𝒔, 𝑡), the GEV mean) and the year-to-year variability in extreme

temperatures (a proxy for 𝜎(𝒔, 𝑡)) provides an approximate estimate of
how hot temperatures may become.

We now shift our focus from the stations with at least one of the
𝑛real = 1545 unprecedented events back to all 𝑁 = 7992 gauged
locations from the GHCN-D database in order to provide estimates of
the relative extremity of the most severe temperatures for the global
land regions represented by these stations (note, however, that the
outlier and real events are still excluded from the analysis). The spatial
distribution of the 𝜎-event threshold 𝜏(𝒔) calculated using statistical
model M4 is shown in Fig. 6(a), with regional boxplots of 𝜏(𝒔) shown for
all statistical models in Fig. 6(b). Our best estimates from M4 show that
most often an ‘‘impossible’’ temperature is approximately a 4–5𝜎 event.

he largest values of 𝜏(𝒔) generally occur inland, e.g., the central United
tates, eastern Australia, and parts of central Asia, where our method
redicts up to 7–8𝜎 events. On the other hand, coastal regions have rel-
tively smaller sigma-thresholds, where we estimate that temperatures
ay only approach 4𝜎 events (see, e.g., Western North America, coastal
ustralia, and northern Europe), reflecting the moderating effect of

he oceans on both internal variability and externally-forced changes.
he utility of the statistical methods that leverage spatial dependencies
M3 and M4) is further emphasized by the regional summaries in

Fig. 6(b): the single-station analyses of M1 and M2 suggest that events
in excess of 20𝜎 are possible, which is physically implausible. These
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Fig. 6. The spatial distribution of sigma-event thresholds 𝜏(𝒔), calculated using statistical model M4, which describes a relative upper bound threshold for how many ‘‘𝜎’s’’ an
xtreme temperature might reach (panel a.; plotted color indicates the best-estimate posterior median). Panel (b) shows regional boxplots for the five boxes drawn on the map in
anel (a) for all four statistical models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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results reiterate that single-station analyses involve a large degree
f uncertainty and hence introduce statistical noise when estimating
pper bound thresholds and probabilities associated with the most
xtreme temperatures.

4. Discussion

In summary, we have clearly demonstrated how the choice of statis-
tical methodology impacts whether the temperatures experienced dur-
ing the most extreme heatwaves are deemed statistically impossible, as
well as the impact on corresponding assessments of the anthropogenic
nfluence on these events. Using the best available statistical tools
llows us to anticipate a much larger fraction of the unprecedented
emperatures while minimizing indeterminate risk ratios (i.e., 𝑅𝑅 =
∕0). Unfortunately, standard statistical software is only available for
he more traditional methods (M1 and M2). In the future, we plan to
evelop open-source extreme value analysis tools based on M3 and M4
or use by the broader extreme event attribution community.

The other clear message of this paper is that the only way to obtain
obust estimates of heatwave probabilities and return intervals is by
everaging the weather and climatological dependence innate to mea-
urements of extreme temperatures. This is particularly important for
bservational analysis in light of limitations imposed by the relatively
hort time period from which we have in situ measurements (Zeder

et al., 2023). As previously mentioned, while the methods applied here
(particularly M4) are cutting-edge even in the statistics literature, the
underlying intuition of ‘‘trading space for time’’ is a relatively old
idea (Hosking and Wallis, 1993) that has clear utility for analysis of
the most extreme heatwaves.

As mentioned in Section 1, a systematic and objective evaluation
of extreme heatwaves that considers all global land regions is needed
to address outstanding uncertainties regarding low-likelihood, high
impact (LLHI) extreme events such as heatwaves (Seneviratne et al.,
2021). Our results address these uncertainties in two ways: first, the
unprecedented test events we studied occur throughout the 20th cen-
tury and across the globe, allowing us to avoid the selection bias
associated with focusing on more recent events that occur in primarily
Western countries. Second, providing non-zero probability estimates for
a large majority of the unprecedented events ensures that we can more
robustly study the statistics of the most extreme heatwaves that have
occurred in the historical record. Such observational results are critical
for evaluating and improving the dynamical models used to develop
projections of future climate and the LLHI events that have not yet
occurred.

Finally, to accompany this article, we have developed an online
raphical user interface (GUI) that allows readers to assess the statisti-
al properties and containment probabilities of an arbitrary unprece-
ented event. A link to the GUI is provided in the Open Research
10 
section below. The GUI has functionality that allows the user to select
a unprecedented event based on customized longitude-latitude bounds
and a given date range. Then, there are several tabs that show all
summaries in Sections 2.4 and 3.2: GEV upper bounds and containment
probabilities, IPCC likelihood statements regarding containment, return
level curves, GEV parameters for the year in which the event occurred,
risk probabilities, and posterior probabilities that the risk ratio is in
the five categories used in Section 3.2. While this manuscript presents
a summary of all unprecedented events via aggregation, a reader
might be interested in the properties of a specific event beyond those
resented in Section 3.2. Our GUI is designed to provide this specific

information.
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