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High Frequency Green’s Function for Tapered Planar 
Arrays 

F. Capolino’, S. Maci’, F. Mariottini’, and L. B. Felsen’ 
1) Dip. Ingegneria dell’hformazione, Universitb di Siena, Via Roma 56, 53100 Siena, Italy. 
2) Dept. Aerospace and Mechanical Eng., and Dept. of Electrical and Comp. Eng., Boston 

University, 110 Cummington St., Botiton, MA 02215, USA. 

I. INTRODUCTION 
The array Green’s function (AGF) is the basic building block for the full-wave 

analysis of planar phased array antennas. Its representation in terms of element- 
by-element summation over the individual dipole radiations can be replaced by a 
more efficient global representation constructed via Poisson summation. The result- 
ing Poisson-transformed integrals can be interpreted as the radiation from continu- 
ous equivalent Floquet wave (FW)-matched source distributions extending over the 
array aperture [l], [2]. Applying high-frequency asymptotics to each FW-matched 
array aperture casts the AGF in the format of a generalized Geometrical Theory of 
Diffraction (GTD) which includes conical wavefront edge diffracted rays as well as 
spherical wavefront vertex diffracted rays. In this paper, the results in [l], valid for 
equiamplitude excitation, are extended to  accommodate tapered illumination, which 
also includes dipole amplitudes tending to zero at  the edges. This extension, which has 
been performed in [3] with a pure numerical technique based on the discrete Fourier 
transform (DFT), is herein carried out by a direct Poisson-transformed asymptotic 
evaluation of the striparray GF, with the incluuion of asymptotically subdominant 
”slope” diffracted fields, in addition to the dominant diffracted fields for appreciable 
edge illumination. Comparisons between the hybrid DFT-(Floquet ray) algorithm 
of [3] and the present formulation has been shown in [4] for a tapered strip-array of 
dipoles. In this paper the examples are more realistic antenna modelings of those 
presented in [4]. 

11. FORMULATION 
We consider a strip periodic array of linearly phased dipoles located in the z,z- 
plane (Figla).  The array is infinite in the z direction and finite in the z direction, 
with interelement spatial period along the z and z directions given by d, and d,, 
respectively, and interelement phase gradient ycc and y,, respectively. All dipoles 
are oriented along the unit vector JO ( a bold character denotes a vector quan- 
tity, and a caret ~ denotes a unit vector). Superimposed upon that background is 
a z-dependent amplitude tapering function f(z), sampled at  the dipole locations, 
J(nd,, md,) = f(nd,) exp(j(y,nd, + y,md,)), with J(z’, z’) denoting the dipole cur- 
rent amplitude, and (z‘ ,z’)  = (nd,,md,) denoting the location of (m,n) th  dipole 
(the time dependence exp(jwt) is suppressed). Without compromising practical util- 
ity, we assume f(z) real and positive in the domain z E [O,L], where L = ( N ,  - l)d, 
is the dimension of the strip array with N ,  dipoles (Figla).  The electromagnetic 
vector field at  any observation point r = zii + y 9  + zz can be derived from the .TO- 
directed vector potential A(r) by summing over t.he individual n, m dipole radiations 
g(r; nd,, m d , ) f ( n d , ) e j ( 7 ~ ~ ~ 2 + 7 = ~ ~ . )  where, g(r; nd,,md,) = exp(-jkR)/(4?rR), with 
R = Ir - nd,x - md,il, is the free-space scalar Green’s function. We employ the 
k,,k, spectral Fourier representation of the free ispace Green’s function g(r; z’, 2’) as 
shown in [l]. Then, the m-series is summed into closed form via the infinite Poisson 
sum formula which reduces the I C ,  integration to a q-series A(r) = CEO=-, A, , with 
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Fig. 1. (a) Geometry of the strip array; (b) Transverse x - y view. Shadow boundaries (SBs) 
truncates the domain of existence of FWs 

where k,, = yr + 2ng /d ,  is the Floquet wave (FW) wavenumber in the z-direction , 
and the branch of k,,, = is chosen such that Smkyq < 0 on the top 
Riemann sheet of the ,+plane. The n-sum I(k,) in (1) is manipulated via the trun- 
cated Poisson sum formula into a p-sum of Fourier transformed f-functions, translated 
by the FW wavenumbers in the x direction, k,, = yz + 2?rp/d,, 

111. HIGH-FREQUENCY SOLUTION FOR SLOWLY VARYING f(z) 
Henceforth, we assume (legitimately for actual tapering functions for large arrays) 
that f(z) varies slowly with respect to the wavelength A. Thus, adiabatic methods 
can be applied, based on perturbation about f(z) = const., which is discussed first. 

Equiamplitude excitation. Now, the n-series I ( k , )  in (1),(2) is evaluated in 
closed form as I ( k , )  = B(k,)(l - e - j ( k z - T = ) r d )  which has no singularities, although 
B(k,)  = [l-ezp(jd,(k,-y,)]-' has poles at k, = kxp .  The semi-infinte array treated 
in [l] has I ( k , )  = B(k,) ,  which is also obtained from (2) when N, + CO. The strip 
array Green's function can be synthesized from the semi-infinite AGF by omitting 
the dipole contributions from N, to CO; i.e., by subtracting the AGF of a semi-infinite 
array with spectral shift exp(-j(k, -yx)L) which corresponds to a space translation. 
For the semi-infinite array, a uriiform asymptotic evaluation of (1) is carried out [l] 
via deformation of the original integration contour into steepest descent paths (SDP) 
through the saddle points of the phase in the integrand, with extraction of the residues 
at intercepted poles 111. 

Weakly t a p e r e d  excitation. When f(x) is weakly tapered and positive real in the 
domain x E (O,L), the spectrum of T(kh) in (2) is localized around kh = 0, thereby 
enhancing contributioru to I ( k , )  from k, = k,,, p = O,&l, ... Consequently, the 
integral in (1) for A, is dominated asymptotically by U) saddle points (SPs) a t  IC, = 
k,+, that satisfy d/dk,(k,x + kyqy)Ikz,= = 0; b)  spectral points k,  = k,,, that possess 
the same phenomenology and localization property as the poles for the semi-infinite 
array [l], and are therefore called "quasi poles". Uniforrn evaluation is necessary 
when a saddle point kx,s approaches one of the k,, quasi poles (p = 0, f l ,  f 2 ,  ...). 
The asymptotic evaluation of A, is addressed by initially assuming that every kxp is 
"far enough" from kX,+ to validate nonuniform asymptotics. Alternatively, we aasume 
kz,s close to k,,, and obtain a locally uniform asymptotic solution, which has been 
demonstrated to patch onto the non uniform solution far from the shadow boundary. 
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Floquet Wave Contributions. Inserting (2) into (l), the contributions due to 
the critical points a t  k,  = kXp are found by expanding the exponent of the integrand 
in Taylor series in a neighborhood of k, = k,? (see [4]). Retaining only the dominant 
asymptotic term of the remaining integral, yields 

where k,,, = ,/k2 - k& - k2, ( branches chosen according to (l)), and U is the 
Heaviside unit step function ( U ( z )  = 1 or 0 if 3: > 0 or E < 0, respectively). Criteria 
for the asymptotic validity of the expansion obtained in (3) will be given elsewhere. 
In (3), A,"," is the pqth FW of the equiamplitude excitation [l] which is multiplied in 
(3) by the tapering function f(zpy) evaluated at  the footprint zpq of the pqth FW. We 
note that stationary phase evaluation, as in [5], of the radiation integral associated 
with each p, qth equivalent FW-matched aperture distribution would provide the same 
result, and in this case, zpq would have been the stationary phase point of the p, qth 
spatial radiation integral. Limiting the sum &, to the propagating contributions, 
zpg is real ( because kyp, is real) and the existence condition U(zPq)U(L  - zpq) is 
automatically imposed since f(zpq)  = 0 for z,, < 0 and zp, > L. In the &angular 
domain (4 is the observation angle, see Fig.la) U(z,,) = U($,, - $), where for 
propagating FWs, $: = q5pq = c o ~ - ~ ( k , ~ / k ~ ~ , )  is the pqth shadow boundary (SB) 
plane angle that truncates the &domain of existence of the FW,, (see Fig. lb). The 
discontinuity of the truncated FW is repaired by the diffracted field that arises from 
the saddle point evaluation of (1). 

FW-modula ted  diffracted field. It will be convenient to find an asymptotic 
expansion of I ( k , )  that highlights the behavior of f(z) at  the truncations I = 0 and 
z = L. For simplicity we will consider only the end point a t  z = 0. To this end, 
the FT expression in (2) is imerted into the p-series in I (&);  then, the integration 
is performed by parts. Using the identities B ( k , )  = [ l  - exp(jd,(k, - 7,))I-l = 
i + & C,",-,[-j(k, - krp)]-', and jB'(k,) = $ Z,"=_,[-j(k, - we have 

Similar considerations apply to the truncation at  z = L after inclusion of the phase 
term exp(-j(kx - y,)L). Diffracted fields arising from the truncation a t  z = 0 are 
obtained from the SDP uniform evaluation at the saddle point k ,  = k,, = xk?,/p of 
the integral in (1) together with (4). Thus, the total high-frequency solution is 

were F ( z )  is the standard UTD trailsition function, and F,(z) = 2jz[ l  - F ( z ) ]  is 
the slope UTD transition function with argument bpq = ( 2 k , , ~ ) - ' / ~  sin((4 - $,,)/2). 
It can be shown that when the nondimensional parameter 6;, >> 1 , F + 1 and 
F, + 1, and the locally uniform diffracted field A: tends to the non uniform re- 
sult which can be obtained by a straightforward saddle point evaluation of (1) with 
(4). A Y  is a conical wave decaying along p ,  discontinuous at  the SBs planes. The 
dominant asymptotic term (the first in (5)) is the same as that for the uniform case 
[l], except for multiplication by the tapering function evaluated at  the edge. The 
second contribution is of higher asymptotic order since B(k,) = i + O ( k ; ' )  and 
B'(k,) = O(k,"). 
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Fig. 2. H,  component of the magnetic field radiated by a slot array antenna, at a distance 
R = 20X from the center of the array (L = 17X). (a) Gaussian excitation; (b) Sine 
excitation 

IV. APPLICATION TO ACTUAL ANTENNAS 
In order to show the applicability of the above method to actual cases, let us 

consider a strip-array of z-directed resonant slots on an infinite ground plane. The 
test array (24 elements along 3: and GOO along z ,  dz = d, = 0.7X, yz = l . l X - l ,  
i.e., beam tilted of 10" in the E-plane) is chosen to simulate typical dimensions of 
a X-band synthetic aperture radar (SAR) antenna (12xO.G m at 10GHz). For such 
dimensions, contributions from z-directed edges and corners are negligible. The re- 
sults are calculated via the truncated Floquet wave (TFW) asymptotics in (3) and 
(5), with inclusion of the diffracted field arising from the truncation at  z = L,  and 
compared with a reference solution obtained by an element-by-element summation 
over the radiation due to each slot. In order to model the element pattern more 
realistically, in contrast to [4], the AGF here is multiplied by the spectral element 
factor, as is typically don: in the far field regime by the pattern multiplication law. 
To this end, defining as J ( k z ,  k , )  the element current transformed in the wavenum- 
ber domain, the pqth FW contribution in (3) is multiplied by j ( k z P ,  ICzq)  while the 
qthe diffracted field in (5) is multiplied by j ( k , , , ,  kzq) .  Two cases of f(z) tapering 
functions are considered: a Gaussian profile f(z) = exp(-0.9[(z - L/2)/LI2) with 
10% edge illumination (Fig. 2a), and a sine profile f(z) = sin(m/L) ( Fig.2b). For 
this latter case, f(0) = f(L) = 0; thus the diffracted field in ( 5 )  is given only by 
the term with f ' ( 0 )  # 0, therefore representing a good test case for the additional 
"slope diffracted field". The electromagnetic quantities are evaluated from the vector 
potential A(r) as in [l]; only the H ,  component is shown in Fig.2 along a scan at  
R = 17X from the center of the array (z = L/2). Elemeut-by-element and asymptotic 
solutions are not distinguishable on the scale of the plot. 
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