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Dynamic Scheduling of Chassis Movements with Chassis 
Processing Facilities in the Loop 

EXECUTIVE SUMMARY 

This work studies the optimization of scheduling of chassis and container movements at the 
operational level for individual trucking companies when Chassis Processing Facilities (CPFs) are 
available for use in the vicinity of a container port within a major metropolitan area. A multi-
objective optimization problem is formulated in which the weighted combination of the total 
travel time for the schedules of all vehicles in the company fleet and the maximum work span 
across all vehicle drivers during the day is minimized. Time-varying dynamic models for the 
movements of chassis and containers are developed to be used in the optimization process. 
The optimal solution is obtained through a genetic algorithm, and the effectiveness of the 
developed methodology is evaluated through a case study which focuses on the Los 
Angeles/Long Beach port complex. The case study uses a trucking company located in the Los 
Angeles region, which can utilize three candidate CPFs for exchange of chassis. The company 
assigns container movement tasks to its fleet of trucks, with warehouse locations spread across 
the region. In the simulation scenarios developed for the case study, the use of CPFs at the 
trucking company level, can provide improvements up to 13% (depending upon the specific 
scenario) over the cases of not using any CPFs. It was found in this work that for typical cases 
where the number of jobs is much larger than the number of vehicles in the company fleet, the 
greatest benefit from CPF use would be in the cases where there are some significant job to job 
differences with respect to chassis usage. 
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1. Introduction  

According to the World Bank, world ports handled more than 700 million 20-foot equivalent 
units (TEUs) of containers in 2016 (Figure 1 and Figure 2), [1]. Figure 1 shows that the global 
container traffic has increased over 200% from 2000 to 2016. Figure 2 shows that the United 
States (and China) have the highest levels of container traffic in the world. 

 

Figure 1. World’s container port traffic in TEU (2000-2016) 
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Figure 2. Container port traffic in TEU by country (2016)  

In fact, the busiest container port in the U.S. is the port complex of Los Angeles and Long Beach. 
In 2015 the combined ports handled 15.4 million TEUs [2], [3]. This number represents a 56% 
increase since 2000 and is expected to grow even higher in the future. Since most of the 
containers in use are 40-foot units (FEU), the figure of 15.4 million TEUs corresponds to 
approximately 8.3 million individual container units (the conversion factor most widely used in 
the industry is: One Individual Container = 1.85 TEU, [4]). 

This large volume of container trips results in traffic congestion, noise pollution, and 
greenhouse gas emissions in the areas around and within the ports [5]. Traffic congestion, in turn, 
impacts the local economy by decreasing reliability of delivery time for the imported goods, 
which forces local businesses to use more operators, equipment, distribution centers and 
inventory in order to deliver their end-products on time. One metric that can be used to assess 
the overall effectiveness of a proposed solution is the total travel time for trucks transporting 
goods from/to the ports during a given time period. This metric is correlated strongly with all of 
the items outlined above. Therefore, any concept which could minimize this total travel time can 
be expected to have a positive effect on all of these areas, [6], [7]. One such concept which 
could have a positive impact on total travel time, is the concept of Centralized Processing of 
Chassis. 

A previous METRANS project performed by the principal investigators [8]; [9] developed an 
analytical framework for modeling and optimization of the concept of Centralized Processing of 
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Chassis around marine container terminals, with application to the Los Angeles/Long Beach 
port area. This concept revolves around an off-dock terminal (or several off-dock terminals), 
referred to as Chassis Processing Facilities (CPFs). A CPF is located close to the port, where 
trucks will go to exchange chassis, thereby reducing traffic at the marine terminals, resulting in 
reduced travel times for trucks and the potential of reduced emissions.  
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2. Background and Literature Review 

2.1. POLB and POLA Complex 

The combined twin ports of the Port of Long Beach (POLB) and Port of Los Angeles (POLA) 
create the largest container port complex in the US. Figure 3 shows the annual TEU throughput 
at the ports of Long Beach and Los Angeles for the period 1997-2016 [2], [3]. Although the 
explosive growth of the first ten years exhibited a slowdown after the recession of 2008, it has 
achieved quite a healthy recovery in the last few years reaching or surpassing its pre-recession 
levels. The numbers in Figure 3 include both loaded and empty units, destined for import or 
export. 

Figure 4 shows the change in total annual TEU throughput for the combined ports. The yearly 
change over the last six years is positive. The total container throughput (import and export) 
through the POLA and POLB is expected to grow in the future, correlated with population 
increase, domestic demand for inexpensive manufactured goods, as well as global demand for 
US agricultural products, and improving competitiveness of US industry. Handling a large 
number of the necessary container transactions requires intensive management of operations, 
changes in transportation policy and modernized equipment. 

 

Figure 3. Annual TEU throughput at POLB & POLA (1997-2017) 
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Figure 4. Annual change in TEU throughput for the combined ports (2012-2017) 

2.2. Typical Transaction Types for Container Transport 

In order to complete the export/import operations for containers to/from marine terminals the 
transporting trucks will perform a series of steps including: dropping off export containers; 
dropping off empty chassis used for exports; picking up chassis for imports; picking up import 
containers; and traveling between any locations necessary to complete these tasks [10], [11]. 
The most common transaction types for trucking companies at marine terminals are listed 
below. 

Type 1: Single transaction export 

Type 2: Single transaction import of grounded container (i.e. container not loaded on a 
chassis) 

Type3: Single transaction import of wheeled container (i.e. container already loaded on 
chassis) 

Type 4: Dual transaction export / import of grounded import 

Type 5: Dual transaction export / import of wheeled import 

Figure 5 shows the flow of bobtails, chassis and containers for transaction types 1-5 described 
above. The flows presented in Figure 5 depict the operations taking place between the in-gate 
and out-gate of the marine terminal. The truck’s point of origin or its final destination, which 
could be for example a warehouse or a parking space at the trucking company, are not depicted 
in the figure. The following list provides a detailed explanation of the operations taking place 
for each type of the five transactions. 
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• Type 1: Single transaction export. The bobtail leaves the trucking company (or its 
point of origin) with a chassis on which an export container is loaded. It arrives at 
the in-gate; enters the terminal; drops off the export container and the chassis in 
the marine terminal; passes through the out-gate and arrives at its final destination 
as a bobtail. 

• Type 2: Single transaction import of grounded container. The bobtail arrives at the in-
gate; picks up a chassis at the marine terminal; picks up an import container; passes 
through the out-gate and arrives at its final destination as a bobtail with a chassis 
and a container. 

• Type 3: Single transaction import of wheeled container. The bobtail arrives at the in-
gate; picks up a chassis which has already been loaded with an import container; 
passes through the out-gate and arrives at its final destination as a bobtail with a 
chassis and a container. 

• Type 4: Dual transaction export / import of grounded import. The bobtail arrives at 
the in- gate with a chassis on which an export container is loaded; enters the 
terminal; drops off the export container; loads an import container to the chassis; 
passes through the out-gate and arrives at its final destination as a bobtail with a 
chassis and a container. 

• Type 5: Dual transaction export / import of wheeled import. The bobtail arrives at 
the in- gate with a chassis on which an export container is loaded; enters the 
terminal; drops off the export container; drops off the chassis; picks up a chassis 
which has already been loaded with an import container; passes through the out-
gate and arrives at its final destination as a bobtail with a chassis and a container. 
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Figure 5. Description of container transaction types at marine terminals 
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2.3. Problems Present at the POLB and POLA 

Two of the key hurdles to overcome in managing POLB and POLA container imports and exports 
include chassis shortages and heavy traffic surrounding the port. 

2.4. Shortage of Chassis 

In the POLB and POLA, there are approximately 100,000 chassis available for leasing and 
transporting containers to and from warehouses, stores, factories, rail yards and container 
terminals [12]. Among these 100,000 chassis available to the trucking companies there are 
chassis supplied by various third party chassis leasing companies. However, terminals within the 
ports do not always have chassis available from each company. At times chassis required by the 
trucks are either not available anywhere in the terminal or are dislocated and need to be 
repositioned. 

Prior to 2014 chassis companies did not work together or have a neutral chassis pool, and 
shortages and dislocations of chassis occurred frequently. Trucks would often be required to 
travel between terminals and perform additional trips to pick up or drop-off chassis at specific 
locations in addition to picking up and dropping off the containers for export and import. This 
was a lengthy and cumbersome process and generated additional queues at each terminal [13]. 

The shortage of chassis can significantly lengthen truck turn times, causing additional cost for 
trucking companies and increasing emissions at the port. Lack of chassis could also cause 
containers to be kept at the carrier ship for a prolonged time, resulting in the accumulation of 
storage fees. In addition, when containers are not discharged in a timely manner, the shippers 
face a congested space in their area of operation. This can, in turn, force shippers to rent 
additional storage area, leading to more expensive carrying cost and delayed delivery time [13]. 
According to POLA/POLB terminal operators and PierPass officials (2014) one of the core 
reasons for port congestion is lack of chassis [10]. 

2.5. Traffic Congestion 

Traffic congestion around the port is also contributing to the slowdown of port operations. At 
the POLB and POLA trucks are coming from many locations to drop-off or pick up containers 
and chassis, where the freeways that truck drivers must use to access the port are also used 
heavily by commuters traveling through the densely populated area surrounding Los Angeles. 
[14]. The most heavily used freeway to get to and from the POLB and POLA is California 
Interstate 710 (I-710). I-710 has, for the most part, four lanes, heavily packed with trucks and 
commuter vehicles during rush hours, causing major congestion problems in the vicinity of the 
ports. 

As the American economy expands, there is more demand for commercial operations, 
increased freight, and increased numbers of foreign commercial partners. This gives rise to 
recurring congestion at freight bottlenecks, creating a conflict between freight and passenger 
service. Moreover, as demands for trading partners increase, more freight ships will be docked 
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at the ports. Handling more transactions also means that the ports will have to increase their 
processing capacity. This increase will undoubtedly cause the entrance to the port and the 
areas within the port itself to be heavily congested as well [14]. 

Congestion in and outside of the port is detrimental to the economy in Southern California as 
well as that of the US as a whole. When there is additional congestion, port operators take 
much longer to unload cargo ships. Supply chains carrying goods through the POLB and POLA 
can then become slowed to the point where some retailers find it necessary to redirect their 
goods. The goods are then redirected by sea or air to other ports on the East Coast where they 
can be further distributed, resulting in reduced income for the surrounding area as well as 
additional costs for the retailers [15] [16]. 

2.6. Chassis Leasing and the Gray Chassis Pool 

In late 2014, three chassis leasing companies including Direct Chassis Link, Inc. (DCLI), Trans-
Pacific (TRAPAC) Intermodal and Flexi-Van, along with a container terminal operator SSA 
Marine, (formerly Stevedoring Services in America), decided to develop a solution to the chassis 
shortage problem. The four companies own about 95% of the total 100,000 chassis in use in the 
POLA/POLB area. Figure 6 shows the chassis ownership distribution among the four companies, 
as of 2014. The proposed solution to the chassis shortage problem came in the form of a 
chassis management model known as “Gray Chassis Pool” or “Pools of Pools (POP)” [10] [12]. 

 

Figure 6. Chassis ownership in the POLB/POLA area 

The POP is a neutral, interoperable chassis pool that was launched in February 2015, from DCLI, 
TRAC Intermodal and Flexi-Van, in cooperation with the POLA, POLB and SSA Marine. Their 
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chassis are pooled together to provide a more efficient way of obtaining chassis for trucking 
companies, which are able to use the chassis from any of the chassis companies 
interchangeably. Thus, a trucker can pick any chassis from the POP and drop it off at any 
designed POP storage area without having to worry about returning chassis to the same exact 
location. Since truckers have access to any chassis, it allows for a smoother operation at the 
port and fewer inefficiencies in chassis-related operations. However, the pools still remain 
commercially independent and are in competition with one another. A third party service 
provider manages the billing and other proprietary information among these pools [17]. 

Nonetheless, even with the improved flexibility, interoperability and efficiency which the POP 
has introduced, the port still suffers some repositioning issues and the heavy traffic congestion 
problems remain. 

2.7. Centralized Processing of Chassis 

The concept of Centralized Processing of Chassis was introduced as one method for improving 
travel times associated with container retrieval. This concept was introduced in Europe as the 
Chassis Exchange Terminal (CET) [18]. In the CET concept, the centralized processing of chassis 
was defined as an off- dock terminal (or a number of off-dock terminals) located close to the 
port, where trucks would go to retrieve imports or drop-off exports instead of unloading and 
loading containers at the marine terminal. 

The first step in the operation with the CET involved a container being loaded onto a chassis at 
the marine terminal. The second step included the chassis transport to the CET during off-peak 
hours, for example at night time. The last step in the operation was when a truck carrying a 
chassis with a container drives into the CET. At this point, the truck would exchange the chassis 
it brought into the CET with another chassis and container, which has already been transported 
to the CET during the second step. The exchange operation involves unhooking a chassis and 
hooking up another one at the CET. This is much simpler, more efficient, and a lot faster 
operation than the operation of unloading and loading containers and performing chassis 
exchanges at a regular marine terminal. 
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3. Problem Description 

3.1. Problem 

In the previous METRANS project performed by the principal investigators [8], the concept of 
CPFs and the possibility of using it to improve travel time for trucks was studied. 

The previous study established and quantified the benefits to the overall traffic network that 
can be achieved through the use of CPFs. A methodology for determining the optimal locations 
and number of CPFs was developed and tested on a case study focusing specifically on the ports 
of Los Angeles and Long Beach. In that project it was shown that a reduction of up to 20% in 
total travel time can be achieved when using the CPFs, as compared to using only the marine 
terminals. The results for the particular case study also showed that using up to three of the 
potential CPFs provides significant improvements to total travel time, but using more than 
three CPFs has insignificant additional benefits. 

While the benefits at the system/strategic level were established in the previous project, the 
question of how best to take advantage of the CPF facilities at the operational level has 
remained open. With further refinement to develop an approach to proactively (and 
dynamically) schedule drayage operations from a trucking company’s point of view, cost as well 
as traffic congestion, noise and emissions can be further reduced. 

3.2. Objectives 

As mentioned above, the focus of the present study is to investigate the effectiveness of the 
CPF concept at the operational level. The main objective herein is to develop an analytical 
framework for dynamic modeling of chassis movements and to investigate optimization 
techniques for scheduling the tasks and minimizing the total travel time of the drivers from a 
particular trucking company’s point of view, when several CPFs are available for use. The 
methodologies to be developed will contribute greatly to improving trucking companies’ daily 
operations, and as a result will improve traffic conditions in the areas surrounding the ports. 

The plan is to investigate both the temporal and spatial components of the CPF concept. That 
is, in addition to the optimal location of CPFs, the scheduling of individual trucks and the time 
when a CPF will be visited for exchanging of chassis will be considered. These two factors are 
simultaneously incorporated into the models to optimally determine the schedule for each 
truck. 

At the initial phase, the methodology developed by the Principal Investigators (PI)s in their 
previous work [8] will be used to determine the number and optimal locations of CPFs. 

At the next phase, the set of all tasks that must be completed by a particular trucking company 
within a day will be formalized and incorporated into the optimization problem formulation. 
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In order to complete the export/import operations for containers to/from marine terminals the 
transporting trucks will perform a series of steps [10], [11], including: 

• dropping off export containers 

• dropping off empty chassis used for exports 

• picking up chassis for imports; picking up import containers 

• traveling between any locations necessary to complete these tasks 

Note that depending upon the destination container configurations and sequence of tasks this 
would allow for any of the five most common transaction types in marine terminals presented 
in Section 2.2. 

3.3. Formal definition of a job 

Given a particular trucking company (TC), we assume that the set of all daily tasks that need to 
be completed are known, and each of these tasks consists of moving one container between 
one of the customer warehouses (WH)s and marine terminals (MT)s, or vice-versa, with or 
without the use of CPFs. In the sequel the definition of a job will be formalized. A job, which is a 
task, consists of a container movement with the following attributes: 

i. Origin. The origin of a job will be one of the WHs if it transports an export container, or 
one of the MTs if it is an import container. 

ii. Destination. Similar to the origin, the destination of a job will be one of the MTs if it is an 
export container or one of the WHs if it is an import activity. 

iii. Origin Container Configuration. This refers to the state of the container at the origin 
(Grounded or Wheeled). It is noted that for our purposes only two states for this 
attribute are considered. 

iv. Destination Container Configuration. This refers to the state of the container at the 
destination (Grounded or Wheeled). 

v. Earliest Allowable Completion Time for the job. 

vi. Latest Allowable Completion Time for the job. 

The general concept of a series of jobs, i.e. vehicle routing from an individual trucking 
company’s point of view including the possible use of CPFs, is illustrated in Figure 7 and Table 1. 
A particular trucking company labeled as TC in Figure 7, needs to complete three jobs using the 
M trucks (or vehicles) available, which are denoted as 𝑉1, … 𝑉𝑀. It is assumed that the M 
vehicles available to the TC will be servicing a variety of customer locations and marine 
terminals. The L marine terminal locations are given as 𝑀𝑇1, … 𝑀𝑇𝐿 and the J customer 
locations which the trucking company is servicing are generically labeled as warehouses 
𝑊𝐻1, …𝑊𝐻𝐽. 



 13 

The set of jobs assigned to 𝑉𝑚 is shown in Table 1, with the resultant path illustrated in Figure 
7. In this example, three jobs are to be completed (Job1 is an export; Jobs 2 and 3 are imports). 

• Job 1 consists of picking up a wheeled export container from warehouse 𝑊𝐻1 and 
transporting it to marine terminal 𝑀𝑇𝑙 , where it will be left in a grounded configuration. 

• Job 2 is to pick up a grounded import container from marine terminal 𝑀𝑇𝐿 and transport 
it to warehouse 𝑊𝐻𝐽 , where it will be left in a wheeled configuration. 

• Job 3 is to pick up a grounded import container from marine terminal 𝑀𝑇1 and transport 
it to warehouse 𝑊𝐻𝐽 , where it will be left in a wheeled configuration. However, the 

transport truck does not have a chassis, since it left it with the container at warehouse 
𝑊𝐻𝐽 during completion of Job 2, hence Job 3 will require a visit to the kth CPF, 𝐶𝑃𝐹𝑘, to 

pick up an available chassis, as outlined in Figure 7. 

 

Figure 7. Example schematic of vehicle routing problem with CPFs 



 14 

Table 1. Schedule example for vehicle 𝑽𝑽𝑽𝑽 

Attribute Job 1 Job 2 Job 3 
(i) Origin 𝑊𝐻1 𝑀𝑇𝐿 𝑀𝑇1 
(ii) Destination 𝑀𝑇𝑙 𝑊𝐻J 𝑊𝐻j 
(iii) Origin Container 

Configuration 
Wheeled Grounded Grounded 

(iv) Destination Container 
Configuration Grounded Wheeled Wheeled 

(v) Earliest Allowable Completion 
Time for job 

8:00 AM 8:00 AM 8:00 AM 

(vi) Latest Allowable Completion 
Time for job 

5:00 PM 5:00 PM 5:00 PM 

The general process flow for any vehicle schedule for a given sequence of jobs is shown in 
Figure 8. For each job there are three basic components: job preparation, job pick-up, and job 
drop-off. 

• Job preparation involves assessing whether the vehicle is ready for the current job and, 
if necessary, picking up a chassis if one is needed for a grounded transaction or dropping 
off a chassis if the transaction is with a wheeled container. 

• Job pick up involves retrieving a wheeled or grounded container from either a WH for an 
export or a MT for an import. 

• Job drop off involves dropping off a wheeled or grounded container 
from either a MT for an export or a WH for an import. 

Job assignment to each of the vehicles and optimization thereof is covered in more detail in the 
following sections. 
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Figure 8. General process flow for vehicle schedule 
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4. Analytical Models and Optimization 

In this section, a general analytical framework for the scheduling of jobs for a trucking company 
is developed, assuming that CPFs are available to be used. The optimal vehicle scheduling will 
be identified within this particular framework. 

Due to recent changes in chassis leasing policies, such as the introduction of the grey chassis 
pool in the ports of Long Beach and Los Angeles, for the purpose of this analysis it is assumed 
that chassis of similar types are interchangeable, and transactions do not need to take into 
account chassis ownership. 

Given: 

• the location of the trucking company 𝑇𝐶, which must complete the particular tasks 

• the locations of the marine terminals, 𝑀𝑇𝑙 , 𝑙 = 1, … , 𝐿 

• the locations of the customers, or “warehouses” 𝑊𝐻𝑗 , 𝑗 = 1, … , 𝐽 

• the locations of potential sites for chassis processing facilities 𝐶𝑃𝐹𝑘, 𝑘 = 1, … , 𝐾, 

• a set of import and export jobs that need to be completed between 𝑊𝐻𝑗, 𝑗 = 1, … , 𝐽, 

and 𝑀𝑇𝑙, 𝑙 = 1, … , 𝐿 , where each job is determined by its own particular attributes as 
defined previously in Section 3.3 

• a set of vehicles (trucks) to carry out the jobs 

• the maximum allowable work span for any given vehicle 

The objective herein is to minimize the weighted combination of: 

• the total travel time for all vehicles 

• the work span needed to finish all jobs 

As defined above, the problem is a multi-objective optimization problem. The purpose of 
minimizing both total travel time and work span is to provide a more realistic model for the 
trucking company’s priorities, where the goal is to minimize (a) the direct hourly costs for 
completion of jobs, represented by the total travel time for all vehicles, while (b) spreading the 
jobs as evenly as possible among the vehicle drivers, represented by the work span to finish all 
jobs. The equal spreading of jobs between drivers is necessary since typically a given staff of 
drivers is available already to the trucking company to perform the jobs for the day. Therefore, 
unequally assigned work would result in staff who, depending upon the pay structure, are 
either being underutilized (and overpaid) or paid for minimal hours of work so that the trucking 
company is not providing a reliable income to their workers and may not be able to maintain 
trained and available staff. 
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4.1. Problem Formulation 

The mathematical formulation below is created in order to solve the problem defined in Section 
3.1. The formulation includes models for the variations in travel durations which occur 
throughout the day for schedule allocation to each of the vehicle drivers. For the purposes of 
the schedule optimization problem defined herein, the following parameters are assumed to be 
fixed.  

𝐽 Number of 𝑊𝐻𝑠 with which the 𝑇𝐶 interfaces  

𝐾 Number of available 𝐶𝑃𝐹 locations  

𝐿 Number of 𝑀𝑇𝑠 with which the TC interfaces 

𝑁 Number of jobs for TC to perform 

𝑀 Number of vehicles (trucks) which will work for the given time period 

𝑇𝐶1 Node representing the trucking company location  

𝑊𝐻𝑗  Node representing the 𝑗𝑡ℎ warehouse 𝑗 ∈ {1,… , 𝐽} 

𝐶𝑃𝐹𝑘 Node representing the 𝑘𝑡ℎ chassis processing facility 𝑘 ∈ {1,… , 𝐾} 

𝑀𝑇𝑙 Node representing the 𝑙𝑡ℎ marine terminal 𝑙 ∈ {1,… , 𝐿} 

𝒲ℋ 
Set of warehouse nodes  

𝒲ℋ ≡ {𝑊𝐻1,𝑊𝐻2, …𝑊𝐻𝐽} 

𝒞𝒫ℱ 
Set of CPF nodes  

𝒞𝒫ℱ ≡ {𝐶𝑃𝐹1, 𝐶𝑃𝐹2, … 𝐶𝑃𝐹𝐾} 

ℳ𝒯 
Set of marine terminal nodes  

ℳ𝒯 ≡ {𝑀𝑇1,𝑀𝑇2, …𝑀𝑇𝐿} 

𝒱 
Set of vehicles 

𝒱 = {𝑉𝑚 } 𝑚 = 1,… ,𝑀 

𝒰 
Set of jobs 

𝒰 = {𝑢𝑛} 𝑛 = 1,… , 𝑁 

𝒪(𝑢𝑗) 
Origin of job 𝑢𝑗 

𝒪(𝑢𝑗) ∈ ℳ𝒯 ∪ 𝒲ℋ ∀𝑗 

𝒟(𝑢𝑗) 
Destination of job 𝑢𝑗 

𝒟(𝑢𝑗) ∈ ℳ𝒯 ∪ 𝒲ℋ ∀𝑗 

𝒪𝑐𝑓𝑔(𝑢𝑗) 

Origin container configuration of job 𝑢𝑗  

𝒪𝑐𝑓𝑔(𝑢𝑗) ∈ {0,1} ∀𝑗 

where  

𝒪𝑐𝑓𝑔(𝑢𝑗) = 1 represents the case where the container as picked up has a 

chassis associated with it (i.e. a bobtail must arrive for a “wheeled” pick 
up), and  

𝒪𝑐𝑓𝑔(𝑢𝑗) = 0 represents the case where the container as picked up does 

not have chassis associated with it (i.e. a bobtail with chassis must arrive 
to for a “grounded” pick up) 
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𝒟𝑐𝑓𝑔(𝑢𝑗) 

Destination container configuration of job 𝑢𝑗 

𝒟𝑐𝑓𝑔(𝑢𝑗) ∈ {0,1} ∀𝑗 

where  

𝒟𝑐𝑓𝑔(𝑢𝑗) = 1 represents the case where the container as dropped off has 

a chassis associated with it (i.e. the bobtail will deliver both chassis and 
container to complete a “wheeled” drop-off), and  

𝒟𝑐𝑓𝑔(𝑢𝑗) = 0 represents the case where the container as dropped off 

does not have chassis associated with it (i.e. the bobtail will deliver only 
the container and leave with the chassis to complete a “grounded” drop-
off) 

𝑠𝑚,𝑖 
The ith job in vehicle 𝑉𝑚’s schedule:  

𝑠𝑚,𝑖  ∈ 𝒰 ∀ 𝑚, 𝑖 ∈ ℕ∗ 

𝑠𝑚 The schedule of vehicle 𝑉𝑚, sm ≡ {𝑠𝑚,1 …𝑠𝑚,𝑘} 

𝑡𝑡𝑜𝑡(sm,i) The completion time for job sm,i  

𝒯𝑚𝑎𝑥(𝑢𝑗) Latest allowable completion time for job uj 

𝒯𝑚𝑖𝑛(𝑢𝑗) Earliest allowable completion time for job uj 

𝑇𝑊𝑆𝑚𝑎𝑥 Maximum allowed work span 

𝑡𝑛𝑜𝑑𝑒(𝑥𝑖, xj, 𝑡𝑘) The time to get from node 𝑥𝑖 to node 𝑥𝑗 at time 𝑡𝑘  

𝑃(𝑥) 
Processing time for chassis retrieval / drop-off at node 𝑥, 

𝑥 ∈ ℳ𝒯 ∪ 𝒲ℋ 

𝑇𝑤ℎ Time to pick up or drop-off wheeled container 

𝑇𝑔𝑛𝑑 Time to pick up or drop-off grounded container 

𝑡0 Initial time for vehicle departure 

Note that some assumptions have been made to simplify the modeling process. In this problem, 
no specific distinction is given as to alternate chassis / container sizes. It is assumed that all of 
the grounded or wheeled transactions can be accommodated using a single common chassis. 
This allows for import and export activities to be modeled simply as a directed edge between 
the appropriate customer and marine terminal (export) or vice versa (import). If a grounded 
container pick-up is preceded by a grounded container drop-off, the chassis is assumed to be 
reusable for the next transaction. After dropping off loaded containers at the WHs, it will be 
necessary to return to that location to pick up the empty and return it to the MT. In this model, 
this would appear identical to an export transaction. Similarly providing an empty container to 
a customer for them to load with exports could be modeled as an import transaction in which 
an empty container is delivered from MT to WH. 

The variables 𝑇(𝑠𝑚) and 𝐶(𝑠𝑚) introduced in the objective function in equation (1) below, 
represent the travel time and cost of the schedule of vehicle 𝑉𝑚, and are the building blocks of 
the multi-objective function described previously. The cost of the schedule 𝐶(sm) is assumed to 
be a function of the travel time to complete the schedule. This could include hourly wages as 
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well as other costs to the trucking company associated with supporting a given vehicle 
schedule. 

The objective function is given by: 

min ∑ 𝐶(𝑠𝑚)

𝑀

𝑚=1

+ 𝜇 max
𝑚=1,…,𝑀

𝑇(𝑠𝑚) (1) 

s.t. 𝒯𝑚𝑖𝑛(sm,i) ≤ 𝑡𝑡𝑜𝑡(sm,i) ≤ 𝒯𝑚𝑎𝑥(sm,i) 
𝑚 = 1, … ,𝑀 

𝑖 = 1,… , |𝑠𝑚| 
(2) 

 |sm| ≥ 1  𝑚 = 1, … ,𝑀 (3) 

 𝑠𝑖⋂𝑠𝑗 = ∅  ∀ 𝑖 ≠  𝑗 (4) 

 ⋃ 𝑠𝑚

𝑀

𝑚=1

= 𝒰  𝑚 = 1, … ,𝑀 (5) 

For a given job, the total completion time is given by 

𝑡𝑡𝑜𝑡(sm,i) = max (𝑡∗  + 𝑡𝑛𝑜𝑑𝑒(𝒪(𝑠𝑚,𝑖),𝒟(𝑠𝑚,𝑖), 𝑡∗)

+ (𝒟𝑐𝑓𝑔(𝑠𝑚,𝑖) = 1 → 𝑇𝑤ℎ)⋀(𝒟𝑐𝑓𝑔(𝑠𝑚,𝑖) = 0

→ 𝑇𝑔𝑛𝑑), 𝒯𝑚𝑖𝑛(sm,i)) 

𝑚 = 1, … ,𝑀 
𝑖 = 2,… , |𝑠𝑚| 

where 

𝑡∗ = 𝑡𝑡𝑜𝑡(𝑠𝑚,𝑖−1) + 𝑡𝑗𝑜𝑏 (𝑠𝑚,𝑖−1, 𝑠𝑚,𝑖 , 𝑡𝑡𝑜𝑡(𝑠𝑚,𝑖−1))

+ (𝒪𝑐𝑓𝑔(𝑠𝑚,𝑖) = 1 → 𝑇𝑤ℎ)⋀(𝒪𝑐𝑓𝑔(𝑠𝑚,𝑖) = 0 → 𝑇𝑔𝑛𝑑) 

(6) 

𝑡𝑡𝑜𝑡(sm,1) = max (𝑡† + 𝑡𝑛𝑜𝑑𝑒(𝒪(𝑠𝑚,1),𝒟(𝑠𝑚,1), 𝑡†)

+ (𝒟𝑐𝑓𝑔(𝑠𝑚,1) = 1 → 𝑇𝑤ℎ)⋀(𝒟𝑐𝑓𝑔(𝑠𝑚,1) = 0

→ 𝑇𝑔𝑛𝑑), 𝒯𝑚𝑖𝑛(𝑠𝑚,1)) 

𝑚 = 1,… ,𝑀 
where 

𝑡† = 𝑡0 + 𝑡𝑗𝑜𝑏(𝑇𝐶𝑗𝑜𝑏, 𝑠𝑚,𝑖 , 𝑡0)

+ (𝒪𝑐𝑓𝑔(𝑠𝑚,1) = 1 → 𝑇𝑤ℎ)⋀(𝒪𝑐𝑓𝑔(𝑠𝑚,1) = 0 → 𝑇𝑔𝑛𝑑) 

(7) 
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where TCjob is a “dummy” job defined such that 

𝒪(TCjob) = 𝑇𝐶1 

𝒟(TCjob) = 𝑇𝐶1 

𝒪cfg(TCjob) = 1 

𝒟cfg(TCjob) = 1 

𝒯𝑚𝑖𝑛(TCjob) = −∞ 

𝒯𝑚𝑎𝑥(TCjob) = ∞ 

 

 

(8) 

and 

𝑡𝑗𝑜𝑏(𝑢𝑖 , 𝑢𝑗 , 𝑡𝑘) is the time to get from job 𝑢𝑖  to job 𝑢𝑗 at time 𝑡𝑘  which is 

given by 

𝑡𝑗𝑜𝑏(𝑢𝑖 , 𝑢𝑗 , 𝑡𝑘) = 

((𝒟cfg(ui) = 𝒪cfg(uj)) → 𝑡𝑛𝑜𝑑𝑒(𝒟(ui),𝒪(uj), 𝑡𝑘))⋀ ((𝒟cfg(ui) ≠ 𝒪cfg(uj))  

→ 𝑡‡ + 𝑡𝑛𝑜𝑑𝑒(𝑥𝑜𝑝𝑡(𝒟(ui),𝒪(uj), 𝑡𝑘),𝒪(uj), 𝑡𝑘 + 𝑡‡)) 

where 𝑥𝑜𝑝𝑡(𝑥𝑖 , 𝑥𝑗 , 𝑡𝑘) is the optimum chassis processing location which 

results in minimal travel / chassis processing time when traveling between 
nodes 𝑥𝑖 and 𝑥𝑗 at time 𝑡𝑘  and  

𝑡‡ = 𝑡𝑛𝑜𝑑𝑒(𝒟(ui), 𝑥𝑜𝑝𝑡(𝒟(ui),𝒪(uj), 𝑡𝑘), 𝑡𝑘) + 𝑃 (𝑥𝑜𝑝𝑡(𝒟(ui), 𝒪(uj), 𝑡𝑘)) 

(9) 

Using the recursive formula above, the travel time to complete vehicle 𝑣𝑚 ’s schedule  
𝑇(sm) is then given by: 

 
𝑇(sm) = 𝑡𝑡𝑜𝑡(sm,|sm|) + 𝑡𝑗𝑜𝑏 (sm,|sm|, 𝑇𝐶𝑗𝑜𝑏 , 𝑡𝑡𝑜𝑡(sm,|sm|)) − 𝑡0 

𝑚 = 1, … ,𝑀 
 (10) 

The cost of the schedule 𝐶(sm) is then assumed to be a function of the travel time to complete 
the schedule as noted below. This function could include the hourly wage of the driver for 
standard hourly pay, nonlinear elements to address overtime pay, as well as other costs to the 
trucking company associated with supporting a given vehicle schedule such as average costs 
due to vehicle maintenance. 

 𝐶(sm) = 𝑓(𝑇(sm)) 𝑚 = 1,… ,𝑀 (11) 
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4.2. Optimization Methodology 

In this project, an optimization methodology is developed to find the optimal solution to the 
scheduling problem, as described above. As with most scheduling problems, the problem 
defined above is NP hard. In addition, as compared to most typical scheduling problems, there 
are a few factors which add further complexity to the current problem, including: 

• The current problem is a multi-objective optimization problem. One objective is to 
minimize the total cost; the other objective is to minimize the maximum work span of 
vehicles. 

• When the job schedule is such that it includes moving a chassis to/from CPFs, the choice 
of CPF is flexible, increasing the size of the potential solution space. 

• There is a time window associated with each job. 

In order to perform the optimization for this problem, metaheuristic methods are leveraged 
which can provide effective and efficient solutions. These problem-independent techniques 
include approaches which operate on a single solution such as simulated annealing or tabu 
searches, as well as approaches which operate on a set of solutions such as genetic algorithms 
or particle swarm optimization. Various metaheuristics were assessed to identify a suitable 
approach to solve the problem, which have in turn been adjusted according to the problem at 
hand to fine-tune its intrinsic parameters. After careful consideration and evaluation, the 
genetic algorithm approach was chosen as the metaheuristic to be used. 

4.3. Genetic Algorithm Overview 

With the genetic algorithm, our goal is to minimize the weighted combination of the total travel 
time for all vehicles and the work span needed to finish all jobs by allocating a fixed set of jobs 
between WHs and MTs to a given fleet of vehicles. The optimal configuration is described by 
the job allocation. The problem is such that an ordered set of jobs allocated to each of the 
vehicles defines any given solution. 

This ordered set serves as the chromosome in the genetic algorithm. Each of the individual job 
entries in this set which describe which vehicle is responsible for the job and when it occurs in 
that vehicle’s schedule then serves as a gene. An example of a set of genes and single 
chromosome is shown in Figure 9 below. 
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Figure 9. Example of chromosomes and genes used in the genetic algorithm 

Given these chromosomes, the process by which the genetic algorithm is implemented to 
optimize the objective function is shown in Figure 10. The example in Figure 10 is based on 
scheduling ten vehicles to complete sixty jobs during a given day. Some of the final settings 
used in the algorithm including population, crossover percentage, elite count, and termination 
criteria are indicated in the figure. The basic steps include: 

• initialization (where the initial population is generated) 

• selection (in which the fitness of the population is evaluated), and in our case an 
objective function which calculates reliability 

• the generation of children based upon the selection criteria 

• the implementation of crossover and mutation algorithms. 

The entire process is then repeated until the termination criteria have been reached. 
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Figure 10. Genetic algorithm overview 

4.4. Initial Population 

Each of the chromosomes in the initial population for the genetic algorithm was generated 
using one of four separate algorithms, including two nearest neighbor algorithms and two 
random permutation algorithms. Note that all four algorithms were built to force the 
permutations of the jobs spread across the vehicle schedules within a given chromosome to be 
such that the constraints of equations (3), (4), and (5) would all be met. 

4.4.1. Nearest Neighbor Algorithm 1 

The first of the chromosomes in the initial population was generated using a nearest neighbor 
algorithm which equally distributed jobs between all vehicles. This algorithm sequenced 
through each of the vehicle schedules assigning jobs in the sequence 
𝑠1,1, 𝑠2,1, … 𝑠𝑀,1, 𝑠1,2, 𝑠2,2, … 𝑠𝑀,2 … until all jobs were assigned, where in each case 𝑠𝑚,𝑖 𝑖 was 

selected such that 𝑡𝑗𝑜𝑏(𝑠𝑚,𝑖−1, 𝑠𝑚,𝑖 , 𝑡𝑡𝑜𝑡(sm,i−1)) was minimized, and where 𝑠𝑚,0 ≡ 𝑇𝐶𝑗𝑜𝑏 and 

𝑡𝑡𝑜𝑡(𝑇𝐶𝑗𝑜𝑏) = 𝑡0. An example result for this algorithm is shown in Figure 11. 
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Figure 11. Nearest Neighbor Algorithm 1 Example Output 

Row 𝒔𝒎 represents the schedule of vehicle 𝑽𝒎 for the day. Square 𝒖𝒏 represents the 𝒏𝒕𝒉 job that the 
trucking company has to complete, from a total of 𝑵 jobs for the day. Job 𝒖𝒏 contains all the attributes of a 

job as defined previously. The 𝒊𝒕𝒉 column represents the 𝒊𝒕𝒉 task in sequence that a vehicle has to perform. 
The “nearest neighbor algorithm 1” assigns the jobs uniformly to all available vehicles. 

4.4.2. Nearest Neighbor Algorithm 2 

The second of the chromosomes in the initial population was generated using a nearest 
neighbor algorithm which assigned one job to each of the vehicles and then assigned all 
remaining jobs to a single vehicle. This algorithm sequenced through each of the vehicle 
schedules assigning jobs in the sequence 𝑠1,1, 𝑠2,1, … 𝑠𝑀,1, 𝑠1,2, 𝑠1,3, 𝑠1,4  … 𝑠1,𝑁−𝑀+1 until all jobs 
were assigned, such that in each case 𝑠𝑚,𝑖 was once again selected such that 

𝑡𝑗𝑜𝑏 (𝑠𝑚,𝑖−1, 𝑠𝑚,𝑖 , 𝑡𝑡𝑜𝑡(sm,i−1)) was minimized. An example result for this algorithm is shown in 

Error! Reference source not found.. 
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Figure 12. Nearest Neighbor Algorithm 2 Example Output 
Row 𝒔𝟏 represents the schedule of vehicle 𝑽𝟏 for the day. Rows 𝒔𝟐 − 𝒔𝟏𝟎 represent the schedules of vehicles 
{𝑽𝟐, 𝑽𝟑,⋯𝑽𝟏𝟎 }.  The “nearest neighbor algorithm 2” assigns only one job to each of the vehicles 
{𝑽𝟐, 𝑽𝟑,⋯𝑽𝟏𝟎 }, and the remaining 51 jobs to vehicle 𝑽𝟏. Note that for reasons of simplicity and clarity, only 
a few of the 51 jobs for 𝒔𝟏 are shown in the figure. 

4.4.3. Random Permutation Algorithm 1 

The remaining chromosomes in the initial population were generated using two different 
algorithms which provide random permutations of the job sequence, with each algorithm 
generating ~50% of the resultant population. In the first random permutation algorithm, jobs 
were distributed equally across all of the available vehicles. An example result for this algorithm 
is shown in Figure 13. 
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Figure 13. Random Permutation Algorithm 1 Example Output 

Row 𝒔𝒎 represents the schedule of vehicle 𝑽𝒎 for the day. Square 𝒖𝒏 represents the 𝒏𝒕𝒉 job that the 
trucking company has to complete, from a total of 𝑵 jobs for the day. Job 𝒖𝒏 contains all the attributes of a 
job as defined previously. The 𝒊𝒕𝒉 column represents the 𝒊𝒕𝒉 task in sequence that a vehicle has to perform. 
The “random permutation algorithm 1” assigns the jobs uniformly to all available vehicles. 

Note that in the example above 𝑁/𝑀 is an integer, which allows equal spreading of jobs 
between all vehicles. However, the algorithm was written so that if this were not the case the 
first 𝑁 𝑚𝑜𝑑𝑢𝑙𝑜 𝑀 vehicles would be allocated ⌈𝑁/𝑀⌉ jobs, while the final 𝑀 − (𝑁 𝑚𝑜𝑑𝑢𝑙𝑜 𝑀) 
vehicles would be allocated ⌊𝑁/𝑀⌋. For example, if 𝑁 = 62 and 𝑀 = 10, the first 
62 𝑚𝑜𝑑𝑢𝑙𝑜 10 = 2 vehicles are allocated ⌈62/10⌉ = 7 jobs, while the final 8 vehicles are 
allocated ⌊62/10⌋ = 6 jobs. 

4.4.4. Random Permutation Algorithm 2 

The other random permutation algorithm first randomly assigned a single job to each of the M 
vehicles, in order to force meeting the constraint of equation (3), and then randomly 
distributed the remaining jobs between all vehicles without any attempt to force an equal 
distribution. An example result for this algorithm is shown in Figure 14. 
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Figure 14. Random Permutation Algorithm 2 Example Output 

Row 𝒔𝒎 represents the schedule of vehicle 𝑽𝒎 for the day. Square 𝒖𝒏 represents the 𝒏𝒕𝒉 job that the 
trucking company has to complete, from a total of 𝑵 jobs for the day. Job 𝒖𝒏 contains all the attributes of a 

job as defined previously. The 𝒊𝒕𝒉 column represents the 𝒊𝒕𝒉 task in sequence that a vehicle has to perform. 
The “random permutation algorithm 2” first assigns one job to each of the vehicles {𝑽𝟏, 𝑽𝟐, ⋯𝑽𝟏𝟎, }, and 
then it assigns the remaining jobs randomly to each vehicle. 

4.5. Fitness Function 

In order to compare the quality of different chromosomes within the population, our fitness 
function for every chromosome represents the weighted sum of the total travel time for all 
vehicles and the work span needed to finish all jobs, which is calculated according to the 
algorithm described in Section Error! Reference source not found.. In addition, when 
calculating the fitness, constraint checks according to the optimization algorithm were 
performed to evaluate each chromosome’s validity. In the case that a chromosome is passed to 
the fitness function which fails any of the validity checks, the fitness value is not calculated and 
the chromosome’s fitness value is set to infinity. 

4.6. Crossover Function 

The crossover function should be chosen so that when low cost topologies are combined, they 
tend to produce low cost descendants. The crossover function implemented alternates 
between the two parents’ job sequences at the individual vehicle level to build a solution such 
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that each job is used exactly once, meeting the constraints of equations (4) and (5). The first 
vehicle’s schedule for the offspring is copied from that of parent 1, the second vehicle’s 
offspring is copied from that of parent 2, and then this alternating pattern is continued 
throughout the remainder of the rows. Redundant jobs are then removed and replaced 
sequentially through the offspring such that each job is used exactly once. An example of a 
crossover between two parents for N=60 and M=10 is shown in the figure below. The cases 
where a redundant job was replaced (such that the child’s schedule for a given vehicle does not 
exactly match one of the parents) are shown in red. 

 

Figure 15. Crossover example 

4.7. Mutation Function 

Three different mutation functions were used with equal probability each time the mutation 
function was called. The first mutation function involved moving a job, whereas the second two 
mutation functions involved swapping of jobs rather than moving them. Note that for each of 
these three mutation functions the result could be moving / swapping jobs within a given 
vehicle’s schedule, or a moving / swapping jobs between two different vehicles’ schedules.  

4.7.1. Mutation Function 1 

In the first of the mutation functions, a single job was selected at random and moved into a 
random location. The job to be moved was selected by first randomly selecting one of the 
vehicle schedules with more than one job, and then randomly selecting among the jobs for that 
specific schedule. The destination was selected in a similar fashion by first selecting a vehicle 
schedule at random (this time allowing for any of the vehicle schedules to be selected 
regardless of jobs currently in the schedule), and then randomly selecting the location in the 
schedule into which the job would be inserted. An example of this algorithm is shown in Figure 
16, where the job which is moved between parent and child is highlighted in red. 
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Figure 16. Mutation Function 1 Example 

4.7.2. Mutation Function 2 

In the first of the swapping mutation functions, two jobs were randomly selected and swapped 
with all jobs having equal likelihood of selection. An example of this algorithm is shown in 
Figure 17, where the jobs which are swapped between parent and child are highlighted in red.  

 

Figure 17. Mutation Function 2 Example 
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4.7.3. Mutation Function 3 

In the final mutation algorithm, a swap was performed between the two jobs (𝑠𝑚,𝑖, and 𝑠𝑛,𝑗) 

with the largest total job to job travel times according to equation (12) below. 

max
𝑚=1,…,𝑀,𝑛=1,…,𝑀

  𝑡𝑗𝑜𝑏 (𝑠𝑚,𝑖−1, 𝑠𝑚,𝑖 , 𝑡𝑡𝑜𝑡(sm,i−1)) 

+ 𝑡𝑗𝑜𝑏 (𝑠𝑚,𝑖 , 𝑠𝑚,𝑖+1, 𝑡𝑡𝑜𝑡(sm,i)) 

+ 𝑡𝑗𝑜𝑏 (𝑠𝑛,𝑗−1, 𝑠𝑛,𝑗 , 𝑡𝑡𝑜𝑡(sn,j−1)) 

+ 𝑡𝑗𝑜𝑏(𝑠𝑛,𝑗 , 𝑠𝑛,𝑗+1, 𝑡𝑡𝑜𝑡(sn,j)) 

[
𝑚
𝑖
] ≠ [

𝑛
𝑗 ] (12) 

An example of this algorithm is shown in Error! Reference source not found., where the jobs 
which are swapped between parent and child are highlighted in red. Note that the key 
difference between this mutation and the previous result from Mutation Function 2 is that 𝑠8,2 

and 𝑠10,2 in Figure 17 were selected at random whereas 𝑠5,5 and 𝑠6,3 selected by Mutation 
Function 3 had the two largest values for job to job travel times in the parent chromosome as 
defined in equation (12) above. 

 

Figure 18. Mutation Function 3 Example 

4.8. Termination Function 

The termination function used for the algorithm included a maximum number of total iterations 
which would be performed as well as a maximum number of iterations which would be 
performed in a row if the improvement in the cost was less than or equal to a fixed tolerance 
level.  
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5. Case Study Model Implementation 

The analytical models and optimization methods described in Section 4 are applied in the case 
study to evaluate the potential CPF locations where the total cost and maximum work span for 
the trucking company will be minimized in a multi-objective cost function. 

Real life simulation scenarios are developed using past, current and projected data from the 
LA/LB port area. The simulation scenarios are used to evaluate and compare two scenarios: 
base operations, and chassis and container movements with CPFs in the loop. 

• Base Operations: The base operations replicate the current practices in the LA/LB port 
area. Here, the simulation experiments provide baseline data for total travel times and 
predicted work spans of vehicles for the modeled trucking company in the existing 
situation. 

• CPFs for Chassis Operations: Simulation scenarios are developed and executed based on 
the results of the optimization procedure described above. The results of the various 
simulation scenarios with CPFs in the loop are compared to the base operations (when 
CPFs are not being used), and the improvements of using CPFs are quantified. 

The case study uses the Marine Terminals in the POLB/POLA complex, one representative 
trucking company, a number of warehouses, and potential locations for chassis processing 
facilities in the vicinity of the ports. The selection methods for the TC, WHs and CPF locations 
are described in greater detail in the following sections. 

A general overview of the local POLB and POLA area is shown in Figure 19, which indicates: 

• The marine terminal locations at the POLB and POLA. The MTs are shown as the color- 
coded areas on the map. 

• The TC used for the case study, which is shown as a yellow star on the map. 

• The WHs used for the case study. The WHs are distributed in a wide area around the 
ports, and are shown as yellow dots on the map. 

• The potential CPF locations used in the case study, which are distributed in a wide 
area around the ports and are shown as white pins on the map. 
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Figure 19. Node locations for the full model used in the simulation 

5.1. Marine Terminals 

The POLB and POLA have terminals which cover various categories of imports and exports such 
as automotive, dry bulk, break bulk liquid and containers. This study concentrates on import / 
export of containers and efficient retrieval and use of their associated chassis by truck. The 
container terminals at the POLB and POLA are listed in Table 2 and shown in Figure 20. 

Table 2. Locations of POLB and POLA marine terminals used in the case study 

MT ID Name Address 
1 ITS (K-Line) Pier G E, Long Beach, CA 90802, USA 

2 LBCT (OOCL) Pier F Ave, Long Beach, CA 90802, USA 

3 Pacific Container Terminal (COSCO) Harbor Scenic Way, Long Beach, CA 90802, USA 

4 SSA - Pier A Pier C St, Long Beach, CA 90802, USA 
5 SSA (MSC, Zim, SMA/CGM) Pier A Way, Long Beach, CA 90802, USA 

6 TTI (Hanjin) Hanjin Rd, Long Beach, CA 90802, USA 

7 APM Terminals Pacific Navy Way Terminal Island, CA 90731 

8 California United Terminals Navy Way, Terminal Island, CA 90731 

9 China Shipping North America John S. Gibson Boulevard San Pedro, CA 90731 
10 Eagle Marine Services Terminal Way, Los Angeles, CA 90731 

11 Everport Terminal Services Terminal Island Way Terminal Island, CA 90731 

12 TraPac, Inc South Neptune Avenue, Wilmington, CA 90744 
13 Yang Ming Marine Transport John S. Gibson Boulevard, San Pedro, CA 90731 

14 Yusen Terminal (Nyk Yusen) New Dock Street Terminal Island, CA 90731 
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Figure 20. POLB & POLA marine terminal locations 

Loaded inbound (import) and outbound (export) quantities through the POLB and POLA for 
2015 are included in Table 3. 

Table 3. POLB and POLA import and export statistics for 2015 

 Loaded Import Loaded Export 

TEU POLB 3,625,263 1,525,560 

TEU POLA 4,159,462 1,786,913 

TEU Total (Year) 7,784,725 3,312,473 

TEU Total Avg (Day) 21,328 9,075 

5.2. Trucking Companies 

A representative trucking company was selected for this project. In order to select this TC, an 
initial list of TCs was created from an internet drayage directory which includes all companies 
operating within Los Angeles County. Since the location of the TCs is a critical variable for the 
optimization problem, all companies whose address was not included in the drayage directory 
were eliminated from the list. The final list contains all companies with known addresses using 
chassis. The trucking company to be used in this study, was then selected at random from this 
set. 
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5.3. Warehouses 

In order to generate a representative set of warehouses covering the area of interest for the 
trucking company, a list similar to the list of addresses in Section 5.2 was used. 

5.4. Central Processing Facilities 

In the 2017 METRANS project by the principal investigators [8], potential CPF locations were 
identified by searching for vacant land within a 15-mile radius of the POLA and the POLB. In that 
study sixteen locations in the vicinity of the port were identified that could be potentially used 
as CPFs, and optimal CPF locations were identified based on the criterion of minimizing total 
travel time for all transactions undertaken by all the trucking companies noted above. The 16 
CPF locations are noted in the table below. The table shows the street name and zip code of the 
potential CPF locations, but the exact street address numbers have been removed. 

Table 4. Potential CPF locations for chassis storage 

CPF ID Address 

1 Golden Ave, Long Beach, CA 90806, USA 

2 Via Oro Ave, Long Beach, CA 90810, USA 

3 River Ave, Long Beach, CA 90810, USA 

4 E 213th St, Carson, CA 90746, USA 

5 E Del Amo Blvd, Carson, CA 90746, USA 

6 Long Beach Blvd, Long Beach, CA 90805, USA 

7 Long Beach Blvd, Long Beach, CA 90805, USA 

8 S Sportsman Dr, Compton, CA 90221, USA 

9 Atlantic Ave, Long Beach, CA 90805, USA 

10 Alondra Blvd, Paramount, CA 90723, USA 

11 Alondra Blvd, Paramount, CA 90723, USA 

12 Torrance Blvd, Carson, CA 90745, USA 

13 W Del Amo Blvd, Torrance, CA 90502, USA 

14 W Del Amo Blvd, Torrance, CA 90502, USA 

15 S Figueroa St, Wilmington, CA 90744, USA 

16 Lomita Blvd, Carson, CA 90745, USA 

The results of the previous study [8] showed that using the CPFs provided improvement 
(reduction) of the total travel time. The previous study also showed, during sensitivity analysis 
with respect to the number of CPFs employed for chassis exchange, that most of the 
improvement in the optimal solution was achieved when three CPFs were used. Employing 
more than three CPFs does not provide any significant improvement to the optimal solution. 
Therefore, only the three top CPF locations that were identified in the previous project were 
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used in the current case study. The three CPFs selected (CPF3, CPF6, and CPF15) are shown in 
Figure 21. 

 

Figure 21. The three CPF locations selected for this study: CPF3, CPF6, and CPF15 
The selected CPFs are marked with a blue pin. 

5.5. Jobs 

Jobs were selected randomly using the WH and MT locations noted previously by using the 
following assumptions: 

• Import to Export ratio of 2 to 1 

• Total number of jobs for the selected TC in one day is set to 60 

• Wheeled vs. non-wheeled containers randomly selected with 50% probability of either 
for both WH and MT locations 
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• Minimum and maximum times for all jobs set to cover a 24-hour period, so that no 
constraints were placed on the time when each job could be performed 

The jobs selected for this case study using this approach are shown in Figure 22, which 
represents a map of the area covered with WH nodes identified as cyan boxes, MTs identified 
as black circles, the TC identified as a green circle, the imports shown as blue dotted lines, and 
the exports shown as yellow solid lines.
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Figure 22. Map of jobs used in case study 

The symbols in the graph of Figure 22 represent the locations of TC (green circles), WH (blue squares), and MT (black circles) as explained in the legend. 
The lines connecting these locations represent exports (solid blue lines) and imports (dashed blue lines).  
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5.6. Travel Time Between Locations 

The travel times between the TC and all of the WHs, CPFs and MTs were calculated using the 
Google Distance Matrix (GDM) Application Program Interface (API). In order to create a 
complete model of the area of interest to support the case study, time varying models covering 
a 24 hour period for a typical workday needed to be generated between all locations. For this 
particular case study this includes (1 + 𝐽 + 𝐾 + 𝐿)2 = (1 + 70 + 3 + 14)2 = 7,744 possible 
routes. In addition, the profiles of travel times from the GDM API are classified into two 
categories, using (a) pessimistic and (b) optimistic assumptions, as defined by the Google API. 
Therefore, in order to provide a time varying model for all possible routes matching a typical 
daily profile would result in 7,744 ∗ 2 ∗ 24/𝛿𝑡 individual queries, where 𝛿𝑡 is the time step of 
interest. For a time step of 5 minutes this will result in 4,460,544 queries to the Google API. 
However, the number of queries which can be made to the GDM API on a daily basis is limited, 
and the total number of queries above exceeds the GDM API limit by a large margin. 

The main purpose for generating a time varying model for all possible routes is to make an 
assessment of the effectiveness of a complex approach, which considers the variation of traffic 
conditions throughout the day. With this goal in mind, and given that making the necessary 
4,460,544 queries to GDM API is practically impossible, it was necessary to construct a suitable 
simplified model to represent the daily variations of travel times between any two arbitrary 
locations at a spacing of 5 minutes, using a limited set of queries. 

In order to generate the simplified model, a set of sixteen representative trips was considered 
initially, defined by sixteen origin/destination pairs as shown in Table 5. These sixteen 
characteristic trips were then queried for both optimistic and pessimistic times at a 5 minute 
spacing over a 24 hour period from midnight on Wednesday, July 25, 2018 to midnight 
Thursday, July 25, 2018, resulting in 16*2*288 = 9,216 queries. The locations selected are listed 
in Table 5 and then shown on Figure 23. In Table 5, locations are color coded by the location 
type where the TC is highlighted in Green, the WHs in cyan, and the MTs in grey. In Figure 23, 
the origins are shown in green, and the destinations in red, with all other nodes shown as x’s.
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Table 5. Origin destination pairs for daily variation estimates 

Trip Origin Destination 
1 TC1 2321 East Del Amo Rancho Dominguez, CA WH30 1483 W Via Plata St Long Beach, CA 
2 TC1 2321 East Del Amo Rancho Dominguez, CA WH44 8800 Slauson Ave, Pico Rivera, CA 
3 TC1 2321 East Del Amo Rancho Dominguez, CA WH48 851 E Watson Center Rd, Carson, CA 

4 TC1 2321 East Del Amo Rancho Dominguez, CA MT14 701 New Dock Street Terminal Island, CA 
5 WH3 2059 Belgrave Ave Huntington Park, CA WH30 1483 W Via Plata St Long Beach, CA 
6 WH3 2059 Belgrave Ave Huntington Park, CA WH44 8800 Slauson Ave, Pico Rivera, CA 
7 WH3 2059 Belgrave Ave Huntington Park, CA WH48 851 E Watson Center Rd, Carson, CA 

8 WH3 2059 Belgrave Ave Huntington Park, CA MT14 701 New Dock Street Terminal Island, CA 
9 WH8 131 E Gardena Blvd Gardena, CA WH30 1483 W Via Plata St Long Beach, CA 

10 WH8 131 E Gardena Blvd Gardena, CA WH44 8800 Slauson Ave, Pico Rivera, CA 
11 WH8 131 E Gardena Blvd Gardena, CA WH48 851 E Watson Center Rd, Carson, CA 
12 WH8 131 E Gardena Blvd Gardena, CA MT14 701 New Dock Street Terminal Island, CA 
13 MT1 1048 Pier G E, Long Beach, CA WH30 1483 W Via Plata St Long Beach, CA 
14 MT1 1048 Pier G E, Long Beach, CA WH44 8800 Slauson Ave, Pico Rivera, CA 
15 MT1 1048 Pier G E, Long Beach, CA WH48 851 E Watson Center Rd, Carson, CA 
16 MT1 1048 Pier G E, Long Beach, CA MT14 701 New Dock Street Terminal Island, CA 

 

LEGEND 
TC1 Location of the Trucking Company used in this study 

WHX Location of Warehouse X (of 70) 

MTY Location of Marine Terminal Y (of 14) 
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Figure 23. Map of jobs used in daily traffic variation model 
The symbols in the graph of Figure 23 represent the origin and destination points as explained in the legend, 
based on the locations given in Table 5. 

For the sixteen trips noted above, optimistic and pessimistic travel times were calculated at a 5-
minute spacing. 

One example of the driving paths between an origin/destination pair is shown in Figure 24. The 
example origin/destination pair corresponds to the fourth row (Trip 4) of Table 5, between 
trucking company TC1 (origin) and marine terminal MT14 (destination). 

In this query the Google API was asked to provide time travel estimates between TC1 and MT14 
at peak traffic time. The GDM API suggests three alternate paths and a range of travel time 
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estimates for each alternative path. For example, it is seen that the optimistic travel time for 
the path highlighted in blue is 20 minutes, whereas the pessimistic travel time estimate for the 
blue path is 40 minutes. Note that the Google API only provides estimates for typical passenger 
car routing, and there may be times when trucks cannot follow the same routes that are 
available to typical passenger car traffic. In addition, one can see that, at this peak travel time, 
the optimum route suggested by the Google API (blue path) actually shows a slightly longer 
pessimistic travel time estimate than one of the other alternative paths (40 min vs. 35 min). 
This is worth noting only for the fact that the data as delivered for pessimistic and optimistic 
travel times may have some inherent noise due to the algorithms and routing approaches 
intrinsic to the Google routing. Using the 5-minute spacing, the graphs in Figure 25 through 
Figure 32 show the daily profiles of travel time estimates between the 16 origin and destination 
pairs used in the case study. 
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Figure 24. Peak predicted travel time 
Minimum time route is highlighted in blue. 
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Figure 25. Daily travel variation optimistic / pessimistic estimates (Trips 1-2) 
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Figure 26. Daily travel variation optimistic / pessimistic estimates (Trips 3-4) 
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Figure 27. Daily travel variation optimistic / pessimistic estimates (Trips 5-6) 
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Figure 28. Daily travel variation optimistic / pessimistic estimates (Trips 7-8) 
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Figure 29. Daily travel variation optimistic / pessimistic estimates (Trips 9-10) 
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Figure 30. Daily travel variation optimistic / pessimistic estimates (Trips 11-12) 



 49 

 

Figure 31. Daily travel variation optimistic / pessimistic estimates (Trips 13-14) 



 50 

 

Figure 32. Daily travel variation optimistic / pessimistic estimates (Trips 15-16) 
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Figure 33 and Figure 34 show a summary of the optimistic and pessimistic travel time estimates 
for all 16 trips used in the case study. The black trace in Figure 33 provides an average 
optimistic travel time estimate over all 16 trips. Similarly, the black trace in Figure 34 provides 
an average pessimistic travel time estimate over all 16 trips. The traces in Figure 35 have been 
constructed to show the average travel time (i.e. the mid-point between the optimistic and the 
pessimistic estimates) for each of the 16 trips. The black trace in Figure 35 provides an average 
of the average travel time estimate over all 16 trips. In general, it can be seen that there is a 
similar pattern across most of the trips in which the travel time profiles have peaks during rush 
hour periods, typically from 5:00 to 7:00 a.m., and from 2:00 to 6:00 p.m. It is noted that the 
peaks are much more pronounced in the pessimistic models than they are in the optimistic 
models. 

 

Figure 33. Optimistic travel time estimates 
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Figure 34. Pessimistic travel time estimates 

 

Figure 35. Average travel time estimates 
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The next phase in generating the simplified model is the construction of a simple function 𝑔 
which can be used by the genetic algorithm, whenever a coarse prediction of the time varying 
traffic conditions is needed. For this purpose, first a total of 7,744 queries were made to GDM 
API, to obtain the travel times at midnight for all 7,744 possible routes between origins and 
destinations used in the case study, as described at the beginning of section Error! Reference 
source not found.. Next the average of the average travel time profiles was obtained, which is 
plotted as the solid black trace in Error! Reference source not found., and is denoted by �̅� in 
the sequel. Finally, the function 𝑔 was constructed as shown below. Function 𝑔 is used to 

provide coarse estimates of the travel time �̂�𝑛𝑜𝑑𝑒(𝑥𝑖 , 𝑥𝑗 , 𝑡𝑘) between two arbitrary nodes 𝑥𝑖 

and 𝑥𝑗 at time 𝑡𝑘. Given a pair of nodes 𝑥𝑖 , 𝑥𝑗 the input to the function 𝑔 will be the average 

travel time at midnight between 𝑥𝑖  and  𝑥𝑗 as explained above, denoted by 𝑡𝑛𝑜𝑑𝑒(𝑥𝑖 , xj, 0) in 

the sequel. Using this 𝑡𝑛𝑜𝑑𝑒(𝑥𝑖, xj, 0) and the complete set of data for travel time estimates 

throughout the day that were generated by the sixteen representative trips, a least squares 
model for the function 𝑔 was created. 

 �̂�𝑛𝑜𝑑𝑒(𝑥𝑖 , xj, 𝑡𝑘) = 𝑔(𝑡𝑛𝑜𝑑𝑒(𝑥𝑖 , xj, 0), 𝑡𝑘)  (13) 

The function, 𝑔, was modeled to be of the form 

𝑔(𝑡𝑛𝑜𝑑𝑒(𝑥𝑖, xj, 0), 𝛿𝑡 ∗ 𝑗) = 𝛼 + 𝛽𝑡𝑛𝑜𝑑𝑒(𝑥𝑖, xj, 0) + (𝛾 + 𝜌𝑡𝑛𝑜𝑑𝑒(𝑥𝑖 , xj, 0))�̅�𝑗 

𝑗 = {0,… , 𝑛} 

(14) 

 

where 𝑛 = 24 ∗ 3600/𝛿𝑡 (15) 

 �̅�𝑗 =
∑ 𝑦𝑘,𝑗

16
𝑘=1

16
 𝑗 = {0,… , 𝑛} (16) 

𝑦𝑘,𝑗 ≡ The typical duration from the GDM API for trip k at time sample i (17) 
𝑘 = {1,… ,16} 𝑗 = {0,… , 𝑛} 

and 𝛼, 𝛽, 𝛾, and 𝜌 are model parameters to be determined 

The step-size 𝛿𝑡 of the measurements is represented in seconds. For the data above all 

values were recorded at a 5 minute (300 second) spacing giving 𝑛 = 24 ∗
3600

300
= 288.  

In order to find the best estimates for model parameters 𝛼, 𝛽, 𝛾, and 𝜌 a least squares fit was 
performed, solving equation (18) below for the best estimate, in a least squares sense, of x 
given by �̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑦. The fitted values were then used in equation Error! Reference 
source not found. and applied to each of the 16 representative trip values at midnight to 
provide a comparison between the route specific detailed estimates and those based upon 
the least squares fit and the average data in equation Error! Reference source not found..  

The comparisons between the simplified model and the individual data sets are plotted in 
Error! Reference source not found. through Error! Reference source not found.. 
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 𝑦 = 𝐴𝑥 (18) 

where 𝑥 = [

𝛼
𝛽
𝛾
𝜌

] (19) 

 𝑦 = [

𝑦1

⋮
𝑦16

] (20) 

 𝑦𝑘 = [

𝑦𝑘,0

⋮
𝑦𝑘,𝑛

] (21) 

 �̅� = [
�̅�0

⋮
�̅�𝑛

] (22) 

 𝐴 =

[
 
 
 
 
1𝑛  
1𝑛

⋮
1𝑛

1𝑛

 

𝑦1,01𝑛

𝑦2,01𝑛

⋮
𝑦15,01𝑛

𝑦16,01𝑛

 

�̅�
�̅�
⋮
�̅�
�̅�

 

𝑦1,0�̅�

𝑦2,0�̅�

⋮
𝑦15,0�̅�

𝑦16,0�̅�]
 
 
 
 

 (23) 
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Figure 36. Daily travel variation vs. least square fit (1-2) 
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Figure 37. Daily travel variation vs. least square fit (3-4) 
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Figure 38. Daily travel variation vs. least square fit (5-6) 
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Figure 39. Daily travel variation vs. least square fit (7-8) 
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Figure 40. Daily travel variation vs. least square fit (9-10) 
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Figure 41. Daily travel variation vs. least square fit (11-12) 
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Figure 42. Daily travel variation vs. least square fit (13-14) 



 62 

 

Figure 43. Daily travel variation vs. least square fit (15-16) 
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In order to assess the quality of the least squares fit, Error! Reference source not found. shows 
the percentage residual error for the sixteen  trips as the difference between the red and the 
blue traces of the sixteen plots shown in Error! Reference source not found. through Error! 
Reference source not found.. Although the residual errors increase during rush hour periods, 
typically from 5:00 to 7:00 a.m., and from 2:00 to 6:00 p.m., this model was felt to be an 
adequate depiction of the general daily variations for the purpose of this case study. Therefore, 
this model was applied to all of the (1 + 𝐽 + 𝐾 + 𝐿)2 = (1 + 70 + 3 + 14)2 = 7,744 individual 

routes to provide realistic estimates of the travel time �̂�𝑛𝑜𝑑𝑒(𝑥𝑖 , xj, 𝑡𝑘) between any nodes 𝑥𝑖 

and xj at any time 𝑡𝑘. 

 

Figure 44. Residual of daily travel variation vs. least square fit based model 

5.7. Additional Time Settings 

In the genetic algorithm the initial time for the vehicle departures (𝑡0) was set at 6:00 am. 
For the maximum allowable driver work span, 𝑇𝑊𝑆𝑚𝑎𝑥 , the initial runs of the model used 12 
hours in order to allow for a larger solution space when running the genetic algorithm. 
However, for the scenarios defined herein the actual work span on the optimized solutions 
was typically much less than this upper limit at under 8 hours. 
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In order to account for the additional difficulty of picking up and dropping off grounded 
containers as compared to wheeled containers, the time to pick up or drop-off wheeled 
containers (𝑇𝑤ℎ) was set at 5 minutes whereas the time to pick up or drop-off grounded 
containers (𝑇𝑔𝑛𝑑 ) was set at 15 minutes. 

Lastly, it is assumed that there will be an inherent advantage in using the CPFs over the MTs 
for chassis retrieval and drop-off. This is due to the CPF’s ability to maintain road-worthy 
chassis which are already unstacked and available to support chassis retrieval as well as the 
CPF’s larger space allocation to allow for chassis to be detached from the bobtail, so that 
truck drivers can quickly move on from the facility and onto their next job after drop-off. 
These improvements were modeled by including reduced chassis retrieval and drop-off 
times at CPFs as compared to those at MTs. The difference between the processing time at 
MTs and that at CPFs, is referred to as “Additional Processing Time” and denoted by 𝑃. This 
parameter 𝑃, defined in equation (24), provides a measure of the relative advantage of 
routing a transaction through a CPF over routing the transaction directly to the MT. 
Previous results [8] have shown that the parameter 𝑃 is an important factor in evaluating 
the effectiveness of the use of CPFs. 

 𝑃 = 𝑃(𝑥) − 𝑃(𝑦)  
𝑥 𝜖 ℳ𝒯  

𝑦 𝜖 𝒞𝒫ℱ  
(24) 

Based on similar considerations as in [8], the processing time for chassis retrieval / drop-off, 
𝑃(𝑦), was set at 5 minutes for 𝑦 𝜖 𝒞𝒫ℱ. The processing time 𝑃(𝑥), was set at either 15 or 
25 minutes for 𝑥 𝜖 ℳ𝒯  depending upon the specific scenario being evaluated. The two 
values selected for MT processing times result in 𝑃 = 600 and 𝑃 = 1200 seconds of 
“Additional Processing Time” respectively. 

5.8. Optimization and Genetic Algorithm Specific Settings 

For all case studies and sensitivity analyses in Section Error! Reference source not found. 
through Section Error! Reference source not found., the cost of each schedule, 𝐶(sm) of 
equation (11), was assumed to be equal to the travel time to complete vehicle 𝑣𝑚’s schedule 
𝑇(sm). This results in a simplified objective function, equation (1), of the form: 

min ∑ 𝑇(𝑠𝑚)

𝑀

𝑚=1

+ 𝜇 max
𝑚=1,…,𝑀

𝑇(𝑠𝑚) (25) 

In this form, the objective function minimizes the weighted sum of the total travel time needed 
to complete all vehicles’ schedules, ∑ 𝑇(𝑠𝑚)𝑀

𝑚=1 , and the maximum work span across all of the 
vehicles’ schedules, max

𝑚=1,…,𝑀
𝑇(𝑠𝑚). As 𝜇 increases, the objective function will force more 

uniformity across the vehicles’ schedules, so that all vehicles have approximately the same 
work span. A sensitivity analysis was performed as a function of 𝜇 in Section Error! Reference 
source not found.. In that analysis, a reasonable value which maintained uniformity across 
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vehicles’ schedules for the given job set was identified as 𝜇 = 1, which was in turn used as the 
nominal setting in the other case studies. 

In addition, the following configuration was used for the genetic algorithm. 

• The population was set at 60 

• 500 generations were run unless a stall limit of no improvement for 200 generations in a 
row was reached 

• 10 of each subsequent generation were generated by passing on the best “elite” 
solutions from the previous generation as is 

• 25 of each subsequent generation were created using the crossover function 

• 25 of each subsequent generation were created using the mutation function 

The genetic algorithm parameters, including population, number of total generations and stall 
generations as well as the composition of each generation by direct passing of fittest parents, 
crossover, and mutation were arrived at through early experimentation when developing the 
genetic algorithm. During this experimentation values in the following range were evaluated: 

• Population Size: 60-1000 

• Elite Count: 1-25 

• Number of Generations: 500-1500 

• Stall Limit: 200-600 

The population size, number of generations, and stall limit all showed approximately linear 
increases in computational time as the values increased, for less than 1% improvement in the 
overall result. 

Increasing the elite count showed a reduction in overall computational time, however the value 
of 10 was selected as an upper limit, as increasing the elite count too high came with the risk of 
allowing the model to become trapped at a local optimum. For the given case study 
parameters, the values above were found to provide good solutions in several minutes where 
no significant improvements (i.e. greater than 1%) were seen with increased generations or 
populations sizes.  
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6. Case Study Simulation Results 

This section presents the results of several simulation scenarios for the case study, based on the 
optimization formulation and case study model implementation described previously. 

6.1. Genetic Algorithm Evaluation 

A typical genetic algorithm output is shown in Figure 45 and Figure 46. Figure 45 shows one of 
the ten vehicle schedules, namely vehicle 𝑉𝑉2, and Figure 46 shows the complete chromosome 
with all vehicle schedules. These outputs were generated for 𝑀𝑀 = 10 vehicles for a particular 
day, when they have to complete 𝑁𝑁 = 60 jobs. In the figures: 

• each solid blue line represents a specific job 

• each dotted line indicates an additional move to CPF or MT in order to perform a chassis 
exchange or a relocation between jobs 

• numbers next to each node indicate the order of arrival between nodes 

• a green circle indicates the TC 

• red circles indicate CPFs 

• cyan squares indicate the WHs 

• black circles indicate the MTs. 
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Figure 45. Example of truck schedule (𝒔𝟐) used in the case study 
The schedule was generated by the genetic algorithm for vehicle 𝑽𝟐 , with M=10 and N=60 
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Figure 46. Genetic algorithm chromosome example output for M=10 and N=60 

During the initial genetic algorithm assessment, various settings were evaluated before 
converging on the settings defined in Sections 4.4 and Section 5.8. One of these early 
improvements to the algorithm was the addition of the nearest neighbor solution to the 
initial population. In the original version of the genetic algorithm the initial population was 
created by using only random sequencing and allocations of the jobs to the vehicles. Early 
in the development the initial population was updated to include a nearest neighbor 
solution in which each of the 10 vehicles’ routes performed sequential nearest neighbor 
routing (See section 4.4 for additional details). The improvement in the conversion of the 
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algorithm can be seen in Figure 47. Where in the original algorithm the solution in the first 
generation was more than 10% of the best solution, and in the updated algorithm with the 
nearest neighbor added to the initial population the initial solution is only off by 2% from 
the best solution calculated after 500 generations, and it is almost as good as the final 
solution from the initial algorithm. In addition, this analysis shows what benefit the 
optimization program is providing over a simple heuristic nearest neighbor approach, 
where there is approximately a 2% improvement. That indicates that a pretty good solution 
can be found, using a nearest neighbor heuristic, relatively quickly in the case that the 
computing resources are limited such that the larger optimization cannot be performed. 

 

Figure 47. Percent improvement in solution by generation 
The graph shows the percent deviation from the best solution with respect to the generation number. The 
solution with the nearest neighbor method after 500 generations, is designated here as the best solution. 
Baseline represents the solution through the genetic algorithm when the initial population is created 
randomly. 

6.2. Impact of Time-varying Model 

In order to evaluate the benefits of including the time-varying component of the model 
optimization, simulation scenarios were run with and without the time-varying model of the 
point to point trips, to find the best solutions from the genetic algorithm and then comparisons 
were made. This is done for 𝐶𝐶 = 1200 seconds. All other parameters in the case study are 
matching the nominal values indicated in Section 5. The optimal solution without the time-
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varying model assumed a constant travel time for a given trip, without any variations during the 
day. The optimization process was then repeated with the time-varying model to determine the 
optimal schedules when the point-to-point durations are modeled to vary throughout the day. 
The cost of the two resultant optimized schedules was then compared, using the cost function 
with time variation. The result was that the version optimized for the time-varying case showed 
~1% improvement over that which was optimized for the static case. For this specific case it 
indicates a small potential benefit in including the time-varying model during the optimization 
process. 

6.3. Impact of CPFs 

In order to assess the impact of the use of CPFs, several cases were run. These cases were run 
for 𝐶𝐶 = 600 seconds and 𝐶𝐶 = 1200 seconds, over a range of a number of jobs from 𝑁𝑁 = 10 
to 𝑁𝑁 = 60. 

• Cases with CPFs. When CPFs are present and can be utilized (designated as cases “with 
CPFs” on the plots), chassis exchanges were allowed to occur in both CPFs and MTs. The 
average processing time for chassis at a CPF was set at 300 seconds. The average 
processing time at a MT was set at either 900 seconds (when the parameter 𝐶𝐶 = 600 
seconds), or at 1500 seconds (when the parameter 𝐶𝐶 = 1200 seconds). 

• Cases without CPFs. When CPFs are not available (designated as cases “without CPFs” 
on the plots), all necessary chassis exchanges are forced to occur at one of the MTs, The 
same average processing time as before of either 900 seconds or 1500 seconds has 
been used. 

In addition, these cases were run for two scenarios to allow for better comparison to the 
previous work reported in [8]. The main factors in the two scenarios are the attributes of 
successive jobs, in particular attribute (iv) of Job𝑘, and attribute (iii) of Job𝑘+1, as defined in 
Section Error! Reference source not found.. 

• Scenario 1. In this scenario, if attribute (iv) of Job𝑘  is the same as attribute (iii) of 
Job𝑘+1, i.e., if the container configuration at the destination point of Job𝑘  is identical to 
the container configuration at the origin point of Job𝑘+1, then the truck driver does not 
need to travel to a CPF or to a MT to pickup or dropoff a container. 

• As an example, for the jobs defined in Table 5 and represented in Figure 7 it can be seen 
that: 

o Attribute (iv) of Job1 shows that the container at the destination is left in a 
grounded configuration, hence the truck departs the destination point of Job1 
carrying a chassis, and arrives at the origin point of Job2 with a chassis. 

o Attribute (iii) of Job2 shows that the container at the origin point of Job2 is 
grounded, hence the truck will load the container on the chassis. The truck does 
not need to perform a drop-off or pick-up chassis operation while transitioning 
from Job1 to Job2. 
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o Attribute (iv) of Job2 shows that the container will be left at the destination point 
of Job2 in a wheeled configuration, hence the truck leaves the destination point 
of Job2 as a bobtail. 

o Attribute (iii) of Job3 shows that the container at the origin point of Job3 is 
grounded, hence the truck after completing Job2 will need to pick up a chassis 
before starting Job3. In this particular example, the truck will pick up a chassis at 
CPF𝑘  as shown in Figure 7. 

• Scenario 2. In this scenario a chassis operation (pick-up or drop-off) is forced to occur 
between jobs, regardless of container configuration. The reason for this scenario is to 
provide a better comparison of the current study to the previous project [8], where 
every transaction was grounded and required the truck driver to stop at a CPF or MT in 
order to complete a job. Consequently, Scenario 1 above, results in a smaller number of 
chassis transactions than what was modeled and reported in [8]. Scenario 2 will provide 
a limiting upper bound for what might occur in the real world when there are additional 
limitations of chassis usage, and there are job to job differences in chassis configuration 
needs (i.e., not all jobs are 40 FT containers of the same type). 

The results for Scenario 1 are shown in Figure 48 through Figure 50. The results for Scenario 2 
are shown in Figure 51 through Figure 53. 

Scenario 1 allows for direct routing between origin and destination (i.e. a CPF is used only if the 
container configuration at origin does not match the container configuration at destination). In 
Figure 48 the greatest improvement for the cost function due to the use of CPFs is seen to 
occur for small ratios of jobs to vehicles. When the number of jobs is small, the improvement 
ranges from about 2% (when 𝐶𝐶 = 600 sec) to about 6% (when 𝐶𝐶 = 1200 sec). For large ratios 
of jobs to vehicles there is only a small benefit at ~1% for 60 jobs (allocated between 10 
vehicles). Figure 49 and Figure 50 show a qualitative representation of the relative difference 
between the solutions with small and large ratios of jobs to vehicles. Note that in the figures 
any time a CPF is being used, it is because it is saving time as compared to the use of a MT for 
the chassis exchange. Therefore, the greater number of paths connected to CPFs, is a 
qualitative indication of the potential for additional reductions in total travel time as compared 
to the case where CPFs are not available. 

Scenario 2 forces a chassis operation to occur between jobs, regardless of container 
configuration. The chassis operation may occur at a CPF or at a MT. Figure 51 shows an 
improvement of 5% to 10% when the number of jobs is small, and an improvement of 8% to 
13% when the number of jobs is large, under scenario 2. It is noted that this analysis is from the 
point of view of a single trucking company (i.e. at the operational level), but the observed 
behavior is similar to what was observed during the analysis at the strategic level in [8] which 
showed 6% - 20% improvements in total travel time for the overall network. 

Note that there is not a direct comparison here as a different TC set is being used and the 
original study used total travel time rather than a weighted combination of total travel time and 
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work span. The current results imply that for typical cases where the number of jobs is much 
larger than the number of vehicles, the greatest benefit from CPFs is in the cases where there 
are at least some significant job to job differences in container configuration. This implies a 
slightly different take on some of the conclusions which came out of the original study [8]. 
These results suggest that it would be important to include a variety of chassis types at the 
CPFs, and consider the inclusion of different types of chassis in the modeling process, as a topic 
for future research. 

 

Figure 48. Scenario 1: Total cost improvement due to use of CPFs 
In Scenario 1, a CPF is used only if the container configuration at origin does not match the container 
configuration at the destination of a job. The percent improvement is computed in comparison to the case 
when no CPFs are used.
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Figure 49. Scenario 1: Solution (a) without CPFs and (b) with CPFs, N=10, P=1200 seconds 
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Figure 50. Scenario 1: Solution (a) without CPFs and (b) with CPFs, N=60, P=1200 seconds 
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Figure 51. Scenario 2: Total cost improvement due to use of CPFs 
In scenario 2, the truck always uses a CPF when transitioning from one job to the next. The improvement is computed in comparison to the case when 
no CPFs are used. 
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Figure 52. Scenario 2: Solution (a) without CPFs and (b) with CPFs, N=10, P=1200 seconds 
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Figure 53. Scenario 2: Solution (a) without CPFs and (b) with CPFs, N=60, P=1200 seconds
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6.4. Sensitivity Analysis for 𝝁 

A sensitivity analysis was performed for varying values of the weight 𝜇 in the objective function. 
In equation (25) the objective function minimizes the weighted sum of the total travel time 
needed to complete all vehicles’ schedules, ∑ 𝑇(𝑠𝑚)𝑀

𝑚=1 , and the maximum work span across 
all of the vehicles’ schedules, max

𝑚=1,…,𝑀
𝑇(𝑠𝑚). As the weight 𝜇 increases, it is anticipated that the 

objective function will force more uniformity across the vehicles’ schedules such that all 
vehicles will have approximately the same work span. This sensitivity analysis was performed 
using values of 𝜇 between 0 and 1, for 𝑃 = 1200 seconds and for a total number of jobs 𝑁 =
60. 

The total travel time with respect to the weight µ is shown in Figure 54.The maximum work 
span max

𝑚=1,…,𝑀
𝑇(𝑠𝑚) and  the minimum work span min

𝑚=1,…,𝑀
𝑇(𝑠𝑚) are shown in Figure 55.  

For 𝜇 = 0, no optimization is performed with respect to the maximum work span, so that as 
seen in Figure 55, there is a large variation between the minimum and maximum work span of 
the drivers.  The total travel time, however, is at its minimum when 𝜇 = 0. 

As 𝜇 increases the maximum and minimum work spans converge so that the drivers are more 
equally loaded as seen in Figure 55, and there is a slight increase observed in the total travel 
time (by up to ~1%), shown in Figure 54. Depending upon the policies in place for driver pay 
(e.g. minimum hours to be worked per day, cost of overtime pay, etc.), 𝜇 could be tuned to 
allow for optimization of the overall cost to the trucking company. As the variation between the 
maximum and minimum work spans converges to a reasonable value of approximately 1 hour 
for 𝜇 = 1, this value of 𝜇 was used for the nominal setting in the other case studies. 
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Figure 54. Total travel time vs. 𝝁 
The parameter µ is the weight used in the objective function as defined in equation (25) 

 

Figure 55. Work span vs. 𝝁 
The parameter µ is the weight used in the objective function as defined in equation (25).  
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7. Summary 

This study examines the scheduling of chassis and container movements at the operational 
level, from the point of view of individual trucking companies, when Chassis Processing 
Facilities (CPFs) are available for use, in the vicinity of a container port within a major 
metropolitan area. An optimization methodology is developed, which minimizes the travel time 
for the fleet of trucks used by the trucking company, and at the same time tries to minimize the 
variations in work load among individual drivers during the day. The optimal solution is 
obtained through the application of a genetic algorithm, developed specifically for this purpose. 
Time-varying dynamic models for the movements of chassis and containers are developed to be 
used in the optimization process. The effectiveness of the methodology is evaluated through a 
case study, which is focusing on the Los Angeles/Long Beach port complex and surrounding 
areas. A location for the trucking company is chosen, and the company’s fleet of trucks is 
assigned a series of container movements to be completed during the day. Two scenarios are 
considered in the simulations: (1) when the truck does not have to pick up or drop off a chassis 
from one job to the next; and (2) when the truck must pick up or drop off a chassis from the 
previous job to the next. Simulation results show that the optimal solution obtained through 
the genetic algorithm provides improvements to the objective function when CPFs are used 
over the case when no CPFs are available. The improvements are modest (up to 6%) for cases 
where scenario (1) is applicable, or more significant (up to 13%) in cases when scenario (2) is 
applicable.  
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