
UC Irvine
UC Irvine Previously Published Works

Title
Investigating the Immunomodulatory Potential of Dental Pulp Stem Cell Cultured on 
Decellularized Bladder Hydrogel towards Macrophage Response In Vitro.

Permalink
https://escholarship.org/uc/item/1gt7p0k4

Journal
Gels, 8(3)

Authors
Nguyen, Huynh-Quang-Dieu
Kao, Chen-Yu
Chiang, Chien-Ping
et al.

Publication Date
2022-03-18

DOI
10.3390/gels8030187
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gt7p0k4
https://escholarship.org/uc/item/1gt7p0k4#author
https://escholarship.org
http://www.cdlib.org/


����������
�������

Citation: Nguyen, H.-Q.-D.; Kao,

C.-Y.; Chiang, C.-P.; Hung, Y.-H.; Lo,

C.-M. Investigating the

Immunomodulatory Potential of

Dental Pulp Stem Cell Cultured on

Decellularized Bladder Hydrogel

towards Macrophage Response In

Vitro. Gels 2022, 8, 187. https://

doi.org/10.3390/gels8030187

Academic Editor: Esmaiel Jabbari

Received: 22 February 2022

Accepted: 17 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Investigating the Immunomodulatory Potential of Dental Pulp
Stem Cell Cultured on Decellularized Bladder Hydrogel
towards Macrophage Response In Vitro
Huynh-Quang-Dieu Nguyen 1 , Chen-Yu Kao 2,3,* , Chien-Ping Chiang 4,5 , Yu-Han Hung 6

and Chun-Min Lo 6

1 Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan; d10822805@mail.ntust.edu.tw

2 Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan

3 Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
4 Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; cppchiang@gmail.com
5 Department of Dermatology, Tri-Service General Hospital, Taipei 11490, Taiwan
6 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;

yuhanhung.be05@nycu.edu.tw (Y.-H.H.); chunmin.lo@nycu.edu.tw (C.-M.L.)
* Correspondence: ckao@mail.ntust.edu.tw

Abstract: Mesenchymal stem cells (MSCs) possess immunomodulatory properties and capacity for
endogenous regeneration. Therefore, MSC therapy is a promising treatment strategy for COVID-19.
However, the cells cannot stay in the lung long enough to exert their function. The extracellular
matrix from porcine bladders (B-ECM) has been shown not only to regulate cellular activities but also
to possess immunoregulatory characteristics. Therefore, it can be hypothesized that B-ECM hydrogel
could be an excellent scaffold for MSCs to grow and could anchor MSCs long enough in the lung so
that they can exhibit their immunomodulatory functions. In this study, ECM degradation products
and a co-culture system of MSCs and macrophages were developed to study the immunomod-
ulatory properties of ECM and MSCs under septic conditions. The results showed that B-ECM
degradation products could decrease pro-inflammatory and increase anti-inflammatory cytokines
from macrophages. In an in vivo mimicking co-culture system, MSCs cultured on B-ECM hydrogel
exhibited immunomodulatory properties at both gene and protein levels. Both B-ECM degradation
products and MSC conditioned medium supported the wound healing of alveolar epithelial cells.
The results from the study could offer a basis for investigation of immunomodulation by ECM and
MSCs before conducting in vivo experiments, which could later be applied in regenerative medicine.

Keywords: bladder extracellular matrix; decellularization; hydrogel; dental pulp stem cell;
immunomodulation

1. Introduction

Almost every country in the world has suffered from the COVID-19 pandemic.
COVID-19 primarily attacks the lungs and respiratory tract through dysregulation of
the immune system which causes cytokine release syndrome (CRS) [1]. Currently, there
is no effective treatment to mitigate the syndrome and help to regenerate the damaged
tissue [2]. There is increasing clinical evidence that, in addition to standard treatments, it
is imperative for critically ill and elderly patients, in particular, to receive other adjuvant
therapies to lower mortality rate and ameliorate recovery [3]. One of the emerging sup-
plementary therapies which has been accepted by clinics or in clinical trials is the use of
mesenchymal stem cells (MSCs) [4].

The reason why MSCs are beneficial in treating COVID-19 is that they possess anti-
inflammatory/immunomodulatory ability and can activate endogenous regeneration [5].
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Several studies have reported the anti-inflammatory effects of MSCs in animal models
resulting from a significant reduction in pro-inflammatory cytokines, such as TNF-α, and
an increase in anti-inflammatory cytokines, such as IL-10 [6,7]. Presently, the majority of
clinical trials employ intravenous infusion as the main method to transplant MSCs into
patients [8]. However, in a phase I clinical trial conducted by Armitage et al., the authors
found that, after the stem cells were injected into the body intravenously, they only stayed
in the lungs for the first half hour and then gradually migrated to the liver [9]. The inability
of stem cells to stay in the lung long enough may affect the therapeutic effects of stem cells
for COVID-19 treatment. Attempted solutions to this problem have included adjusting
the schedule or mode of administration. However, the outcome of these attempts have
not always been promising [10,11]. Therefore, other strategies to enable stem cells to stay
longer in the lungs need to be considered.

The extracellular matrix (ECM) is a three-dimensional lattice structure secreted and
maintained by the cells, and is also known as the non-cellular component of tissues and or-
gans [12]. ECM components include many macromolecules, such as collagen, glycoproteins
and glycosaminoglycan, which not only constitute a physical scaffold for cellular adhe-
sion, but also regulate cellular proliferation, migration and differentiation [13,14]. When
implanted into the body, ECM scaffolds trigger a favorable host innate immune response,
specifically, the macrophage response prior to constructive remodeling outcomes. Upon im-
plantation, the ECM degrades and releases chemoattractant, antimicrobial, and mitogenic
peptides, growth factors, and extracellular vesicles. These biogenic substances attune the be-
havior of responding immune cells toward a regulatory anti-inflammatory phenotype [15].
When exposed to the degradation products of the ECM, macrophages exhibit a distinctive
phenotype associated with suppression of inflammation and high antigen-presenting ca-
pabilities. Furthermore, ECM materials express their immunomodulatory properties, not
only by directly influencing the macrophage phenotype but also through paracrine effects,
mediating macrophage crosstalk with endogenous stem/progenitor cells [16]. The ability
of ECM scaffolds to encourage a pro-regenerative microenvironment has been explored in
many in vitro and preclinical studies. A study by Badylak et al. indicated that, compared
to cellular autografts, decellularized urinary bladder matrix (UBM) allografts promoted
anti-inflammatory macrophage polarization and reduced fibrotic response to abdominal
wall implants in rats [17]. In another study, a commercial UBM (Micro Matrix) was used
to investigate the innate and adaptive immune response in a mouse model. The results
indicated that MHC-II+ cells from UBM-treated mice were over 90% anti-inflammatory
(CD206+), suggesting that the materials shifted anti-inflammatory signaling between innate
and adaptive immune compartments [18]. These results underline the immunomodulatory
properties, as well as the ability to promote functional tissue replacement, of acellular
biological scaffolds.

According to the literature mentioned above, ECM materials possess promising im-
munomodulatory properties. From another perspective, ECM, in the form of a hydrogel,
has been shown to support cell attachment, proliferation and differentiation [19]. As a
result, it can be hypothesized that ECM hydrogel from decellularized porcine bladder
(B-ECM) can be used as a scaffold to anchor stem cells to enable them to stay longer in
the lung to exert their immunomodulatory effects on immune cells. This could be further
exploited as an adjuvant therapy for cytokine-induced lung injuries, or B-ECM degradation
products themselves could be promising materials to regulate the response of immune cells
(Scheme 1).

To the best of our knowledge, there has, to date, been no study investigating the possi-
bility of using B-ECM hydrogel as a scaffold for culturing dental pulp stem cells (DPSCs)
in relation to their immuno-regulatory effects towards macrophage response. Therefore,
the objectives of this study were to preliminarily investigate: (1) the ability of bladder ECM
(B-ECM) hydrogel to support the growth of DPSCs, (2) the immunomodulatory effect on
the pulmonary macrophage RAW 264.7 of digested B-ECM, and (3) of DPSCs cultured on
B-ECM hydrogel using an “in vitro mimicking” co-culture system. The expression profiles



Gels 2022, 8, 187 3 of 16

of cytokines, such as TNF-α (pro-inflammatory cytokine) and IL10 (anti-inflammatory
cytokine), were analyzed at both gene and protein level. The results from the study cast
light onto the immunomodulatory potential of ECM materials as promising candidates for
application in regenerative medicine.
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2. Results
2.1. Decellularization Confirmation

After treatment with 1% SDS and 10% FCS, porcine bladders were effectively decel-
lularized with no nuclei being detected in DAPI staining and less than 50 ng dsDNA per
1 mg dried tissue recorded. DNA fragments were also less than 100 base pairs in length
using an electrophoresis test (Figure 1). The results were in accordance with our previous
studies [20], confirming the stability of the decellularization procedure.

Figure 1. Decellularization efficiency. (A) DAPI stain (scale bar 200 µm). (B) dsDNA content by
Picogreen assay (n = 3). (C) DNA electrophoresis. **** denotes a statistically significant difference
(p < 0.0001).
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2.2. Mesenchymal Stem Cell Verification

The expression of mesenchymal stem cell surface markers was studied using flow cy-
tometry (Figure 2). The results indicated high expression of CD105, a positive surface stem
cell marker with a mean fluorescent intensity (MFI) of 3038, compared to low expression of
CD33, a negative surface stem cell marker with an MFI of 177. Positive cells accounted for
96.7% of the total population, confirming the stemness of the DPSC source.

Figure 2. Flow cytometric analysis of mesenchymal stem cell surface marker CD33 (negative) and
CD105 (positive).

2.3. B-ECM Hydrogels In Vitro Degradation

The degradation of B-ECM in PBS solution was studied using the accumulative total
protein released method. As shown in Figure 3, in the first day there was approximately
11% protein release inside the PBS. However, after 2 and 3 days, the degradation rate of
B-ECM hydrogel seemed to slow down with no significant difference between day 2 and 3.

Figure 3. In vitro degradation of B-ECM hydrogel after 3 days (n = 3) with * (p ≤ 0.05), ** (p ≤ 0.01).

2.4. DPSC Proliferation on Hydrogel Surface

Alamar blue results showed that B-ECM hydrogel supported the growth of DPSCs
better than the 2D control (Figure 4). In the first 3 days, DPSCs grew faster on the 2D stiff
substrate. However, at day 5, B-ECM was significantly superior to the 2D group in DPSC
cell growth rate, indicating the beneficial effect of the ECM components on cell proliferation.
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There was no difference in the morphology of DPSCs cultured on 2D or hydrogel substrate.
The optical images can be found in the Supplementary Materials (Figure S1).

Gels 2022, 8, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. In vitro degradation of B-ECM hydrogel after 3 days (n = 3) with * (p ≤ 0.05), ** (p ≤ 0.01). 

2.4. DPSC Proliferation on Hydrogel Surface 
Alamar blue results showed that B-ECM hydrogel supported the growth of DPSCs 

better than the 2D control (Figure 4). In the first 3 days, DPSCs grew faster on the 2D stiff 
substrate. However, at day 5, B-ECM was significantly superior to the 2D group in DPSC 
cell growth rate, indicating the beneficial effect of the ECM components on cell prolifera-
tion. There was no difference in the morphology of DPSCs cultured on 2D or hydrogel 
substrate. The optical images can be found in the Supplementary Materials (Figure S1). 

 
Figure 4. DPSCs grown on different substrates over 5 days, measured by Alamar blue assay (n = 3). 
*** p ≤ 0.001, and **** p ≤ 0.0001. 

2.5. Macrophage Response Assays 
In supplemented-culture groups, adding digested B-ECM and CM to the standard 

medium did not strongly affect the viability of RAW cells as shown in Figure 5A. In terms 
of macrophage function, NBT was the assay used for determining phagocytic activity and 
NR indicates the pinocytic activity of macrophages. As shown in Figure 5B,C, culture of 
RAW cells with digested B-ECM and CM supplement did not alter the functional state of 
macrophages. 

Figure 4. DPSCs grown on different substrates over 5 days, measured by Alamar blue assay (n = 3).
*** p ≤ 0.001, and **** p ≤ 0.0001.

2.5. Macrophage Response Assays

In supplemented-culture groups, adding digested B-ECM and CM to the standard
medium did not strongly affect the viability of RAW cells as shown in Figure 5A. In terms
of macrophage function, NBT was the assay used for determining phagocytic activity and
NR indicates the pinocytic activity of macrophages. As shown in Figure 5B,C, culture of
RAW cells with digested B-ECM and CM supplement did not alter the functional state
of macrophages.
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2.6. Immunomodulatory Effect of Digested B-ECM towards RAW Cells

The immunomodulatory effect of digested B-ECM towards RAW cells was studied
by qPCR and ELISA assay. From Figure 6A,B, at gene level, under the unstimulated con-
dition, digested B-ECM did not have a profound effect on TNF-α gene expression, but
significantly upregulated the expression of the IL10 gene. Under the stimulated condition,
the immunomodulatory ability of digested B-ECM was striking, with downregulation of
TNF-α and upregulation of the IL10 gene compared to the 2D control. In protein measure-
ment (Figure 6B,C), RAW cells with digested B-ECM exhibited the same level of TNF-α
cytokines but released more IL10 under the aseptic condition compared to the control.
Under the inflammatory condition, B-ECM groups greatly reduced the concentration of
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the pro-inflammatory cytokine TNF-α and promoted the release of the anti-inflammatory
cytokine IL10, although not significantly.

Figure 6. Immunomodulatory effect of digested B-ECM towards RAW cells under aseptic and
septic conditions. Relative expression of TNF-α (A) and IL10 (B) genes by qPCR. TNF-α (C), IL-10
(D) concentration in cell culture supernatant by ELISA assay with ns being no significant, ** p ≤ 0.01,
and **** p ≤ 0.0001.

2.7. Immunomodulatory Effect of DPSC on B-ECM Hydrogel towards RAW Cell under “In Vivo
Mimicking” Co-Culture System

In the “in vitro-mimicking” model, DPSCs were seeded on 2D substrate or B-ECM
hydrogel and co-cultured with macrophage RAW cells (Figure 7). In an aseptic environment,
there was no obvious immune-regulatory effect of DPSCs towards RAW cells. However,
when challenged with LPS, the co-culture system significantly increased IL10 and decreased
TNF-α levels. However, a synergic effect of DPSC cultured on B-ECM hydrogel compared
to the 2D substrate was not apparent.

Figure 7. Cont.
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Figure 7. Immunomodulatory effect of DPSC on B-ECM hydrogel towards RAW cells under
co-culture system under aseptic and septic conditions. Relative expression of TNF-α (A) and
IL10 (B) genes by qPCR. ELISA assay cytokine concentration measurement of TNF-α (C), IL-10
(D) concentration in cell culture supernatant. Statistics are denoted as ns being no significant,
** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.

2.8. Wound Healing Assay

The wound healing assay investigated the wound closure ability of B-ECM, CM or
the combination of both in vitro, using A549 model human alveolar epithelial cells. Using
ImageJ, we calculated the area of the wound scratches at 0 h. However, after 12 h, the cells
started to migrate towards the wounded area in a disorderly manner, and we had difficulty
using ImageJ to calculate the exact wound closure area. Nevertheless, qualitatively, after
12 h, all the experimental groups showed a comparable wound healing effect compared to
the positive control and were all significantly superior to the negative control. After 24 h,
the wounds were completely closed in all the groups. To provide a better demonstration,
Figure 8 was processed by adjusting the threshold and using the bandpass filter functions
of Image J. The original optical images can be found in the Supplementary Materials
(Figure S2).
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3. Discussion

In the use of acellular scaffolds, it is important to note that the thoroughness of
decellularization is a decisive factor for ECM-based materials to elicit an anti-inflammatory
macrophage/T cell host response [21]. According to the literature, the criteria for effective
decellularization are: (1) less than 50 ng of double-stranded DNA per mg of dry weight,
(2) DNA fragments less than 200 base pairs in length, and (3) no visible nuclei upon
histologic evaluation via DAPI stains [22]. The results of decellularization in this study
satisfies these standards for acellular biological materials, which indicates their safety in
terms of immunogenicity.

Compared to sheet or powder forms, the hydrogel form offers advantages as it can
conform to irregularly shaped defects and be applied via minimally invasive methods [23].
Although the exact mechanism for the ECM hydrogel formation process is not fully un-
derstand, it is commonly thought that it involves the self-assembly process of collagen
under appropriate physiological condition of 37 ◦C and pH 7.4, regulated in part by the
presence of glycosaminoglycans, proteoglycans, and ECM proteins [24]. In our previous
study [20], neutralized digested B-ECM possessed shear thinning characteristic at 4 ◦C,
indicating the material was injectable and could be applied in minimally invasive surgery
using syringes or needles. According to rheological measurement, neutralized digested
B-ECM showed solid-like behavior with a storage modulus (G′) of around 110 Pa. In the
degradation test, the B-ECM hydrogel remained in solid form after 3 days of incubation in
PBS. According to the literature, there are three main components of ECM materials, which
are highly viscous proteoglycans (such as heparan sulfate, keratan sulfate, and chondroitin
sulfate), insoluble collagen fibers, and soluble multiadhesive extracellular matrix proteins
(fibronectin, laminin) [25]. The protein released at day 1 to the PBS solution were the soluble
components from the B-ECM hydrogel. At days 2 and 3, no significant amount of protein
was released, indicating that the B-ECM hydrogel was stable in PBS after 3 days. With
excellent biocompatibility, ECM hydrogels are intensively used for loading, encapsulating
and controlled delivery of cells or drugs [26]. ECM hydrogels have been shown to support
the growth and differentiation ability of many different types of stem cells by providing
a unique dynamic microenvironment [27]. In this study, the hydrogels fabricated from
B-ECM supported the growth rate of DPSCs better than 2D control after 5 days. This may
have been due to the complex biological components of the ECM materials compared to the
single composition of collagen type I. In our previous study [20], the composition of B-ECM
was studied using the LC-MS technique. Apart from different types of collagens, B-ECM
also comprises glycoprotein and proteoglycans/GAG, fibrillin, heparan sulfate, laminin,
fibulin, albumin, myosin and actin, etc. According to the literature, each individual element
may play a particular role in cell proliferation and differentiation [28]. This could be the
explanation for the superior supportive ability of B-ECM hydrogel towards the growth
of DPSCs.

Macrophages are distributed in the human body and play a crucial function in innate
immunity. When inflammatory reactions are ignited by events such as injury and infection,
circulating monocytes leave the bloodstream and migrate into tissues, then differentiate
into macrophages. There are two types of macrophages, which are classically activated
macrophages (M1) and alternatively activated macrophages (M2). Macrophages can shift
between pro-inflammatory M1 and tissue-remodeling M2, and this shift has a pivotal
role in tissue regeneration [29]. In this study, ECM degradation products or the stem cell
conditioned medium did not alter the functional state of macrophages, consistent with
a previous study [30]. Therefore, these models could be used for studying the immuno-
regulatory effect of ECM materials and MSCs on the macrophage response.

COVID-19 has become a common issue that global medical systems have had to con-
tend with. However, effective treatments for severely ill patients have not been developed.
The factor that worsens the syndromes of COVID-19 patients is cytokine release syndrome
(CRS), leading to an elevated immune response. During a cytokine storm, pro-inflammatory
cytokines are secreted by the immune system, which triggers an outburst of white blood
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cells. As a result, suppressing the cytokine storm from eliciting acute respiratory distress
syndrome (ARDS) may be one of the most important factors in COVID-19 treatment [31].
According to the literature, ECM degradation products consistently downregulate pro-
inflammatory and upregulate anti-inflammatory genes and proteins, although the exact
mechanisms for this ability have not been fully elucidated [32,33]. Generally, it is currently
agreed that many ECM components possess natural immunomodulatory domains that
bind to receptors on immune cells, promoting their adhesion and adjusting their function.
Moreover, the unique physical and biochemical properties of decellularized matrices affect
their immunomodulatory functions [34]. In our study, the degradation products from
digested B-ECM had prominent immuno-regulatory effects towards RAW macrophages
under aseptic and septic conditions at both mRNA and protein levels. This ability may be
due to the synergic effect of complexed ECM components towards macrophages. The major
component of B-ECM is collagen, accounting for up to 50% of dried tissue [20]. Collagens
I–III and XVII possess high-affinity ligands for LAIR-1 receptors on immune cells. Upon
binding to the collagen, the degranulation of peripheral basophils is deterred, and thus
suppresses immune cell activity. Apart from collagen, GAGs were also retained in B-ECM
after decellularization [20]. Negatively charged GAG chains possess the ability to bind
to positively charged immunomodulatory molecules, such as chemokines, cytokines, and
growth factors, and could also influence production of these molecules [35]. Additionally,
other components of ECM, such as fibrin and hyaluronic acid, have also been intensively
used to investigate the potential to harness the immune system [36]. This could explain the
immuno-regulatory effect of B-ECM degradation products in our study.

Presently, there are many clinical trials using MSCs of different origin for COVID-19
treatment, and DPSCs are also employed. In a clinical trial by Ye et al., DPSCs were utilized
for severe cases of COVID-19 in which the safety and efficiency of DPSCs from allogeneic
donors was investigated. However, the exact underlying mechanisms and results of these
trials are still not fully understood [2]. In terms of COVID-19, DPSCs are superior to
other sources of MSCs for the following reasons: (1) DPSCs can be easily isolated in a
less invasive method from discarded teeth and with no ethical considerations; (2) DPSCs
are plentifully available, easy to collect, and have efficient therapeutic effects; (3) DPSCs
possess high proliferation ability, which in turn could provide sufficient cell numbers within
a short time length. Moreover, they also have multi-differentiation capacity; (4) DPSCs
have immunomodulatory effects similar to other sources of MSCs. Therefore, dental pulp
stem cells (DPSCs) were chosen in this study as the adjuvant to the ECM material rather
than MSCs from other sources [2]. Additionally, the use of DPSCs can avoid underlying
issues, such as immune rejection, and teratogenicity [37]. MSCs have been intensively
utilized as a promising therapeutic strategy for the treatment of inflammation and tissue
injury-related diseases because they have powerful regulatory capability towards both
innate and adaptive immune response systems [38]. In a septic environment, MSCs exhibit
their protective functions due to the release of soluble paracrine factors, such as IL10, PGE2,
TNF-α and IL-6 [39]. MSCs can reprogram macrophages from a pro-inflammatory state
to an anti-inflammatory state through the release of PGE2, causing increased secretion
of IL-10 [40]. In a study of lung inflammation under sepsis conditions, Pedrazza et al.
found that co-culture of MSCs from epididymal adipose tissue with RAW cells could
lead to a significant decrease in TNF-α and IL-6 (pro-inflammatory cytokines) and a
significant increase in IL-10 (anti-inflammatory cytokines) when the cells were challenged
with LPS at different time points [41]. In our study, DPSCs had a marked effect on IL10
upregulation at mRNA level; however, at protein level, over-expression of this cytokine
was not observed. Nevertheless, this result was similar to previous studies investigating
the immunomodulatory effect of stem cell conditioned medium on macrophages, in which
IL10 was higher than the control group at gene level but was not significantly different at
the protein level [30,42]. This phenomenon may be ascribed to the time-dependent manner
of cytokine secretion by macrophages [43]. In the study, the authors found that when
induced with LPS, at mRNA level, human alveolar macrophages expressed the highest
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level of IL10 at 15 h, but at protein level, IL10 concentration was only at a peak at 24 h. This
indicated that IL10 may require a longer time to express at the protein level compared to
the gene level.

A549, a human alveolar epithelial cell, is commonly used as the model for wound
healing assays in many studies [44,45]. In a study into the effect of bladder ECM materials
(urinary bladder matrix, UBM) on bleomycin-induced pulmonary fibrosis, digested UBM
exhibited improvement in wound closure compared to the control group. The authors
proposed that small peptides from the degradation of laminin and collagen IV in the
basement membrane increased the migration of airway epithelial cells and thus stimulated
wound healing [44]. Additionally, according to the literature, the basement membrane
components possess a promoting effect on wound healing in a variety of organs, by
directing re-epithelialization and separating the epithelium from the interstitial connective
tissue [46]. In another study, the conditioned medium (CM) from umbilical cord Wharton’s
jelly-derived MSCs was employed to study the wound healing potential towards A549 [45].
The results showed that in the presence of CM, the wound was efficiently amended over
24 h compared to the control group. These positive effects may be attributed to the high
concentration of proteins, including growth factors, cytokines and extracellular matrix
proteins secreted into the medium by the MSCs. Many of these proteins, such as insulin-
like growth factor (IGF-I), interleukin-10, transforming growth factor-β and fibroblast
growth factor 2 have been shown to mediate the process of proliferation and migration of
many types of cells [47]. The above-mentioned findings may be the best explanations for
the results of the wound healing assay in our study, in which digested B-ECM and CM
from DPSCs promoted the wound healing process of A549 with results comparable to the
positive control.

However, our study is not without limitations. The study only focused on the ability
of B-ECM hydrogel to support the growth of DPSCs and its immunomodulatory potential
when used as a scaffold to culture DPSC under aseptic and septic conditions. In studies of
the immunoregulatory potential of MSCs or ECM materials, two representative cytokines,
such as TNF-α and IL10, have often been employed [30,36,48]. However, other cytokines
related to immune-regulatory response, such as IL-1, IL-6, IL-8, IL-12, TGF-β, etc., or
different cell types of the immune system, should be used in future research to obtain a
broader picture of the effects of ECM materials, as well as of MSCs, on immunomodulatory
functions. From another perspective, ECM, in the form of powder, enzymatically digested
solution or hydrogel, has been intratracheally injected into the lung in many in vivo studies,
with results showing positive therapeutic effects towards bleomycin-induced pulmonary
fibrosis [44], pulmonary oxidant damage [49], and radiation-induced lung injury [50]. These
studies highlight the possibility of injecting ECM hydrogel into the lungs in vivo with no
other adverse effects, and the potential of ECM as a treatment for lung diseases. As stated
at the outset, B-ECM hydrogel could be a scaffold for DPSCs to stay longer in the lungs to
exert their immunomodulatory effects. Therefore, animal studies should be included in the
next stage to test our theory, and to provide a better insight into the immuno-regulatory
potential of ECM materials. The released molecules from B-ECM or from DPSCs into the
culture medium should also be accessed using LC-MS to determine the protein profiles
that contribute to the immunomodulatory effects of ECM and DPSCs.

4. Conclusions

B-ECM hydrogel served as an excellent scaffold to culture DPSCs compared to 2D
culture. Moreover, the degradation products of B-ECM materials exhibited a potential
immunomodulatory effect towards macrophages under inflammatory conditions. In light
of the results of our study, it is hypothesized that B-ECM hydrogel could anchor stem
cells to stay longer in the lungs to express their immune-regulatory functions, and that
the degradation products of the B-ECM hydrogel itself assist in the macrophage immune
response. The use of digested B-ECM and CM from DPSCs favored wound healing effects
on alveolar epithelial cells. Altogether, therefore, the combination of B-ECM hydrogel
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material and DPSCs could represent a promising in vitro model to study adjuvant therapies
in cytokine-related lung diseases, before conducting in vivo animal experiments.

5. Materials and Methods
5.1. Tissue Decellularization

The pig bladders were collected from 100 to 110 kg pigs from the Taoyuan slaughter-
house (Taoyuan, Taiwan). Three to five native bladders were lyophilized and ground into
pieces. The tissues were decellularized using our previously published method [51]. In
brief, the tissues were treated with 1% (w/v) sodium dodecyl sulfate (SDS, Sigma-Aldrich,
St. Louis, MO, USA) for 24 h, then incubated in 10% fetal calf serum (FCS, GE Healthcare
Life Sciences) for an additional two days, sterilized with 0.1% (v/v) peracetic acid (PAA)
(Ginyork, Taiwan) for 2 h, and finally washed with sterilized PBS. The decellularized
bladders (B-ECM) were lyophilized and stored at −20 ◦C until use.

5.2. Decellularization Confirmation

The efficacy of the decellularization process was confirmed in terms of dsDNA quantifi-
cation (n = 3), using a Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo-Fisher Scientific,
Waltham, MA, USA), DAPI staining (6-diamidino-2-phenylindole, Sigma-Aldrich, St. Louis,
MO, USA) and electrophoresis, as previously described [51].

5.3. Preparation of B-ECM Degradation Products

The degradation products of ECM have been described previously [16]. The commin-
uted B-ECM was digested with 3 mg/mL pepsin (Sigma-Aldrich, St. Louis, MO, USA)
in 0.01 N hydrochloric acid (HCl) for 48 h at room temperature, and then referred to as
digested B-ECM.

5.4. Preparation of B-ECM Hydrogels

The preparation of B-ECM hydrogel was conducted as previously described [52]. The
digested B-ECM was neutralized to pH 7.4 using 0.1 N NaOH and diluted to 6 mg/mL
using 10× and 1× PBS at 4 ◦C. The neutralized digested B-ECM was incubated at 37 ◦C for
1 h to achieve complete gelation.

5.5. B-ECM Hydrogels In Vitro Degradation

The in vitro degradation of B-ECM was investigated according to a previous study
with some modifications [53]. Briefly, 250 µL of 6 mg/mL neutralized B-ECM was added
in a well of 24-well plates and incubated at 37 ◦C for 1 h to form hydrogels. 1 mL of PBS
was added on top of the hydrogels and incubated at 37 ◦C. After 1, 2, and 3 days, the
supernatants were collected and the degraded products of B-ECM hydrogels inside the PBS
were measured by BCA assay (n = 3). Hydrogel degradation was determined by calculating
the quantity of proteins released in the supernatant and calculated by protein loss/ECM
weight %.

5.6. Mesenchymal Stem Cell Verification

Human dental pulp stem cells (DPSC) were obtained from Lonza (PT-5025). The
stemness of human dental pulp stem cells (DPSCs) (p. 16) was confirmed by flow cytometry
as previously described [30]. The expression of positive (CD105) and negative (CD33)
markers of mesenchymal stem cells was analyzed, using a BD FACS Canto II flow cytometer
(BD Biosciences, San Jose, CA, USA). Briefly, cells were stained with PE anti-human CD105
antibody (323205, Biolegend, San Diego, CA, USA) and APC anti-human CD33 antibody
(303407, Biolegend, San Diego, CA, USA), following the manufacturer’s instructions.

5.7. DPSC Conditioned-Medium Collection

After stemness confirmation, 3 × 105 DPSCs (p. 16) were seeded in a 75 T flask and
cultured to 90% confluence in standard medium (SM) of DMEM containing 10% fetal
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bovine serum (FBS) and 1% penicillin for 2 days. The conditioned medium (CM) was then
collected, filtered through a 0.22 µm filter, and stored at −80 ◦C until use.

5.8. Culture of RAW 264.7 with Digested B-ECM Supplement

A total of 2.5 × 104 and 5 × 104 RAW 264.7 mouse macrophages (Academia Sinica,
Taiwan) were seeded in a 24-well plate (for macrophage response assays) and a 6-well plate
(for immunomodulatory assay), respectively, using standard medium (SM), supplemented
with 0.25 mg/mL neutralized digested B-ECM, which was referred to as the “B-ECM”
group. The control group was RAW cells cultured in SM only, which was referred to as the
“2D” group.

5.9. Culture of RAW 264.7 with Conditioned-Medium Supplement

A total of 2.5 × 104 RAW 264.7 mouse macrophages were cultured in a 24-well plate,
using 50% (v/v) standard medium (SM) and 50% (v/v) conditioned medium (CM) from
DPSCs for 24 h as previously described [30], which was referred to as the “CM” group in
this context. The control group was RAW cells cultured in SM only (2D group).

5.10. DPSC Growth Rate on Hydrogel Surface

The B-ECM hydrogels were prepared as described above. A total of 2.5 × 104 DPSCs
(p. 16) were seeded on the surface of the hydrogels. Cells were cultured in standard
medium (SM). Control groups were cells cultured on tissue-culture treated plates (2D
group). The cell growth rate of DPSC was measured by Alamar blue assay (Bio-rad,
Hercules, CA, USA) after 1, 3 and 5 days (n = 3).

5.11. “In Vitro Mimicking” Co-Culture of RAW 264.7 Mouse Macrophages with Human DPSC

DPSCs and macrophages were co-cultured in 6-well plates, using a transwell model.
A total of 5 × 104 RAW 264.7 cells were seeded in the upper transwell insert with pore
size of 0.40 µm (SPL Life Sciences, Pocheon, Korea). In the lower well, 200 µL B-ECM
hydrogels were injected and 2 × 105 DPSCs (p. 16) were seeded on the hydrogel surface.
This co-culture on B-ECM hydrogel was referred to as the “CO-GEL” group. Another group
of DPSCs were seeded on the lower well of tissue-culture treated plates only; this co-culture
on 2D substrate group was referred to as the “CO-2D” group. As a control, RAW 264.7 cells
were cultured in the upper well only. This mono-culture group was referred to as the “2D”
group. The cells were maintained in standard medium (SM).

5.12. Macrophage Response Assays

After 24 h for the supplemented culture system, Alamar blue assay, NBT test, and
neutral red assay (NR) (n = 4) were performed to observe functional states of unstimulated
RAW cells, such as viability, phagocytosis, and pinocytosis, respectively, as previously
described [30]. Briefly, the Alamar blue assay for monitoring cell viability was conducted
as mentioned above. The absorbance was measured at 570 nm and 600 nm and the results
were presented as the percentage reduction in Alamar blue. In the NBT test, 1 mg/mL NBT
solution (Nitro blue tetrazolium chloride, Sigma, St. Louis, MO, USA) was added to the
wells and incubated for 1 h at 37 ◦C. Formed formazan deposits were dissolved with 10%
sodium dodecyl sulfate (SDS) in 0.01 M hydrochloric acid (HCl) overnight. Absorbance
was read at 550 nm. In the NR assay, cells were incubated with 0.1 mg/mL neutral red
solution (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C. The deposited dye was
then released in 1% acetic acid/50% ethanol solution and absorbance was read at 540 nm.

5.13. Immunomodulatory Assay

After 20 h for the supplemented culture system and 44 h for the co-culture system, the
RAW cells were stimulated with 10 ng/mL of lipopolysaccharide (LPS) from Escherichia coli
(Sigma-Aldrich, St. Louis, MO, USA) for 4 h. The negative control was cells cultured in
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standard medium only (unstimulated condition). After that, the media were collected and
stored at −80 ◦C for ELISA assay, and the cells were collected for qPCR assay.

5.14. Real-Time Quantitative PCR (qPCR)

Total RNA of the cells was extracted using the Trizol reagent (Thermo-Fisher Scientific,
Waltham, MA, USA). The RNA was synthesized into cDNA, using a SensiFAST™ cDNA
Synthesis Kit (BIO-65054, Meridian Bioscience, London, UK), following the manufacturer’s
instructions. Polymerase chain reaction was performed, using SensiFAST™ SYBR® No-
ROX Kit (BIO-98020, Meridian Bioscience, London, UK), following the manufacturer’s
instructions. The primer sets for pro-inflammatory cytokines, TNF-α, anti-inflammatory
cytokines, IL10, and internal control GAPDH were used as previously described [54,55].
The primer sequences can be found in the Supplementary Materials (Table S1). Real
time qPCR reactions were performed using a LightCycler® 480 System (Roche, Rotkreuz,
Switzerland) (n = 3). The relative expression levels for each gene were normalized to the
2D group under the unstimulated condition using LightCycler® 480 Software (v1.5, Roche,
Rotkreuz, Switzerland) as previously described [56].

5.15. Enzyme-Linked Immunosorbent Assays (ELISA)

The medium collected in the immunomodulatory assay was used for measuring
the cytokines secreted by RAW 264.7 under unstimulated and LPS-stimulated condi-
tions. The level of TNF-α and IL10 was measured using Mouse TNF alpha Uncoated
ELISA (88-7324) and Mouse IL-10 Uncoated ELISA (88-7105) (Thermo-Fisher Scientific,
Waltham, MA, USA), respectively (n = 3). Both assays were conducted according to the
manufacturer’s instructions.

5.16. Wound Healing Assay

The wound healing assay was performed as previously described [45]. Briefly, 2.5 × 104

human alveolar epithelial A549 cells (National Defense Medical Center, Taiwan) were
seeded in 24-well plates and cultured to confluence. A 200 µL pipette tip was used to
scratch the monolayer. After wounding, the cell debris was removed by washing with PBS.
Wounded monolayers were then replenished with standard medium (positive control),
serum free-medium (negative control), standard medium with 0.25 mg/mL B-ECM (B-ECM
group), standard medium with 50% CM (CM group), or standard medium with 50% CM
and 0.25 mg/mL B-ECM (CM+B-ECM group). The wound was observed under an inverted
microscope (IMT-2, Olympus, Tokyo, Japan). The wound area after 0, 12 and 24 h was then
measured (n = 4) by ImageJ (National Institutes of Health, Bethesda, MD, USA).

5.17. Statistical Analysis

All data are presented as mean ± standard deviation. One-way ANOVA with Sidak’s
multiple comparison test was performed using GraphPad Prism v8.4.3 (La Jolla, CA,
USA) to determine statistical significance between experimental groups. Differences were
considered statistically significant at * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, and **** p ≤ 0.0001.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8030187/s1, Figure S1. Optical image of DPSC cultured on
2D substrate and on B-ECM hydrogel (scale bar = 200 µm). Figure S2: Optical image of wound
healing assay of A549 cells after 12 and 24 h; Table S1: Primer sequence.
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