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Road, Nanjing 210096, China
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Abstract

This paper proposes a risk-constrained decision-making approach for a wind power producer par-
ticipating in the day-ahead market. In the developed model, a flexible demand response trading
scheme between the wind power producer and different customers is employed. Through the pro-
posed demand response mechanism, the wind power producer is able to trade demand response
resource internally with different customers, and then trade energy externally with the market to
increase the expected profit and the wind energy utilization. The uncertainties in the wind power
and demand response are modeled by using the information gap decision theory approach from risk
averse (robust) and risk-seeking (opportunistic) perspectives. The objective of the robust model is to
maximize the robust level while satisfying the desired profit, whereas the opportunistic model aims
to evaluate the possibility of achieving windfall profits with favorable uncertainties. The over-all
offering strategy problem is modeled as a bi-objective mixed integer nonlinear programming, which
is linearized by proper techniques and solved efficiently by using the normal boundary in-tersection
technique. Simulation results show that utilizing demand response resource to mitigate wind power
deviations can increase a wind power producer’s profit and reduce potential risks. In addition, the
results demonstrate that the proposed bi-objective optimization approach enables the wind power
producer to select appropriate offering decisions with respect to uncertainties.

Keywords: Offering strategy, wind power producer, demand response, information gap decision
theory, day-ahead market

1. Introduction

1.1. Aims and background

In recent years, renewable energy technologies, especially wind power, have grown widely to
decrease environmental pollution and promote energy efficiency[1]. However, the variability and
limited predictability of wind power may impose significant challenges to the power system. The
latest statistics of China’s National Energy Administration show that, in the first three quarters of
2019, the curtailed capacity of wind reached 12.8 terawatt (TW). The national average wind power
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Nomenclature

Sets

t Index of time period
i Index of blocks of the load reduction/increase DR

curve
k Index of blocks of the load reduction/increase DR

price curve
j Index of DR customers

Parameters

M Sufficiently large number

λDAt Day-ahead electricity price at time t ($/MWh)

λLRt,k /λ
LI
t,k Upper bound of the kth load reduction/increase DR

price at time t ($/MWh)
φLRt,k /φ

LI
t,k Constant correspond to the kth load reduc-

tion/increase DR price at time t
Pt Forecasted load demand at time t (MWh)
ψLR/ψLI Load reduction/increase participation factor

λWP
t Contracted price between the WPP and consumers

at time t ($/MWh)
Pwt Forecasted wind production at time t (MWh)
P awt Wind maximum capacity at time t (MWh)

Variables

PLRt,i /P
LI
t,i Load reduction/increase of the ith interval of the DR

quantity curve at time t (MWh)
PDt Power traded in the day-ahead market at time t

(MWh)
uLRt,i,j/u

LI
t,i,j Binary variable shows whether the DR curve is se-

lected by the WPP
Dt Net power demand at time t (MWh)
αwindrobust/α

DR
robust Robust index of the wind/DR

αwindopportunity Opportunity index of the wind

αDRopportunity Opportunity index of the DR

PFDET Deterministic profits of the WPP ($)
PF robust Robust profits of the WPP ($)
PF opportunity Opportunity profits of the WPP ($)
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generation curtailment was 4.2%, and in Xinjiang, nearly 15.4% of wind generation was curtailed [2]. 
If the situation is not improved, wind curtailment may become an obstacle to the development of 
wind power. Therefore, it is essential to make efforts to facilitate wind power integration and better 
exploit the economic profits of wind energy.

1.2. Literature review
Coordinated operation of wind power with other flexible resources such as energy storages [3], 

electric vehicles [4] or demand response (DR) [5] is considered to be an effective method to mitigate 
wind fluctuations and reduce imbalance costs. Due to the development of smart grid technologies, 
DR has received increasing attention, and it is regarded to be a promising approach to mitigate wind 
power variability[6]. For example, it can help reduce demand during times of low energy production 
and increase demand during periods when higher amounts of energy is offered [7]. Recently, much 
research has been conducted on how wind power producers (WPPs) can best integrate DR 
resources[8]. In [9], a study was conducted to develop a stochastic-based decision-making framework 
for WPPs in the day-ahead (DA) market. It showed that the joint operation of WPP and DR 
aggregators could increase the expected benefits and alleviate the uncertainty risk related to wind 
outputs. Ref.[10] proposed an optimal bidding strategy for WPPs participating in the DA market, 
and various DR contracts between the WPP and DR aggregators were set to maximize WPP profits. 
Ref.[11] developed the new Demand Response eXchange (DRX) market to handle the variability of 
renewable energy. In [12], both upward and downward demand side resources were employed in the 
DRX market to counterbalance the deviations of renewable energy.

When optimizing the WPP bidding strategies that consider DR, the abovementioned research is 
mainly focused on the DR aggregators, such as setting specific DR contracts for DR aggregators. 
However, little attention has been paid to the interaction between WPPs and DR customers in a 
competitive market. As active participants in the electricity market, commercial, industrial and 
residential consumers will be able to adjust energy consumption and actively trade it with WPPs 
based on their characteristics and preferences. According to the latest U.S. Energy Information 
Administration (EIA) statistics, more than 8 million residential customers, 900,000 commercial 
customers and 60,000 industrial customers participated in DR programs in 2018 [13]. In 2019, 
different types of DR programs were employed to integrate renewable energy in China, and a 
growing number of customers were enrolled in DR programs to gain the expected benefits [14]. Under 
this context, it has become important to design a flexible DR trading mechanism between WPPs and 
customers to optimize the electricity procurement decisions of both sides.

In addition to the wind power generation uncertainty mentioned before, the uncertainty caused 
by demand response, like the random behaviour of DR customers, also can have impacts on WPP 
profits[15]. It is difficult for a WPP to decide submitting strategies under uncertainties since the day-
ahead market closes (i.e. 12 pm in the prior day) several hours earlier than the beginning of real-time 
operation. In this regard, various uncertainty modeling methods have been proposed, such as the 
stochastic programming (SP) [16], robust optimization (RO) [17], fuzzy mathematics (FM) [18] and 
information gap decision theory (IGDT) [19]. Stochastic programming is often cited as the most 
popular approach to optimize bidding strategies under uncertainties[20]. The main idea of the SP 
method is to characterize the uncertain variables by means of a probability distribution and employ 
a number of scenarios to represent the possible realizations of uncertain variables. In [21], the SP 
approach was adapted to optimize the bidding strategy of a WPP, which incorporated the 
uncertainties related to wind output and market prices. However, the performance of the SP method 
is restricted by the high computational complexity resulting from a large number

3
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of scenarios. The RO approach models random variables by uncertainty intervals and optimizes the 
worst-case scenario over an uncertainty interval[22]. Ref.[23] proposed a two-stage robust framework 
to derive the optimal bidding strategies for WPPs while considering the uncertainty of wind power 
generation. However, the applicability of RO is limited by its conservativeness. Fuzzy mathematics 
characterizes random variables through fuzzy membership functions[24]. Ref.[18] applied the fuzzy 
method for optimizing the offering strategy of a virtual power plant (VPP) that included renewable 
energy and demand response. However, it is difficult to select an appropriate fuzzy membership 
function representing the uncertainty parameter like wind power in practice.

To date, the IGDT approach has been applied to power system problems, such as the optimal 
scheduling of GenCos [25] and renewable power plants [26], as well as decision-making for DR 
aggregators [27], microgrid operators [28] and distribution network operators [29]. Compared to the 
SP, RO or FM, IGDT requires no information on the probability distribution, a fixed uncertainty set 
with explicit boundaries or an appropriate membership function of uncertain variables. It aims to 
maximize the uncertainty interval while a certain economic expectation can be attained. Moreover, 
with robustness and opportunistic functions, the IGDT can provide risk-averse or risk-seeking 
strategies according to the decision makers’ risk preference[30]. In Ref.[27], a robust self-scheduling 
model for DR aggregators was developed, while both uncertainties of consumers and market prices 
were modeled through IGDT. Ref.[28] proposed an optimal bidding strategy for the microgrids in 
joint day-ahead energy and reserve markets. The uncertainties related to market prices and load 
consumption were considered and modeled by the IGDT method. In Ref.[29], an IGDT-based three-
phase optimal power flow is proposed to optimize switch decisions for distribution network operators 
while considering the uncertainty of load demand.

In view of the above, however, limited research has been carried out to develop a risk-constrained 
WPP offering strategy that is optimized through the IGDT approach and hedged against uncer-
tainties associated with wind power output and demand response. Moreover, few studies have been 
conducted on the trading mechanism between WPPs and DR customers. Table 1 summarizes the 
comparison between different literature in the field of WPP offering strategies; ”*” represents 
”considered” and ”-” represents ”not considered”.

Table 1 Comparison between the existing methods and the proposed method

Reference
Uncertainty Parameter Uncertainty Modelling

Price Load Wind DR SP RO Fuzzy IGDT

[3, 4] * - * - * - - -
[6] * * * - * - - -
[16] * - - - * - - -
[18] - - * - - - * -
[20] * - * - - * - -
[21] * - * - * - - -
[23] - - * - - * - -

This Paper - - * * - - - *

1.3. Contribution

This paper proposes a risk-constrained framework to develop an optimal WPP offering strategy
in the DA market. As shown in Fig.1, an internal market (between the WPP and DR customers)

4
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is developed to optimize the participation of the WPP in the external market (the ISO market).
In the internal market, a flexible DR trading scheme between the WPP and different customers
is developed, which helps to mitigate the deviation of wind power generation and thus increases
WPP’s profit. Furthermore, the IGDT approach is used to evaluate multiple uncertainties (i.e.
wind production and demand response) and find a flexible and robust offering strategy.

Fig. 1: The schematic diagram of the WPP

Overall, the main contributions of the paper are summarized as follows:

1. A flexible DR trading scheme between the WPP and DR customers is proposed to enhance the 
flexibility of the WPP participating in the market and to maximize expected profits. Different 
customers are allowed to submit load reduction or load increment offers according to their 
characteristics and preferences. Each offer consists of the quantity of reduced/increased 
capacity and corresponding desired prices.

2. An IGDT-based decision-making model for the WPPs is formulated that simultaneously 
considers the uncertainties from variable wind power and random DR customers’ participation 
behavior. The proposed IGDT-model allows for controlling the robustness of the optimal 
solution based on the decision maker’s economic expectations and risk preference. That is, 
minimum profits of a risk-averse WPP can be achieved under unfavorable variations of 
uncertainties with the robust IGDT model, whereas windfall profits of the risk-seeking WPP 
can be achieved under favorable uncertainties with the opportunistic IGDT model.

3. The proposed risk-constrained bidding strategy is formulated as a mixed integer nonlin-ear 
programming problem that considers the impacts of different uncertainties. To solve this 
problem, we transform the model into a bi-objective mixed integer linear programming 
(MILP), which can be solved efficiently using the normal boundary intersection (NBI) tech-
nique.

1.4. Paper organization

The rest of the paper is organized as follows. Section 2 provides the detailed description of the
problem; Section 3 presents the risk-constrained offering strategy model for the WPP participating
in day-ahead market; Case studies and results are shown in Section 4 and in Section 5, some
relevant conclusions are drawn.
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2. Problem description

2.1. Electricity market framework

Fig.2 presents the timeline considered in this paper. The day-ahead market of Day D closes
at 12:00 pm on Day D-1. Thus, WPPs have to submit their hourly offer for Day D no later than
12:00 p.m. on Day D-1. To maximize WPPs’ profit, an internal market (between the WPP and
DR customers) is developed to optimize the participation of the WPP in the external market (the
ISO market). In the internal market, customers are allowed to submit offers to the WPP for
their flexible loads. After collecting all the curves of the DR offers, the WPP runs an internal
market to determine its involvement in the external market. The specific trading framework of the
offering strategies is illustrated in Fig.3. As shown in Fig.3, a two-stage decision-making process
is deployed.

In the first stage, the uncertainties of the problem, i.e., variable wind output and random
behaviour of DR customers, are neglected. The aim of the WPP is to maximize its economic
benefits. In this regard, a flexible DR trading scheme between the WPP and DR customers is
deployed. It allows different consumers to submit day-ahead DR offers to reduce or increase load
demand. Then, with the information of predicted demands, wind output and market price, the
WPP optimizes the proposed model to determine the accepted DR offer and desired energy bids
for buying/selling electricity in the day-ahead market. Note that the WPP is assumed to act as a
price taker; i.e., its bids would not affect the market clearing price. Thus, it only needs to submit
power bid quantities instead of bidding curves to the market.

In the second stage, a risk-constrained IGDT-based optimization model is developed to manage
the risk related to wind power and DR uncertainties. In addition, both robust and opportunistic
functions are employed to offer different offering strategies regarding uncertainties. For example,
the uncertainty resources may lead to an unfavorable condition and minimum profits can be at-
tained through a risk-averse strategy. On the contrary, the uncertainty resources may be useful,
and higher profits can be pursued based on a risk-seeking offering strategy.

Fig. 2: The timeline of the proposed method

2.2. DR trading mechanism

The wind power operator is assumed to serve different types of customers, such as residential,
commercial and industrial. The customers pay the WPP for the energy that they use based on
the predetermined price λWP

t and get rewards from adjusting their flexible loads to lower or higher
consumption levels. Through the proposed mechanism, the customer is allowed to submit offers
to the WPP for its flexible loads. Each offer specifies the amount of demand that the customer is
willing to curtail or increase for different rewards or electricity prices.
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t,k

Fig. 3: The schematic of proposed wind offering strategies

The load reduction based DR curve is shown in Fig.4, where the amount of load reduction Pt,iLR 

increases with higher rewards λLR. Fig.5 illustrates the load increase based DR curve, where the
amount of increased load PLIt,i decreases with higher prices λLIt,k. Each price bound of DR curves is

defined as the day-ahead electricity price λDAt multiplied by predetermined constants φt,k, which
is formulated as follows:

λLRt,k = φLRt,k λ
DA
t (1)

λLIt,k = φLIt,kλ
DA
t (2)

In addition, the values of PLRt,i and PLIt,i are defined as the forecasted customer demand of Pt
multiplied by DR participation factor ψ, which is formulated as Eqs.(3)-(4). The DR participation
factor denotes the willingness of consumers to participate in the DR and ranges between 0 and 1.

PLRt,i = ψLRPt (3)

PLIt,i = ψLIPt (4)

After collecting all the curves of the DR offers, the WPP runs an internal market to determine
its involvement in the DR trading scheme.
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2.3. Uncertainty characterization

This paper considers two major sets of uncertainties: (1) wind power generation and (2) DR
consumer’s participation factor.

To deal with the uncertainties from wind power production and demand response, the IGDT
approach is employed. Specifically, these uncertainties are modeled by the envelope bound uncer-
tainty method as shown in Eqs.(5),(6) and (7):

U (α, Pwt ) =

 Pwt :
∣∣∣Pw

t −P̃w
t

P̃w
t

∣∣∣ ≤ α;α ≥ 0

Pwt ∈
[
P̃wt − αP̃wt , P̃

w
t + αP̃wt

]
; ∀t

 (5)

U (α, ψt) =

 ψt :
∣∣∣ψt−ψ̃t

ψ̃t

∣∣∣ ≤ α;α ≥ 0

ψt ∈
[
ψ̃t − αψ̃t, ψ̃t + αψ̃t

]
; ∀t

 (6)

α̂ =
{
PF IGDT (Pwt , ψt, β) ≤ |1± β|PFDET (Pwt , ψt) ; } (7)

In the above formulation, P̃wt (ψ̃t) and P
w
t (ψt), respectively, denote the forecasted wind power

output (forecasted demand response participation factor) and actual output (actual demand re-
sponse participation factor). The term α denotes the uncertainty parameter, and it is optimized to
ensure a specified economic target as stated in Eq.(7). PF IGDT and PFDET denote the optimized
values of the IGDT-based and deterministic model, respectively. The uncertainty budget (UB)
β is defined to control the expected level of the objective function. When β is set to zero, the
uncertainty formulation is converted to the nominal deterministic model.

3. Day-ahead optimization model

In this section, the detailed formulation of the day-ahead offering strategy model is present-
ed. First, a deterministic optimization model is built without considering uncertainties. Then the
IGDT-based optimization approach is developed to evaluate the risks associated with the uncer-
tainties of wind and demand response. The IGDT method is flexible to control the uncertainty
level of the problem, and it has a moderate computation cost.

3.1. Deterministic offering strategy model

In the deterministic day-ahead model, the main purpose of the WPP is to maximize its expected
profit. The mathematic formulation of the problem is presented in the following.

Maximize PF

PF =

T∑
t=1

(
λDAt PDt −

I∑
i=1

J∑
j=1

PLRt,i,jλ
LR
t,i,ju

LR
t,i,j+

I∑
i=1

J∑
j=1

PLIt,i,jλ
LI
t,i,ju

LI
t,i,j + λWP

t Dt

(8)
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Subject to:

Pwt = Dt + PDt (9)

φLRt,k λ
DA
t uLRt,i,j ≤ λLRt,i,j ≤ φLRt,k+1λ

DA
t uLRt,i,j (10)

φLIt,kλ
DA
t uLIt,i,j ≤ λLIt,i,j ≤ φLIt,k+1λ

DA
t uLIt,i,j (11)

λLRt =

I∑
i

J∑
j

λLRt,i,j (12)

λLIt =

I∑
i

J∑
j

λLIt,i,j (13)

I∑
i

J∑
j

uLRt,i,j +

I∑
i

J∑
j

uLIt,i,j ≤ 1 ∀t (14)

uLRt,i,j ∈ {0, 1} (15)

uLIt,i,j ∈ {0, 1} (16)

Pwt ≤ P awt (17)

Dt =

I∑
i

J∑
j

Lt,i,j −
I∑
i

J∑
j

PLRt,i,ju
LR
t,i,j +

I∑
i

J∑
j

PLIt,i,ju
LI
t,i,j (18)

The first term in (8) represents the profit of WPP from trading energy in the market. The
second and third terms represent the total cost of rewarding customers for load reduction (LR)
and increase (LI), respectively. The LR includes the cost of rewarding consumers to reduce the
load and the loss of revenue from not selling the reduced energy. The LI denotes an increase in
the WPP’s revenue from selling energy to consumers at a price lower than the day-ahead market
price. The last term accounts for the WPP revenue from selling net energy to consumers at a
predetermined price. Note that the fuel cost of wind generation is considered to be zero.
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Equation (9) ensures the energy balance of the WPP; namely, the total energy traded in the
market and the net load of customers is equal to the total generation produced by the WPP at
each time. The aggregated DR curves are mathematically formulated as (10)-(16), where (10)-
(13) denote the prices for the each block of DR curves; (14) indicates that only one type of DR
scheme can be chosen at each time period; (15)-(16) are included to define uLRt,i,j and u

LI
t,i,j as binary

variables, and uLRt,i,j (u
LI
t,i,j ) is equal to 1 if the WPP accepts the load curtailment (load increase).

Otherwise, uLRt,i,j (uLIt,i,j ) is 0. Equation (17) enforces that the wind generation is less than the
available wind power production at each time. The net load demand after taking part in the DR
scheme is expressed as (18).

3.2. IGDT-based offering strategy model

For a price-taker wind power producer, the uncertainty model of wind output and demand
response is important and should be considered since it directly impacts the WPP’s revenue. In
this section, the IGDT-based optimization models regarding the wind power and demand response
uncertainties are mathematically formulated in the robust and opportunistic functions through
(19)-(34).

1) Robust IGDT-based model
max αwindrobust

subject to:

PF robust ≥
(
1− βwindrobust

)
PFDET (19)

(
1− αwindrobust

)
Pwt = Dt + PDt (20)

(10)− (18) (21)

max αDRrobust
subject to:

PF robust ≥
(
1− βDRrobust

)
PFDET (22)

PLRt,i =
(
1− αDRrobust

)
ψLRPt (23)

PLIt,i =
(
1− αDRrobust

)
ψLIPt (24)

Pwt = Dt + PDt (25)

(10)− (18) (26)
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2) Opportunistic IGDT-based model
min αwindopportunity

subject to:

PF opportunity ≥
(
1 + βwindopportunity

)
PFDET (27)

(
1 + αwindopportunity

)
Pwt = Dt + PDt (28)

(10)− (18) (29)

min αDRopportunity
subject to:

PF opportunity ≥
(
1 + βDRopportunity

)
PFDET (30)

PLRt,i =
(
1 + αDRopportunity

)
ψLRPt (31)

PLIt,i =
(
1 + αDRopportunity

)
ψLIPt (32)

Pwt = Dt + PDt (33)

(10)− (18) (34)

In the above formulation, the robust function aims to determine the maximal level of uncer-
tainty αrobust that the system can tolerate. Uncertainty budget constraints (19) and (22) lim-
it the targeted profits, which indicates that the risk-averse revenue PF robust should be higher
than (1− βrobust)PF

DET , where the parameters PF robust and PFDET represent the risk-averse
and deterministic revenue, respectively. Eqs.(20) and (23-25) impose constraints of forecasted
wind generation and DR results. In the opportunistic function, the objective is to evaluate the
minimum uncertainty level αopportunity, which should be satisfied to attain the windfall profit
(1 + βopportunity)PF

DET .
Note that the presented IGDT-based offering strategy model is a mixed integer nonlinear pro-

gramming problem because of the multiplication of continuous variable αDR and binary variables
ut,i,j in Eqs.(22,25) and (30,33). To linearize the nonlinear formulation, the Big-M linearization
technique is employed in this paper [31]. It can be formulated as follows:

z = αDRut,i,j (35)

where

z ≤MαDR

z ≥ −MαDR

z − αDR ≤M (1− ut,i,j)

z − αDR ≥ −M (1− ut,i,j)

(36)
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3.3. Bi-objective IGDT-based offering strategy model

In this section, IGDT-based optimization models that simultaneously consider wind power and
demand response uncertainties are formulated as a bi-objective mixed integer linear programming
problem. To solve this problem, this paper employs the normal boundary intersection (NBI)
method considering a certain uncertainty budget [29]. The robust and opportunistic models cor-
responding to uncertainties are formalized in (37) and (38), respectively.

max
(
αwindrobust, α

DR
robust

)
subject to:(

1− αwindrobust

)
Pwt = Dt + PDt

PF robust ≥ (1− βrobust)PF
DET

PLRt,i =
(
1− αDRrobust

)
ψLRPt

PLIt,i =
(
1− αDRrobust

)
ψLIPt

(10)− (18)

(37)

min
(
αwindopportunity, α

DR
opportunity

)
subject to:(

1 + αwindopportunity

)
Pwt = Dt + PDt

PF opportunity ≥ (1 + βopportunity)PF
DET

PLRt,i =
(
1 + αDRopportunity

)
ψLRPt

PLIt,i =
(
1 + αDRopportunity

)
ψLIPt

(10)− (18)

(38)

In summary, the flowchart for the proposed offering strategies of the WPP is shown in Fig.6.
Firstly, forecast the data of wind power output, DA market price, load consumption and DR cus-
tomer participation factors for offering day. Then based on the developed DR trading mechanism,
consumers submit load reduction or load increment offers to the internal market. After collecting
all the curves of the demand response offers, the WPP solves the deterministic optimization prob-
lem to determine accepted DR offers and generate deterministic energy bids. Next, considering
the uncertainty associated with wind power and demand response, the WPP solves the day-ahead
IGDT-based optimization problem to derive risk-constrained bidding strategies. Finally, the WPP
submits appropriate energy bids to the market before the gate closure, i.e., 12:00 pm of the day
before.

4. Case study

In this section, the developed IGDT-based risk constrained decision-making approach is assessed
to show the performance of the proposed method. The simulation is performed on a personal
computer system with an 8 GB memory and a 2.6 GHz CPU speed. The algorithm is programmed
by YALMIP and solved through CPLEX. The case study is carried out on a week (13 November
2019-19 November 2019). The forecasted wind power output, load consumptions and electricity
price are taken from the California market [32]. Three types of consumer data, including residential,

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 6: The flowchart of the proposed strategy

commercial and industrial consumers, are considered. The participation parameters of customers
are based on the ”Demand Response Bids” in the PJM website [33] and are presented in Table
2. With the first day of the week (13 November of 2019) as an example, the predicted sample
load profiles are taken from Ref.[20] and presented in Fig.7. Based on the proposed DR trading
mechanism in Section 2.2, an example of submitted load reduction offers for different consumers,
including quantities and prices, is presented in Fig.8 and Fig.9. In addition, Fig.10 and Fig.11 show
the sample load increment offers. The contracted price between the WPP operator and customers
is set to $34.27/megawatt− hour(MWh).
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Fig. 7: Forecasted demand of sample loads
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Fig. 8: Load reduction offer quantities for sample loads
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Fig. 9: Load reduction offer prices for sample loads
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Fig. 10: Load increment offer quantities for sample loads
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Fig. 11: Load increment offer prices for sample loads

Table 2 DR data of customers

LRDR LIDR
Block i 1 2 3 1 2 3

Industrial Customer
Participation Factor ψ 0.4 0.5 0.6 0.3 0.2 0.15

Price Factor φ 0.4 0.5 0.6 0.4 0.5 0.6

Commercial Customer
Participation Factor ψ 0.3 0.4 0.5 0.2 0.15 0.1

Price Factor φ 0.6 0.7 0.8 0.6 0.7 0.8

Residential Customer
Participation Factor ψ 0.2 0.3 0.4 0.1 0.08 0.05

Price Factor φ 0.7 0.8 0.9 0.7 0.8 0.9

4.1. Deterministic results

In this section, the results of cases without uncertainty are shown, where the expected values
of wind power productions and customer participation factors are perfectly known. In addition, to
show the effect of the DR trading mechanism on the expected benefit of the WPP, two cases are
studied:

Case 1: Deterministic case without considering DR
Case 2: Deterministic case considering DR
The total expected profits of the WPP with and without enabling the DR trading mechanism

in the test week are compared in Table 3. The results show that, in contrast with Case 1, WPP’s
revenue increases in Case 2. For instance, compared to Case 1 on November 13, the WPP’s total
profit in Case 2 increases $7138 (8.9%). The main reason for the increasing profits is that the
proposed DR scheme could help smooth the consumers’ load profile. Specifically, through the
proposed DR mechanism, the WPP could reduce customers’ electricity consumption at hours with
a wind power shortage, while the wind energy would not be wasted during surplus wind power
hours, which is beneficial to the WPP. The power traded in the DA market on November 13 and
November 16 is respectively plotted in Fig.12 and Fig.13. It turns out that, the offering quantity
of Case 2 increases during peak periods due to the participation of DR. Therefore, the DR trading
mechanism is profitable since it enables the WPP to trade its energy flexibly.
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Table 3 Comparison results of total expected profits of the WPP

Day of Week 11/13 11/14 11/15 11/16 11/17 11/18 11/19

Expected Profit($)
Case 1 72869 45882 57987 74049 48258 52398 62309
Case 2 80007 50599 63173 77430 53898 57911 69144
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Fig. 12: Traded power of WPP on November 13, 2019
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Fig. 13: Traded power of WPP on November 16, 2019
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4.2. IGDT results

In this section, we focus on the first and last days of the week (November 13 of 2019 and
November 19 of 2019) to better show the results. Based on the deterministic results, the IGDT-
based approach is employed to evaluate the impacts of uncertainties on the WPP’s revenue. In
this regard, three more cases are considered:

Case 3: The wind power production is assumed to be uncertain, while the participation factors
are known.

Case 4: The wind power production is assumed to be perfectly known, while participation
factors are uncertain.

Case 5: Both uncertainties related to wind power and participation factors are studied.
The robust and opportunity optimization framework regarding uncertainties has been solved

based on Eqs.(19-34). Fig.14(a) presents the variations of the wind robustness index versus the daily
benefit on November 13 of 2019. Each robustness index represents a tolerable uncertainty horizon
for the corresponding payoff expectation. For instance, the desired minimum benefit $72,006.3 is
guaranteed if the deviations of wind fluctuations does not exceed 8.31%. This implies that, when
actual wind generation is within this robustness horizon, the attained benefit would be larger than
or equal to $72,006.3. According to Eqs.(19-21), the total profit can be reduced by decreasing the
wind power production. It can be seen from Fig.14(a) that the wind robustness value increases
from 0 to 0.8708, while the day-ahead benefit decreases from $80,007 to $0. It indicates that lower
benefit results have a stronger ability to deal with undesirable deviation in wind uncertainty. This
is reasonable, since the optimal uncertainty index of the proposed model (i.e., the maximum the
uncertainty level) would increase with the increase of the uncertainty budget. Analogously, in
the opportunity strategy, the total benefit will increase with increasing penetration of wind power
production. The changes of the day-ahead revenue versus the wind opportunity index on November
13 are illustrated in Fig.14(b). It can be observed that the wind opportunity index varies from 0
to 0.7981 when the benefit increases from $80,007 to $160,014. It turns out that a higher desirable
uncertainty horizon can lead to greater benefits. Similarly, the variations of wind robust index and
opportunity index are plotted in Fig.15 for November 19. Fig.15(a) shows that the wind robust
index increases from 0 to 0.8665 when the expected profit is decreased from $69144 to $0. From
Fig.15(b), it can be seen that the wind opportunity index varies from 0 to 0.8578 while the expected
profit increases from $69144 to $138288.
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Fig. 14: Variations of wind uncertainty index and daily benefit on November 13 (Case 3)
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Fig. 15: Variations of wind uncertainty index and daily benefit on November 19 (Case 3)

For a detailed analysis, wind power fluctuations for a certain economic target are shown in Fig16.
While for PF IGDT = $72006.3, the corresponding uncertainty level is 0.0831. It means that the
wind forecast error should be less than 8.31% to get expected economic revenue. In other words, if
actual wind power fall into the robust range (yellow area), the attained benefit would be larger than
or equal to $72006.3. Similarity, for a certain economic expectation, i.e. PF IGDT = $88007.7, the
corresponding uncertainty level is 0.0766. It indicates that, when realized wind power are within
this opportunity range (blue area), a maximum revenue $88007.7 is possibly obtained.
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Fig. 16: Wind curves for different cases

The robust and opportunistic results pertaining to the demand response uncertainty on Novem-
ber 13 are depicted in Fig.17. The corresponding results on November 19 are plotted in Fig.18.
In the robust model, the benefit is expected to reduce as the customer participation factor de-
creases. From Fig.17(a), it can be observed that when UB reaches 0.06, the declining trend of the
profit function is saturated and has no change, due to the supply-demand balance constraint and
economical limitations of the system. At this point, the total benefit and highest DR robustness
index are $75206.58 and 0.9097, respectively. Analogously, in the opportunistic case, the growing
trend of the benefit function is saturated when the DR opportunity index is equal to 0.9087. A
comparison between Case 3 and Case 4 indicates that the wind uncertainty index changes in a
wider range as compared to the DR uncertainty index. The results on November 19 show that,
compared to Case 3, the highest robustness value of case 4 is increased by 6.9%. It demonstrates
that the uncertainty on demand response impacts the WPP offering strategy less than it does the
wind power uncertainty.
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Using these results, the WPPs can optimize their decisions in the DA market. In the robust case, 
the objective of WPP is to choose a risk-averse bidding strategy to handle the uncertainty. For 
example, the WPP can make appropriate decisions based on the results presented in Fig.18(a). If the 
WPPs choose the energy bids for P F IGDT = $69144, they will get the highest profits when the 
realized DR results are equal to the forecasted values. However, this strategy leads to the biggest risk 
caused by uncertainty. Conversely, if the WPPs decide the bids for P F IGDT = $68452.56, they will 
obtain less profits with lower risk. In the opportunistic case, the WPP aims to choose a risk-seeking 
bidding strategy to attain a higher revenue. Fig.18(b) shows that a higher economic target will incur 
higher risks related to uncertainty. The results can help the WPPs make appropriate decisions based 
on the trade-off between the risk of uncertainty and profits.
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Fig. 17: Variations of DR uncertainty index and daily benefit on November 13 (Case 4)
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Fig. 18: Variations of DR uncertainty index and daily benefit on November 19 (Case 4)

The bi-objective IGDT-based problems regarding both wind and DR uncertainties are solved
based on (37) and (38). The UBs in robust and opportunistic structures are set to be 0.05.
The Pareto front is obtained using the NBI method. The results of case 5 on November 13 and
November 19 are depicted in Fig.19 and Fig.20. As shown in Fig.19, the wind robustness can
increase to 0.0439 while the DR robustness decreases to 0. On the contrary, the DR robustness
can increase to 0.7581 while the wind robustness decreases to 0. Analogously, in the opportunistic
case, the wind opportunity index varies from 0 to 0.05 while the DR opportunity index decreases
from 0.7689 to 0. This tendency is true, since the revenue of WPP is influenced by uncertainties
from both wind energy and demand response. It also can be observed from Fig.20 that the wind
uncertainty index increases with the decreases in DR uncertainty index. When a higher level of
risk is considered in the former, the WPP can tolerate a lower risk level from the latter with the
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same expected profit.
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Fig. 19: Optimal Pareto front result on November 13
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Fig. 20: Optimal Pareto front result on November 19

The most preferred solution is selected by using the fuzzy decision-making approach [20]. For
a detailed analysis, the day-ahead results including offering quantities, total reduced and increased
loads on November 13 are shown in Fig.21 and Fig.22, respectively. The corresponding results on
November 19 are plotted in Fig.23 and Fig.24, respectively. Note that the positive bids represent
the WPP selling energy to the market, while negative bids indicate that the WPP is purchasing
energy from the market. As shown in Fig.21 (a) and Fig.22 (a), it turns out that risk-averse WPPs
purchase more power from the market during times of high prices than risk-seeking ones. The
reason is that risk-averse decision makers tend to buy the required energy from sources with less
uncertainty. It can be observed from Fig.21 (b) and Fig.22 (b) that the maximum reductions occur
during the peak market price period. Similarly, most of the increased loads occur at the low market
price time. By comparing Fig.21 and Fig.22, it can be seen that, risk-seeking WPPs buy more
DR resources than the risk-averse ones, especially in high price periods (i.e., 5 pm-7 pm). This
is because buying energy from DR customers and trading it in the market increases the risk for
risk-averse WPPs and thus, they tend to avoid this practice. It also can be observed from Fig.23
and Fig.24 that the maximum reductions occur during the peak market price period. Similarly,
most of the increased loads occur at the low market price time.
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Fig. 21: Day-ahead results in the robust case (November 13 of 2019)
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Fig. 22: Day-ahead results in the opportunistic case (November 13 of 2019)
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Fig. 23: Day-ahead results in the robust case (November 19 of 2019)
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Fig. 24: Day-ahead results in the opportunistic case (November 19 of 2019)

4.3. Model validation
In this subsection, in order to verify the IGDT-based results, the Monte Carlo (MC) method-ology is 

deployed to solve the bidding strategy problem. First, with the first day of the week
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(13 November of 2019) as an example, 1000 random scenarios are generated using the Gaussian 
probability density function for wind power. Concerning to the DR uncertainty, random scenarios 
are generated by multiplying the forecasted participation factors by fixed coefficients that range 
from 0.8 to 1.2.

The histograms of the generated scenarios for the wind and DR uncertainties are shown in 
Figs.25 and Fig.26. Comparing the IGDT-based results with the MC, it is seen that WPP bidding 
strategies with different uncertainty budgets (UBs) can be economic, conservative or opportunistic. 
For example, in Fig.25, Robust − UB = 0.03 leads to an economic strategy, while Robust − UB = 
0.28 can result a conservative decision. Similarly, the strategies with Opportunistic − UB = 0.05 
and Opportunistic−UB = 0.25 are economic and opportunistic. In addition, strategies with larger 
UBs yield to more conservative or opportunistic decisions. For instance, in Fig.26, the strategy with 
Robust-UB equals to 0.02 is economic (closer to the MC average value), while the strategy with 
Robust-UB equals to 0.06 can be a conservative decision (higher distances from the MCS average 
values).

Overall, based on the robust and opportunity functions, different WPPs could make desirable 
offering decisions regarding their risk preferences and benefit targets. In the opportunistic strategy, 
the higher UBs lead to higher risk levels and greater profits, while in the robust strategy, the higher 
UBs lead to lower profits and more robust decisions. If the WPP chooses a risk-averse strategy, the 
results obtained from the robustness model can be utilized. On the other hand, if the WPP takes a 
risk-taking strategy, the results related to the opportunity function will be helpful.
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Fig. 25: WPP benefits using MC and IGDT considering wind uncertainty

5. Conclusion

In this paper, a decision-making model for a wind power producer in the day-ahead market
is presented. In the proposed model, a flexible demand response scheme is developed to model
electricity trading between the wind power producer and demand response customers. Through
the trading mechanism, customers submit load reduction or increment offers to the wind power
producer at favorable prices. And then, the wind power producer decides its involvement in the
DR trading and submits offers to the market to maximize its profit. Furthermore, the uncertainties
pertaining to wind generation and demand response are applied by the information gap decision
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Fig. 26: WPP benefits using MC and IGDT considering DR uncertainty

theory resulting in a robustness/opportunity function. The case studies verify the effectiveness of the 
proposed model and methodology. The key findings of the paper can be summarized as follows.

1) Employing a demand response trading mechanism between the wind power producer and 
demand response customers can improve the wind power producers profit and reduce the related 
risks. Through the proposed demand response scheme, the wind power producer is able to purchase 
demand response resources at peak price times, to mitigate the deviations of its production. On the 
other hand, the wind power producer can sell energy to demand response consumers at off-peak 
times in order to achieve higher profits.

2) The offering strategies are affected by uncertainties of both wind power and demand response. 
For a certain economic target, when a higher risk of wind power uncertainty is taken into account, 
the decision maker can only tolerate a lower risk level from demand response, and vice versa.

3) By utilizing the proposed risk-constrained information gap decision theory approach, the wind 
power producer can select a desired strategy according to its risk preference. More specifically, the 
robust model enables a risk-averse wind power producer to attain a minimum profit under 
unfavorable uncertainty, while the opportunistic model can help a risk-seeking wind power producer 
achieve a windfall profit by taking advantage of favorable uncertainty.

In future work, we plan to study the decision-making strategies from both the wind power 
producers and consumers perspectives. The optimization of wind power producers participating in 
joint energy and ancillary services markets may also be studied in the future research. Moreover, 
we plan to explore the uncertainties in distribution/transmission networks.
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