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Abstract

Genome-Wide Association Studies (GWAS) have identified genetic variants for thousands of 

diseases and traits. In this study, we evaluated the relationships between specific risk factors (for 

example, blood cholesterol level) and diseases on the basis of their shared genetic architecture in a 

comprehensive human disease-SNP association database (VARIMED), analyzing the findings 

from 8,962 published association studies. Similarity between traits and diseases was statistically 

evaluated based on their association with shared gene variants. We identified 120 disease-trait 

pairs that were statistically similar, and of these we tested and validated five previously unknown 

disease-trait associations by searching electronic medical records (EMR) from 3 independent 

medical centers for evidence of the trait appearing in patients within one year of first diagnosis of 

the disease. We validated that mean corpuscular volume is elevated before diagnosis of acute 

lymphoblastic leukemia; both have associated variants in the gene IKZF1. Platelet count is 

decreased before diagnosis of alcohol dependence; both are associated with variants in the gene 
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C12orf51. Alkaline phosphatase level is elevated in patients with venous thromboembolism; both 

share variants in ABO. Similarly, we found prostate specific antigen and serum magnesium levels 

were altered before the diagnosis of lung cancer and gastric cancer, respectively. Disease-trait 

associations identifies traits that can potentially serve a prognostic function clinically; validating 

disease-trait associations through EMR can whether these candidates are risk factors for complex 

diseases.

Introduction

Genome-Wide Association Studies (GWAS) and candidate gene approaches have identified 

genetic variants for thousands of traits (1-3). Studied traits included clinical measurements 

(e.g., cholesterol levels), social behavior (e.g., smoking), patient characteristics (e.g., 

weight), and disease susceptibility. At the same time, the number of GWAS performed to 

study diseases has rapidly increased since 2007, and their findings provide opportunities to 

investigate the potential impact of common genetic variants on complex diseases (4, 5). It 

has already been noted that seemingly different diseases and conditions that share associated 

single-nucleotide polymorphisms (SNPs) may have common biological mechanisms (6, 7).

With so many successful GWAS already completed on non-disease traits (referred hereafter 

as traits), we hypothesized that diseases and traits could be similarly related to each other 

through shared genetic variation. Preliminary work by us (8) and others (5) suggests that 

traits could indeed share variants with diseases. There could be high value in such a disease-

trait association for medicine if the trait is easily or cheaply measured, or is already 

commonly measured in health care setting, and if the trait can be identified before the 

disease.

We hypothesized that traits could serve as potential new prognostic markers or risk factors 

for disease susceptibility, if those traits significantly shared genetic associations with 

diseases. We theorized that if variant-associated genes found in a GWAS of traits 

significantly matched gene variants found associated with a disease, those traits might be 

predictive for diseases, especially if that trait was one already measured in a clinical care 

settings, already captured in an electronic medical record (EMR).

Results

Genes associated with diseases and traits

This study reports a method for predicting new markers for disease from genetic 

associations found for thousands of diseases and traits from GWAS. We started with 

findings from VARIMED (VARiants Informing MEDicine) (9-13), a manually curated 

database of disease-SNP associations, containing over 100 features of association studies 

from 8,962 human genetics papers covering 2,376 diseases and traits. VARIMED has been 

to interpret the genome sequences of patients and other individuals (9) (14). We identified a 

list of disease-trait pairs based on shared genetic architecture.

Figure 1 shows our overall experimental design. From VARIMED, we identified significant 

associations between 801 unique genes and 69 diseases (median = 10/disease), and between
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796 unique genes and 85 traits (median = 10/trait). In each case, there were at least 3 

significant genes per disease or trait, and the p-value was < 1×10-8 at the genome-wide 

significance level from individual GWAS (Table S1A and S1B). The three diseases with the 

most associated genes were rheumatoid arthritis (122 genes), membranous nephropathy (88 

genes), and myocardial infarction (73 genes). The top 3 traits with the most associated genes 

were height (120 genes), blood cholesterol level (50 genes) and blood protein C levels (49 

genes). We plotted the distributions of the gene counts as a density map by kernel density 

estimation (Figure S1A). We found no significant difference between the distribution of 

gene-disease associations and gene-trait associations via the Kolmogorov-Smirnov test (p = 

0.16). We concluded that the number of genes associated with either traits or diseases were 

unbiased and comparable.

Diseases and traits associations identified by shared variant-associated gene

We searched for pairs of diseases and traits that shared variants in common genes. To 

evaluate the significance of the association, we assigned an information content measure to 

each gene on the basis of how frequently a gene was associated across diseases and traits 

using Term Frequency – Inverse Document Frequency (TF-IDF), and then controlled for 

multiple hypothesis testing by random shuffling one thousand times. We identified 120 

disease-trait pairs significant at a q-value ≤ 0.01 based on the pair-wise cosine distance 

calculation (see Methods). Among the 120 pairs, 96 (80%) pairs linked a disease and trait 

that were originally published in different GWAS or candidate gene studies (Table S2). 

Forty-five unique diseases and 50 unique traits were identified out of the 120 significant 

disease-trait pairs. To evaluate the accuracy of our predictions, we manually reviewed the 

biomedical literature to see if we could corroborate these 120 predicted associations. Ninety-

four pairs were known, published associations between diseases and traits. Twenty-six pairs 

were previously undescribed, without prior evidence in the literature (Table S2). We plotted 

the distribution of the PubMed counts for shared genes for disease-trait pairs. We found no 

significant difference between the distribution of the number of published human genetic 

papers in genes shared in known and newly discovered disease-trait pairs via the 

Kolmogorov-Smirnov test (p = 0.51) (Figure S1B).

Genetic commonality between diseases and traits

We generated a comprehensive network for visualizing all 120 disease-trait pairs (Figure 2, 

Table S2). Diseases (blue circles) and traits (orange triangles) were connected to each other 

by edges when there was a significant association at q ≤ 0.01. If multiple diseases or traits 

were connected to the similar traits or diseases, these were grouped into super sets (termed 

“modules”), simplifying the visualization of this complex network. Eight major disease 

modules (blue circles) were revealed in the network, which represent groups of diseases 

sharing a significant genetic association to a particular trait or a group of traits.

Four modules presented known classifications based on the physiological system affected by 

the disorder. For instance, solid organ cancer (Figure 2, module D1) was connected with 

prostate-specific antigen levels (PSA), as this trait and these diseases were significantly 

associated through TERT. The skin cancer module (Figure 2, module D2) was connected 

with pigmentary characteristics, as a trait, through SLC45A2 or MC1R. The autoimmune 
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disorder module (D6) was connected with antibody titer levels through association with 

MHC class I/II or MHC class related molecules. Finally, type 2 diabetes related syndromes 

(Figure 2, module D3) were connected with proinsulin levels. Most of these connections 

were through ARAP1, MADD, or TCF7L2 (Table S2).

The remaining 4 disease modules (Figure 2, D4-5, D7-8) exhibited multiple-to-multiple 

relationships underlying unexpected shared genetic commonality. One module (Figure 2, 

module D4) connected esophageal cancer and alcohol dependence with cholesterol levels 

through ALDH2, BRAP, and C12orf51, while another (Figure 2, module D5) connected 

Kawasaki disease and chronic obstructive pulmonary disease with smoking through RAB4B.

We identified seven trait modules (Figure 2, T1-7, orange circles). Three modules had 

known associations: pigmentary characteristics (Figure 2, T1) with skin cancer (D2) through 

MC1R or SLC45A2, and a subset (freckles and eye colors) with chronic lymphocytic 

leukemia (CLL) through IRF4. Coagulation factor activity tests (Figure 2, T4) were 

connected with venous thromboembolism. Three were related through ABO (Table S2). 

Lipid panel (Figure 2, T5) was connected through APOC1, APOE, PVRL2 and TOMM40 to 

Alzheimer's disease, through CELSR2, LDLR, PSRC1, and ZNF259 to coronary artery 

disease, and through ZNF259 to metabolic syndrome.

Detecting traits known to be associated with diseases

Ninety-four out of the 120 significant disease-trait associations were known findings 

supported by published studies (Table S2), these disease-trait association could be classified 

into one of three types, based on the temporal relationship between the trait and disease 

pathogenesis: 1) risk factors, for which traits manifest prior to disease onset and may cause 

the disease, 2) diagnostic tests, for which traits manifest contemporaneously with disease 

onset, and 3) consequences or complications, for which traits manifest after the disease 

diagnosis (Figure 3, Table S2). We manually categorized each known finding into one of 

these 3 categories on the basis of original clinical studies (Table S2). Thirty-nine pairs were 

classified as risk factors, 27 pairs were described as diagnostic tests in current clinical 

practice, and 28 pairs were defined as consequences or complications.

One of the 39 known pairs from the risk factors category (Figure 3) linked smoking and 

chronic obstructive pulmonary disease (COPD; q<0.001). Three genes containing variants 

were shared between smoking and COPD: AGPHD1, CHRNA3, and RAB4B (Figure 2 and 

Table S2). The COPD patients in all six GWAS were former or current smokers (15-20). 

Smoking is the primary risk factor for COPD (21-23) and little is known about the nature of 

the inflammatory response leading to the pathogenesis of COPD (21). Therefore, of the six 

genetic variants previously discovered and published to be associated with COPD, these 

three might have been indirectly influenced by smoking (concept illustrated in Figure 3), 

and might actually reflect variants related to smoking (i.e. propensity to addiction, non-

cessation, variable action of nicotine).

Existing diagnostic tests were also reidentified through our approach. In one GWAS, 21 

genes were associated with antibody titer levels after inoculation with hepatitis B vaccine 

(24). However, this study did not include patients with autoimmune diseases. We found that 
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antibody titer levels, as a trait, were significantly associated with 16 autoimmune diseases. 

Antinuclear antibody and autoantibody tests can serve as diagnostic tests in autoimmune 

disorders and diseases (Table S2 and Figure 2). Even though the GWAS (24) did not 

explicitly enroll participants with these autoimmune diseases, our method inferred known 

relationships between clinical measurements, such as auto-antibody tests, and autoimmune 

diseases on the basis of their shared genetic architecture (Figure 3).

Last, among the 28 known pairs reflecting comorbidity or consequence (Table S2), alcohol 

dependence syndrome (ADS) was associated with 3 traits: cholesterol levels through shared 

variants in ALDH2, BRAP, and C12orf51; alanine aminotransferase levels (ALT) through 

shared variants in C12orf51; and HDL cholesterol levels (HDL-C) through shared variants 

in C12orf51 and OAS3. In this case, we speculate that the three genes found associated with 

cholesterol levels reported by Kato et al. (25) and two genes for ALT and HDL-C reported 

by Kim et al. (26) were discovered in cohorts containing individuals that might have been 

influenced by alcohol, while these authors did not control for any alcohol effect in their 

GWAS investigations on these genes (25-27). In addition, high HDL-C has been previously 

observed with triple frequency in individuals with ADS (28). Further, a high cholesterol 

content diet has been found in patients with ADS (29). ALT levels are associated with 

increase daily alcohol intake in individuals with ADS (30).

Clinical validation of previously undescribed disease-trait pairs with EMR

To evaluate our new associations between traits and diseases, we obtained EMR data, as it 

represented a patient cohort independent from our curated GWAS studies. We obtained 

deidentified EMR data from 3 independent clinical centers: Stanford Hospital and Clinics 

(SHC) (31), Mount Sinai Medical Center (MSMC), and Columbia University Medical 

Center (CUMC). Among 26 new disease-trait pairs, we studied five that could be validated 

solely by electronic means, based on clinical data available in the three centers. In addition, 

we tested a positive control disease-trait pair, and two non-related disease-trait pairs as 

negative controls.

Our first new pair was that mean corpuscular volume (MCV) and acute lymphoblastic 

leukemia (ALL) were both associated with IKZF1 (q=0.001; Table S2). To validate this 

finding, we selected as cases individuals at SHC and MSMC who had an MCV 

measurement within one year before a recorded diagnosis of ALL, where that recorded 

diagnosis was the first such diagnosis for each individual within our EMR. There were 640 

and 307 cases of ALL at SHC and MSMC, respectively (mean age 49 ± 18 [18-91] at SHC 

and 48 ± 19 [18-102] at MSMC; 45% female at both centers). We selected as controls those 

individuals at SHC and MSMC with at least one MCV measurement and no diagnosis of 

ALL, yielding 254,624 and 367,292 control patients at SHC and MSMC, respectively. 

Patients with an abnormal MCV were significantly more likely to get a first recorded 

diagnosis of ALL within one year, compared to patients with normal MCV (Odds Ratio 

(OR): 3.31 [2.84-3.87] with p = 3.79×10-57 at SHC; OR: 2.4 [1.91-3] with p = 9.16×10-15 at 

MSMC, Table 1). Besides the increase in cases, the MCV values themselves were 

significantly higher in cases compared to controls (p = 1.32×10-48 and 3.36×10-11 for SHC 

and MSMC respectively, Figure 4A).
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Our second new finding was that serum magnesium level (MGN) was associated with 

gastric cancer (GCA) through MUC1, THBS3 and TRIM46 (q < 0.001; Table S2). We

validated this finding by selecting the 305 and 499 individuals at CUMC and MSMC, 

respectively, who had an MGN measurement within one year before our first EMR recorded 

diagnosis of GCA, where that recorded diagnosis was the first such diagnosis for each 

individual within our EMR (mean age 51 ± 19 [18-90] at CUMC and 66 ± 15 [18-99] at 

MSMC; 41% and 52% female in CUMC and MSMC). We selected 204,575 and 119,585 

patients as controls at CUMC and MSMC, respectively, who had at least one MGN 

measurement and no diagnosis of GCA. We found that patients with an abnormal MGN 

level were significantly more likely to develop GCA within one year, compared to patients 

with normal MCV (OR: 1.59 [1.26-2.01] with p = 1.04×10-4 at CUMC; OR: 1.54 

[1.29-1.84] with p = 1.45×10-6 at MSMC, Table 1). In addition, the MGN measurement 

values were significantly higher in those diagnosed with GCA within 1 year before our first 

diagnosis compared to all other MGN measurements (p = 4.81×10-10 and 9.48×10-5 for 

CUMC and MSMC respectively, Figure 4B).

Our third validation related prostate specific antigen level (PSA) to lung cancer (LCA) 

through CLPTM1L and TERT (q=0.001; Table S2). Cases were those 114 and 126 males at 

SHC and MSMC, respectively, who had a PSA measurement within one year before our 

first recorded diagnosis of LCA (mean age 60 ± 12 [21-101] at SHC and 69 ± 10 [46-99] at 

MSMC). Controls individuals at SHC and MSMC had at least one PSA measurement and no 

diagnosis of LCA. Patients with an abnormal high PSA were significantly more likely to 

develop LCA within one year compared to patients with normal PSA (OR: 2.08 [1.36-3.18] 

with p = 5×10-4 at SHC; OR: 2.33 [1.58-3.44] with p = 1.87×10-5 at MSMC, Table 1). Just 

as with the previous findings, the PSA values were significantly higher in those diagnosed 

with LCA within 1 year before our first diagnosis compared to all other PSA measurements 

(p = 0.002 and 0.028 for SHC and MSMC respectively, Figure 4C).

We similarly validated our fourth finding, alkaline phosphatase level (ALP) related to 

venous thromboembolism (VTE) through ABO and TERT (q=0.008; Table S2), finding that 

patients at CUMC and MSMC with an abnormal ALP were significantly more likely to 

develop VTE within one year compared to patients with normal ALP (OR: 1.91 [1.81-2.01] 

with p = 1.67×10-133 at MSMC; OR: 1.30 [1.16-1.45] with p = 3.97×10-6 at CUMC, Table 

1). Like the previous findings, the ALP values themselves were significantly higher in those 

diagnosed with VTE within 1 year before our first diagnosis compared to all other ALP 

measurements (p = 4.48×10-252 and 7.33×10-55 for CUMC and MSMC respectively, Figure 

4D).

The fifth and final validation was to test the relation between platelet counts (PLT) and 

alcohol dependence syndrome (ADS), linked through C12orf51 (q=0.007; Table S2). 

Patients were selected at all three centers if they had a PLT measurement within one year of 

a recorded diagnosis of ADS, where that recorded diagnosis was the first such diagnosis for 

each individual within our EMR. These cases were compared to individuals with at least one 

PLT measurement and no diagnosis of ADS. Patients with abnormal PLT were significantly 

more likely to be newly assigned a diagnosis of ADS within one year compared to patients 

with normal PLT (OR: 2.12 [1.92-2.35] with p = 1.24×10-52 at SHC; OR: 1.84 [1.74-1.95] 

Li et al. Page 6

Sci Transl Med. Author manuscript; available in PMC 2015 February 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



with p=1.42×10-109 at MSMC; OR: 1.25 [1.09-1.45] with p=0.0016 at CUMC, Table 1). 

PLT values were consistently lower in ADS patients versus controls within one year before 

our first ADS diagnosis (p = 4.37×10-32 at SHC, p = 2.47×10-43 at MSMC, and p = 

2.67×10-6 at CUMC, Figure 4E).

To evaluate whether the significance of our five validated disease-trait pairs was confounded 

by age and gender, we adjusted age and gender variables in a logistic regression model for 

each of these 5 tests. We discovered that significant associations still persisted for MCV and 

ALL (adjusted OR 3.5: [3.02-4.14] with p < 2×10-16 at SHC; adjusted OR: 2.49 [1.99-3.13] 

with p = 2.73×10-15 at MSMC), MGN and GCA (adjusted OR: 1.44 [1.21-1.72] with p = 

5.03×10-5 at MSMC; adjusted OR: 1.63 [1.29-2.07] with p = 4.02×10-5 at CUMC), ALP and 

VTE (adjusted OR: 1.80 [1.71-1.90] with p < 2×10-16 at MSMC; adjusted OR: 1.3 

[1.17-1.46] with p = 2.84×10-6 at CUMC), and PLT and ADS (adjusted OR 1.95 [1.76-2.16] 

with p < 2×10-16 at SHC, adjusted OR 1.78 [1.69-1.89] with p < 2×10-16 at MSMC; adjusted 

OR 1.25 [1.08-1.44] with p =0.0025 at CUMC). Only PSA and LCA did not reach 

significance after age matching (adjusted OR: 1.48 [0.99-2.23] with p = 0.058 at MSMC, 

adjusted OR: 1.3 [0.83-2.03] with p = 0.25 at SHC), which may due to insufficient sample 

size or a possible confounding in the underlying original association with PSA and prostate 

cancer.

To evaluate our data resource in validating our findings, we selected one well-known 

association as a positive control (PSA levels and prostate cancer [PCA]) from all three 

centers. We obtained 595, 1,231, and 4,253 PCA male patient samples with PSA results 

(mean age 70 ± 10 [44-96] at SHC; 70 ± 11 [34-98] at MSMC; and mean age 58 ± 13 

[18-90] at CUMC and 16,886, 22,988, and 47,699 control patients from SHC, MSMC, and 

CUMC respectively. As expected, patients with abnormally high PSA were associated with 

PCA within one year before the first PCA diagnosis (OR: 10.96 [9.25-12.98] with p = 

4.43×10-248 at SHC; OR: 7.51 [6.67-8.46] with p = 2×10-316 at MSMC; OR: 9.45 

[8.83-10.11] with p = 1.02×10-300 at CUMC Table 1). Additionally, PSA values were higher 

in PCA patients compared to controls within one year before diagnosis (p = 1.02×10-83 at 

SHC, p = 7.01×10-69 at MSMC, and p = 6.02×10-308 at CUMC, Figure S2A).

We also tested two non-related associations as negative controls (PSA and ALL or GCA) 

using data from SHC. For the two negative control experiments, we performed the same 

tests, and we did not observe an association between lab values and disease (Figure S2B and 

2C, Table 1).

Discussion

We have developed a systematic approach for identifying genetic associations between traits 

and disease susceptibilities through shared genetic architecture. The goal was to identify 

traits as potential disease prognostic markers or risk factors. We identified 120 disease-trait 

pairs for traits associated with diseases; 80% of the pairs linked a disease and trait that had 

been published in distinct GWAS. Ninety-four had prior evidence in the literature, while 26 

disease-trait pairs were newly described. We showed that these predicted relationships can 

be tested medical-center electronic medical records, when sufficient numbers of patients 
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have data with assessments of both the trait and disease. We validated the relationships for 5 

previously unreported findings: MCV to ALL, MGN to GCA, ALP to VTE, PSA to LCA, 

and PLT to ADS, using independent clinical EMR data from 3 independent academic 

medical centers.

The network representation for the significant 120 disease-trait pairs enabled us to highlight 

the complex genetic relationships between diseases and traits. The network revealed 

interconnections within and across eight disease modules and seven trait modules. Diseases 

and traits with shared genetic architecture can point to new markers and potentially, 

therapeutic intervention and monitoring strategies. We noted that the traits and diseases 

associated with the most genes did not have more connections than diseases or traits with 

fewer gene associations, suggesting an accurate prioritizing strategy.

The strength of our strategy is that this approach can connect diseases and traits across the 

nosology or taxonomy of diseases. Another strength is that it provides a tractable framework 

that enables initial steps towards the development or redefinition of human disease 

nomenclatures informed by genetic variation. This gives the method potential utility in 

clinical care.

We found interesting relationships even with this known set of 94 relations beyond 

behavioral risk factors and diseases themselves. Examples include shared architecture for 

smoking and chronic obstructive pulmonary disease (COPD), as well as alanine 

aminotransferase levels and alcohol dependence. For instance, as COPD commonly results 

from smoking, variants that have been discovered and associated with COPD could be 

influenced by smoking; the true genetic variants for COPD might only be unmasked if the 

smoking variable is controlled for in COPD GWAS. Similarly the association of the four 

genetic variants with ALT, cholesterol, and HDL-C could be biased by the effect of alcohol. 

The GWAS to identify concrete genetic variants for these three clinical measurements 

should be performed in patients ensuring alcohol dependence is not a confounder. Thus, our 

study indicates that some findings from GWAS may have been influenced by or resulted 

from subject behaviors.

In addition, although we focus on disease-trait association in this study, a disease could be 

the potential confounder to another disease as well. For instance, alcohol dependence 

syndrome (ADS) is a risk factor to HDL-C, which is a known risk factor to coronary artery 

disease (CAD) (32) and C12orf51 was shared among them; therefore, C12orf51 variants 

associated with CAD could be confounded by ADS. Similarly, metabolite levels, such as 

magnesium levels, are distorted in severe gastrointestinal disorders and these disorders 

might actually be the causal factor for patients with subsequent diagnosis of another disease. 

We suggest that known and newly discovered risk factors should be considered in future 

GWAS design to properly identify variants more independent of behavioral or 

environmental influence (33) (34). Lack of full consideration of behavioral risk factors and 

their interaction with the genome may be one explanation of the small effect sizes or odds 

ratios (1.1-1.5) in published GWAS (35), although this is speculation.
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Causal relationships between risk factors and disease are difficult to determine. However, 

investigators can now use genetic information to ascertain causality between risk factors and 

disease in an observational study (e.g., HDL-C and cardiovascular disease) by using 

Mendelian randomization (36) (37) (38). Mendelian randomization is a method of using 

measured variation in genes of known function to examine the causal effect of a modifiable 

(non-genetic) exposure on disease in non-experimental studies in epidemiology. If a trait 

exists on the causal pathway for disease, carriers of genetic variants associated with 

abnormal levels of the trait would be expected to be at different risk for disease. For 

example, Voight and colleagues have cast doubt on whether higher level of HDL-C is 

connected with a lower risk for myocardial infarction (39). The method described here 

provides a way of predicting relationships between traits and diseases, complementing 

Mendelian randomization. Predictions arising from similarity in genetic architecture such as 

the ones we have reported here may be tested in subsequent studies by using Mendelian 

randomization.

Another strategy to test predicted disease-trait associations is to use information from EMR, 

a resource that can provide patient phenotypic and physiological measurements, in the 

context of the clinical care setting, even before the diagnosis of disease (40) (41). We used 

this approach here to validate five of our newly described disease-trait pairs. Our results 

show these five clinical measurements can be risk factors for their paired diseases. This 

method could be expanded to cover larger and smaller units of time, or more distant time 

frames as well as to take age into account.

Nevertheless, associations between complex traits and diseases discovered via genetic 

similarity and subsequent EMR-based retrospective validation cannot fully distinguish the 

causal relationships between traits and diseases. GWAS inherently capture only common 

variants and consequently certain associations between diseases and traits could be missing 

in our approach. In a tertiary care hospital-setting, it is not always clear when and where the 

first diagnosis of disease took place by just looking at EMR data. We do not always know if 

a patient had been diagnosed elsewhere or how long the patient has had a disease prior to 

their first observed diagnosis at each medical center. (The median onset age were correlated 

with known average ages of onset of each disease, suggesting the majority of these patients 

did not receive care for any significant period of time elsewhere before presenting to a 

hospital setting.) ICD-9 codes also may not be clear enough for specific phenotype 

identification. That being said, we speculate that the codes we used for cancers are more 

likely to be accurately assigned, than codes for obesity and less severe disorders. Although 

methods for phenotyping from the eMERGE (42) project could have been deployed to 

reduce misclassification, the phenotypes we studied here were not yet listed in PheKB (42).

Laboratory values and measurements can be influenced by other related diseases or 

conditions and co-morbidities. We did not control for these effects, as there is no well-

documented list of potential confounders for every laboratory measurement; however, we 

assumed cases and controls were matched by a common set of characteristics. Additionally, 

it has been shown that hospitalized patients make poor control subjects; a phenomenon 

described as the Berkson bias where a non-causal association exists between exposure and 

disease because of the condition that the subject has to come to the hospital to be involved in 
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the study (43). Each individual relationship described through shared genetic architecture 

should be further tested in prospective epidemiology studies.

In this study, we had also desired to evaluate the rest of the predicted disease-trait pairs. For 

instance, prostate specific antigen (PSA) was associated with testicular cancer (TCA), 

through CLPTM1L and TERT (q<0.001; Table S2). However, as the disease incidences were 

low at all three center (only 22 at SHC, 33 at MSMC, and 65 patients at CUMC had PSA 

labs measured prior to first diagnosis for TCA), we did not have sufficient power to perform 

such analysis. Another finding was bone mineral density (BMD) related to sudden cardiac 

arrest (SCA) through a gene ESR1. Validation of findings such as these may be possible by 

using public health and longitudinal study data. Future studies to validate disease-trait pairs 

may require linking the EMR of multiple centers to gain the necessary numbers of patients 

needed.

In conclusion, investigation of traits that share genetic architecture with a disease and 

validating them through EMR is a powerful way to identify risk factors, prognostics, and 

diagnostic markers for complex diseases, although risk factors need to be better considered 

or controlled in GWAS design to identify independent variants without the confounding of 

behavioral, environmental or informative of disease pathophysiology.

Materials and Methods

Extracting diseases and traits from VARIMED

As of this writing, VARIMED is a database of SNPs and diseases obtained from the manual 

review of 8,962 human genetics papers including GWAS and candidate gene studies, with 

87,553 SNPs mapped to 8,913 genes and 1,119 diseases and 1,256 traits. We considered 

only diseases and traits whose genetic variants had genome-wide significance (p < 1×10-8)

(44). Using this filter, we identified 201 diseases and 249 traits with at least one variant that 

mapped to a genic region. All genetic variants were then systematically mapped to genes 

with the most recent NCBI Entrez Gene identifiers through Entrez dbSNP using AILUN 

(45). SNPs in intergenic regions could not be associated with specific genes and were not 

considered. Next, to capture only highly relevant associations for enrichment, we kept only 

diseases and traits associated with at least three genes, yielding 69 diseases and 85 traits 

associated with 1,439 genes. Distributions for the number of genes associated with diseases 

and traits were evaluated with Kolmogorov-Smirnov test (Figure S1A).

TF-IDF weighting scheme for shared genetic architecture between diseases and traits

For each gene associated with a disease or trait, we computed the gene popularity using the 

Term Frequency–Inverse Document Frequency (TF-IDF) weighing method (46) to down-

weight the ubiquitous genes which are associated with many diseases. For instance, LPL is 

associated with 7 diseases/traits while CR1 is associated only with 2 disease/traits (Table 

S2). The detailed Term Frequency-Inverse Document Frequency (TF-IDF) (46) calculation 

procedure for all 5,865 combinations of disease-trait pairs (69 × 85) with 8,913 genes is 

described as follows. First, we calculated a term frequency (TF) using , 

where ni, j is the number of occurrences of gene i in a particular disease or trait j. Σk nk, j 
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indicates the total number of occurrences of all genes in a particular disease or trait j. The 

value of tf(i, j) indicates the level of occurrence frequency of gene i in disease or trait j. Next, 

we calculated inverse document frequency (IDF) using . Here, D is the total 

number of diseases and traits, and Di is the number of disease and trait containing gene i. A 

larger idf(i) implies a lower popularity of gene i among the diseases or traits, translating into 

more weight as it might only be shared between this two phenotypes among 8,913 genes. 

Last, we calculated a TF-IDF score using  for each gene within 

individual disease or trait by taking into account the popularity of the gene.

Assessing significance of disease-trait distance via the False Discovery Rate (q-value)

We then calculated the False Discovery Rate (q-value) to control for multiple-hypothesis 

testing and assess significance of similarity between diseases and traits. A q-value (47) is an 

estimate of the rate of false positives incurred at a given significance threshold. Disease-trait 

similarity was estimated using the cosine distance between tf-idf(i, j) scores for all disease-

trait combinations (equation as follows, where D and T are disease or trait and i is the gene 

shared between them). 

 Next, to evaluate 

the significance of a disease-trait distance score, we randomly shuffled the genes across all 

the traits and re-computed the disease-trait distance. We repeated the randomization 

procedure 1,000 times to estimate the null distribution of the cosine distance for each pair. 

The q-values were calculated as the ratio of the expected number of false positives over the 

total number of hypotheses tested (47). A q-value ≤ 0.01 was chosen as a significant 

association level between disease-trait pairs. Distributions for the number of PubMed counts 

reported for shared genes in known vs. new discovered disease-trait pairs were evaluated 

with Kolmogorov-Smirnov test (Figure S1B).

Network visualization of the significant disease-trait pairs

We visualized a network representation of the disease-trait pairs identified as significant. We 

used Cytoscape 2.6.0 (48) and the CyOog (49) plugin to represent and visualize the modular 

nature of the network, using all default settings. Diseases connected to the same trait were 

grouped into a super set (termed “modules”), as were traits connected to the same diseases. 

Each edge indicates a minimum significant association with q ≤ 0.01; edge formation was 

not based on Cytoscape or CyOog.

Utilizing EMR from three independent medical center database systems

We used adult patient EMR data from three medical centers after 1/1/2005 as independent 

cohorts to validate our findings. We identified case groups with the first diagnoses of target 

diseases using ICD-9 diagnosis codes: 204.0 for acute lymphoid leukemia (ALL), 303 for 

alcohol dependence syndrome (ADS), 151 for gastric cancer (GCA), 186 for testicular 

cancer (TCA), 162 for lung cancer (LCA), 453 for venous thromboembolism (VTE), and 

185 for prostate cancer (PCA). The control group for each analysis was taken from the adult 

patients without the diagnosis of target disease. Reference ranges for lab tests were based on 
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MedlinePlus from the National Library of Medicine. They were as follows: serum/plasma 

platelet count (PLT): 150-400 k/uL, serum/plasma magnesium (MGN): 1.8-2.4 mg/dL, 

mean corpuscular volume (MCV): 82-98 fL, Alkaline phosphatase (ALP): 44-147 IU/L, and 

prostate specific antigen (PSA): < 4 ng/mL.

Validation of newly describe disease-trait pairs with EMR data

Use of EMR data was approved by individual's Institutional Review Board. To perform chi-

square tests, lab values were discretized. Values outside the reference range were defined as 

being in the “abnormal range”. Values less than low reference was defined as “low range”, 

and those greater than the high reference were “high range”. For a given test, we compared 

the maximum and minimum lab values to the reference range if multiple tests had been 

performed on a patient during the analysis time frame, which was defined as one year before 

disease diagnosis. Patients were defined as normal if lab results were within reference 

ranges, and abnormal if they were high or low range. Patients were excluded if multiple lab 

values were both high range and low range.

We performed Wilcoxon sum-rank test by evaluating the actual lab values and chi-square 

tests by calculating the odds ratios for abnormal ranges versus normal reference range 

between case and control groups. We report the odds ratios along with 95th percentile 

confidence intervals and p-value. We compared the percentage of abnormal results for case 

and control patients one year prior to our first diagnosis code of the target disease in case 

patients, and in control patients who were cared for at SCH, MSMC, and CUMC and 

without diagnosis of target disease. This allowed us to investigate whether changes in lab 

values could be risk factors for predicting case incidence. In addition, logistic regression 

using generalized linear model function was also performed by adjusting age and gender 

variables in each prediction model and the adjusted OR was also reported.

All statistics were computed by SAS 9.2 (SAS institute) and R 2.15.1 (50).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram for identifying significant disease-trait genetic associations.
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Figure 2. Disease-trait network of 120 significant pairs
The network consists of the 120 significant disease-trait pairs with q ≤ 0.01. Diseases (blue 

circles) and traits (orange circles) are connected by gray lines (single connection between 

trait and disease) or red lines (one to a group of diseases or traits). T1-T7 indicate trait 

modules (light orange circles) connected to a disease or disease module by red lines. D1-D8 

indicate disease modules (light blue circles) connected to a trait or trait module by red lines. 

This network was visualized by Cytoscape 2.6.0 (48) and the CyOog (49) plugin.
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Figure 3. Three ways traits and diseases can temporally interrelate
Traits (i.e. risk factors) can manifest prior to disease, at the same time as disease diagnosis, 

or represent consequences occurring after diagnosis. Genetic variants were either directly 

observed in traits and diseases (solid edges) or indirectly observed or potentially influenced 

by a preceding trait or disease (dotted edges). Arrow direction indicates the timing of the 

interrelation.
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Figure 4. Violin plots for clinical validations of five new findings
Violin plots (combination of boxplots and kernel density plots) for clinical validations of 5 

new findings based on three independent cohorts from SHC, MSMC, and CUMC. Five new 

findings are MCV associated with ALL at SHC and MSMC (4A), MGN associated with 

GCA at MSMC and CUMC (4B), PSA associated with LCA at SHC and MSMC (4C), ALP 

associated with VTE at MSMC and CUMC (4D), and PLT counts associated with ADS at 

three centers (4E) tested within one year lab tested before our first diagnosis. In the black 

box plots, bold black lines boundaries indicate the 25th, 75th percentiles of lab values, and 

white center squares indicate the median value of lab values. The horizontal lines indicate 

reference ranges of lab values. The grey shapes indicate density of the number of samples. 

P-values are reported by Wilcoxon Sum Rank testing.
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