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Abstract

The task of “model construction”, which is the one
of constructing a detailed representation of a situa-
tion based on some clue, forms an important compo-
nent of a number of cognitive activities. This paper
addresses the problem of dynamic model construction
from a connectionist perspective. It discusses how to
represent models as patterns of activity within a con-
nectionist network, and how dynamic generation of
such patterns can be efficiently achieved.

1 Introduction

The subject matter of this paper is what we refer
to as the task of “model construction”, which forms
an important component of a number of cognitive
activities. Informally, the task of “model construc-
tion” is the one of constructing a detaied represen-
tation of a situation based on some clue. Consider
the problem of language understanding for example.
Suppose we are told that “John drove to the super-
market”. “Understanding” this sentence involves in-
fering many more things other than what is explic-
itly stated in the sentence. For example, we would
have inferred that “John went to the supermarket”
using our knowledge that “driving to a place” im-
plies “going to that place”. We would have also done
“plan recognition” (Charniak & McDermott, 1985),
i.e., we would have inferred the most likely reason
behind John’s supermarket visit (such as “to shop
there”, “to work there” etc.). We would also have
inferred the sequence of actions taking place such as
“John reached the supermarket”, “He parked his car
in the supermarket parking lot”, “He got out of the
car and grabbed a shopping cart” and so on... In
this example, the sentence explicitly provided only a
clue about the situation; all that it explicitly stated
was just drive-to(john,supermarketi). Based on this
clue, we inferred many more facts about the situa-

*This work was supported by DFG grant Schr 275/7-1.

tion thereby constructing a detailed representation,
or a model, of the situation corresponding to John’s
supermarket visit.

In the case of other perceptual tasks, the problem
is similar. In vision for example, the 2D image on
the retina provides the clue about the situation in
the world; based on that clue, the problem is that
of constructing the representation of object configu-
ration in the 3D world that would give rise to that
image.

In addition to perception, “model construction”
plays a role in other cognitive tasks as well. For exam-
ple, Mannes and Kintsch (1991) argue that a number
of mundane planning problems are problems of “un-
derstanding”. But, then, “understanding” in turn is
a perceptual task and involves model construction.

It is very natural to expect that other intelligent
activities such as solving problems/puzzles, playing
games etc. make extensive use of the apparatus that
already exist to accomplish perception. Hence, it is
not at all surprising that “model construction”, which
is an important component of perception, has been
found to play a major role in tasks such as syllogistic
reasoning (Johnson-Laird, 1983) as well.

In this paper, we deal with this all-pervading task
of model construction from a connectionist perspec-
tive. Specifically, we examine how to represent mod-
els in a connectionist network and how efficient, dy-
namic construction of such models can be achieved.
Our treatment is at a general abstract level wherein
the details of the individual cognitive activities are
suppressed. In their details, there are a number of
differences in the model construction process as it
takes place in different cognitive activities; thus, for
example, low level image processing differs in a num-
ber of ways from speech processing. But, when we
disregard the details and examine the problem in a
rather abstract fashion, there appears a great deal
of similarity in the model construction process as it
takes place in different cognitive activities such as vi-
sion, language processing, problem solving etc. It is
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at such an abstract level that we treat the problem
of model construction in the rest of this paper.

2 Models and their Dynamic
Construction

In the previous section, we informally described the
task of model construction as the one of constructing
a model of a situation based on some clue. In order to
proceed, we need to formalize the notions of “model”
and “clue”.

Our attempt at formalizing the notion of “model”
is inspired by the Tarskian semantics of predicate cal-
culus. The idea is to describe the “world” in terms
of a set of objects and relations between those ob-
jects. Following that scheme, we define a model to
be an ezplicit representation of which relations hold
between which objects in the “world”!.

With that definition of “model”, the task of model
construction can be stated as follows: We are given
some of the relation instances that hold in a situa-
tion (These constitute the “clue”); the task is to infer
all the relation instances that hold in that situation
(All those relation instances together constitute the
“model”).

Thus the task of model construction involves rea-
soning. What is the nature of that reasoning activity?
The answer is that it is an integrated combination of
a variety of reasoning that have traditionally been
dealt with rather separately within Al. Upon hear-
ing the sentence “John drove to the supermarket”, a
model constructed in our mind might consist of facts
such as “John went to the supermarket”, “John used
a car”, “he would be shopping”, etc. Among these,
infering that goto(john,supermarketl) is an instance
of deductive reasoning since drive-to(z,y) necessarily
means that goto(z,y) for any z and y. Infering that
“John used a car” is an instance of default reasoning
since with a few exceptions it is usually the case that
when one says “z drove to 3”, the vehicle driven hap-
pens to be a car. Infering that the purpose behind
John’s driving to the supermarket must be one of
shopping, is an instance of abductive reasoning (Char-
niak & McDermott, 1985). It involves examining the
different possible purposes behind one’s driving to a
place (such as “to work there”, “to shop there”, “to
meet someone there” etc.) and picking the most likely

1To contrast between explicit and implicit representations,
let us conmsider a simple example. Suppose that the objects
in the domain are a and b. Now, consider the statement
VYz¥yP(z,y). This representation implicitly represents the re-
lations between the objects in the domain. An equivalent ez-
plicit representation would consist of the following statements:
P(a,a), P(a,b), P(b,a), and P(b,b).
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purpose in the given context. Model construction in-
volves performing all these different kinds of infer-
ences. In order to arrive at a system that dynami-
cally constructs models, it may not be necessary that
we make these distinctions between different kinds of
reasoning. It may be possible to arrive at such a sys-
tem directly (via learning or via designing) without
ever thinking about the differences between the vari-
ous inferences that constitute the overall model con-
struction process. But, it so happens that the system
being presented here was not arrived at directly. It
began with a deductive, rule-based, backward reason-
ing system (Ajjanagadde & Shastri, 1989); later on,
a deductive forward reasoning system was developed
(Ajjanagadde & Shastri, 1991) and some enhance-
ments in reasoning power were achieved (Shastri &
Ajjanagadde, 1990). Then, a system which combines
forward and backward chaining was developed. The
work was extended to deal with evidential rules and
facts, negation, and abductive reasoning in (Ajjana-
gadde, 1991). Since it is difficult to provide all the
relevant details of our system for dynamic model con-
struction here, we will take another approach to de-
scribing it. It so happens that our system for dy-
namic model construction has some important re-
semblances to Rumelhart et al's (1986) connection-
ist model of schemata. Since a typical reader can
be assumed to be familiar with the work reported
in (Rumelhart et al., 1986), it appears that a rough
outline of our system can be provided by relating it
to the work of Rumelhart et al. We will point out
some important similarities and differences between
Rumelhart et al.’s schema model and our system. It
is hoped that this comparative discussion will provide
the reader with a rough understanding of the ideas
underlying our system. Details about our system can
be found in the publications referred to.

3 Schema Model of
Rumelhart et al.

In order to illustrate how schemata can be real-
ized in connectionist networks, Rumelhart et al take
as an example the problem of representing knowl-
edge about various kinds of rooms, such as kitchen,
bathroom, living room, and bedroom. They select
forty microfeatures corresponding to such entities as
sofa, oven, refrigerator, telephone, toiet, television,
toaster, bathtub, computer etc. Corresponding to
each microfeature, there exists a node in their net-
work. The nodes corresponding to entities which
will be found in the same room have mutual exci-
tatory connections between them; nodes correspond-



ing to entities which are unlikely to be found in the
same room have mutual inhibitory connections be-
tween them. Thus, for example, oven and refrigera-
tor are likely to be found in kitchen. So, there will
be mutual excitatory connections between the nodes
corresponding to oven and refrigerator. On the other
hand, bathtub and television are unlikely to be found
in the same room; so there exist mutual inhibitory
connections between them. Now, the idea is that if
we clamp some of the nodes corresponding to items
present in a room, the network will settle into a state
where the nodes corresponding to the other items in
that room will be active and the rest of the nodes will
be inactive. Thus, for example, if we clamp the nodes
corresponding to oven and refrigerator, then, in the
stable state, the nodes corresponding to other items
in the kitchen, such as teaster will be active and the
nodes corresponding to entities which are unlikely to
be in the kitchen, such as bathtub will be inactive.

One important similarity between the problem ad-
dressed in (Rumelhart et al., 1986) and the problem
taken up in this paper must be obvious. In (Rumel-
hart et al., 1986), the input is a specification of some
of the items present in a room. Given that input,
the network has to determine what other items are
likely to be present in that room. In our case, the in-
put is a specification of some of the relation instances
present in the “world”; the network has to determine
what other relation instances will be present in that
“world” .

4 Connectionist Network:
Encoding

In (Rumelhart et al., 1986), the building blocks of
schemas are microfeatures; a schema is represented
by representing which features are present in that
schema and which features are absent. We take pred-
icates and objects as building blocks of mental mod-
els (Microfeatures can be viewed as special cases cor-
responding to O-ary predicates.). A model is repre-
sented by representing which relation instances hold
between which objects. Particularly, the arguments
of these relations can be dynamically bound to ob-
jects, to represent the relation instances that hold in
a model.

Corresponding to every microfeature, there exists
a unique node in the network of Rumelhart et al.
(1986). Similarly, corresponding to the different “ob-
jects” of interest, there exist unique nodes (referred to
as constant nodes since they correspond to the “con-
stants” of predicate logic.) in our network. Thus,
in the example network of Fig. 2, there are unique

nodes (shown as circles) corresponding to the “ob-
jects” mary, jack, hospiz, and super-fries. Now,
consider the other building block of models, i.e., pred-
icates. Corresponding to an n-ary predicate, the net-
work has (n+1) nodes. Thus, in Fig. 1, correspond-
ing to the tertiary predicate P, there are four nodes.
The nodes al, a2, and a3 correspond to the three ar-
guments of the predicate P. We refer to these nodes
as argument nodes (shown as diamonds in figures).
Also, corresponding to every predicate, there exists a
predicate node (shown as squares in figures).

In (Rumelhart et al., 1986), the relations between
the different microfeatures are indicated by having
(excitatory/inhibitory) connections between the cor-
responding nodes. Similarly, the relationships be-
tween the different predicates in our system are rep-
resented by connecting the nodes corresponding to
different predicates. However, in this case we need
to represent the correspondences between the argu-
ments of the predicates as well. Suppose that when
P(z,y, z) (for arbitrary z, y, and z) is known to be
true, this lends some amount of evidence (say, C) for
Q(y, 2, z) being true. That is, the knowledge we have
here is of the form

P(z,y,z) = Q(y,2,z) (with likelihood C)

As per this rule, the first argument of Q is bound to
the same individual that binds the second argument
of P. This is denoted by connecting the argument
node a2 to the argument node a4 (Fig. 1). The con-
nection between the other argument nodes are simi-
lar. Also, the predicate node of P is connected to the
predicate node of @ via a link whose weight is C. The
weights of the links connecting the argument nodes
is not of significance in our current work; all those
links can be assumed to be having the same weight
w, where w is some positive constant.

It is typical of practical examples that if know-
ing proposition A to be true lends positive (nega-
tive) evidence to another proposition B, then, know-
ing B to be true lends positive (negative) evidence to
A. Fig. 1 depicts the connections representing that
P(z,y, z) lends evidence to Q(y, z,z). To represent
that Q(y, z,z) lends evidence to P(z,y,z), we need
to also have connections in the direction opposite to
that shown in Fig. 1. Thus, similar to the bidirec-
tional connections in (Rumelhart et al., 1986), in our
network also, there exist bidirectional connections be-
tween the nodes corresponding to different predicates.
However, in addition to the difference of representing
argument correspondences, there is another difference
between the connections in our network and those in
(Rumelhart et al., 1986). In the latter, the links run-
ning in opposite directions between two nodes have
the same weight. In our network, this need not be
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the case. Consider the relationship between the pred-
icates have-dinner-at and eat-at in Fig. 2. Knowing
that = had dinner at y lends a very high evidence
to the proposition that “z ate at 3" (In fact, this is
a certain implication.). On the other hand, though
knowing that “z ate at y” lends a positive evidence
to the proposition “z had dinner at y”, the magni-
tude of this evidence is not as high as in the previous
case. So, the weight of the link from the predicate
node of eat-at to the predicate node of have-dinner-
at is smaller than the weight of the link running in
the opposite direction.

A feature of our network for which there is no strict
conceptual parallel in (Rumelhart et al., 1986) corre-
sponds to that of background facts. Background facts
are specific facts present in the agent’s memory. Ex-
amples of such facts may be “Jack is Mary’s brother”,
“Jim is a computer scientist” etc. Such specific facts
already present in the agent’s memory significantly
influence the model constructed in response to an
input. For example, consider the processing of the
following two sentences:

John went to the supermarket.
Mary went to the supermarket.

These two sentences contain similar information.
However, due to the background facts present in the
agent's memory, the model constructed in response
to the first sentence could be significantly different
from the model constructed in response to the sec-
ond sentence. For example, suppose that the agent
knew that “John has run out of groceries” and “Mary
is an employee of the supermarket”. In that case, the
model constructed in response to the first sentence
is likely to be the one of John going to the super-
market for shopping there. The model constructed
in response to the second sentence is likely to be the
one of Mary going to the supermarket to work there.

In the example network of Fig. 2, the encod-
ings of three background facts, namely, FI: hun-
gry(jack), F2: manager-of(mary,super-fries) , and
F3: fast-food-shop(super-fries) are shown (enclosed
within hexagonal boxes). Let us skip the details of
encoding background facts (Details can be found in
(Ajjanagadde, 1991).)2.

Another set of interconnections in our network for
which there are no parallels in (Rumelhart et al.,
1986) correspond to the representation of competi-
tion between alternative explanatory hypotheses. For
example, two of the possible purposes behind one’s

2Actually, the network can be extended to encode back-
ground facts about classes of individuals instead of just indi-
viduals; space limitation precludes the discussion of that aspect
here.
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going to a place are “to work at that place”, and “to
eat at that place”. The competition between these
two alternative possibilities is achieved in the net-
work as follows. There is an inhibitory connection
from the predicate node of eat-at onto the link from
the predicate node of goto to the predicate node of
work-at (Fig. 2). Similarly, there is an inhibitory con-
nection from the predicate node of work-at onto the
link from the predicate node of goto to the predicate
node of eat-at. These inhibitory connections achieve
the following winner-take-all kind of effect (Details
in (Ajjanagadde, 1991).): If the activity level of the
eat-at predicate node is higher than that of the work-
at predicate node, the flow of activity along the link
from the goto predicate node to the work-at predicate
node gets cut-off. The reverse would be the situation
if the activity level of the work-at predicate node is
higher than that of the eat-at predicate. In effect, this
mechanism results in the selection of that hypothesis
which acquires maximum evidence.

5 Representation of Mental
Models as Patterns of
Activity

Previous section discussed the encodings present in
our network. In this section, we will discuss how
models are represented as patterns of activity in this
network.

As mentioned earlier, a model is taken to be an ex-
plicit representation of the various relation instances
holding in the “world”. We will first discuss the pat-
tern of activity representing one relation instance.
The overall pattern of activity representing the model
is a combination of the individual patterns corre-
sponding to the different relation instances that con-
stitute the model.

Instances of relations are represented in the net-
work by dynamically binding the “objects” to the ar-
guments of relations. The dynamic argument bind-
ings are represented using phase locked oscillations
(Ajjanagadde & Shastri, 1991). Essentially, the idea
is to represent the binding of an object to an argu-
ment by the synchrony of activation of the node cor-
responding to the object and the node correspond-
ing to the argument. Thus, the bindings in the fact
drive-to(jack, super-fries) will be represented as fol-
lows: The argument node al4 and the node corre-
sponding to the object jack will be active in syn-
chrony. Similarly, the argument node al5 and the
node corresponding to the object super-fries will be
active in synchrony. The activity level of the drive-



to predicate node represents the evidence for the fact
drive-to(jack,super-fries).

In order to suggest how models can be represented,
the pattern of activity corresponding to the simul-
taneous representation of three relation instances is
shown in Fig. 3.

6 Dynamic Construction of
Models

Previous section described how models are repre-
sented as patterns of activity in the network. In
this section, let us briefly examine how the network
constructs a model when the input clue is specified.
That is, the process we will be examining is the fol-
lowing: The input proposition(s) (e.g., say, drive-
to(jack, super-fries)) will be specified to the network
by clamping the pattern of activity representing the
input proposition(s) onto the network. Now, the net-
work has to generate the patterns of activity corre-
sponding to the other relation instances which hold in
the “world”. The process is quite similar to the one
described in (Rumelhart et al., 1986) wherein some
of the nodes in the network are externally clamped
and the rest of the nodes in the network settle into
appropriate levels of activity. Let us discuss some
major differences between the process in (Rumelhart
et al., 1986) and in our network.

One main difference is that in our network the ad-
ditional task of propagating variable bindings has to
be done. This aspect has been described in detail in
(Ajjanagadde & Shastri, 1991; Ajjanagadde, 1991).

The second main difference between the network of
(Rumelhart et al., 1986) and ours is that in addition
to the external clamping of input (similar to the ex-
ternal clamping of nodes in (Rumelhart et al., 1986)),
there is also what can be viewed as internal clamping
in our network. This is due to the presence of back-
ground facts. In order to clarify this, note that clamp-
ing of a node reflects the belief that the proposition
represented by that node is true. Thus, in (Rumel-
hart et al., 1986), clamping of the nodes represents
that the items represented by the clamped nodes are
knoum to be present in a particular room. The back-
ground facts encoded in our connectionist network
correspond to the facts the agent already believes
to be true. Such background facts should constrain
model construction in a fashion similar to the way in
which externally clamped nodes do. However, note
that not all background facts residing in the agent’s
memory will be relevant in any given context. Thus,
for example, suppose that the natural language sen-
tence being processed is “Mary went to Super-Fries”.

In this context, a background fact such as employee-
of(mary, super-fries) will be relevant. That piece of
background knowledge makes the agent to conclude
that the most likely purpose behind Mary’s visit must
be the one of working at Super-Fries (rather than,
say, eating there). But, when the input proposition
is goto(mary,super-fries), a background fact such as
employee-of(lisa,medonalds) will not be relevant. In
our network, upon the specification of the input, en-
codings of those background facts which are relevant
in that context automatically get activated. Once ac-
tivated, they constrain the model construction pro-
cess in a way similar to externally clamped nodes
do. For details of these, please refer to (Ajjanagadde,
1991).

Another difference between the network of Rumel-
hart et al. (1986) and our system is that the for-
mer uses energy minimization technique for reasoning
while our network does distributed evidential reason-
ing by spreading activation. The approach we use is
quite similar to that of Pearl (1986). The main reason
for our choice is one of reasoning speed. It does not
appear that the currently known energy minimization
techniques can achieve the kind of reasoning speed we
desire. For example, Derthik (1990) reports that with
a rather small knowledge base, energy minimization
took about 40,000 time steps to settle into the most
plausible model. On the other hand, human beings
are able to construct and manipulate mental models
within fractions of a second. Taking into account the
slowness of neurons (Feldman & Ballard, 1982), this
means that model construction take place within a
few tens to a few hundred time steps. By following
the distributed evidential reasoning approach (quite
similar to (Pearl, 1986)), it is possible to meet such
tight constraints on the number of time steps.

7 Conclusion

The process of dynamic model construction underlies
a large number of cognitive tasks. The paper outlined
how mental models can be represented as patterns of
activity in a massively parallel connectionist network
and how can fast, dynamic construction of mental
models be efficiently achieved.
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