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Geospatial Internet of Things: 
Framework for fugitive Methane Gas Leaks Monitoring 

 
L. J. Klein, R. Muralidhar, F. J. Marianno, J.B. Chang, S. Lu, H.F. Hamann 

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 
 

Abstract 
 We present a framework for wireless sensor network monitoring and detection of methane leaks from 
natural gas well pads. The wireless sensor network can measure methane concentrations across a well 
pad and combined with advanced analytics it can locate and determine the leak rate. Simulations of the 
inverse and forward modeling problems indicates that methane leaks can be localized within a 1 m 
distance from their original locations. The wireless sensor network and real time analytics can be 
extended to monitor multiple methane leaks and methane background levels. 

1. Introduction 
Methane has a much larger global warming potential compared to carbon dioxide. Methane gas is 
emitted by agricultural and waste management sources, however more than 30% of emitted methane 
gas is coming from energy exploration sites (natural gas and petroleum system and coal mining). With 
more than half a million natural gas well pad sites developed in USA, understanding the impact of 
methane gas on human health and long term climate impact became important.  

In the past, standalone high precision sensors were used to measure methane gas leaks. These 
measurements can offer a very precise methane concentration assessment but the spatial coverage is 
limited. Current methane measurement and modeling techniques are lacking the capabilities to localize 
leaks on a well pad (Zavala-Araiza 2015; Lyon 2015; Foster-Wittig 2015). An alternative method to 
detect methane leaks is using satellite observations. While the satellite methods offer a large scale 
geospatial observation, the spatial resolution of the detection method is too coarse for single leak 
detection (Turner 2015; Veefkind 2012). There is certainly a need to combine the high accuracy local 
wireless sensor measurements with large scale satellite observations for (1) accounting all methane 
leaks over a regional area and (2) attribute methane leaks to emission sources.  

Here we present a novel methane monitoring solution based on wireless sensor network. 
Methane sensitive sensors are distributed on a 10 m grid and are measuring in real time the methane 
concentration. In addition, the wind direction and speed is measured as well. We note that each well 
pad have construction on their perimeters and an associated infrastructure (storage tanks, well heads, 
etc). These structures will cause turbulence to wind flow pattern. The well pad layout can be extracted 
from high resolution satellite or drone imagery. The layout is used for three dimensional reconstruction 
of a gas well pad and generate a Computer Aided Design (CAD) models. The CAD model is a necessary 
input into CFD for dispersion modeling. The advantage of our proposed method is that each methane 
leak can be identified and localization on a well pad. 

The concept for large area methane measurements, across multiple well pads, in presented in 
Figure 1. Each of the 4 well pads have its own Wireless Sensor Network that measure methane and 
wind for that specific locations. Inter well pads communication is enabled using a Wide Area Network 
(WAN) to transfer the sensor data and computational load between well pads. Each well pad may have 
one or more Raspberry Pi computers that act as a computational platform and data gathering device 
(edge devices). If no leak is present on a well pad, the sensor values can be sampled every hour, however 
in case of large methane leaks the sampling rate may have to be increased to a measurement each 
second. Since significant amount of data may be generated on each well pad, data processing needs to 
be carried out on the edge device and only aggregated and processes sensor values are sent to the cloud 
platform.  

Locations of the sensors on the well pad as well as the site layout are geospatially located. 
Measurement on a single well pad may be affected by a leak on a different well pad. This scenarios can 
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be only addressed if the analytics models will utilize geospatial data; e.g.  proximity of well pads are 
included into modeling along with topography and/or local vegetation. In our approach, wireless sensor 
network on a well pad is explored and the sensor point measurements are spatially linked with geospatial 
data (Klein, 2015). In the future, the IoT sensor measurement with GIS based analytics (Veefkind 2012) 
framework could be extended to multi pad methane leak monitoring. 
  

 
2. Approach 

A wireless mesh sensor network based on volatile organic compound sensors (VOC) is currently tested 
for 20 ppm methane plume detection sensitivity. Sensor analytics is developed to self-calibrate each 
sensors and compensate sensor reading for ambient temperature, humidity, and wind flow variations. 
The diffusion and transport of gas in the atmosphere strongly depends on local wind conditions. This 
fact plays a critical role in the detection and localization of gas sources. The modeling approaches 
described below assume that wind speed and direction are uniform within 10 m x 10 m. In order to get 
a better understanding of the statistical behavior of the wind, the distribution of wind speed and direction 
was calculated from two simultaneously acquired wind sensor readings (Figure 2 and 3). The angle 
mismatch between two sensors can be determined by calculating the maximum of the cross-correlation 
of two wind direction readings. The related difference in the angles is used to compensate for the 
mismatch. 

The turbulence is homogeneous across the spatial length that separates the two wind sensors, 
although there are short term fluctuations. In case the sensors are separated by a building or 
infrastructure, these measurements for similarity in detected values would change significantly due to 
the local turbulence. Furthermore, the auto-correlation time of the wind speed and direction are between 
2-3 s, meaning that the wind speed and direction stay constant within this time frame and will determine 
the required sampling rates for methane sensors. Hence, this quantity is critical when locating gas 
sources, since it implies that methane sensor sampling interval needs to be close to the autocorrelation 
time.  
 

Figure 1 Geo-spatial Internet of Things architecture for methane leak sensing, modeling, 
and visualization. 
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Figure 2. Distribution of wind speed for  
two sensors . 

 
Figure 3. Distribution of wind directions 
compensated for 5 degree mismatch. 

The analytics of source attribution from various types and length scales of geospatial data is dependent 
to some extent on the length scale of observation. The simplest and most studied model corresponds to 
the well-known Gaussian plume that establishes itself from a source when steady wind and atmospheric 
conditions remain stationary over a sufficient length of time and are spatially homogeneous. In the case 
of a planar terrain in a -  plane, the plume dispersion characteristics for a source of strength  
at  are described by 

 
௬ ௭

ଶ

௬ଶ
ଶ

௭ଶ
ଶ

௭ଶ
 (1) 

where,  is the pollutant concentration,  is the mean wind speed, and ௫and ௬ are the dispersion 
parameters in the lateral and vertical directions and depend on atmospheric turbulence characteristics 
and distance downwind from the leak source, . The  direction coincides with wind direction. For a 
spatially distributed network of sensors, and a non-local leak, the recorded concentrations are given by 

 ௜ ௜௝ ௝  (2) 

where,  is the discretized Green’s function and ௝  with  are source strengths at spatial 
grid point . The discretized Green’s function ௜௝ represents the concentration at sensor  arising from 
a unit source at spatial grid point  and depends on wind speed as well as wind direction. This is the so 
called forward problem. The inverse problem consists of determining the source distribution ௝  with 

 from a knowledge of the sensor readings measured in a gas leak scenario. Since the number 
of sensors,  is typically less than the number of spatial grid points,  multiple wind directions are 
needed to make the inverse problem well –posed. To illustrate the source attribution, a network of 25 
sensors were placed in a rectangular 10 m x 10 m grid. The forward problem was solved to predict the 
concentrations at the sensors for 6 different wind conditions. To mimic experimental Gaussian noise a 
signal-to-noise (SNR) of 10 was added to the sensor readings. The resulting sensor data were used to 
locate the leak by solving the inverse problem using least-squares with regularization. 
Thus the source vector, , is determined by a minimization of 

 ଶ ଶ (3) 

 
where, λ, is a small regularization parameter. Figure 4 shows the result of inversion for a scenario where 
source is positioned 0.5 m above the ground. The distribution of normalized counts (sum of all counts 
is equal to 1) for the inversion is successful, most of the time, with a mean source location error of about 
1.04 m (Figure 5).   
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While a simple scenario has been used for illustration, the method can be generalized to realistic 
situations such as gas well pads by using a Green’s function appropriate for the situation. Such Green’s 
functions can be obtained for instance by computational fluid dynamics (Crank 1975) and integrated 
into edge devices analytics that carry out methane leak calculation on well pad sites. 

3. Conclusion 
A scalable solutions to monitor methane leaks is proposed based on wireless sensor network and 
advanced analytics. We demonstrated that inverse and forward modeling can locate methane leaks with 
an accuracy of 1 m and quantify emission rates on individual well pad sites. Distributed computing on 
edge devices and cloud platforms require integration of GIS with IoT sensor data to pinpoint methane 
leaks and to distinguish small leaks from background methane fluctuations. The solution can be easily 
adaptable to other industries like agriculture, livestock or waste management where methane emission 
has a significant impact. 
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Figure 4. Randomly generated 1000 leak 
coordinates  and the error in source 
location from the inverse problem.  

Figure 5. Histogram of source location errors for 
1000 simulations. 

GIScience 2016 Short Paper Proceedings

166




