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The incidence of reinjury after treatment of rotator cuff tears (RCTs) remains very high despite the variety
of nonoperative treatments and the high volume of surgical interventions performed. Muscle stem cells
(MuSCs), also known as satellite cells, have risen to the forefront of rotator cuff tear research as a po-
tential adjuvant therapy to aid unsatisfactory surgical outcomes. MuSCs are adult stem cells exhibiting
the capacity to proliferate and self-renew, both symmetrically and asymmetrically. As part of this niche,
they have been shown to adopt an activated phenotype in response to musculoskeletal injury and
decrease their cellular populations during aging, implicating them as key players in both pathologic and
normal physiological processes. While commonly connected to the regenerative phase of muscle healing,
MuSCs also have the potential to differentiate into adverse morphologies. For instance, if MuSCs
differentiate into adipocytes, the ensuing fatty infiltration serves as an obstacle to proper muscle healing
and has been associated with the failure of surgical management of RCTs. With the potential to both
harm and heal, we have identified MuSCs as a key player in RCT repair. To better understand this di-
chotomy, the following review will identify key studies regarding the morphology, function, and
behavior of MuSCs with respect to RCTs and healing.

© 2021 The Authors. Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Approximately 30% of individuals older than 60 years of age
have been shown to have a full-thickness rotator cuff tear (RCT) of
at least one tendon.33 In patients older than 80 years of age, the
likelihood of RCT further increases to as high as 80%.76 Although a
variety of clinical treatments for RCTs exist, ranging from nonop-
erative physical therapy to surgical interventions, the eventual
outcome of treatment may be unsatisfactory as results remain
highly variable despite optimal medical management. Moreover,
recurrence of injury after surgical repair involving 2 tendons has
been reported to be as high as 41%, attributed to a variety factors,
including muscle atrophy, retraction, and fatty infiltration.22 This
combination of significant patient volumes and unsatisfactory
surgical outcomes presents an opportunity for adjuvant treatment
strategies to significantly ameliorate postrepair RCT deterioration.

To analyze current adjuvant treatments, the pathology of
musculoskeletal injuriesdand that of RCTs in particulardmust first
be detailed. Human skeletal muscle consists of myofibers, neurons,
fibroblasts, adipose tissue, and connective tissue.19 Although there
exists a heterogeneity of cell types, injuries to skeletal muscle
d for this review.
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mainly involve degeneration of myofibers.59 The loss of tendon
attachment to bone substantially changes muscle physiology,
structure, and function with the ensuing decreased muscle tensile
forces also leading to decreased muscle strength. Without normal
tensile loading forces, muscle atrophy ensues, both radially and
longitudinally.83 Ultrastructurally, there is a decrease in sarcomere
number and length, resulting in myofiber disorganization.5,32 At
the macrolevel, it is believed that this decrease in muscle fibers and
mass leads to increased fat content and fibrosis which can culmi-
nate in surgical complications, as will be discussed in the next
section.37,56,86
Fatty infiltration’s inhibition of satisfactory surgical outcomes

RCTs are believed to induce fatty infiltration, in addition to
associated obligate muscle atrophy.36,63,86 This fatty infiltration
poses a unique problem as surgical outcomes have been shown to
decline in the presence of significant fatty infiltration.26,53 Muscle
atrophy after RCTs is a principal concern for surgeons as even after
controlling for muscle cross-sectional area, fatty infiltration is a
predictor of supraspinatus weakness.80 Supraspinatus outcomes
are also impacted by the fatty makeup of infraspinatus and sub-
scapularis muscles, as fatty degeneration of these muscles has been
shown to increase the likelihood of tear recurrence.26 Despite a
er & Elbow Surgeons. This is an open access article under the CC BY license (http://
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clear association with substandard surgical outcomes, the cellular
origins of fatty infiltration remain a critical gap in our under-
standing of rotator cuff pathophysiology.47 Many researchers have
pointed to a variety of stem and progenitor cells as the source of
fatty infiltration, with 2 major candidates emerging e PDGFRaþ
progenitor cells and muscle stem cells (MuSCs).51,73,79 Lineage
tracing experiments demonstrate that PDGFRaþ progenitor cells
have the potential to become brown adipocytes orwhite adipocytes
depending on the nature of inductive signals received.44,46 On the
other hand, MuSCs also remain a possible source of adipocytes as a
result of their multilineage potency.3,66,70

Clinically, Goutallier et al26 created a classification system based
on computed tomography imaging to quantify the inherently
qualitative nature of fatty infiltration, ranging from stage 0 (normal
muscle) to stage 4 (more fat than muscle); this has subsequently
been adapted to magnetic resonance imaging as well.74 Higher
stages reported by Goutallier et al correspond to more severe RCT
fatty infiltration. Previously, Fuchs et al21 verified that magnetic
resonance imaging is a reproducible method for evaluating and
staging fatty degeneration severity. The stages reported by Gou-
tallier et al are particularly relevant to rotator cuff repair as stages
reported by Goutallier et al greater than 2 have been shown to have
lower surgical success rates.24 As of yet, no study has reported a link
between stem or progenitor populations and stages reported by
Goutallier et al, which raises the question of whether MuSC pop-
ulations are being preferentially differentiated to an adipocyte
phenotype in advancing stages reported by Goutallier et al.

Morphology and function of MuSCs

MuSCs were first discovered in 1961 when Mauro52 detected a
clump of mononucleated cells in adult myofiber using electron
microscopy. Physically, MuSCs reside between the basal lamina and
sarcolemma of adult muscle fibers.2,17 They display the typical
characteristics of adult stem cells in that they possess the ability to
proliferate and self-renew. MuSCs are identifiable by their unique
positive marker profile that includes Pax7/Pax3, CXCR4, CD56, and
CD29.10,40,81 Pax3 and Pax7 are transcription factors that regulate
myogenic differentiation of MuSCs by activating the expression of
myogenic differentiation genes Myf5 and MyoD.37,40,62 CXCR4, or
C-X-C chemokine receptor type 4, is known for its role in regulation
of cell migration and is highly expressed in MuSCs.8,61 CD56, or
neural cell adhesion molecule, is expressed in human MuSCs but
not in mouse MuSCs.10,13,79 And finally, CD29, also known as
integrin beta-1, functions mainly as a collagen receptor but has
been shown to be upregulated in MuSCs.35 Consequently, a mature,
quiescent MuSC has a marker profile of Pax7þ/MyoD-/Myogenin-,
whereas a myogenic precursor will display Pax7-/MyoDþ/Myoge-
nin-, and the final myotube will exhibit Pax7-/MyoD-/Myogeninþ.16

Using these marker profiles, the progression of MuSCs can be
tracked through their life cycle (Fig. 1). Furthermore, marker
identification of human MuSCs in pathologic rotator cuff muscles
has significant utility for the detection and investigation of normal
vs. abnormal myogenic differentiation after RTC.

Proliferating human and murine MuSCs have been shown to be
capable of myogenic, adipogenic, and fibrogenic differentiation
in vitro and in vivo.9,11,58,60,67,75,84 This multilineage differentiation
capability sheds light on the possible double-edged contribution of
MuSCs in both muscle regeneration and pathogenesis. On one
hand, MuSCs display a remarkable myogenic regenerative capacity
as Collins et al15 showed that as few as 7 MuSCs from a single
transplanted muscle fiber could develop into more than 100 new
myofibers. On the contrary, growing evidence of MuSC’s adipogenic
and fibrogenic potential suggests their pathological capacity and
role in muscle degeneration. A recent in vitro study demonstrated
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the reduced myogenic and increased adipogenic differentiation
capacity of mouse rotator cuff MuSCs compared with that of mouse
gastrocnemius MuSCs suggesting an underlying cellular and ge-
netic basis unique to rotator cuff MuSCs behind the fatty degen-
eration observed in RCTs.67 Finally, the fibrogenic potential of
MuSCs has been shown in a mouse model of Duchenne muscular
dystrophy where in vivo lineage tracing revealed that a fraction of
MuSCs in mdx mice had lost their myogenic fate and displayed a
fibrogenic phenotype with increased expression of fibrotic genes.9

While the multilineage capability of MuSCs provides versatility, it
also allows for MuSCs to differentiate into cells such as fibroblasts
and adipocytes which are inherently detrimental to muscle heal-
ing.39 Manipulation of these undesired differentiation pathways
has already been attempted bymultiple researchers and represents
a possible future direction for therapeutics directed at modulating
MuSC niche signals for the treatment of musculoskeletal injuries
and diseases. For example, Biressi et al showed that the pharma-
cologic inhibition of the TGFb pathway in vivo inhibited MuSC fate
change in mdx mice toward fibrogenic cell differentiation.9 Further
possible clinical applications that warrant investigation in large
animal models first may include the administration of exosomes or
growth factors so as to foster and ensure differentiation of MuSC
into a myogenic lineage as an adjunct to RTC repair surgery.

Muscle injury is the most common condition in which MuSCs
proliferate. Upon injury, MuSCs exit their quiescent state and
transform to committed progenitor cells called myoblasts, which
then fuse with each other as well as injured myofibers.65,82 It has
been hypothesized that the muscle atrophy found in injury states is
attributable to the decrease in MuSC proliferation, number, and
ultimately differentiation.34 Biopsies from patients undergoing
arthroscopic rotator cuff surgery found that while the MuSC pop-
ulation was larger in muscles from cuffs with partial tears
compared with no tear or full-thickness tears, these MuSCs had
reduced proliferative ability.54 Similarly, Thomas et al found 77a
100-fold slower proliferation capacity in MuSCs from patients with
partial- or full-thickness tears compared with MuSCs from patients
with no tear. Furthermore, human RCT muscle tissue is distinctly
pathologic, with proteomic analysis revealing increased extracel-
lular matrix deposition and a shift in muscle composition in the
pathologic state.77

While injury is the more common instigator of MuSC differen-
tiation, aging has also been shown to deplete multiple stem and
progenitor populations, causing individual stem cells and pro-
genitors to activate in response to tissue loss or other changes. This
pattern holds true in MuSCs where increased levels of fibroblast
growth factor (FGF), highly expressed in aged murines, lead to loss
of quiescence and diminishment of the murine MuSC niche.14

Therefore, aging leads to upregulation of FGF, which in turn di-
minishes the MuSC niche.14 Although there are currently no clinical
studies focused on this arena, FGF blockage is an important target
for adjuvant therapy that warrants further investigation based on
these animal studies. As the likelihood of RCT increases with age,76

the relationship among age, diminishing MuSC niche, and
increasing RCT frequency may be another clinically relevant area of
study.

MuSCs self-renew primarily through either asymmetric or
symmetric self-renewal.52,82 Symmetric self-renewal is the proto-
typical mitotic division in which 2 identical daughter cells are
produced, subsequently reoccupying the MuSC niche (Fig. 2).
Symmetric expansion is regulated through the cell surface cor-
eceptor complex of Syndecan-4 and Frizzled-7, which stimulates
the ability ofWnt7a to induce symmetric division.7,43 Contrastingly,
asymmetric self-renewal results in one activated progenitor cell
and another daughter cell destined for quiescence. Interestingly,
MuSCs’ decision to undergo asymmetric or symmetric self-renewal



Figure 1 Overview of the distinct protein marker profiles and regulatory molecules involved in the progression of MuSCs down the myogenic fate. MuSC, muscle stem cell.
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is partially driven by the upregulation of fibronectin, an extracel-
lular matrix glycoprotein ligand for the Syndecan-4/Frizzled-7 re-
ceptor complex (symmetric division promoter system).7

Fibronectin has been shown to be hypersecreted in MuSC-derived
myotubes compared with quiescent MuSCs. Thus, when asym-
metric self-renewal has satisfactorily replenished the myocyte
population, MuSCs detect the increased extracellular fibronectin
and begin symmetric self-renewal to replenish the stem cell niche.
Another self-renewal pathway involves the protein sal003, an in-
hibitor of eukaryotic initiation factor 2a phosphatase. Sal003 pre-
vents the phosphorylation of eukaryotic initiation factor 2a and
promotes MuSC self-renewal.87 Through these 2 self-renewal
methods and their regulation, the MuSC niche is constantly
replenished. Assessment of possible deregulation and disruption of
this intricate regulation of the MuSC niche and self-renewal pro-
gram is warranted for understanding of the sequelae of rotator cuff
injuries and the behavior of MuSCs secondary to an RCT in humans.

Similar to the self-renewal of MuSCs, differentiation intomature
phenotypes also involves several distinct proteins and pathways. As
discussed previously, upregulation of FGF instigates MuSC prolif-
eration; conversely, upregulation of the natural FGF inhibitor, Spry1,
Figure 2 Mechanism of MuSC niche self-renewal and mainten
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leads to a return to quiescence and homeostasis of theMuSC pool.68

As expected, the Notch signaling pathway serves to regulate stem
cell differentiation and thus MuSCs as well. The Notch intracellular
domain was shown to regulate enhancers proximal to the collagen
V (COLV) genes, leading to their upregulation.4,84 Consequently, the
newly produced COLV interact with MuSCs through the calcitonin
receptor which has been shown to delay the proliferation of MuSCs.
4,84 Thus, MuSCs can potentially be artificially maintained in
quiescence through the Notch-COLV-calcitonin receptor signaling
pathway. Another pathway controlling MuSC differentiation was
discovered by Otto et al,57 connecting theWnt signaling pathway to
MuSC differentiation by showing that Wnt signaling may upregu-
late Pax7 and MyoD, thereby initiating MuSC proliferation.59 Im-
mune cells can also regulate muscle stem cell populations through
an inflammatory environment. For example, the presence of T cells,
through the classic inflammatory pathway in which T cells produce
cytokines such as IL-1a, IL-13, INF-g, and TNF-a resulted in prolif-
eration of MuSCs in a mouse model of muscle degeneration.20 As
can be seen from the aforementioned examples, the regulation of
MuSC proliferation is highly complex with multiple competing
pathways. Therefore, it has been difficult to ascertain and pinpoint
ance through symmetric division. MuSC, muscle stem cell.
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a particular pathway or singular protein responsible for activation
of quiescent MuSCs. Thus, any adjuvant therapy may require a
cocktail of various MuSC proliferative protein activators to yield an
appreciable response.
MuSC “niche” and adipogenesis

Muscle fatty infiltration of the supraspinatus and infraspinatus
muscles after RCTs directly correlates with poorer outcomes and
high retear rates after rotator cuff repair surgery.18 While the cur-
rent understanding of the biologic mechanisms governing fatty
infiltration of muscle after rotator cuff injury remains limited, the
extracellular environment may be a contributing source. A possible
cellular origin of adipocytes seen in rotator cuff fatty infiltration is
PDGFRaþ progenitors as demonstrated in murine models.45,47,71 As
with MuSCs, the regulation of PDGFRaþ progenitors is highly het-
erogeneous. Proinflammatory M1 macrophages secrete iNOS, TNF-
a, and IL-12 inflammatory cytokines, which reduce adipogenic
differentiation of PDGFRaþ preadipocytes via inhibition of
adipogenic-related transcription factor expression.47 Conversely,
recruited M2 macrophages, typically promoters of wound healing
and fibrosis, express high levels of osteopontin that induces
PDGFRaþ progenitor migration, proliferation, and differentiation
via the CD44 receptor in a mouse model of fat remodeling.45

Currently, there is no consensus in the literature as to whether
PDGFRaþ progenitors are the sole source of adipogenesis in skeletal
muscle. MuSCs may also be a major contributor or auxiliary source
of these adipocytes. To analyze MuSC differentiation pathways,
some cellular markers must first be described. One of these
markers is CD56 which is a human marker of MuSC-derived cells.
CD56þ cells were once thought to be committed to the myogenic
pathway.12 However, recent studies have shown that CD56þ cells
are heterogeneous and differentiate into not only myotubes but
also adipocytes (Fig. 3).60 Specifically, regarding adipogenesis from
these MuSCs, Pisani et al60 isolated CD56þ cells and found that
further sorting by CD34 could differentiate between those with
adipogenic (CD34þ) and myogenic (CD34-) potential. After acute
injury, MuSCs become activated and have reduced expression of
CD34, freeing the cell from CD34’s adhesive function to facilitate
migration and ultimately promoting MuSCs proliferation at early
stages of muscle regeneration.1 However, global knockout of CD34
in mice leads to defective muscle regeneration after injury.1 In
summary, the PDGFRaþ progenitor cells, which may be a source of
the fatty infiltration seen in rotator cuff tears, represent a distinct
entity compared with the CD56þ myogenic cells.78 Location of
PDGFRaþ vs. MuSCs may also help to explain which cellular pop-
ulations are preferentially activated under certain conditions.
PDGFRaþ progenitor cells are found in the interstitial space of
mouse skeletal muscle, whereas CD56þ cells localize beneath the
basal lamina.78 The combination of location and regulatory path-
ways differences in CD56þmyogenic cells and PDGFRaþ progenitor
cells may shed light on the interplay of these 2 opposing forces in
muscle regeneration vs. fatty degeneration.
Isolation and transplantation of MuSCs

Before any adjuvant treatment methods can be developed, re-
searchers must first be able to isolate MuSCs both in vitro and
in vivo. The sheer variety of isolation techniques for human MuSCs
e ranging from preplate technique to fluorescent-activated cell
sorting (FACS) e in addition to an ill-defined set of cell surface
markers, hasmade the isolation ofMuSCs disorganized and inexact.
Regardless of shifting definitions, there are some markers which
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represent promising starting points to solving the puzzle of MuSC
isolation. For instance, myogenic MuSCs are negative for both CD45
(hematopoietic marker) and CD31 (endothelial marker).23,54,85 In
contrast, MuSCs upregulate and are positive for Pax7, CXCR4, CD56,
and CD29.23,49,50,72,85 This unique marker profile has allowed for
researchers to fluorescently tag MuSCs and sort or identify them
through FACS with varying success. The downside of FACS is that
the populations of isolated MuSCs are typically small. The preplate
technique attempts to overcome this problem by amplifying MuSC
cell counts by performing cell culture after FACS. As with many
in vitro techniques, the process of growing MuSCs outside of their
native environment poses the risk of altered morphology, func-
tionality, and gene expression.

Even with inexact isolation protocols, researchers have already
attempted to transplant MuSCs to ameliorate wound healing.23,85

These transplanted MuSCs have been shown to retain a remark-
able amount of plasticity in the target tissue while maintaining 2
core principles of stem cells e differentiation and self-renewal.42,64

First, transplantedMuSCs demonstrate the ability to proliferate and
differentiate into myocytes to combat musculoskeletal degenera-
tion with newly formed myofibers.23,85 Second, transplanted
MuSCs also maintain the capacity to self-renew, allowing for the
restoration of depleted MuSC niches in target organisms.64
Therapeutic approaches via MuSCs

Cell transplantation as a biologic augmentation for rotator cuff
repair has recently been demonstrated in the literature using
mesenchymal stem cells.29,38 Hernigou et al29 observed that in
forty-five matched patients who received mesenchymal stem cell
adjunctive therapy vs. isolated rotator cuff repair alone, those with
adjuvant mesenchymal stem cells had faster healing of the repaired
cuff surface and fewer recurrent tears at the ten-year follow-up; a
higher number of transplanted cells also correlated with a lower
rate of loss of tendon integrity. Kim et al38 reported on 35 matched
patients and found that injection of mesenchymal stem cells loaded
in fibrin glue also decreased retear rates after arthroscopic rotator
cuff repair, though there was no difference in pain, range of motion,
or functional outcome measures at the 2-year minimum clinical
follow-up. However, owing to the relative novelty of MuSCs,
transplantations of MuSCs specifically have only been performed in
murine models; thus, the histologic results and clinical conse-
quences of MuSC transplantations in humans remain speculative. If
human transplantation were to be considered in the future, as per
our current understanding of the adipogenic vs. myogenic potential
of these cells, transplanted cells should be CXCR4þ/CD56þ/CD29þ/
CD31-/CD34-/CD45- (Fig. 4).23,85 Increased attention is currently
being given to translating MuSC transplantation results from mice
studies to human applications.6

Modulating the in vivo muscle stem cell and progenitor micro-
environment in the rotator cuff to promote a myogenic environ-
ment affords an additional, less-invasive therapeutic strategy.
Shirasawa et al71 designed a mouse model to recapitulate impor-
tant characteristics of human muscular fatty infiltration after RCT
and found rapid expansion of PDFGRaþ progenitors associated with
subsequent adipocyte differentiation. Interestingly, treatment with
oral imatinib mesylate led to decrease in PDFGRaþ cells, correlating
with the attenuation of fatty infiltration. Imatinib also has an
antifibrotic effect.31 On the other hand, fibroblast growth factor
revitalizes the mitogenic milieu to support effective myogenesis.69

Gigliotti et al25 found that in human supraspinatus muscle tissue
collected during cuff repair, the nitric oxideedonor drug isosorbide
dinitrate induced a significant increase in MuSCs despite atrophy



Figure 3 Summary of the proposed sources contributing to muscle fatty infiltration.
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and possible denervation. Thus, proproliferative strategies such as
isosorbide dinitrate may be particularly applicable in the aftermath
of rotator cuff tears, specifically full-thickness supraspinatus tears,
which have a reduced density of MuSCs and proliferating cells
compared with partial-thickness tears.48 However, partial tears
may also benefit given the fact that MuSCs demonstrate reduced
proliferative capacity in partial-thickness tears compared with
Figure 4 Schematic of muscle tissue processing and MuSC isolation for therapeut

190
notear or complete-tear specimens, despite the fact that the pool of
MuSCs is largest in partial tears.54

MuSC misconceptions

It remains critically important to differentiate MuSCs and
pluripotent embryonic stem cells. Embryonic stem cells are
ic application of MuSCs for treatment of myopathies. MuSC, muscle stem cell.
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characterized by their rapid differentiation into multiple cell line-
ages with no tissue specificity, while MuSCs remain quiescent until
they are activated by tissue damage or microenvironmental niche
changes.55,68 Ergo, MuSCs operate in a less-restrictive niche than
committed precursors but are not as differentially fluid as embry-
onic stem cells e existing between the two.

Second, there are often meaningful differences between rodent
models and human morphology; this trend seems to hold true for
MuSCs.10 For example, Oncostatin M has been shown to induce
MuSC proliferation into myotubes in human cells.65 Contrastingly,
in mice, Oncostatin M exposure preserves MuSCs in their quiescent
niche.41 This diametrically opposite protein functionality suggests
that a murine model may not be an adequate or accurate model
organism for MuSC research if the final goal is human applications,
owing to significant physiological and biochemical differences. This
is underscored by the fact that mice undergo a different wound
healing pathway as they possess a thin layer of musculature called
the panniculus carnosus that provides a contractile potential to their
skin, allowing large wounds to heal by contraction.24 Even more
importantly, in rats with significant RCTs, there has been evidence
of limited fatty degeneration when compared with humans.27

Given these differences between murine and human models of
musculoskeletal degeneration, it appears that MuSC research
should preferentially be performed in humans/human tissues to
generate clinically relevant findings.
Future directions and conclusions

While human MuSCs have been shown to have impaired pro-
liferation in partial RCTs,54 very little is known about human MuSC
precise role in RCT healing and pathophysiology. Moreover, while
MuSCs have been well-characterized in murine models, this
knowledge base is difficult to directly extrapolate to humans as
MuSC physiology is quite species-specific.10 Therefore, further
studies regarding the relationship of human MuSCs to muscle
repair may open new avenues for therapeutic treatment of
neuromuscular diseases via transplantation or forced differentia-
tion. In particular, MuSC protein activators could be manipulated to
aid in myofiber regeneration after massive RCT. Furthermore, as
niche conditions in skeletal muscle influence stem cell prolifera-
tion, specific growth factor dosing, for example IGF1, could prime or
encourage expansion and differentiation of skeletal muscle pro-
genitors for increased muscle healing.77 However, owing to the
sheer variety of proteins and pathways, there may not be a singular
panacea, meaning that several differentiation pathways need to be
altered simultaneously. Similarly, MuSC transplants could be
introduced in the near future to improve postsurgical RCT retear
rates. This adjuvant treatment method is not entirely outside the
realm of possibility as hematopoietic stem cells are commonly used
for treatment of leukemia and other similar diseases, and bone
marrow aspirate concentrate is used to augment bone healing in
fracture surgery.28,30 Regardless of implementationmethod, MuSCs
represent a novel and potentially powerful adjuvant to improve the
treatment and outcomes of massive RCTs.
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