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Scaling Behavior in Multiperipheral Dynamics*f

DENNIs SILvERMAN)

Joseph Henry Jaboratories, Princeton University, Princeton, New Jersey 08'540
and

Physics Department, University of California, La Jol/a, California 9Z037

AND

CHUNG-I. TAN)

Joseph Henry Laboratories, Princeton University, Princeton, Nem Jersey 08540
und

Physics Department, Brown University, Providence, Rhode Island OZ91Z

(Received 14 September 1970)

We demonstrate the scaling of the single-particle momentum distribution as a general property of all the
multiperipheral models which have been proposed. We also show that in these models, pionization is ap-
proached as a smooth limit from scaling. The proof is based only on the most general multiperipheral
assumption and on Pomeranchuk-pole dominance at high energies. Thus the experimental observation
of scaling is required for the validity of any multiperipheral model.

F(s,x,4)—
d'k/2k 0

is expressed as a function of the square of the total
c.m. energy s, the scaled c.m. longitudinal momentum
component of the detected particle x=kll,~k, , k .

~gs, and the transverse momentum kz. For this case,
and for small values of k&', where the majority of physi-
cal events takes place, Feynman proposed at high
energies the scaling property'

lim Ji(s,x.k~) =P(x,k~) for 0&
~
x~ &1, (2)

and the existence of "pionization, " i.e., production of
low-energy particles in the c.m. system with the simple
spectrum

(3)lim F(s,x,kg) =F(kg);
S ~co;X ~0

the spectrum is nonzero. It is the purpose of this paper
to verify the scaling property as a general property of
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188, 2159 (1969).
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I. INTRODUCTION

I SlN G a great amount of physical insight, Feynman'
has recently proposed that the longitudinal-

momentum distributions in hadron collisions should
exhibit certain simple scaling and limiting features. %e
consider the simplest possible inclusive experiment
where only one 6nal particle is detected, and the
invariant momentum distribution

all multiperipheral models which have been proposed' 4

and to show that in these models pionization is ap-
proached as a smooth limit from scaling

lim P(x,k,) =F(k~) . (4)

Analysis of existing experimental data supports this
scaling behavior. '

The phenomenon of pionization has been demon-
strated with the original ABFST multiperipheral
model' and the proof can be directly extended to the
more general multiperipheral models. The original
pionization analysis, however, was performed only
for x~ 0, and was not applicable to scaling in
what we term the production region (forward pro-
duction for x)0, backward for x&0). The present
authors' have recently demonstrated the scaling phe-
nomena in an analysis of the inclusive single-particle
experiment for special multiperipheral models with
exponential damping in momentum transfer. %e
present here a proof applicable to all multiperipheral
models so far studied by making use of the CGL model,
which includes the ABFST model as a special case. Ke
find that the important requirement for scaling is that
the output auxiliary forward amplitude 8 is dominated,
above some 6nite subenergy, by a Pomeranchon of
intercept unity, i.e., that the solution leads to a con-
stant total cross section.

L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25,
626 (1962);D. Amati, A. Stanghellini, and S. Fubini, ibid. 26, 896
(1962). (Hereafter referred to as ABFST.)

G. F. Chew, M. L. Goldberger, and F. Low, Phys. Rev.
Letters 22, 208 (1969) (hereafter CGL); M. Ciafaloni, C. DeTar,
and M. N. Mishelo6, Phys. Rev. 188, 2522 (1969), and references
therein. See also M. L. Goldberger, C.-I. Tan, and J. M. Wang,
ibid. 184, 1920 (1969); D. Silverman and C.-I. Tan, Phys. Rev.
D 1, 3479 (1970); S. Pinsky and W. I. Weisberger, ibid. 2, 1640
(1970).

'H. Piotrowski, Phys. Letters 32B,. 71 (1970); S. Drell, in
Proceedings of the Madison Conference on High-Energy Physics,
1970 (unpublished); N. F. Bali, L. S. Brown, R. D. Peccei, and
A. Pignotti, Phys. Rev. Letters 25, 557 (1970).

6 D. Silverman and C.-I.Tan, Nuovo Cimento {tobe published).
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FIG. 1. The left-end, central, and right-end contribution to the
single-particle distribution spectrum.

II. INCLUSIVE SINGLE-PARTICLE SPECTRUM

In the CGI. multiperipheral model, the single-
particle momentum distribution~' is given by

III. TRANSFORMATION OF VARIABLES AND
SCALING OF JACOBIAN

We compute the Jacobian in a useful form by 6rst
using the b'(q"+q'+k) to do the q' integration so that
the Jacobian is

a(s4', s„',t,t„)J—'=det
~(qo pqz pqu yq» )-

where q»" and q»" are the components of q&" parallel
and perpendicular to k&, respectively. This may be
rearranged to give

(d'k/2ko) (24r)'A't'(S, m", tn')

x I
6 ((p' —k)')

I
'B(p', p' —k; p)

'(P'+P)o
Z- =ad t (P', P)'

qp

qp

1
qz

q
/I

I
q»

If

(P'+P)* (P'+P) ~

z 11

(P'+P) s'

(p —p)» (g)
lf

q»

+ d'q'd'q" 04(q'+q"+k)B( q', q"; p—')
(2s)'

x IO(q"', ,q") I'B(-q", q'; p)

+ I G.((P—k)')
I 'B(P, P k; P'), —(5)

where B(—q', q"; p') is the auxiliary function which
satisfies the CGI equation, 6 is a Reggeon-particle-
particle vertex function, and P is a Reggeon-Reggeon-
particle vertex function which may include dependence
on the Toiler angle or. The first and last terms are the
contribution of the left and right end diagrams, as
illustrated in Fig. 1. The middle term is the contribu-
tion of the central diagram, which dominates for IxI
not close to 1.It can be easily seen that the end diagrams
directly exhibit scaling, ' so we shall concentrate on the
central diagram.

Our proof proceeds by Grst transforming integra-
tions to the invariant subenergy and momentum-
transfer variables and showing how the Jacobian of this
transformation has scaling behavior because of the
multiperipheral hypothesis that the momentum trans-
fers are small. We are then able to show that in the
important regions of integration, the auxiliary forward
amplitudes 8 exhibit scaling and produce and s && )

behavior to cancel the 1/s from the flux. This will

complete the proof of scaling for the inclusive single-
particle spectrum.

We transform the integrations first to the invariant
subenergies s4' —=P42=(p'+q")', s„'=—p„'=(p+q')' and
momentum transfers t~ =—q"', t„=—q", as shown in Fig. 2,

d4q'd4q" 64(q'+q" +k) = ds4'ds„'dt4dt„J. (6)

~L. Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219
(1969).

8 D. Silverman and C.-I. Tan, Phys. Rev. D 2, 233 (1970).
'D. Tow, Phys. Rev. D 2, 194 (1970); P. Ting, ibid. 2, 2982

(1970).
IOThe end diagram in Ref. 8 exhibits scaling since it only

depends on the ratio s/M'= (1—x) '.

This is directly evaluated in the c.m. system to be

q» q»J—'= 16(gs)p, ' det
II 1I

-ql1 qL2

=
I
16(&s)P'k'q-"

I (9)

Now computing Iq»" I
and using p, '=A' '(s,m",m')/

2+s gives
1 e(—A(k4', q4",q4"'))

(10)
4A"'(s m" 444') I

—A(k4' q4" q4"')j'"
We must now express q~", q~"' in terms of the invariant
variables, which is simply done by considering as a
two-body process p'+p —+ (p&+k)+p, and using the
Kibble method" to calculate

I
q4'I. Since the two-body

reaction occurs in a plane, we consider the transverse
direction in the plane as that of q&' and define

(P'+P) o (P'+P) (P'+P)'
D—= (P' P)o (P' P)*-(P' P-)-

In the c.m. system this determinant is evaluated
directly as

d=
I
detDI =2

I
q&'I p, 'Qs=

I q, 'I 5't'(s, m",41') .

Multiplying D by its transpose, and reversing signs of
spatial components, we have

detPDD ~]=(d t e)D( etdD)=rd'

With minor rearrangement of [DD ~j, we have

P P'P P'q

q =, de" p'P P P'q (11)
A (s,444",m') .q'P q'P q

In order to express the determinants in terms of the
integration variables, we will use, instead of kt& and k~,

"T.W. B.Kibble, Phys. Rev. 11'7, 135 (1960}.
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the Gxed invariants

u2= (p'-k)' u, —= (p-k)'.

2p' k=( u—+2m/2+ u)2=(Qs)(kp —k,)

Ke then have the positive invariants which are given,
to 0(1),

pl

S( Sr.
I I

Si sg

P =N

S'~= m'~

k = I

m" (kp+k, ) m' (kp —k,)
+0(1/s),

2 k~,x 2 k~,~

2p k=(—u„+m2+t22)=(Qs)(kp+k, )

m' (kp —k,) m" (kp+k, )
+0(1/s),

2 k,„2k,

(4)(p' k)(p k) =4'+u'+
s E k., Ek.,)

(12)

Pro. 2. Kinematics of the central diagram.

The invariants in the Jacobian become

2p p'=s —m' —m",

2p g =s„—t„m-
2p' q'= —2p' q"—2p' k

(s/.
'

t/ —m"—) (—u2+—m"—+t22) .
%e now change from the integration variables s~', s,'

to the scaled integration variables y,2', which will be
shown to be of 0(1) due to multiperipheralism,

p/ //

P' k —ug+m"+t22
=k/, 2+t22+m"x28(x)+mpx28( —x)

+0(1/s) . (13)

s,' —t,—m'p'0

p k —u, +m2+p, 2

In the last formula and later on in computing terms of In terms of these we have anally the exact expression

0(1), we observe that in to go into the Jacobian Eq. (10):

t' kp ) ( kg ) 4(kJ.'+t2') "'
I= *'+

kk. ) V.„/
t/' kp q2 4(k/, 2+t22)

I
=x'+

s

/k, q~k, qI=*I*I+0(1/s),
&k..„&kk.,i

/ kp
x'+0(1/s) .

Ek ..
(14)

In terms of these invariants the phase-space regions are
as follows.

Pionization: kp, k, =0(1);x&0(1/gs); —ug =0(gs),
—u, =O(gs).

Forward production: k, =O(gs) and positive; x a
fixed positive fraction; —u~ ——0(1), —u, =O(s).

Backward production: k.=O(gs) and negative; x is
a fixed negative fraction; —u~=O(s), —u, =O(1).

we may neglect (k/, 2+t22)/s unless x 0(1/gs), but
then these terms will be 0(1/s) and negligible, so we

may write

(s—m' —m")
q~ = —t„—/2—

a(s,m",m')

X(—u2+m" ++2) (—u „+m2+u2)(y+1)s

( u +m2+t22)2 ( ul+m 2+t22)2
—(m") — s' —(m')

D(s m" m') D(s m"/m2)

X(y+1)'. (16)

The expression for q&"' arises by exchanging 3 ~r,
y~ s, and tn'&-+m".

The basic hypothesis of multiperipheralism is now

applied by effectively restricting the momentum trans-
fers to (—t„),(—t~)&0(1). We note that all of the
terms in Eq. (16) subtracted from (—t„)are positive,
and that th'e coeificient of (y+1)s is always 0(1) I see
Eq. (13)j. The requirements q,")0, q,"2)0 and the
restrictions on (—t~), (—t,) lead to the boundh

(y+1)z&0(1), (s+1)y&0(1),

and we conclude that

y&0(1), s&0(1).

Ke then write qj,", q&"' at large s, keeping all terms of

0(1), by using Eqs. (12)-(14):
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q1 = —4—(k), +t1 )(y+1)s—m 2x28(x)s(1+y+s)
—m'* 8(—*)(y+ 1)(1+y+s)+ 0(1/s),

18
qi"' ———t) —(ki'+t1') (s+1)y —m'x'8( —x)y(1+y+s)

—m"x'8(x) (s+1)(1+y+s)+0(1/s) .
The inclusive integration at large s is now expressed.
in terms of scaled variables with the use of Eqs. (10)
and (13):

( d'q'd'q" 6'(q'+q" +k)
S

1
= —(k1'+t1'+m"x'8(x)+m'x'8( —x)]

S
8( t).(k—1',a1",q1"'))dydsdt)dh„. (19)

2—t1(k 'q "q "')]"'
We have completed calculating the Jacobian at large
s using the multiperipheral hypothesis and 6nd from
Eq. (18) that it depends only on x and k1' and inte-
gration variables, which proves that the Jacobian
scales.

In the pionization region x(0(1/gs), the terms in
x' may be dropped and the Jacobia, n then agrees with
that used by ABFST to show independence of x in the
pionization region. The terms in x' are an essential
reason why the production regions have a nontrivial x
dependence.

A. Pionization Region

Since the subenergies become asymptotic in this
region, we use the asymptotic relations that follows
from the invariance properties of the CGL equation4
and the hypothesis of Pomeranchuk-pole dominance:

B(s),s)'; t),t,) = (s)') )'(')B(s)/s(', t),t„),
B(s„s,', t„t))=(s,') )'(')B(s,/s„';t„,t)).

(21)

Using Eqs. (20), (15), and (13) for large values of s)',
s„', u(, u„and x&0(1/gs), we convert to scaled
variables:

The assumption of Pomeranchuk-pole dominance at
large subenergies for the B's will provide the needed
s ~"' by different mechanisms in the three regions,
which can be roughly seen as follows.

Pionization: Both B» and B„arePomeranchuk-pole
dominated, so that

~ (s)')~y(0)(s ~)~n(0) ~s~n(o)

Forward production: Only B„is Pomeranchuk-pole
dominated because s»' is small,

B)B„~(s„~)~n(0) ~ s&n(0)

Backward production. Only B» is Pomeranchuk-pole
dominated because s„'is small,

~ (s i) ay(0) ~ surp(o)

IV. SCALING AND POMERANCHUX-POLE
DOMINANCE

The assumption of Pomeranchuk-pole dominance for
the auxiliary forward amplitudes B above a finite
energy will now be shown to provide an asymptotic
behavior s )'") to cancel the 1/s flux factor, and the
remaining dependence in the B's will exhibit scaling by
being a function only of x, k», and the integration vari-
ables. %e may express the B's in terms of invariants
including the energies

s)—= (p' —q') ' = (s1'—t) —m")
+( )+um+ )—t+1+t"m,

(20)s„—= (p —q")'= (s„'—t„—m')

+( u, +m'+t), ')+t)+—m',
e.g.)

B( q', q"; p') =B(s),s)', t),t,)—.
The application of multiperipheralism in Sec. III
showing y&0(1), s&0(1) means that the predominant
ranges of the subenergies s»', s,' depend upon phase-
space regions, as found from Eq. (15), and they must
be treated separately

Plonlzatlon: $1 ~0(gs), s~ ~0(gs) .
Forward production: s)' 0(1), s„' 0(s) .
Backward production: s)' 0(s), s,' 0(1).

=(uu„) ""'i
i B;t),t, i

4—u) —u„i

=s"('&(k '+p') ) (")y ) (")s ""'
)(B ; t ,tg

)s„' )

=(k"+t")(1+y)(1+s) (23)

XB 1+-, t),t, P 1+-, t„tt i. (22)
1 q 1

y ) s

The s~)'(') cancels the 1/s from the flux in Eq. (19) and
the rest of the dynamical input is seen to exhibit not
only scahng but also independence of x. The ~-angle
dependence of the coupling P(t),~,t,) also exhibits
scaling, since for large s»', s„'it is related to the scaled
variables by

h(u2, t t„))
t1' —t1—t,+2(ttt„)'"cosa& s
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+m"x+0(1/s)
= (k,'+ty, ')/x+ m"x, (25)

which is independent of s. From Eqs. (15) and (20) we
may then convert the subenergies to scaled variables
without introducing any dependence on s:

(26)

Consequently B(s&,,sI", t&,t„)is a function only of x, ky2,

y, s, t&, and t„,and it is independent of s. The co angle in
the production region can also be shown to depend
only on these variables, but we omit showing this since
the calculation is lengthy, though straightforward. In
concert with Eq. (24), we have proved scaling in the
forward production region. The proof for the backward
region follows by similarity.

C. Transition from Production to Pionization

Q'e now show how the scaled momentum distribution
in the production region F(x,ky) approaches as x y 0
the pionization result F(ki), which was obtained by the
limiting procedure in Eq. (3). To do this we consider
x to be very small and ~ed. Then the terms in the
Jacobian in x', Eqs. (18) and (19), are negligible and
the Jacobian smoothly approaches the pionization limit.
Considering again the analysis of the 8 functions in the
forward production region, for very small x, the limit on
s&' given by y& 0(1) can become very large:

B. Production Regions

In forward production, (—st,) =xs and s„,s,'=0(s),
so we may use Pomeranchuk-pole dominance on

B(s„,s„';t„t))= (s„')y'&'&B(s,/s„';t„t))
=s && &(xz) y'& &B(1+1/z t„'t~). (24)

Since the subenergies s~, s~' are 0(1) in this region, we
cannot use Pomeranchuk-pole dominance or the asymp-
totic symmetry relation on B(s&,s&', t&,t„).Instead we
show that in this region (—u~+m"+y'), which is
0(1), is a function only of x and ky, 2, and this will lead
to scaling of B(s&,s&', t&,t„).From Eq. (12) we have, for
fixed x

s-( 4(kg'+p') '
(—stt+m +p ) =

~

x +
2 4 s

will be at a suKciently high subenergy to use Pomer-
anchuk-pole dominance and

B(si,si', ti, t„)= (s i') y' &'&B(si/s ~', t I,t,)

(P,2+&2q ~y &0&

t 1
B~ 1+ ;«-,t. I (»)

x I E y i
Multiplying this by the other production result, Eq.
(24), we see that the production-region dynamics
smoothly approaches the pionization result, Eq. (22).
We have thus completed the proof of Eq. (4) and shown
that in the multiperipheral model the pionization region
is a smooth limit of the scaling behavior in the produc-
tion region.

V. CONCLUSION

We have presented a proof of scaling in the inclusive
single-particle spectrum based only on the most general
multiperipheral assumption and on Pomeranchuk-pole
dominance at high energies. The experimental ob-
servation of scaling is thus a crucial necessity for the
validity of any multiperipheral model. However, in
order to differentiate between specific multiperipheral
models, it is necessary to calculate the detailed de-
pendence of the spectrum on x and k~' in each of these
models. To this end, we have completed an analytical
study of the predictions of a simple multiperipheral
model which assumes exponential damping in momen-
tum transfers. 6

Pote added iN proof. After the submission of our
paper we received reports of two studies of single
particle distributions in the multiperipheral models from
Bali, Pignotti, and Steele, University of Washington
report (unpublished), and DeTar, Lawrence Radiation
Laboratory report (unpublished). Both studies reach
conclusions similar to ours although they base their
arguments on specific models. Bali, Pignotti, and Steele
use a multi-Regge model with exponential damping in
momentum transfers, similar to our previous work in
Ref. 6, whereas DeTar uses the Chew-Pignotti model
LPhys. Rev. 176, 2112 (1968)$. The chief advantage of
our approach lies in its generality of being applicable
to all multiperipheral models. We would also like to add
that a detailed treatment of the lower limits of sub-
energy intergations in Eq. (19) should explicitly ex-
hibit the effect of the mass of the stable particle. Al-
though this does not affect our conclusions, it does
have important phenomenological consequences. We
would like to thank Professor J. Ball for bringing this
matter to our attention.

or
s&'& (—gi)0(1)
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