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Abstract

Quantum sensing at high pressures using nitrogen-vacancy centers in diamond

by

Satcher Hsieh

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Norman Yao, Chair

Pressure alters all properties of matter. The development of the diamond anvil cell enables
the exploration of high pressure phenomena in tabletop experiments. This thesis introduces
an optical sensing platform based on nitrogen-vacancy color centers embedded into the culet
(tip) of a diamond anvil. The micron-scale spatial resolution and high sensitivity of this plat-
form to stress, magnetic and electric fields opens the door to a hitherto unexplored range
of experiments. We demonstrate the versatility of this platform through several applica-
tions. In the context of stress, we demonstrate imaging of all normal and shear components
of the stress tensor, which enables us to probe the accumulation and dissipation of shear
stresses of chrysotile serpentine (Mg3(Si2O5)(OH)4) undergoing brittle failure. In the context
of magnetism, we demonstrate imaging of vector magnetic fields under gigapascal pressure,
enabling measurement of the α → ϵ transition in elemental iron as well as the complex
pressure-temperature phase diagram of elemental gadolinium. We further extend these mag-
netic imaging capabilities to probe the pressure-induced demagnetization of 4C monoclinic
pyrrhotite (Fe7S8), an iron sulfide mineral found in the Earth’s crust as well as in Martian
and chondritic meteorites. In the context of electric fields, we show that a spectral feature
commonly observed in NV centers originates from the local charge environment of the dia-
mond lattice, and we utilize this understanding to image individual electronic charges with
nanometer precision. We extend this understanding to the NV center orbital excited state,
whose strong coupling to electric fields enables a protocol that enhances measurement sen-
sitivity by several orders of magnitude. Finally, motivated by the sensitivity of NV centers
to electric noise, we theoretically consider polarization fluctuations from polar and dielectric
materials and show that this electric noise encodes valuable information about dielectric
properties over a range of frequencies and length scales.
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2.1 NV centers integrated into a diamond anvil cell. (a) Schematic of the DAC ge-
ometry. Two opposing anvils are compressed by a nonmagnetic steel cell and
cubic boron nitride backing plates (gray). NV centers are initialized and read
out using a 532 nm laser focused to a diffraction-limited spot (∼600 nm) which
is scanned across the culet surface. (b) The DAC sample chamber is defined
by the gasket-anvil assembly (diagram not to scale); it is loaded with the sam-
ple of interest, a pressure-transmitting medium, and a single ruby microsphere
(pressure calibration). A ∼50 nm layer of NV centers is embedded into the di-
amond anvil directly below the sample chamber. (c) Stress (top) both shifts
and splits the |ms = ±1⟩ sublevels at first order; in particular, the shifting is
characterized by Πz = α1(σxx + σyy) + β1σzz, and the splitting is characterized
by Π2

⊥ = [α2(σyy − σxx) + β2(2σxz)]
2 + [α2(2σxy) + β2(2σyz)]

2. An axial magnetic
field (bottom) splits the |ms = ±1⟩ sublevels at first order, but a transverse mag-
netic field leads to shifts only at second order. (d) Comparison of high pressure
magnetometry techniques. We define the spatial resolution as a characteristic sen-
sor length scale over which the sample magnetism is integrated. Estimates for our
current work are shown assuming a sample suspended in a pressure medium 5 µm
away from the culet (black open circle). We project that by exfoliating a sample
directly onto the culet surface and using 5 nm implanted NV centers, the dis-
tance from the sample can be significantly reduced, thus improving both dipole
precision and spatial resolution (open red circles). Inductive methods (pickup
coils [green diamonds] and SQUIDs [blue squares]) integrate the magnetization
of a sample over the coil’s area; to this end, the diameter associated with the coil
is taken as the “spatial resolution” although in principle, the sample inside the
chamber can be significantly smaller. In contrast, high energy photon scattering
techniques (x-ray magnetic circular dichroism [orange hexagons], and Mössbauer
spectroscopy [pink triangles]) probe atomic scale magnetism; the length scale for
these methods is shown here as the spot size of the excitation beam. . . . . . . . 19

2.2 Full tensorial reconstruction of the stresses in a (111)-cut diamond anvil. (a) Spa-
tially resolved maps of the loading stress (left) and mean lateral stress (right),
σ⊥ = 1

2
(σXX +σY Y ), across the culet surface. In the inner region, where the culet

surface contacts the pressure-transmitting medium (16:3:1 methanol/ethanol/water),
the loading stress is spatially uniform, while the lateral stress is concentrated to-
wards the center; this qualitative difference is highlighted by a linecut of the two
stresses (below), and reconstructed by finite element analysis (orange and purple
dashed lines). The black pixels indicate where the NV spectrum was obfuscated
by the ruby microsphere. (b) Comparison of all stress tensor components in the
fluid-contact region at P = 4.9 GPa and P = 13.6 GPa. At P = 13.6 GPa,
the pressure-transmitting medium has entered its glassy phase and we observe a
spatial gradient in the loading stress σZZ (inset). . . . . . . . . . . . . . . . . . 20
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2.3 Imaging iron’s α ↔ ϵ phase transition. Applying an external magnetic field
(Bext∼180 G) induces a dipole moment in the polycrystalline iron pellet which
generates a spatially varying magnetic field across the culet of the diamond anvil.
By mapping the ODMR spectra across the culet surface, we reconstruct the local
magnetic field which characterizes the iron pellet’s magnetization. (a-c) Compari-
son between the measured ODMR spectra (dark regions correspond to resonances)
and the theoretical resonance positions (different colors correspond to different
NV crystallographic orientations) across vertical spatial cuts at pressures 9.6 GPa,
17.2 GPa and 20.2 GPa, respectively (16:3:1 methanol/ethanol/water solution).
(d-f) Map of the measured energy difference of a particular NV crystallographic
orientation (blue lines in (a-c)). Black pixels correspond to ODMR spectra where
the splitting could not be accurately extracted owing to large magnetic field gra-
dients. (g-i) Theoretical reconstruction of the energy differences shown in (d-f).
Data depicted in (a-c) are taken along the thin black dashed lines. (j) Measured
dipole moment of the iron pellet as a function of applied pressure at room tem-
perature, for both compression (red) and decompression (blue). Based on the
hysteresis observed (∼6 GPa), we find the critical pressure Pc = 13.6± 3.6 GPa,
in excellent agreement with previous studies [318]. . . . . . . . . . . . . . . . . . 22

2.4 Magnetic P -T phase diagram of gadolinium. A ∼ 30 µm×30 µm×25 µm polycrystalline Gd foil

is loaded into a beryllium copper gasket with a cesium iodide pressure medium. An external

magnetic field, Bext∼120 G, induces a dipole field, BGd, detected by the splitting of the NVs

(right inset, (B)). (a) The FM Curie temperature TC decreases with increasing pressure up

to ∼ 4 GPa. NV splittings for three P -T paths, labeled by their initial pressure P0, are

shown. The P -T path for run [a] (P0 = 0.5 GPa) is shown in (c). The cool-down (blue)

and heat-up (red) of a single P -T cycle shows negligible hysteresis (inset). (b) If a P -T path

starting in hcp is taken into the dhcp phase (at pressures ≳ 6 GPa) [165], the FM signal is

lost and not reversible, as shown in (c) (path [b]). Upon cool-down (dark blue), we observe the

aforementioned Curie transition, followed by the loss of FM signal at 6.3 GPa, 130 K. But upon

heat-up (red) and second cool-down (light blue), the FM signal is not recovered. When the

pressure does not go beyond ∼ 6 GPa, the FM signal is recoverable (left inset). (c) Magnetic

P -T phase diagram of Gd. At low pressures, we observe the linear decrease of TC (black line)

with slope −18.7 ± 0.2 K/GPa, in agreement with previous measurements [165]. This linear

regime extends into the Sm-type phase (black dashed line) due to the slow dynamics of the hcp

→ Sm-type transition [165]. When starting in the Sm-type phase, we no longer observe a FM

signal, but rather a small change in the magnetic field at either the transition from Sm-type to

dhcp (orange diamonds) or from PM to AFM (green triangle), depending on the P -T path. The

bottom two phase boundaries (black lines) are taken from Ref. [287]. (d) At ambient pressure,

we observe a Curie temperature, TC = 292.2± 0.1 K, via DC magnetometry (blue data). Using

nanodiamonds drop-cast onto a Gd foil (and no applied external magnetic field), we find that

the depolarization time (T1) of the NVs is qualitatively different in the two phases (red data).

T1 is measured using the pulse sequence shown in the top right inset. The T1 measurement on

another nanodiamond exhibits nearly identical behavior (bottom inset). . . . . . . . . . . . 24
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2.5 (a) Schematic of the setup explicitly depicting the platinum foil used for mi-
crowave excitation. The gasket has been cross sectioned for visual clarity. (b)
Schematic from the perspective of the objective lens. The anvil has been omitted
for visual clarity. Diagrams are not to scale. . . . . . . . . . . . . . . . . . . . . 27

2.6 Scaling of magnetic field precision as a function of total integration time on a
single resonance. Right axis corresponds to standard deviation of center frequency
fitting. Solid line corresponds to a fit to AT−1/2 where A is the sensitivity reported
in Section 2.4 and T is the total integration time. Dashed line corresponds to the
scaling predicted by Eq. 2.1. The experimental accuracy saturates for T ≳ 100 s
due to systematic noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Stress reconstruction procedure applied to the (111)-cut diamond at 4.9 GPa.
(a) A typical ODMR spectrum with the resonances corresponding to each NV
orientation fit a pair of Lorentzian lineshapes. (b) A linecut indicating the fitted
resonance energies (colored points) superimposed on the measured spectra (grey
colormap). (c) 2D maps of the shifting (Πz,i) and splitting parameters (Π⊥,i) for
each NV orientation across the entire culet. . . . . . . . . . . . . . . . . . . . . 35

2.8 Interplay between stress and random electric fields. (a) Theoretical curve (blue)
for the total splitting in the presence of stress and electric fields, Eq. (2.16). We
compare this to a quadratic sum (red). (b-c) Measured splitting parameter (blue)
for uniaxial pressure applied to a (110)-cut and (100)-cut diamond, reprinted
with permission from [29]. We fit the data using (i) a linear function (orange),
Π̃⊥ = ΠE,⊥ + ΠS,⊥, and (ii) the aforementioned theoretical curve, Eq. (2.16)
(green). Both fits include two free parameters: ΠE,⊥ and a = ΠS,⊥/P . We report
the best-fit value for the latter parameter in the inset. . . . . . . . . . . . . . . . 38

2.9 Stress tensor reconstruction of (111)-cut diamond at (a) 4.9 GPa and (b) 13.6
GPa. In the former case, we reconstruct both the inner region in contact with
the fluid-transmitting medium, and the outer region in contact with the gasket.
In the latter case, we reconstruct only the inner region owing to the large stress
gradients at the contact with the gasket; note that the black pixels in the center
indicates where the spectra is obscured by the ruby flourescence. Both pressures
exhibit inward concentration of the normal lateral stress (σXX and σY Y ). In
contrast, the normal loading stress is uniform for the lower pressure and spatially
varying at the higher pressure, indicating that the pressure medium has solidified. 40

2.10 Stress tensor reconstruction of (110)-cut diamond at 4.8 GPa pressure. Analogous
to the (111)-cut at low pressure, we observe an inward concentration of lateral
stress and a uniform loading stress in the fluid-contact region. . . . . . . . . . . 41

2.11 (a) Diamond geometry, (b) anvil tip with distribution of the applied normal stress,
(c) distribution of the applied shear stress. Normal stress σZZ at the culet and
zero shear stress σRZ along the pressure-transmitting medium/anvil boundary
(r ≤ 47 µm) are taken from experiment. Normal and shear contact stresses along
all other contact surfaces are determined from the best fit of the mean in-plane
stress distribution σ⊥ = 0.5(σRR + σΘΘ) to experiment (Fig. 2.2(a) and Fig. 2.12). 42
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2.12 (a) Distribution of applied normal stress σZZ and the mean in-plane stress σ⊥
along the culet surface of the diamond from the experiment and FEM simulations.
(b) Distribution of the mean in-plane stress σ⊥ (experimental and simulated) as
well as the simulated radial σRR and circumferential σΘΘ stresses along the culet
surface of the diamond. Simulations conducted and analyzed by Mehdi Kamrani
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2.13 Distribution of applied normal and shear stress along the lateral surface of the
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2.16 Measured map of the splittings of one of the NV orientations (left). Near the top
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3.1 Example traces and seismic source diagram for Serpentine at high pressure. (a)
A photograph of the experimental setup with labels for the sensors shown color-
coded with their respective traces. (b) An example first motion signal trace
representative of the signal quality across all data sets. (c) Top-down illustration
of a focal sphere projection. In-Plane sensors P1,2, and 3 and Axial Sensor A
are shown in their relative positions and are color coordinated to the traces they
record. All sensors are coupled orthogonally to the triangular pressure cell, with
P1, P2, and P3 organized radially, and the Axial sensor attached to the bottom,
near the compression axis. The axial sensor and its polarity observation are
shown in dashed lines to indicate they are observing from the opposite side of the
diamond cell as the In-plane sensors. Each sensor shows a black plus sign if the
trace indicated the sample was in compression, and a hollow circle if the trace
indicated the sample was in tension. Due to scarcity of sensors, the proposed
focal spheres are only roughly constrained, with several degrees of uncertainty
in the nodal lines of these spheres. Additional possible nodal lines are shown
with thin black lines. (d) An illustrated side view looking along in-plane sensor
3 is shown in the right. An example focal mechanism appropriate for the first
motion is shown in the cross sectional plane, approximately in the location of the
sample chamber. The axis of compression is shown with black arrows. Additional
possible nodal lines are omitted to improve legibility. Data collected and analyzed
by Thomas Smart and Jes Parker. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Acoustic emission cluster plotted with example first motions. (a) Exemplary
acoustic emission cluster at 12 GPa. Beneath each waveform in the cluster we
show a colored bar displaying the first motion type observed for the waveform.
(b) An exemplary acoustic waveform shows the millisecond timescales typical of
our signals. (c)-(g) Example traces of each of the first motion types are shown
color coordinated to the colored bars under the emission cluster. First motions
types are shown with their focal mechanisms as insets as in the side view shown in
Figure 3.1. Signals of a given first motion type occur successively with minimum
lag times of 3-5 milliseconds. First motions were not discernible for signals with
amplitudes too small to distinguish them from background noise or signals that
truncated the coda of an earlier signal. Data collected and analyzed by Thomas
Smart and Jes Parker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 X-ray diffraction intensity versus 2 theta for Serpentine on compression and de-
compression between 0 and 24.4 GPa. The pressure for each diffraction pattern
is listed on the right, with pressure steps that yielded acoustic emissions outlined
by the dashed box. Patterns taken on decompression are shown in red. Miller
indices are shown for the ambient pressure above the ambient pressure diffraction
pattern. Data collected and analyzed by Thomas Smart. . . . . . . . . . . . . . 67
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3.4 (a) Example map of shear stresses taken at 8.7 GPa on compression. Large cir-
cular feature is the sample chamber and is surrounded by the rhenium gasket.
The dipoles visible in the sample are magnetic noise introduced by magnetite im-
purities in the natural serpentine sample. (b) Shifting parameter D vs pressure
measured by ruby florescence. Open circles represent data taken on compression
and closed circles represent data taken on decompression. Arrows shown repre-
sent the range of values in pressure and D values that we observe, measured from
several points across the sample chamber. We expect that the uncertainty in our
fits for the shift parameter D are .03 MHz which is smaller than the symbols
shown. Uncertainties of pressure from Ruby fluorescence are 0.05-0.1 GPa. Blue
and green rectangles represent pressure steps where we observed acoustic emis-
sions during increase (or decrease) of pressure. (c)-(d) We show shear stresses vs
pressure as determined by ruby fluorescence. Data are from the same experiment
as those shown in (a) and (b). Red arrows show the chronological sequence of
data points and guide the eye through the accumulation and dissipation of shear
stresses. Blue and green rectangles represent pressure steps where we observed
acoustic emissions during increase (or decrease) of pressure. Uncertainties in the
measured shear stresses are estimated to be ∼0.03 GPa. . . . . . . . . . . . . . 68

3.5 First motion types with their respective focal spheres are shown. As in Figure 3.1,
Signal Trace) shows an example first motion signal trace is shown. this signal
is representative of the average signal quality across our data set. Focal sphere,
Axial View) Shows a top-down illustration of a focal sphere projection. In-Plane
sensors P1,2, and 3 and Axial Sensor A are shown in their relative positions and
are color coordinated to the traces they record. All sensors are coupled orthogo-
nally to the triangular pressure cell, with P1, P2, and P3 organized radially, and
the Axial sensor attached to the bottom, near the compression axis. The axial
sensor and its polarity observation are shown in dashed lines to indicate they
are observing from the opposite side of the diamond cell as the In-plane sensors.
Each sensor shows a black plus sign if the trace indicated the sample was in com-
pression, and a hollow circle if the trace indicated the sample was in tension. Due
to scarcity of sensors, the proposed focal spheres are only roughly constrained,
with several degrees of uncertainty in the nodal lines of these spheres. Side View)
An illustrated side view looking along in-plane sensor 3 is shown in the right.
An example focal mechanism appropriate for the first motion is shown in the
cross-sectional plane, approximately in the location of the sample chamber. The
axis of compression is shown with black arrows. Data collected and analyzed by
Thomas Smart and Jes Parker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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3.6 Four example acoustic emission signals and their first motions (inserts) are shown.
These are 4 signals each with different first-motion character and are average sig-
nals that represent the quality of our data well. Duration of the full acoustic
waveforms are proportional to first-motion amplitude in all experiments demon-
strating that our system has a high Q factor. Signal durations vary between
0.05-1ms, longer than the resonances expected from our sample chamber (10−7-
10−6 s), though in accord with expected resonance times of the experimental ap-
paratus [300, 234]. Peak waveform amplitudes vary between 1 and 15 mV. Data
collected and analyzed by Thomas Smart and Jes Parker. . . . . . . . . . . . . . 72

3.7 Comparison of the acoustic transit and thermal diffusion timescales in a typical
rock, by distance. Calculation by Thomas Smart. . . . . . . . . . . . . . . . . . 74

4.1 Experimental setup. (a) Schematic of the high pressure setup. Two opposing
diamond anvils are compressed between cubic boron nitride backing plates (gray).
NV centers are interrogated by a 532 nm laser; the resulting fluorescence is imaged
onto a charge-coupled-device camera. (b) The sample chamber, defined by a
laser-drilled hole in the rhenium gasket, contains a ruby microsphere, a single
pyrrhotite grain, and a cesium iodide pressure-transmitting medium. NV centers
are prepared ∼ 500 nm below the sample chamber. (c) Reflected light image
of the sample chamber viewed through the bottom anvil. (d)-(e) Stress maps
near the pyrrhotite sample (dashed white outline) measured at Pruby = 5.8GPa.
Both the normal stress along the loading axis, σZZ , and the shear stress, σshear ≡√

σ2
XZ + σ2

Y Z + σ2
XY , reveal micron-scale gradients that highlight the complexity

of the applied stress environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Magnetic sensing at high pressure. (a)-(c) Magnetic maps of the stray field pro-

duced by the pyrrhotite sample under pressure and an applied field, Bext ∼ 50 G.
Maps correspond to the field projection along a particular (100) crystallographic
orientation, which is 54◦ from the culet normal direction. Black pixels correspond
to areas where the NV response is indeterminate due to exceedingly large field
gradients. As pressure increases, the stray fields produced by the sample are di-
minished, corresponding to a reduction in the SIRM. (d)-(e) Measured SIRM at
room temperature under both compression (red dashed lines) and decompression
(blue dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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5.1 Typical optically-detected magnetic resonance (ODMR) spectrum of an electron-
irradiated and annealed Type-Ib diamond sample (S1) at zero magnetic field. The
spectrum exhibits heavy tails which cannot be reproduced by either a double
Lorentzian or Gaussian (orange fit) profile. The blue theory curve is obtained
via our microscopic charge model. (Left inset) A typical zero-field spectrum
for a single NV center shows only a single resonance. (Right inset) Schematic
depicting an equal density of positive (e.g. N+) and negative (e.g. NV) charges,
which together, create a random local electric field at each NV center’s position.
(b) Nanoscale localization (∼5 nm) of a single positive charge via dark-state
spectroscopy of an isolated NV center. The shaded regions indicate the probable
location of the charge with darker indicating a higher likelihood. Percentages
shown correspond to the confidence intervals of the dark/light region, respectively.
(c) Analogous localization of a more proximal charge defect (∼2 nm) for a different
NV center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 ODMR spectra at zero magnetic field for (a) a Type-Ib untreated diamond sam-
ple (S5) and (b) a Type-IIa electron-irradiated and annealed sample (S3). The
spectra portray the two qualitative regimes one expects based upon the aver-
age electric field strength as shown schematically in the right panel of Fig. 5.3d.
The blue theory curve is obtained via our microscopic charge model. (inset) The
spectrum for S3 at a magnetic field ≈ 45 G exhibits three identical hyperfine
resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Both strain and electric fields lead to (a) shifting Πz and (b) splitting 2Π⊥ of
the |ms = ±1⟩ manifold. (c) When averaged over an ensemble of NV centers,
random local strain fields lead to a single broad spectral feature (at large strain).
(d) In contrast, random local electric fields lead to two distinct spectral regimes:
at small electric fields, the center hyperfine resonance splits, leading to a total of
four resolvable features (S3); at large electric field, one obtains the characteristic
split resonance seen in typical high density NV ensembles (S1, S5). . . . . . . . 88

5.4 Charge localization via dark-state spectroscopy. (a) Single NV ODMR spectra
(untreated Type-Ib diamond) for two different microwave polarizations, ϕMW,
depicting the reversal of the split-peak imbalance. The data correspond to the
localized charge shown in Fig. 5.1b. (inset) Top view through the NV-axis (ẑ),
where ϕE and ϕMW are defined with respect to x̂ (along a carbon-vacancy bond).
(b) Analogous split-peak imbalance data corresponding to the localized charge
shown in Fig. 5.1c. (c) By changing the microwave polarization, ϕMW, one can
directly control the coupling strength between the |0⟩ and |±⟩ states. (d) Mea-
suring the change in the imbalance as a function of ϕMW allows one to extract the
orientation of the electric field. Dashed lines indicate the polarizations plotted in
(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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5.5 Experimental Apparatus: A 532 nm laser shuttered by an AOM light switch
excites the NVs, both for state preparation and read-out. A 4f telescope per-
mits the galvonometer to scan the surface of the diamond and a piezo-mounted
objective controls the depth of the focal plane. The objective lens focuses the
excitation beam and collects fluorescence. Microwave fields are delivered by a
magnet wire (as pictured) or a coplanar waveguide. Inset: Magnet wire stretched
onto an optical rotation mount hovers over the surface of the diamond . . . . . 93

5.6 Pulse sequence for ODMR measurement. . . . . . . . . . . . . . . . . . . . . . . 94
5.7 g2(τ) measurement on NV1: the extracted g2(0) = 0.17+0.05

−0.03 < 0.5 definitively
confirms it is a single NV center. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Distributions for the transverse electric field component, Π⊥ = d⊥E⊥, at vari-
ous charge densities. The distributions were generated by the charge sampling
procedure described in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Ensemble fitting procedure applied to the treated samples: (a) Ib treated (S1),
(b) Ib treated (S2), and (c) IIa treated (S3). The main plots show the least-square
residuals as a function of ρs (left) and ρc (right) under large (∼ 25-50 G) and
zero applied field, respectively. We identify the best-fit values for ρs, ρc based on
the minimum residual, and we estimate their error from the range of paremeters
whose residuals lie within 10% of the minimum (blue shaded regions). The insets
depict the best-fit spectra (blue curve), along with the experimental data (black
points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10 Fitting procedure applied to the untreated samples: (a) Ib untreated (S4), (b) Ib
untreated (S5), and (c) IIa treated (S6). See caption of Fig. 5.9 for description. 99

5.11 a) Top view of lab frame, X̂, Ŷ , and Ẑ axes are defined as shown. Wire is
displayed at an angle ϕWire relative to X, and r is the distance between the wire
and the NV. b) Side view of lab frame. With ϕWire = 0, when the oscillating

current I⃗ flows in the direction shown, we calculate the direction of the magnetic
field vector B⃗ at a height h below the wire as shown. . . . . . . . . . . . . . . . 103

5.12 Spectra taken with and without a magnetic field applied along the NV z-axis. a)
Left: zero-field spectrum for NV1 with microscopic model fit; Right: spectrum
with an applied magnetic field and a fit to 3 Lorentzians. b) Left: zero-field
spectrum for NV2 with microscopic model fit; Right: spectrum with an applied
magnetic field. The fit function is two sets of three Lorentzians. The Lorentzians
in each set are separated by the 14N hyperfine splitting. The sets are split from
each other by a fit parameter for the 13C hyperfine interaction. . . . . . . . . . 104

5.13 Position of the six frequencies (red) considered when computing the imbalance.
Instead of measuring full-spectra, we take data points closely spaced at the lo-
cation of each of the two inner resonances and two data points far from the
resonances, so as to measure the baseline signal. . . . . . . . . . . . . . . . . . 105
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5.14 a) Two spectra from NV2 with fit from the microscopic model at different values
of ϕMW. The dashed vertical line indicates the fit center frequency (2.8706 GHz).
We estimate the imbalance by compare the integral on either side of the center
frequency. b) Resultant imbalance sinusoid, from where we extract ϕE = 236(15)◦.105

6.1 (a) Resonant ODMR at varying temperatures with drive detuning ∆ν ≈ 156 GHz below

the ZPL. For T ≲ 45 K, where the optical transition linewidth is smaller than ∆ZFS

[114], we observe the emergence of sharp positive-contrast peaks [14]. Our numerical

charge-based model (gray lines) quantitatively reproduces the experimental spectra.

(Inset) The lineshape of the off-resonant ODMR as a function of δ, the microwave

detuning from ∆ZFS, at room temperature (dark green) and 5 K (light green) exhibits

no temperature dependence. Resonant and off-resonant ODMR were performed at 0

magnetic field. Error bars are smaller than the marker size. (b) NV level structure

in the presence of internal electric fields. The wavelength of the ZPL transition is

approximately 637.2 nm, and resonant (off-resonant) ODMR is performed with an

excitation wavelength of 636 − 639 nm (532 nm). The perpendicular field, E⊥ =√
E2

x + E2
y , splits the 3E manifold, while the parallel field, E∥ = Ez, shifts it (shaded

blue region); the 3E fine structure (not shown) is much smaller than these effects. Only

perpendicular fields, which split |ms = ±1⟩ by χe
⊥E⊥, strongly affect the ground state

[328]. Internal electric fields determine whether a given NV is: (i) resonantly driven

(favored at small E), resulting in positive-contrast peaks, or (ii) off-resonantly driven

(favored at large E), resulting in a negative contrast ODMR lineshape. . . . . . . . . 110
6.2 (a) Resonant ODMR spectra as a function of the detuning below ZPL, ∆ν, taken

under a 20G magnetic field perpendicular to the NV axis at 8 K. The positive-contrast

peaks in the spectra are characterized by a splitting, Π⊥, and a linewidth Γg. Gray

lines correspond to our numerical model. Error bars are smaller than the marker

size. (b) Π⊥ as a function of ∆ν. In the small detuning region (light green), the

highest-probability electric-field sphere (blue) intersecting the resonant cone (red) is

of radius E0 (in fact, the highest-probability electric-field sphere (i.e. that of radius

E0) will actually intersect the resonant cone twice, leading the to the expectation of

two resonant peaks). However, the width of P (E) around E0 broadens these features,

resulting a single, slightly asymmetric peak. In the large detuning region (light yellow),

the radius of the highest-probability sphere that interesects the cone depends linearly on

∆ν. The red dashed line indicates the limit to Π⊥ imposed by the hyperfine interaction.

By fitting our numerical model to this data (gray line), we extract the excited-state

electric-field susceptibilities. (upper inset) The probability distribution P (E) exhibits

a peak at E0, which is determined by the charge density. . . . . . . . . . . . . . . . 114
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6.3 (a) Comparison of sensitivities for various NV-based DC electric field sensing meth-

ods. Teal region: estimated sensitivity using established NV ensemble electrometry

techniques at an illumination volume of 0.1 mm3. The light-blue triangle marks the

sensitivity achieved in [60]; the light-blue square marks the optimal sensitivity for this

method based on our scaling arguments. Additional demonstrations of NV electrom-

etry include [237, 295, 147, 294, 203]. Orange (yellow) region: estimated sensitivity

for our optically-enhanced protocol assuming an excited-state broadening of 10 GHz

(100 GHz), an illumination volume of 0.1 mm3 (0.015 mm3), and a temperature of

≲ 45 K (≲ 100 K). Red star (diamond): estimated sensitivity for our sample at low

temperature (for the microwave-free variant of our protocol at 300 K). For our sam-

ple, we take the paramagnetic broadening to be the experimentally measured value

∼ 1.7 MHz (see Section 6.2.10). For all other other sensitivity estimates, we use a

density-dependent model for the paramagnetic ODMR linewidth, assuming a natural

abundance of 13C [97, 28]. Dashed lines indicate asymptotic scaling of sensitivities.

(b) Measured fluorescence as a function of ∆ν (blue dots) and simulated fluorescence

(dashed lines, see Section 6.2.10 for details). An external field of strength δE results

in a change in overall fluorescence. (c) Measured peak shift of the resonant ODMR

spectra (pink, purple dots) and simulated peak shift (dashed lines) for an external field

of strength δE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 (a) Experimental setup. Both green and red lasers can be used for NV excitation.

(b) Comparison of analytic (solid line) and Monte Carlo (histogram) models of
P (E). They are in close agreement, particularly near the peak of P (E). (c)
Off-resonant (left) and resonant (right) excitation schemes. Under resonant ex-
citation, an effective dark state (|0⟩ above) results in increased fluorescence on
microwave resonance. (d) Optical transition linewidth (Γe) as a function of tem-
perature. Data reproduced from [114]. In the green-shaded region, Γe > ∆ZFS

and no inverted contrast is observed; in the red-shaded region Γe < ∆ZFS and
resonant excitation yields inverted contrast ODMR. . . . . . . . . . . . . . . . . 120

6.5 Resonant ODMR spectra at varying optical detuning; shaded background corre-
sponds to detunings above ZPL, while white background corresponds to detunings
below ZPL. The spectra were taken with a 20 G magnetic field applied in the
plane of the (111)-cut diamond (i.e. perpendicular to one NV axis). Smaller
peaks, split ≳ 20 MHz from the center frequency, correspond to microwave reso-
nance with other NV groups. Other presentations of these spectra restrict focus
to the central group at detunings below ZPL. . . . . . . . . . . . . . . . . . . . 121
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6.6 (a) Resonant ODMR spectrum with optical drive detuned 190 GHz below ZPL
and magnetic field applied in the plane of the (111)-cut diamond. We focus on
the lineshape of an NV sub-ensemble experiencing a large magnetic field projec-
tion along its axis. Solid blue and orange traces are triple-Lorentzian lineshapes
with widths 1.4 MHz and 2.0 MHz respectively; these are used to constrain the
magnetic broadening, κB. (inset) The full resonant ODMR spectrum. The peaks
shown in the main panel are located in highlighted box. (b) Predicted off-resonant
ODMR splitting as a function of charge density ρ and κB. The white-dashed con-
tour indicates the region for which the predicted splitting value is consistent with
the room-temperature spectrum [Fig. 6.1(a), inset]. This region, coupled with
the extracted range for κB, is used to constrain the acceptable values of ρ. We
extract susceptibilities for three pairs (ρ, κB), indicated by the colored x-markers,
spanning this range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 (a) Experimental Π⊥ (dark blue) and model (gray) as functions of ∆ν. The fit
yields χ2

ν = 0.87 (b) ∆χ2 as a function of χe
∥ and χe

⊥. The red-dashed contour

denotes the 2σ confidence region. (c) χe
⊥ and χe

∥ as functions of ρ. This quan-
tifies the main source of systematic error in our analysis. Errors are relative to
{χ0

⊥, χ
0
∥} = {1.43, 0.68} MHz/(V/cm) . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Resonant ODMR linewidth Γg as a function optical detuning. Error bars reflect
the difference in the FWHM of Lorentzian fits of the left and right peaks of
experimental data. The same analysis applied to the spectra generated by our
model yields the gray curve. Although the model accounts for the general trend
of increasing Γ at large detuning, there are clear qualitative differences between
the experiment and theory. Most notably, the experiment is broader at moderate
detunings (200−600 GHz) than the model would suggest. This could be because
the true electric field distribution decays more slowly than the random charge
model predicts. The effects of strain may also partially account for the discrepancy.127
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6.9 (a) Π⊥ as a function of ∆ν for various ρ. Dash-dot vertical lines indicate the
optimal operating ∆ν for our sensing proposal. In particular, we choose the
smallest ∆ν for which Π⊥ depends linearly on ∆ν. This maximizes χeff and the
resonant fluorescence. (b) Fluorescence as a function of ∆ν from experiment
(brown) and theory (solid blue). The dash-dot vertical line indicates the optimal
operating ∆ν for our sample. We estimate Γe ≈ 1 THz, ignoring asymmetry
(dashed orange lines). (c) Contrast of resonant ODMR (with a 20 G applied
magnetic field perpendicular to the NV axis) as a function of ∆ν. The red marker
and dash-dot line indicates the contrast at the optimal operating detuning. Since
magnetically split groups provide additional background for the central peak, the
maximum CW ODMR contrast C0 is a factor 8/3 larger than what is observed
(see Section 6.2.10.1) [29]. (inset) Experimental resonant ODMR at the optimal
operating ∆ν. (d) Electric field bias required for our sensing procedure as a
function of ρ assuming κ0

e = 10 GHz (blue) and κ0
e = 100 GHz (orange). The

blue and red diamonds mark the bias field required at optimal NV densities. . . 133
6.10 (a) Schematic of qubit sensing experiment. A probe qubit (top right), with split-

ting ωq, is a distance d away from a polar or dielectric material. Fluctuations in
the material’s dipoles lead to electrical noise at the location of qubit causing the
qubit to relax from |1⟩ to |0⟩ at a rate 1/T1. The qubit is sensitive to fluctuations
at frequency ωq and wavevectors near 1/d (see filter on top left). (b) Regimes of
applicability of qubit sensors and other probes including microscopy techniques
[atomic-force, piezoresponse-force, and transmission electron microscopy (AFM,
PFM, and TEM)], spectroscopy techniques [x-ray photon correlation, x-ray lin-
ear dichroism, and second harmonic generation spectroscopy (XPCS, XRLD, and
SHG)] and electrical transport techniques [227, 269, 133, 131, 345, 128, 258].
Techniques that often require high intensity light sources are marked with a ∗. 140

6.11 (a, b) Schematic of ionic crystal in the (a) PE phase and the (b) FE phase. (c, d)
Behavior of 1/T1 across a relaxor ferroelectric for disorder ∆ = 0.0, 0.25, 1.0 (see
Panel (d) for legend). The presence of disorder causes a polarization-carrying
mode to open a gap which can drastically change the response of qubit sensors.
(e) Numerical estimate for 1/T sig

1 compared to intrinsic relaxation rate of the
NV qubit as a function of frequency, ω, and applied magnetic field, Bz. 1/T1 is
depicted for temperatures T = 4 K, 50 K, 100 K (shown in blue, purple, and red
respectively) and distances d = 30, 50, 70 nm (depicted as shading from dark to
light). For all parameters shown, the relaxation rate is above experimental limits
of 1/T1 determined in Ref. [143]. . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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Cχ
√
R
, where P is a lineshape dependent
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Chapter 1

Introduction

Those who have the highest-resolution tools in science can ask the most impor-
tant questions, and those that have such tools first can answer the important
questions first. Instrumentation gives one the competitive edge and underlies
almost everything that goes on in science.

Mark Wrighton, 2000 Ullyot Public Affairs Lecture

Pressure, as a thermodynamic variable, unlocks an extraordinary range of tunability
for the physical and chemical properties of matter. The effect of pressure on water is an
illustrative example: in daily life, we commonly experience water in one of three phases, yet
in combination with temperature, water under pressure exhibits more than thirty distinct
phases [217].

The diamond anvil cell (DAC) is the preëminent apparatus for achieving static high
pressures. By compressing a sample between two opposing diamond anvils, pressures greater
than 100GPa are routinely generated. Just in the last few decades, high pressure experiments
using DACs have identified a room-temperature superconductor, quantum criticality in an
elemental metal, and the synthesis of metallic hydrogen [303, 162, 80].

This thesis introduces a novel quantum sensor embedded within the tip of a diamond anvil
whose high sensitivity and micron-scale spatial resolution enables a range of experiments
that are difficult or impossible with conventional high pressure techniques. In this Chapter,
we introduce this sensor, the so-called nitrogen-vacancy (NV) center in diamond, and its
coupling to stress, magnetic, and electric fields which enables its use as a sensor. We further
introduce the DAC and a survey of its associated sensing technologies, focusing on two classes
of sensors: those used to quantify the stress environment in the sample chamber and those
used to measure magnetism of samples under pressure.

In Chapter 2, we demonstrate the operation of our sensing platform at high pressure.
We propose and utilize a protocol to measure the complete stress tensor and use this to
constrain finite element simulations of the complete stress tensor distribution within the
diamond anvil. Furthermore, we demonstrate magnetic imaging and use this to measure
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the pressure-induced α → ϵ transition in elemental iron as well as the pressure-temperature
phase diagram of gadolinium. Finally, we introduce a magnetic noise spectroscopy modality
which offers a complementary perspective to d.c. magnetometry.

In Chapter 3, we apply our sensing platform to the domain of geoscience. Specifically,
we consider the amorphization of chrysotile serpentine, which has implications for the mech-
anisms underpinning deep-focus earthquakes. We use a truncated stress sensing protocol
to image the shear stresses within the sample chamber and show that they are consistently
reduced following an amorphization event.

Along the same geoscientific vein, Chapter 4 applies our magnetic imaging technique
to the study of pyrrhotite, an iron sulfide mineral whose strong magnetic remanence likely
contributes significantly to Martian crustal magnetization. We report the demagnetization
of a single micron-scale grain of pyrrhotite under pressure and show that its remanence
completely revives upon decompression, which has implications on the viability of pyrrhotite-
bearing meteorites to carry remanence.

An exhaustive understanding of our sensor is critical to the sensing of external signals.
To this end, in Chapter 5, we step away from external stimuli and turn inward to the
diamond host itself. Specifically, we consider a spectral feature in the NV center magnetic
resonance response that is generically found in diamond samples prepared with high defect
densities. We demonstrate that the feature originates from the local charge environment
surrounding the NV centers, and we use this understanding to demonstrate imaging of
individual electronic charges with nanometer precision.

In Chapter 6, we utilize the understanding of the electric field sensitivity developed in
Chapter 5 along two fronts. Firstly, we extend the effect of the local charge environment to
the NV orbital excited state. Besides leading to fundamental insights (including an estimate
of the excited state electric field susceptibility), these considerations lead us to propose an
electrometry protocol that is two orders of magnitude more sensitive than existing state-of-
the-art defect sensing methods. Secondly, we propose the use of the NV center’s T1 lifetime
as a probe of electric noise. We contextualize this protocol by theoretically considering the
electric field noise emanating from polarization fluctuations of polar and dielectric materials
and show how this enables access to frequencies and length scales that are challenging to
probe through other means.

1.1 The nitrogen-vacancy center in diamond

A vast body of work introduces the level structure and photophysics of the NV center in great
detail. The curious reader is encouraged to consult any of the following excellent references
[224, 62, 267]. In this Chapter, I will briefly review this work with an emphasis on quantum
sensing applications at high pressure.

The NV center is an atomic defect in diamond in which two adjacent carbon atoms are
replaced by a nitrogen atom and a lattice vacancy. Its discrete energy levels are situated
within the 5.5 eV band gap of diamond (Figure 1.1). The defect is commonly found in either
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Figure 1.1: (a) Band structure of diamond and location of NV− levels. (b) Schematic
depiction of an NV center. Gray circles represent carbon atoms; blue circles represent
substitutional nitrogen atoms; dashed circles represent vacant lattice sites. (c) Photograph of
a diamond prepared with a high density of NV centers, which leads to strong red fluorescence.
Photo credit: Noah Berger

neutral (NV0) or negatively (NV−) charged states, with a positive charge state accessible via
electrical gating [264, 85]. NV0 exhibits a spin-1

2
electronic ground state, while NV− exhibits

a spin-1 ground state of technological interest due to its ability to be optically polarized
even at room temperature. For the remainder of this thesis, we will refer to NV− as the NV
center.

1.1.1 NV level structure

The four dangling bonds around the NV center (denoted σ1, σ2, and σ3 for the carbon
bonds and σN for the nitrogen bond) can be used to represent the single electron orbitals
that comprise the defect level structure. To determine the appropriate basis and ordering
of these states, one should consider the defect symmetry: the NV center belongs to the C3v

(sometimes notated 3m) point group which is characterized by the following symmetries:

• Identity

• Threefold rotational symmetry about the high symmetry axis

• Threefold vertical reflection symmetry

Using group theory, we can project the four orbitals onto each irreducible representation
of the C3v point group, resulting in an appropriate single electron orbital basis. Then, to
determine the ordering of these states, one can consider the Coulomb attraction between the
electron and nuclei, which mixes these states to yield the final basis:
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(a) (b)

Figure 1.2: NV center single electron orbitals after being filled with six electrons. Dashed
ellipses represent holes. (a) In the ground state, the holes occupy the ex,y orbitals. (b) In
the first excited state, one of the two holes is promoted to the a1 orbital.

a1 = ασN +
β√
3
(σ1 + σ2 + σ3) (1.1)

a′1 = βσN +
α√
3
(σ1 + σ2 + σ3) (1.2)

ex =
1√
6
(2σ1 − σ2 − σ3) (1.3)

ey =
1√
2
(σ2 − σ3) (1.4)

The predicted ordering of states is shown in Figure 1.2, which is corroborated by ab initio
calculations [125, 116, 224]. We can now fill these orbitals with electrons. Six electrons
contribute to the level structure of the NV center: one from each of the three carbon atoms,
two from the nitrogen atom (which acts as an n-type dopant), and one from an electron donor
in the environment. Filling these states with electrons in accordance with Hund’s rules, we
find that the ground state can be represented by four electrons in the fully symmetric states
and two electrons in the ex,y orbitals. Alternatively, we can consider the more convenient
hole representation, wherein we need only consider the ground state as two holes in the ex,y
orbitals. In this representation, the first excited state is given as a hole promoted from ex,y
to a1.

Finally, we note that the total wavefunction of the electronic system should be antisym-
metric. The large energy scale associated with Coulomb repulsion, compared to the spin-spin
interaction, should be minimized in the ground state; therefore, the ground state is a spin
triplet (orbital singlet) consisting of two unpaired holes, resulting in an effective spin S = 1.
The resulting energy level structure is shown in Figure 1.3. The ground state 3A2 exhibits
a room temperature zero-field splitting Dgs = 2.87GHz between |ms = 0⟩ and |ms = ±1⟩
sublevels. 3A2 is separated by 637 nm from the spin triplet excited state, 3E. The spin singlet
states can be accessed through an intersystem crossing (ISC) that plays an important role
in state preparation and readout, as will be discussed next.
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Figure 1.3: NV center level diagram.

1.1.2 Optical state preparation and readout

Under illumination of a green laser (e.g. at wavelength 532 nm), the NV center exhibits
fluorescence with a zero-phonon line at 637 nm and a broad phonon sideband between ap-
proximately 637-800 nm. During this process, electrons in the 3A2 state are excited to 3E
and mostly return to 3A2 in a spin-conserving cycle (red wavy arrows, Figure 1.3). However,
a fraction of these excitations undergoes an ISC to the singlet states which is crucially spin-
non-conserving; in particular, the ISC preferentially favors transitions from the |ms = ±1⟩
sublevels yet returns to the triplet state with roughly equal probability of decay to |ms = 0⟩
and |ms = ±1⟩ (yellow arrows). The steady-state population under green illumination is
subsequently polarized to |ms = 0⟩ with ∼80-90% efficiency at room temperature [275].
This mechanism of state preparation enables coherent manipulation of the spin state using
microwave driving fields.

The ISC also plays a crucial role in state readout: the singlet decay channel is slow
compared to the 3E lifetime (∼ 200 ns versus ∼ 10 ns) and nonradiative, so the fluorescence
intensity is reduced when undergoing the ISC. Because the ISC preferentially favors the
|ms = ±1⟩ states, this implies that the fluorescence intensity can be used to read out the
spin state.
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Figure 1.4: (a) Example of ODMR spectroscopy. (b) Four orientations of NV centers each
exhibit two resonances to the spectrum, leading to eight resonances in total.

1.1.3 Optically detected magnetic resonance

In most of the experiments described in this thesis, the NV centers are probed using optically
detected magnetic resonance (ODMR). In this modality, the laser and microwave fields are
continuously active throughout the measurement while the microwave frequency is swept.1

When the microwave frequency is off-resonant from any NV spin transitions, the microwaves
have no effect and the laser serves to initialize the spin state into |ms = 0⟩. Conversely, when
the microwave frequency comes close to resonance with an NV spin transition, some of the
population is driven into the |ms = ±1⟩ states and the fluorescence intensity is subsequently
decreased (Figure 1.4).

The presence of external signals affects the energy levels of the NV, and, in general, lifts
the degeneracy of the |ms = ±1⟩ states. Using ODMR to characterize the change in the
energy levels, one can directly measure such external signals. More specifically, combining the
information from the four possible crystallographic orientation of the NV centers enables the
reconstruction of a signal’s vector (e.g. magnetic field) or tensorial (e.g. stress) information.

1.1.4 Spin coupling to magnetism and stress

Here, we focus on the sensing of stress and magnetic fields, wherein the NV is governed by
the Hamiltonian [29, 326], H = H0 +HB +HS, with

H0 = DgsS
2
z (1.5)

HB = γBB⃗ · S⃗ (1.6)

HS = ΠzS
2
z +Πx(S

2
y − S2

x) + Πy(SxSy + SySx) (1.7)

1This procedure describes the continuous-wave modality of ODMR. A pulsed variation also can be
performed which can be advantageous to reduce the duty cycle of the microwave/laser fields e.g. when
heating is a concern, or to avoid spectral power broadening [93].
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where

Πz = α1 (σxx + σyy) + β1σzz (1.8)

Πx = α2 (σyy − σxx) + β2 (2σxz) (1.9)

Πy = α2 (2σxy) + β2 (2σyz) (1.10)

Equation 1.5 is known as the zero-field splitting with Dgs = 2.87GHz at ambient pressure
and temperature. Equation 1.6 is known as the Zeeman splitting, where γB ≈ 2.8 MHz/G is
the gyromagnetic ratio and B is a magnetic field. Equation 1.7 captures the NV’s response
to the local diamond stress tensor,

↔
σ .2 ẑ is the NV orientation axis, x̂ is defined such

that the xz-plane contains one of the carbon-vacancy bonds, and {α1,2, β1,2} are the stress
susceptibility coefficients given by [29, 148]3

{α1, β1, α2, β2} = {8.6(2),−2.5(4),−1.95(9),−4.50(8)} MHz/GPa. (1.11)

In order to develop intuition for the NV coupling to stress, one can consider classifying
stress perturbations as either conserving or breaking the C3v defect symmetry. From this
perspective, Πz compiles all stresses that conserve the C3v symmetry, so application of this
term leads to a shift of the energy spectrum with no breaking of degeneracies. Conversely,
Πx,y compiles all stresses that break this symmetry, leading to a splitting of the degeneracy
between the states |ms = ±1⟩. In particular, this symmetry-breaking stress leads to the new
eigenstates

|+⟩ = 1√
2

(
|ms = +1⟩ − e−iϕE |ms = −1⟩

)
(1.12)

|−⟩ = 1√
2

(
eiϕE |ms = +1⟩+ |ms = −1⟩

)
(1.13)

with ϕE ≡ arctan(Πy/Πx) and energy splitting 2Π⊥ ≡ 2
√

Π2
x +Π2

y.
From this we see that ODMR spectroscopy measures the coupling coefficients Πz and Π⊥

for each NV center.4 In general, the ODMR spectra exhibit eight resonances arising from
the four possible crystallographic orientations of the NV (Fig. 1.4). By extracting the energy
shifting and splitting of the spin sublevels for each NV orientation group, one obtains an
overconstrained set of equations enabling the reconstruction of either the (six component)
local stress tensor or the (three component) vector magnetic field.

2In addition to the terms listed here, stress-induced coupling to the anticommutator terms {Sx, Sz} and
{Sy, Sz} also exists, but its effect is energetically suppressed by the zero-field splitting.

3We note that these coefficients were determined by reinterpreting data from Ref. [29] after considering
the effect of local charge perturbations on their measurements. This analysis is reproduced in Chapter 2.

4Here, we consider only the effect of Eq. 1.7 in the absence of magnetic fields. The case of simultaneous
stress and magnetic perturbations is considered in Chapter 2.
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Figure 1.5: (a) Photograph of a miniature diamond anvil cell containing two opposing di-
amond anvils. Photo credit: Marilyn Sargent, Berkeley Lab. (b) Schematic depiction of a
fully loaded diamond anvil cell.

1.1.5 Comparison between stress and electric field coupling

The NV center couples to electric fields with the same form as to stress (Equation 1.7):

HE = d∥EzS
2
z + d⊥(Ex(S

2
y − S2

x) + Ey(SxSy + SySx)), (1.14)

where
{
d∥, d⊥

}
= {0.35, 17} Hz cm/V are the electric field susceptibilities [254]. Despite

the similarities in the form of coupling to stress and electric fields, we note that the stress
susceptibilities share similar magnitudes, while the electric field susceptibilities differ from
each other by a factor of 50. We present a microscopic theory to explain this anisotropy in
Chapter 6.

1.2 Diamond anvil cell

The diamond anvil cell (DAC) is the leading high pressure apparatus for achieving static
pressures in the 100GPa range (Figure 1.5). In the DAC, the sample of interest is compressed
between two opposing diamond anvils whose tips have been polished flat (the so-called culet).
The sample chamber is defined by a gasket typically comprised of a metallic foil with a hole
drilled through its center. The sample chamber can be filled with a pressure-transmitting
medium such as a liquid or a gas in order to provide a hydrostatic pressure environment.
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Figure 1.6: Example ruby R-line spectrum at P = 0GPa (left) and 20.5GPa (right).
Adapted from [312].

1.3 Stress determination measurements

1.3.1 Ruby fluorescence

The optical properties of ruby (chromium-doped Al2O3) have been intensively studied since
the 1950s due to its use in the first solid-state laser [211] and the development of ligand field
theory [209]. Upon green illumination, two zero-phonon transitions known as R1 and R2
are observed at room temperature at 694.25 and 692.86 nm, respectively (Figure 1.6) [312].
The shift of these transitions under pressure has been meticulously characterized over several
decades varying pressure-transmitting media and primary pressure scales (see e.g. [296]). In
a typical ruby fluorescence measurement, ruby powder with grain size ∼1 µm or individual
microspheres of size 5-100µm are placed into the DAC sample chamber and excited by a
focused green laser. The resulting fluorescence is coupled to a spectrometer.

Ruby fluorescence is the method of choice for pressure determination below ∼100GPa;
above this, the optical absorption bands are significantly blueshifted and fluorescence be-
comes inefficient.

1.3.2 Diamond anvil Raman

Diamond exhibits a first-order Raman signal at 1333 cm−1 at ambient pressure and temper-
ature, and this signal shifts under stress. In their seminal paper from 1985, Hanfland and
Syassen proposed to utilize the Raman signal from the diamond culet to determine the pres-
sure within the DAC sample chamber [140]. This method has the unique benefit of requiring
no additional in situ instrumentation; a typical measurement setup involves just a green
excitation laser focused into the diamond anvil with the reflected Raman signal coupled to a
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Figure 1.7: (a) Example Raman spectra from a stressed diamond culet at various pressures.
The high frequency edge, defined by a dip in the differential signal as in (b), is used for
pressure determination. Adapted from [10].

spectrometer. Spatial resolution can be further improved by using a long working distance
objective lens and operating in a confocal geometry. Use of this scale has been calibrated
as high as 410GPa and is the method of choice for the determination of megabar pressures
[11].

Despite its widespread use, different groups have reported differing calibration scales,
calling into question the degree of accuracy of this method. In practice, two challenges may
limit its accuracy. Firstly, this method interrogates a spatial volume which is dependent on
the optics geometry. Due to the high refractive index of diamond, even a tightly focused
laser will be stretched along the propagation direction to ∼10 µm, which implies that the
measurement will integrate over a significant stress gradient. This can be mitigated by mea-
suring the high frequency edge, as determined by a peak in the first derivative (Figure 1.7),
but a dependence on the laser depth of focus remains. Secondly, as will be discussed in
more detail in Chapter 2, the culet experiences a stress tensor dominated by the terms σRR,
σΘΘ, and σZZ , where Ẑ is defined along the culet normal direction. Crucially, the relative
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magnitudes of these stress contributions depend on the culet diameter as well as the gasket
geometry and material. Thus, for a given pressure in the sample chamber, the stress on the
culet will be dependent on the DAC geometry.

1.3.3 Comparison to NV-based stress sensing

While accurate determination of the hydrostatic pressure on a sample is important, it is far
from a complete characterization of the stress environment. Indeed, the distribution and
magnitude of deviatoric (that is, non-hydrostatic) stresses are known to play a key role in
the dynamics of high pressure phenomena [199]. To this end, the NV center is the only high
pressure stress platform that can reconstruct all six unique components of the stress tensor.
The ability to map the stress tensor across the culet surface provides strong constraints on
the stress state of the entire the pressure cell; in Chapter 2 we show how the experimentally
determined stress along the culet severely constrains the tensorial stress state throughout
the diamond anvil in finite element simulations, and additional measurements to characterize
the loading geometry may enable us to infer the stress state on the sample itself.

An additional benefit of NV-based stress sensing is its imaging capability. Unlike ruby
photoluminescence and Raman measurements, fluorescence from ODMR measurements per-
formed on NV centers can be straightforwardly coupled to a camera with micron-scale spatial
resolution and without rastering the laser position. The spatial distribution of stresses en-
codes information about the propagation of structural defects in materials (e.g. during
pressure-driven phase transitions) as well as the hydrostaticity of pressure-transmitting me-
dia.

Use of NV sensing also comes with its own technical challenges, among them the delivery
of microwave frequency electromagnetic fields. In the experiments described in this thesis,
microwave delivery is performed with a 4 µm-thick platinum foil compressed between the
gasket and diamond anvil pavilion facets; anecdotally, this configuration remains stable up to
at least 50GPa but worsens in transmission efficiency at higher pressures, leading to reduced
ODMR contrast and thus worsened sensitivity. Future experiments using a combination
of insulating gaskets and improved waveguide circuit designs may alleviate these technical
challenges.

Besides microwave delivery considerations, complete characterization of the stress tensor
at the culet requires the application of precisely aligned magnetic fields (see Chapter 2 for
more details). In special cases, application of an arbitrarily oriented field may be sufficient
to recover a subset of stress tensor components (see Chapters 3 and 4 for examples). A
summary of the comparison between the stress sensing modalities outlined in this section is
shown in Table 1.1.
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Sensor Advantages Disadvantages

Ruby
fluorescence • Extremely well-calibrated • Limited signal beyond 100GPa

• No tensorial resolution
• Imaging is not straightforward

Diamond
culet
Raman

• Operable in the megabar regime
• Requires no additional sensors

• Calibration is sensitive to diamond
anvil, gasket, and optics configura-
tion

• No tensorial resolution (only pres-
sure)

• Imaging requires rastering

NV centers

• Full stress tensor can be measured
• Imaging is straightforward

• Requires delivery of microwave
fields (and in some cases, precisely
aligned magnetic fields)

• Upper pressure limit is unclear

Table 1.1: Summary of advantages and disadvantages of various stress sensors.

1.4 High pressure magnetic measurements

1.4.1 Induction coil/SQUID magnetometers

Induction coil-based magnetometers operate based on Faraday’s law of induction, where the
output voltage from a loop of wire is proportional to the negative time derivative of the
magnetic flux through the loop. A similar relation is found for superconducting quantum
interference device (SQUID) magnetometers, where the output voltage is proportional to
the magnetic flux signal itself [74]. A typical high pressure induction measurement may
consist of an induction loop with a loop diameter around 2-10mm surrounding the diamond
anvils or the entire DAC; an excitation coil placed near the sample can be driven to perform
ac susceptibility measurements [321], or the DAC itself can be vibrated with the vibration
frequency coupled to a lock-in amplifier [154]. Induction coil-based magnetometers have
been used up to 230GPa to measure a superconducting transition in elemental sulfur [321].
A notable DAC design placed in the bore of a Quantum Designs MPMS (diameter 8.8mm)
was recently used to measure the superconducting transition of superconducting hydrides
[238].
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Figure 1.8: Schematic representation of an induction coil used for magnetometry.

1.4.2 Comparison to NV-based magnetometry

A case for using NV centers as magnetometers, as opposed to conventional induction coils,
becomes clear if one considers the DAC geometry. A schematic of a typical DAC imple-
mentation used in our laboratory is depicted in Figure 1.8. The entire DAC assembly is a
few centimeters in diameter, whereas the sample of interest is typically tens of microns in
diameter. High pressure induction coils are commonly prepared ex situ such that the coil
picks up magnetic flux from both the sample as well as the DAC itself. This implies that the
expected signal-to-noise will be proportional to the volume ratio of the sample to the DAC,
i.e. (10µm

1cm
)3 ∼ 10−9. Thus, in practice, the minimum detectable signal using high pressure

magnetometers is typically limited by the challenge of performing background subtraction
of the undesired DAC magnetization. This challenge is further exacerbated at pressures
above 50GPa, where it is necessary to reduce the diameter of the diamond anvil culets such
that the sample dimensions are further reduced. This typically limits induction coil-based
magnetometers to magnetic sources larger than 10−10Am2.

In comparison, the NV centers utilized in our sensing platform are prepared within 0.5 µm
from the diamond anvil culet. Even accounting for the standoff distance between the sample
and the culet, this implies that the sensor can be straightforwardly prepared within a few
microns of the sample of interest such that the magnetization of the DAC assembly is not a
concern. This improves our detection limits significantly; we routinely resolve sources below
10−12Am2, and our magnetic sensitivity (∼10 µT · µm/

√
Hz) is consistent with previously

reported values that are able to resolve sources down to 10−16Am2 at ambient pressure
[123].5 Nevertheless, the use of NV magnetometry also comes with its own unique technical

5We note that these two modes of magnetometry measure distinct phenomena: in induction coil magne-
tometry, the measured magnetic flux is related to the total sample magnetization, whereas NV magnetometry
measures micron-scale stray magnetic fields from the sample. Crucially, the stray field encodes information
about both the total sample magnetization as well as the spatial distribution of magnetic carriers in the
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challenges; specifically, concerns with delivery of microwave fields as discussed in Section 1.3.3
also apply in this sensing modality.

1.5 A history of this experiment

In the last section of this Chapter, I hope to contextualize the decisions that motivated some
of the experiments in which I participated during my PhD. In academic research, I find
that this context can often be insightful yet is rarely recorded or only passed on through
word-of-mouth. I hope this will prove helpful for future members of the Yao group and high
pressure scientists at large.

1.5.1 Early days

I joined the Yao lab in spring of 2016. Together with graduate student Thomas Mittiga,
we started the experimental effort with just an empty optical table and a shared lab space
graciously provided by Professor Dan Stamper-Kurn. These early days were frenzied and
electric, assembling our scanning confocal microscope system while purchasing five-figure
orders in the daytime and long planning and troubleshooting meetings late into the evenings.
We were fortunate to have on-demand help from Chong Zu, who advised us remotely while
finishing his PhD at Tsinghua University in Beijing.

After several failed attempts to identify fluorescence from single defect centers, in March
2016, we paid a visit to Misha Lukin’s labs at Harvard, where graduate students Joonhee
Choi, Georg Kucsko, Igor Lovchinsky, and Elana Urbach, as well as postdoc Kristiaan De
Greve, patiently walked us through every aspect of their experimental apparatus in excruciat-
ing detail and showed us their fabrication procedures in the clean room. Birgit Hausmann, a
recently graduated PhD student in Professor Marko Lonc̆ar’s group and the so-called ”Queen
of Diamond,” graciously wrote up an inventory of all the supplies we needed for diamond
fabrication and connected us to her contacts at major diamond manufacturers in the world.
Upon our return to Berkeley, which closely coincided with Chong’s official arrival as our
first experimental postdoc, we finally began to see single defect fluorescence and start taking
measurements. Our first project was a collaboration with Professor Feng Wang to interface
shallow implanted NV centers with two-dimensional transition metal dichalcogenides, which
we dubbed RT1.

1.5.2 The birth of RT2

In May 2016, we met Professor Raymond Jeanloz in the Department of Earth and Planetary
Sciences, as well as his graduate student, Thomas Smart. This began our foray into our
next experiment, RT2, exploring defect centers at high pressure, on which I became the lead
student. It was quickly apparent that the geometry of the diamond anvil, with a typical

sample [115].
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thickness of 2 mm, significantly hampered the efficiency of fluorescence collection. We ex-
plored several avenues to get around this problem, including diamond samples prepared with
very high defect concentrations, as well as micro/nanodiamonds to insert within the sample
chamber. A curious finding was that for all samples containing high defect concentrations
at zero magnetic field, we consistently saw a two-resonance spectrum that could not be fit
to two lorentzian or gaussian distributions. This had been reported in NV center literature
in the past but was always attributed to lattice strain. This explanation was not satisfac-
tory for our recently-joined theory graduate student, Bryce Kobrin, who insisted that every
conceivable strain distribution would only lead to pure broadening of the spectrum, not two
resonances.

A breakthrough came in June 2017 on our way home from the DAMOP conference
in Sacramento, California. Bryce had driven his minivan to the conference and offered a
ride back to Berkeley for anyone who wished to join. In addition to myself, he picked up
Pauli Kehayias, a postdoc in Ron Walsworth’s lab, and Soonwon Choi, a graduate student
in Misha Lukin’s lab. As inevitably happens in any group of physicists trapped in an
enclosed space, the conversation quickly shifted to physics, and Bryce, Pauli, and Soonwon
spent the next two hours debating every conceivable microscopic origin of this spectral
feature. By the time we arrived in Berkeley, only one possibility had not been universally
eliminated by all participants: the spectrum must emerge from electric fields from local
charges. The experimentalists, together with Bryce and another recent graduate student,
Francisco Machado, as well as remote discussions with Soonwon, developed a microscopic
model to quantify this picture and found excellent agreement with our compilation of zero-
field spectra over a wide range of sample parameters. This conclusion led to our first paper,
published in Physical Review Letters.

1.5.3 A race to high pressure

In July 2018, we remotely attended a talk by Professor Jean-François Roch from the École
Normale Supérieure Paris-Saclay, where he showed beautiful preliminary results of a high
pressure phase transition measured by in situ NV center magnetometry, which at the time
we had considered to be a long-term goal with dubious likelihood of success in our RT2
experiment. This ignited something of a four-alarm-fire in our group as we quickly pivoted
from a largely exploratory phase of the high pressure experiment to a demonstrative phase.
It was all hands on deck for five months as we prepared every novel demonstration we could
imagine: By developing an algorithm employing carefully controlled vector magnetic fields, I
measured all eight resonances of the NV spectra at high pressure to determine the resulting
stress tensor, while also measuring a new data point for the α → ϵ transition in elemental iron
every day; Thomas led a herculean effort to clean up and fit the spectra of the iron data at
every pressure point (approximately 3× 105 resonances in total), which required significant
human input due to saturation effects from the very magnetized iron pellet; Chong and
Thomas devised a Peltier cooling system to cool and measure the noise spectrum of elemental
gadolinium; graduate students Pra Bhattacharyya and Tim Höhn traded 12-hour shifts to
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measure the P − T phase diagram of elemental gadolinium within our new cryostat; Bryce
adapted the stress susceptibilities reported in literature to our data and analyzed our spectral
images to determine the complete six-component stress tensor; Francisco analyzed the iron
and gadolinium data, including an impressive effort to salvage a crucial iron data point
that I had botched during an overnight measurement; undergraduate student Nicholas Rui
performed an extensive literature search on existing high pressure magnetometry methods
and designed approximately 20 iterations of a summarizing subfigure, each one more excellent
than the last; Professor Mike Zaletel and his postdoc, Shubhayu Chatterjee, proposed a
noise spectroscopy protocol to supplement our results on gadolinium and wrote a theoretical
justification for our unintuitive experimental findings that could have stood alone as its own
manuscript; our collaborators, Professor Valery Levitas and his graduate student, Mehdi
Kamrani, iterated over hundreds of finite element simulations to reproduce the stress tensor
maps. We submitted our manuscript simultaneously with Professor Jean-François Roch’s
group and another group led by Professor Sen Yang at the Chinese University of Hong Kong
on Christmas of 2018, and legend has it that a collective sigh was heard reverberating the
halls of the third floor of Old LeConte Hall.

I concede that I have made many omissions in this retelling—notable omissions include
impressive efforts by graduate students Tim Höhn, Jordan Hines, and Yuanqi Lyu to measure
a zoo of ferroelectrics, magnetic materials, and superconductors, as well as undertakings by
many star undergraduate students to explore new defects under pressure—but for the sake
of brevity, I will leave this story for future theses.
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Chapter 2

High Pressure Sensing Using
Nitrogen-Vacancy Centers in
Diamond

2.1 Introduction

In the previous Chapter, we outlined the motivation and the physics that underpins the
use of the NV center as a sensor of mechanical stress and magnetic fields. In this Chapter,
we experimentally realize and demonstrate this platform by embedding NV centers into the
culet (tip) of a diamond anvil. We demonstrate the utility of this sensing platform through a
series of proof-of-concept experiments up to pressures ∼48GPa and for temperatures ranging
from 25-340K. In the context of stress, we develop a protocol to reconstruct all six unique
components of the stress tensor at the culet surface, which both constrains the stress tensor
in the entire diamond anvil in finite element simulations and offers a unique sensing modality
for characterizing the strength and effective viscosity of solids and fluids under pressure. In
the context of magnetic fields, we demonstrate vector magnetic field imaging with dipole
precision ≲ 10−11 emu,1 enabling us to measure the pressure-driven α ↔ ϵ phase transition
in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition
to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1

noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions
even in the absence of static magnetic signatures.

A tremendous amount of recent attention has focused on the development of hybrid quan-
tum sensing devices, in which sensors are directly integrated into existing toolsets ranging
from biological imaging to materials spectroscopy [191, 212, 50, 91]. Here, we instrument dia-
mond anvil cells with a layer of nitrogen-vacancy (NV) centers directly at the culet, enabling
the pursuit of two complementary objectives in high pressure science: first, to understand
the strength and failure of materials under pressure (e.g. the brittle-ductile transition) and

11 emu = 10−3 A·m2.
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second, to discover and characterize new phases of matter (e.g. high temperature supercon-
ductors) [344, 146, 120, 94, 304]. Achieving these goals hinges upon the sensitive in situ
imaging of signals within the high pressure chamber. In the former case, measuring the local
stress environment permits the direct observation of inhomogeneities in plastic flow and the
formation of line defects. In the latter case, the ability to spatially resolve field distributions
can provide a direct image of complex order parameters and textured phenomena such as
magnetic domains. Unfortunately, the enormous stress gradients generated near the sample
limit the utility of most conventional tabletop spectroscopy techniques; as a result, one is
often restricted to measuring bulk properties averaged over the entire DAC geometry.

2.2 Methods

Our approach to these challenges is to utilize an ensemble of NV centers (∼1 ppm density)
implanted ∼50 nm from the surface of the diamond anvil culet (Fig. 2.1, (a) and (b)). Each
NV center represents an atomic-scale defect (i.e. a substitutional nitrogen impurity adjacent
to a vacancy) inside the diamond lattice and exhibits an S = 1 electronic spin ground state
[85]. In the absence of external fields, the |ms = ±1⟩ spin sublevels are degenerate and
separated by Dgs = (2π)×2.87 GHz from the |ms = 0⟩ state. Crucially, both the nature and
energy of these spin states are sensitive to local changes in stress, temperature, magnetic and
electric fields (Fig. 2.1(c)) [5, 226, 88, 256, 83, 29, 308]. These spin states can be optically
initialized and read out, as well as coherently manipulated via microwave fields. Their
energy levels can be probed by performing optically detected magnetic resonance (ODMR)
spectroscopy where one measures a change in the NV’s fluorescence intensity when an applied
microwave field is on resonance between two NV spin sublevels (Fig. 1.4(a)), thus enabling
sensing of a variety of external signals over a wide range of environmental conditions [191,
53, 241].

Here, we focus on the sensing of stress and magnetic fields, wherein the NV is governed
by the Hamiltonian [29, 326],H = H0+HB+HS, withH0 = DgsS

2
z (zero-field splitting),HB =

γBB⃗·S⃗ (Zeeman splitting), andHS = [α1(σxx + σyy) + β1σzz]S
2
z+[α2(σyy − σxx) + β2(2σxz)] (S

2
y−

S2
x) + [α2(2σxy) + β2(2σyz)] (SxSy +SySx) capturing the NV’s response to the local diamond

stress tensor,
↔
σ (Fig. 2.1(c)). Note that in the above, γB ≈ (2π) × 2.8 MHz/G is the gyro-

magnetic ratio, {α1,2, β1,2} are the stress susceptibility coefficients [83, 29, 308], ẑ is the NV
orientation axis, and x̂ is defined such that the xz-plane contains one of the carbon-vacancy
bonds (Fig. 1.4(b)). In general, the resulting ODMR spectra exhibit eight resonances arising
from the four possible crystallographic orientations of the NV (Fig. 1.4(a)). By extracting
the energy shifting and splitting of the spin sublevels for each NV orientation group, one
obtains an overconstrained set of equations enabling the reconstruction of either the (six
component) local stress tensor or the (three component) vector magnetic field.

In our experiments, we utilize a miniature DAC (Fig. 2.1, (a) and (b)) consisting of
two opposing anvils compressing either a beryllium copper or rhenium gasket [311]. The
sample chamber defined by the gasket and diamond-anvil culets is filled with a pressure-
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Figure 2.1: NV centers integrated into a diamond anvil cell. (a) Schematic of the DAC geometry. Two
opposing anvils are compressed by a nonmagnetic steel cell and cubic boron nitride backing plates (gray).
NV centers are initialized and read out using a 532 nm laser focused to a diffraction-limited spot (∼600
nm) which is scanned across the culet surface. (b) The DAC sample chamber is defined by the gasket-anvil
assembly (diagram not to scale); it is loaded with the sample of interest, a pressure-transmitting medium,
and a single ruby microsphere (pressure calibration). A ∼50 nm layer of NV centers is embedded into the
diamond anvil directly below the sample chamber. (c) Stress (top) both shifts and splits the |ms = ±1⟩
sublevels at first order; in particular, the shifting is characterized by Πz = α1(σxx + σyy) + β1σzz, and the

splitting is characterized by Π2
⊥ = [α2(σyy − σxx) + β2(2σxz)]

2
+ [α2(2σxy) + β2(2σyz)]

2
. An axial magnetic

field (bottom) splits the |ms = ±1⟩ sublevels at first order, but a transverse magnetic field leads to shifts
only at second order. (d) Comparison of high pressure magnetometry techniques. We define the spatial
resolution as a characteristic sensor length scale over which the sample magnetism is integrated. Estimates
for our current work are shown assuming a sample suspended in a pressure medium 5 µm away from the
culet (black open circle). We project that by exfoliating a sample directly onto the culet surface and using
5 nm implanted NV centers, the distance from the sample can be significantly reduced, thus improving both
dipole precision and spatial resolution (open red circles). Inductive methods (pickup coils [green diamonds]
and SQUIDs [blue squares]) integrate the magnetization of a sample over the coil’s area; to this end, the
diameter associated with the coil is taken as the “spatial resolution” although in principle, the sample
inside the chamber can be significantly smaller. In contrast, high energy photon scattering techniques (x-ray
magnetic circular dichroism [orange hexagons], and Mössbauer spectroscopy [pink triangles]) probe atomic
scale magnetism; the length scale for these methods is shown here as the spot size of the excitation beam.
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Figure 2.2: Full tensorial reconstruction of the stresses in a (111)-cut diamond anvil. (a)
Spatially resolved maps of the loading stress (left) and mean lateral stress (right), σ⊥ =
1
2
(σXX +σY Y ), across the culet surface. In the inner region, where the culet surface contacts

the pressure-transmitting medium (16:3:1 methanol/ethanol/water), the loading stress is
spatially uniform, while the lateral stress is concentrated towards the center; this qualitative
difference is highlighted by a linecut of the two stresses (below), and reconstructed by finite
element analysis (orange and purple dashed lines). The black pixels indicate where the
NV spectrum was obfuscated by the ruby microsphere. (b) Comparison of all stress tensor
components in the fluid-contact region at P = 4.9 GPa and P = 13.6 GPa. At P = 13.6 GPa,
the pressure-transmitting medium has entered its glassy phase and we observe a spatial
gradient in the loading stress σZZ (inset).

transmitting medium (either a 16:3:1 methanol/ethanol/water solution or cesium iodide)
to provide a quasi-hydrostatic environment. Microwave excitation is applied via a 4 µm
thick platinum foil compressed between the gasket and anvil pavilion facets, while scanning
confocal microscopy (with a transverse diffraction-limited spot size ∼600 nm, containing
∼103 NVs) allows us to obtain two-dimensional ODMR maps across the culet.

2.3 Stress sensing

We begin by probing the stress tensor across the culet surface using two different cuts of
diamond (i.e. (111)-cut and (110)-cut culet). For a generic stress environment, the intrin-
sic degeneracy associated with the four NV orientations is not sufficiently lifted, implying
that individual resonances cannot be resolved. In order to resolve these resonances while
preserving the stress contribution, we sequentially tune a well-controlled external magnetic
field to be perpendicular to each of the different NV orientations . For each perpendicular
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field choice, three of the four NV orientations exhibit a strong Zeeman splitting proportional
to the projection of the external magnetic field along their symmetry axes. Crucially, this
enables one to resolve the stress information encoded in the remaining NV orientation, while
the other three groups of NVs are spectroscopically split away. Using this method, we obtain
sufficient information to extract the full stress tensor, as depicted in Fig. 2.2. A number of
intriguing features are observed at the interface between the culet and the sample chamber,
which provide insight into both elastic (reversible) and plastic (irreversible) deformations.

At low pressures (P = 4.9 GPa), the normal stress along the loading axis, σZZ , is spatially
uniform (Fig. 2.2(a)), while all shear stresses, {σXY , σXZ , σY Z}, are minimal (Fig. 2.2(b)).2

These observations are in agreement with conventional stress continuity predictions for the
interface between a solid and an ideal fluid [104]. Moreover, σZZ is consistent with the
independently measured pressure inside the sample chamber (via ruby fluorescence), demon-
strating the NV’s potential as a built-in pressure scale [77]. In contrast to the uniformity of
σZZ , the field profile for the mean lateral stress, σ⊥ ≡ 1

2
(σXX+σY Y ), exhibits a concentration

of forces toward the center of the culet (Fig. 2.2(a)). Using the measured σZZ as a boundary
condition, we perform finite element simulations to reproduce this spatial pattern.

Upon increasing pressure (P = 13.6 GPa), a pronounced spatial gradient in σZZ emerges
(Fig. 2.2(b), inset). This qualitatively distinct feature is consistent with the solidification of
the pressure-transmitting medium into its glassy phase above Pg ≈ 10.5 GPa [181]. Cru-
cially, this demonstrates our ability to characterize the effective viscosity of solids and liquids
under pressure. To characterize the sensitivity of our system, we perform ODMR spec-
troscopy with a static applied magnetic field and pressure under varying integration times
and extract the frequency uncertainty from a Gaussian fit. We observe a stress sensitiv-
ity of {0.023, 0.030, 0.027} GPa/

√
Hz for hydrostatic, average normal, and average shear

stresses, respectively. This is consistent with the theoretically derived stress sensitivity,
ηS ∼ ∆ν

ξC
√
Nt

= {0.017, 0.022, 0.020} GPa/
√
Hz, respectively, where N is the number of

NV centers, ∆ν is the linewidth, ξ is the relevant stress susceptibility, t is the integration
time, and C is an overall factor accounting for measurement infidelity. In combination
with diffraction-limited imaging resolution, this sensitivity opens the door to measuring and
ultimately controlling the full stress tensor distribution across a sample.

2.4 High pressure magnetometry

Having characterized the stress environment, we now utilize the NV centers as an in situ
magnetometer to detect phase transitions inside the high-pressure chamber. Analogous to
the case of stress, we observe a magnetic sensitivity of 12 µT/

√
Hz, in agreement with the

theoretically estimated value, ηB ∼ δν
CγB

√
Nt

= 8.8 µT/
√
Hz. Assuming a point dipole located

2We note that {X̂, Ŷ , Ẑ} corresponds to the lab frame while {x̂, ŷ, ẑ} corresponds to the NV frame
(Fig. 1.4(b)).
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Figure 2.3: Imaging iron’s α ↔ ϵ phase transition. Applying an external magnetic field (Bext∼180 G)
induces a dipole moment in the polycrystalline iron pellet which generates a spatially varying magnetic
field across the culet of the diamond anvil. By mapping the ODMR spectra across the culet surface, we
reconstruct the local magnetic field which characterizes the iron pellet’s magnetization. (a-c) Comparison
between the measured ODMR spectra (dark regions correspond to resonances) and the theoretical resonance
positions (different colors correspond to different NV crystallographic orientations) across vertical spatial
cuts at pressures 9.6 GPa, 17.2 GPa and 20.2 GPa, respectively (16:3:1 methanol/ethanol/water solution).
(d-f) Map of the measured energy difference of a particular NV crystallographic orientation (blue lines in (a-
c)). Black pixels correspond to ODMR spectra where the splitting could not be accurately extracted owing
to large magnetic field gradients. (g-i) Theoretical reconstruction of the energy differences shown in (d-f).
Data depicted in (a-c) are taken along the thin black dashed lines. (j) Measured dipole moment of the iron
pellet as a function of applied pressure at room temperature, for both compression (red) and decompression
(blue). Based on the hysteresis observed (∼6 GPa), we find the critical pressure Pc = 13.6 ± 3.6 GPa, in
excellent agreement with previous studies [318].
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a distance d ∼ 5 µm from the NV layer, this corresponds to an experimentally measured
magnetic moment sensitivity: 7.5× 10−12 emu/

√
Hz (Fig. 2.1(d)).

2.4.1 Pressure-induced magnetic transition in elemental iron

Sensitivity in hand, we begin by directly measuring the magnetization of iron as it under-
goes the pressure-driven α ↔ ϵ phase transition from body-centered cubic (bcc) to hexagonal
close-packed (hcp) crystal structures [318]; crucially, this structural phase transition is ac-
companied by the depletion of the magnetic moment, and it is this change in the iron’s
magnetic behavior that we image. Our sample chamber is loaded with a ∼10 µm polycrys-
talline iron pellet as well as a ruby microsphere (pressure scale), and we apply an external
magnetic field Bext∼180 G. As before, by performing a confocal scan across the culet, we
acquire a two-dimensional magnetic resonance map (Fig. 2.3). At low pressures (Fig. 2.3(a)),
near the iron pellet, we observe significant shifts in the eight NV resonances, owing to the
presence of a ferromagnetic field from the iron pellet. As one increases pressure (Fig. 2.3(b)),
these shifts begin to diminish, signaling a reduction in the magnetic susceptibility. Finally,
at the highest pressures (P ∼ 22 GPa, Fig. 2.3(c)), the magnetic field from the pellet has
reduced by over two orders of magnitude.

To quantify this phase transition, we reconstruct the full vector magnetic field produced
by the iron sample from the aforementioned two-dimensional NV magnetic resonance maps
(Fig. 2.3, (d)-(f)). We then compare this information with the expected field distribution at
the NV layer inside the culet, assuming the iron pellet generates a dipole field. This enables
us to extract an effective dipole moment as a function of applied pressure (Fig. 2.3(g)). In
order to identify the critical pressure, we fit the transition using a logistic function. This
procedure yields the transition at P = 16.7± 0.7 GPa (Fig. 2.3(j)).

In addition to changes in the magnetic behavior, another key signature of this first
order transition is the presence of hysteresis. We investigate this by slowly decompressing
the diamond anvil cell and monitoring the dipole moment; the decompression transition
occurs at P = 10.5 ± 0.7 GPa (Fig. 2.3(j)), suggesting a hysteresis width of approximately
∼6 GPa, consistent with a combination of intrinsic hysteresis and finite shear stresses in
the methanol/ethanol/water pressure-transmitting medium [318]. Taking the average of the
forward and backward hysteresis pressures, we find a critical pressure of Pc = 13.6±3.6 GPa,
in excellent agreement with independent measurements by Mössbauer spectroscopy, where
Pc ≈ 12 GPa (Fig. 2.3(j)) [318].

2.4.2 Mapping the P − T phase diagram of gadolinium

Next, we demonstrate the integration of our platform into a cryogenic system, enabling us to
make spatially resolved in situ measurements across the pressure-temperature (P -T ) phase
diagram of materials. Specifically, we investigate the magnetic P -T phase diagram of the
rare-earth element gadolinium (Gd) up to pressures P ≈ 8 GPa and between temperatures
T = 25−340 K. Owing to an interplay between localized 4f electrons and mobile conduction
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Figure 2.4: Magnetic P -T phase diagram of gadolinium. A ∼ 30 µm × 30 µm × 25 µm polycrystalline Gd
foil is loaded into a beryllium copper gasket with a cesium iodide pressure medium. An external magnetic
field, Bext∼120 G, induces a dipole field, BGd, detected by the splitting of the NVs (right inset, (B)). (a)
The FM Curie temperature TC decreases with increasing pressure up to ∼ 4 GPa. NV splittings for three
P -T paths, labeled by their initial pressure P0, are shown. The P -T path for run [a] (P0 = 0.5 GPa) is shown
in (c). The cool-down (blue) and heat-up (red) of a single P -T cycle shows negligible hysteresis (inset). (b)
If a P -T path starting in hcp is taken into the dhcp phase (at pressures ≳ 6 GPa) [165], the FM signal is lost
and not reversible, as shown in (c) (path [b]). Upon cool-down (dark blue), we observe the aforementioned
Curie transition, followed by the loss of FM signal at 6.3 GPa, 130 K. But upon heat-up (red) and second
cool-down (light blue), the FM signal is not recovered. When the pressure does not go beyond ∼ 6 GPa,
the FM signal is recoverable (left inset). (c) Magnetic P -T phase diagram of Gd. At low pressures, we
observe the linear decrease of TC (black line) with slope −18.7 ± 0.2 K/GPa, in agreement with previous
measurements [165]. This linear regime extends into the Sm-type phase (black dashed line) due to the slow
dynamics of the hcp → Sm-type transition [165]. When starting in the Sm-type phase, we no longer observe
a FM signal, but rather a small change in the magnetic field at either the transition from Sm-type to dhcp
(orange diamonds) or from PM to AFM (green triangle), depending on the P -T path. The bottom two phase
boundaries (black lines) are taken from Ref. [287]. (d) At ambient pressure, we observe a Curie temperature,
TC = 292.2± 0.1 K, via DC magnetometry (blue data). Using nanodiamonds drop-cast onto a Gd foil (and
no applied external magnetic field), we find that the depolarization time (T1) of the NVs is qualitatively
different in the two phases (red data). T1 is measured using the pulse sequence shown in the top right inset.
The T1 measurement on another nanodiamond exhibits nearly identical behavior (bottom inset).
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electrons, Gd represents an interesting playground for studying metallic magnetism; in par-
ticular, the itinerant electrons mediate RKKY-type interactions between the local moments,
which in turn induce spin-polarization of the itinerant electrons [255]. Moreover, much like
its other rare-earth cousins, Gd exhibits a series of pressure-driven structural phase transi-
tions from hexagonal close-packed (hcp) to samarium-type (Sm-type) to double hexagonal
close-packed (dhcp) (Fig. 2.4)[165]. The interplay between these different structural phases,
various types of magnetic ordering and metastable transition dynamics leads to a complex
magnetic P -T phase diagram that remains the object of study to this day [165, 287, 255].

In analogy to our measurements of iron, we monitor the magnetic ordering of a Gd flake
via the NV’s ODMR spectra at two different locations inside the culet: close to and far away
from the sample (the latter to be used as a control). Due to thermal contraction of the DAC
(which induces a change in pressure), each experimental run traces a distinct non-isobaric
path through the P -T phase diagram (Fig. 2.4(c), blue curves). In addition to these DC
magnetometry measurements, we also operate the NV sensors in a complementary mode,
i.e. as a noise spectrometer.

We begin by characterizing Gd’s well-known ferromagnetic Curie transition at ambient
pressure, which induces a sharp jump in the splitting of the NV resonances at TC = 292.2±
0.1 K (Fig. 2.4(d)). As depicted in Fig. 2.4(a), upon increasing pressure, this transition
shifts to lower temperatures, and consonant with its second order nature [142], we observe
no hysteresis; this motivates us to fit the data and extract TC by solving a regularized Landau
free-energy equation. Combining all of the low pressure data (Fig. 2.4(c), red squares), we
find a linear decrease in the Curie temperature at a rate: dTC/dP = −18.7 ± 0.2 K/GPa,
consistent with prior studies via both DC conductivity and AC-magnetic susceptibility [165].
Surprisingly, this linear decrease extends well into the Sm-type phase. Upon increasing
pressure above ∼ 6 GPa (path [b] in Fig. 2.4(c)), we observe the loss of ferromagnetic (FM)
signal (Fig. 2.4(b)), indicating a first order structural transition into the paramagnetic (PM)
dhcp phase [165]. In stark contrast to the previous Curie transition, there is no revival of a
ferromagnetic signal even after heating up (∼315 K) and significantly reducing the pressure
(< 0.1 GPa).

A few remarks are in order. The linear decrease of TC well beyond the ∼2 GPa structural
transition between hcp and Sm-type is consistent with the “sluggish” equilibration between
these two phases at low temperatures [165]. The metastable dynamics of this transition
are strongly pressure and temperature dependent, suggesting that different starting points
(in the P -T phase diagram) can exhibit dramatically different behaviors [165]. To highlight
this, we probe two different transitions out of the paramagnetic Sm-type phase by tailoring
specific paths in the P -T phase diagram. By taking a shallow path in P -T space, we observe
a small change in the local magnetic field across the structural transition into the PM dhcp
phase at ∼6 GPa (Fig. 2.4(c), path [c], orange diamonds). By taking a steeper path in P -T
space, one can also investigate the magnetic transition into the antiferromagnetic (AFM)
Sm-type phase at ∼150 K (Fig. 2.4(c), path [d], green triangle). In general, these two
transitions are extremely challenging to probe via DC magnetometry since their signals arise
only from small differences in the susceptibilities between the various phases.
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To this end, we demonstrate a complementary NV sensing modality based upon noise
spectroscopy, which can probe phase transitions even in the absence of a direct magnetic
signal [59]. Specifically, returning to Gd’s ferromagnetic Curie transition, we monitor the
NV’s depolarization time, T1, as one crosses the phase transition (Fig. 2.4(d)). Normally,
the NV’s T1 time is limited by spin-phonon interactions and increases dramatically as one
decreases temperature. Here, we observe a strikingly disparate behavior. In particular, us-
ing nanodiamonds drop-cast on a Gd foil at ambient pressure, we find that the NV T1 is
nearly temperature independent in the paramagnetic phase, before exhibiting a kink and
subsequent decrease as one enters the ferromagnetic phase (Fig. 2.4(d)). We note two in-
triguing observations: first, one possible microscopic explanation for this behavior is that
T1 is dominated by Johnson-Nyquist noise from the thermal fluctuations of charge carriers
inside Gd [185].3 Gapless critical spin fluctuations or magnons in the ordered phase, while
expected, are less likely to cause this signal. Second, we observe that the Curie temperature,
as identified via T1-noise spectroscopy, is ∼10 K higher than that observed via DC magne-
tometry (Fig. 2.4(d)). Similar behavior has previously been reported for the surface of Gd
[255, 316], suggesting that our noise spectroscopy could be more sensitive to surface physics.

2.5 Experimental details

2.5.1 Diamond anvil cell and sample preparation

All diamond anvils used in this work are synthetic type-Ib ([N] ≲ 200 ppm) single crys-
tal diamonds cut into a 16-sided standard design with dimensions 0.2 mm diameter culet,
2.75 mm diameter girdle, and 2 mm height (Almax-easyLab and Syntek Co., Ltd.). For
stress measurement, both anvils with (111)-cut-culet and (110)-cut-culet are used, while
for magentic measurement on iron and gadolinium, (110)-cut-culet anvil is used. We per-
form 12C+ ion implantation (CuttingEdge Ions, 30 keV energy, 5 × 1012 cm−2) to generate
a ∼50 nm layer of vacancies near the culet surface. After implantation, the diamonds are
annealed in vacuum (< 10−6 Torr) using a home-built furnace with the following recipe: 12
hours ramp to 400◦C, dwell for 8 hours, 12 hours ramp to 800◦C, dwell for 8 hours, 12 hours
ramp to 1200◦C, dwell for 2 hours. During annealing, the vacancies become mobile, and
probabilistically form NV centers with intrinsic nitrogen defects. After annealing, the NV
concentration is estimated to be around 1 ppm as measured by flourescence intensity. The
NV centers are photostable after many iterations of compression and decompression up to
27 GPa, with spin-echo coherence time T2 ≈ 1 µs, mainly limited by nitrogen spin bath.

The miniature diamond anvil cell body is made of nonmagnetic Vascomax with cubic
boron nitride backing plates (Technodiamant). Nonmagnetic gaskets (rhenium or beryl-
lium copper) and pressure media (cesium iodide, methanol/ethanol/water) are used for all
experiments.

3As opposed to isolated NV samples, where T1 is limited by spin-phonon interactions.
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Figure 2.5: (a) Schematic of the setup explicitly depicting the platinum foil used for mi-
crowave excitation. The gasket has been cross sectioned for visual clarity. (b) Schematic
from the perspective of the objective lens. The anvil has been omitted for visual clarity.
Diagrams are not to scale.

2.5.2 Experimental setup

We address NV ensembles integrated inside the DAC using a home-built confocal microscope.
A 100 mW 532 nm diode-pumped solid-state laser (Coherent Compass), controlled by an
acousto-optic modulator (AOM, Gooch & Housego AOMO 3110-120) in a double-pass con-
figuration, is used for both NV spin initialization and detection. The laser beam is focused
through the light port of the DAC to the NV layer using a long working distance objective lens
(Mitutoyo 378-804-3, NA 0.42, for stress and iron measurements; Olympus LCPLFLN-LCD
20X, NA 0.45, for gadolinium measurement in cryogenic environment), with a diffraction-
limit spot size ≈ 600 nm. The NV fluorescence is collected using the same objective lens,
spectrally separated from the laser using a dichroic mirror, further filtered using a 633 nm
long-pass filter, and then detected by a fiber coupled single photon counting module (SPCM,
Excelitas SPCM-AQRH-64FC). A data aquisition card (National Instruments USB-6343) is
used for fluorescence counting and subsequent data processing. The lateral scanning of the
laser beam is performed using a two-dimensional galvanometer (Thorlabs GVS212), while
the vertical focal spot position is controlled by a piezo-driven positioner (Edmund Optics at
room temperture; attocube at cryogenic temperature). For gadolinium measurements, we
put the DAC into a closed-cycle cryostat (attocube attoDRY 800) for temperature control
from 35 − 320 K. The AOM and the SPCM are gated by a programmable multi-channel
pulse generator (SpinCore PulseBlasterESR-PRO 500) with 2 ns temporal resolution.

A microwave source (Stanford Research Systems SG384) in combination with a 16W
amplifier (Mini-Circuits ZHL-16W-43+) serves to generate signals for NV spin state ma-
nipulation. The microwave field is delivered to DAC through a 4 µm thick platinum foil
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compressed between the gasket and anvil pavilion facets (Fig. 2.5), followed by a 40 dB
attenuator and a 50 Ω termination.

2.6 Sensitivity and accuracy

2.6.1 Theoretical sensitivity

The magnetic field sensitivity for continuous-wave ODMR [93] is given by:

ηB = PG
1

γB

∆ν

C
√
R
, (2.1)

where γB is the gyromagnetic ratio, PG ≈ 0.7 is a unitless numerical factor for a Gaussian
lineshape, ∆ν = 10 MHz is the resonance linewidth, C ≈ 1.8% is the resonance contrast, and
R ≈ 2.5 × 106 s−1 is the photon collection rate. One can relate this to magnetic moment
sensitivity by assuming that the field is generated by a point dipole located a distance d from
the NV center (pointing along the NV axis). Then the dipole moment sensitivity is given by

ηm = PG
1

γB

∆ν

C
√
R

2πd3

µ0

, (2.2)

where µ0 is the vacuum permeability.
Analogous to Eq. 2.1, the stress sensitivity for continuous-wave ODMR is given by

ηS = PG
1

ξ

∆ν

C
√
R
, (2.3)

where ξ is the susceptibility for the relevant stress quantity. More specifically, ξ is a tensor
defined by:

ξαβ =

∣∣∣∣δfαδσβ

∣∣∣∣
σ(0)

(2.4)

where fα, α ∈ [1, 8] are the resonance frequences associated with the 4 NV crytallographic
orientations; σ(0) is an initial stress state; and δσβ is a small perturbation to a given stress
component, e.g. β ∈ {XX, Y Y, ZZ,XY,XZ, Y Z}. For optimal sensitivity, we consider
perturbations about an unstressed state (i.e. σ(0) = 0) 4. The resulting susceptibilities for
stress components in a (111)-cut diamond frame5 are

4Equivalently, one can begin from any hydrostatic stress, i.e. σ(0) ∼ I. Non-hydrostatic stress, however,
will generally reduce the stress susceptibilities, as will the presence of electric or magnetic fields.

5The Z axis is normal to the diamond surface, and the XZ plane contains two of the NV axes (the
vertical axis and one of the three non-vertical axes).
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ξαβ = (2π)×



10.5 10.5 2.5 3.9 9.0 9.0
6.6 6.6 2.5 3.9 9.0 9.0
1.3 10.5 11.9 9.8 12.7 0.7
3.9 6.6 2.8 9.8 1.2 0.7
10.8 6.1 11.9 13.5 0.5 11.1
1.4 3.7 2.8 3.6 6.4 1.0
10.8 6.1 11.9 3.6 0.5 1.0
1.4 3.7 2.8 13.5 6.4 11.1


[MHz/GPa].

In Table 2.1, we compute the sensitivity using the maximum susceptibility for each stress
component:

ξ
(max)
β = max

α
ξαβ (2.5)

2.6.2 Experimental sensitivity and accuracy

In order to characterize the sensitivity of our system, we perform ODMR spectroscopy on
a single resonance. We fit a Gaussian lineshape to this resonance and observe the fitting
error on the center frequency as a function of the total integration time, T (Fig. 2.6). In
particular, we fit the time scaling behavior of the fitting error to AT−1/2, where A, divided
by the susceptibility of interest, characterizes the experimental sensitivity for a given signal.
For T ≳ 100 s, the experimental accuracy saturates due to systematic noise, which we define
here as the “systematic accuracy” for each type of signal.

For scalar signals (e.g. axial magnetic fields, temperature, etc.), the accuracy is directly
proportional to the minimum fitting error. For stress components, however, determining
the accuracy is more complicated as the relation between resonance frequencies and the full
stress tensor is a multi-dimensional, nonlinear function (Section 2.7.1). To this end, we
quantify the accuracy of each stress component using a Monte Carlo procedure. We begin
with an unstressed state, which corresponds to the initial set of frequencies f

(0)
α = Dgs. We

then apply noise to each of the freqencies based on the minimum fitting error determined
above—i.e. f

(0)
α + δfα, where δfα are sampled from a Gaussian distribution with a width

of the fitting error—and calculate the corresponding stress tensor using a least-squared fit
(Sec. 2.7.1). Repeating this procedure over many noise realizations, we compute the standard
deviation of each stress component. The results of this procedure are shown in Table 2.1.

2.6.3 Comparison to other magnetometry techniques

In this section, we discuss the comparison of magnetometry techniques presented in Fig. 2.1(d)
of the main text. For each sensor, the corresponding dipole accuracy (as defined in Sec-
tion 2.6.2) is plotted against its relevant “spatial resolution,” roughly defined as the length
scale within which one can localize the source of a magnetic signal. In the following discus-
sion, we specify the length scale plotted for each method in Fig. 2.1(d). We consider two
broad categories of high pressure magnetometers.
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Figure 2.6: Scaling of magnetic field precision as a function of total integration time on a
single resonance. Right axis corresponds to standard deviation of center frequency fitting.
Solid line corresponds to a fit to AT−1/2 where A is the sensitivity reported in Section 2.4
and T is the total integration time. Dashed line corresponds to the scaling predicted by
Eq. 2.1. The experimental accuracy saturates for T ≳ 100 s due to systematic noise.

The first category encompasses inductive methods such as pickup coils [107, 239, 158] and
superconducting quantum interference devices (SQUIDs) [15, 240, 122, 313, 218]6. Magnetic
dipole measurement accuracies are readily reported in various studies employing inductive
methods. We estimate the relevant length scale of each implementation as the pickup coil
or sample bore diameter.

The second class of magnetometers comprises high energy methods including Mössbauer
spectroscopy [260, 261, 173] and x-ray magnetic circular dichroism (XMCD) [222, 152, 339,
61], which probe atomic scale magnetic environments. For the Mössbauer studies considered
in our analysis, we calculate magnetic dipole moment accuracies by converting B-field un-
certainties into magnetic moments, assuming a distance to the dipole on order of the lattice
spacing of the sample. We assess the length scale as either the size of the absorbing sample
or the length scale associated with the sample chamber/culet area. For XMCD studies, we
accept the moment accuracies reported in the text. Length scales are reported as the square
root of the spot size area. Notably, we emphasize that both methods provide information
about atomic scale dipole moments rather than a sample-integrated magnetic moment; these
methods are thus not directly comparable to inductive methods.

We compare these methods alongside the NV center, whose accuracy is defined in Sec-
tion 2.6.2 and shown in Table 2.1. For the current work, we estimate a length scale ∼ 5
µm, corresponding to the approximate distance between a sample (suspended in a pressure-
transmitting medium) and the anvil culet. By exfoliating a sample onto the diamond surface,

6Under the category of inductive methods, we also include the “designer anvil” which embeds a pickup
coil directly into the diamond anvil.
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Signal (unit) Theo Sensitivity Exp Sensitivity Accuracy

(unit/
√
Hz) (unit/

√
Hz) (unit)

Hydrostatic stress (GPa) 0.017 0.023 0.0012
Average normal stress (GPa) 0.022 0.03 0.0032
Average shear stress (GPa) 0.020 0.027 0.0031

Magnetic field (µT) 8.8 12 2.2
Magnetic dipole (emu), 5.5× 10−12 7.5× 10−12 1.4× 10−12

floating sample (d = 5 µm)
Magnetic dipole (emu), 1.7× 10−20 2.3× 10−20 4.3× 10−21

exfoliated sample (d = 5 nm)(∗)

Magnetic dipole (emu), 1.6× 10−21 2.2× 10−21 4.0× 10−22

exfoliated sample,
single NV (d = 5 nm)(†)

Electric field (kV/cm), 1.8 2.5 0.45
single NV(†)

Temperature (K), 0.4 0.55 0.10
single NV(†)

Table 2.1: NV sensitivity and accuracy for various signals. Sensitivity is calculated using
Eqs. 2.2-2.3. We also report the typical fitting error of the center frequency. Gray rows
correspond to projected sensitivity given an exfoliated sample atop (∗) an ensemble of 5 nm
depth NV centers or (†) a single 5 nm depth NV center with ∆ν = 1 MHz, C = 0.1,R =
104 s−1. Magnetic dipoles are reported in units of emu, where 1 emu = 10−3 A·m2.

the diffraction-limit ∼ 600 nm bounds the transverse imaging resolution for ensemble NV
centers; this limit can be further improved for single NV centers via super-resolution tech-
niques [274].

2.7 Stress tensor

2.7.1 Overview

In this section, we describe our procedure for reconstructing the full stress tensor using NV
spectroscopy. This technique relies on the fact that the four NV crystallographic orientations
experience different projections of the stress tensor within their local reference frames. In
particular, the full Hamiltonian describing the stress interaction is given by:

HS =
∑
i

Πz,iS
2
z,i +Πx,i

(
S2
y,i − S2

x,i

)
+Πy,i (Sx,iSy,i + Sy,iSx,i) (2.6)
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where

Πz,i = α1

(
σ(i)
xx + σ(i)

yy

)
+ β1σ

(i)
zz (2.7)

Πx,i = α2

(
σ(i)
yy − σ(i)

xx

)
+ β2

(
2σ(i)

xz

)
(2.8)

Πy,i = α2

(
2σ(i)

xy

)
+ β2

(
2σ(i)

yz

)
(2.9)

σ(i) is the stress tensor in the local frame of each of NV orientations labeled by {i = 1, 2, 3, 4},
and {α1,2, β1,2} are stress susceptibility parameters (Section 2.7.3.3). Diagonalizing this
Hamiltonian, one finds that the energy levels of each NV orientation exhibit two distinct

effects: the |ms = ±1⟩ states are shifted in energy by Πz,i and split by 2Π⊥,i = 2
√
Π2

x,i +Π2
y,i.

Thus, the Hamiltonian can be thought of as a function that maps the stress tensor in the
lab frame to eight observables: HS(σ

(lab)) = {Πz,1,Π⊥,1,Πz,2,Π⊥,2, ...}. Obtaining these
observables through spectroscopy, one can numerically invert this function and solve for all
six components of the corresponding stress tensor.

In practice, resolving the resonances of the four NV orientation groups is not straight-
forward because the ensemble spectra can exhibit near degeneracies. When performing
ensemble NV magnetometry, a common approach is to spectroscopically separate the reso-
nances using an external bias magnetic field. However, unlike magnetic contributions to the
Hamiltonian, stress that couples via Π⊥ is suppressed by an axial magnetic field. Therefore,
a generic magnetic field provides only stress information via the shifting parameters, Πz,i,
which is insufficient for reconstructing the full tensor.

To address this issue, we demonstrate a novel technique that consists of applying a
well-controlled external magnetic field perpendicular to each of the NV orientations. This
technique leverages the symmetry of the NV center, which suppresses its sensitivity to trans-
verse magnetic fields. In particular, for each perpendicular field choice, three of the four NV
orientations exhibit a strong Zeeman splitting proportional to the projection of the external
magnetic field along their symmetry axes, while the fourth (perpendicular) orientation is
essentially unperturbed 7. This enables one to resolve Πz,i for all four orientations and Π⊥,i

for the orientation that is perpendicular to the field. Repeating this procedure for each NV
orientation, one can obtain the remaining splitting parameters and thus reconstruct the full
stress tensor.

In the following sections, we provide additional details regarding our experimental pro-
cedure and analysis. In Section 2.7.2, we describe how to use the four NV orientations to
calibrate three-dimensional magnetic coils and to determine the crystal frame relative to
the lab frame. In Section 2.7.3, we discuss our fitting procedure, the role of the NV’s local
charge environment, and the origin of the stress susceptibility parameters. In Section 2.7.4,
we present the results of our stress reconstruction procedure for both (111)- and (110)-cut
diamond. In Section 2.7.5, we compare our experimental results to finite element simulations.

7A transverse magnetic field leads to shifting and splitting at second order in field strength. We account
for the former through a correction described in Section 2.7.3, while the latter effect is small enough to be
neglected. More specifically, the effective splitting caused by magnetic fields is (γBB⊥)

2/Dgs ≈ 5− 10 MHz,
which is smaller than the typical splitting observed at zero field.
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2.7.2 External field details

2.7.2.1 Electromagnet calibration procedure

To apply carefully aligned magnetic fields, we utilize a set of three electromagnets that are
approximately spatially orthogonal with one another and can be controlled independently
via the application of current. Each coil is placed >10 cm away from the sample to reduce
the magnetic gradient across the (200 µm)2 culet area.8

To calibrate the magnetic field at the location of the sample, we assume that the field
produced by each coil is linearly porportional to the applied current, I. Our goal is then to
find the set of coefficients, amn such that

Bm =
∑
m

amnIn, (2.10)

where Bm = {BX , BY , BZ} is the magnetic field in the crystal frame and n = {1, 2, 3} indexes
the three electromagnets. We note that this construction does not require the electromagnets
to be spatially orthogonal.

To determine the nine coefficients, we apply arbitrary currents and measure the Zeeman
splitting of the four NV orientations via ODMR spectroscopy. Notably, this requires the
ability to accurately assign each pair of resonances to their NV crystallographic orientation.
We achieve this by considering the amplitudes of the four pairs of resonances, which are
proportional to the relative angles between the polarization of the excitation laser and the
four crystallagraphic orientations. In particular, the |ms = 0⟩ ↔ |ms = ±1⟩ transition is
driven by the perpendicular component of the laser field polarization with respect to the
NV’s symmetry axis. Therefore, tuning the laser polarization allows us to assign each pair
of resonances to a particular NV orientation.

In order to minimize the number of fitting variables, we choose magnetic fields whose
projection along each NV orientation is sufficient to suppress their transverse stress-induced
energy splitting, i.e. γBB ≫ Π⊥. As a result, the spectrum measured at each magnetic field
is determined by (a) the stress-induced shift Πz,i for each NV orientation, which is constant
for all applied fields, and (b) the applied vector magnetic field {BX , BY , BZ}. Sequentially
applying different currents to the electromagnet coils and determining the subsequent vector
magnetic field at the sample three times, we obtain sufficient information to determine the
matrix amn as well as the shift Πz for all NV orientations. We find that the calibration
technique is precise to within 2%.

2.7.2.2 Calibration of crystal and laboratory frames

To determine the orientation of the crystal frame (i.e. the [100] diamond axis) with respect
to the lab frame, we apply an arbitrary magnetic field and measure its angle (a) in the lab
frame via a handheld magnetometer, and (b) in the crystal frame via the Zeeman splittings

8We note that the pressure cell, pressure medium and gasket are nonmagnetic.
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(see 2.7.2). Together with the known diamond cut, this provides a system of equations for
the rotation matrix, Rc, that relates the lab frame and the crystal frame:

RcB̂
(lab) = B̂(crystal) , RcẐ = ê(crystal) (2.11)

where Ẑ = (0, 0, 1)⊤ is the longitudinal axis in the lab frame, and ê(crystal) is the unit vector
perpendicular to the diamond cut surface in crystal frame, e.g. ê(crystal) ∝ (1, 1, 1)⊤ for the
(111)-cut diamond. We solve for Rc by numerically minimizing the least-squared residue of
these two equations.

However, we note that the magnetic field determined by the Zeeman splittings contains
an overall sign ambiguity. To account for this, we numerically solve Eq. (2.11) using both
signs for B̂(crystal) and select the solution for Rc with the smaller residue. Based on this
residue, we estimate that our calibration is precise to within a few degrees.

2.7.3 Analysis

2.7.3.1 Extracting splitting and shifting information

Having developed a technique to spectrally resolve the resonances, we fit the resulting spec-
tra to four pairs of Lorentzian lineshapes. Each pair of Lorentzians is defined by a cen-
ter frequency, a splitting, and a common amplitude and width. To sweep across the two-
dimensional layer of implanted NV centers, we sequentially fit the spectrum at each point
by seeding with the best-fit parameters of nearby points. We ensure the accuracy of the fits
by inspecting the frequencies of each resonance across linecuts of the 2D data (Fig. 2.7(b)).

Converting the fitted energies to shifting (Πz,i) and splitting parameters (Π⊥,i) requires
us to take into account two additional effects. First, in the case of the shifting parameter, we
subtract off the second-order shifting induced by transverse magnetic fields. In particular, the
effective shifting is given by Πz,B ≈ (γBB⊥)

2/Dgs, which, under our experimental conditions,
corresponds to Πz,B ≈ 5 − 10 MHz. To characterize this shift, one can measure each of
the NV orientations with a magnetic field aligned parallel to its principal axis, such that
the transverse magnetic shift vanishes. In practice, we obtain the zero-field shifting for
each of the NV orientations without the need for additional measurements, as part of our
electromagnet calibration scheme (Section 2.7.2). We perform this calibration at a single
point in the two-dimensional map and use this point to characterize and subtract off the
magnetic-induced shift in subsequent measurements with arbitrary applied field. Second, in
the case of the splitting parameter, we correct for an effect arising from the NV’s charge
environment. We discuss this effect in the following section. The final results for the shifting
(Πz,i) and splitting (Π⊥,i) parameters for the (111)-cut diamond at 4.9 GPa are shown in
Fig. 2.7(c).

2.7.3.2 Effect of local charge environment

It is routinely observed that ensemble spectra of high-density samples (i.e. Type 1b) exhibit
a large (5− 10 MHz) splitting even under ambient conditions. While commonly attributed
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Figure 2.7: Stress reconstruction procedure applied to the (111)-cut diamond at 4.9 GPa.
(a) A typical ODMR spectrum with the resonances corresponding to each NV orientation
fit a pair of Lorentzian lineshapes. (b) A linecut indicating the fitted resonance energies
(colored points) superimposed on the measured spectra (grey colormap). (c) 2D maps of
the shifting (Πz,i) and splitting parameters (Π⊥,i) for each NV orientation across the entire
culet.
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to instrinsic stresses in the diamond, it has since been suggested that the splitting is, in fact,
due to electric fields originating from nearby charges [241]. This effect should be subtracted
from the total splitting to determine the stress-induced splitting.

To this end, let us first recall the NV interaction with transverse electric fields:

HE = d⊥
[
Ex(S2

y − S2
x) + Ex(SxSy + SySx)

]
(2.12)

where d⊥ = 17 Hz cm/V. Observing the similarity with Eq. (2.6), we can define

Π̃x = Πs,x +ΠE,x (2.13)

Π̃y = Πs,y +ΠE,y (2.14)

where ΠS,{x,y} are defined in Eq. (2.7) and ΠE,{x,y} = d⊥E{x,y}. The combined splitting for
electric fields and stress is then given by

2Π̃⊥ = 2
(
(Πs,x +ΠE,x)

2 + (Πs,y +ΠE,y)
2)1/2 . (2.15)

We note that the NV center also couples to longitudinal fields, but its susceptibility is ∼ 50
times weaker and is thus negligible in the present context.

To model the charge environment, we consider a distribution of transverse electric fields.
For simplicity, we assume that the electric field strength is given by a single value E0, and
its angle is randomly sampled in the perpendicular plane. Adding the contributions from
stress and electric fields and averaging over angles, the total splitting becomes

Π̃⊥,avg =

∫
dθ(Π2

S,⊥ +Π2
E,⊥ + 2ΠS,⊥ΠE,⊥ cos θ)1/2

=
1

π

√Π2
s,⊥ − Π2

E,⊥EllipticE

− 4ΠS,⊥ΠE,⊥√
Π2

S,⊥ − Π2
E,⊥


+

√
Π2

S,⊥ +Π2
E,⊥EllipticE

− 4Πs,⊥ΠE,⊥√
Π2

S,⊥ +Π2
E,⊥

 (2.16)

where EllipticE(z) is the elliptic integral of the second kind. This function is plotted in
Fig. 2.8(a), and we note its qualitative similarity to a quadrature sum.

To characterize the intrinsic charge splitting (ΠE,⊥), we first aquire an ODMR spectrum
for each diamond sample under ambient conditions. For example, for the (111)-cut diamond,
we measured ΠE,⊥ ≈ 4.5 MHz. For subsequent measures under pressure, we then subtract off
the charge contribution from the observed splitting by numerically from inverting Eq. (2.16)
and solving for Πs,⊥.
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2.7.3.3 Susceptibility parameters

A recent calibration experiment established the four stress susceptibilities relevant to this
work [29]. In this section, we discuss the conversion of their susceptibilities to our choice
of basis (the local NV frame), and we reinterpret their results for the splitting parameters
taking into account the effect of charge.

In their paper, Barson et. al. define the stress susceptilities with respect diamond crystal
frame:

Πz = a1(σXX + σYY + σZZ) + 2a2(σYZ + σZX + σXY) (2.17)

Πx = b(2σZZ − σXX − σYY) + c(2σXY − σYZ − σZX ) (2.18)

Πy =
√
3 [b(σXX − σYY) + c(σYZ − σZX )] (2.19)

where XYZ are the principal axes of the crystal frame. Their reported results are {a1, a2, b, c} =
(2π)× {4.86(2),−3.7(2),−2.3(3), 3.5(3)} MHz/GPa.

To convert these susceptibilities to our notation (Eq. 2.6), one must rotate the stress
tensor from the crystal frame to the NV frame, i.e. σxyz = RσXYZR

⊤. The rotation matrix
that accomplishes this is:

R =

 − 1√
6

− 1√
6

√
2
3

1√
2

− 1√
2

0
1√
3

1√
3

1√
3

 . (2.20)

Applying this rotation, one finds that the above equations become (in the NV frame)

Πz = (a1 − a2)(σxx + σyy) + (a1 + 2a2)σzz (2.21)

Πx = (−b− c)(σyy − σxx) + (
√
2b−

√
2

2
c)(2σxz) (2.22)

Πx = (−b− c)(2σxy) + (
√
2b−

√
2

2
c)(2σyz) (2.23)

Thus, the conversion between the two notations is(
α1

β1

)
=

(
1 −1
1 2

)(
a1
a2

)
(
α2

β2

)
=

(
−1 −1√
2 −

√
2
2

)(
b
c

) (2.24)

In characterizing the splitting parameters (b and c), Barson et. al. assumed a linear
dependence between the observed splitting and ΠS,⊥. However, our charge model suggests
that for ΠS,⊥ ≲ ΠE,⊥ the dependence should be nonlinear. To account for this, we re-analyze
their data using Eq. 2.16 as our fitting form, rather than a linear function as in the original
work. The results are shown in Fig. 2.8 for two NV orientation groups measured in the
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(a) (b) (c)

Figure 2.8: Interplay between stress and random electric fields. (a) Theoretical curve (blue)
for the total splitting in the presence of stress and electric fields, Eq. (2.16). We compare this
to a quadratic sum (red). (b-c) Measured splitting parameter (blue) for uniaxial pressure
applied to a (110)-cut and (100)-cut diamond, reprinted with permission from [29]. We fit
the data using (i) a linear function (orange), Π̃⊥ = ΠE,⊥ +ΠS,⊥, and (ii) the aforementioned
theoretical curve, Eq. (2.16) (green). Both fits include two free parameters: ΠE,⊥ and a =
ΠS,⊥/P . We report the best-fit value for the latter parameter in the inset.

experiment: (110)36 and (100)54, where (· · · ) denotes the crystal cut and the subscript is
the angle of the NV group with respect to the crystal surface. From the fits, we extract
the linear response, Πs,⊥/P , for the two groups. These are related to the stress parameters
by b − c and 2b, respectively. Using these relations and the results of the fits, one finds
{b, c} = (2π) × {−1.47(2), 3.42(7)} MHz/GPa.9 Finally, we convert these and the original
reported for {a1, a2} to the NV frame using Eq. 2.24. This leads to the susceptibilites that
we use for our analysis:

{α1, β1, α2, β2} = (2π)× {8.6(2),−2.5(4),−1.95(9),−4.50(8)} MHz/GPa. (2.25)

2.7.4 Results

In this section, we discuss our stress reconstruction results for (i) the (111)-cut diamond at
4.9 GPa and 13.6 GPa (Fig. 2.9), and (ii) the (110)-cut diamond at 4.8 GPa (Fig. 2.10).
The stress tensors were obtained by numerically minimizing the least-squared residue with
respect to the measured shifting and splitting parameters (i.e. Πz,i,Π⊥,i). While ideally we
would measure all eight observables, in this experiment we measured only six: all four shifting
parameters and two splitting parameters. We find that this information allows for the robust

9Note that the overall sign of these parameters cannot be determined through these methods, as the
energy splitting is related to the quadrature sum of Πx and Πy. To determine the sign, one would need to
measure the phase of the perturbed states [241].
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characterization of σZZ and σ⊥ = 1
2
(σXX +σY Y ), i.e. the two azimuthally symmetric normal

components.
We can estimate the accuracy of the reconstructed tensors from the spatial variations of

σZZ at 4.9 GPa. Assuming the medium is an ideal fluid, one would expect that σZZ to be flat
in the region above the gasket hole. In practice, we observe spatial fluctuations characterized
by a standard deviation ≈ 0.01 GPa; this is consistent with the expected accuracy based on
frequency noise (Table 2.1). The errorbars in the reconstructed stress tensor are estimated
using the aforementioned experimental accuracy.

Interestingly, the measured values for σZZ differs from the ruby pressure scale by ∼
10%. This discrepancy is likely explained by inaccuracies in the susceptibility parameters;
in particular, the reported susceptibility to axial strain (i.e. β1) contains an error bound
that is also ∼ 10%. Other potential sources of systematic error include inaccuracies in our
calibration scheme or the presence of plastic deformation.

Finally, we note that, in many cases, our reconstruction procedure yielded two degenerate
solutions for the non-symmetric stress components; that is, while σZZ and σ⊥ have a unique
solution, we find two different distributions for σXX , σXY , etc. This degeneracy arises from

the squared term in the splitting parameter, Π⊥,i = 2
√

Π2
x,i +Π2

y,i, and the fact we measure

only six of the eight observables. In Fig. 2.9 and Fig. 2.10 (and Fig. 2.2(b)), we show the
solution for the stress tensor that is more azimuthally symmetric, as physically motivated
by our geometry.

2.7.5 Finite element simulations of the stress tensor

Using equations from elasticity theory under the finite element approach, a numerical simu-
lation was coded in ABAQUS for the stress and strain tensor fields in the diamond anvil cell.
The diamond anvil cell is approximately axially symmetric about the diamond loading axis,
in this case the crytallographic (111) axis (i.e. the Z axis). This permits us to improve simu-
lation efficiency by reducing the initially 3D tensor of elastic moduli to the 2D axisymmetric
cylindrical frame of the diamond as follows. Initially, the tensor can be written in 3D with
cubic axes c11 = 1076 GPa, c12 = 125 GPa, c44 = 577 GPa. Next, we rotate cubic axes such
that the (111) direction is along the Z axis of the cylindrical coordinate system. Finally,
the coordinate system is rotated by angle θ around the Z axis and the elastic constants
are averaged over 360◦ rotation. The resulting elasticity tensor in the cylindrical coordinate
system is 

1177.5 57.4 91 0
57.4 1211.6 57.4 0
91 57.4 1177.5 0
0 0 0 509.2

 [GPa].

The geometry of the anvil and boundary conditions (Fig. 2.11) are as follows:
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Figure 2.9: Stress tensor reconstruction of (111)-cut diamond at (a) 4.9 GPa and (b) 13.6 GPa. In the
former case, we reconstruct both the inner region in contact with the fluid-transmitting medium, and the
outer region in contact with the gasket. In the latter case, we reconstruct only the inner region owing to the
large stress gradients at the contact with the gasket; note that the black pixels in the center indicates where
the spectra is obscured by the ruby flourescence. Both pressures exhibit inward concentration of the normal
lateral stress (σXX and σY Y ). In contrast, the normal loading stress is uniform for the lower pressure and
spatially varying at the higher pressure, indicating that the pressure medium has solidified.
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Figure 2.10: Stress tensor reconstruction of (110)-cut diamond at 4.8 GPa pressure. Anal-
ogous to the (111)-cut at low pressure, we observe an inward concentration of lateral stress
and a uniform loading stress in the fluid-contact region.

1. The top surface of the anvil is assumed to be fixed. The distribution of stresses or
displacements along this surface does not affect our solution close to the diamond
culet line AB.

2. The normal stress σZZ along the line AB is taken from the experimental measurements
(Fig. 2.2(a) and 2.12). The pressure-transmitting medium/gasket boundary runs along
the innermost 47 µm of this radius.

3. Along the pressure-transmitting medium/anvil boundary (r ≤ 47 µm) and also at the
symmetry axis r = 0 (line AE) shear stress σRZ is zero. Horizontal displacements at
the symmetry axis are also zero.

4. Normal and shear contact stresses along all other contact surfaces are determined from
the best fit to the mean in-plane stress distribution σ⊥ = 0.5(σRR + σΘΘ) measured in
the experiment (Fig. 2.2(a) and Fig. 2.12). We chose to fit to σ⊥ rather than to other
measured stresses is because it has the smallest noise in experiment. With this, the
normal stress on the line BD with the origin at point B is found to be

σc = 3.3× 105x4 − 7.5× 104x3 + 4.5× 103x2 − 102x+ 4.1, (2.26)
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 (a) (b) (c)

Figure 2.11: (a) Diamond geometry, (b) anvil tip with distribution of the applied normal
stress, (c) distribution of the applied shear stress. Normal stress σZZ at the culet and zero
shear stress σRZ along the pressure-transmitting medium/anvil boundary (r ≤ 47 µm) are
taken from experiment. Normal and shear contact stresses along all other contact surfaces
are determined from the best fit of the mean in-plane stress distribution σ⊥ = 0.5(σRR+σΘΘ)
to experiment (Fig. 2.2(a) and Fig. 2.12).

where σc is in units of GPa, and the position x along the lateral side is in units of mm.
The distribution of the normal stresses is shown in Fig. 2.11(b) and Fig. 2.13.

5. At the contact surface between the gasket and the anvil, a Coulomb friction model is
applied. The friction coefficient on the culet is found to be 0.02 and along the inclined
surface of the anvil (line BD) is found to vary from 0.15 at point B to 0.3 at 80 µm
from the culet. The distribution of shear stresses is shown in Fig. 2.11(c) and Fig. 2.13.

6. Other surfaces not mentioned above are stress-free.

The calculated distributions of the stress tensor components near the tip of the anvil are
shown in Fig. 2.14.

2.8 Iron dipole reconstruction

In this section, we discuss the study of the pressure-induced α ↔ ϵ transition in iron. In
particular, we provide the experimental details, describe the model used for fitting the data,
and outline the procedure to ascertain the transition pressure.

For this experiment, the DAC is prepared with a rhenium gasket preindented to 60 µm
thickness and laser drilled with a 100 µm diameter hole. We load a ∼ 10 µm iron pellet,
extracted from a powder (Alfa Aesar Stock No. 00737-30), and a ruby microsphere for
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Figure 2.12: (a) Distribution of applied normal stress σZZ and the mean in-plane stress
σ⊥ along the culet surface of the diamond from the experiment and FEM simulations. (b)
Distribution of the mean in-plane stress σ⊥ (experimental and simulated) as well as the
simulated radial σRR and circumferential σΘΘ stresses along the culet surface of the diamond.
Simulations conducted and analyzed by Mehdi Kamrani and Valery Levitas.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Distribution of applied normal and shear stress along the lateral surface of
the diamond determined from the best fit of the mean in-plane stress distribution σ⊥ to
experiment (Fig. 2.2(a) and Fig. 2.12). Simulations conducted and analyzed by Mehdi
Kamrani and Valery Levitas.

pressure calibration. A solution of methanol, ethanol and water (16:3:1 by volume) is used
as the pressure-transmitting medium.

The focused laser is sequentially scanned across a 10×10 grid corresponding to a ∼
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Figure 2.14: Calculated distributions of the components of stress tensor in the anvil for
r < 150 and z < 475 µm. Simulations conducted and analyzed by Mehdi Kamrani and
Valery Levitas.

30×30 µm area of the NV layer in the vicinity of the iron pellet, taking an ODMR spectrum
at each point. The energy levels of the NV are determined by both the magnetic field and
the stress in the diamond. Owing to their different crystallographic orientations, the four
NV orientations in general respond differently to these two local parameters. As a result,
for each location in the scan, eight resonances are observed.

A large bias magnetic field (∼ 180 G), not perpendicular to any of the axes, is used to
suppress the effect of the transverse stress in the splitting for each NV orientation. However,
the longitudinal stress still induces an orientation-dependent shift of the resonances which
is nearly constant across the imaging area, as measured independently (Fig 2.7(c)).

By analyzing the splittings of the NV resonances across the culet, we can determine the
local magnetic field and thereby reconstruct the dipole moment of the iron pellet.

To estimate the error in pressure, a ruby fluorescence spectrum was measured before and
after the ODMR mapping, from which the pressure could be obtained [77]. The pressure
was taken to be the mean value, while the error was estimated using both the pressure range
and the uncertainty associated with each pressure point.

2.8.1 Extracting Splitting Information

The eight resonances in a typical ODMR spectrum are fit to Gaussian lineshapes to extract
the resonance frequency (Fig 2.15(a)). Resonances are paired as in Fig. 1.4(a): from outer-
most resonances to innermost, corresponding to NV orientations with the strongest magnetic
field projection to the weakest, respectively. Once identified, we calculate the splitting and
magnetic field projection for each NV orientation.

We note that there are two regimes where our spectra cannot confidently resolve and
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Figure 2.15: (a) Example of a typical spectrum with a fit to eight free Gaussians. Resonance
pairs are identified as in Fig. 1.4(a): NV4 has the strongest magnetic field projection and
NV1 has the weakest. (b) Example spectrum for which resonances are broadened and shifted.
In this case we cannot correlate any resonances in the spectrum to specific NV orientations.

identify all the eight resonances. First, at high pressure, the resonance contrast for some NV
orientations is diminished, possibly due to a modification of the frequency response of the
microwave delivery system. Second, close to or on top of the iron pellet, the resonances are
broadened; we attribute this to the large magnetic field gradients (relative to the imaging
resolution) caused by the sample. The resulting overlap in spectral features obfuscates the
identity of each resonance (Fig. 2.15(b)). In both cases, we fit and extract splittings only
for the orientations we could identify with certainty.

2.8.2 Point Dipole Model

We model the magnetization of our pellet sample as a point dipole at some location within
the sample chamber. The total magnetic field is then characterized by the external applied
field, B0, the dipole of the sample, d, and the position of the dipole, r. Because of the
presence of a large applied field, we observe that the magnetization of the sample aligns
with B0, and thus, we require only the strength of the dipole to characterize its moment,
d = DB̂0. We expect the external magnetic field and the depth of the particle to remain
nearly constant at different pressures. This is indeed borne out by the data, see Sec. 2.8.4.
As a result, we consider the external magnetic field B0 = (−23(7),−160(1), 92(2)) G and
depth of the iron pellet rZ = −5(1) µm to be fixed.

Due to the dipole of the iron pellet, the magnetic field across the NV layer at position x
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is given by:

B(x) = B0 +
µ0

4π

1

|x|3
(3x̂(d · x̂)− d) , (2.27)

where hats represent unit vectors. At each point, the local field induces a different splitting,
∆(i), to the 4 NV crytallographic orientations i ∈ {1, 2, 3, 4}, measured by diagonalizing the

Hamiltonian H = DgsS
2
z +B

(i)
z Sz +B

(i)
⊥ Sx, where Bz = |B · ẑ(i)| is the projection of B onto

the axis of the NV, and B
(i)
⊥ =

√
|B|2 − (B

(i)
z )2, its transverse component. Dgs is the zero

field splitting of the NV. For each choice of D, rX and rY , we obtain a two dimensional
map of {∆(i)}. Performing a least squares fit of this map against the experimental splittings
determines the best parameters for each pressure point. The error in the fitting procedure
is taken as the error in the dipole strength D.

2.8.3 Determining Transition Pressure

Although the α ↔ ϵ structural phase transition in iron is a first order phase transition,
we do not observe a sharp change in the dipole moment of the sample, observing instead
a cross-over between the two magnetic behaviors. We attribute this to the non-hydrostatic
behavior of the sample chamber at high pressures. As a result, different parts of the iron
pellet can experience different amounts of pressure and, thus, undergo a phase transition at
different applied pressures. The measured dipole moment should scale with the proportion of
the sample that has undergone the phase transition. This proportion, p(P ), should plateau
at either 0 or 1 on different sides of the phase transition, and vary smoothly across it. To
model this behavior we use a logistic function:

p(P ) =
1

eB(P−Pc) + 1
. (2.28)

The dipole strength is then given by:

D = p(P )Dα + [1− p(P )]Dϵ , (2.29)

where Dα (Dϵ) is the dipole moment of the sample in the α (ϵ) structural phase and 1/B
corresponds to the width of the transition, thus its uncertainty.

2.8.3.1 Large error bar in the 11 GPa decompression point

During the decompression, around 11 GPa, we observed a significant drift of the pressure
during measurement of the ODMR spectra. Unfortunately, the starting pressure was close
to the transition pressure, and the drift in pressure led to a very large change in the pellet’s
dipole moment throughout the scanning measurement. This is clear in the measured data,
Fig. 2.16, with the top-half of the map displaying a significantly larger shift with respect to
the bottom-half.
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Figure 2.16: Measured map of the splittings of one of the NV orientations (left). Near the
top of the plot we observe a much stronger splitting compared to the bottom of the plot.
Throughout the measurement, the shift in the pressure induced a shift in the dipole moment
of the sample. We consider 3 different regions (seperated by horizontal lines) corresponding
to 3 different dipole strengths. The reconstructed map of the splittings is shown on the right
in agreement with the data. From the center and the spread of dipole strengths, we extract
the dipole moment and its error. Black bar corresponds to 10 µm.

To extract the drift in the dipole moment, we divide the two-dimensional map into three
different regions, each assumed to arise from a constant value of the dipole moment of the
pellet. By fitting to three different dipole moments (given a fixed position, rX and rY ) we
obtain an estimate of the drift of the dipole moment that allows us to compute an errorbar
of that measurement. The estimated dipole moment at this pressure point is taken as the

midpoint of the three extracted values,
Dmax +Dmin

2
, while the error is estimated by the

range,
Dmax −Dmin

2
.

2.8.4 Fitting to external magnetic field and depth

In this section we present additional data where we have allowed both the external magnetic
field and the depth of the iron pellet to vary in the fitting procedure. The result of the fitting
procedure is summarized in Fig. 2.17.

In particular, we expect the external magnetic field and the depth of the pellet to remain
constant at different pressures. Indeed, we observe this trend in the extracted parameters,
Fig. 2.17(a), (b). Using the mean and standard deviation, we estimate these values and their
errors, quoted in Sec. 2.8.2.
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Figure 2.17: Result of fitting procedure when the external magnetic field and the depth of
the iron pellet is allowed to vary at each pressure. (a)[(b)] External magnetic field [position
of the pellet] extracted as a function of pressure (circles correspond to compression while
diamonds correspond to decompression). Across the entire range of pressures, the extracted
external magnetic field and the depth of the iron pellet is approximately constant. In the
final fitting procedure, these values are fixed to their extracted mean (dashed lines). Shaded
regions correspond to a standard deviation above and below the mean value. (c) Dipole
strength of the iron pellet, extracted when all seven parameters (BX , BY , BZ , D, rX , rY , rZ)
are fitted. The resulting transitions occur at 17.2 GPa and 10.8 GPa for compression and
decompression, respectively. Comparing with the width of the transition (1.3 GPa), these
values are in excellent agreement with those presented in Section 2.4.1.
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Figure 2.18: (a) The protocol for obtaining P -T phase map of Gd relies on monitoring the
ODMR spectrum versus temperature and pressure at a point of interest (probe) near the
sample. To verify that the observed signal is from the Gd flake, one can perform the same
measurement on a control point further away from the sample. (b) The difference in the
splitting between the probe and control points isolates the magnetic field generated by the
Gd sample, allowing us to monitor the magnetic behavior of the sample.

2.9 Gadolinium

2.9.1 Experimental detail

We use a custom-built closed cycle cryostat (Attocube attoDRY800) to study the P -T phase
diagram of Gd. The DAC is placed on the sample mount of the cryostat, which is incorpo-
rated with a heater and a temperature sensor for temperature control and readout.

For this experiment, we use beryllium copper gaskets. The Gd sample is cut from a 25
µm thick Gd foil (Alfa Aesar Stock No. 12397-FF) to a size of ∼ 30µm × 30µm and loaded
with cesium iodide (CsI) as the pressure-transmitting medium. A single ruby microsphere
loaded into the chamber is used as a pressure scale.

For each experimental run, we start with an initial pressure (applied at room temperature
300 K) and cool the cell in the cryostat. Due to contraction of the DAC components with
decreasing temperature, each run of the experiment traverses a non-isobaric path in P -
T phase space, Fig. 2.19(a). Using fiducial markers in the confocal scans of the sample
chamber, we track points near and far from the Gd sample throughout the measurement.
By performing ODMR spectroscopy at these points for each temperature, we monitor the
magnetic behavior of the sample. More specifically, comparing the spectra between the close
point (probe) against the far away one (control), Fig. 2.18, enables us to isolate the induced
field from the Gd sample.
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2.9.2 Fitting phase transition

There are three different transitions we which to locate in the study of the Gd’s P -T phase
diagram: a magnetic transition from PM dhcp to FM dchp; structural phase transitions,
either hcp → dhcp or Sm-type ↔ dhcp; and a magnetic phase transition from PM Sm-type
to AFM Sm-type.

In order to extract the transition temperature of the paramagnet to ferromagnet tran-
sition from our data, we model the magnetization of our sample near the magnetic phase
transition using a regularized mean field theory.

The magnetism of gadolinium is well-described by a three dimensional Heisenberg magnet
of core electrons [255]. In the presence of an external magnetic field, the free energy near
the critical point is expanded in even powers of the magnetization with a linear term that
couples to the external magnetic field:

f = −Bm+
α

2
(T − TC)m

2 +
β

4
m4, (2.30)

where m is the magnetization, B is the external magnetic field, α and β the expansion
coefficients, T the temperature, and TC the transition temperature. In this treatment, we
implicitly assume that α and β do not vary significantly with pressure and thus can be taken
to be constant across paths in P -T phase space. The magnetization mmin is then obtained
by minimizing the free energy.

Because our observation region extends far away from the transition, we observe a
plateauing of the splittings that emerges from the microscopics of Gd. Using R as the
regularization scale and Ã as the maximum magnetization of the sample we propose the
simple regularization scheme:

m(T, P ) = Ã
mmin

mmin +R
. (2.31)

The splitting of the NV group, up to some offset, is proportional to the magnetization of
the sample. This proportionality constant, A, captures he relation between magnetization
and induced magnetic field, the geometry of sample relative to the measurement spot, as
well as the susceptibility of the NV to the magnetic field. The splitting of the NV is then
given by:

∆ = A
mmin

mmin +R
+ c (2.32)

where we incorporated Ã into A as well. Normalizing α and β with respect to B, we obtain
six parameters that describe the magnetization profile, directly extracting TC.

In the case of the first order structural phase transitions, similar to that of iron, we take
the susceptibility to follow a logistic distribution. We model the observed splitting as:

∆ =
A

eB(T−TC) + 1
+ c (2.33)

Fitting to the functional form provides the transition temperature TC. Error bar is taken as
largest between 1/B and the fitting error.
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In the case of the paramagnetic to antiferromagnetic transition, we use the mean field sus-
ceptibility across the phase transition of the system. The susceptibility across such transition
is peaked at the transition temperature:

χ(T ) ∝


1

T − θp
T > Tc

C
3L′(H/T )

T − θp3L′(H/T )
T < Tc

(2.34)

where C is chosen to ensure continuity of χ, L′(x) is the derivative of the Langevin function
L(x)at, H is a meaasure of the applied field, and θp is the assymptotic Curie point. Finally,
we fit the observed splitting to:

∆ = Aχ(T ;Tc, H, θp) + c (2.35)

where, as before, A captures both the geometric effects, as well as the response of the chosen
NV group to the magnetic field.

2.9.3 Additional data

In this section we present the data for the different paths taken in P -T phase and the
resulting fits. Table 2.2 summarizes the observations for all experimental runs. Fig. 2.19
contains the data used in determining the linear pressure dependence of the hcp phase.
Fig. 2.20 comprises the data used in determining the transition to the dhcp phase, either
via the FM hcp to PM dhcp transition, Fig. 2.20(b), or via the difference in susceptibilities
between PM Sm-type and PM dhcp of Gd, Fig. 2.20(c) and d. We emphasize that in the
blue path, we begin the experiment below 2 GPa and thus in the hcp structure, while for
the orange and green, we begin above 2 GPa, so we expect the system to be in Sm-type.
Finally, Fig. 2.21 contains the data where we observe a change in the susceptibility of Gd
that occurs at the purported Sm-type PM to AFM transition.

2.9.4 Recreating the P -T phase diagram of Gd

The rich magnetic behavior of Gd is partially dependent on its structural phases, captured in
the sequence: hexagonal closed packed (hcp) to Samarium (Sm) type at ∼ 2 GPa, and then
to double hexagonal closed packed (dhcp) at ∼ 6 GPa. In particular, while the paramagnetic
(PM) phase of hcp orders to a ferromagnet (FM), the PM phase of Sm-type orders to an
antiferromagnet (AFM) [165]. Similarly, dhcp undergoes a PM to magnetically ordered
phase transition.

For experimental runs with initial pressures < 2 GPa (runs 1-3, 5-9, 11-13, 17-19), we
observe a PM ↔ FM phase transition in hcp Gd. In agreement with previous studies, we
see a linear decrease of the Curie temperature with increasing pressure up to ∼ 4 GPa [157,



CHAPTER 2. HIGH PRESSURE SENSING USING NITROGEN-VACANCY CENTERS
IN DIAMOND 52

280 300 320
Temperature (K)

600

620

640

660

N
V 

Sp
lit

tin
g 

(M
H

z)

260 280 300 320
Temperature (K)

620

640

N
V 

Sp
lit

tin
g 

(M
H

z)

260 280 300 320
Temperature (K)

600

650

700

750

N
V 

Sp
lit

tin
g 

(M
H

z)

260 280 300 320
Temperature (K)

540

560

580

N
V 

Sp
lit

tin
g 

(M
H

z)

260 280 300 320
Temperature (K)

540

560

580

N
V 

Sp
lit

tin
g 

(M
H

z)

100 200 300
Temperature (K)

560

580

600
N

V 
Sp

lit
tin

g 
(M

H
z)

100 200 300
Temperature (K)

570

580

590

600

N
V 

Sp
lit

tin
g 

(M
H

z)

100 200 300
Temperature (K)

580

590

600

N
V 

Sp
lit

tin
g 

(M
H

z)

225 250 275 300
Temperature (K)

520

540

560

580

N
V 

Sp
lit

tin
g 

(M
H

z)

220 240 260 280 300
Temperature (K)

520

540

560

580

N
V 

Sp
lit

tin
g 

(M
H

z)

220 240 260 280 300
Temperature (K)

540

560

580

N
V 

Sp
lit

tin
g 

(M
H

z)

225 250 275 300
Temperature (K)

50

100

150

200

N
V 

Sp
lit

tin
g 

Di
ffe

re
nc

e(
M

H
z)

240 260 280 300
Temperature (K)

0

50

100

150

N
V 

Sp
lit

tin
g 

Di
ffe

re
nc

e(
M

H
z)

100 200 300
Temperature (K)

0

50

100

150

200

N
V 

Sp
lit

tin
g 

Di
ffe

re
nc

e(
M

H
z)

0 1 2 3 4 5 6 7 8
Pressure (GPa)

0

50

100

150

200

250

300

Te
m

pe
ra

tu
re

 (K
)

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o)

Figure 2.19: (a) Paths in the P -T phase space that inform about the hcp PM phase to the hcp FM
phase. (b-o) Measured NV splitting and corresponding fit. The resulting transition temperatures
are highlighted in (a) with squares. Shaded region corresponds to the part of the spectrum fitted.
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Figure 2.20: (a) Paths in the P -T phase space that inform about the transition to the PM
dhcp phase. (b-d) Measured NV splitting and corresponding fit. The resulting transition
temperatures are highlighted in (a) with squares. We interpret (b) as a transition from FM
hcp to PM dhcp, while (c),(d) as a transition from PM Sm-type to PM dhcp. Shaded region
corresponds to the part of the spectrum fitted.
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Figure 2.21: (a) Path in the P -T phase space where a signal consistent with the purported
AFM transition in Sm-type Gd is seen (b). Shaded region corresponds to the part of the
spectrum fitted.
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Run Direction Phase transition Remarks, visible in Fig.
1 Heat-up hcp (FM) −→ hcp (PM) New sample, Fig. 2.19(b)
2 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(c)
3 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(d)
4 Cool-down No observation Probably starting in Sm due

to large initial pressure

5 Cool-down hcp (PM) −→ hcp (FM) New sample, Fig. 2.19(e)
6 Heat-up hcp (FM) −→ hcp (PM) Fig. 2.19(f)
7 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(g)
8 Heat-up hcp (FM) −→ hcp (PM) Fig. 2.19(h)
9 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(i), 2.20(b)

−→ dhcp (PM)
10 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) −→ Sm (AFM) to metastability, Fig. 2.21(b)

11 Cool-down hcp (PM) −→ hcp (FM) New sample, Fig. 2.19(j)
12 Heat-up hcp (FM) −→ hcp (PM) Fig. 2.19(k)
13 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(l)
14 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) −→ dhcp (PM) to large initial pressure
15 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) −→ dhcp (PM) to metastability, Fig. 2.20(c)
16 Heat-up Weak evidence for Fig. 2.20(d)

dhcp (PM) −→ Sm (PM)

17 Cool-down hcp (PM) −→ hcp (FM) New sample, Fig. 2.19(m)
18 Heat-up hcp (FM) −→ hcp (PM) Fig. 2.19(n)
19 Cool-down hcp (PM) −→ hcp (FM) Fig. 2.19(o)

and start of transition to dhcp (PM)

Table 2.2: Summary of all experimental runs in the P -T phase diagram, indexing either a
decrease or increase in temperature during this path, and the observed phase transitions.
Each group of runs, between double lines in the table, corresponds to a different sample.
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233, 155]. Notably, prior studies have shown a structural transition from hcp to Sm-type at
2 GPa [233, 287, 12], which is believed to be “sluggish” [165, 233]. This is indeed consistent
with our observation that the linear dependence of the Curie temperature persists well into
the Sm-type region, suggesting the existence of both structural phases over our experimental
timescales.

Furthermore, in run 9 (Table 2.2 and Fig. 2.21(a),(b)), we observe a complete loss
of FM signal when pressures exceed ∼ 6 GPa at ∼ 150 K, in good agreement with the
previously reported phase transition from hcp (FM) to dhcp (PM) structure [287, 233].
Upon performing a similar path in P -T space (run 19), we observe the same behavior. In
contrast to the previous slow hcp to Sm-type transition, we believe that the equilibrium
timescale for the hcp (FM) to dhcp (PM) transition is much faster at this temperature.

After entering the dhcp structure (run 9), we no longer observe a clear FM signal from
the sample even after heating to 315 K and depressurizing < 0.1 GPa. This can be explained
by the retention of dhcp or Sm-type structure in the sample. Previous studies, suggesting
that the Sm-type phase in Gd is metastable up to ambient pressure and temperature [165],
corroborate that our sample is likely still in the Sm-type structural phase. It is not too
surprising, that by continuing to cool down and walking along a slightly different P -T path,
we observe only a small change in the NV splitting at ∼ 150 K and ∼ 5 GPa as we cross the
purported Sm-type PM to AFM phase boundary (run 10 in Table 2.2)[287, 165, 233].

Moreover, the metastable dynamics of hcp to Sm-type transitions are strongly pressure
and temperature dependent, suggesting that different starting points (in the P -T phase
diagram) can lead to dramatically different behaviors. Indeed, by preparing the sample
above 2 GPa at room temperature (run 4), we no longer detect evidence for a ferromagnetic
Curie transition, hinting the transition to the Sm-type structure. Instead, we only observe
a small change in the NV splitting at ∼ 6 GPa and ∼ 170 K, which could be related to
the presence of different paramagnetic susceptibilities of the Sm-type and dhcp structural
phases. Interestingly, by cycling temperature across the transition (run 14-16 in Table 2.2),
we observe negligible hysteresis, suggesting fast equilibration of this structural transition.

2.9.5 Noise spectroscopy

In order to perform magnetic noise spectroscopy of Gd at temperatures ranging from 273 K
to 340 K, we attach a small chunk of Gd foil (100 µm × 100 µm × 25 µm) close to a
microwave wire on a Peltier element with which we tune the temperature. Instead of mm-
scale diamonds as before, we use nano-diamonds (Adamas, ∼ 140 nm average diameter)
drop-cast onto the Gd foil to minimize the distance to the surface of our sample.

With no external field applied, all eight resonances of the NVs inside the nano-diamonds
are found within our resolution to be at the zero-field splitting Dgs for either para- and
ferromagnetic phase of Gd, leading to a larger resonance contrast since we can drive all NVs
with the same microwave frequency. Measuring the NV’s spin relaxation time T1 under these
circumstances is equivalent to ascertaining the AC magnetic noise at ∼ 2.87 GHz.
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Figure 2.22: Plots of T1 measurements below and above the magnetic phase transition in
Gd. The green (orange) curve was measured at 320 K (276 K) and yields T1 = 91±4 µs
(66±3 µs), indicating a clear reduction of the spin polarization lifetime in the ferromagnetic
phase. A stretched exponential function with exponent α = 0.6 (0.65) was used for fitting.

For this purpose, we utilize the following pulse sequence to measure T1. First, we apply
a 10 µs laser pulse to intialize the spin into the |ms = 0⟩ state. After laser pumping, we let
the spin state relax for a variable time τ , before turning on a second laser pulse to detect the
spin state (signal bright). We repeat the exact same sequence once more, but right before
spin detection, an additional NV π-pulse is applied to swap the |ms = 0⟩ and |ms = ±1⟩
populations (signal dark). The difference between signal bright and dark gives us a reliable
measurement of the NV polarization (Fig. 2.4(d) top inset) after time τ . The resulting T1

curve exhibits a stretched exponential decay ∝ e−(τ/T1)
α

, with α ∼ 0.65 (Fig. 2.22).
By sweeping the Peltier current over a range of ∼ 3.5 A, we adjust the temperature of

the sample from 273 K to 340 K, therefore determining the temperature dependence of T1.
This procedure is performed on two different nano-diamonds on top of the Gd flake to

confirm that the signal is not an artifact. Furthermore, this is contrasted with an additional
measurement at a nano-diamond far away from the Gd foil, exhibiting no temperature de-
pendence of T1.

2.9.6 Theoretical analysis of T1

The depolarization time T1 of NV centers shows a distinct drop when we decrease the tem-
perature T to across the ferromagnetic phase transition of Gd, Fig. 2.4(d). Assuming that
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Figure 2.23: Plots of T1 measurements away from the Gd flake at 315 K (grey curve) and
286 K (red curve). The resulting spin polarization lifetimes T1 = 243±14 µs (315 K) and
247±20 µs (286 K) are the identical within the errorbar.

Johnson noise is the main contribution, because we are working at a fixed small transition
frequency (ω ∼ 2.87 GHz) and in the thermal limit (ℏω ≪ kBT ), we can consider the DC
limit. In this case, we have T1 ∝ ρ(T )/T , where ρ(T ) = 1/σ(T ) is the DC resistivity [7].
Importantly, previously measurements of the resistivity curve for Gd show a kink at TC,
with a sharper temperature dependence below TC [249, 159]. However, this sudden change
in slope is insufficient to explain our observations of T1; in particular, given the magnitude
of the resistivity, the change in temperature dominates the T1 behavior. This implies that
T1 should increase in the ferromagnetic phase if the sole contribution is bulk Johnson noise,
whereas observations indicate otherwise.

A hint to the resolution of this puzzle comes from two observations. First, NV centers
drop-cast onto Gd samples are very close to the sample, and hence far more sensitive to the
surface than the bulk. Second, the surface of Gd is well known to show a higher ferromagnetic
transition temperature than the bulk; the drop in T1 starts at a larger temperature (≈
300 K) compared to the bulk TC ≈ 292 K. These observations strongly suggest that the
NV is detecting a large drop of surface resisitivity as we lower T across the surface critical
temperature, and this dominates over the small drop of bulk resistivity in the observed
behavior.

In order to quantitatively estimate the relative contribution of the surface to the bulk,
we write down, following Ref. [7], the contribution to the noise for a single two-dimensional
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layer at a distance z from the probe for a sample with conductivity σ(T )

1

T1

∝ N(ω) =
kBTµ

2
0σ(T )

16πz2
. (2.36)

Here we have assumed that the optical conductivity has a smooth dc limit (true for typical
metals) and taken the extreme thermal limit to neglect the small frequency dependence of
σ. Gd has a hcp structure with c ≈ 2a, so we approximate the sample as being composed
of decoupled two-dimensional layers and add their individual contributions to the noise. If
the distance from the surface to the probe is d, the surface thickness is D (infinite bulk
thickness), and the surface and bulk conductivity are denoted by σs and σb respectively,
then we have:

1

T1

∝ T

[∫ d+D

d

dz
σs(T )

z2
+

∫ ∞

d+D

dz
σb(T )

z2

]
= Tσs(T )

(
1

d
− 1

d+D

)
+

Tσb(T )

d+D
. (2.37)

Eq. (2.37) makes it explicit that when D/d is an O(1) number (i.e. the surface thickness is
of the order of sample-probe distance) the surface and bulk contributions are comparable.
On the other hand, if D/d ≪ 1, the bulk noise dominates. For our drop-cast nano-diamonds
on the surface of Gd, we can estimate D ≈ 10 nm, given the distinct surface signatures
in the density of states even 6 layers deep [255]. We also estimate the average distance as
approximately half the radius of a nano-diamond, d ≈ 50 nm. Therefore, we see that, for
our samples, a large rise in surface conductivity can cause a significant increase in magnetic
noise, even if the bulk conductivity remains roughly constant across the transition to the
ferromagnetic phase. Hence, we conjecture that an enhanced surface conductivity below the
surface critical temperature Tc,s is responsible for the observed drop in T1.

The sharp drop of surface resisitivity below the surface ordering temperature can be due
to several reasons. It can be caused by the critical behavior of surface magnetism, or a
different electron-magnon coupling on the surface because the surface electrons have more
localized wave-functions. Here, we provide one consistent picture for the drop in surface
resisitivity in terms of a distinct surface criticality relative to the bulk.

From Ref. [67, 159, 249] we know that both the bulk residual resistivity and the phonon
contribution to the resistivity is quite small, and electron scattering below the bulk TC is
dominated by magnetic excitations. Since TC = 292 K is much larger than the Debye
temperature ΘD ≈ 170 K [43, 159], the phonon contribution to scattering is expected to be
linear in T near TC. Above TC, the slope dρ/dT for Gd is very small. Hence the majority
of scattering below TC takes place due to magnetic correlations, which, below TC, changes
resistivity by dρ/dT ∝ t2β−1 where t = |TC − T |/TC [109]. β can be significantly different
from 1, leading to a cusp in ρ(T ) at TC. For the bulk, we can write:

ρb(T ) = ρb(TC)− αph

(
TC − T

TC

)
− αmag

(
TC − T

TC

)2β

Θ(TC − T ) (2.38)

Above TC, the singularity in dρ/dT is of the form t−α. However, for both Heisenberg and
Ising universality classes of ferromagnetic transitions, α is close to zero (α ≈ −0.1), and the
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surface enhancement of the surface density of states is negligible. Therefore, for T > TC we
assume that the surface conductivity is identical to the bulk conductivity. Moreover, the
scattering from uncorrelated core-spins should be constant at high temperatures away from
TC, so the slope dρ/dT is entirely from phonons for T ≫ TC. Using this relation, we can
estimate αph ≈ 27 µΩcm using the data for T between 350 and 400 K [159]. Using the data
for ρ at T = 280 K in Ref. [249] to extract αmag and β ≈ 0.35 for the three dimensional
Heisenberg model, which is believed to describe quite well the ordering of local moments in
Gd [255], we obtain αmag:

ρb(T )−ρb(TC) = −4 µΩcm = −αph

(
12

292

)
−αmag

(
12

292

)0.7

=⇒ αmag ≈ 27 µΩcm (2.39)

This gives the bulk resistivity as a function of temperature, but it does not replicate the
experimental observations, purple line in Fig. 2.24. We now postulate a similar critical
behavior at the surface but with surface critical exponent βs for the magnetization. On
a two-dimensional surface, the Mermin-Wagner theorem forbids the spontaneous breaking
of a continuous spin-rotation symmetry at a non-zero temperature [183]. For a surface
ferromagnetic phase transition, we must have theory with reduced symmetry. Given the
easy axis anisotropy in Gd [249, 255], the surface magnetic phase transition is plausibly in
the Ising universality class, with βs = 0.125 [183]. Therefore, on the surface, we have:

ρs(T ) = ρs(Tc,s)− αph,s

(
Tc,s − T

Tc,s

)
− αmag,s

(
Tc,s − T

Tc,s

)0.25

Θ(Tc,s − T ) (2.40)

In absence of evidence otherwise, we take αph,s = αph (same value as in the bulk).
However, αmag,s can be significantly enhanced relative to the bulk value. This can be due
to several reasons. The surface electrons can be more localized than the bulk, therefore
increasing the electron core-spin coupling. Further, the surface local moments can have a
larger net spin S relative to the bulk which orders more slowly. Since the electron-spin
scattering cross-section is proportional to S(S + 1) [109], a fully polarized core 4f state
with S = 7/2 will have a larger scattering rate with an itinerant electron compared to a
partially polarized state with S < 7/2. The exact value of αmag,s thus depends on delicate
surface physics; here we treat it as a free parameter. Fig. 2.24 shows a good fit to our data
with the estimates αmag,s = 7αmag ≈ 189 µΩcm, surface thickness D = 10 nm ≈ 17c, and
sample-probe distance d = 50 nm (we have used an overall proportionality factor for the fit).

We note that spin-fluctuations in Gd can also cause cause the NV polarization to relax.
Although such fluctuations are negligible in the paramagnetic phase as our sample-probe
distance is much larger than the lattice spacing [7], gapless critical fluctuations and spin-
wave modes can indeed have a larger contribution to magnetic noise. However, the magnon
contribution is related to magnon occupancies and decreases with decreasing temperature
[59], implying that T1 should increase as one lowers temperature in the ferromagnetic phase.
This is inconsistent with the behavior we observe. Bulk critical spin-fluctuations should
make the largest contribution at TC, which is also not observed. An even more involved
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Figure 2.24: The purple curve shows T1 taking only the bulk contribution to Johnson noise
into account. The red curve shows T1 taking both surface and bulks contribution into
account, with TC = 292 K and Tc,s = 302 K. The blue dots are experimental data.

theoretical analysis is required to rule out critical surface spin-fluctuations. This analysis is
left for future work.

2.10 Conclusion

In this Chapter, we have developed a hybrid platform that integrates quantum sensors into
diamond anvil cells. While our work utilizes NV centers, the techniques developed here
can be readily extended to other atomic defects. For instance, recent developments on all-
optical control of silicon-vacancy centers in diamond may allow for microwave-free stress
imaging with improved sensitivities [22]. In addition, one can consider defects in other anvil
substrates beyond diamond; indeed, recent studies have shown that moissanite (6H silicon
carbide) hosts optically active defects that show promise as local sensors [22]. In contrast to
millimeter-scale diamond anvils, moissanite anvils can be manufactured at the centimeter-
scale or larger, and therefore support larger sample volumes that ameliorate the technical
requirements of many experiments.

For the first time, the full stress tensor can be mapped across the sample and gasket
as a function of pressure. Further stress characterization of other fluids and solids may
provide insights into mechanical phenomena such as viscous flow, plastic deformation, and
pressure-dependent yield strength. Crucially, such information is challenging to obtain via
either numerical finite-element simulations or more conventional experimental methods and
may ultimately allow control of the deviatoric- as well as normal-stress conditions in high
pressure experiments [106]. In Chapter 3, we utilize this stress sensing modality to image
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the shear stresses on a pressurized sample of chrysotile serpentine, which provides unique
insights into the dynamics of amorphization.

In the case of magnetometry, the high sensitivity and close proximity of our sensor enables
one to probe signals that are beyond the capabilities of existing techniques (Fig. 2.1(d)); these
include for example, nuclear magnetic resonance (NMR) at picoliter volumes [174] and single
grain remnant magnetism [123], as well as phenomena that exhibit spatial textures such as
magnetic skyrmions [91] and superconducting vortices [320]. In Chapter 4, we utilize this
magnetic imaging modality to observe a pressure-induced magnetic transition in a micron-
scale grain of pyrrhotite.

Finally, the suite of sensing capabilities previously demonstrated for NV centers (i.e. elec-
tric, thermal, gyroscopic precession etc.) can now straightforwardly be extended to high
pressure environments, opening up an enormous new range of experiments for quantitatively
characterizing materials at such extreme conditions which can test, extend and validate first-
principles theory. In Chapters 5 and 6, we explore the feasibility of NV-based electric field
sensing using a range of microwave and optical spectroscopic techniques, and we theoretically
apply these insights to the study of polar and dielectric materials.
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Chapter 3

Amorphization of Serpentine:
Acoustic Emissions and Stress
Imaging

3.1 Introduction

In the previous Chapter, we experimentally realized a high pressure sensing platform based
on fluorescent spin defects through a series of proof-of-concept demonstrations. In the next
two Chapters, we utilize this platform to investigate two applications of scientific interest.
Both of these applications are relevant to the study of high pressure mineralogy, where the
micron-scale resolution of our sensor is naturally suited to relevant length scales in terrestrial
rocks and meteorites.

The first of these applications, and the subject of this Chapter, relates to a longstanding
question in geoscience: what causes earthquakes observed more than 100 km inside Earth
[49, 262, 113]? At these pressure-temperature conditions, minerals are known to deform
through ductile flow, as opposed to brittle fracturing. A proposed resolution invokes the
amorphization transformation observed in mantle minerals, which is characterized by brittle-
like failure and the release of acoustic energy [179, 235, 81, 293, 124]. We experimentally
investigate this transformation in chrysotile serpentine ((Mg, Fe)3Si2O5(OH)4) up to 26
GPa via two complementary modalities. Firstly, utilizing a phase-calibrated network of
piezoelectric transducers, we identify focal mechanisms from nano-seismic acoustic emissions
and observe significant shear components during all events, consistent with deep seismicity.
Concurrent x-ray diffraction measurements link these acoustic emissions to amorphization.
Secondly, using an NV center-based sensing platform, we perform in situ stress imaging
and find that shear stresses accumulate and dissipate immediately before and after acoustic
events, a hallmark of brittle failure.

In this work, we study amorphization in chrysotile serpentine, an abundant mineral in
the subducting slabs where deep earthquakes are observed. Using a two-pronged approach,
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we characterize the acoustic emissions and the local stress state on both compression and
decompression. Focal mechanisms for acoustic emissions are determined from first motions
of the acoustic traces and show that shear – not volumetric – displacements are generated
by high-pressure transformation. Second, using nitrogen vacancy (NV) color center, a novel
platform for high pressure sensing, we directly image the stress in the confining diamonds at
the diamond-sample interface. Crucially, stress maps show an accumulation and relaxation of
shear stresses, analogous to brittle failure mechanisms. X-ray diffraction confirms structural
changes to be coincident with acoustic emissions.

3.2 Acoustic emissions

In the first study, we directly measure acoustic emissions using a diamond anvil cell instru-
mented with four displacement sensors (Figure 3.1). Three of the sensors are in the plane of
the sample, perpendicular to the loading axis, and a fourth sensor is placed on the bottom
of the diamond cell, off center of the symmetry (loading) axis of the cell. Sampling at 0.1-40
MHz, first motions from over 450 acoustic emissions were collected up to 26GPa at 300K
(Figure 3.1).

First motion amplitude varied between 0.3 and 3 mV (corresponding to Angstrom-scale
displacements) depending on the strength of the acoustic emission and the quality of coupling
between the sensors and the diamond cell. Durations of first motions are proportional to
sample diameter (1.2 µs and 1.7 µs for 90µm and 140µm respectively). These timescales
indicate that ruptures traverse the sample chamber at 1/3 of shear velocity (∼2.2 µm/ns
in chrysotile serpentine at ambient pressure) [273]. These velocities are consistent with
expected nucleation and growth rates of a new phase in a high pressure medium, as well as
observations of brittle-like failure observed on other systems (e.g. Si, MgGeO4) [293, 300,
219, 220].

All signals had 2-3 traces indicate tensional first motions (trace moving to positive volt-
ages), with 1-2 in-plane traces indicating compressional first motions (trace moving to neg-
ative voltages). Compressional and tensional first motions of the sensors are used along
with sensor location to determine focal mechanisms (Fig. 3.1). The complexity of the dia-
mond cell, and the scarcity of sensors necessitates the assumption of double-couple sources,
precluding the determination of Compensated Linear Vector Dipole (CLVD) components of
the focal mechanism. The observed focal mechanisms rule out completely volumetric (i.e.,
isotropic) sources.

Acoustic emissions appear in clusters, with a typical pressure step yielding several acous-
tic emissions within hundreds of microseconds to seconds of each other. Figure 3.2 shows a
subset of our emissions over a ∼100 ms timespan, with a mix of first motion types active con-
currently, and repetition of first motion types on timescales of 3-5 ms. First motions of the
acoustic events were similar enough to sort into groups in all experiments (see color-coded
traces in Figure 3.2).
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Figure 3.1: Example traces and seismic source diagram for Serpentine at high pressure. (a) A photograph
of the experimental setup with labels for the sensors shown color-coded with their respective traces. (b)
An example first motion signal trace representative of the signal quality across all data sets. (c) Top-down
illustration of a focal sphere projection. In-Plane sensors P1,2, and 3 and Axial Sensor A are shown in their
relative positions and are color coordinated to the traces they record. All sensors are coupled orthogonally
to the triangular pressure cell, with P1, P2, and P3 organized radially, and the Axial sensor attached to the
bottom, near the compression axis. The axial sensor and its polarity observation are shown in dashed lines
to indicate they are observing from the opposite side of the diamond cell as the In-plane sensors. Each sensor
shows a black plus sign if the trace indicated the sample was in compression, and a hollow circle if the trace
indicated the sample was in tension. Due to scarcity of sensors, the proposed focal spheres are only roughly
constrained, with several degrees of uncertainty in the nodal lines of these spheres. Additional possible nodal
lines are shown with thin black lines. (d) An illustrated side view looking along in-plane sensor 3 is shown
in the right. An example focal mechanism appropriate for the first motion is shown in the cross sectional
plane, approximately in the location of the sample chamber. The axis of compression is shown with black
arrows. Additional possible nodal lines are omitted to improve legibility. Data collected and analyzed by
Thomas Smart and Jes Parker.
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Cross correlations between first motions allowed us to identify different source types, with
first motions of the same type exhibiting high correlation coefficients (> 95%) indicative of
similar slip mechanisms [245]. The wavelengths observed here correspond to the resonance of
the sample chamber, however, making distinction of rupture zones within the sample chamber
is beyond the resolution of the present measurements. As a cross-check, correlation between
signals of different first motion types, or signals from different sample loadings, yielded values
of 40 − 80% further confirming that they have different sources. First motion amplitudes
are also strongly correlated between signals of mutual first motion type, demonstrating
similar energy during rupture and suggesting similar rupture area during failure. These lines
of evidence strongly suggest that signals sharing a first motion type come from repeating
events along a single rupture or system of related ruptures, as suggested by other high-
pressure rupture systems [300].

3.3 Concurrent x-ray diffraction

Acoustic emissions were collected concurrently with X-ray diffraction on compression be-
tween 8-24GPa, and then on decompression, all at 300K. Diffraction peaks broaden and
disappear on compression, demonstrating that the high-pressure transformation of serpentine
is amorphization, with partial re-emergence of several of the diffraction peaks on decompres-
sion (Fig. 3.3) following previous observations [235]. Disappearing diffraction peaks ([00l]
peaks), associated with the interlayer spacing between serpentine sheets, are attributed to the
collapse of hydrogen bonds as seen during the amorphization of other hydrous materials [246,
248]. Re-emerging [hk0] peaks are associated with the magnesium-silicate sheets, showing
that the integrity of the serpentine layers is partially preserved through the amorphization
process. Crucially, this precludes a thermal disordering such as that expected from frictional
melting, and indicates that the amorphization remains in the solid-state. Solid-state amor-
phization is a well-known metastable transformation at high pressures, generally facilitated
by high shear stresses and often – though not always – reversible (e.g. SiC, AlPO4) [200,
189, 178].

3.4 Stress sensing

Finally, using nitrogen vacancy (NV) centers, we study the changes in the culet stress across
several acoustic emission events to unearth the microscopic mechanisms driving amorphiza-
tion. The NV center, a quantum defect in diamond, has shown promise as a robust and
versatile high-pressure sensor whose spin-1 ground state can be spectroscopically interro-
gated using optically detected magnetic resonance (ODMR) to image the crystal stress in
situ [148, 197, 352]. In this experiment, we study the NV group aligned along the surface
normal Ẑ) of the diamond culet to measure the symmetry preserving (primarily σZZ and
σ⊥) normal stress and symmetry breaking (primarily σRZ) shear stress. While it is nontriv-



CHAPTER 3. AMORPHIZATION OF SERPENTINE: ACOUSTIC EMISSIONS AND
STRESS IMAGING 66

Time (µs)

5 ms

2

-2

0

)
V

m( edutil p
m

A

3

0

1
2

-1

-3
-2

0         1          2          3        4          5

0         1          2          3        4          5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

0         200       400       600       800

1.5

0

0.5
1.0

-0.5

-1.5
-1.0

0         1          2          3        4          5 0         1          2          3        4          5

0         1          2          3        4          5

3

0

1
2

-1

-3
-2

4

-4

25 ms25 ms

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.2: Acoustic emission cluster plotted with example first motions. (a) Exemplary acoustic emission
cluster at 12 GPa. Beneath each waveform in the cluster we show a colored bar displaying the first motion
type observed for the waveform. (b) An exemplary acoustic waveform shows the millisecond timescales
typical of our signals. (c)-(g) Example traces of each of the first motion types are shown color coordinated
to the colored bars under the emission cluster. First motions types are shown with their focal mechanisms
as insets as in the side view shown in Figure 3.1. Signals of a given first motion type occur successively
with minimum lag times of 3-5 milliseconds. First motions were not discernible for signals with amplitudes
too small to distinguish them from background noise or signals that truncated the coda of an earlier signal.
Data collected and analyzed by Thomas Smart and Jes Parker.
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Figure 3.3: X-ray diffraction intensity versus 2 theta for Serpentine on compression and
decompression between 0 and 24.4 GPa. The pressure for each diffraction pattern is listed
on the right, with pressure steps that yielded acoustic emissions outlined by the dashed box.
Patterns taken on decompression are shown in red. Miller indices are shown for the ambient
pressure above the ambient pressure diffraction pattern. Data collected and analyzed by
Thomas Smart.
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Figure 3.4: (a) Example map of shear stresses taken at 8.7 GPa on compression. Large circular
feature is the sample chamber and is surrounded by the rhenium gasket. The dipoles visible in the
sample are magnetic noise introduced by magnetite impurities in the natural serpentine sample. (b)
Shifting parameter D vs pressure measured by ruby florescence. Open circles represent data taken
on compression and closed circles represent data taken on decompression. Arrows shown represent
the range of values in pressure and D values that we observe, measured from several points across
the sample chamber. We expect that the uncertainty in our fits for the shift parameter D are .03
MHz which is smaller than the symbols shown. Uncertainties of pressure from Ruby fluorescence
are 0.05-0.1 GPa. Blue and green rectangles represent pressure steps where we observed acoustic
emissions during increase (or decrease) of pressure. (c)-(d) We show shear stresses vs pressure as
determined by ruby fluorescence. Data are from the same experiment as those shown in (a) and
(b). Red arrows show the chronological sequence of data points and guide the eye through the
accumulation and dissipation of shear stresses. Blue and green rectangles represent pressure steps
where we observed acoustic emissions during increase (or decrease) of pressure. Uncertainties in
the measured shear stresses are estimated to be ∼0.03 GPa.
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ial to constrain all components of the stress tensor within the sample from those measured
within the diamond anvil, the components {σZZ , σRZ , σΘZ} are continuous across the sample-
diamond interface. We can define our reported shear stresses as σshear ≡

√
σ2
RZ + σ2

ΘZ , with
σRZ and σΘZ being the radial and azimuthal shear stresses at the diamond-sample interface,
respectively.1

We monitor for acoustic emissions on compression and decompression, and after every
incremental modulation of pressure we collect a map of stresses (Fig. 3.4). The symmetry-
preserving stresses follows expectations for a quasi-hydrostatic environment (Fig. 3.4(b)),
showing a linear correlation with pressure as measured by ruby fluorescence. The occurrence
of acoustic emission within the sample does not perturb the linearity of the symmetry pre-
serving stresses, indicating that they play a negligible role in the instabilities that lead to
acoustic emission.

On compression, we observe an accumulation in shear stress, which persists until it is
dissipated concurrently with acoustic emission (Figure 3.4(c)-(d)). The peak shear stress
observed is interpreted to be the effective shear strength of the material. The relaxation
in shear stresses is consistent with volume collapse during the disordering of the interlayer
spacing of the serpentine during amorphization as observed in the XRD data. Shear stresses
are often invoked as the mechanism for solid-state amorphization, whereby a meta-stable
material pressurized beyond its equilibrium phase boundary overcomes kinetic hinderances
and transforms [124, 200, 178]. Our work demonstrates the link between shear stresses and
solid state amorphization, and crucially, is the first to image the local shear stress field in
the sample that lead to these crystalline instabilities.

On decompression we observe a pronounced increase in σshear coincident with AE on,
further demonstrating the reversibility of the structural instabilities that lead to acoustic
emissions. Here we infer a volume expansion of the serpentine as it re-crystallizes and
presses against the confining diamond anvils.

3.5 Experimental details

We compress natural Serpentine (60% clino- 40% ortho-chrysotile, determined by x-ray
diffraction) collected in Marin, California, in diamond anvil cells to 26GPa and 300K. Spring
steel or rhenium gaskets pre-indented to 40-60 µm thick and drilled with holes 100-150µm
in diameter were used in all experiments and samples were prepared following Ref. [300].
Pressure was determined using the standard ruby fluorescence technique [78].

Acoustic emissions (AE) were recorded with 1-4 Glaser-type conical displacement sensors
(model KRNBB-PC) following Ref. [229]. The sensors have a near-flat frequency response
from ∼0.1-5MHz. The built-in preamps were powered with 24VDC, resulting in a sensitivity
on the order of 1V/nm when coupled to steel. Three sensors are prepared around the three
edges of the upper diamond cell plate, and a fourth sensor is attached from the bottom,

1Due to an abuse of notation, the σshear defined here is a different quantity from that defined in Chapter
4.
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off center of the symmetry axis of the diamond cell. A custom clamp was machined from
a 2-inch thick polycarbonate cylinder in order to provide an impedance mismatch strong
enough to dampen ringing within the system and hold the diamond cells and sensors in
place during the acoustic experiments. AE signals arrive coincidentally at the sensors within
∼0.1 µs; assuming wave speeds of mm/µs, this suggests that the sensors are equidistant
from the sample chamber within ∼0.1mm. For all measurements performed concurrently
with x-ray diffraction measurements, AE signals were digitized on an oscilloscope (Tektronix
MSO 2104B); all other AE experiments were digitized at 40 MHz using an Elsys TraNET
EPC digitizer and TranAX 4.0 recording software. The Merrill-Basset DACs often produced
highly broadband signals, with signal to noise ratios (SNR) >2 up to the Nyquist frequency of
20MHz and SNR>10 up to 4MHz. Synchotron X-ray diffraction was performed at beamline
12.2.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory, using an
X-ray wavelength of 0.4959 nm, and a distance from the sample to the detector of 330 cm.

3.5.1 Acoustic Calibration and Control Tests

We calibrated the sensors using two approaches that provide a known acoustic source for
comparison with signals observed from the serpentine samples: firstly, glass capillaries were
broken between the diamond anvils used for the high-pressure experiments to ensure that
the signals for this calibration use the same ray paths as acoustic emissions produced during
the experiment. Secondly, pin drop calibrations were performed by dropping a stainless
steel 38mm long, 0.7mm diameter sewing needle onto the backside of the diamond anvil
from a height of 5mm. Pin drop calibrations were performed before and after the collection
of acoustic emissions from the sample to account for any deviation in the sensor-to-cell
mechanical coupling. Calibration tests give a step-like acoustic pulse, with all traces moving
in the same direction, as expected for a single force source transmitted through symmetric
paths [229, 230]. Thus, despite the complex geometry and multiple impedance mismatches
along the ray path, the system maintains the linearity required for first motions analysis
of experimental signals. The calibration results also reveal that a useable Greens function
cannot be extracted because deconvolution of the calibration source is non-unique, and that
a modeling-based determination of the full acoustic response of the diamond cell is beyond
the scope of this work. Therefore, we cannot invert for a full moment tensor, thus precluding
determination of the CLVD component. Control tests were performed on our experimental
setups to pressures of 30-40 GPa, well beyond the pressure limit of our experiments. We used
both spring steel and Rhenium gaskets for these tests, and blank gaskets (with and without
holes), 4:1 Methanol:ethanol mixture, and PbCl2 as the control test media. Typically, the
diamond cell’s pressure transmitting screws are equipped with Belleville spring washers to
control compression. However, when equipped with these springs, rubbing between the
washers yielded acoustic signals that triggered our sensors, and therefore Belleville washers
were omitted in our experiments. Noise from outside the sample chamber is spectrally
distinct (10’s-100kHz versus 1-5MHz of the signals from our samples) and exhibits time
delays more than the 10-20 ns required to traverse the sample chamber.
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Figure 3.5: First motion types with their respective focal spheres are shown. As in Figure 3.1, Signal Trace)
shows an example first motion signal trace is shown. this signal is representative of the average signal quality
across our data set. Focal sphere, Axial View) Shows a top-down illustration of a focal sphere projection. In-
Plane sensors P1,2, and 3 and Axial Sensor A are shown in their relative positions and are color coordinated
to the traces they record. All sensors are coupled orthogonally to the triangular pressure cell, with P1, P2,
and P3 organized radially, and the Axial sensor attached to the bottom, near the compression axis. The
axial sensor and its polarity observation are shown in dashed lines to indicate they are observing from the
opposite side of the diamond cell as the In-plane sensors. Each sensor shows a black plus sign if the trace
indicated the sample was in compression, and a hollow circle if the trace indicated the sample was in tension.
Due to scarcity of sensors, the proposed focal spheres are only roughly constrained, with several degrees of
uncertainty in the nodal lines of these spheres. Side View) An illustrated side view looking along in-plane
sensor 3 is shown in the right. An example focal mechanism appropriate for the first motion is shown in
the cross-sectional plane, approximately in the location of the sample chamber. The axis of compression is
shown with black arrows. Data collected and analyzed by Thomas Smart and Jes Parker.
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Figure 3.6: Four example acoustic emission signals and their first motions (inserts) are
shown. These are 4 signals each with different first-motion character and are average signals
that represent the quality of our data well. Duration of the full acoustic waveforms are
proportional to first-motion amplitude in all experiments demonstrating that our system
has a high Q factor. Signal durations vary between 0.05-1ms, longer than the resonances
expected from our sample chamber (10−7-10−6 s), though in accord with expected resonance
times of the experimental apparatus [300, 234]. Peak waveform amplitudes vary between 1
and 15 mV. Data collected and analyzed by Thomas Smart and Jes Parker.
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3.6 Possibilities and limitations for frictional heating

during deformation of Serpentine

Though we do not observe evidence of melting, the sample may be transiently heating due
to feedback loops between plastic work and rheologic weakening of the material causing lo-
calized heating along shear zones [124, 272]. Previous work observed serpentine to remain
acoustically active at pressures and temperatures exceeding 25GPa and 900K, indicating
the failure mechanism responsible for acoustic emission is somewhat tolerant of high tem-
perature [235]. Heat in this case must dissipate quickly enough between successive failures
for the serpentine remain solid and regain material strength needed for subsequent failure
[231]. Ambient pressure thermal diffusivity of serpentine (0.005-0.01 cm2/s or 0.5-1µm2/s)
suggests that it would take ∼25-50µs for heat in the center of the sample to diffuse to
the serpentine/diamond interface, where the relatively high mass and heat conductivity of
the diamonds act as heatsinks [118, 76]. These 10s of microsecond timescales are easily
accommodated within the observed minimum lag time between signals (see Figure 3.2).

While our experiments show that frictional heating is not observed in these laboratory
scale experiments, it is possible that melting plays a role when scaled to larger length scales.
Figure 3.7 shows a comparison between the time/distance relations of acoustic transit and
thermal diffusion. Acoustic transit times are typically km/s (µm/ns), while typical thermal
diffusivity in rocks is mm2/s (µm2/µs). While at shorter length scales, the two curves con-
verge at nanometer distances and picosecond timescales, at larger distances, acoustic tran-
sits are orders of magnitude faster than thermal diffusion. Therefore, at larger distances, if
crystal-structural instability initiates fracture or other rapid deformation in nature, frictional
heating may potentially cause melting subsequent to the failure, potentially obscuring the
evidence of the initial instability. That is to say, failure due to shear-induced solid-state
amorphization and frictional melting are not mutually exclusive. This has bearing not only
for faulting at crustal pressures (e.g. generation of pseudotachylites in shear zones) but in
deep seismicity as well where localized shear zones generate feedback loops between material
strength and frictional heating (and possibly melting) to drive material failure [124, 341, 18].

3.7 Stress measurements

Here, we provide a brief summary of the experimental apparatus, measurement protocol and
data fitting procedure relevant to the current study.

3.7.1 Sample preparation

We directly procured Type Ib HPHT diamond anvils with [111] crystal cut culet from Syntek
Co. Ltd. We performed 12C+ ion implantation (CuttingEdge Ions, LLC) at 12 keV with
2.25 × 1011 ions/cm2 and at 30 keV with 6.75 × 1011 ions/cm2 to generate vacancies up to
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Figure 3.7: Comparison of the acoustic transit and thermal diffusion timescales in a typical
rock, by distance. Calculation by Thomas Smart.

50 nm from the surface of the diamond anvil. We used SRIM [363] to determine the required
energy and dosage of the ions for creating vacancies. In the final step, the anvil was vacuum
annealed to created a shallow layer of NV centers.

3.7.2 Experimental apparatus

The NV measurements were performed on a home-built widefield fluorescence microscope.
We use 2W 532 nm laser (Coherent Verdi V-2) as our excitation beam. A laser speckle
reducer (Optotune LSR-3005-6D-VIS) is used to suppress the spatial coherence in the laser
beam in order to enhance image clarity. The diffuse laser beam is collimated using with
an aspheric lens and directed at the sample using a dichroic mirror (AVR Optics FF556-
SDi01-25x36). The NV fluorescence is transmitted through the dichroic and focused on
an EMCCD camera (Princeton Instruments ProEM-HS: 512BX3). Microwaves for ODMR
are synthesized by a RF signal generator (Stanford Research Systems SG384) and subse-
quently amplified using an RF amplifier (Minicircuits ZHL-16W-43S+). Similar to previous
work [148], the amplified microwaves are applied at the sample region using a platinum
foil. Continuous wave optically detected magnetic resonance (ODMR) spectra are collected
by measuring the fluorescence while synchronously chirping the frequency of the applied
microwaves.

3.7.3 Magnetite contamination

The dipoles visible in the E-splitting maps are due to impurities of magnetite in the sample
chamber (presence of magnetite in the sample is confirmed through x-ray diffraction of the
natural serpentine powder). The splitting of the NV spectra is sensitive to magnetic fields
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(via the Zeeman effect) and therefore can be used to image local magnetic fields in the
sample.

3.8 Conclusion

In this Chapter, we have demonstrated the use of NV center-based stress imaging to elucidate
the crystalline-to-amorphous transition in a mantle mineral. The observed accumulation and
dissipation of shear stresses before and after acoustic emissions is a characteristic feature
of brittle-like failure which was elusive in previous laboratory experiments. Crucially, this
phenomenon is only observed in the shear stress and not the hydrostatic pressure, suggesting
that the unique ability of the NV center-based sensing platform to distinguish individual
stress tensor components plays a key role in our measurement.
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Chapter 4

Magnetic Transition in a Single Grain
of Pyrrhotite

4.1 Introduction

Having utilized our NV center-based sensing platform to elucidate the evolution of stresses
associated with a crystal structural transformation, we next apply our sensor to magnetic
transitions under pressure. To this end, we consider a key question in the study of Martian
paleomagnetism: why does Earth exhibit a global magnetic field, but Mars does not? In-
triguingly, the strong crustal magnetization first measured during the Mars Global Surveyor
mission in 1996 suggests that this was not always the case [6]. A glimpse into this mag-
netic history comes from young impact basins (Hellas, Argyre, and Isidis) on the Martian
crust, where an absence of magnetization suggests that shock demagnetization may have
occurred after the cessation of an ancient dynamo [204, 331]. This hypothesis has motivated
several experiments characterizing magnetic rocks and minerals under the pressure condi-
tions expected during impact cratering. However, owing to sample size constraints imposed
by high pressure instrumentation, conventional sensors have difficulty resolving magnetism
at geologically relevant pressures. In this Chapter, we overcome these challenges by uti-
lizing our high pressure sensing platform based on NV centers, enabling magnetic imaging
with micron-scale resolution at gigapascal pressure. We demonstrate the utility of this tool
by probing the pressure-induced ferrimagnetic-to-paramagnetic transition in 4C monoclinic
pyrrhotite (Fe7S8), an iron sulfide mineral found in Martian meteorites as well as chondritic
meteorites and terrestrial rocks. By leveraging the NV center’s exquisite magnetic sensitivity,
we probe the saturation isothermal remanent magnetization (SIRM) of a single micrometer-
scale pyrrhotite grain under two rounds of compression and decompression. We find that
the SIRM decays by three orders of magnitude by the highest pressure of 6.5 GPa and com-
pletely revives upon decompression, in contrast to previous works that observe irreversible
loss of magnetic remanence. Furthermore, we find reproducible pressure hysteresis of the
SIRM, suggestive of a first-order transition. Finally, we demonstrate imaging of both normal
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and shear stresses near the sample. Our findings have implications for the interpretation of
shock demagnetization and broadly demonstrate the utility of NV center sensing for high
pressure rock and mineral magnetism.

Monoclinic 4C pyrrhotite is believed to contribute significantly to Martian crustal mag-
netization [278, 355].1 Neutron diffraction and Mössbauer spectroscopy reveal a pressure-
driven ferrimagnetic-to-paramagnetic transition, providing a candidate mechanism for shock
demagnetization [329, 182, 277]. In spite of this motivation, conventional sensors struggle to
resolve magnetism within high pressure instrumentation, where sample sizes are constrained
to be small relative to the pressure cell dimensions and thus the subtraction of undesir-
able background magnetism is challenging. To maximize the signal-to-background ratio,
packed volumes of powder samples are typically used, which introduces heterogeneities in
grain sizes and applied stresses [277, 38, 36, 37, 119].2 The subsequent averaging over stress
and grain size distributions using this approach introduces systematic uncertainties that
may contribute to the large spread of transition pressures previously reported in literature
[207].3 Indeed, the detailed evolution of high pressure phase transitions—including their
critical pressure, hysteresis, and reversibility—is known to be sensitive to stress gradients
and deviatoric stresses [26, 199].

To overcome these challenges, we utilize a sensing platform based on NV centers im-
planted ∼ 500 nm from the surface of a diamond anvil. We utilize the magnetic field-
dependent fluorescence of the NV centers to image stray fields from the sample of interest
[123, 148, 197, 352, 86, 308]. Crucially, embedding NV centers into a diamond anvil cell
enables in situ magnetometry at gigapascal pressure under both compression and decom-
pression [148, 197]. In comparison to induction coil techniques, the NV-based system en-
hances magnetic moment sensitivity by several orders of magnitude, enabling the imaging
of ferromagnetic grains at the micrometer scale. Furthermore, the sensitivity of NV centers
to stresses enables imaging of all six unique components of the stress tensor, allowing for
quantitative characterization of the applied stress tensor environment [148].

4.2 Methods and system characterization

4.2.1 Description of sample

Pyrrhotite (Fe1−xS, 0 < x < 0.125) is found in a variety of crystal structures. Of these,
the monoclinic 4C phase is the only equilibrium phase which retains a spontaneous mag-
netization, exhibiting ferrimagnetism due to its ordered array of Fe vacancies [333]. The
pyrrhotite sample in this work is sourced from a single crystal whose structural, magnetic,

1We note that besides monoclinic pyrrhotite, hexagonal pyrrhotite in a metastable ferrimagnetic state
has been proposed to carry remanence in meteorite samples [278].

2Additional subtleties arise in dynamic loading experiments, where ambient magnetic fields and applied
stresses are not straightforward to control [206, 208].

3We note that the pyrrhotite phase composition and domain sizes of samples examined in previous works
may also contribute to the spread of transition pressures.
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and electronic properties have been previously characterized [333, 334]. X-ray diffraction re-
veals that the crystal is pure monoclinic 4C pyrrhotite without any other structural phases
such as hexagonal pyrrhotite. Its bulk chemical composition, as determined through elec-
tron microprobe analysis, is Fe6.78±0.12S8, which is within the stability field of the monoclinic
4C phase [334]. No impurities, such as nickel, were detected. Low-temperature remanence
experiments reveal a sharp Besnus transition at 32K, further corroborating the presence of
the monoclinic 4C phase [334].

Pieces of the single crystal of pyrrhotite (MSM17591) were ground using a mortar and
pestle to obtain fragments between 15-50µm. This grinding was conducted under ethanol to
retard oxidation as in the sieving procedure of [347]. The resulting silt-sized particles were
pulsed by a 1T field using an ASC pulse magnetizer in the Berkeley paleomagnetism lab.
Two pulses were applied as the first pulse may result in grain rotation with the second pulse
assuring saturation.

4.2.2 High pressure experimental setup

A schematic of our experiment is shown in Figure 4.1. We load a nonmagnetic steel diamond
anvil cell, described in [311], with two opposing diamond anvils of culet diameter 350 µm
compressing a rhenium gasket preindented to 50 µm. A ∼ 15 µm-diameter grain of pyrrhotite
is placed onto the diamond anvil culet in addition to a ruby microsphere (pressure scale).
The sample chamber, defined by a 120 µm-diameter laser-drilled hole in the rhenium gasket,
is filled with solid cesium iodide to provide a quasi-hydrostatic pressure environment [54].
Microwave excitation is applied with a 4 µm-thick platinum foil compressed between the
gasket and diamond anvil pavilion facets.

4.2.3 Quantum diamond microscope

Operation of our high pressure sensing platform based on NV centers has been previously
described both in the context of rock magnetism [123] and high pressure [148, 197]. We briefly
review the operational procedure here, emphasizing unique characteristics of the current
implementation.

At the heart of the system is an ensemble (∼1 part-per-million density) of NV centers
prepared in a thin layer from the diamond anvil surface. Each of these atomic-scale defects
harbors an electronic spin ground state whose spin sublevels are sensitive to local changes in
applied stress and magnetic fields. These sublevels can be optically initialized and read out
with laser light. One can probe these sublevels through optically detected magnetic resonance
spectroscopy, which measures the spin-dependent fluorescence intensity as the frequency of
an applied microwave field is swept across the NV center spin resonances. We excite the
NV centers using a 532 nm laser and collect their fluorescence onto a charge-coupled-device
(CCD) camera, which allows us to image two-dimensional magnetic field maps directly below
the sample with micrometer resolution. The laser can be substituted with a white light
source, allowing for reflected light microscopy which colocalizes the magnetic images with
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Figure 4.1: Experimental setup. (a) Schematic of the high pressure setup. Two opposing
diamond anvils are compressed between cubic boron nitride backing plates (gray). NV cen-
ters are interrogated by a 532 nm laser; the resulting fluorescence is imaged onto a charge-
coupled-device camera. (b) The sample chamber, defined by a laser-drilled hole in the
rhenium gasket, contains a ruby microsphere, a single pyrrhotite grain, and a cesium io-
dide pressure-transmitting medium. NV centers are prepared ∼ 500 nm below the sample
chamber. (c) Reflected light image of the sample chamber viewed through the bottom
anvil. (d)-(e) Stress maps near the pyrrhotite sample (dashed white outline) measured at
Pruby = 5.8GPa. Both the normal stress along the loading axis, σZZ , and the shear stress,

σshear ≡
√
σ2
XZ + σ2

Y Z + σ2
XY , reveal micron-scale gradients that highlight the complexity of

the applied stress environment.
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the sample. An applied external magnetic field (Bext ∼ 50G) spectroscopically separates the
NV center resonances in order to decouple their response to magnetism and stress [148].4

4.2.4 Characterizing magnetic sensitivity

We begin by characterizing the magnetic sensitivity of our high pressure sensing platform
under a fixed magnetic field. The image area-normalized magnetic sensitivity ranges from
8-14µT · µm/

√
Hz over the studied pressures under both compression and decompression.

We note that this range is within the 1-100µT · µm/
√
Hz sensitivities reported in previous

NV center implementations at ambient pressure which can resolve magnetic sources down
to 10−16Am2 [123].

4.3 Results

Sensitivity in hand, we begin measuring the SIRM of pyrrhotite under pressure. At low
pressures, we observe shifts of all eight NV resonances near the pyrrhotite grain owing to its
stray magnetic field. As we increase pressure, the resonance shifts sharply diminish, reflecting
a reduction in the SIRM. This trend continues up to the highest pressure of Pruby = 6.5 GPa,
whereby the SIRM has reduced by over three orders of magnitude.

To quantify this phase transition, we reconstruct the full vector magnetic field produced
from the pyrrhotite sample at the NV center layer. We compare the experimentally deter-
mined field distribution to the expected distribution from a single magnetic point source. At
the highest pressures where multiple magnetic sources are resolvable (e.g. Fig. 4.2(c)), the
same procedure is applied to the source with the largest magnitude.5 Through this procedure,
we extract the SIRM as a function of applied pressure (Fig. 4.2). Fitting to a logistic func-
tion, we find that the transition occurs at a critical pressure of Pc, compress = 4.45± 0.05 GPa
with a transition width of ∆P = 0.24 ± 0.05 GPa (Fig. 4.2(d)). Crucially, the high pres-
sure sensing platform can be operated under both compression and decompression, which
allows us to probe hysteresis under pressure. Indeed, as the applied pressure is decreased, we
observe a complete revival of the SIRM at low pressure, in contrast to previous reports ob-
serving irreversible loss of the SIRM upon quenching. We find Pc, decompress = 2.9± 0.2 GPa,
while ∆P = 0.7± 0.2 GPa.

In addition to probing pressure hysteresis, the diamond anvil cell enables the ability to
cycle pressure multiple times without degradation of the apparatus. To this end, we repeat
the experiment using the same grain of pyrrhotite and nominally identical experimental
conditions. As shown in Fig. 4.2(e), in run 2, while the critical pressures under compression
and decompression do not change appreciably compared to run 1, the transition widths are
markedly different.

4We note that the applied field is much smaller than the measured coercive field at all pressures [119]
5Due to the saturated response at some pixels, upward continuation to isolate the dipolar component of

the multipole distribution was not feasible.
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Figure 4.2: Magnetic sensing at high pressure. (a)-(c) Magnetic maps of the stray field
produced by the pyrrhotite sample under pressure and an applied field, Bext ∼ 50 G. Maps
correspond to the field projection along a particular (100) crystallographic orientation, which
is 54◦ from the culet normal direction. Black pixels correspond to areas where the NV
response is indeterminate due to exceedingly large field gradients. As pressure increases,
the stray fields produced by the sample are diminished, corresponding to a reduction in the
SIRM. (d)-(e) Measured SIRM at room temperature under both compression (red dashed
lines) and decompression (blue dashed lines).

A few remarks are in order. Firstly, the hysteresis between the critical pressures observed
under compression and decompression is the hallmark of a first-order magnetic transition and
suggests coupling to a structural phase transition.6 We note that a structural transition was
previously reported in x-ray diffraction measurements at a commensurate pressure (6.2GPa);
future studies performing simultaneous NV and x-ray diffraction measurements may help
elucidate whether these two transitions relate to each other [172, 322]. The presence of a
structural transition would also be consistent with the observed variation in transition widths
under compression and decompression, as well as from run to run; the detailed evolution of
high pressure structural phase transitions is known to be sensitive to the distribution of

6As a point of nomenclature, we note that this pressure hysteresis under compression/decompression is
distinct from the phenomenon of magnetic hysteresis under magnetic field reversal.
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Run number M0 Pc ∆P
(10−9Am2) (GPa) (GPa)

1 (compression) 2.71± 0.06 4.45± 0.05 0.24± 0.05
1 (decompression) 2.6± 0.2 2.9± 0.2 0.7± 0.2

2 (compression) 2.1± 0.1 4.6± 0.2 0.7± 0.2
2 (decompression) 2.70± 0.05 3.45± 0.04 0.38± 0.04

Table 4.1: Summary of SIRM data

normal and shear stresses, which varies over the course of the experiment due to plastic
deformation of the sample and gasket [26]. Secondly, we note the transition widths are
much sharper than in previous static high pressure measurements [277, 38, 36, 37, 119]. We
attribute this to the unique ability to distinguish magnetism from a single grain; compared
to measurements of powder samples that must average the magnetic response over both
domain sizes and the stress distribution within the sample chamber, the single grain in this
experiment is well-defined in size and experiences significantly minimized stress gradients,
thus sharpening the apparent transition. Thirdly, the observed critical pressure is notably
higher than previous reports, which may be attributed to the crystallinity and phase purity
of the sample; the absence of structural defects commonly enhances the pressure required to
initiate phase transitions [199].

Finally, we demonstrate a method to image normal and shear stresses near the sample.
While reconstruction of all six unique components of the stress tensor has been previously
demonstrated at gigapascal pressure using NV centers, here we propose and demonstrate a
truncated sensing protocol to measure a subset of these components entirely by reanalyzing
magnetic measurements taken for the SIRM study [148]. We depict exemplary results in
Figure 4.1(d) and 4.1(e) at Pruby = 5.8GPa. The normal stress along the loading axis, σZZ ,
is consistent with the independently determined pressure in the sample chamber (via ruby
fluorescence) yet concentrated near the center of the sample. The shear stress, defined here
as σshear ≡

√
σ2
XZ + σ2

Y Z + σ2
XY , reveals distinct gradients from the loading stress despite

the presence of a relatively soft pressure-transmitting medium.7 The ability to image both
normal and shear stresses with micron-scale resolution provides a detailed glimpse into the
applied stress environment that may help elucidate the complex interplay between stress
gradients and the microstructural evolution of high pressure phase transitions.

4.4 SIRM summary

We fit to a logistic function of the form:

7Due to an abuse of notation, the σshear defined here is a distinct quantity from that defined in Chapter
3.
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M(p) =
M0

1 + exp
(
p−Pc

∆P

) , (4.1)

where M is the magnitude of the SIRM, M0 is the SIRM at zero pressure, Pc is the measured
critical pressure, and ∆P is the transition width.

4.5 Truncated stress sensing protocol

4.5.1 Stress coupling

The NV coupling to stress has been previously stated in Section 1.1.4. We note that the
basis vectors {x̂, ŷ, ẑ} ({X̂, Ŷ , Ẑ}) correspond to an individual NV center’s local frame (cubic
crystal frame); in particular, ẑ is oriented in the direction of the NV bond and determines
the NV’s quantization axis, and x̂ is defined such that the xz-plane contains one of the
carbon-vacancy bonds. In the diamond lattice, there are four possible quantization axes,
i.e. ẑ ∈ {111, 11̄1̄, 1̄1̄1, 1̄11̄} in crystallographic notation.

The stress maps presented in Fig. 4.1 are determined by measuring Πz for the four
distinct NV orientations. While these measurements alone are insufficient to reconstruct the
full stress tensor, they allow us to uniquely determine the isotropic stress, σiso ≡ 1

3
(σXX +

σY Y + σZZ), and the average shear stress, σshear ≡
√
σ2
XZ + σ2

Y Z + σ2
XY . To see this, let

us explicitly write Πz with respect to the stress tensor in the cubic frame for the four NV
orientations:

Π[111]
z =

1

3
(2α1 + β1)(σXX + σY Y + σZZ) +

2

3
(β1 − α1)(σXZ + σY Z + σXY )

Π[11̄1̄]
z =

1

3
(2α1 + β1)(σXX + σY Y + σZZ) +

2

3
(β1 − α1)(−σXZ + σY Z − σXY )

Π[1̄1̄1]
z =

1

3
(2α1 + β1)(σXX + σY Y + σZZ) +

2

3
(β1 − α1)(−σXZ − σY Z + σXY )

Π[1̄11̄]
z =

1

3
(2α1 + β1)(σXX + σY Y + σZZ) +

2

3
(β1 − α1)(σXZ − σY Z − σXY )

By inspection, the first term is constant for the four orientations, while the second term has
a mean of zero (across the four orientations) and a constant variance. This leads to the
following relations:

Π̄z = (2α1 + β1)σiso (4.2)

δΠz =
2

3
|β1 − α1|σshear (4.3)

where Π̄z and δΠ̄z are the mean and standard deviation of the four shifting parameters,
respectively.
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We note that the above relations can also be motivated from a symmetry perspective. In
particular, as average quantities of the four orientations, Π̄z and δΠz are invariant under any
permutation of the four crystallographic axes, i.e. they belong to the A1 irreducible repre-
sentation of the Td point group. Moreover, Π̄z is a linear function of the stress components.
At this order, the only combination of stress components that belongs to the A1 irreducible
representation is the isotropic stress, σXX + σY Y + σZZ . The remaining terms in δΠz are
shear terms, which belong to the T2 irreducible representation. At quadratic order, the only
combination of these terms which belongs to A1 irreducible representation, and hence can
contribute to the variance (δΠZ)

2, is σ2
XZ + σ2

Y Z + σ2
XY .

4.5.2 Stress measurement

To determine Πz from all four NV orientations, we rely on the same external magnetic field
used to measure the SIRM which spectroscopically distinguishes all eight NV resonances.
The average spectroscopic position of each pair of resonances is taken to be Dgs +Πz. This
analysis neglects corrections due to transverse magnetic fields which are suppressed at linear
order. From this, σshear is straightforwardly deduced by calculating the standard deviation
of the four resonances, as derived in the previous section. To distinguish the normal stress
along the loading axis, σZZ , from the isotropic pressure, we fix σZZ near the ruby microsphere
to equal Pruby (as expected for an ideal pressure-transmitting medium) and take the ratio
σZZ/(σXX+σY Y ) to be approximately constant over tens of microns, as observed in Ref. [148].

4.6 Conclusion

In summary, we report SIRM of 4C monoclinic pyrrhotite under multiple rounds of compres-
sion and decompression up to 6.5GPa. To our knowledge, we report the first observation of
pressure hysteresis in this mineral, indicating the presence of a first-order transition. The
observed SIRM revival upon decompression stands in stark contrast to previous reports of
irreversible SIRM loss and calls for a nuanced understanding in the interpretations of shock
demagnetization. Specifically, while conventional wisdom holds that meteorites experienc-
ing sufficiently large shock pressure will not retain remanence from pyrrhotite [278], we have
demonstrated an SIRM counterexample to this mantra.

More broadly, we show that the magnetic sensitivity and imaging capability of the NV
center combined with the gigapascal pressures of the DAC enables the exploration of geologi-
cal phenomena previously inaccessible to existing techniques. In particular, the capability to
perform magnetic imaging opens the door to the localization of micron-scale ferromagnetic
sources in geological samples and their evolution under pressure.
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Chapter 5

Electric Field Sensing Single
Localized Charges

5.1 Introduction

In the previous Chapters, we utilized NV centers in diamond to explore the structural and
magnetic properties of materials under pressure. Sensing these signals relies on an exhaustive
understanding of the NV response to physics within the diamond itself. In this Chapter, we
step away from external stimuli and turn our attention to the local internal environment
surrounding our solid-state spin defects. This is especially germane to the case of defect
ensembles which can exhibit a complex interplay between interactions, internal fields and
lattice strain. We demonstrate that local electric fields dominate the magnetic resonance be-
havior of NV ensembles at low magnetic field. We introduce a simple microscopic model that
quantitatively captures the observed spectra for samples with NV concentrations spanning
over two orders of magnitude. Motivated by this understanding, we propose and implement a
novel method for the nanoscale localization of individual charges within the diamond lattice;
our approach relies upon the fact that the charge induces an NV dark state which depends
on the electric field orientation.

A tremendous amount of recent effort has focused on the creation and control of nanoscale
defects in the solid-state [8, 290]. The spectral properties of these defects often depend sen-
sitively on their environment. On the one hand, this sensitivity naturally suggests their use
as nanoscale quantum sensors of external signals. On the other hand, accurately quantifying
these signals requires the careful characterization of internal local fields. Here, we focus on
the NV center in diamond [85, 290]. The electronic spin associated with the NV center is
sensitive to a broad range of external signals, from magnetic and electric fields to pressure,
temperature and gyroscopic precession [226, 213, 324, 1, 98, 88, 89, 83, 196, 9]. Isolated sin-
gle NVs have been used to explore phenomena in biology [290, 191, 228], materials science
[194, 263, 95, 92, 130], and fundamental physics [336, 35, 144].

More recently, many-body correlations have emerged as a powerful resource for enhancing



CHAPTER 5. ELECTRIC FIELD SENSING SINGLE LOCALIZED CHARGES 86

  

Frequency (GHz)
2.8802.8702.860

0.0

0.5

1.0

C
o

n
tr

a
s
t 

(a
.u

.)

0
-2

0

6

y (nm) 

z
 (
n
m

) 

-4

-6

0

2

x 
(n

m
) 

2.892.85
0.0

0.5

1.0

2.87

0

-1

y (nm)
z
 (
n
m

) 

0
-0.5

-2

-3
0

-0.5

0.5 0.5

x (nm
) 

(a)

(b) (c)

S1

Figure 5.1: Typical optically-detected magnetic resonance (ODMR) spectrum of an electron-
irradiated and annealed Type-Ib diamond sample (S1) at zero magnetic field. The spectrum
exhibits heavy tails which cannot be reproduced by either a double Lorentzian or Gaussian
(orange fit) profile. The blue theory curve is obtained via our microscopic charge model.
(Left inset) A typical zero-field spectrum for a single NV center shows only a single reso-
nance. (Right inset) Schematic depicting an equal density of positive (e.g. N+) and negative
(e.g. NV) charges, which together, create a random local electric field at each NV center’s
position. (b) Nanoscale localization (∼5 nm) of a single positive charge via dark-state spec-
troscopy of an isolated NV center. The shaded regions indicate the probable location of
the charge with darker indicating a higher likelihood. Percentages shown correspond to the
confidence intervals of the dark/light region, respectively. (c) Analogous localization of a
more proximal charge defect (∼2 nm) for a different NV center.

the sensitivity of interacting spin ensembles [338, 299, 171, 51, 360]. To this end, a number
of studies have explored and leveraged the properties of high-density NV systems [2, 309,
210, 1, 307, 265, 164, 25, 195, 163, 346, 27, 123]. The local environment in such systems is
substantially more complex than that of isolated NVs; this arises from a competition between
multiple effects, including: lattice strain, paramagnetic impurities, charge dynamics, and
NV-NV dipolar interactions. While the presence of an applied external magnetic field can
suppress some of these effects, it significantly limits the scope of sensing applications such
as zero-field nuclear magnetic resonance spectroscopy [340, 319]. Thus, characterizing and
understanding the spectral properties of NV ensembles at zero field is crucial to utilizing
these systems as quantum sensors.

In this Chapter, we present three main results. First, we demonstrate that the charac-
teristic splitting of the NV’s magnetic resonance spectrum (Fig. 5.1a), observed in ensemble
NV experiments [132, 191, 29, 88, 150, 112, 362, 298, 5, 190, 193, 44, 281, 161, 298, 223, 60,
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Figure 5.2: ODMR spectra at zero magnetic field for (a) a Type-Ib untreated diamond
sample (S5) and (b) a Type-IIa electron-irradiated and annealed sample (S3). The spectra
portray the two qualitative regimes one expects based upon the average electric field strength
as shown schematically in the right panel of Fig. 5.3d. The blue theory curve is obtained
via our microscopic charge model. (inset) The spectrum for S3 at a magnetic field ≈ 45 G
exhibits three identical hyperfine resonances.

198, 308], originates from its local electric environment [215]; this contrasts with the con-
ventional picture that strain dominates the zero-field properties of these systems. Second,
we introduce a charge-based model (Fig. 5.1a, right inset) that quantitatively reproduces
the observed ODMR spectra for samples spanning two orders of magnitude in NV density.
Third, our model suggests the ability to directly image the position of individual charges
inside the diamond lattice. To this end, we propose and implement a novel method that
localizes such charges to nanometer-size volumes (Fig. 5.1b,c). The essence of our approach
is to leverage the interplay between the polarization of the applied microwave field and the
orientation of the local electric field.

5.2 Magnetic spectra of NV ensembles

The NV center has a spin triplet ground state (|ms = ±1, 0⟩), which can be initialized and
read out via optical excitation and coherently manipulated using microwave fields [224]. In
the absence of any external perturbations, the |ms = ±1⟩ states are degenerate and separated
from |ms = 0⟩ by Dgs = (2π)× 2.87 GHz (Fig. 5.3a).

This leads to the usual expectation of a single resonance peak at Dgs, consistent with
experimental observations of isolated NVs (Fig. 5.1a, inset). However, for high-density NV
ensembles, one observes a qualitatively distinct spectrum, consisting of a pair of resonances
centered at Dgs (Fig. 5.1a, sample S1). This spectrum poses a number of puzzles: First,
the line-shape of each resonance is asymmetric and cannot be captured by either a Gaussian
or Lorentzian profile. Second, the central feature between the resonances is sharper than
the inhomogenous linewidth. Third, despite the presence of a strong splitting, there exists
almost no shift of the NV’s overall spectrum.

These generic features are present in diamond samples with NV and P1 (nitrogen impu-
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Figure 5.3: Both strain and electric fields lead to (a) shifting Πz and (b) splitting 2Π⊥ of
the |ms = ±1⟩ manifold. (c) When averaged over an ensemble of NV centers, random local
strain fields lead to a single broad spectral feature (at large strain). (d) In contrast, random
local electric fields lead to two distinct spectral regimes: at small electric fields, the center
hyperfine resonance splits, leading to a total of four resolvable features (S3); at large electric
field, one obtains the characteristic split resonance seen in typical high density NV ensembles
(S1, S5).

rity) densities spanning over two orders of magnitude. Fig. 5.2 demonstrates this ubiquity.
In particular, it depicts the spectrum for two other samples: one with a significantly lower
NV concentration (Fig. 5.2a, sample S5) and a second with significantly lower concentra-
tions for both NVs and P1s (Fig. 5.2b, sample S3). In this latter case, the P1 density is
low enough that the hyperfine interaction between the NV’s electronic spin and its host 14N
nuclear spin can be resolved. Normally, this hyperfine splitting would simply result in three
identical resonances split from one another by Azz = (2π)× 2.16 MHz [301] (Fig. 5.2, inset).
However, as shown in Fig. 5.2b, one finds that the central hyperfine resonance is split in
direct analogy to the prior spectra.

The most distinct of the aforementioned features – a split central resonance – has typically
been attributed to the presence of lattice strain [29, 88, 150, 112, 362, 298, 5, 190, 193,
44, 281, 161, 298, 223, 60, 198, 308]. Such strain can indeed lead to a coupling between
the |ms = ±1⟩ states, and thus split their energy levels. However, a more careful analysis
reveals an important inconsistency. In particular, given the measured strain susceptibility
parameters [29], for each individual NV, any strain-induced splitting should be accompanied
by a comparable shift of the overall spectrum (Fig. 5.3). Ensemble averaging then naturally
leads to a spectrum that exhibits only a single broadened resonance (Fig. 5.3c).

5.3 Microscopic charge model

In contrast, we demonstrate that all of the observed features can be quantitatively explained
via a microscopic model based upon randomly positioned charges inside the diamond lattice.
The physical intuition underlying this model is simple: each (negatively charged) NV center
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Sample
ρc

(ppm)
ρNV

(ppm)
ρs

(ppm)
Γ

(MHz)
Ib treated (S1) 1.35(5) 1-10 70(5) 1.16(2)
Ib treated (S2) 1.7(1) 1-10 100(5) 0.78(3)
IIa treated (S3) 0.06(2) 0.01-0.1 12(3) 0.26(2)
Ib untreated (S4) 3.6(4) 0.001-0.01 90(20) 1.0(1)
Ib untreated (S5) 0.9(2) 0.001-0.01 130(30) 3.3(1)
IIa untreated (S6) 0.05(1) 0.001-0.01 16(2) 0.08(3)

Table 5.1: Summary of the measured and extracted parameters for each diamond sample. ρc
and Γ are directly extracted from our microscopic model, while ρs is independently measured
at high magnetic fields and ρNV is estimated from fluorescence counts.

plays the role of an electron acceptor, and charge neutrality implies that there must be a
corresponding positively charged electron donor (typically thought to be N+, a positively
charged P1 center).

Such charges produce an electric field that also (like strain) couples the |ms = ±1⟩ states,
leading to the splitting of the resulting eigenstates. Crucially, however, the NV’s suscepti-
bility to transverse electric fields (which cause splitting) is ∼50 times larger than its suscep-
tibility to axial electric fields (which cause shifting) [254, 41]. This implies that even upon
ensemble averaging, the electric-field-induced splitting remains prominent (Fig. 5.3d).

Qualitative picture in hand, let us now introduce the details of our microscopic model.
In particular, we consider each NV to be surrounded by an equal density, ρc, of positive and
negative charges 1. These charges generate a local electric field at the position of the NV
center and couple to its spin via the Hamiltonian:

H =(Dgs +Πz)S
2
z + (δBz + AzzIz)Sz+

Πx(S
2
y − S2

x) + Πy(SxSy + SySx). (5.1)

Here, ẑ is the NV-axis, x̂ is defined such that one of the carbon-vacancy bonds lies in the
x-z plane (Fig. 5.1a, right inset), S⃗ are the electronic spin-1 operators of the NV, I⃗ are
the nuclear spin-1 operators of the host 14N,2 and δBz represents a random local magnetic
field (for example, generated by nearby paramagnetic impurities). Note that we absorb the
gyromagnetic ratio into δBz. The two terms Π{x,y} = d⊥E{x,y} and Πz = d∥Ez characterize

the NV’s coupling to the electric field, E⃗, with susceptibilities
{
d∥, d⊥

}
= {0.35, 17} Hz

cm/V [254].

In order to obtain the spectra for a single NV, we sample E⃗ and δBz from their random
distributions and then diagonalize the Hamiltonian. Moreover, to account for the natu-

1We assume that the charges are independently positioned in three dimensions
2We note that the the hyperfine interaction in the Hamiltonian is obtained under the secular approxi-

mation.
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Figure 5.4: Charge localization via dark-state spectroscopy. (a) Single NV ODMR spectra
(untreated Type-Ib diamond) for two different microwave polarizations, ϕMW, depicting the
reversal of the split-peak imbalance. The data correspond to the localized charge shown
in Fig. 5.1b. (inset) Top view through the NV-axis (ẑ), where ϕE and ϕMW are defined
with respect to x̂ (along a carbon-vacancy bond). (b) Analogous split-peak imbalance data
corresponding to the localized charge shown in Fig. 5.1c. (c) By changing the microwave
polarization, ϕMW, one can directly control the coupling strength between the |0⟩ and |±⟩
states. (d) Measuring the change in the imbalance as a function of ϕMW allows one to extract
the orientation of the electric field. Dashed lines indicate the polarizations plotted in (a).

ral linewidth of each resonance, we include an additional Lorentzian broadening with full-
width-half-maximum, Γ. Averaging over this procedure yields the ensemble spectrum. The
distribution of E⃗ is determined by the random positioning of the aforementioned charges.
The distribution of δBz is determined by the local magnetic environment, which depends
sensitively on the concentration of spin defects (Table 5.1).

In samples S1 and S5 (Type-Ib diamond), δBz is dominated by the dipolar interaction
with a high-density P1 spin bath, whose concentration, ρs, is independently characterized.
Meanwhile, in sample S3 (Type-IIa diamond), the P1 density is over two orders of magnitude
smaller, leading to a δBz that is dominated by interactions with 13C nuclei (with a natural
abundance of 1.1%); despite this difference in microscopic origin, one can also characterize
the effect of this nuclear spin bath using an effective density, ρs. For each sample, using this
independently characterized ρs, we then fit the experimental spectrum by varying ρc and Γ .
We find excellent agreement for all three samples (Fig. 5.1, 5.2) despite their vastly different
defect concentrations (Table 5.1).

A few remarks are in order. First, the presence of local electric fields suppresses the
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effect of magnetic noise when δBz ≪ Π⊥ =
√
Π2

x +Π2
y. This is precisely the origin for both

the sharpness of the inner central feature seen in Fig. 5.1a, as well as the narrowness of
the inner hyperfine resonances seen in Fig. 5.2b. Second, in samples where the electric field
dominates, the long-range, power-law nature of the electric field leads to a particularly heavy
tailed spectrum. Third, the extracted charge density, ρc, is consistent with the estimated
NV density, ρNV, for all “treated” (electron-irradiated and annealed) samples (S1-S3). This
agrees with our previous physical intuition: NVs behave as electron acceptors while P1s
behave as electron donors. Interestingly, this simple picture does not directly translate to
“untreated” samples (S4-S6) where the observed charge density is significantly larger than
ρNV (Table 5.1); one possible explanation is that such samples harbor a higher density of
non-NV charged defects (e.g. vacancy complexes [73]).

5.4 Nanoscale imaging of a single charge

Our microscopic model suggests that in samples where one can resolve single NV centers, it
should be possible to directly probe the local charge environment. However, one expects a
key difference in contrast to ensemble measurements: for a single NV, the electric field has
a definite orientation with respect to the NV axes (Fig. 5.4a diagram).

Crucially, this orientation (namely, the angle, ϕE, in the NV’s transverse plane) dictates
the way in which the electric field mixes the original |ms = ±1⟩ states into bright and dark
states:

|±⟩ = 1√
2

(
|ms = +1⟩ ∓ e−iϕE |ms = −1⟩

)
. (5.2)

Applying a linearly polarized microwave field will then drive transitions between the |ms = 0⟩
state and the |±⟩ states. However, the relative strength of the two transitions depends on
both ϕE and the polarization of the microwave field, ϕMW (Fig. 5.4c). Thus, one generally
expects the measured amplitudes of the corresponding resonances to be different. These
expectations are indeed borne out by the data (Fig. 5.4a,b).3 We note that this observed
imbalance in the inner hyperfine resonances for a single NV is naturally averaged out in an
ensemble measurement.

Our detailed understanding of this spectroscopy for a single NV suggests a novel method
to extract the full vector electric field and to localize the position of the corresponding charge.
In particular, by measuring the imbalance as a function of ϕMW, one can extract the electric
field orientation, ϕE. More specifically, we define the imbalance, I ≡ A+−A−

A++A−
, where A± are

the amplitudes of the |ms = 0⟩ ↔ |±⟩ resonances and derive:

I ∼ − cos(2ϕMW + ϕE). (5.3)

Thus, ϕE = 124(5)◦ can be extracted as the phase offset in Fig. 5.4d. In combination with
the observed splitting and shifting of the inner resonances, Πz = 30(50) kHz, Π⊥ = 650(10)

3We measure the ODMR spectra of 68 single NV centers in an untreated Type-Ib sample, and find four
that exhibit a significant electric-field-induced splitting with amplitude difference at zero magnetic field.
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kHz, one can fully reconstruct the local electric field vector [343]. We do not observe any
changes to this field over the course of the experiment (months) and find that it varies
for different NV centers. This suggests that it originates from a stationary local charge
environment. Moreover, charge neutrality and a low defect density suggest that the electric
field is generated by a single positive charge, which we can then localize to within a nanoscale
volume (Fig. 5.1b,c).

5.5 Materials and Methods

5.5.1 Sample details

The six diamond samples used in this work are all sourced from Element Six. Three of them
have been treated (electron irradiation at Prism Gem and vacuum annealing) to increase
NV density. The details are listed in Table 5.1.

5.5.2 Experimental apparatus

We conduct single and ensemble NVmeasurements in a scanning confocal microscope equipped
with controllable magnetic field and microwave delivery (Fig. 5.5). A 532 nm laser beam (Co-
herent Compass 315M) shuttered by an acousto-optic modulator (AOM, Gooch & Housego
AOMO 3110-120) is used for both ground state preparation and spin state detection. An
objective lens focuses the beam to a diffraction limited spot size. We use an oil immersion
objective lens (Nikon Plan Fluor 100x, NA 1.49) for resolving single NV centers or an air
objective lens (Olympus LUCPLFLN, NA 0.6) for ensemble measurements. The combined
action of an X-Y galvanometer (Thorlabs GVS212) and a 4f telescope provides the ability
to scan the sample at the focal plane of the objective lens. A piezo mount for the objective
lens serves to move the scanning plane in the longitudinal direction for depth scans.

The fluorescence photons collected by the objective lens are separated from the excitation
beam path by a dichroic mirror (Semrock FF552-Di02). The coupling of the fluorescence
beam to a single mode fiber serves as an effective pinhole for the confocal microscope.
The fiber shuttles the fluorescence photons to a single photon counting module (SPCM,
Excelitas SPCM-AQRH-64-FC) or avalanche photodiode (Thorlabs APD410A). We use a
Data Aquisition card (DAQ) for fluorescence measurements and subsequent data processing
(National Instruments USB 6343).

A microwave source (Stanford Research Systems SG384) in combination with a 16W am-
plifier (Mini-Circuits ZHL-16W-43+) serves to generate signals for spin state manipulation.
For ensemble measurements, microwave signals are delivered using a coplanar waveguide
(CPW) deposited on a coverslip. For single NV experiments, a 46 AWG magnet wire taped
to a rotation mount (Thorlabs RSP05) is used (Fig. 5.5 inset). The magnet wire is adjusted
to sit parallel to, and approximately 550 µm above, the focal plane of the objective lens. By
rotating the wire using the mount, we effectively change the polarization of the microwaves
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Figure 5.5: Experimental Apparatus: A 532 nm laser shuttered by an AOM light switch
excites the NVs, both for state preparation and read-out. A 4f telescope permits the
galvonometer to scan the surface of the diamond and a piezo-mounted objective controls
the depth of the focal plane. The objective lens focuses the excitation beam and collects
fluorescence. Microwave fields are delivered by a magnet wire (as pictured) or a coplanar
waveguide. Inset: Magnet wire stretched onto an optical rotation mount hovers over the
surface of the diamond
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at the site of the single NV center of interest. The calculation of the polarization angle in
the NV center frame is discussed later in the Section Microwave Angle Projection.

5.5.3 Pulse sequence for measuring magnetic resonance spectra
of NVs

To measure the optically detected magnetic resonance (ODMR) spectra of NVs, we first use
a 10 µs 532 nm laser pulse to initialize the spin triplet ground states to ms = 0 (Fig. 5.6).
After turning off the laser for 1 µs to allow the excited state population to decay, we apply
a microwave π pulse and sweep its frequency. Our π pulse length is chosen as 2-6 µs for
measurements on Type-Ib diamonds and 8-10 µs for Type-IIa diamonds to avoid power
broadening. At the end, we apply another 10 µs laser pulse to detect the NV spin state
by collecting the resulting fluorescence photons (Signal). In addition, we collect the photon
counts at the end of the initialization laser pulse (Reference), and normalize the measured
contrast.

Laser

Microwave

Readout

SignalReference

1 μs

Figure 5.6: Pulse sequence for ODMR measurement.

5.5.4 Isolating single NVs

The diamond sample used for single NV experiments is sample S4 (untreated type Ib).
We found a region of the sample where we could isolate single NVs as confirmed by a g(2)

measurement (Fig. 5.7).

5.6 Charge model and ensemble spectrum

In this section, we provide additional details regarding our charge model. This includes an
analysis of the electric and magnetic field distributions, as well as an explanation of our
fitting procedure for the ensemble spectra and the estimation of error bars.
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Figure 5.7: g2(τ) measurement on NV1: the extracted g2(0) = 0.17+0.05
−0.03 < 0.5 definitively

confirms it is a single NV center.

5.6.1 Electric field distribution

In our model, we consider each NV to be surrounded by an equal density, ρc, of positive and
negative point-like charges. We simulate the positions of these charges by randomly placing
a large number (Ncharge ∼ 100) of points within a spherical volume. The radius of the sphere,
R, is determined so that the average density of the charges matches ρc; in particular, this
implies

R =

(
3

4π

Ncharge

(2ρc)n0

) 1
3

, (5.4)

where n0 = 1.76 × 10−4 (ppm·nm3)−1 is a conversion factor relating the number density
(in ppm) to the volume density, and 2ρc is the combined density of positive and negative
charges.

Based on the charge positions, we calculate the electric field at the center of the sphere
(the NV’s location):

E⃗ =
∑
i

qi
4πϵ0ϵr

r̂i
r2i
, (5.5)

where ϵr = 5.7 is the relative permittivity of diamond[343], |qi| is the charge of an electron,
and the sign of qi is chosen to be positive or negative with equal probability. Sampling over
the charge positions, {r⃗i}, yields a distribution for E⃗. We are particularly interested in the
transverse component, E⊥, which couples ∼ 50 times stronger to the NV, i.e. Π⊥ = d⊥E⊥.
The probability distribution, P(Π⊥), for various densities is shown in Fig. 5.8. The peak
of this distribution is approximately 0.56 MHz/ppm2/3, where the scaling factor can be
understood from dimensional analysis.
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5.6.2 Magnetic field distribution

Our model further assumes that each NV is surrounded by magnetic impurities, which give
rise to a local magnetic environment. For Type-Ib diamond, the dominant impurities are the
electronic spins associated with P1 centers. For Type-IIa diamond, the leading contribution
comes from the nuclear spins associated with 13C (1.1% natural abundance).

In both cases, we model the effect of the magnetic impurities as a dipolar interaction
between the NV and a bath of electronic spins

(
s = 1

2

)
at density ρs:

Hdipolar =
∑
i

−J0
r3i

(
3(Ŝ · r̂i)(P̂i · r̂i)− Ŝ · P̂i

)
. (5.6)

Here {r⃗i} are the positions of the magnetic impurities, Ŝ, P̂i are the spin operators for the NV
and impurities, respectively, and J0 = (2π)52 MHz·nm3. Under the secular approximation,
this interaction further simplifies to

Hdipolar = δBz Sz , δBz =
∑
i

−J0
r3i

(3n̂z
i − 1) pi , (5.7)

where n̂z
i = ẑ · r̂i, and pi = ±1/2 are the spins of the magnetic impurities at the mean-field

level.
A few remarks are in order. First, the interaction for nuclear spins is ∼ 2600 times

weaker than J0. Without loss of generality, we can account for this difference by treating

Π" (MHz)

P(
Π "
)

Figure 5.8: Distributions for the transverse electric field component, Π⊥ = d⊥E⊥, at var-
ious charge densities. The distributions were generated by the charge sampling procedure
described in the text.
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the nuclear spins as effective electronic spins with a rescaled density. This allows us to
characterize the magnetic environment of all samples by the same parameter, ρs, regardless
of whether the spins are nuclear or electronic. Second, the 13C nuclear spins give rise to an
additional interaction via the Fermi contact term [301]. Because directly accounting for this
is difficult, we approximate its effect as an extra contribution to ρs. The resulting spectra are
in quantitative agreement with the experimental data at high magnetic field (Fig. 5.9,5.10),
validating this approximation.

Analogous to the random charges, we sample the positions of the magnetic impurities,
{r⃗i}, from a sphere whose radius matches the average spin density, ρs (Eq. 5.4). We further
sample the spin configuration of the impurities from a uniform distribution, i.e. P(pi =

1
2
) =

P(pi = −1
2
) = 1

2
. Inserting {r⃗i} and {pi} into Eq. 5.7 allows us to calculate δBz.

5.6.3 Fitting procedure and error estimation

Our fitting procedure for each ensemble sample consists of two steps. First, we fit a spectrum
taken at high magnetic field, where the effects of electric fields are highly suppressed and the
broadening is primarily due to magnetic noise (Figs. 5.9 and 5.10, left column). This allows
us to independently characterize the magnetic spin density, ρs. Second, we fit a spectrum at
zero applied field by taking into account the effects of both electric field and magnetic field
noise. For these latter fits, we use the previously determined magnetic spin density ρs, but
add additional free parameters for the charge density ρc and a natural linewidth Γ (Figs. 5.9
and 5.10, right column).

More specifically, we simulate the high-field spectra by sampling over the positions {r⃗i}
and spins {pi} of the magnetic impurities. For each configuration, we calculate the NV’s
resonance frequencies using the full Hamiltonian of the system, Eq. 5.1. Repeating this
procedure for ∼ 5000 realizations, we obtain a histogram of resonance energies, which cor-
responds to an ensemble-averaged spectrum. We generate such spectra for a range of ρs
and fit each to the high-field measurement. The free parameters for these fits are the center
frequency, vertical offset, and overall amplitude. We characterize ρs by calculating the least-
square residuals between our simulated spectra and the experimental data (Figs. 5.9 and
5.10, left column). In particular, we identify ρs that minimizes the residual as the best-fit
parameter and estimate the error on this value as the range of ρs whose residuals lie within
10% of the minimum.

The fitting procedure for the zero-field spectra follows in close analogy, except we now
average over both the charge distribution and the magnetic impurity distribution. In partic-
ular, we sample the positions of the charges and calculate the electric field at the NV center
for over ∼ 5000 realizations. For each charge realization, we then add magnetic noise by
sampling over the positions and spins of the magnetic impurities and calculating the shift in
resonance frequencies due to δB (additional ∼ 5000 realizations). Lastly, we incorporate a
natural linewidth for each resonance by convolving the distribution of resonance frequencies
with a Lorentzian profile characterized by a full-width-half-maximum Γ. This linewidth ac-
counts for broadening that is independent from the charge environment or static magnetic
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(c)

(b)

(a)

Figure 5.9: Ensemble fitting procedure applied to the treated samples: (a) Ib treated (S1),
(b) Ib treated (S2), and (c) IIa treated (S3). The main plots show the least-square residuals
as a function of ρs (left) and ρc (right) under large (∼ 25-50 G) and zero applied field,
respectively. We identify the best-fit values for ρs, ρc based on the minimum residual, and
we estimate their error from the range of paremeters whose residuals lie within 10% of the
minimum (blue shaded regions). The insets depict the best-fit spectra (blue curve), along
with the experimental data (black points).
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(c)

(a)

(b)

Figure 5.10: Fitting procedure applied to the untreated samples: (a) Ib untreated (S4), (b)
Ib untreated (S5), and (c) IIa treated (S6). See caption of Fig. 5.9 for description.
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fields. For example, it would include contributions from power broadening, fluctuating fields
in the environment (i.e. T2,echo), and strain-induced broadening.

To characterize charge environment, we fit the zero-field spectra as a function of ρc while
fixing the magnetic noise (ρs) from the results of the high-field measurements. For each
value of ρc, we optimize with respect to the natural linewidth Γ, the center frequency, overall
amplitude, and vertical offset. These results are shown in the right column of Figs. 5.9 and
5.10. As before, we estimate the error on ρc from the 10% interval of the residuals, while for
Γ we take the standard error estimated by the fitting routine.

All simulated spectra agree quantitatively with the experimental data, and the extracted
ρs, ρc and Γ are listed in Table 5.1. We note that for one of the six samples (S5), the
linewidth contribution from δBz is on the same order as Γ. Since we assume δBz is the
dominant source of noise in the high field spectra when extracting ρs, the magnetic impurity
density for this sample may not be precise.

5.7 Charge localization using single NVs

In this section, we discuss the details associated with the charge localization based on a
single NV. We consider the derivation of the imbalance and relate it to the electric field
orientation and the microwave polarization. We note that the imbalance of the resonances
is strong evidence for the presence of a nearby charge, as most other interactions would not
modify the transition amplitudes differentially with respect to linearly polarized microwave
fields.

To extract the position of the charge, we first calculate the polarization of the microwave
field in the reference frame of the NV, ϕMW (Fig. 5.8a inset). By varying ϕMW, and measuring
the imbalance one can directly extract the transverse orientation of the electric field ϕE.
Combined with the observed splitting 2Π⊥ and shifting Πz we can fully determine the local
electric field vector and localize the corresponding charge. These procedures are detailed
below.

5.7.1 Derivation of the Imbalance

In order to quantitatively extract the orientation of the electric field ϕE, we introduce the
notion of imbalance as the difference in the weights of the resonances in the observed spectra.
This imbalance I is directly related to ϕMW and the transverse orientation of the electric
field ϕE.

We begin by focusing our attention to the states with 14N nuclear spin mI = 0 (two
inner resonances). In the presence of an electric field, these states are described by the
Hamiltonian:

H = (Dgs +Πz)S
2
z +Πx(S

2
y − S2

x) + Πy(SxSy + SySx). (5.8)
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One finds that the electric field couples only the |ms = ±1⟩ states, leading to the new eigen-
states:

|+⟩ = 1√
2

(
|ms = +1⟩ − e−iϕE |ms = −1⟩

)
(5.9)

|−⟩ = 1√
2

(
eiϕE |ms = +1⟩+ |ms = −1⟩

)
(5.10)

with energy splitting 2Π⊥ = 2
√

Π2
x +Π2

y.
The magnetic resonance spectrum is obtained by driving transitions from the |ms = 0⟩

state to the |±⟩ states using a linearly polarized microwave field. The matrix elements
associated with these transitions are

M± = ⟨0|Sx cosϕMW + Sy sinϕMW |±⟩ (5.11)

=
1

2

[
e−iϕMW ∓ ei(ϕE+ϕMW)

]
(5.12)

where ϕMW is the direction of microwave polarization. This results in two resonances with
amplitudes, A± ≡ |M±|2:

A± =
1

2
∓ 1

2
cos(2ϕMW + ϕE). (5.13)

By defining the imbalance I ≡ A+−A−
A++A−

, we recover Eq. 5.2:

I = − cos(2ϕMW + ϕE). (5.14)

We note that the imbalance reverses direction for ϕMW → ϕMW + 90◦ and that, for certain
microwave angles, the amplitude of one resonance can fully vanish.

For completeness, we also derive the imbalance of the outer 14N hyperfine states, which
correspond to mI = ±1. The derivation follows the same logic as above, except the Hamil-
tonian is now

H = (Dgs +Πz)S
2
z +Πx(S

2
y − S2

x) + Πy(SxSy + SySx)± 2AzzSz. (5.15)

The eigenstates |±⟩ are split by 2
√

A2
zz +Π2

⊥. For mI = 1, one finds

|+⟩ = 1√
1 + ξ2

(
|+1⟩ − ξe−iϕE |−1⟩

)
(5.16)

|−⟩ = 1√
1 + ξ2

(
ξeiϕE |+1⟩+ |−1⟩

)
(5.17)

where

ξ =
Azz

Π⊥

√
1 +

(
Π⊥

Azz

)2

− 1

 (5.18)
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An analogous expression holds for mI = −1. In both cases, the amplitudes of the |ms = 0⟩
↔ |±⟩ resonances are

A± =
1√

1 + ξ2

(
1 + ξ2 ∓ 2ξ cos(2ϕMW + ϕE)

)
. (5.19)

This leads to an imbalance:

I =
−2ξ cos(2ϕMW + ϕE)

1 + ξ2
. (5.20)

Thus, the imbalance of the outer resonances follows the same phase dependence as the inner
resonances, but the maximum imbalance depends on the ratio Π⊥/Azz. In particular, in the
limit Π⊥ ≫ Azz, ξ ≈ 1 and a fully dark state is still possible; whereas, for Π⊥ ≪ Azz, the
maximum imbalance is reduced to Imax ≈ Π⊥/Azz.

The resulting dependence on ϕMW and ϕE does not change if we include the interaction
with a nearby 13C (within the secular approximation), since it interacts with the NV in a
similar fashion to 14N hyperfine.

5.7.2 Microwave Angle Projection

We define (X̂, Ŷ , Ẑ) as our lab frame shown in Fig. 5.11a and the NV frame (x̂, ŷ, ẑ) as
shown in Fig. 5.1a left inset. These two frames are related by the crystallographic axes of
the sample. We approximate the microwave delivery wire to be infinitely long, with an angle
ϕWire with respect to X̂, and an in-plane distance r away from the NV. We extract ϕWire and
r from an image of the sample geometry (Fig. 5.5 inset). The height h of the wire’s plane
above the NV is assumed to be 550 ± 100 µm given the thickness of the diamond 500 µm, the
wire diameter 40 µm, and an intentional air gap to avoid contact to the sample (∼ 30 µm).
The wire carries a current which generates a linearly polarized microwave field at the location
of the NV (Fig. 5.11) whose transverse projection ϕMW drives the |ms = 0⟩ ↔ |±⟩ transition.
ϕMW is fully determined by the values {ϕWire, h, r}. To estimate error in each realization of
ϕWire, we use a Monte Carlo method assuming a ±10◦ tilting of the wire out of the plane.

5.7.3 Single Charge Localization

We search through 68 single NVs and find four exhibiting a significant imbalance in the
zero-field spectrum consistent with a nearby charge, from which we analyze two in this work
(referred to as NV1 and NV2). Because these spectra can also be affected by the presence
of a nearby strongly-coupled 13C, we apply a bias Bz field, which suppresses the effect of the
electric field and identifies the source of the splitting. The zero- and high-field spectra for
these two NVs are shown in Fig. 5.12. For NV1, we find three resonances spaced ∼2.16 MHz
apart, a signal associated exclusively with 14N hyperfine. In contrast, for NV2 we observe
four resonances, indicating the additional presence of a strongly-coupled 13C. We fit the
spectrum of NV2 to extract the 13C hyperfine coupling strength ≈ 1.65(7) MHz. To confirm
the charge origin, we then measure the full imbalance curve using dark-state spectroscopy.



CHAPTER 5. ELECTRIC FIELD SENSING SINGLE LOCALIZED CHARGES 103

Sample name Synthesis
[N]

(ppm)
Electron

irradiation dose
Energy
(MeV)

Anneal temperature
(◦C)

Spectrum

Ib treated (S1) HPHT ≲200 2×1018 cm−2 2 800 Fig. 5.9a, Fig. 5.1a
Ib treated (S2) HPHT ≲200 1×1017 cm−2 14 400; 800; 1200 Fig 5.9b
IIa treated (S3) CVD ≲ 1 1×1017 cm−2 2 700; 875 Fig. 5.9c, Fig. 5.2a
Ib untreated (S4) HPHT ≲200 n/a n/a n/a Fig. 5.10a
Ib untreated (S5) HPHT ≲200 n/a n/a n/a Fig. 5.10b, Fig. 5.2b
IIa untreated (S6) CVD ≲1 n/a n/a n/a Fig. 5.10c

Table 5.2: Details of all samples in this Chapter. All samples are sourced from Element Six.
[N] is specified by the manufacturer.
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Figure 5.11: a) Top view of lab frame, X̂, Ŷ , and Ẑ axes are defined as shown. Wire is
displayed at an angle ϕWire relative to X, and r is the distance between the wire and the
NV. b) Side view of lab frame. With ϕWire = 0, when the oscillating current I⃗ flows in the

direction shown, we calculate the direction of the magnetic field vector B⃗ at a height h below
the wire as shown.
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(a)

(b)

Figure 5.12: Spectra taken with and without a magnetic field applied along the NV z-
axis. a) Left: zero-field spectrum for NV1 with microscopic model fit; Right: spectrum
with an applied magnetic field and a fit to 3 Lorentzians. b) Left: zero-field spectrum for
NV2 with microscopic model fit; Right: spectrum with an applied magnetic field. The fit
function is two sets of three Lorentzians. The Lorentzians in each set are separated by the
14N hyperfine splitting. The sets are split from each other by a fit parameter for the 13C
hyperfine interaction.

For NV1, we can clearly resolve the four resonances. The information about the imbalance
is encoded into the amplitude of the inner two resonances. To estimate these amplitudes
we measure only six spectral data points for each ϕMW (Fig. 5.13): two data points closely
spaced at the location of each of the two inner resonances and two data points far from
the resonances (measurement of the baseline contrast) . The imbalance extracted with this
method is shown in Fig. 5.4d, from which we extract ϕE = 124(5)◦.

For NV2, since we cannot clearly resolve the four resonances due to the presence of the
nearby 13C, we estimate imbalance by integrating the area on either side of the fit center
frequency (Fig. 5.14 a). The imbalance curve is shown in Fig. 5.14b, from which we extract
ϕE = 236(15)◦.

We note that the amplitudes of these curves are much smaller than unity. This discrep-
ancy from our simple theoretical model can also be explained by a few possibilities. First,
our methods do not directly probe the weight of the transitions. Second, due to the intrinsic
linewidth and power broadening, the inner and outer resonances overlap, which precludes



CHAPTER 5. ELECTRIC FIELD SENSING SINGLE LOCALIZED CHARGES 105

Figure 5.13: Position of the six frequencies (red) considered when computing the imbalance.
Instead of measuring full-spectra, we take data points closely spaced at the location of each
of the two inner resonances and two data points far from the resonances, so as to measure
the baseline signal.

Figure 5.14: a) Two spectra from NV2 with fit from the microscopic model at different
values of ϕMW. The dashed vertical line indicates the fit center frequency (2.8706 GHz). We
estimate the imbalance by compare the integral on either side of the center frequency. b)
Resultant imbalance sinusoid, from where we extract ϕE = 236(15)◦.
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isolating any single transition. Third, a dynamic charge bath may generate a background
spectrum that is not included in our model.

In order to localize the charge, we also need to extract the charge-induced splitting Π⊥
and shifting Πz. In direct analogy to the treatment of ensembles, we fit the full zero-field
single NV spectra using our microscopic model to extract these parameters as follows:

1. The spectra depend on five physical parameters: the three components of the electric
field E⃗, the density of magnetic defects ρs, and the natural linewidth Γ. We also include
a global amplitude scaling factor and background offset.

2. To account for the magnetic noise distribution, we follow a prescription similar to the
previous magnetic field distribution section. We begin by considering the distribution
of magnetic field for ρs which yields a probability distribution for measuring a particular
value of δBz. We then discretize over δBz and for each possible value, perform steps
3-5. Each of the resulting spectra is weighted by the probability of measuring δBz.

3. We solve the full Hamiltonian of the system (including 13C and 14N hyperfine interac-
tions where applicable) to find the positions of the resonances.

4. We generate a spectrum by weighting each resonance by its transition amplitude with
the |ms = 0⟩ state. We compute the wright by fixing the microwave direction in the x̂
axis and computing |⟨0|Sx |±⟩|2.

5. We broaden each resonance by a Lorentzian distribution with full-width-half-maximum
of Γ.

6. We use a least-squares regression method on steps 1-5 over the seven fitting parameters,
reproducing the experimental spectra.

Note, in order to determine Πz, we use the ensemble-averaged Dgs = 2870.25(5) MHz from
the adjacent region of the same diamond containing a high density of NVs as a reference
value (Figure 5.10a).

From the fits (Figure 5.4a,b) we extract the shifting and splitting due to the electric field:

NV1: Πz = (30± 50) kHz , Π⊥ = (650± 10) kHz (5.21)

NV2: Πz = (270± 70) kHz , Π⊥ = (850± 80) kHz . (5.22)

Using the susceptibilities [254], we extract the electric field vectors at the position of the
single NVs:

NV1: (Ex, Ey, Ez) = (−2.1± 0.2, 3.2± 0.2, 9± 14) MV/m (5.23)

NV2: (Ex, Ey, Ez) = (−2.8± 1.1, −4.1± 0.8, 77± 20) MV/m . (5.24)

The parameters of the electric field uniquely determine the position of the positive single
fundamental charge (Fig. 5.1b and 5.1c). The confidence intervals can be estimated using a
Monte Carlo method.
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5.8 Conclusion

While it is abundantly asserted in the literature that the zero-field spectral features of NV
ensembles owe to lattice strain, here, we demonstrate that such spectra are in fact dominated
by the effect of local electric fields. Using a microscopic charge model, we quantitatively
capture the magnetic resonance spectra of NV ensembles for defect concentrations spanning
two orders of magnitude. Moreover, we introduce a method to image the spatial location of
individual charges near a single NV center with nanoscale precision.

These results open the door to a number of intriguing future directions. First, although
we observe charge densities that are consistent with the NV density in all treated samples
(and thus consistent with a picture for charge neutrality), we find a deviation from this
understanding for untreated samples which exhibit an anomalously large charge density.
Further study is necessary to reveal the precise nature of these additional charges [215]. Sec-
ond, our results provide an improved understanding of NV ensembles at low magnetic fields;
this is of particular relevance to the sensing of electric fields, lattice strain and gyroscopic
precession, as well as to studies of magnetically sensitive quantum materials. Third, the
charge-induced suppression of δBz suggests the possibility of enhancing the NV’s resilience
to magnetic noise. Finally, understanding the local charge environment of single NV centers
could provide insights into the optical spectral diffusion observed at low temperatures [63,
166]. In the next Chapter, we apply our model of the local charge environment from this
Chapter to elucidate low temperature optical spectra and use this understanding to propose
a high sensitivity electrometry protocol.
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Chapter 6

Electric Field Sensing Proposals

6.1 Introduction

In the previous Chapter, we described the effect of the local charge environment on the
NV center 3A2 ground state. In this Chapter, we expand on this work in two directions:
firstly, we extend our understanding to the 3E excited state and show how this understand-
ing naturally leads to an electric field sensing protocol with a hundredfold enhancement in
sensitivity compared to state-of-the-art electrometers. Secondly, we theoretically propose an
NV-based electric noise sensing protocol for polar and dielectric materials which provides
unique information about their phases and collective excitations.

6.2 Electric field sensing using the 3E excited state

Working with NV ensembles, we demonstrate that a detailed understanding of the internal
electric field environment enables enhanced sensitivity in the detection of external electric
fields. We follow this logic along two complementary paths. First, using excitation tuned
near the NV’s zero-phonon line, we perform optically detected magnetic resonance (ODMR)
spectroscopy at cryogenic temperatures in order to precisely measure the NV center’s excited-
state susceptibility to electric fields. In doing so, we demonstrate that the characteristically
observed contrast inversion arises from an interplay between spin-selective optical pumping
and the NV centers’ local charge distribution. Second, motivated by this understanding,
we propose and analyze a method for optically-enhanced electric-field sensing using NV
ensembles; we estimate that our approach should enable order of magnitude improvements
in the DC electric-field sensitivity.

The precision measurement of electric fields remains an outstanding challenge at the in-
terface of fundamental and applied sciences [136, 169, 149, 79, 34]. Leading electric field
sensors are often based upon nanoelectronic systems [292, 323, 170, 327], electromechanical
resonators [65, 48], or Rydberg-atom spectroscopy [105, 102, 192]. While such techniques of-
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fer exquisite sensitivities, their versatility can be limited by intensive fabrication, calibration
or operation requirements.

More recently, quantum sensors based on solid-state spin defects have emerged as local-
ized probes [23, 88, 317, 348], offering nanoscale spatial resolution and the ability to operate
under a wide variety of external conditions [16, 324, 86, 197, 352, 148, 191, 290]. The spin
sub-levels of such defects are naturally coupled to magnetic fields [317, 148, 187], but exhibit
comparatively weak susceptibilities to electric fields [328]. To this end, a tremendous amount
of effort has focused on developing techniques to improve spin-defect-based electrometry [88,
60, 237, 180, 103, 156, 19, 177, 17, 356].

Broadly speaking, these efforts can be divided into two categories: (i) leveraging orbital
states (as opposed to spin states), which exhibit significantly stronger coupling to electric
fields, or (ii) utilizing high-density ensembles, which enhances the sensitivity as ∼ 1/

√
N , the

standard quantum limit [121]. Each of these approaches, however, faces its own obstacles. In
the first case, accurate measurements of the electronic susceptibilities have proven challenging
due to the deleterious effects of local charge traps observed in single defect experiments [315,
3, 30, 282, 342, 250, 243, 247, 356, 52]. In the latter case, higher densities exacerbate
inhomogeneous broadening, which can ultimately overwhelm any statistical improvement in
sensitivity.

In this work, we propose and analyze a technique, inspired by atomic saturation spec-
troscopy, designed to mitigate these challenges [176, 289, 289]. In particular, we focus on
dense ensembles of nitrogen vacancy (NV) color centers in diamond—a spin defect which can
be optically polarized and coherently manipulated via microwave fields [85, 290]. The essence
of our approach is to apply resonant optical excitation to polarize a subgroup of an inhomo-
geneously broadened ensemble, and to probe the ground-state properties of this subgroup
using optically detected magnetic resonance (ODMR). In doing so, we observe an unusual
spectral feature — inverted-contrast peaks [14, 13] — which are significantly narrower than
the magnetic spectra obtained via conventional, off-resonant ODMR (Fig. 6.1); crucially,
this feature reveals an underlying correlation between the excited- and ground-state energy
levels, which arises from the presence of internal electric fields within the diamond lattice
[241, 42, 184].

Investigating these correlations yields three main results. First, we develop a microscopic
model for the charge-induced, electric field environment that quantitatively reproduces all
features of the resonant ODMR spectra [Fig. 6.1(a)]. Second, we demonstrate the first zero-
field, ensemble-based method to determine the NV’s excited-state susceptibilities, yielding
the transverse and longitudinal susceptibilities as χe

⊥ = 1.4 ± 0.1 MHz/(V/cm) and χe
∥ =

0.7 ± 0.1 MHz/(V/cm), respectively. Third, based on our microscopic insights, we propose
and analyze an electrometry protocol that combines resonant optical excitation [13] with
the excited-state’s strong electric-field susceptibility to enable a significant improvement in
expected sensitivity. In particular, at low temperatures (≲ 45K) we estimate a DC sensitivity
of η ≈ 1.3±0.3 mV/cm/

√
Hz, representing a two order of magnitude improvement compared
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Figure 6.1: (a) Resonant ODMR at varying temperatures with drive detuning ∆ν ≈ 156 GHz
below the ZPL. For T ≲ 45 K, where the optical transition linewidth is smaller than ∆ZFS [114],
we observe the emergence of sharp positive-contrast peaks [14]. Our numerical charge-based model
(gray lines) quantitatively reproduces the experimental spectra. (Inset) The lineshape of the off-
resonant ODMR as a function of δ, the microwave detuning from ∆ZFS, at room temperature
(dark green) and 5 K (light green) exhibits no temperature dependence. Resonant and off-resonant
ODMR were performed at 0 magnetic field. Error bars are smaller than the marker size. (b) NV
level structure in the presence of internal electric fields. The wavelength of the ZPL transition
is approximately 637.2 nm, and resonant (off-resonant) ODMR is performed with an excitation

wavelength of 636 − 639 nm (532 nm). The perpendicular field, E⊥ =
√

E2
x + E2

y , splits the 3E

manifold, while the parallel field, E∥ = Ez, shifts it (shaded blue region); the 3E fine structure
(not shown) is much smaller than these effects. Only perpendicular fields, which split |ms = ±1⟩
by χe

⊥E⊥, strongly affect the ground state [328]. Internal electric fields determine whether a given
NV is: (i) resonantly driven (favored at small E), resulting in positive-contrast peaks, or (ii) off-
resonantly driven (favored at large E), resulting in a negative contrast ODMR lineshape.

to the best known NV methods [60].1

6.2.1 Inverted ODMR contrast

6.2.1.1 Overview

The NV center hosts an electronic spin-triplet ground state, where, in the absence of pertur-
bations, the |ms = ±1⟩ sublevels are degenerate and sit ∆ZFS = 2.87 GHz above the |ms = 0⟩
state [Fig. 6.1(b)]. In high-density NV ensembles, this degeneracy is lifted most strongly by
the local charge environment which directly couples the |ms = ±1⟩ sublevels; this leads to

1We would also like to point out that our protocol’s DC sensitivity compares favorably to the best
reported NV-ensemble based AC sensing method [237]. In particular, assuming equal illumination volumes,
our DC sensitivity is one order of magnitude better than the AC sensitivity reported in [237] (e.g. the
adjusted AC sensitivity of [237] for an illumination volume of ∼ 0.1mm3 would be 10mV/cm/

√
Hz).
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typical ground-state ODMR spectra which exhibit a pair of heavy-tailed resonances centered
around ∆ZFS [inset, Fig. 6.1(a)] [241].2

Such ODMR spectra are usually obtained using continuous-wave off-resonant optical
excitation, in which the NV center is initialized and read out with laser frequency detuned
far above the zero-phonon line (ZPL), νZPL [Fig. 6.1(b)]. During such off-resonant excitation,
the |ms = ±1⟩ states fluoresce less brightly than the |ms = 0⟩ state. Moreover, in the absence
of microwave excitation, the NV population accumulates in the |ms = 0⟩ state, owing to the
spin-selective branching ratio of the singlet-decay channel. Applying resonant microwave
excitation thus drives the population from the (brighter) |ms = 0⟩ state to the (dimmer)
|ms = ±1⟩ states. This leads to the typically observed negative-contrast ODMR feature
[inset, Fig. 6.1(a)]. We note that for off-resonant driving, identical spectra are observed at
both room temperature and cryogenic conditions [inset, Fig. 6.1(a)].

In contrast, continuous-wave ODMR spectra taken with an optical drive near resonance
with the ZPL exhibit a marked temperature dependence characterized by two principal
features [Fig. 6.1(a)]. Most prominently, for temperatures ≲ 45 K, the resonances invert,
becoming a pair of narrow, positive-contrast peaks [14]. The entire spectrum, however, does
not invert: Rather, these sharp peaks sit inside a broad envelope of negative contrast which
is relatively temperature independent.

To understand the coexistence of these features, one must consider the interplay between
resonant optical pumping and the local charge environment [14, 241]. Under resonant optical
excitation, only one of the ground-state sublevels is driven to the excited state [Fig. 6.1(b)],
while the other sublevels are optically dark and hence accumulate population. Microwave
excitation drives population back into the resonant sublevel, leading to an increase in floures-
cence — i.e. a positive-contrast ODMR feature [Fig. 6.2(a)]. This resonant pumping mech-
anism is highly dependent on temperature: it can only occur if the thermally-broadened
optical transition linewidth is smaller than ∆ZFS, a situation that arises for T ≲ 45 K [114].

The above picture is complicated by the presence of internal electric fields, which perturb
the NV’s excited-state energy levels, leading to a distribution of optical resonance conditions
within the NV ensemble. In particular, perpendicular electric fields (relative to the NV axis)
split both the excited-state manifold and the ground-state |ms = ±1⟩ sublevels [Fig. 6.1(b)].3
Crucially, this correlates the optical resonance condition and the ground-state splitting.
Indeed, for relatively small optical detunings (Fig. 6.1), the resonance condition is generally
satisfied by NVs subject to weak local electric fields; hence, the positive-contrast feature

2Lattice strain effects have also been shown to lead to a split resonance in single NV centers [184].
However, typical strain fields result in both a shifting and splitting of the resonance. In ensembles, this
naturally leads to a single broad peak instead of the observed split resonance [241]. In the case of electric
fields, due to the large anisotropy between the transverse and longitudinal susceptibilities, local charges
generically split the |ms = ±1⟩ sub-levels without significant shifting.

3We define a resonant configuration, at a given detuning, as a combination of transverse and longitudinal
electric fields which cause the NV’s ground to excited state transition to be resonantly driven by the optical
excitation. Note that the resonance condition does not depend on the direction of the transverse component
of the field in the plane perpendicular to the NV axis.
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is relatively sharp and narrowly split. Meanwhile, the off-resonant pumping mechanism is
more likely for NVs subject to large electric fields, resulting in a broad, negative-contrast
background [Fig. 6.1(a)]. It is the superposition of these two features that gives rise to the
unusual lineshapes observed in Fig. 6.1(a).

6.2.1.2 Microscopic model

Let us now turn our heuristic understanding into a quantitative microscopic model which
takes into account: (i) the electric field distribution, (ii) the excited state resonance condi-
tion, and (iii) the ODMR lineshape for individual NV centers under resonant and off-resonant
conditions.

To begin, we consider the internal electric field distribution P (E⃗) arising from randomly
placed elementary charges at an overall density ρ. Physically, we expect these charges to
consist primarily of the NV centers themselves (which are electron acceptors) and their
corresponding donors — hence, ρ ≈ 2ρNV, where ρNV is the NV defect density [241]. As the

angular distribution of E⃗ is fully symmetric, it suffices to consider the distribution for the
electric field strength, P (E). In Section 6.2.6, we demonstrate via Monte Carlo simulations
that this distribution may be approximated by the analytic expression,

PE(Ẽ) dẼ =
4π

Ẽ5/2
exp

{
− 4π

3Ẽ3/2

}
dẼ. (6.1)

Here, Ẽ = E/Eref is a dimensionless electric field, where Eref = (2ρ)2/3/(4πϵ0ϵr) is approx-
imately the electric field strength of the nearest charge, ϵ0 is the vacuum permittivity, and
ϵr is the relative permittivity of diamond, which we take to be 5.7 [39].

Second, we consider the optical resonance condition given by the energy levels of the
3E excited state. In particular, we assume that electric fields, which couple directly to the
orbital degree of freedom, dominate over hyperfine effects, including spin-orbit coupling and
spin-spin interactions (see Section 6.2.10) [224]. It is thus sufficient to model the excited
state as two branches (upper and lower) of states, whose energies relative to νZPL are given
by [224, 82]

∆νU,L(E⃗) = χe
∥E∥ ∓ χe

⊥E⊥ (6.2)

Note that in our notation positive detuning is below the ZPL. The resonance condition for
a given NV center optically excited with a laser detuning ∆ν is then given by the function,

DR(E⃗,∆ν) = [Θ(γe/2− |δU|/2) + Θ(γe/2− |δL|/2)] (6.3)

δU,L = ∆ν −∆νU,L(E⃗) , (6.4)

where γe is the single-NV linewidth of the optical transition and Θ is the Heaviside step
function. In particular, DR(E⃗,∆ν) is 1 on resonance and 0 otherwise.

Finally, we model the ground-state ODMR of each single NV using a primitive lineshape.
This lineshape, denoted Λ(ω;E⊥), is parameterized by the perpendicular electric field E⊥,
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which determines the splitting between the |ms = ±1⟩ sublevels. It also incorporates two
forms of broadening: (i) magnetic broadening arising from nearby spins (e.g. nitrogen defects
and 13C nuclear spins), and (ii) non-magnetic broadening, which includes microwave power
broadening and strain. The explicit form of Λ(ω;E⊥) is provided in Section 6.2.6.

Putting all this together, we now determine the ensemble resonant ODMR. This con-
sists of two separate contributions. The first is due to resonantly driven NVs and is given
by integrating over primitive lineshapes whose associated electric field matches resonance
condition:

SR(ω; ∆ν) =

∫
dE P (E)

∫
sin(θ)dθΛ(ω;E⊥)DR(E⃗,∆ν) , (6.5)

where E⃗ = (E⊥, E∥) = (E sin θ, E cos θ). An analogous expression (see Section 6.2.6) de-
scribes the contribution due to off-resonantly driven NV centers. Adding these two cases
together with a relative contrast factor, ϵC , yields the full spectrum:

Stot(ω; ∆ν) = ϵCSR(ω; ∆ν)− SOR(ω; ∆ν). (6.6)

The sign of ϵC determines whether the resonantly driven NV centers exhibit positive or
negative contrast, while its magnitude depends on the details of the resonant optical pumping
mechanism.

Using the above model, we perform numerical simulations of both resonant and off-
resonant ODMR spectra for a range of temperatures. While our simulations depend on
several input parameters, the most physically relevant of these are constrained by indepen-
dent analysis. In particular, we determine the charge density ρ ≈ 15 ± 2 ppm by fitting
the off-resonant ODMR spectra to our charge-based model [inset, Fig. 6.1(a)] [241]; this
suggests an NV density of ρNV ≈ ρ/2 ≈ 8 ppm, which is consistent with prior density esti-
mates for this sample [2]. In addition, as we discuss at length in the following section, we
determine the excited state electric-field susceptibilities from independent measurements of
resonant ODMR as function of optical detuning. The remaining temperature-dependent fit
parameters, related to linewidth broadening and relative ODMR contrast, are provided in
Section 6.2.9.

The resulting lineshapes shown in Fig. 6.1(a) are in excellent agreement with the experi-
mental data across all temperatures. Notably, even at high temperatures where the striking
positive-contrast peak is absent, the resonant experimental spectra remain qualitatively dis-
tinct from the off-resonant spectra, yet are correctly captured by our lineshape simulations.

6.2.2 Excited State Electric-field Susceptibilities

Interestingly, the correlation between the positive-contrast peaks and the optical resonance
condition inspires a means of determining the excited-state electric-field susceptibilities from
ground-state ODMR spectroscopy. In particular, as shown in Fig. 6.2(a), we perform ODMR
measurements of the inverted-contrast feature as a function of the optical detuning. By
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Figure 6.2: (a) Resonant ODMR spectra as a function of the detuning below ZPL, ∆ν, taken
under a 20G magnetic field perpendicular to the NV axis at 8 K. The positive-contrast peaks in
the spectra are characterized by a splitting, Π⊥, and a linewidth Γg. Gray lines correspond to our
numerical model. Error bars are smaller than the marker size. (b) Π⊥ as a function of ∆ν. In the
small detuning region (light green), the highest-probability electric-field sphere (blue) intersecting
the resonant cone (red) is of radius E0 (in fact, the highest-probability electric-field sphere (i.e.
that of radius E0) will actually intersect the resonant cone twice, leading the to the expectation
of two resonant peaks). However, the width of P (E) around E0 broadens these features, resulting
a single, slightly asymmetric peak. In the large detuning region (light yellow), the radius of the
highest-probability sphere that interesects the cone depends linearly on ∆ν. The red dashed line
indicates the limit to Π⊥ imposed by the hyperfine interaction. By fitting our numerical model to
this data (gray line), we extract the excited-state electric-field susceptibilities. (upper inset) The
probability distribution P (E) exhibits a peak at E0, which is determined by the charge density.

tracking how the splitting, Π⊥, of the positive-contrast feature changes as a function of ∆ν,
we fully determine the excited-state susceptibilities, χe

∥ and χe
⊥ [Fig. 6.2(b)]. At its core,

this ability to independently extract the susceptibilities stems from the fact that Fig. 6.2(b)
exhibits two distinct regimes: at small detunings, Π⊥ exhibits a suppressed dependence on
∆ν, while at large detunings, Π⊥ exhibits a linear dependence.

Let us now explain the origin of these two regimes. The splitting, Π⊥, of the positive-
contrast ODMR feature is controlled by: (i) the optical resonance condition and (ii) the
distribution of electric fields. We focus on resonance with the lower branch, which is dominant
resonant pumping mechanism for optical detunings below the ZPL (see Section 6.2.5). This
resonance condition (equation (6.2)) can be rearranged to obtain

Ez −
∆ν

χe
∥
= −χe

⊥
χe
∥

√
E2

x + E2
y , (6.7)

which defines a “resonant cone” in electric field space with apex at Ez = ∆ν/χe
∥ [Fig. 6.2(b)].

On the other hand, the electric-field distribution is spherically symmetric and peaked at a
characteristic electric field, E0 · χg

⊥ ≈ 2.4 MHz, set by ρ [inset, Fig. 6.2(b)].
For a given detuning, this provides a geometric interpretation for determining the electric

field configurations most likely to match the resonance condition; in particular, these config-
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urations are set by the highest-probability sphere that intersects the resonant cone [yellow
circles in Fig. 6.2(b)]. At small detunings, this sphere is always at radius E0, implying that
Π⊥ ∼ E0 can only weakly depend on the detuning. At large detunings, the sphere of radius
E0 no longer intersects the cone, and instead, the highest-probability intersecting sphere is
the inscribed sphere [Fig. 6.2(b)]. The size of the inscribed sphere grows linearly with the
detuning, and thus so does Π⊥.

As a result of these two regimes, Π⊥(∆ν) in Fig. 6.2(b) has both a slope, mΠ, and an
elbow, at ∆ν = ∆ν∗. From this information alone, we can analytically estimate χe

∥ and χe
⊥.

In particular, setting α = tan−1(χe
⊥/χ

e
∥) be the exterior angle of the resonant cone, we obtain

sin(α) = mΠ ·∆ν∗/(E0χ
g
⊥) (6.8)

χe
∥

χg
⊥
= cos(α)∆ν∗/(E0χ

g
⊥). (6.9)

We estimate ∆ν∗ = 200 GHz and mΠ = 10−5 from Fig. 6.2(b) and E0χ
g
⊥ = 2.4 MHz

from the off-resonant spectra [Fig. 6.1(b), inset]. This yields χe
⊥ ≈ 1.2 MHz/(V/cm) and

χe
∥ ≈ 0.8 MHz/(V/cm).
To refine these estimates and corroborate our geometric interpretation, we simulate the

full resonant ODMR lineshape as a function of optical detuning and fit the simulated Π⊥ to
the experimental data. Unlike the analytic estimates above, this model takes into account
all resonant electric-field configurations. To perform the fits, we fix all parameters of our
microscopic model except for the susceptibilities (see Section 6.2.7 for details). The best-fit
susceptibilties are given by χe

⊥ = 1.4 ± 0.1 MHz/(V/cm) and χe
∥ = 0.7 ± 0.1 MHz/(V/cm)

[gray line in Fig. 6.2(b)], which agree within error bars with the analytic estimates.
These results represent a refinement over previous measurements of the excited state

susceptibilities via single NV Starks shifts, which are strongly distorted by photo-ionized
charge traps [315, 3, 30]. In contrast, ensemble measurements appear to be insensitive to the
effects of charge traps [328, 60, 237]; indeed, assuming their positions are random, charge
traps would contribute to the effective charge density but would not systematically bias the
ensemble Stark shift.4

Beyond allowing us to extract the susceptibilities, our numerical model fully reproduces
the detuning-dependent experimental data [Fig. 6.2(a)]. In particular, the model quan-
titatively recovers two characteristic features of these spectra: a decrease in the overall
fluorescence and an increase in the linewidth Γg, for increasing ∆ν. Physically, fluorescence
declines with ∆ν because the larger electric fields required for resonance are less likely. The
dependence of Γg on ∆ν is more subtle and is discussed in Section 6.2.8.

4We note, however, that photo-ionization effects could cause the charge density to depend on excitation
wavelength, although we do not observe this in our measurements [3, 216].
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Figure 6.3: (a) Comparison of sensitivities for various NV-based DC electric field sensing meth-
ods. Teal region: estimated sensitivity using established NV ensemble electrometry techniques at
an illumination volume of 0.1 mm3. The light-blue triangle marks the sensitivity achieved in [60];
the light-blue square marks the optimal sensitivity for this method based on our scaling arguments.
Additional demonstrations of NV electrometry include [237, 295, 147, 294, 203]. Orange (yellow)
region: estimated sensitivity for our optically-enhanced protocol assuming an excited-state broad-
ening of 10 GHz (100 GHz), an illumination volume of 0.1 mm3 (0.015 mm3), and a temperature
of ≲ 45 K (≲ 100 K). Red star (diamond): estimated sensitivity for our sample at low tem-
perature (for the microwave-free variant of our protocol at 300 K). For our sample, we take the
paramagnetic broadening to be the experimentally measured value ∼ 1.7 MHz (see Section 6.2.10).
For all other other sensitivity estimates, we use a density-dependent model for the paramagnetic
ODMR linewidth, assuming a natural abundance of 13C [97, 28]. Dashed lines indicate asymptotic
scaling of sensitivities. (b) Measured fluorescence as a function of ∆ν (blue dots) and simulated
fluorescence (dashed lines, see Section 6.2.10 for details). An external field of strength δE results
in a change in overall fluorescence. (c) Measured peak shift of the resonant ODMR spectra (pink,
purple dots) and simulated peak shift (dashed lines) for an external field of strength δE.
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6.2.3 Optically Enhanced Electrometry

Our understanding of the interplay between internal electric fields and resonant excitation
suggests a protocol for DC electric field sensing using NV ensembles. The protocol is premised
on the fact that an external electric field parallel to the NV axis induces an overall shift of the
excited-state levels. In effect, this is equivalent to changing the optical detuning, which we
have already observed has two primary consequences: (i) it alters the splitting of the inverted-
contrast peaks [Fig. 6.3(c)], and (ii) it changes the density of resonant configurations and
therefore the overall fluorescence [Fig. 6.3(b)] 5.

To leverage these effects for electrometry, we propose the following protocol. First, apply
a bias electric field parallel to one of the NV orientations to spectrally isolate its excited
state.6 Second, perform resonant ODMR with fixed laser detuning below the peak of the
ZPL such that positive-contrast peaks are clearly observed. Because overall fluorescence
decreases with detuning, the optimal choice is the smallest detuning such that the positive
contrast peaks disperse linearly with an applied field [see Section 6.2.10, Fig 6.9(a)]. Finally,
monitor the fluorescence at a fixed microwave drive frequency that maximizes the slope of
the inner edge of one of the resonant ODMR peaks. Unless otherwise stated, we assume
operating temperatures of ≲ 45 K throughout our discussion, as required for the occurrence
of positive-contrast peaks.

Unlike typical NV electric field sensing methods, our protocol is sensitive to fields par-
allel to the NV axis and insensitive to perpendicular fields. Intuitively, the insensitivity to
perpendicular fields owes to the random orientation of internal electric fields. To illustrate
this, consider the level shift induced by a small perpendicular field δE⊥ oriented in the x̂
direction and assume internal perpendicular fields are randomly oriented in the xy plane
with strength E0. The ensemble-average level shift, δν, of the lower branch is then given by

δν/χe
⊥ =

1

2π

∫
dθ
√

E2
0 + δE2

⊥ + 2δE⊥E0 cos θ − E0 (6.10)

∼ O(δE2
⊥/E0), (6.11)

which vanishes at leading order in δE⊥.
We now evaluate the sensitivity of our protocol to parallel fields. We first estimate the

sensitivity owing to the peak shift alone [317]:

ηΠ = PΠ
Γg

χeffC0Cr

· 1√
R
, (6.12)

where Γg is the linewidth of the positive-contrast peak, PΠ ≈ 0.77 is a numerical factor
associated with the lorentzian lineshape, C0 ≈ 0.21 is the inherent ODMR contrast, R is
the total photon count rate, and Cr ≈ 0.55 is the ratio of resonant fluorescence to total

5Interestingly, the first of these effects has also been explored in the context of a complementary MW-free
magnetometry protocol [13]

6In Section 6.2.10, we show that the necessary fields are similar in scale to those required in [60].
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fluorescence. Note that χeff ≈ 0.41χg
⊥ is an effective susceptibility (right inset, Fig. 6.3)

related to the slope of Π⊥ with respect to ∆ν [Fig. 6.2(b)]. Similarly, we estimate the
sensitivity due to overall fluorescence variation:

ηF = PF
Γe

χe
∥Cr

· 1√
R
, (6.13)

where Γe is the linewidth of the optical transition and PF ≈ 0.39 is a numerical lineshape
factor determined from experimental data (see Section 6.2.10). The change in fluorescence
due to both these mechanisms may be combined, leading to an overall sensitivity: 1/η =
1/ηΠ + 1/ηF (see Section 6.2.10).

For our current sample, one finds a sensitivity, η = 18 ± 4 mV/cm/
√
Hz, assuming an

illumination volume of 0.1 mm3 [60]. This represents a 5× improvement over established NV
electrometry techniques (Fig. 6.3). The enhancement in sensitivity derives primarily from
three factors: (i) a larger photon count rate due to resonant scattering, (ii) an improvement
in contrast, and (iii) the ability to constructively combine the signal from peak-shifting and
fluorescence variation.

The sensitivity of our protocol can be further improved by optimizing the NV density. As
in our numerical model, let us assume that the total charge density is twice the NV density.
At low densities, ηΠ and ηF are limited by the intrinsic broadening of resonant ODMR
and the optical transition, respectively. By increasing density, both sensitivities improve
according to the standard quantum limit, η ∝ 1/

√
ρNV — the usual motivation for performing

ensemble sensing (Fig. 6.3). However, at sufficiently high densities, the broadening due
to internal electric fields becomes larger than the intrinsic broadening and the sensitivity
degrades (Fig. 6.3);7 intuitively, this occurs because the NV ensemble is primarily sensing
electric fields within the diamond lattice rather than the external signal. In particular,
we show in Section 6.2.10 that the sensitivity degrades upon increasing density as η ∼
ρ
5/6
NV (Fig. 6.3). Conversely, the sensitivity improves rapidly upon decreasing density until

one reaches the crossover density between the intrinsically-broadened and charge-broadened
regimes.

Interestingly, this crossover density is naturally different for ηΠ and ηF. In particular,
the non-charge-induced broadening of the ground-state ODMR linewidth is often limited
to ∼ 200 kHz by the 13C nuclear spin bath (although isotopically purified samples can
exhibit narrower linewidths, changing the crossover density; this is discussed in more detail
in Section 6.2.10) [266, 24, 97]. This implies that ηΠ is optimal at NV densities of ∼ 30 ppb.
On the other hand, these same magnetic fields only weakly affect the excited state. Rather,
the non-charge-induced broadening of the excited-state, whose origin is less well understood,
has been empirically observed to be ∼ 10 GHz [31, 4].8 This yields an optimal NV density

7Other perturbations to the NV level structure, such as strain and magnetic fields, can exacerbate
ensemble broadening. For this discussion, we restrict attention to the ideal limit where there is minimal
charge (ρc = 2ρNV) and there are no other significant density dependent sources of inhomogenous broadening.

8We emphasize that here we are referring to ensemble broadening; single NVs can exhibit nearly lifetime-
limited excited state linewidths [332, 315, 71, 63]
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for ηF of ∼ 7 ppb.
Putting everything together, we obtain an optimal total sensitivity of η = 1.3±0.3 mV/cm/

√
Hz

at an NV density ∼ 10 ppb (Fig. 6.3, Table 6.2). This represents a two order of magnitude
enhancement compared state-of-the-art NV methods (though these do not require cryogenic
temperatures [60]).

A few remarks are in order. First, while our sensitivity estimates assume an optically-thin
sample, comparable sensitivities may be achieved at larger optical depths by monitoring, for
example, transmission amplitude instead of fluorescence [4]. Second, monitoring resonant
fluorescence variation alone via resonant excitation — without performing ODMR— already
provides a significant electric field sensitivity, yielding a microwave-free version of our pro-
tocol. Since this microwave-free protocol does not require one to track the positive-contrast
ODMR feature, it can also be applied at room temperature [Fig. 6.1(a)]. Assuming a ther-
mally broadened linewidth of ∼ 2 THz at 300 K yields a sensitivity of ≈ 300 mV/cm/

√
Hz

(Fig. 6.3); this is comparable to the best reported NV sensitivities at room temperature.
Relatedly, our protocol may be extended to radiofrequency electrometry through Fourier
analysis of the time-dependent fluorescence [297].

6.2.4 Experimental Setup

The experimental apparatus is illustrated in Fig. 6.4(a). A resonant (636-639 nm, 0.2 mW)
or off-resonant (532 nm, ∼ 1 mW) laser light is focused with a 0.5 numerical-aperture, 8 mm
focal length aspheric lens onto the surface of a (111)-cut diamond housed in a continuous-flow
cryostat (Janis ST-500). Fluorescence was collected using the same lens, spectrally filtered
(within 650 − 800 nm), and detected with a Si photodiode. Microwaves were delivered by
a 75 µm diameter copper wire running across the surface of the diamond. The temperature
was measured with a diode located at the base of the cryostat’s sample holder.

The diamond used in this work, labeled S2 in [2], was grown under high-pressure-high-
temperature conditions (HPHT) and initially contained ∼ 100 ppm of substitutional nitro-
gen. It was then irradiated with 3 MeV electrons at a dose of 1019 cm−2 in order to produce
a uniform distribution of vacancies, and subsequently annealed at 1050 ◦C for two hours in
order to facilitate the formation of NV centers by mobilizing the vacancies. After this treat-
ment, the sample contains ∼ 16 ppm of NV− and ∼ 50 ppm of unconverted substitutional
nitrogen or NV0 based on ZPL intensity measurements [2]. We note that this estimate of
the NV density is ∼ 2× larger than that of the charge-based model (see subsection 6.2.1.2).

6.2.5 Detuning Above ZPL

Shown in Fig. 6.5 is the dependence of the resonant ODMR lineshapes for a wide range
optical detunings. For drives below ZPL, the positive-contrast peaks are clearly visible
and are described quantitatively by our microscopic model (see section 6.2.1). In contrast,
for drives above ZPL, the positive-contrast peaks disappear with increasing detuning. We
conjecture that this disappearance is related to the fact that the resonance condition is most
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Figure 6.4: (a) Experimental setup. Both green and red lasers can be used for NV excitation.
(b) Comparison of analytic (solid line) and Monte Carlo (histogram) models of P (E). They
are in close agreement, particularly near the peak of P (E). (c) Off-resonant (left) and
resonant (right) excitation schemes. Under resonant excitation, an effective dark state (|0⟩
above) results in increased fluorescence on microwave resonance. (d) Optical transition
linewidth (Γe) as a function of temperature. Data reproduced from [114]. In the green-
shaded region, Γe > ∆ZFS and no inverted contrast is observed; in the red-shaded region
Γe < ∆ZFS and resonant excitation yields inverted contrast ODMR.

likely to be met by the upper branch of the 3E manifold at these detunings, but this branch
is itself within the phonon-sideband of the lower branch. Hence, excited states of the upper
branch will have shorter lifetimes than their lower branch counterparts, possibly rendering
the linewidth of the associated optical transitions too large for the positive-contrast feature
to emerge.

6.2.6 Additional Details of the Resonant ODMR Model

In this section, we elaborate on four aspects of our microscopic model of resonant ODMR.
First, we demonstrate that the electric field distribution arising from randomly placed charges
can be accurately modeled by the analytic expression equation (6.1). Second, we discuss the
single-NV primitive lineshape, Λ(ω;E⊥), used in our analysis. Third, we provide the explicit
expression for the off-resonant contribution to the resonant ODMR lineshape, SOR. Finally,
we extend our model to account for the background fluorescence of resonant ODMR, yielding
the prediction of Fig. 6.3(b).

Electric field distribution: At its core, our microscopic model proposes that the NV is
affected by internal electric fields arising from randomly placed point charges in the diamond
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Figure 6.5: Resonant ODMR spectra at varying optical detuning; shaded background cor-
responds to detunings above ZPL, while white background corresponds to detunings below
ZPL. The spectra were taken with a 20 G magnetic field applied in the plane of the (111)-cut
diamond (i.e. perpendicular to one NV axis). Smaller peaks, split ≳ 20 MHz from the center
frequency, correspond to microwave resonance with other NV groups. Other presentations
of these spectra restrict focus to the central group at detunings below ZPL.

lattice. To determine the electric field distribution, we numerically sampled random spatial
configurations for ∼ 100 charges at a given density ρ and computed their net electric field at
an arbitrary spatial point corresponding to the location of the NV. Empirically, we found that
these Monte Carlo results were well approximated by Eq. (6.1), especially near the peak of the
distribution, which is most relevant for our susceptibility analysis [Fig. 6.4(b)]. Incidentally,
Eq. (6.1) corresponds to the electric field distribution owing to the nearest (single) charge
at a renormalized density 2ρ; however, we consider this a mathematical coincidence. For
our purposes, it is relevant only that Eq. (6.1) provides a convenient analytic expression to
approximate the full electric field distribution generated by Monte Carlo simulations

Primitive lineshape: The single-NV ODMR lineshape Λ depends on an magnetic
broadening parameter κB, arising from local magnetic fields, and a non-magnetic broadening
parameter κ0, due to microwave power broadening and strain. The difference between the
two forms of broadening is that magnetic broadening adds in quadrature with the electric
field splitting, while non-magnetic broadening is treated as an overall convolution. We
model both forms of broadening as a Lorentzian distribution, where κ is the full-width-half-
maximum (FWHM). Finally, we take into account the effective magnetic field, µBgeBI ∈
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Figure 6.6: (a) Resonant ODMR spectrum with optical drive detuned 190 GHz below ZPL
and magnetic field applied in the plane of the (111)-cut diamond. We focus on the lineshape
of an NV sub-ensemble experiencing a large magnetic field projection along its axis. Solid
blue and orange traces are triple-Lorentzian lineshapes with widths 1.4 MHz and 2.0 MHz
respectively; these are used to constrain the magnetic broadening, κB. (inset) The full
resonant ODMR spectrum. The peaks shown in the main panel are located in highlighted
box. (b) Predicted off-resonant ODMR splitting as a function of charge density ρ and κB.
The white-dashed contour indicates the region for which the predicted splitting value is
consistent with the room-temperature spectrum [Fig. 6.1(a), inset]. This region, coupled
with the extracted range for κB, is used to constrain the acceptable values of ρ. We extract
susceptibilities for three pairs (ρ, κB), indicated by the colored x-markers, spanning this
range.
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{0,±2.16 MHz} owing to the three distinct 14N nuclear states, i.e. mI = 0,±1. Altogether,
the explicit form for Λ(ω;E⊥) is given by

Λ(ω;E⊥) =

∫
dω′ΛB(ω;E⊥)

κ0

2

π
[
(ω − ω′)2 + (κ0

2
)2
] , (6.14)

where

ΛB(ω;E⊥) =


0 |ω| ≤ χg

⊥E⊥∑
BI

κB
2

|ω|

π
√

ω2−(χg
⊥E⊥)2

((
|µBgeBI|−

√
ω2−(χg

⊥E⊥)2
)2

+(
κB
2

)2
) |ω| > χg

⊥E⊥

is the lineshape with magnetic broadening alone.
Off-resonant contribution: The expression for the off-resonant contribution to the

resonant ODMR spectra is structurally identical to the resonant case. The essential difference
lies in replacing the kernel defining the resonant condition, DR, with a new kernel that
quantifies the degree of off-resonant driving. Specifically, the off-resonant kernel, DOR,
can take three values: 0 if the optical drive is below both branches, 1 if it is between the
two branches, and 2 if it is above both branches; this is because the phonon sidebands of
each excited state branch can contribute to the off-resonant cross-section. Formalizing this
physical picture, we obtain,

SOR(ω; ∆ν) =

∫
dE P (E)×∫

sin(θ)dθΛ(ω; sin(θ)E)DOR(E⃗,∆ν), (6.15)

DOR(E⃗,∆ν) = [Θ(δU − γe/2) + Θ(δL − γe/2)] . (6.16)

Total fluorescence: The total fluorescence is determined by the fraction of resonant
and off-resonant configurations. These fractions are given by

FR(∆ν) =
1

N

∫
dE P (E)×∫

sin(θ)dθDR(E⃗,∆ν) (6.17)

FOR(∆ν) =
1

N

∫
dE P (E)×∫

sin(θ)dθDOR(E⃗,∆ν) , (6.18)

where N is the total number of configurations. The total fluorescence is a weighted sum of
these two contributions:

R(∆ν) ∝ ϵRFR(∆ν) + FOR(∆ν) , (6.19)
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where ϵR is the enhancement factor of the resonant mechanism. From single NV experiments,
we estimate ϵR ≈ 105 [276]. Up to overall rescaling, we can then calculate the predicted
fluorescence as a function of detuning; this exhibits good agreement with the background
fluorescence as shown in Fig. 6.3(b).

6.2.7 Estimating Susceptibilities

We extract the excited-state electric field susceptibilities by fitting our model to the measured
splitting of the positive-contrast peak, Π⊥, as a function optical detuning, ∆ν. Here, we
provide additional details on this procedure, including error estimation and the determination
of model parameters, i.e. the charge density and broadening parameters.

To begin, we determine Π⊥ as a function of detuning from the experimentally measured
ODMR spectra [Fig. 6.2(a)]. In particular, we identify the frequency of the local maximum,
ω±, associated with each positive-contrast peak and compute Π⊥ = 1

2
(ω+ − ω−). The un-

certainty on these estimates arises from shot noise in the resonant ODMR spectra, which
causes the frequency of maximum florescence to vary between successive measurements. To
determine this uncertainty, we perform a Monte Carlo simulation of Lorentzian lineshapes
with Gaussian noise, whose strength is determined from the experimental data, and sample
the frequency of local maximum; this yields the error bars shown in Fig. 6.2(b) and 6.7(a).

We next determine the three parameters required in our resonant ODMR model (see
section 6.2.1.2) other than the susceptibilities through the following independent calibration
steps:

1. Magnetic broadening, κB: We measure the resonant ODMR spectrum of an NV sub-
ensemble with a significant magnetic field projection along its axis [Fig 6.6(a)]. Since
this magnetic field suppresses electric field noise, the dominant source of remain-
ing noise is due to inhomogeneous magnetic fields. Fitting this spectrum to three
Lorentzians yields an magnetic linewidth κB = 1.7± 0.3 MHz [Fig. 6.6(a)].

2. Charge density, ρ: We measure a room-temperature, off-resonant ODMR spectrum
without a bias magnetic field. The characteristic splitting observed in this spectrum
is fit to our model of randomly placed charges, leading to a charge-density estimate of
ρ = 15± 2 ppm.

3. Non-magnetic broadening, κ0: We perform a Lorentzian fit to the positive-contrast
features of an ODMR spectrum measured with optical excitation near the zero-phonon-
line (∆ν ≲ 1 GHz). This spectrum is chosen because it has minimal broadening due to
electric fields. We subtract κB from the extracted linewidth and assume the remaining
broadening arises from non-magnetic sources (e.g. microwave power broadening); this
yields κ0 ≈ 1 MHz. We note that this parameter has only a minor effect on the
susceptibility estimates.

Finally, we extract the susceptibility parameters by fitting our model to the empirical
values for Π⊥ as a function of ∆ν. In particular, we calculate the least-square error of the
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data compared to the predicted splittings from our resonant ODMR model, with χe
⊥ and χe

∥
as the only free parameters [Fig. 6.7(a)]9. We find the χ2-error is minimized at {χe

⊥, χ
e
∥} =

{1.43, 0.68} MHz/(V/cm) with a reduced-χ2 value of χ2
ν = 0.87 (with 15 observations and

2 fit parameters). By linearizing our model around the fitted values, we determine the 2σ
confidence region of the susceptibility estimates [Fig. 6.7(b)] and estimate uncertainties of
∼ 5% for χe

⊥, and ∼ 15% for χe
∥. We also estimate systematic errors by repeating the analysis

with the values ρ and κB indicated in Fig 6.6(b). This is shown in Fig. 6.7(b) and leads to
a systematic error of ∼ 5% for χe

⊥, and ∼ 15% for χe
∥. Summing in quadrature, we have a

total error estimate of ∼ 7% for χe
⊥ and ∼ 21% for χe

∥.
A few additional remarks are in order. First, we note that our procedure, by focusing

on the splitting of the ODMR spectra, depends primarily on the magnitude of the most-
probable electric field (i.e. E0) and not on the details of the full distribution. Second, in
principle ρ may depend on the temperature, optical excitation frequency, and excitation
power, which would invalidate our assumption that ρ can be determined from off-resonant
room-temperature ODMR [30, 3, 216]. However, even if we relax this assumption, the optical
transition linewidth provides an additional, independent constraint on the charge-density
and susceptibilities. By demanding that (ρ, χe

∥, χ
e
⊥) simultaneously recover Π⊥(∆ν) and the

excited state linewidth, we find ρ = 15+7
−3, where the super- (sub-) script indicates the upper

(lower) bound. The systematic errors on the extracted susceptibilities concordantly increase
to ∼ 10% and ∼ 30% for χm

⊥ and χm
∥ respectively. Therefore, the essentials of our analysis

and conclusions do not depend on an assumption of consistent ρ (although our observations
support this conclusion for ensemble measurements).

6.2.8 Resonant ODMR Linewidth

The positive-contrast features shown in Fig. 6.2(a) exhibit not only a splitting Π⊥ which
depends on the optical detuning, but also a linewidth Γg which systematically increases with
detuning (Fig. 6.8). Qualitatively, this effect can be understood as arising from the tail of
the electric field distribution: If the electric field distribution decays very slowly, Γg will be
large since many nearly equal probability electric-field spheres will intersect the resonant
cone at different values of E⊥.

While our microscopic model accounts for this general trend, it does not accurately
predict the precise form of Γg vs. ∆ν (Fig. 6.8). Interestingly, this discrepancy suggests
that our microscopic model is missing subtle aspects of the electric field distribution at large
strengths / short distances. More formally, the trend that Γg increases with ∆ν (Fig. 6.8)

9In the vicinity of the positive-contrast peaks, the off-resonant configurations only contribute a flat
background, and can hence be neglected in our fitting procedure. This eliminates ϵC and off-resonant
linewidths as free parameters and thus simplifies the model we use to extract the susceptibilities. To check
this approximation, we also extract the susceptibilities using the ϵC and off-resonant linewidths extracted
from the 5 K spectrum (Table 6.1) and find that they are within statistical error of those determined from
our simpler estimation procedure.
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Figure 6.7: (a) Experimental Π⊥ (dark blue) and model (gray) as functions of ∆ν. The fit
yields χ2

ν = 0.87 (b) ∆χ2 as a function of χe
∥ and χe

⊥. The red-dashed contour denotes the

2σ confidence region. (c) χe
⊥ and χe

∥ as functions of ρ. This quantifies the main source of

systematic error in our analysis. Errors are relative to {χ0
⊥, χ

0
∥} = {1.43, 0.68} MHz/(V/cm)

indicates the relative decay rate of the electric-field distribution decreases at larger values
of E. This is characteristic of a polynomially decaying tail: if P (E) ∼ 1/(E/E0)

q then
d(log(P (E)))

dE
= −q/E, so the tail decays more slowly at larger E resulting in larger Γg. Indeed,

one possible direction for future research is to quantitatively extract d(log(P (E))
dE

from Γg(∆ν)
at large ∆ν. This could yield insight into the underlying short-range physics controlling the
tail of the electric field distribution, such as whether charges are more likely to be localized
in the vicinity of the NV center.

6.2.9 Temperature Dependent Spectra

Our procedure for fitting the temperature-dependent ODMR spectra, shown in Fig. 6.1(a),
relies on the same resonant ODMR model, susceptibility parameters, and charge density as
in the previous sections. In addition, we find it necessary to vary (i) the ODMR contrast
ratio and (ii) broadening parameters at each temperature. Here, we discuss the physical
origin of the temperature dependence of these parameters.

Contrast: We attribute the change in contrast to the the fact that increasing tem-
perature broadens the optical transition linewidth, which in turn reduces the density of
resonant configurations at a given optical detuning, effectively reducing ϵC . Indeed, we find
qualitatively that ϵC decreases with temperature, though we do not attempt to develop a
quantitative model for it.

Broadening: Experimentally, we observe that off-resonant dips in the ODMR spectrum
exhibit larger broadening than the positive-contrast peaks (see Fig. 6.1(a)). We conjecture
two possible causes of this additional broadening. First, there may be different degrees of
light-narrowing in the resonant and off-resonant configurations. Light-narrowing arises be-
cause resonantly driven transitions experience a greater rate of optical pumping than transi-
tions to the phonon-sideband, and hence have a different effective linewidth. In this setting, a
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Figure 6.8: Resonant ODMR linewidth Γg as a function optical detuning. Error bars reflect
the difference in the FWHM of Lorentzian fits of the left and right peaks of experimental
data. The same analysis applied to the spectra generated by our model yields the gray
curve. Although the model accounts for the general trend of increasing Γ at large detuning,
there are clear qualitative differences between the experiment and theory. Most notably,
the experiment is broader at moderate detunings (200 − 600 GHz) than the model would
suggest. This could be because the true electric field distribution decays more slowly than
the random charge model predicts. The effects of strain may also partially account for the
discrepancy.

greater rate of optical pumping actually reduces the effective linewidth [167]. Second, power
broadening itself may not be well described by a convolution with a Lorentzian; indeed
we find that this is the case even for off-resonant ODMR spectra under higher microwave
power. Intuitively, large electric fields alter the matrix elements between ground-state sub-
levels, causing the degree of power-broadening to be electric field strength dependent. To
account for this, we treat the off-resonant magnetic broadening parameter, κOR

B , as a free
parameter and find that its best-fit value is comparable to the non-magnetic broadening.
We emphasize that this is a convenient way to account for the dependence of power broad-
ening on electric field strength and does not constitute a meaningful estimate of the true
broadening due to magnetic fields.

We note that both of these issues are artifacts of working in a microwave power-broadened
regime, which is the case for the present temperature-dependent data. For extraction of
susceptibilities, ODMR measurements were performed with 100 × lower microwave power,
where these effects are suppressed.

6.2.10 Sensitivity Estimates

Here, we provide additional details for estimating the sensitivity of our resonant electric-field
sensing protocol. The estimates are calibrated based on the sample measured in this work,
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Temp. κR
0 κR

B κOR
0 κOR

B ϵC

[K] [MHz] [MHz] [MHz] [MHz] [1]

5 2.0 4.0 20.0 27.0 104

40 2.0 4.0 16.0 16.0 4 · 103

55 2.0 4.0 12.0 15.0 −1.7 · 103

100 2.0 4.0 9.0 8.0 −1.7 · 103

Table 6.1: Summary of parameters used to fit the temperature dependent ODMR spectra
[Fig. 1(a)]. The linewidth parameters for resonant configurations are roughly consistent with
the more carefully estimated parameters used for susceptibility extraction; the off-resonant
linewidth parameters, however, are significantly altered by power-broadening, as we discuss
in Section 6.2.9. In particular, κOR

B should not be interpreted as an accurate estimate of the
magnetic broadening; instead, we regard it as a phenomenological parameter that controls the
amount of broadening which “adds in quadrature” to the electric field [see equation (6.2.6)].
The value of ϵC at 5 K is roughly consistent with an estimate based on ϵR. Qualitatively, ϵC
decreases with increasing temperature because the density of resonant states decreases.

and then extrapolated to other densities using scaling arguments.
Let us begin by recalling that the sensitivity for an electric-field dependent count rate

R(δE) is given by

1

η
=

dR

d(δE)

∣∣∣∣
δE=0

1√
R(0)

, (6.20)

(6.21)

or equivalently,
1

η
=

d log(R)

d(δE)

∣∣∣∣
δE=0

·
√
R(0) . (6.22)

In our sensing protocol, the fluorescence rate is determined by two effects: (i) the shift of the
positive-contrast peaks, and (ii) the change in overall fluorescence. These effects contribute
independently to the total signal, such that R(δE) = RF(δE) · RΠ(δE), where RF and
RΠ capture the dependence of fluorescence on optical detuning and microwave frequency,
respectively. The total sensitivity is then

1

η
=

[
d log(RΠ)

d(δE)
+

d log(RF)

d(δE)

]
δE=0

·
√
R(0) , (6.23)
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which leads to the equation stated in Section 6.2.3:

1

η
=

1

ηΠ
+

1

ηF
. (6.24)

For simplicity, we define R ≡ R(0). The sensitivities can be decomposed as

ηΠ = PΠ
Γg

χeffC0Cr

· 1√
R

, (6.25)

ηF = PF
Γe

χe
∥Cr

· 1√
R

, (6.26)

where Γ (P ) is the linewidth (lineshape factor) associated with the ground and excited states,
R is the count rate, C0 is the maximum CW contrast of the resonant ODMR peaks, Cr is
the ratio of photons resulting from resonant fluorescence to total fluorescence, and {χeff, χ

e
∥}

are the effective ground- and excited-state susceptibilities, respectively.
For our estimates, we assume the ground state ODMR lineshape is Lorentzian, such

that PΠ ≈ 0.77, and we use the excited-state susceptibility determined in our work: χe
∥ =

0.7 MHz/(V/cm); moreover, we determine χeff ≈ 0.41 and PF ≈ 0.39 from our model
[Fig. 6.9(a)] and from experimental data [Fig. 6.3(b)], respectively. The remaining parame-
ters are discussed below.

6.2.10.1 Parameter calibration

Linewidths: We model the ODMR and optical transition linewidths as containing both an
intrinsic broadening and an electric-field induced broadening:

Γg,e = Γ0
g,e(ρ̄) + ΓE

g,e · ρ̄2/3 , (6.27)

where ρ̄ is a normalized NV density, ρ̄ = ρNV/ρ
0
NV. The ground state intrinsic broadening,

Γ0
g(ρ̄), is typically dominated by paramagnetic impurities and is modeled by [97]

Γ0
g = (A13C[

13C]) + AN0 [N0])−1 · 1
π
, (6.28)

where [13C], [N0] represent the concentrations of 13C and uncharged substitutional nitrogen
defects, respectively. From [97] we obtainA13C ≈ 0.1 ms−1ppm−1 andAN0 ≈ 101 ms−1ppm−1.
For impurity concentrations, we assume a natural abundance of 13C (1.1% or 11000 ppm)
and that [N0] = 0.3 · [NV−1] — i.e., a 30% conversion ratio, which is among the best typi-
cally observed [28]. Since the intrinsic excited-state broadening is less well-understood, and
certainly not limited by paramagnetic impurities, we adopt the simple density-independent
model Γ0

e ≈ 10 GHz [32, 4]. Finally, we calibrate the charge-induced linewidths against our
sample (ρ0NV ≈ 8 ppm), yielding ΓE

g ≈ 3.7 MHz and ΓE
e ≈ 106 MHz. We note that here, and

throughout our sensitivity estimates, we will assume that the charge environment consists
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primarily of other uniformly distributed NVs and charge donors, such that ρ = 2ρNV (see
subsection 6.2.1.2).

Fluorescence rate: The overall fluorescence rate contains contributions from the reso-
nant and off-resonant configurations. The former is proportional to the density of resonant
configurations, and therefore is inversely proportional to the optical transition linewidth.
Thus, the fluorescence from resonant configurations RR can be modeled as

RR = rR0, r =
Γref

Γ0
e + ΓE

e ρ̄
2/3

, (6.29)

where R0 is the fluorescence rate for a single, off-resonantly driven NV orientation, r is the
fluorescence enhancement factor for resonant configurations, and κref is a density-independent
prefactor. To determine Γref, we compare the resonant fluorescence at the optimal detuning
to the off-resonant fluorescence for detunings far above the ZPL [Fig. 6.9(b)]. This yields
r ≈ 2, corresponding to Γref ≈ 2 · 106 MHz; for an optimal sample, we estimate that r can
reach r ≈ 100 at ∼ 10 ppb.

To determine the overall count rate, we take into account the fact that our sensing pro-
tocol includes signals from one resonant NV orientation and three off-resonant orientations.
This is because the bias electric field required to lift the excited-state degeneracy pushes the
excited state of three orientations below the excited state of the target orientation, so they
are excited by the off-resonant mechanism. In particular, assuming a (111)-cut diamond,
the fluorescence rate due to off-resonant orientations is ROR = 5/3 R0

10. In combination,
the total count rate is

R = R0(r + 5/3) . (6.30)

We note that R0 depends on the specific optical setup (e.g. illumination volume, laser power,
and collection efficiency). We determine this constant for a similar setup as described in [60]
11. The final count rate for our sample and for an optimal sample are reported in Table 6.2.

Finally, for the room-temperature sensitivity estimate (Fig. 6.3), we additionally adjust
R to account for the decrease in the Debye-Waller factor with temperature. We estimate the
Debye-Waller factor decreases by 35% at 300K compared to 5K, degrading the sensitivity
by ∼ 50% [268, 175].

Contrast: We first estimate the maximum CW contrast of the positive-contrast peaks,
C0 ≈ 0.21, from the experimental data [Fig. 6.9(c)] 12. However, of the total counts, only the
resonant fraction, Cr, contributes to sensing. Therefore, the actual contrast of the resonant

10The factor of 5/3 arises because the three off-resonant groups are not perpendicular to the laser polar-
ization [29].

11In particular, we rescale their reported count rate by the ratio of our sample’s NV density to their
sample’s density and correct for a difference in laser polarization. We also divide by 8, since only one NV
crystallographic orientation will be used in the sensing protocol.

12For a (111)-cut diamond, C0 = 8/3 Cexp, where Cexp is the experimentally observed contrast. This
factor is also related to the laser polarization [29]
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DC Electrometry ρNV T ∆νop Γ P χ R C η

Method (ppm) (K) (GHz) (MHz) (Hz cm/V) (counts/s) (V/cm
√
Hz)

Single NV - G.S. [88] - ≲ 300 - 0.05 0.77 17 100 0.3 760

Single NV - E.S. [64] - ≲ 4 - 13 0.77 7.0 · 105 2500 1 0.29

EIT Ensemble [4] 0.03 ≲ 30 - 1.0 0.77 9.8 3.2 · 1014 0.022 0.20

Off-res. Ensemble [60] 1 ≲ 300 - 1.0 0.77 17 5.0 · 1014 0.02 0.10

Res. Ensemble
F ≲ 200 106 0.39 7.0 · 105 2.4 · 1015 0.54 0.021

(Our sample)
Π⊥ 8 ≲ 45 200 3.9 0.77 6.97 2.4 · 1015 0.11 0.077

Total ≲ 45 - - - - - 0.017

Res. Ensemble
F ≲ 55 2.1 · 104 0.39 7.0 · 105 6.9 · 1013 0.98 0.0014

(Low-density sample)
Π⊥ 0.01 ≲ 45 2.3 0.25 0.77 6.97 6.9 · 1013 0.21 0.016

Total ≲ 45 - - - - - 0.0013

Res. Ensemble
F ≲ 55 1.4 · 104 0.39 7.0 · 105 3.1 · 1013 0.98 0.0015

([12C] = 99.995%)
Π⊥ 0.002 ≲ 45 0.8 0.017 0.77 6.97 3.1 · 1013 0.21 0.0016

Total ≲ 45 - - - - - 8 · 10−4

Table 6.2: Summary of DC NV electrometry protocols and their associated sensitivities,
assuming an illumination volume of ∼ 0.1 mm3 (for ensemble techniques). For our protocol
(lower section), we provide both the sensitivity owing to the peak shift (ηΠ) and the sensitivity
owing to the change in overall fluorescence (ηF). All sensitivities are given by η = P Γ

Cχ
√
R
,

where P is a lineshape dependent prefactor, C is the contrast (i.e. C = C0Cr for ηΠ, and
C = Cr for ηF), χ is the relevant susceptibility, and Γ is the relevant linewidth (i.e. Γ = Γg for
ηΠ, and Γ = Γe for ηF). The 12C concentration assumed for an isotopically purified sample
is estimated from [97]. For reference [60], we report the sensitivity that would obtained
at optimal NV densities (by rescaling the linewidth and counts according to our scaling
formulae). The parameter ∆ν refers to the optimal optical detuning below the ZPL for our
electrometry protocol [Fig. 6.9(a)]
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ODMR peaks is C = C0Cr; meanwhile, for sensing via direct variation in fluorescence (ηF),
the relevant contrast is Cr. For a (111)-cut sample, we have

Cr =
r

(r + 5/3)
, (6.31)

where r is the resonant enhancement factor defined in (6.29).
Bias electric field: In addition to the sensitivity estimates provided in the manuscript,

we estimate the bias field required to spectrally isolate the crystallographic orientation used
in our sensing protocol [Fig. 6.9(d)]. Given a bias field parallel to one of the NV groups,
three other groups will actually be shifted by the electric field below the target group since
χe
⊥ ≈ 2χe

∥. Therefore, we determine this bias field by demanding the lowest-energy NV group

parallel to the bias field is at least Γe/2 above the lowest three NV groups.

6.2.10.2 Scaling with density

Here, we determine how sensitivity degrades in the high-density regime. We consider an
ideal limit for which there is minimal charge broadening, i.e. ρ ≡ ρ = 2ρNV and no density-
dependent broadening other than internal electric-fields. As discussed above, in the charge-
dominated regime the ODMR and optical transition linewidths (Γg,Γe) are proportional to

the average electric field strength, which scales as ρ
2/3
NV. In this regime, we also have r ∝ ρ−2/3

and r ≪ 5/3, implying Cr ∝ ρ−2/3 and R ∼ ρ. Thus the sensitivity scaling at high-densities
is given by

η ∝ Γ

Cr

√
R

∝ ρ2/3

ρ−2/3
√
ρ
= ρ5/6 (6.32)

as plotted in Fig. 6.3. The scaling for typical electrometry protocols may be similarly deter-
mined. In this case, all photons are scattered off-resonantly and Cr is no longer relevant in
the sensitivity expressions. Then

η ∼ ρ2/3
√
ρ

= ρ1/6 (6.33)

as shown in Fig. 6.3.

6.2.10.3 Isotopically Purified Samples

We note that for isotopically purified samples the relative contributions of ηF and ηΠ may
be comparable (see Tab. 6.2). To illustrate this, let us consider the sensitivity of NV elec-
trometry protocols assuming a 13C concentration of 50 ppm ([12C] = 99.995% purified) as
utilized in recently optimized samples [97, 28]; indeed, such isotopically purified samples
have been of tremendous recent interest for applications to precision metrology [97]. As-
suming an excited state broadening of 10 GHz, we find that ηF = 1.4 · 10−3V/cm

√
Hz and

ηΠ = 1.8 · 10−3V/cm
√
Hz at the optimal NV density ρNV ≈ 2 ppb.
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Figure 6.9: (a) Π⊥ as a function of ∆ν for various ρ. Dash-dot vertical lines indicate the
optimal operating ∆ν for our sensing proposal. In particular, we choose the smallest ∆ν
for which Π⊥ depends linearly on ∆ν. This maximizes χeff and the resonant fluorescence.
(b) Fluorescence as a function of ∆ν from experiment (brown) and theory (solid blue).
The dash-dot vertical line indicates the optimal operating ∆ν for our sample. We estimate
Γe ≈ 1 THz, ignoring asymmetry (dashed orange lines). (c) Contrast of resonant ODMR
(with a 20 G applied magnetic field perpendicular to the NV axis) as a function of ∆ν. The
red marker and dash-dot line indicates the contrast at the optimal operating detuning. Since
magnetically split groups provide additional background for the central peak, the maximum
CW ODMR contrast C0 is a factor 8/3 larger than what is observed (see Section 6.2.10.1)
[29]. (inset) Experimental resonant ODMR at the optimal operating ∆ν. (d) Electric field
bias required for our sensing procedure as a function of ρ assuming κ0

e = 10 GHz (blue) and
κ0
e = 100 GHz (orange). The blue and red diamonds mark the bias field required at optimal

NV densities.
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6.2.10.4 3E Fine Structure

Our sensitivity model assumes that electric-field induced splitting dominates the 3E fine
structure. Under this assumption, it is sufficient to consider two three-fold degenerate orbital
degrees of freedom in determining the resonance conditions. However, this assumption breaks
down when the splitting due to internal electric fields of the diamond becomes comparable to
the intrinsic hyperfine effects of the 3E manifold, whose typical magnitude is ∼ 5GHz [224].
Based on our extracted susceptibilities, we estimate this occurs for NV densities ≲ 2ppb. For
densities below this threshold, it is still possible to perform resonant sensing using individual
sublevels; in particular, one should probe a pair of sublevels (Ex,y or E1,2) which are linearly
sensitive to electric fields [224]. In this regime, the sensitivity would be determined entirely
by the change in overall fluorescence, i.e. ηF.

6.2.11 Theoretical Estimates of Susceptibilities

In this section, we discuss the physical origin of the NV’s electric field susceptibility in
both the ground and excited state, and compare the measured susceptibility parameters to
theoretical estimates (Table 6.3).

6.2.11.1 Excited state

While it is well understood that the orbital doublet nature of the excited state allows for a
linear Stark shift, the microscopic origin of this shift can in principle be explained by two
different mechanisms [224]. One mechanism, the electronic effect, is based on the polarization
of the NV’s electronic wavefunction. The second mechanism, the ionic effect, consists of the
relative displacement of the ions and is thus closely related to piezoelectricity. The two
effects are indistinguishable from a group theoretic perspective and, in general, both will
contribute to the total susceptibility. Below we estimate the susceptibilities based on the
electronic effect and find good agreement with the measured values (Table 6.3). On the other
hand, the ionic effect was previously estimated with ab initio simulations and was found to
be on the same order of magnitude [224]. Thus, a more precise calculation of the excited
susceptibilities should take into account both effects.

To estimate the electronic effect, we consider the molecular model of the defect center, in
which the NV’s single-particle orbitals are constructed from non-overlapping atomic orbitals,
{σ1, σ2, σ3, σN}, centered on the three carbon ions and the nitrogen ion, respectively [82, 224].
In particular, the single-particle orbitals are given by

ex =
1√
6
(2σ1 − σ2 − σ3) (6.34)

ey =
1√
2
(σ2 − σ3) (6.35)

a1 =
1√

3 + λ2
(σ1 + σ2 + σ3 + λσN) , (6.36)
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χ⊥ χ∥

(Hz cm/V) (Hz cm/V)

E.S. measured (this work) 1.4± 0.1× 106 0.7± 0.1× 106

E.S. electronic effect 1.6× 106 0.6 × 106

G.S. measured [328] 17± 2.5 0.35± 0.02

G.S. spin-spin effect 76 0

Table 6.3: Comparison between measured susceptibilities and theoretical estimates. Details
of the theoretical estimates are provided in this work and accompanying references.

where σ1 is the carbon orbital that lies in the xy plane, and λ ≈ 0.7 is determined from
density functional theory (DFT) calculations [117]13 These orbitals are combined to form
the 3A2 ground state

|A2⟩ =
1√
2
(|exey⟩ − |eyex⟩) (6.37)

and the two 3E excited states

|X⟩ = 1√
2
(|a1ex⟩ − |exa1⟩) (6.38)

|Y ⟩ = 1√
2
(|a1ey⟩ − |eya1⟩) . (6.39)

From first-order perturbation theory, the electric field susceptibility is determined by the
permanent dipole of the excited state. For the transverse susceptibility, it is sufficient to
calculate the dipole moment along the x-axis, which is diagonal in the {|X⟩ , |Y ⟩} basis:

d⊥ = −e ⟨X|x1 + x2 |X⟩ , (6.40)

where x1,2 are the single particle positions and e is the elementary charge. In the single-
particle basis, this reduces to

|d⊥| = e ⟨ex|x |ex⟩ (6.41)

≈ e

2
⟨σ1|x |σ1⟩ , (6.42)

13We note that there is a fourth state with the same symmetry properties as a1 (i.e. transforms according
to the totally symmetric A1 irreducible representation), but it is higher in energy than the other three and
therefore not relevant for this discussion [224].
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where we have approximated the full integral by assuming non-overlapping atomic orbitals.
For the longitudinal direction, the relevant term is the relative dipole moment between
between the ground and excited state. This is given by

d∥ = −e [⟨X| z1 + z2 |X⟩ − ⟨A2| z1 + z2 |A2⟩] (6.43)

= −e [⟨a1| z |a1⟩ − ⟨ex| z |ex⟩] (6.44)

≈ eλ2

3 + λ2
[⟨σ1| z |σ1⟩ − ⟨σN | z |σN⟩] . (6.45)

Inserting orbital expectation values from DFT calculations, we obtain |d⊥| ≈ e(0.67 rA)
and d∥ ≈ e(0.26 rA) [117, 86]. This yields susceptibility estimates of {χe

⊥, χ
e
∥} = {1.6, 0.6}

MHz/(V/cm), in good agreement with the values measured in this work (Table 6.3).

6.2.11.2 Ground state

The ground state of the NV center is an orbital singlet, leading to the naive expectation
that a linear Stark effect is disallowed. This, however, contradicts experimental observation
of {χg

⊥, χ
g
∥} = {17, 0.35} Hz/(V/cm) [328]. The conventional explanation is that the ground

state inherits a permanent dipole moment from the excited state due to spin-orbit coupling
[88, 84]. While such coupling is indeed present, its magnitude is likely insufficient to account
for the measured transverse field susceptibility. More recently, it was suggested that the
ground state transverse susceptibility arises from the interplay between electric fields and
the dipolar spin-spin interaction [84]. In particular, the effect is as follows: At first order in
perturbation theory, the ground state wavefunction is mixed with the excited state by the
presence of an electric field; this perturbation then couples to the ground-state spin degrees
of freedom via the dipolar spin-spin interaction. Below we estimate the magnitude of the
effect (which was not reported in [84]) and find good agreement with the known ground state
transverse susceptibility (Table 6.3). We also hasten to emphasize that this effect only occurs
to leading order for transverse electric fields, which naturally explains the 50-fold anisotropy
between χg

⊥ and χg
∥.

As in the case of the excited state, it is sufficient to consider the transverse susceptibility
for a field along the x-axis. At first order in perturbation theory, an electric field E⃗ = E⊥x̂
mixes the ground state |A2⟩ with the excited state |Y ⟩:

|A′
2⟩ = |A2⟩+

E⊥

ν0
d′⊥ |Y ⟩ , (6.46)

where e is the elementary charge, and ν0 ≈ 1.9 eV is the energy splitting between the ground
and excited state. d′⊥ is the dipole moment associated with the transition between the states,

d′⊥ = −e ⟨A2|x1 + x2 |X⟩ . (6.47)
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In the single-particle basis, this becomes

|d′⊥| = e ⟨ex|x |a1⟩ (6.48)

≈ 3e√
6(3 + λ2)

⟨σ1|x |σ1⟩ . (6.49)

Based on DFT results, we estimate |d′⊥| ≈ e(0.88 rA) [117, 84].
To determine the effect on the ground-state spin degrees of freedom, it is then necessary

to consider the dipolar spin-spin interaction, given by

Hss = η
3(S · r̂12)(S · r̂12)− S · S

r312
, (6.50)

where η =
µ0µ2

Bg2

8πh
, µB is the Bohr magneton, ge ≈ 2 is the NV gyromagnetic ratio, S are spin-

1 operators, and r⃗12 is the relative displacement between the two particles. In the absence
of an external perturbation, the orbital degrees of freedom are integrated with respect to
the ground-state wavefunction |A2⟩, and the only non-vanishing term is the ground-state
splitting, H0

ss = ∆ZFSS
2
z . For the perturbed wavefunction |A′

2⟩, there is an additional non-
vanishing term, corresponding to a ground-state Stark shift:

H ′
ss = ∆ZFSS

2
z +Π⊥(S

2
y − S2

x). (6.51)

The magnitude of Π⊥ is given by

Π⊥ = 2
E⊥

ν0
|d′⊥|DE (6.52)

with

DE = η ⟨A2|
x2
12 − y212
r512

|Y ⟩ (6.53)

= η ⟨a1ey|
x2
12 − y212
r512

(|exey⟩ − |eyex⟩) . (6.54)

Assuming non-overlapping orbitals, this simplifies to

DE ≈ 2η√
6(3 + λ2)

(
⟨σ1σ2|

x2
12 − y212
r512

|σ1σ2⟩+ ⟨σ2σ3|
x2
12 − y212
r512

|σ2σ3⟩
)
. (6.55)

We further approximate the two-particle integrals with the semiclassical position of each
particle individually [84, 86]:

⟨σ1σ2|
x2
12 − y212
r512

|σ1σ2⟩ ≈
(⟨x⟩1 − ⟨x⟩2)

2 − (⟨y⟩1 − ⟨y⟩2)
2

(⟨r⟩1 − ⟨r⟩2)
5 =

1

2 (⟨r⟩1 − ⟨r⟩2)
3 =

1

6
√
3 ⟨x⟩31

(6.56)

⟨σ2σ3|
x2
12 − y212
r512

|σ2σ3⟩ ≈
(⟨x⟩2 − ⟨x⟩3)

2 − (⟨y⟩2 − ⟨y⟩3)
2

(⟨r⟩2 − ⟨r⟩3)
5 =

1

(⟨r⟩1 − ⟨r⟩2)
3 =

1

3
√
3 ⟨x⟩31

,

(6.57)
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where ⟨·⟩i = ⟨σi| · |σi⟩ and in the final expressions we utilized the triangular symmetry of the
carbon orbitals. This leads to

DE ≈ µ0µ
2
Bg

2
e

8πh
√
2(3 + λ2)

1

⟨x⟩31
. (6.58)

Altogether, this predicts a susceptibility of χe
⊥ ≈ 76 Hz/(V/cm), which is within a factor of

5 of the measured value.
Crucially, the spin-spin effect also provides a group theoretic explanation for the large

anisotropy between the ground state transverse and longitudinal susceptibilities. In partic-
ular, the longitudinal dipole moment between the ground and excited states,

d′∥ = −e ⟨A2| z1 + z2 |X⟩ , (6.59)

vanishes due to symmetry, implying that only a transverse electric field can mix the ground
and excited states to leading order. We thus postulate that the relatively strong transverse
susceptibility arises from the proposed spin-spin effect, while the weak longitudinal effect
arises from entirely different physical origin, e.g. based on spin-orbit coupling or the ionic
(piezoelectric) effect.

6.2.12 Conclusion

Our work opens the door to a number of intriguing future directions. First, in combina-
tion with recent work on diamond-surface-termination [252, 70], our protocol’s enhanced
sensitivities may help to mitigate the deleterious effects of surface screening, which cur-
rently limit the NV’s ability to detect external electric fields [46, 306, 236]. Second, our
spectroscopy tools are generically applicable to characterizing the charge environment in
defect systems. In particular, non-linear Stark shifts, consistent with the presence of local
charges, have been observed in a multitude of defects, including: boron-vacancy in h-BN,
chromium in diamond, and both silicon-vacancy and divacancies in 4H-SiC [250, 126, 286,
243, 282, 342, 247, 52]. These non-linear Stark effects hinder the accurate experimental
determination of susceptibilities, making it challenging to assess the potential of such de-
fect systems for quantum metrology. Finally, our sensitivity scaling analysis suggests that
for any defect ensemble exhibiting charge-dominated, inhomogeneous broadening, one can
dramatically optimize electric-field sensitivities by carefully tuning the defect density. Such
enhanced sensitivities could enable the observation of new quantum transport phenomena
[33, 253] as well as mesoscopic quantum thermodynamics studies [242].

6.3 Electric noise sensing for polar and dielectric

materials

Having investigated the effect of electric fields on both the ground and excited state manifolds
of the NV center, we are equipped to utilize this sensitivity for sensing applications. In this
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section, we theoretically propose an electric noise sensing protocol and calculate the expected
signal from polar and dielectric materials. We show that polarization fluctuations from this
class of materials encode a wealth of information about the associated phases and collective
excitations that are difficult to glean through other methods.

6.3.1 Motivation

A qubit sensor with an electric dipole moment acquires an additional contribution to its
depolarization rate when it is placed in the vicinity of a polar or dielectric material as a
consequence of electrical noise arising from polarization fluctuations in the material. Here,
we characterize this relaxation rate as a function of experimentally tunable parameters such
as sample-probe distance, probe-frequency, and temperature, and demonstrate that it offers
a window into dielectric properties of insulating materials over a wide range of frequencies
and length scales. We discuss the experimental feasibility of our proposal and illustrate its
ability to probe a variety of phenomena, ranging from collective polar excitations to phase
transitions and disorder-dominated physics in relaxor ferroelectrics. Our proposal paves the
way for a novel table-top probe of polar and dielectric materials in a parameter regime
complementary to existing tools and techniques.

Polar and dielectric materials exhibit a plethora of interesting correlated physics [72, 186,
335, 96] and are emerging as key components in next-generation solid-state technologies [325,
153, 214, 56, 221]. As a consequence, a multitude of techniques for probing them have
been developed, ranging from different forms of microscopy and spectroscopy to electrical
transport (Fig. 6.10b) [227, 269, 133, 131, 345, 128, 258]. While these methods have led
to incredible scientific progress, several outstanding questions, such as the origin of polar
instabilities in ultra-thin ferroelectric films [221] and the structure of polar domains in relaxor
ferroelectrics [314], remain formidable challenges. In part, this is due to the difficulty of
probing the near-equilibrium polar dynamics of thin samples over a wide range of length
and time scales simultaneously [221] — which at present requires the use of high-intensity
synchrotron light sources. As such, developing a table-top probe with the requisite frequency
and spatial resolution would naturally complement existing experimental probes of polar and
dielectric materials.

The advent of nanoscale quantum sensors, typically based upon atomic-scale impurities
embedded in insulating materials, provides an avenue for developing such a probe. Such
sensors are often excellent AC electrometers and magnetometers; they can probe a wide range
of frequencies and can locally image both static configurations and dynamic fluctuations
of electromagnetic fields with nanoscale resolution [75, 129, 91, 148, 41, 241]. Indeed, a
number of theoretical proposals and pioneering experiments have utilized their magnetic
field sensing capabilities to probe spin dynamics and electrical current fluctuations in solid-
state systems [185, 53, 7, 280, 108, 288, 201, 291, 19, 310, 101, 361, 227, 279, 271, 337, 283,
354, 59, 57, 90, 110, 111, 232, 148, 58].

In this section, we show that the electrical sensing capabilities of single-qubit sensors
can be used to probe the near-equilibrium physics of polar and dielectric materials, even in
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Figure 6.10: (a) Schematic of qubit sensing experiment. A probe qubit (top right), with
splitting ωq, is a distance d away from a polar or dielectric material. Fluctuations in the
material’s dipoles lead to electrical noise at the location of qubit causing the qubit to relax
from |1⟩ to |0⟩ at a rate 1/T1. The qubit is sensitive to fluctuations at frequency ωq and
wavevectors near 1/d (see filter on top left). (b) Regimes of applicability of qubit sensors
and other probes including microscopy techniques [atomic-force, piezoresponse-force, and
transmission electron microscopy (AFM, PFM, and TEM)], spectroscopy techniques [x-ray
photon correlation, x-ray linear dichroism, and second harmonic generation spectroscopy
(XPCS, XRLD, and SHG)] and electrical transport techniques [227, 269, 133, 131, 345, 128,
258]. Techniques that often require high intensity light sources are marked with a ∗.

the thin-film context. In particular, we demonstrate that the relaxation rate of a qubit in
the presence of electrical noise arising from such materials encodes the material’s dielectric
properties at frequencies set by the energy splitting of the qubit and wave vectors set by the
qubit-sample distance. Hence, by tuning these two parameters, such qubit sensors can non-
invasively and wirelessly probe polar and dielectric materials on frequency scales between
10 MHz− 10 GHz down to nanometer length scales and over a wide range of temperatures,
1 K - 600 K [21, 324, 205]. To highlight the utility of these sensors, we demonstrate how they
can (i) detect the presence of exotic collective excitations in polar fluids, (ii) characterize
paraelectric-to-ferroelectric phase transitions that underlie polar instabilities, and (iii) probe
local polar dynamics in relaxor ferroelectrics. Finally, we illustrate the feasibility of qubit
sensing via numerical estimates for the relaxation rate of a nitrogen-vacancy (NV) center in
diamond placed near a polar material (strontium titanate).

6.3.2 Qubit Relaxometry Protocol

Our experimental proposal is depicted schematically in Fig. 6.10a wherein we envision an
isolated impurity qubit sensor placed a distance d away from a polar or dielectric material.
This qubit is a two-level system with a ground state |0⟩ split in energy from an excited state
|1⟩ by ℏωq and its quantum state can be initialized, measured, and manipulated optically.

Moreover, we consider qubits with an electric dipole moment d̂ = d⊥(σxx̂ + σyŷ) and a
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magnetic moment µ̂ = µzσz ẑ, where σ are the Pauli matrices, which specifies their coupling
to electromagnetic fields asHq-EM = d̂·E+µ̂·B. As a result, electric fields E drive transitions
between |0⟩ and |1⟩ and magnetic fields B can be utilized to control their frequency splitting.
When placed close to a polar or dielectric material, electrical noise emanating from the
material will couple the two states of the qubit and cause the qubit, initialized in its excited
state, to naturally relax to a thermal equilibrium set by the ambient temperature, T . The
rate of this relaxation can be expressed in terms of a time-scale, T1, and can be computed
from Fermi’s Golden Rule as:

1

T1

=
d2⊥
2

coth

(
βωq

2

)∫ ∞

−∞
dt ⟨[E−(t), E+(0)]⟩eiωqt (6.60)

where the electrical noise is quantified via the auto-correlation function ⟨[E−(t), E+(0)]⟩ with
E± = Ex ± iEy, β = 1/kBT , and ⟨· · · ⟩ denotes thermal averaging. Intuitively, Eq. (6.60)
expresses that only electrical noise at a frequency resonant with the splitting of the qubit
contributes to its relaxation rate.

To understand how the relaxation rate is connected to the dielectric properties of the
underlying material, we note that electrical noise arises due to thermal or quantum fluc-
tuations of the material’s polarization density, P. The fluctuations at frequency, ω, and
wavevector, q, can be quantified by the retarded polarization correlation function χαβ(ω,q) =
i
∫∞
0

dt eiωt⟨[P †
α(t,q), Pβ(0,q)]⟩ (α, β = x, y, z) which determines the dielectric tensor of the

material, εαβ(ω,q), and thus encodes its electrical response [141, 127].14 By utilizing these
correlation functions, we can formalize the relationship between fluctuations of polarization
in the material and electrical noise at the qubit. For simplicity, we assume that the material
is a stack of N , weakly inter-correlated, two-dimensional (2D) monolayers spaced apart by
a distance w (modeling a thin-film) and is both translationally and rotationally invariant
(see Appendix A for generalizations). From Maxwell’s equations, polarization fluctuations
of this sample propagate to electrical noise as:

⟨[E−(t), E+(0)]⟩ = µ2
0

∫
dω d2q

(2π)3
F (d, q)C(ω,q)e−iωt (6.61)

where C(ω,q) = Im [χ+−(ω,q) + χ−+(ω,q) + 4χzz(ω,q)], and

F (d, q) =
N−1∑
j=0

q2e−2q(d+jw)/16

filters polarization fluctuations at different wavevectors. Crucially, F (d, q) is sharply peaked
at q = 1/d and so the qubit will only be affected by fluctuations in the polarization around

14To be precise, we write the retarded polarization correlation function as χαβ(q, ω) = q̂αq̂βχL(q, ω) +
(δαβ − q̂αq̂β)χT (q, ω) and decompose the dielectric function as εαβ(q, ω) = q̂αq̂βεL(q, ω) + (δαβ −
q̂αq̂β)εT (q, ω). Then

εL(q,ω)−1
4πεL(q,ω) = χL(q, ω) and

εT (q,ω)−1
4π = χT (q, ω) [141, 127].
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this wavevector. By combining Eqs. (6.60) and (6.61), we find that:

1

T1

=
d2⊥µ

2
0

2
coth

(
βωq

2

)∫
d2q

(2π)2
F (d, q)C(ωq,q) (6.62)

Therefore, by tuning the frequency splitting of the qubit ωq and the qubit-sample distance d,
one can effectively reconstruct the functional form of C(ω,q).15 Thus, measuring the qubit’s
relaxation rate gives one access to the dielectric properties of a proximate material.

A few remarks are in order. First, we note that existing qubit sensing setups have
demonstrated the capability to tune a probe qubit’s frequency between 10 MHz − 10 GHz,
qubit-sample distances down to ∼ 10 nm, and temperatures between 1−600 K [244, 45, 212].
The parameter regimes accessible by qubit sensors and other equilibrium/near-equilibrium
probes of polar and dielectric materials are depicted in Fig. 6.10b [227, 269, 133, 131, 345,
128, 258] which highlights the complementary nature of our probe to existing experimental
techniques.16 Second, we note that the frequency scales accessible to qubit sensors are small
relative to the excitation energy scales of typical materials (∼ eV). As a result, they will be
sensitive to gapless or weakly gapped polar excitations.

6.3.3 Applications

The ability to probe such excitations naturally enables qubit sensors to address questions
about polar and dielectric materials relevant to both fundamental and applied science. We
examine in detail three such questions.

6.3.3.1 Collective modes in neutral polar fluids

While the existence of “plasmon” collective modes, arising from long-range Coulomb inter-
actions between charged electrons in metals, has been well established [284], the conclusive
observation of their dipolar analogues—“dipolarons”—has remained an outstanding chal-
lenge [270, 20, 55]. Dipolarons in a 2D dipolar fluid with density, nd, molecular mass,
m, and dipole moment, µ, are predicted to be gapless [270] with an unusual dispersion
ω2
d(q) = v2q2 + 2πndq(q · µ)2/m, which is anisotropic due to the directional dependence

of the dipolar interaction. Dispersion in hand, we can predict the frequency and dis-
tance scaling of the relaxation rate 1/T1 of a nearby qubit. In particular, for a general
polar mode with dispersion ω(q) and gap ω0, the polarization correlations take the form

15We remark that, in principle, by changing the orientation of the qubit sensor, one can extract
not only C(ω,q) = Im [χ+−(ω,q) + χ−+(ω,q) + 4χzz(ω,q)], but also Im [χ+−(ω,q)] , Im [χ−+(ω,q)] , and
Im [χzz(ω,q)] individually.

16We remark that, because we are interested in probing near-equilibrium dynamics, we do not depict
time-resolution accessible via pump-probe techniques.
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χ−+(ω,q) ∼ (ω − ω(q) + i0+)−1 and hence 1/T1 is given by:17

1

T1

∼ coth

(
βωq

2

)
×
[
e−2qresdq2res

]
Θ(ωq − ω0) (6.63)

where qres satisfies ω(qres) = ωq. Thus, for gapless dipolarons in particular, the crossover
from a linear to q3/2 dispersion with increasing q manifests in a corresponding crossover in
the frequency scaling of 1/T1 from ωqe

−2ωqd/v to ∼ ω
1/3
q e−2(ωq)2/3d, and can serve as a smoking

gun signature of these collective modes.

6.3.3.2 Para/ferroelectric phase transitions

The ability to probe low-energy polar excitations further enables qubit sensors to charac-
terize phase transitions in polar and dielectric materials. While such transitions are well-
understood in three dimensions (3D), their nature is unclear in 2D; coupling to additional
low-energy modes, irrelevant in 3D, could dramatically alter the universal properties of the
transition [257]. Furthermore, previous experiments aimed at fabricating thin-film ferro-
electrics for device applications have encountered instabilities in the material’s polarization,
suspected to be intimately related to the stability of the 2D paraelectric to ferroelectric
(PE/FE) phase transition [40]. Motivated by these outstanding questions, we make predic-
tions for the behavior of 1/T1 across a continuous PE/FE phase transition.

The PE/FE transition is a structural phase transition accompanied by inversion sym-
metry breaking and a spontaneously generated polarization density. It can be visualized
by considering an ionic crystal with alternating charges ±Q shown in both the PE and FE
phase in Fig. 6.11(a, b) respectively. This transition is driven by the softening of trans-
verse optical phonon modes which correspond to the relative displacement between the ±Q
charges depicted. The mechanism underlying this softening is either thermal or quantum
fluctuations depending on whether the transition is driven by temperature (a “thermal phase
transition”) or a separate tuning parameter λ (e.g. strain) at T = 0 (a “quantum phase tran-
sition”) [284, 305]. If we assume that these phonon modes do not interact and have dispersion
ω2(q) = c2sq

2 + ω2
0 with ω0 → 0 at the transition, from Eq. (6.63) we find that once ω0 is

less than the frequency splitting of the qubit, the qubit sensor will detect its presence. Al-
though interactions will dramatically affect the polarization correlations near the transition
and hence the scaling of 1/T1, this simple analysis illustrates that qubit sensors are ideal for
probing the critical physics around the transition. This motivates a more careful analysis
of 1/T1 around a critical point by using dynamical scaling theories for both thermal and
quantum transitions [284].

Around the critical point λ = λc, the static correlations of the polarization are set by
a diverging correlation length ξ ∝ |λ − λc|−ν , while dynamics are strongly constrained by
symmetries. Since the polarization density is not conserved, the corresponding dynamics are

17We remark that this expression is only valid in the case of an isotropic dispersion but has been generalized
in the supplementary material.
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Figure 6.11: (a, b) Schematic of ionic crystal in the (a) PE phase and the (b) FE phase. (c,
d) Behavior of 1/T1 across a relaxor ferroelectric for disorder ∆ = 0.0, 0.25, 1.0 (see Panel
(d) for legend). The presence of disorder causes a polarization-carrying mode to open a
gap which can drastically change the response of qubit sensors. (e) Numerical estimate for
1/T sig

1 compared to intrinsic relaxation rate of the NV qubit as a function of frequency, ω, and
applied magnetic field, Bz. 1/T1 is depicted for temperatures T = 4 K, 50 K, 100 K (shown
in blue, purple, and red respectively) and distances d = 30, 50, 70 nm (depicted as shading
from dark to light). For all parameters shown, the relaxation rate is above experimental
limits of 1/T1 determined in Ref. [143].

relaxational, characterized by a order-parameter relaxation rate Γ. A key difference between
thermal and quantum phase transitions is how they behave upon changing T in the vicinity
of the critical point. Thermal transitions are driven by T and hence both ξ and Γ scale as
a power law of the distance from the critical point t = (T − Tc)/Tc. Consequently, we can
conclude using the dynamic scaling theory of critical phenomena [137, 138, 139, 145] that:

1

T1

∼ 2T

d2+η−z
Ψt

(
ωdz,

ξ

d

)
, ξ ∝ |t|−ν (6.64)

where Ψt is a scaling function, η, ν, and z are critical exponents. If Ψt is smooth in the
ω → 0 limit, then 1/T1 scales with qubit-sample distance as d−2−η+z at the critical point in
stark contrast to the non-critical regime where it scales as 1/d4. A change in the distance
dependence of T1 is thus a tell-tale signature of approaching thermal criticality. In addition,
a scaling analysis near Tc enables extracting critical exponents η, z and ν. On the other
hand, if we tune to a quantum critical point (λ = λc) and raise T from 0 K, then the lack of
any gap scale in the spectrum (ω0 = 0) implies that both the correlation length ξ ∼ cs/T

1/z
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and relaxation rate Γ ∼ T are solely determined by temperature. This can be used to
show that 1/T1 scales as a power law in T (rather than T − Tc), with a distinct distance
dependence [285, 284]:

1

T1

∝

T (2+η)/z log
( cs
dT 1/z

)
, d ≪ ξ

T (−2+η)/zd−4, d ≫ ξ.
(6.65)

While the distance-scaling of 1/T1 informs us of whether we are in the critical regime, its
temperature-scaling can be used to determine the critical exponents η and z. Finally, the
dependence of the spectral gap ω0 ∝ |λ − λc|νz on the tuning parameter λ, derived from
low-T activated behavior of 1/T1, may be used to deduce the critical exponent, ν. Thus, all
critical exponents for the quantum transition may be deduced by an analysis of the qubit’s
relaxation rate as a function of T , d and λ− λc.

6.3.3.3 Relaxor ferroelectrics

Up until this point, we have explored clean systems without quenched disorder. However,
it is known that disorder can dramatically affect the behavior of low-dimensional materi-
als [151]. A prototypical example is in relaxor ferroelectrics (relaxors), dielectric materials
characterized by anomalously large internal polar fluctuations resembling “disorder broad-
ened” critical correlations of phase transitions [69, 302, 66, 68, 330]. While a full microscopic
description of relaxors remains elusive, their properties are often attributed to competition
between the long-range dipolar interaction, which orders internal dipoles, and short-range
disorder, which freezes them in a particular direction [134, 135, 330]. This competition is
captured by a minimal classical model of dipoles arranged in a 2D lattice [135]:18

H =
∑
i

[
Π2

i

2M
+ V (ui)− hiui

]
−
∑
i<j

vijuiuj (6.66)

where Πi = Mu̇i is the conjugate momentum of the polarization-carrying displacement ui

chosen to be along the z-axis, M is the effective mass, vij is the dipolar interaction, hi is a
normally distributed random field with width ∆, and V (ui) = κ

2
u2
i +

γ
4
u4
i (κ, γ > 0) is an

anharmonic potential. When our impurity qubit is far from the material (d ≫
√
A where A is

the area of a polar region), the qubit is insensitive to the local realization of hi and encodes the
disorder-averaged dynamics of the relaxor. Here, the polarization correlations take a damped
harmonic form χzz(ω,q) = (MΩ2(q)−Mω2+ iωΓ)−1 where Ω2(q) = Ω2

0+(v0−vq), vq is the
Fourier transformed dipolar interaction, v0 = limq→0 vq, Γ is a phenomenological damping,
and Ω0 is determined self-consistently in a mean-field analysis and is depicted in Fig. 6.11(c)

18Although such a model is known to be unable to capture the complex Vogel-Fuchler dynamics known
to be associated with relaxor ferroelectrics, it has been shown to reproduce experimental measurements of
the static structure factor.
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in the clean, weak disorder, and strong disorder case (∆ = 0, 0.25, 1.0, respectively) [134, 135,
330, 349, 100]. From the mode frequency Ω2

0 at ∆ = 0, we can extract a critical temperature
Tc defined as the temperature where the mode becomes massless. Mode frequency and critical
temperature in hand, we numerically compute 1/T1 in a temperature range around T = Tc

and normalize 1/T1 by its maximum in that range, 1/Tmax
1 (Fig. 6.11(d)). We find that,

in the clean case ∆ = 0, the relaxation rate becomes sharply peaked at the location of the
phase transition, whereas for weak disorder (∆ = 0.25) the response broadens, reproducing
our earlier intuition. For sufficiently large disorder, the peak is removed entirely and the
relaxation rate increases monotonically on lowering T .

On the other hand, when our impurity qubit is sufficiently close to the material (d ∼
√
A),

the qubit will be able to resolve the microscopic dynamics of individual polar domains and
the assumption of translation invariance of Eq. 6.62 will no longer hold. Here we present
a qualitative picture of the physics made accessible by spatio-temporally resolving these
polar dynamics. Relaxor ferroelectrics are often modeled using polar nano-regions — static
nanoscale polar domains with non-zero spontaneous polarization pinned by disorder [168,
259, 99]. The presence of these polar nano-regions with quenched fluctuations would imply
a suppressed 1/T1 once the qubit is positioned proximal to such a region, and enhanced 1/T1

when the qubit is proximal to a domain wall. On the other hand, recent works have suggested
a ‘slush-water’ picture of relaxors [314] characterized by coexisting static (ice-like) domains
with frozen moments and dynamic (water-like) domains with fluctuating polarization; near
an ice-like domain, 1/T1 would be suppressed, while near a water-like domain, 1/T1 would
be an enhanced. By studying 1/T1 of an isolated qubit as a function of in-plane coordinates
at a fixed distance d ≲

√
A, a spatially resolved map of the static and dynamic domains in

an inhomogeneous sample could be obtained and aid in evincing a microscopic description
of relaxors.

6.3.4 Experimental Realization and Feasibility

While our previous discussion has theoretically motivated the utility of qubit sensing in
probing polar and dielectric materials, here we discuss a concrete realization of the qubit
sensing setup and its feasibility. In particular, we envision utilizing the NV center in diamond:
a point defect consisting of a nitrogen substitution adjacent to a lattice vacancy defect. The
3A2 electronic spin manifold of the NV is modeled as a three-level system (|0⟩ , |+⟩ , and |−⟩)
and the degenerate |±⟩ states are ideal for encoding the two-level qubit of our proposal [225].
Crucially, these degenerate states can be initialized and manipulated optically and read-
out through state-dependent fluorescence [87]. Moreover, as required, electric fields drive
transitions between these states with dipole moment d⊥ = 17 Hz · cm/V and magnetic fields
control their splitting with a magnetic moment of µz = 2.8 MHz/G [254, 87]. As a result,
the energy separation of the NV states can be controlled by local magnetic fields and the
qubit-sample distance can be controlled by, for example, placing a nano-diamond with a
single NV on a scanning probe tip [19, 108, 361, 185], enabling a measurement of 1/T1 as a
function of both frequency and distance.
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To assess the feasibility of this proposal, we express the relaxation rate of the NV as
T−1
1 = (T sig

1 )−1+(T int
1 )−1, where (T sig

1 )−1 accounts for the signal from the sample and (T int
1 )−1

accounts for intrinsic sources of relaxation from the diamond host; the latter quantity estab-
lishes a limit on the sensitivity of our sensing protocol. The magnitude of (T int

1 )−1 has been
reported in shallow NV samples (∼ 50 nm depth) as low as 10 Hz below 100 K [143].19

The feasibility of our proposal can be established by comparing this noise floor to the
expected signal magnitude in a paradigmatic setting: the ionic crystal model introduced
earlier with a density ρ, lattice spacing a (See Fig. 6.11(a,b)), and polarization-carrying
phonon mode with dispersion ωd(q) =

√
c2sq

2 + ω2
0 with cs equal to the mode speed. In

this case, (T sig
1 )−1 takes the form of Eq. 6.63 with a dimensionful multiplier N = (π/2c2s)×

(µ2
0d

2
⊥c

4/64π) × [(Q2/a4)× (ℏ/ρ)]. Choosing material parameters {a, ρ, cs, ω0, Q, w,N} =
{0.3905 nm, 183 amu/a2, 7.5 · 103 m/s, 0 GHz, 9.66 e, a, 300 layers}, motivated from a rep-
resentative dielectric material (thin-film strontium titanate) [359, 160, 350], we can now
compare (T sig

1 )−1 as a function of frequency, distance, and temperature, to our noise floor,
(T int

1 )−1 as depicted in Fig. 6.11(e). For the parameters chosen, the signal magnitude is
found to be significantly larger than currently accessible NV intrinsic relaxation rates over
a wide range of temperatures and frequencies.

We note that in our feasibility analysis, we assumed that excitations above the ground
state are non-interacting and long-lived. While this assumption only holds in the limit
of dilute excitations, we expect that the presence of interactions will enhance polarization
fluctuations. Hence, our estimate is expected to be a lower bound on the relaxation rate and
motivates the feasibility of our method generally. We also remark that we have neglected
the contribution of magnetic noise, which induces decay from the NV’s |±1⟩ states to |0⟩.
While this is appropriate when probing insulating materials because the relaxation rate due
to magnetic noise generated from electrical dipoles is smaller than the electrical noise by a
factor of µ2

zc
2
s/d

2
⊥c

4 ∼ 10−4 ≪ 1, it is not in general true for metals, where the relaxation
rate will be dominated by current fluctuations of itinerant electrons.

6.3.5 Conclusions

In this work, we demonstrated that qubit sensors are a promising table-top tool for study-
ing near-equilibrium dynamics in polar and dielectric materials and can probe even thin-film
samples over a wide range of frequencies (∼ 10 MHz−10 GHz) and temperatures (1−600 K)
down to the nanometer scale. These capabilities make such sensors sensitive to low energy
polar modes, enabling them to probe a variety of physical phenomena, ranging from collective
polarization modes in long-range interacting systems, to paraelectric-to-ferroelectric phase
transitions and disorder-induced phenomena in relaxor ferroelectrics. Complementary to ex-
isting techniques, the nanoscale spatial resolution of qubit sensors allows us to probe local

19While most previous reports focus on relaxation between the |ms = 0⟩ ⇐⇒ |ms = ±1⟩ states, we note
that our protocol is also affected by relaxation between |ms = +1⟩ ⇐⇒ |ms = −1⟩ states which has been
shown to be significant near surfaces [244].
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dynamics in inhomogeneous materials. We briefly comment on a few open directions involv-
ing qubit electrometry. First, since previous work has demonstrated the sensing capabilities
of impurity qubits at high pressures (∼ O(10) GPa), such qubits could naturally investigate
the influence of stress and strain fields on the dynamics of polarization and could aid in
characterizing strain-induced phase transitions [353, 251, 357]. In addition, as illustrated in
Eq. (6.62), our qubit probe is more sensitive to surface physics at short sample-probe dis-
tances. Consequently, it can be used to resolve surface polarization dynamics, which can be
distinct from the bulk [188]. The nanoscale resolution of the qubit is ideally suited to probe
unconventional ferroelectricity in moiré materials, which typically have superlattice length
scales of tens of nanometers [358, 351]. Finally, by using the electrical capabilities of qubit
sensors, highlighted in this work, with the previously established magnetic capabilities, one
may be able to probe the complex interplay between charge, polarization, and magnetization
found in multiferroic materials [72].
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[22] Mete Atatüre et al. “Material platforms for spin-based photonic quantum technolo-
gies”. In: Nat. Rev. Mater. 3.5 (2018), p. 38.

[23] David D. Awschalom et al. “Quantum technologies with optically interfaced solid-
state spins”. In: Nature Photonics 12.9 (Sept. 2018), pp. 516–527. issn: 1749-4893.
doi: 10.1038/s41566-018-0232-2. url: https://www.nature.com/articles/
s41566-018-0232-2 (visited on 06/16/2020).

[24] Gopalakrishnan Balasubramanian et al. “Ultralong spin coherence time in isotopically
engineered diamond”. In: Nature Materials 8.5 (May 2009), pp. 383–387. issn: 1476-
1122, 1476-4660. doi: 10.1038/nmat2420. url: http://www.nature.com/articles/
nmat2420 (visited on 03/07/2020).

[25] N Bar-Gill et al. “Solid-state electronic spin coherence time approaching one second”.
In: Nature Communications 4.1 (Apr. 2013), p. 1743.

[26] N. Von Barge and R. Boehler. “Effect of non-hydrostaticity on the α − ϵ transi-
tion of iron”. In: High Pressure Research 6.2 (1990), pp. 133–140. doi: 10.1080/
08957959008203204. eprint: https://doi.org/10.1080/08957959008203204. url:
https://doi.org/10.1080/08957959008203204.

[27] John F Barry et al. “Optical magnetic detection of single-neuron action potentials
using quantum defects in diamond”. In: Proceedings of the National Academy of Sci-
ences 113.49 (Dec. 2016), pp. 14133–14138.

[28] John F. Barry et al. “Sensitivity optimization for NV-diamond magnetometry”. In:
Reviews of Modern Physics 92.1 (Mar. 2020), p. 015004. issn: 0034-6861, 1539-0756.
doi: 10.1103/RevModPhys.92.015004. url: https://link.aps.org/doi/10.
1103/RevModPhys.92.015004 (visited on 06/18/2020).

[29] Michael S J Barson et al. “Nanomechanical Sensing Using Spins in Diamond”. In:
Nano Letters 17.3 (Feb. 2017), pp. 1496–1503.

[30] L. C. Bassett et al. “Electrical Tuning of Single Nitrogen-Vacancy Center Optical
Transitions Enhanced by Photoinduced Fields”. In: Phys. Rev. Lett. 107 (26 Dec.
2011), p. 266403. doi: 10.1103/PhysRevLett.107.266403. url: https://link.
aps.org/doi/10.1103/PhysRevLett.107.266403.

[31] A. Batalov et al. “Low Temperature Studies of the Excited-State Structure of Neg-
atively Charged Nitrogen-Vacancy Color Centers in Diamond”. In: Physical Review
Letters 102.19 (May 2009), p. 195506. issn: 0031-9007, 1079-7114. doi: 10.1103/
PhysRevLett.102.195506.



BIBLIOGRAPHY 152

[32] A. Batalov et al. “Temporal Coherence of Photons Emitted by Single Nitrogen-
Vacancy Defect Centers in Diamond Using Optical Rabi-Oscillations”. In: Physi-
cal Review Letters 100.7 (Feb. 2008), p. 077401. issn: 0031-9007, 1079-7114. doi:
10.1103/PhysRevLett.100.077401. url: https://link.aps.org/doi/10.1103/
PhysRevLett.100.077401 (visited on 08/26/2019).

[33] Chinmay Belthangady et al. “Dressed-state resonant coupling between bright and
dark spins in diamond”. In: Physical review letters 110.15 (2013), p. 157601.

[34] Gilad Ben-Shach et al. “Detecting Majorana modes in one-dimensional wires by
charge sensing”. In: Physical Review B 91.4 (Jan. 2015), p. 045403. doi: 10.1103/
PhysRevB.91.045403. url: https://link.aps.org/doi/10.1103/PhysRevB.91.
045403 (visited on 06/16/2020).

[35] Hannes Bernien et al. “Heralded entanglement between solid-state qubits separated
by three metres”. In: Nature 497.7447 (2013), p. 86.

[36] Natalia S Bezaeva et al. “Demagnetization of terrestrial and extraterrestrial rocks
under hydrostatic pressure up to 1.2 GPa”. In: Physics of the Earth and Planetary
Interiors 179.1-2 (2010), pp. 7–20. issn: 00319201. doi: 10.1016/j.pepi.2010.01.
004.

[37] Natalia S. Bezaeva et al. “Magnetic characterization of non-ideal single-domain mon-
oclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2GPa
with implications for impact demagnetization”. In: Physics of the Earth and Plane-
tary Interiors 257 (2016), pp. 79–90. issn: 0031-9201. doi: https://doi.org/10.
1016/j.pepi.2016.05.009. url: https://www.sciencedirect.com/science/
article/pii/S0031920116300693.

[38] Natalia S. Bezaeva et al. “Pressure demagnetization of the Martian crust: Ground
truth from SNC meteorites”. In: Geophysical Research Letters 34.23 (Dec. 2007),
n/a–n/a. issn: 00948276. doi: 10.1029/2007GL031501. url: http://doi.wiley.
com/10.1029/2007GL031501.

[39] S. Bhagavantam and D. a. a. S. Narayana Rao. “Dielectric Constant of Diamond”. In:
Nature 161.4097 (May 1948), pp. 729–729. issn: 1476-4687. doi: 10.1038/161729a0.
url: https://www.nature.com/articles/161729a0 (visited on 03/26/2020).

[40] Lev Mikhailovich Blinov et al. “Two-dimensional ferroelectrics”. In: Physics-Uspekhi
43.3 (2000), p. 243.

[41] M. Block et al. “Optically Enhanced Electric Field Sensing Using Nitrogen-Vacancy
Ensembles”. In: Phys. Rev. Applied 16 (2 Aug. 2021), p. 024024. doi: 10.1103/
PhysRevApplied . 16 . 024024. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevApplied.16.024024.

[42] Dolev Bluvstein, Zhiran Zhang, and Ania C Bleszynski Jayich. “Identifying and miti-
gating charge instabilities in shallow diamond nitrogen-vacancy centers”. In: Physical
review letters 122.7 (2019), p. 076101.



BIBLIOGRAPHY 153

[43] V. Yu. Bodryakov, A. A. Povzner, and O. G. Zelyukova. “Magnetic contribution to the
Debye temperature and the lattice heat capacity of ferromagnetic rare-earth metals
(using gadolinium as an example)”. In: Physics of the Solid State 41.7 (July 1999),
pp. 1138–1143.

[44] E Bourgeois et al. “Photoelectric detection of electron spin resonance of nitrogen-
vacancy centres in diamond”. In: Nature Communications 6.1 (Oct. 2015), p. 8577.

[45] Jonathan D Breeze et al. “Continuous-wave room-temperature diamond maser”. In:
Nature 555.7697 (2018), pp. 493–496. issn: 1476-4687. doi: 10.1038/nature25970.
url: https://doi.org/10.1038/nature25970.

[46] D. A. Broadway et al. “Spatial mapping of band bending in semiconductor devices
using in situ quantum sensors”. In: Nature Electronics 1.9 (Sept. 2018), pp. 502–507.
issn: 2520-1131. doi: 10.1038/s41928-018-0130-0. url: https://www.nature.
com/articles/s41928-018-0130-0 (visited on 03/16/2020).

[47] R Brout and H Thomas. “Molecular field theory, the Onsager reaction field and the
spherical model”. In: Physics Physique Fizika 3.6 (1967), p. 317.

[48] J Scott Bunch et al. “Electromechanical resonators from graphene sheets”. In: Science
315.5811 (2007), pp. 490–493.

[49] J Byerlee. “Friction of rocks”. In: pure and applied geophysics 116.4 (1978), pp. 615–
626. issn: 1420-9136. doi: 10.1007/BF00876528. url: https://doi.org/10.1007/
BF00876528.

[50] Jianming Cai, Fedor Jelezko, and Martin B. Plenio. “Hybrid sensors based on colour
centres in diamond and piezoactive layers”. In: Nat. Commm. 5 (June 2014). Article,
p. 4065. url: https://doi.org/10.1038/ncomms5065.

[51] Paola Cappellaro and Mikhail D Lukin. “Quantum correlation in disordered spin sys-
tems: Applications to magnetic sensing”. In: Physical Review A 80.3 (2009), p. 032311.

[52] Charles F. de las Casas et al. “Stark tuning and electrical charge state control of
single divacancies in silicon carbide”. In: Applied Physics Letters 111.26 (Dec. 2017),
p. 262403. issn: 0003-6951, 1077-3118. doi: 10.1063/1.5004174. url: http://aip.
scitation.org/doi/10.1063/1.5004174 (visited on 10/05/2020).

[53] Francesco Casola, Toeno van der Sar, and Amir Yacoby. “Probing condensed matter
physics with magnetometry based on nitrogen-vacancy centres in diamond”. In: Nat.
Rev. Mater. 3 (Jan. 2018). Review Article, p. 17088. url: https://doi.org/10.
1038/natrevmats.2017.88.

[54] A. Celeste, F. Borondics, and F. Capitani. “Hydrostaticity of pressure-transmitting
media for high pressure infrared spectroscopy”. In: High Pressure Research 39.4
(2019), pp. 608–618. doi: 10.1080/08957959.2019.1666844. eprint: https://
doi.org/10.1080/08957959.2019.1666844. url: https://doi.org/10.1080/
08957959.2019.1666844.



BIBLIOGRAPHY 154

[55] A Chandra and B Bagchi. “Collective excitations in a dense dipolar liquid: How
important are dipolarons in the polarization relaxation of common dipolar liquids?”
In: The Journal of chemical physics 92.11 (1990), pp. 6833–6839.

[56] Sou-Chi Chang et al. “Theoretical Approach to Electroresistance in Ferroelectric
Tunnel Junctions”. In: Phys. Rev. Applied 7 (2 Feb. 2017), p. 024005. doi: 10 .
1103/PhysRevApplied.7.024005. url: https://link.aps.org/doi/10.1103/
PhysRevApplied.7.024005.

[57] S Chatterjee et al. “Single-spin qubit magnetic spectroscopy of two-dimensional su-
perconductivity”. In: Phys. Rev. Research 4 (1 Jan. 2022), p. L012001. doi: 10.
1103/PhysRevResearch.4.L012001. url: https://link.aps.org/doi/10.1103/
PhysRevResearch.4.L012001.

[58] Shubhayu Chatterjee, Francisco Machado, and Norman Y. Yao. “Quantum noise spec-
troscopy of dynamical critical phenomena”. In: to appear ().

[59] Shubhayu Chatterjee, Joaquin F. Rodriguez-Nieva, and Eugene Demler. “Diagnosing
phases of magnetic insulators via noise magnetometry with spin qubits”. In: Phys.
Rev. B 99 (10 Mar. 2019), p. 104425. doi: 10.1103/PhysRevB.99.104425. url:
https://link.aps.org/doi/10.1103/PhysRevB.99.104425.

[60] Edward H. Chen et al. “High-sensitivity spin-based electrometry with an ensemble of
nitrogen-vacancy centers in diamond”. In: Phys. Rev. A 95 (5 May 2017), p. 053417.
doi: 10.1103/PhysRevA.95.053417. url: https://link.aps.org/doi/10.1103/
PhysRevA.95.053417.

[61] K. Chen et al. “Surface- and pressure-induced bulk Kondo breakdown in SmB6”. In:
Phys. Rev. B 97 (23 June 2018), p. 235153. doi: 10.1103/PhysRevB.97.235153.
url: https://link.aps.org/doi/10.1103/PhysRevB.97.235153.

[62] Lilian Isabel Childress. “Coherent manipulation of single quantum systems in the
solid state”. PhD thesis. Harvard University, Massachusetts, Dec. 2007.

[63] Y Chu et al. “Coherent Optical Transitions in Implanted Nitrogen Vacancy Centers”.
In: Nano Letters 14.4 (Mar. 2014), pp. 1982–1986.

[64] Yiwen Chu. “Quantum optics with atom-like systems in diamond”. PhD thesis. Har-
vard University, 2014.

[65] Andrew N Cleland and Michael L Roukes. “A nanometre-scale mechanical electrom-
eter”. In: Nature 392.6672 (1998), pp. 160–162.

[66] RE Cohen. “Relaxors go critical”. In: Nature 441.7096 (2006), pp. 941–942.

[67] R. V. Colvin, Sam Legvold, and F. H. Spedding. “Electrical Resistivity of the Heavy
Rare-Earth Metals”. In: Phys. Rev. 120 (3 Nov. 1960), pp. 741–745.

[68] RA Cowley et al. “Relaxing with relaxors: a review of relaxor ferroelectrics”. In:
Advances in Physics 60.2 (2011), pp. 229–327.



BIBLIOGRAPHY 155

[69] L Eric Cross. “Relaxor ferroelectrics”. In: Ferroelectrics 76.1 (1987), pp. 241–267.

[70] Shanying Cui and Evelyn L Hu. “Increased negatively charged nitrogen-vacancy cen-
ters in fluorinated diamond”. In: Applied Physics Letters 103.5 (2013), p. 051603.

[71] S. B. van Dam et al. “Optical coherence of diamond nitrogen-vacancy centers formed
by ion implantation and annealing”. In: Physical Review B 99.16 (Apr. 2019), p. 161203.
doi: 10.1103/PhysRevB.99.161203.

[72] S Das et al. “Observation of room-temperature polar skyrmions”. In: Nature 568.7752
(2019), pp. 368–372.

[73] Gordon Davies. “Charge states of the vacancy in diamond”. In: Nature 269.5628 (Oct.
1977), pp. 498–500.

[74] A.Th.A.M. de Waele and R. de Bruyn Ouboter. “Quantum-interference phenomena
in point contacts between two superconductors”. In: Physica 41.2 (1969), pp. 225–254.
issn: 0031-8914. doi: https://doi.org/10.1016/0031-8914(69)90116-5. url:
https://www.sciencedirect.com/science/article/pii/0031891469901165.

[75] C. L. Degen, F. Reinhard, and P. Cappellaro. “Quantum sensing”. In: Reviews of
Modern Physics 89.3, 035002 (July 2017), p. 035002. doi: 10.1103/RevModPhys.89.
035002. arXiv: 1611.02427 [quant-ph].

[76] PD Desai et al. Thermophysical Properties of Selected Rocks. Tech. rep. THERMO-
PHYSICAL and ELECTRONIC PROPERTIES INFORMATION ANALYSIS CEN-
TER . . ., 1974.

[77] A. Dewaele, P. Loubeyre, and M. Mezouar. “Equations of state of six metals above
94 GPa”. In: Phys. Rev. B 70.094112 (Apr. 2004).

[78] Agnès Dewaele et al. “Compression curves of transition metals in the Mbar range: Ex-
periments and projector augmented-wave calculations”. In: Physical Review B 78.10
(2008), p. 104102.

[79] Rudra Sankar Dhar et al. “Direct nanoscale imaging of evolving electric field domains
in quantum structures”. In: Scientific reports 4 (2014), p. 7183.

[80] Ranga P. Dias and Isaac F. Silvera. “Observation of the Wigner-Huntington transition
to metallic hydrogen”. In: Science 355.6326 (2017), pp. 715–718. issn: 0036-8075. doi:
10.1126/science.aal1579. eprint: https://www.science.org/doi/pdf/10.1126/
science.aal1579. url: https://www.science.org/doi/abs/10.1126/science.
aal1579.

[81] David P Dobson et al. “The acoustic emissions signature of a pressure-induced poly-
typic transformation in chlorite”. In: American Mineralogist 92.2-3 (2007), pp. 437–
440.



BIBLIOGRAPHY 156

[82] M. W. Doherty et al. “The negatively charged nitrogen-vacancy centre in diamond:
the electronic solution”. In: New Journal of Physics 13.2 (Feb. 2011), p. 025019. issn:
1367-2630. doi: 10.1088/1367-2630/13/2/025019. url: https://doi.org/10.
1088%2F1367-2630%2F13%2F2%2F025019 (visited on 08/27/2019).

[83] Marcus W Doherty et al. “Electronic Properties and Metrology Applications of the Di-
amond NV- Center under Pressure”. In: Phys. Rev. Lett. 112.4 (Jan. 2014), p. 047601.

[84] Marcus W Doherty et al. “Measuring the defect structure orientation of a single NV-
centre in diamond”. In: New Journal of Physics 16.6 (2014), p. 063067.

[85] Marcus W Doherty et al. “The nitrogen-vacancy colour centre in diamond”. In:
Physics Reports 528.1 (2013), pp. 1–45.

[86] Marcus W. Doherty et al. “Electronic Properties and Metrology Applications of
the Diamond NV− Center under Pressure”. In: Phys. Rev. Lett. 112 (4 Jan. 2014),
p. 047601. doi: 10.1103/PhysRevLett.112.047601. url: https://link.aps.org/
doi/10.1103/PhysRevLett.112.047601.

[87] Marcus W. Doherty et al. “The nitrogen-vacancy colour centre in diamond”. In:
Physics Reports 528.1 (2013), pp. 1–45. issn: 0370-1573. doi: https://doi.org/10.
1016/j.physrep.2013.02.001.

[88] Florian Dolde et al. “Electric-field sensing using single diamond spins”. In: Nat. Phys.
7.6 (2011), p. 459.

[89] Florian Dolde et al. “Nanoscale Detection of a Single Fundamental Charge in Ambient
Conditions Using the NV- Center in Diamond”. In: Physical Review Letters 112.9
(Mar. 2014), p. 097603.

[90] P E Dolgirev et al. “Characterizing two-dimensional superconductivity via nanoscale
noise magnetometry with single-spin qubits”. In: Phys. Rev. B 105 (2 Jan. 2022),
p. 024507. doi: 10.1103/PhysRevB.105.024507. url: https://link.aps.org/
doi/10.1103/PhysRevB.105.024507.

[91] Y Dovzhenko et al. “Magnetostatic twists in room-temperature skyrmions explored
by nitrogen-vacancy center spin texture reconstruction”. In: Nat. Commm. 9.1 (2018),
p. 2712.

[92] Y Dovzhenko et al. “Magnetostatic twists in room-temperature skyrmions explored
by nitrogen-vacancy center spin texture reconstruction”. In: Nature Communications
9.1 (2018), p. 2712. issn: 2041-1723. doi: 10.1038/s41467- 018- 05158- 9. url:
https://doi.org/10.1038/s41467-018-05158-9.
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Appendix A

Derivations for Chapter 6

A.1 Derivation of Qubit Relaxation Rate

In this section, we systematically derive the relaxation rate of an impurity qubit sensor
proximate to a polar or dielectric material in both a general setting and specific settings of
interest. We start by deriving a relationship between the relaxation rate of the qubit and
electrical noise at its location. Subsequently, we utilize Maxwell’s equations to connect this
electrical noise to polarization correlations in the nearby material. After this, we express
the form of 1/T1 in a number of settings of interest. Finally, we investigate the influence of
magnetic noise for the specific case of the NV qubit.

A.1.1 Impurity Qubit Response to Electrical Noise

Recall that in the main text, we defined the impurity qubit’s coupling to electric and magnetic
fields as (setting ℏ = 1 henceforth):

H = H0 +Hq−EM =
ωq

2
σz + d̂ · E+ µ̂ ·B, d̂ = d⊥(σ

x, σy, 0) and µ̂ = µz(0, 0, σ
z)(A.1)

where d⊥ was the electrical dipole moment, µz is the magnetic moment, and we assume that
the quantization axis of the qubit is aligned with the physical z-axis of the system, defined
as the axis normal to the plane of a proximate material. We assume that our sample is in
thermal equilibrium at inverse temperature β with density matrix ρ = 1

Z

∑
n e

−βεn |n⟩ ⟨n|,
where |n⟩ is an eigenstate of the sample at energy εn and Z =

∑
n e

−βεn is the partition
function. Now, we use Fermi’s golden rule to compute the transition rate between |1⟩ to |0⟩
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(we set ℏ = 1 and kB = 1 henceforth):

Γem = 2πd2⊥
∑
nm

e−βεn

Z
| ⟨m, 0|Exσx + Eyσy |n, 1⟩ |2δ(ωq − (εm − εn)) (A.2)

= 2πd2⊥
∑
nm

e−βεn

Z
| ⟨m, 0|Ex + iEy |n, 0⟩ |2δ(ωq − (εm − εn)) (A.3)

= 2πd2⊥
∑
nm

e−βεn

Z
E+

mnE
−
nmδ(ωq − (εm − εn)) (A.4)

where the argument of the delta enforces energy conservation, i.e, the amount of energy lost
by the qubit (ωq = E1 − E0) equals the amount of energy gained by the sample (εm − εn).
Similarly, we have that:

Γabs = 2πd2⊥
∑
nm

e−βεn

Z
E−

mnE
+
nmδ(ωq + (εm − εn)) (A.5)

where E± = Ex ± iEy. Thus, we can write 1/T1 = 1/2(Γabs + Γem) [7]. Now, to relate this
quantity to the electric field fluctuations, note that the noise tensor is given by:

Nij(ω) =
1

2

∫ ∞

−∞
dt⟨{Ei(t), Ej(0)}⟩eiωt

= π
∑
nm

e−βεn

Z

[
Ei

nmE
j
mnδ(ω − (εm − εn)) + Ej

nmE
i
mnδ(ω − (εn − εm))

]
(A.6)

Thus, it follows that:
1

T1

= d2⊥N−+(ωq) (A.7)

Subsequently, by the fluctuation-dissipation theorem

Nij(ω) =
1

2
coth

(
βω

2

)
Sij(ω) where Sij(ω) =

∫ ∞

−∞
dt⟨[Ei(t), Ej(0)]⟩eiωt (A.8)

Moreover, we can relate Sij(ω) in terms of the retarded correlators of the electric field, which
are more convenient to calculate

Sij(ω) = 2 Im
[
CR

EiEj(ω)
]
where CR

EiEj(ω) = i

∫ ∞

−∞
dtΘ(t)⟨[Ei(t), Ej(0)]⟩eiωt (A.9)

A.1.2 Propagation of Maxwell’s Equations

To determine the electrical noise arising from dipolar fluctuations, we propagate these fluc-
tuations using Maxwell’s equations in Lorentz gauge:

∂2Aµ(r, t) = µ0J
µ(r, t) = µ0

−c∇ ·P(r, t) + cσ(r, t)

∂tP(r, t)

 (A.10)
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where ∂2 = −∂2
t /c

2 +∇2, P(r, t) = P(r, t)1[−w,0](z) (where 1[−w,0] is 1 for z ∈ [−w, 0] and 0
otherwise), σ(r, t) = Pz(r, t)δ(z)−Pz(r, t)δ(z+w) is the surface charge density, and w is the
width of the sample. We can solve these equations by introducing a kernel Gµ

i (r, r
′, t− t′):

Aµ(r, t) = µ0

∫ ∞

−∞
dt′d3r′Gµ

i (r, r
′, t− t′)Pi(r

′, t′) (A.11)

where i labels x, y, z and we are implicitly summing over repeated indices. We define Gµ
i to

satisfy the equation:

∂2Gµ
i (ρ− ρ′, z, z′, t− t′)

=

cδ(t− t′)∂i[δ
(3)(r− r′)] + cδi,zδ

(3)(r− r′)[δ(z)− δ(z + w)]

−δ(3)(r− r′)∂t[δ(t− t′)]êi

 (A.12)

where ρ = (x, y) is the coordinates of the material in-plane. Now, to solve for Gµ
i , we can

express Aµ, Gµ
i , and our polarization Pi in terms of their in-plane Fourier modes yielding:

Aµ(r, t) =
1√
L2

∑
q

∫
dω

2π
Aµ(z,q, ω)ei(q·ρ−ωt) (A.13)

Gµ
i (ρ, z, z

′, t) =
1

L2

∑
q

∫
dω

2π
Gµ

i (z, z
′,q, ω)ei(q·ρ−ωt) (A.14)

Pi(r, t) =
1√
L2

∑
q

∫
dω

2π
Pi(z,q, ω)e

i(q·ρ−ωt) (A.15)

where we assumed a sample with transverse dimensions L×L for simplicity. When we plug
this back into the equations of motion for Gµ

i , we get:

(−λ2 + ∂2
z )G

µ
i (z, z

′,q, ω)

=

icqi(δi,x + δi,y)δ(z − z′) + cδi,z∂z[δ(z − z′)] + cδi,zδ(z − z′)[δ(z)− δ(z + w)]

iωδ(z − z′)êi


(A.16)

where λ2 = (q2 − ω2/c2). To solve this, we Fourier transform the z coordinate as

Gµ
i (α, z

′,q, ω) =

∫
dz e−iαzGµ

i (z, z
′,q, ω) (A.17)
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and so we get the following:

Gµ
i (α, z

′,q, ω) = − 1

λ2 + α2icqi(δi,x + δi,y)e
−iαz′ + icδi,zαe

−iαz′ + cδi,z
∫
dze−iαzδ(z − z′) [δ(z)− δ(z + w)]

iωe−iαz′ êi


(A.18)

Now, we Fourier transform back to get a useable expression for G. We do this one component
at a time:

G0
i = −icqi(δi,x + δi,y)

2λ
e−λ|z−z′| − cδi,z

2
sgn(z − z′)e−λ|z−z′|

− cδi,z

∫
dαdz̃

2π

eiα(z−z̃)δ(z̃ − z′)[δ(z̃)− δ(z̃ + w)]

λ2 + α2

= −icqi(δi,x + δi,y)

2λ
e−λ|z−z′| − cδi,z

2
sgn(z − z′)e−λ|z−z′|

− cδi,z

∫
dz̃

e−λ|z−z̃|

2λ
δ(z̃ − z′) [δ(z̃)− δ(z̃ + w)]

= −icqi(δi,x + δi,y)

2λ
e−λ|z−z′| − cδi,z

2
sgn(z − z′)e−λ|z−z′|

− cδi,ze
−λ|z−z′|

2λ
[δ(z′)− δ(z′ + w)] (A.19)

Also, we have that:

Gj
i = −iω

e−λ|z−z′|

2λ
δji (A.20)

where i, j ∈ {x, y, z}. Now, we can decompose our Green’s function as:

Gµ
i (z, z

′,q, ω) = Gµ
i (z − z′,q, ω) + gµi (z, z

′,q, ω) (A.21)

where

Gµ
i (z − z′,q, ω) =

− icqi(δi,x+δi,y)

2λ
e−λ|z−z′| − cδi,z

2
sgn(z − z′)e−λ|z−z′|

−iω e−λ|z−z′|

2λ
êi

 (A.22)

gµi =

− cδi,ze
−λ|z−z′|

2λ
[δ(z′)− δ(z′ + w)]

0

 (A.23)
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indicate bulk and surface terms respectively. Green’s function in hand, we can relate the
polarization back to the vector potential as:

Aµ(r, t) =
µ0

L

∑
q

∫
dz′dω

2π
Gµ

i (z, z
′,q, ω)Pi(z

′,q, ω)ei(q·ρ−ωt)

=
1

L

∑
q

∫
dz′dω

2π
Gµ
i (|z − z′|,q, ω)Pi(z,q, ω)e

i(q·ρ−ωt)

+
1

L

∑
q

∫
dz′dω

2π
gµi (z, z

′,q, ω)Pi(z
′,q, ω)ei(q·ρ−ωt) (A.24)

Therefore, we can compute the electric field as:

E(r, t) = −c∇A0(r, t)− ∂tA(r, t) =
µ0

L

∑
q

∫
dωdz′

2π
Hi(z, z

′,q, ω)Pi(z
′,q, ω)ei(q·ρ−ωt)(A.25)

where

Hi =


−icqxG

0
i + iωGx

i

−icqyG
0
i + iωGy

i

−c∂zG
0
i + iωGz

i

 = Hi + hi (A.26)

For reference, the explicit form of the bulk kernels is:

Hx = −e−λ|z−z′|

2λ


c2q2x + ω2

c2qxqy

ic2qxλ · sign(z − z′)

 Hy = −e−λ|z−z′|

2λ


c2qxqy

c2q2y + ω2

ic2qyλ · sign(z − z′)

(A.27)

Hz = −e−λ|z−z′|

2


−ic2qxsign(z − z′)

−ic2qysign(z − z′)

−c2δ(z − z′) + c2λ2sign(z−z′)+ω2

λ

 (A.28)

and the explicit form of the surface kernels are:

hz =
c2e−λ|z−z′|

2λ


iqx

iqy

−∂z

 [δ(z′)− δ(z′ + w)] =
c2e−λ|z−z′|

2λ


iqx

iqy

−∂z

S(z′) (A.29)

with hx,y = 0.



APPENDIX A. DERIVATIONS FOR CHAPTER 6 186

A.1.3 Qubit Relaxation from Dipolar Fluctuations (Translation
Invariant)

Having propagated the in-sample polarization to the electric fields outside of the material,
we now determine the relaxation rate of our probe qubit due to in-sample polarization
fluctuations. To do so, we compute electrical noise at the location of the probe qubit due to
these fluctuations. In particular, by Eq. A.7 and A.8, we need to compute:

⟨[E−(r, t), E+(r, 0)]⟩ =
µ2
0

L2

∑
q1,q2

∫
dω1dω2dz

′
1dz

′
2

(2π)2
H−

i (z
′
1,q1, ω1)H

+
j (z

′
2,q2, ω2) (A.30)

×⟨[Pi(z
′
1,q1, ω1), Pj(z

′,q2, ω2]⟩ei(q1·ρ−ω1t)eiq2·ρ (A.31)

where r = (ρ, d) = (0, 0, d) is the location of the qubit. Assuming spacetime translation
invariance, we have that

⟨[Pi(z
′
1,q1, ω1), Pj(z

′
2,q2, ω2)]⟩ = 2πδ(ω1 + ω2)δq1,−q2⟨[Pi(z

′
1,q, ω), Pj(z

′
2,−q,−ω)]⟩ (A.32)

Thus, the electrical noise can be expressed as:

⟨[E−(r, t), E+(r, 0)]⟩

=
µ2
0

L2

∑
q

∫
dωdz′1dz

′
2

2π
H−

i (z
′
1,q, ω)H

−
j (z

′
2,−q,−ω)⟨[Pi(z

′
1,q, ω), Pj(z

′
2,−q,−ω)]⟩e−iωt

(A.33)

To proceed further, we simply need to contract the product of kernels with the polarization
commutator:

H−
i (1)H

+
j (2)⟨[Pi(1), Pj(1)]⟩

=

〈[
1

2
(H−

+ (1)P−(1) +H−
− (1)P+(1)) +H−

z (1)Pz(1),

1

2
(H+

+ (2)P−(2) +H+
− (2)P+(2)) +H+

z (2)Pz(2)

]〉
=

1

4

(
H−

+ (1)H
+
− (2)⟨[P−(1), P+(2)]⟩+H−

− (1)H
+
+ (2)⟨[P+(1), P−(2)]⟩

)
+H−

z (1)H
+
z (2)⟨[Pz(1), Pz(2)]⟩

+
1

4

(
H−

+ (1)H
+
+ (2)⟨[P−(1), P−(2)]⟩+H−

− (1)H
+
− (2)⟨[P+(1), P+(2)]⟩

)
+

1

2

(
H−

+ (1)H
+
z (2)⟨[P−(1), Pz(2)] +H−

− (1)H
+
z (2)⟨[P+(1), Pz(2)]⟩

+H−
z (1)H

+
− (2)⟨[Pz(1), P+(2)]⟩+H−

z (1)H
+
+ (2)⟨[Pz(1), P−(2)]⟩

)
(A.34)

where H−
i (1) = H−

i (d, z1,q1, ω1), H+
j (2) = H+

j (d, z2,q2, ω
′
2), Pi(1) = Pi(z1,q1, ω1), and

Pj(2) = Pj(z2,q2, ω2) with q1 = −q2 = q and ω1 = −ω2 = ω and also H±
± = H±

x ± iH±
y and
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P± = Px ± iPy. Although the above expression looks daunting, the first line is the only line
that appreciably contributes when either it is a good approximation that the polarization is
conserved or when the sample is rotationally invariant. Now we compute the product of the
kernels in the approximation that ω/c ≪ q (i.e. the speed of light is much faster than any
velocity scale in the material). We remark that:

H+
+ = −e−λ|z−z′|

2λ
c2(qx + iqy)

2 H−
− = −e−λ|z−z′|

2λ
(qx − iqy)

2

H+
− = H−

+ = −e−λ|z−z′|

2λ

(
c2q2 + 2ω2

)
H±

z =
e−λ|z−z′|

2λ
ic2(qx ± iqy) [λ · sign(z − z′) + S(z′)]

(A.35)

Now, we can compute the products of these kernels. First, the polarization conserving
kernels:

H−
− (1)H

+
+ (2) ≈

1

4
e−q|z−z′1|e−q|z−z′2|c4q2 = F (z, q; z′1, z

′
2) (A.36)

H−
+ (1)H

+
− (2) ≈

1

4
e−q|z−z′1|e−q|z−z′2|c4q2 = F (z, q; z′1, z

′
2) (A.37)

and also

H−
z (1)H

+
z (2) ≈

1

4
e−q|z−z′1|e−q|z−z′2|c4(q2 + q(S(z′1) + S(z′2)) + S(z′1)S(z′2)) (A.38)

= F (z, q; z′1, z
′
2)

[
1 +

1

q
(S(z′1) + S(z′2)) +

1

q2
S(z′1)S(z′2)

]
(A.39)

Now, the other terms:

H−
+ (1)H+

+ (2) ≈ 1

4
e−q|z−z′1|e−q|z−z′2|c4q2e2iφ = F (z, q; z′1, z

′
2)e

2iφ (A.40)

H−
− (1)H+

− (2) ≈ 1

4
e−q|z−z′1|e−q|z−z′2|c4q2e−2iφ = F (z, q; z′1, z

′
2)e

−2iφ (A.41)

H−
+ (1)H+

z (2) ≈ −1

4
e−q|z−z′1|e−q|z−z′2|(−ieiφ)c4

[
q2 + qS(z′2)

]
= ieiφF (z, q; z′1, z

′
2)

[
1 +

1

q
S(z′2)

]
(A.42)

H−
− (1)H+

z (2) ≈ −1

4
e−q|z−z′1|e−q|z−z′2|(−ie−iφ)c4

[
q2 + qS(z′2)

]
= ie−iφF (z, q; z′1, z

′
2)

[
1 +

1

q
S(z′2)

]
(A.43)

H−
z (1)H+

+ (2) ≈ −1

4
e−q|z−z′1|e−q|z−z′2|ieiφc4

[
q2 + qS(z′1)

]
= −ieiφF (z, q; z′1, z

′
2)

[
1 +

1

q
S(z′1)

]
(A.44)

H−
z (1)H+

− (2) ≈ −1

4
e−q|z−z′1|e−q|z−z′2|ie−iφc4

[
q2 + qS(z′1)

]
= −ie−iφF (z, q; z′1, z

′
2)

[
1 +

1

q
S(z′1)

]
(A.45)
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where φ is the angle that q makes in the xy plane. Now, we can write the full expression for the
electrical noise:

⟨[E−(r, t), E+(r, 0)]⟩ =
µ2
0

L2

∑
q

∫
dωdz′1dz

′
2

2π
F (d, q; z′1, z

′
2)× (Cbb + Cbs + Css)e−iωt (A.46)

where Cbb are bulk-bulk correlations, Cbs are correlations between the bulk and the surface, Css are
correlations between the two surfaces of the sample. Let us enumerate these one-by-one:

Cbb =
1

16
(⟨[P+(1), P−(2)]⟩+ ⟨[P−(1), P+(2)]⟩+ 4⟨[Pz(1), Pz(2)]⟩)

+
1

16
(⟨[P−(1), P−(2)]⟩e2iφ + ⟨[P+(1), P+(2)]⟩e−2iφ)

+
1

8
[
(
⟨[P−(1), Pz(2)]⟩ieiφ + ⟨[P+(1), Pz(2)]⟩ie−iφ

)
−
(
⟨[Pz(1), P−(1)]⟩ieiφ + ⟨[Pz(1), P+(2)]⟩ie−iφ

)
] (A.47)

where the parenthesis in the last term indicate complex conjugate pairs. Moreover, we have that:

Cbs =
S(z′1)
8q

(
2⟨[Pz(1), Pz(2)]⟩ − ieiφ⟨[Pz(1), P−(2)]⟩ − ie−iφ⟨[Pz(1), P+(2)]⟩

)
(A.48)

+
S(z′2)
8q

(
2⟨[Pz(1), Pz(2)]⟩+ ieiφ⟨[P−(1), Pz(2)]⟩+ ie−iφ⟨[P+(1), Pz(2)]⟩

)
(A.49)

Finally, we have the surface-surface correlations:

Css =
1

4q2
S(z′1)S(z′2)⟨[Pz(1), Pz(2)]⟩ (A.50)

So, we can write down our relaxation rate as:

1

T1
=

1

2
d2⊥ coth

(
βω

2

)
µ2
0

L2

∑
q

∫
dz′1dz

′
2F (d,q; z′1, z

′
2)× {Cbb + Cbs + Css} (A.51)

Note that in the special case where the material is a stack of N 2D layers each of width w, we can
re-express our correlators as

⟨[Pα(z
′
1,q, ω), Pβ(z

′
2,−q,−ω)]⟩ =

N−1∑
j=0

⟨[Pα(q, ω), Pβ(−q,−ω)]⟩δ(z′1 − jw)δ(z′2 − jw) (A.52)

Consequently, the expression for 1/T1 can be re-written as:

1

T1
=

1

2
d2⊥ coth

(
βωq

2

)
µ2
0

L2

∑
q

F (d,q)× {Cbb + Cbs + Css} (A.53)

where F (d,q) =
∑N−1

j=0 c4q2e−2q(d+jw) and Cbb, Cbs, and Css are redefined with

⟨[Pα(q, ω), Pβ(−q,−ω)]⟩

instead of
⟨[Pα(z

′
1,q, ω), Pβ(z

′
2,−q,−ω)]⟩

. If we neglect the surface charge contributions Cbs, Css and impose rotational invariance in-plane,
this is precisely Eq. 6.62 of the main text.
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A.1.4 Influence of Magnetic Noise

In the main text, we quoted that the relative strength of 1/T1 due to magnetic noise emanating
from dipoles to electrical noise is controlled by µ2

zc
2
s/d

2
⊥c

4 ∼ 10−4 ≪ 1 for the nitrogen-vacancy
center. In this section, we derive this.

Recall that the coupling of an NV center to magnetic fields is given by:

HNV−B = µzB · S = µzBzSz + µz
Bx

2
(S+ + S−)− µz

iBy

2
(S+ − S−)

= µz

(
BzSz +

1

2
(B−S+ +B+S−)

)
(A.54)

where µz = 2.8 MHz/G and B± = Bx ± iBy. We note that such a Hamiltonian is incapable of
driving transitions between the |±1⟩ states of the NV center because each term can only change
the magnetic quantum number by at most one. Hence, magnetic field noise acts to enhance the
decay rate between the |0⟩ and |±1⟩ states of the NV center. To estimate this effect, we compute
the decay rate from |+⟩ to |0⟩, split by ω:

Γem =
πµ2

z

2

∑
n,m

e−βεn

Z
|⟨m, 0|B−S+ +B+S− |n,+⟩|2 δ(ω − εm + εn) (A.55)

= πµ2
z

∑
n,m

e−βεn

Z

∣∣B+
mn

∣∣2 δ(ω − (εm − εn)) = πµ2
z

∑
n,m

e−βεn

Z
B−

nmB+
mnδ(ω − (εm − εn)) (A.56)

Similarly,

Γabs = πµ2
z

∑
n,m

e−βεn

Z
B+

nmB−
mnδ(ω + (εm − εn)) (A.57)

Now, the full expression for 1/T1 =
1
2 [Γem+Γabs] and can be written from the noise tensor because:

Nij(ω) =
1

2

∫ ∞

−∞
dt⟨{Bi(t), Bj(0)}⟩eiωt

= π
∑
n,m

e−βεn

Z

[
Bi

nmBj
mnδ(ω − (εm − εn)) +Bj

nmBi
mnδ(ω + (εm − εn))

]
(A.58)

Thus, we have in total:

1

T1
=

µ2
z

2
N−+(ω) =

µ2
z

4
coth

(
βω

2

)
S−+(ω) =

µ2
z

4
coth

(
βω

2

)∫ ∞

−∞
dt⟨[B−(t), B+(0)]⟩eiωt (A.59)

Expression in hand, we will now estimate the rough magnitude of the magnetic contribution to
1/T1. Note that we compute the magnetic field as:

B(r, t) = ∇×A(r, t) =
µ0

L

∑
q

∫
dz′dω

2π
Hi(z, z

′,q, ω)Pi(z
′,q, ω)ei(q·ρ−ωt) (A.60)
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where Hi = ∇ × (Gie
i(q·ρ−ωt))e−i(q·ρ−ωt) = Hi + hi representing bulk and surface contributions.

We can use Eqs. A.22 and A.23 to get:

Hi =


iqyGz

i − ∂zGy
i

∂zGx
i − iqxGz

i

iqxGy
i − iqyGx

i

 =


−qyδiz + iλδiy

−iλδix + qxδiz

−qxδiy + qyδix

 ω

2λ
e−λ|z−z′| (A.61)

and hi = 0.
Having propagated the in-sample polarization to the magnetic fields outside of the material, we

now determine the relaxation rate of our probe qubit due to in-sample polarization fluctuations.
To do so, we compute magnetic noise at the location of the probe qubit due to these fluctuations.
In particular, by Eq. A.7 and A.8, we need to compute:

⟨[B−(r, t), B+(r, 0)]⟩ =
µ2
0

L2

∑
q1,q2

∫
dω1dω2dz

′
1dz

′
2

(2π)2
H−

i (z′1,q1, ω1)H
+
j (z′2,q2, ω2) (A.62)

×⟨[Pi(z
′
1,q1, ω1), Pj(z

′,q2, ω2]⟩ei(q1·ρ−ω1t)e−iω2t (A.63)

where r = (ρ, d) = (0, 0, d) is the location of the qubit. Assuming space-time translation invariance,
we have that

⟨[Pi(z
′
1,q1, ω1), Pj(z

′
2,q2, ω2)]⟩ = 2πδ(ω1 + ω2)δq1,−q2⟨[Pi(z

′
1,q, ω), Pj(z

′
2,−q,−ω)]⟩ (A.64)

Thus, the magnetic noise can be expressed as:

⟨[B−(r, t), B+(r, 0)]⟩

=
µ2
0

L2

∑
q

∫
dωdz′1dz

′
2

(2π)2
H−

i (z′1,q, ω)H
−
j (z′2,−q,−ω)⟨[Pi(z

′
1,q, ω), Pj(z

′
2,−q,−ω)]⟩e−iωt (A.65)

To proceed further, we simply need to contract the product of kernels with the polarization com-
mutator:

H−
i (1)H+

j (2)⟨[Pi(1), Pj(1)]⟩ =
〈[

1

2
(H−

+ (1)P−(1) +H−
− (1)P+(1)) +H−

z (1)Pz(1),

1

2
(H+

+ (2)P−(2) +H+
− (2)P+(2)) +H+

z (2)Pz(2)

]〉
=

1

4

(
H−

+ (1)H+
− (2)⟨[P−(1), P+(2)]⟩+H−

− (1)H+
+ (2)⟨[P+(1), P−(2)]⟩

)
+H−

z (1)H+
z (2)⟨[Pz(1), Pz(2)]⟩

+
1

4

(
H−

+ (1)H+
+ (2)⟨[P−(1), P−(2)]⟩+H−

− (1)H+
− (2)⟨[P+(1), P+(2)]⟩

)
+

1

2

(
H−

+ (1)H+
z (2)⟨[P−(1), Pz(2)] +H−

− (1)H+
z (2)⟨[P+(1), Pz(2)]⟩

+H−
z (1)H+

− (2)⟨[Pz(1), P+(2)]⟩+H−
z (1)H+

+ (2)⟨[Pz(1), P−(2)]⟩
)

(A.66)



APPENDIX A. DERIVATIONS FOR CHAPTER 6 191

where H−
i (1) = H−

i (d, z1,q1, ω), H+
j (2) = H+

j (d, z2,q2, ω
′), Pi(1) = Pi(z1,q1, ω), and Pj(2) =

Pj(z2,q2, ω
′). The first line is the only line that appreciably contributes if we assume that our

sample is rotationally invariant or has a conserved polarization density. Now we compute the
product of the kernels in the approximation that ω/c ≪ q. We remark that:

H+
i = Hx

i + iHy
i = [(−qyδiz + iλδiy) + (λδix + iqxδiz)]

ω

2λ
e−λ|z−z′|

= [iq+δiz + 2λδi−]
ω

2λ
e−λ|z−z′| (A.67)

H−
i = Hx

i − iHy
i = [(−qyδiz + iλδiy) + (−λδix − iqxδiz)]

ω

2λ
e−λ|z−z′|

= − [iq−δiz + 2λδi+]
ω

2λ
e−λ|z−z′| (A.68)

Now, just to get an estimate for the magnetic field strength, we compute only two of these
kernels and use Gaussian polarization correlations to get an estimate for the noise signal. In
particular, we compute

H−
+ (1)H+

− (2) =
ω2

4λ2
e−λ|z−z′1|e−λ|z−z′2|4λ2 ≈ ω2e−q|z−z′1|e−q|z−z′2| (A.69)

H−
z (1)H+

z (2) =
ω2

4λ2
e−λ|z−z′1|e−λ|z−z′2|q2 ≈ ω2

4
e−q|z−z′1|e−q|z−z′2| (A.70)

which would be the only non-zero terms if the system was translation and rotationally invariant.
Thus, we have that the total noise expression looks something like:

1

T1
=

µ2
z

4
coth

(
βω

2

)∫ ∞

−∞
dt⟨[B−(r, t), B+(r, 0)]⟩eiωt (A.71)

=
µ2
zµ

2
0ω

2

4
coth

(
βω

2

)∫
d2q

(2π)2

∫
dz′1

∫
dz′2

e−q|z−z′1|e−q|z−z′2|

4
[C+− + Czz] (A.72)

where C+− = ⟨[P+(1), P−(2)]⟩ and Czz = ⟨[Pz(1), Pz(2)]⟩. Now, assuming that we have a 2D sample,
our polarization only fluctuates in-plane (hence we can neglect Czz), and Gaussian correlations, we
can compute the retarded correlations (see next section for a derivation of this):

χ+− =
Q2

a4
ℏ
ρ

1

ω2
d − (ω + iη)2

δ(d− z′1)δ(d− z′2) (A.73)

where ωd =
√

c2sq
2 + ω2

0 and C+− = Im[χ+−]. We can plug this in to get an estimate for the
magnetic noise as:

1

T1
=

µ2
zµ

2
0ω

2

16
coth

(
βω

2

)(
Q2

a2d
ℏ
ρ

)
×

{[
e−2qresd π

2c2s

]
ω0 ≤ ω

0 ω0 > ω
(A.74)

If we divide this by the estimate for the electrical noise in the main text, we find that the ratio
between these two is controlled by the dimensionless ratio:

(1/T1)magnetic

(1/T1)electric
∼ µ2

zω
2

d2⊥q
2
resc

4
=

µ2
zc

2
s

d2⊥c
4
∼ 10−4 (A.75)

for the parameters shown in the main text.
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A.2 Derivation of Numerical Estimate of 1/T1

In the main text, we made a numerical prediction for the magnitude of 1/T1 as a function of
frequency (ω), qubit-sample distance (d), and temperature (T ) for a qubit above a dielectric material
with non-interacting phonon modes. For transparency, we provide the precise derivation of the
dimensionful prefactor to Eq. 6.63 of the main text. Namely, consider once again the toy-model of
a ionic crystal considered in the main text (see Fig 6.11(a,b) of the main text). We can associate
with each sublattice a phonon displacement field (u+ and u− for the positive and negative ions
respectively). For the lattice, there will be two classes of phonon modes: gapless acoustic branches
uac = (u++u−)/2 and gapped optical branches u = (u+−u−). Since acoustic phonons don’t carry
polarization, we characterize the dynamics of the optical phonons by the (Euclidean) action [186]:

Su =

∫ ℏβ

0
dτ

∫
ddx

ρ

2
uj(x)

[
(−∂2

0 + ω2
T )δjl − c2T (∇2δjl − ∂j∂l)− c2L∂j∂l

]
ul(x) (A.76)

where β is the inverse temperature, ρ is the mass density of the lattice, cT,L refer to the transverse
and longitudinal phonon velocity, and ωT indicates the phonon mass. For sake of analytic tractabil-
ity, we have neglected interactions between phonon modes. These phonon modes are related to the
polarization via:

P =
Q

ad
u (A.77)

where Q is the Born effective charge of the material. Since these phonon modes generate a polar-
ization, we must also account for the coupling between the phonon modes and the electromagnetic
field. Since the electromagnetic potential will only couple to the longitudinal optical phonon mode,
this is characterized by the action:

Sφ =

∫ ℏβ

0
dτ

∫
ddr

[ ε

8π
(∇φ)2 + iQφ∂juj

]
(A.78)

where φ is the electromagnetic potential, Q is the charge of the crystal’s ions, and ε is the dielectric
constant of the material. Integrating out these electromagnetic field degrees of freedom generates
a phonon-phonon interaction of the form:

S′
u =

2πQ2

εβ

∑
n,q

q2i u
†
i (ωn, q)ui(ωn, q)

q2
(A.79)

where the sum over n is a sum over Matsabura frequencies ωn = 2πn
β where n ∈ Z and u(ωn, q) is

related u(τ, x):

uj(τ, x) =
1√
ℏβ

∑
n

eiωnτ 1

Ld/2

∑
q

eiq·xuj(ωn,q). (A.80)

Note that the action of Eq. A.79 effectively renormalizes the mass of the longitudinal optical phonon

mode to

√(
4πQ2

ε

)
+ ω2

T and as such this mode will have a gap even if ωT is small (which will be
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our assumption). Hence, we can integrate out these modes to capture the low-energy dynamics.
As such, our effective action, written using the Matsabura modes of Eq A.80, is given by:

Seff =
∑
n,q

ρ

2
u†j

[
(ω2

n + ω2
T )δjl + c2T q

2
] q2δjl − qjql

q2
ul. (A.81)

Now, if we impose ∂juj = 0, the integrand of our effective action is invertible and one can easily

extract the two-point polarization correlations ⟨P †
+(ωn,q)P−(ωm,q)⟩ = Q2

a2d
⟨u†+(ωn,q)u−(ωn,q)⟩ =

χ+−(ωn,q):

χ+−(ωn,q) =
Q2ℏ
a2dρ

1

ω2
d + ω2

n

(A.82)

where ωd =
√
c2T q

2 + ω2
T . Note that this can be transformed into the retarded correlation function

by rotating iωn → ω + iη yielding:

χ+−(ω,q) =
Q2ℏ
a2dρ

1

ω2
d − (ω + iη)2

(A.83)

Since, it is the imaginary component of χ+− that enters into the expression for T1 (Eq. A.51), we
note that:

Im

[
1

ω2
d − (ω + iη)2

]
=

π

2ωd
[δ(ωd − ω)− δ(ωd + ω)] (A.84)

where we took η → 0 in the last step. Thus, since δ(ωd −ω) =

√
c2T q2res+ω2

T

c2T qres
δ(q− qres) =

ω
c2T qres

δ(q−

qres), where qres =

√
ω2−ω2

T
cT

, we have that

1

T1
=

1

4
µ2
0d

2
⊥ coth

(
βℏω
2

)[
c4

16π

Q2ℏ
ρa4

]
×

{[
e−2qresd π

2c2T
q2res

]
ωT ≤ ω

0 ωT > ω
(A.85)

from which we get the numerical prediction of 1/T1. Note that in this section, we referred to the
transverse optical phonon mode mass and velocity as ωT and cT respectively (to distinguish it from
the longitudinal optical phonon mode). To make contact with the notation of the main text, simply
relabel ωT → ω0 and cT → cs.

A.3 Derivation of 1/T1 Scaling across

Para-to-Ferroelectric Phase Transitions

In this section, we provide additional details regarding how qubit sensors can shed light on paraelec-
tric to ferroelectric phase transitions. We start with an intuitive real space argument for distance
scaling of noise, which hints towards a possible enhancement of 1/T1 as we approach the critical
point. We next consider a thermal (classical) phase transition where we detail the precise derivation
and additional intuition of the scaling theory of the main text. We conclude by doing the same for
the quantum case.
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A.3.1 Intuitive Real Space Argument for Distance Scaling of 1/T1

In the main text, we claimed that studying the qubit-sample distance scaling of 1/T1 can provide a
tell-tale signature of approaching the critical point. To justify this, we provide some intuition for the
distance scaling of the noise away from and near the critical regime, based on a simple real-space
picture. Roughly speaking, the relaxation rate of the qubit can be expressed as the frequency-
filtered correlation function of electric fields generated by polarization fluctuations. Since the qubit
is sensitive to polarization fluctuations on an area of size d2 within the 2d sample (corresponding
to the solid angle subtained by the qubit at the sample), the relaxation rate takes the following
form:

1

T1
∼

∑
i,j

⟨EiEj⟩ω ∼
∑
i,j

〈
Pi

d3
Pj

d3

〉
ω

∼ 1

d6
× d2 ×

∑
i

⟨PiP0⟩ω =
1

d4
⟨PiP0⟩ω (A.86)

where we used translation invariance of the correlation function in the third step to integrate over
the ‘center of mass’ coordinate which gives an extra factor of d2. For low frequencies, we may expect
that the polarization correlator ⟨PiP0⟩ω is not very different from the static correlator ⟨PiP0⟩ω→0

(we will revise this crude approximation later within specific models). Therefore, if the sample-
probe distance d is larger than the correlation length ξ, the correlator yields ξ2. This happens when
we are far enough from the critical point so that ξ is small, or when the sample is quite far so that
d is large. In this regime, 1/T1 scales as d−4. In contrast, when we are close to the sample or near
the critical point so that d ≪ ξ, then the correlator yields d2. So, naively we expect 1/T1 to scale
as d−2, although the precise scaling will depend on the nature of the dynamics near the critical
point. Therefore, a change in the scaling of 1/T1 as a function of distance can signal criticality, as
argued in the main text.

A.3.2 Derivation of 1/T1 near thermal ferroelectric transition:
Mean-field theory and scaling theory

As dicussed in the main text, the transition between a paraelectric and a ferroelectric occurs due to
the softening of the transverse optical phonon mode. Specifically, the gap ω0 of this mode decreases

as one lowers the temperature, and ω0
T→Tc−−−−→ 0. Near the critical regime, the temperature T ∼ Tc

is much larger than the gap and so there is always a large occupancy of this mode and accordingly
the considerations of classical hydrodynamics of a critical mode will apply. The dynamics of the
polarization in the critical regime (and consequently the scaling theory of dynamical correlations)
are strongly constrained by conservation laws. In our case of interest, the order parameter (polar-
ization density) is an Ising order parameter, which is not conserved by the dynamics. We further
assume that we can neglect coupling of the order parameter to a diffusive mode (such as conserved
energy density). Thus, following Refs. [138, 139, 145], we can write down the expression for the
dynamic electrical susceptibility at a mean-field level.

χ(q, ω) ∝ 1

−iω/Γ + q2 + ξ−2
(A.87)

where ξ−1 ∝ |T − Tc| is the inverse correlation length, and Γ determines the rate of approach
to thermal equilibrium after a perturbation. Using this expression for χ(q, ω), we evaluate the
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mean-field scaling of 1/T1 as a function of distance. Specifically, we find that in the experimentally
relevant limit of small qubit splitting (ω → 0):

1

T1
∼ 2T

ω

∫ ∞

0
dq q3e−2qd Im[χ(q, ω)]

ω→0−−−→

{
T
Γ ln

(
ωd2

Γ

)
, d ≪ ξ

Tξ4

Γd4
, d ≫ ξ

(A.88)

As argued in the previous subsection, we recover the d−4 behavior of 1/T1 away from criticality
(d ≫ ξ), where mean-field theory is expected to be reasonably accurate. However, it may break
down in 2D near criticality, and therefore we resort to a more general scaling theory for 1/T1.
Near the critical point, the behavior is characterized by the following scaling form of the dynamic
electrical susceptibility (assuming spatial isotropy for):

χ(q, ω) = χ(q)Y (ωq−z, qξ), where χ(q) ≡ χ(q, 0) ∼ q−2+η and Y (0, qξ) = 1 ∀ q (A.89)

At the critical point, ξ → ∞ and therefore, χ(q, ω) ∼ q−2+ηZ(ωq−z), using this gives the following
scaling form for 1/T1:

1

T1
∼ 2T

ω

∫ ∞

0
dq q3e−2qd × q−2+ηZ(ωq−z) =

2T

ωd2+η
Φ(ωdz) (A.90)

Note that the above form implies that there is an apparent divergence in 1/T1 as ω → 0. However,
this is somewhat misleading, as general considerations imply that Im[χ(q, ω)] is necessarily odd in
ω [284]. Therefore, we can recast this scaling form by defining Φ(ωdz) = ωdz Ψ(ωdz):

1

T1
∼ 2T

d2+η−z
Ψ(ωdz) (A.91)

which was the result quoted in Eq. 6.63 in the main text. The mean-field d-scaling of 1/T1 ∼ ln
(
ωd2

)
discussed earlier may be found from the more general scaling expression in Eq. (A.91) by using
mean-field critical exponents η = 0 and z = 2 [145], and using the scaling function Ψ(x) = ln(x).

A.3.3 Derivation of 1/T1 near quantum ferroelectric transition

We now turn our attention to the quantum para-to-ferroelectric phase transition, and derive the
appropriate scaling relations for 1/T1. Unlike the classical case where one needs to supplement
the free-energy by additional phenomenological equations of motion of the order parameter, the
quantum dynamics of polarization is completely determined by the Hamiltonian [284]. Furthermore,
energy is always conserved if the Hamiltonian is time-independent. Therefore, in principle, once we
know the quantum Hamiltonian we should be able to extract all dynamical correlations. In practice
this often turns out to be quite difficult, and therefore one has to resort to certain limiting cases.

We consider the experimentally relevant limit of very low frequencies (ω ≪ T ). In this regime,
the quantum dynamics is typically relaxational and its description using weakly interacting soft
modes is not accurate [284]. Nevertheless, we can write down a generic scaling function analogous
to the classical case, which includes an additional scaling variable ω0/T , where ω0 is the gap of the
soft mode that closes at T = 0 and λ = λc, the quantum critical point.

χ(q, ω) = χ(q)Yq

(ω
T
,
ω0

T
,
csq

T

)
, where χ(q) ∼ q−2+η as in the classical case (A.92)
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where Yq is a dimensionless quantum scaling function. Plugging this into Eq. 6.62 in the main text
gives the relaxation rate as:

1

T1
∼ 2T

ω

∫ ∞

0
dq q3e−2qd Im[χ(q, ω)] =

1

d2+η
Ψ
(ω
T
,
ω0

T
,
cs
Td

)
(A.93)

While the scaling relation in Eq. (A.93) is formally correct, it unfortunately does not give us a lot
of information. Therefore, it is useful to resort to a more phenomenological form of χ(q, ω) which
cannot be rigorously derived analytically, but is nevertheless well-motivated and more predictive
for the behavior of 1/T1 in the small ω/T limit (the dynamical critical exponent z = 1 for this
transition, but we keep a general z).

χ(q, ω) =
χ(0, 0)

1− iω/Γ + q2ξ2
, where Γ ∼ T, ξ ∼ cs

T 1/z
and χ(0, 0) ∼ T (−2+η)/z (A.94)

To motivate the form of χ(q, ω) in the vicinity of the quantum critical point, we make the following
observations. First, we expect a finite relaxation rate Γ towards equilibrium even at q = 0 (as the
order parameter is not-conserved), and finite q corrections are expected to be analytic at non-zero T
when λ ≈ λc. Second, we note that exactly at the critical value of the tuning parameter, i.e, λ = λc,
the static uniform susceptibility limq→0 χ(q, 0) only diverges at T = 0, but remains finite at non-
zero T with a correlation length ξ. Next, since the only energy-scale in the quantum critical regime
is T , we must have Γ ∼ T , and ξ ∼ cs/T

1/z (which corresponds to a smaller correlation length at
larger T due to thermal fluctuations). Finally, static scaling theory requires that χ(q, 0) ∼ q−2+η at
T = 0 and obeys a scaling relation of the form χ(q, 0) = q−2+ηX(qξ) for any T . Non-divergence of
χ(q, 0) at finite T > 0 then essentially fixes χ(0, 0) ∼ T (−2+η)/z. Thus, we have all the ingredients
to arrive at the postulated form of χ(q, ω) in Eq. (A.94). We note that a similar form is an excellent
approximation to the low-frequency dynamics of the one-dimensional by comparing with the exact
solution [284, 285]; our arguments show that this should be true for non-conserved dynamics in 2D
as well. Using Eq. (A.94), we can derive the scaling of 1/T1 for small ω/T :

1

T1
∼ 2T

ω

∫ ∞

0
dq q3e−2qd Im[χ(q, ω)] =

2Tχ(0, 0)

ΓT

∫
dq

q3e−2qd

(1 + q2ξ2T )
2

∝

{
T (2+η)/z ln

(
cs

dT 1/z

)
, d ≪ ξT

T (−2+η)/zd−4, d ≫ ξT
(A.95)

which is Eq. 6.65 in the main text. We note that just like the classical case, the distance-scaling
of 1/T1 is d−4 for d much larger than the correlation length ξ (i.e, away from criticality), but is
significantly altered as we approach the critical point (λ = λc and T = 0).

A.4 Derivation of Dispersion Relation for Dipolaron

Mode

In this section, we derive the dipolaron dispersion for a two-dimensional fluid of electrically neutral
dipolar molecules. Like plasmons in a charged Fermi liquid, dipolarons are longitudinal collective
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modes that arise due to long-range electrostatic interactions in dipolar fluids. We know that
nature of plasmons in a Fermi liquid differ drastically between two and three spatial dimensions
— in d = 3, plasmons are gapped excitations at q = 0, while in d = 2, they are gapless with a
dispersion ωp(q) ∝

√
q. The reason is the weaker electric field created by two dimensional charge

imbalance results in a weaker restoring force at large distances, compared to a three dimensional
charge imbalance. Such an effect is at play for dipolarons too, resulting in gapless dispersion
ω2
d(q) ∼ aq2+ bq3 for dipolarons in two dimensions. In what follows, we derive this dispersion from

a simple hydrodynamic treatment of dipolar density fluctuations. We note that our results are in
accordance with more a microscopic treatment of collective modes in two-dimensional dipolar gases
[202].

Consider a fluid of dipolar molecules at equilibrium density nd at chemical potential µeq and
equilibrium velocity v0 = 0. Now we consider fluctuations about the mean density so that there
is local density profile δn(r, t) = n(r, t) − nd, and velocity v(r, t) ̸= 0. The linearized continuity
equation and Euler’s (force) equation read as follows respectively:

∂tδn(r, t) + nd∇ · v = 0, mnd∂tv = −nd∇
(
µeq +

∂µ

∂n
δn

)
−∇(µnd ·E) (A.96)

The generated electric field can be related to the fluctuating polarization density µn(r) as discussed
previously (neglecting retardation effects):

Ei(r, t) =

∫
dr′T d

ij(r, r
′)µjn(r

′, t),

T d
ij(q) =

1

4πϵ0

∫
ddreiq·r∂i∂j

(
1

r

)
=

{
− qiqj

ϵ0q2
, D = 3

− qiqj
2ϵ0q

, D = 2
(A.97)

Going to momentum space and using that the isothermal compressibility is given by κ = 1
n2
d
(∂n∂µ),

we can combine Eqs. (A.96) to find the following equation for δn(q, ω):

ω2δn(q, ω) =

(
1

κmnd
q2 +

µiµjnd

m
qiT

d
ij(q)qj

)
δn(q, ω) (A.98)

Using the form of Td from Eq. (A.97) for D = 2, we finally get the collective mode dispersion in
D = 2 that was quoted in the main text:

ω2
d(q) = v2q2 +

ndq(q · µ)2

2ϵ0m
(A.99)

where v =
√

1/κmnd is the speed of the collective mode at small q. This is analogous to the
linearly dispersing zero sound mode in Fermi liquids, and does not require dipolar interactions.
At larger momentum, anisotropy effects due to dipolar interactions come into play and we have
a dominating q3/2 term in the dispersion. In particular, if we take the angular average over all
directions of µ (which can point anywhere on the 2-sphere), then we can replace (q ·µ)2 → q2µ2/3,
and we recover the dispersion in Ref. [202] (converted to SI units).

ω2
d(q) = c2sq

2 +
µ2ndq

3

6ϵ0m
(A.100)
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A.5 Derivation of Polarization Correlations for

Relaxor Ferroelectric Model

In the main text, we investigated the relaxation rate of a qubit sensor in the vicinity of a relaxor
ferroelectric modeled via the Hamiltonian:

H =
∑
i

[
Π2

i

2M
+ V (ui)

]
− 1

2

∑
i,j

vijuiuj −
∑
i

Eext
i ui −

∑
i

hiui (A.101)

where Πi = Mu̇i is the conjugate momentum of the polarization-carrying displacement ui (chosen
to be in the z-direction), M is the effective mass, Eext

i is an external applied field, hi ∼ N(0,∆) is
a random field, V (ui) =

κ
2u

2
i +

γ
4u

4
i (κ, γ > 0), and

vij = − 1

|ri − rj |3
if i ̸= j (A.102)

is the dipolar interaction and ri = (xi, yi, 0) is the 2D lattice coordinate of the ith dipole. In this
section, we provide details for how we derived the form of the qubits relaxation rate. We do so
by computing the disorder-averaged polarization fluctuations arising from the above Hamiltonian,
following the derivation in Refs. [134, 135, 330]. In general, this is hard to do because of (i) the
anisotropic and long-range nature of the dipolar interaction and (ii) the anharmonicity of the local
potential. We treat the former by using the leading order correction to mean field (the Onsager
approximation) because such fluctuations are important in the relaxor context and we treat the
latter using a quasi-harmonic approximation (we linearize the equations of motion). With this in
mind, we write the equations of motion under Eq. A.101 as:

Müi = −dV (ui)

dui
− hiui − Elocal

i where Elocal
i =

∑
j

vijuj + Eext
i (A.103)

To simplify this Hamiltonian, we can make a mean-field approximation:

Elocal
i ≈ EMF

i =
∑
j

vij⟨uj⟩+ Eext
i − λ⟨ui⟩ (A.104)

where ⟨· · · ⟩ indicates thermal averaging and we introduced the Lagrange multiplier −λ⟨ui⟩ which
is used to enforce the fluctuation-dissipation theorem for the polarization fluctuations we compute
[47]. It is precisely this Lagrange multiplier that enables encorporating fluctuations, to leading
order. This yields:

H ≈
∑
i

Hi =
∑
i

[
H0

i − hiui − EMF
i ui

]
(A.105)

where H0
i =

Π2
i

2M + V (ui)− (λ/2)u2i .
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A.5.1 Self-Consistent Equations for Phonon Dispersion

Given the model derived above, we can compute the phonon dispersion self-consistently which
will consequently determine the form of the dipolar fluctuations that enter our expression for
1/T1. To do so, we aim to compute the dielectric susceptibility χ(ω,q) = δ⟨u(ω,q)⟩/δEext(ω,q)
where δ⟨u(ω,q)⟩ indicates deviation of the displacement field from its thermal expectation and · · ·
indicates averaging over disorder realizations. We do this by defining an auxiliary susceptibility,
φhi

(ω), which characterizes the system’s susceptibility to the local mean field:

δ⟨ui(ω)⟩ = φhi
(ω)EMF

i (ω). (A.106)

Now we disorder average both sides of this expression and take the 2D discrete fourier transform
of both sides. In doing so, we assume that the effects of the random fields decouple in φhi

(ω) and
⟨ui⟩ implying that φhi

(ω) = φh(ω) which only has a q = 0 component. This yields:

δ⟨u(ω,q)⟩ = φh(ω)
[
vqδ⟨u(ω,q)⟩ − λδ⟨u(ω,q)⟩+ δEext(ω,q)

]
. (A.107)

Note that, in the above expression, vq is the 2D discrete Fourier transform of the dipolar interaction
with the assumption that the dipoles are arranged in a square lattice. The precise form of this
discrete Fourier transform was worked out in Refs. [349, 100] and was found to be:

vq/n =
1

n

∑
i,j

vi,je
iq·(ri−rj) ≈ v0

(
1− 3

4πf
|q|

)
with v0 =

8π

3
f (A.108)

where f is a lattice specific constant and is f = 1.078 for a simple cubic lattice. Using Eq. A.107,
we see that the dielectric susceptibility can be written as:

χ(ω,q) =
δ⟨u(ω,q)⟩
δEext(ω,q)

=
1

φh(ω)−1 − (vq − λ)
. (A.109)

Expression in hand, we can now use the classical equations of motion of the displacement field
under the Hamiltonian of Eq. A.105 to directly compute the form of φh(ω) from which the above
susceptibility can be computed directly. The equations of motion are:

Müi = −dV (ui)

dui
+ λui + hi + EMF

i − Γu̇i = −(κ− λ)ui − γu3i + hi + EMF
i (t)− Γu̇i (A.110)

where we introduced a phenomenological decay Γ to regulate our response functions. At the end,
we will take Γ → 0. Now, to treat this equation analytically, we linearize it by treating deviations
of the displacement from its disorder and thermal average to be small ui(t) = p + δui(t) where
p = ⟨ui(0)⟩ is the static mean displacement field. Note that, here, δui(t) contains all of the time
dependence of ui(t) and is not in general zero after thermal and disorder averaging. This yields:

M ¨δui(t) = −(κ− λ)(p+ δui)− γ(p3 + 3p2δui + 3pδu2i + δu3i ) + hi + EMF
i (t)− Γ ˙δui (A.111)

In accordance with standard linear response, we assume that, in the absence of the external applied

field, our displacement field has no dynamics (e.g ⟨ ˙δui⟩ = ⟨ ¨δui⟩ = 0). After thermal and disorder
averaging, this yields: [

(k − λ) + γp2 + 3γ⟨δui(0)2⟩
]
p = 0 (A.112)
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which places a condition on p. Note that in the above expression, we have used the fact that
⟨ ˙δui⟩ = ⟨ ¨δui⟩ = 0 to replace ⟨δui(t)2⟩ = ⟨δui(0)2⟩. Now, we add the above expression to our
original equations of motion from which we can compute our auxiliary susceptibility:

M ¨δui(t)

= −(κ− λ)δui(t)− γ
[
3p2δui(t) + δu3i (t) + 3p(δu2i (t)− ⟨δui(0)2⟩)

]
+ hi + EMF

i (t)− Γ ˙δui(t)

= −
(
κ− λ+ 3γ

[
⟨δu2i (0)⟩+ p2

])
δui(t) + hi + EMF

i (t)− Γ ˙δui(t) (A.113)

where in the second line, we approximated δu2i (t) = ⟨δu2i (0)⟩ and δu3i (t) = 3⟨δu2i (0)⟩δui(t). From
this, we can easily compute the auxiliary susceptibility:

φh(ω) =
1

MΩ′2 −Mω2 + iωΓ
where MΩ′2 =

(
κ− λ+ 3γ

[
⟨δu2i (0)⟩+ p2

])
(A.114)

which immediately yields an expression for the retarded polarization correlation function (also
called dielectric susceptibility):

χ(ω,q) =
1

MΩ2
q −Mω2 + iωΓ

(A.115)

with the phonon displacement mode appearing as a pole in the denominator:

MΩ2
q = MΩ2

0 + (v0 − vq) =
[
MΩ′2 − (v0 − λ)

]
+ (v0 − vq) (A.116)

Now, to determine the parameter λ, we impose fluctuation-dissipation:

⟨u2i (0)⟩ − ⟨ui(0)⟩2

=
1

N

∑
q

∫
dω

2π
coth

(
βω

2

)
Im[χ(ω,q)]

=
1

N

∑
q

1

2MΩq
coth

(
βΩq

2

)
(A.117)

where we used that fact that limΓ→0 Im[χ(ω,q)] = π
2Mω [δ(ω − Ωq) + δ(ω +Ωq)]. Now, to close the

self-consistency equations, we need expressions for ⟨δu2i (0)⟩, ⟨u2i (0)⟩, ⟨ui(0)⟩2. To do so, first note

that ⟨δu2i (ω)⟩ = ⟨u2i (ω)⟩ − p2. Next, note that:⟨ui(0)⟩ = p+
∑

j χij(0)hj by definition. Therefore,
this immediately yields that:

⟨ui(0)⟩2 = p2 +
∆2

N

∑
q

χ(0,q)2 = p2 +
∆2

N

∑
q

1

(MΩ2
q)

2
(A.118)

Therefore, we have closed the self-consistency equations. Eliminating λ and Ω′ from Eqs. A.116 by
using the definition of Ω′ in Eq. A.114, we find the following self-consistency equations:

MΩ2
q =

[
κ+ 3γ(⟨u2i (0)⟩ − p2)− v0

]
+ (v0 − vq) (A.119)

⟨u2i (0)⟩ = p2 +
1

N

∑
q

[
1

2MΩq
coth

(
βΩq

2

)
+

∆2

(MΩ2
q)

2

]
(A.120)
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where p can be determined from a thermodynamic analysis by finding minima of free energies. This
is a very lengthy procedure (which was carried out in Ref. [134]) and so, for our purposes, we can
pick p = 0. To compute the polarization correlations entering into the expression for 1/T1, we use
Eq. A.115 in the limit where Γ → 0.

A.5.2 Computation of Critical Temperature

Using the methods above, it is possible to compute a critical temperature for the para-to-ferroelectric
transition that exists in the absence of disorder (∆ = 0). Recall that at the critical temperature,
the mass of the transverse optical phonon mode goes to zero. Using Eq. A.119, we can express the
mode mass as:

MΩ2
0 =

[
κ+ 3γ(⟨u2i (0)⟩ − p2)− v0

]
(A.121)

Moreover, in the absence of disorder and with p = 0, the fluctuation ⟨u2i (0)⟩ is found by Eq. A.120
to be:

⟨u2i (0)⟩ =
1

N

∑
q

[
1

2MΩq
coth

(
βΩq

2

)]
≈ 1

N

∑
q

kBT

MΩ2
q

=
1

N

∑
q

kBT

MΩ2
0 + (v0 − vq)

(A.122)

We can solve for Tc by setting Ω0 = 0 and plugging Eq. A.122 into Eq. A.121, yielding:

kBTc =
v0 − κ

3γ
×

[
1

N

∑
q

1

(v0 − vq)

]−1

(A.123)

Note that this Tc does not indicate a transition in the relaxor case and is simply a reference
temperature.




