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What are 
data?



• European Union

• U.S. Federal research policy

• Research Councils of the UK

• Australian Research Council

• Individual countries, funding 
agencies, journals, universities
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Data sharing policies
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Data are representations of 
observations, objects, or other 
entities used as evidence of 
phenomena for the purposes of 
research or scholarship.* 

Kivelson, M. G., & Southwood, D. J. (2003). 
First evidence of IMF control of Jovian 
magnetospheric boundary locations: Cassini 
and Galileo magnetic field measurements 
compared. Planetary and Space Science, 
51(13), 891–898. 
https://doi.org/10.1016/S0032-
0633(03)00075-8

*C.L. Borgman (2015). Big 
Data, Little Data, No Data: 
Scholarship in the Networked 
World. MIT Press

ncl.ucar.eduhttp://www.census.gov/population/cen2000/map02.gif

http://www.genome.gov/dmd/img.cfm?node=Photo
s/Graphics&id=85327

https://doi.org/10.1016/S0032-0633(03)00075-8


How to 
interpret data?
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Center for Embedded Networked Sensing
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• NSF Science & Tech Ctr, 2002-2012
• 5 universities, plus partners
• 300 members
• Computer science and engineering
• Science application areas

Slide by Jason Fisher, UC-Merced, 

Center for Embedded Networked Sensing (CENS)



Science <–> Data

Engineering researcher: 
“Temperature is temperature.”

Biologist: “There are hundreds 
of ways to measure 
temperature. ‘The temperature is 
98’ is low-value compared to, ‘the 
temperature of the surface, 
measured by the infrared thermopile, 
model number XYZ, is 98.’ That 
means it is measuring a proxy for a 
temperature, rather than being in 
contact with a probe, and it is 
measuring from a distance. The 
accuracy is plus or minus .05 of a 
degree. I [also] want to know that it 
was taken outside versus inside a 
controlled environment, how long it 
had been in place, and the last time 
it was calibrated, which might tell me 
whether it has drifted.." CENS Robotics team



Fig. 1 A Keck/NIRC2 AO image from May 2010 showing the short-period star S0-102, which is, 
besides S0-2, the only star with full orbital phase coverage, and the electromagnetic counterpart 

of the black hole, Sgr A*. 

L. Meyer et al. Science 2012;338:84-87

Copyright © 2012, American Association for the Advancement of Science
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Astronomers’ user interface for taking observations at a major ground-based telescope (August 2020)



Publications 
vs data
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Publications

12http://www.cse.psu.edu/hpcl/images/publications.jpg



Publications <–> Data: Role

Publications are 
arguments made 
by authors, and 
data are the 
evidence used to 
support the 
arguments. 

C.L. Borgman (2015). Big Data, Little Data, No Data: Scholarship in the Networked World. MIT Press



Publications <–> Data: Mapping

• Article 1

• Article 2

• Article 3

• Article 4

• Article n

• Dataset time 1

• Dataset time 2

• Observation time 1

• Visualization time 3

• Community collection 1

• Repository 1



Why cite 
data?

• Credit

• Attribution

• Discovery



Credit



Bibliometrics, Scientometrics, 
Informetrics, Webometrics…

Ohm, P. (2010). Broken Promises of Privacy: 
Responding to the Surprising Failure of 
Anonymization. UCLA Law Review, 57, 1701. 

Borgman, C. L. (2015). Big Data, Little Data, No Data: Scholarship 
in the Networked World. Cambridge MA: MIT Press.



Bibliographic styles

2110 unique styles (5 March 2020)



Authorship Credit

Searches for author: Christine Borgman, Christine L. Borgman, CL Borgman 
(excluding other C Borgman authors) on July 28, 2014 for Google Scholar, Web of 
Science (Thompson-Reuters, Clarivate), Scopus (Elsevier)

Source Publications
2014

Citations received
2014        

H-index
2014        

Google Scholar 380 7766 39

Web of Science 145 1629 20

Scopus 77 1314 14 (after 
1995)

19



“Altmetrics”

Published July 23, 2013; screenshot March 6, 2020



Attribution
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CRediT – Contributor Roles Taxonomy. (2020). http://credit.niso.org/

http://credit.niso.org/


Publications <–> Data: Attribution

• Publications

– Independent units

– Authorship is negotiated

• Data

– Compound objects

– Ownership is rarely clear

– Attribution

• Long term responsibility: Investigators

• Expertise for interpretation: Data collectors and analysts

http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85327



Discovery



Metadata for Discovery

• Identity 

– Identifiers

• DOI, Handles 

• URI, PURL…

– Naming and namespaces

• Authors/creators: ORCID, ISNI, VIAF…

• Generic/specific: registry number…

– Description

• Self-describing 

• Metadata augmentation 

http://web-interview-questions.blogspot.com/2010_06_21_archive.html 25



Discovering Useful Data

• Identify the form and content
• Identify related objects
• Interpret
• Evaluate
• Open
• Read
• Compute upon
• Reuse
• Combine
• Describe
• Annotate…
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Photo by @kissane; presentation by 
Jason Scott (@textfiles)

https://twitter.com/kissane/


Stewardship, 
Incentives, 
and Scientific 
Practice



Data Stewardship: The Ideal
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https://wwwdb.inf.tu-dresden.de/opendatasurvey/

28

Wilkinson, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 
http://dx.doi.org/10.1038/sdata.2016.18



Data Stewardship: the Reality

29Mount Wilson Solar 
Observatory, 2017

NASA, Cape Canaveral, 
http://www.loc.gov/pictures/resource/hhh.fl04
83.photos.319101p/

Getty Research Institute

http://www.information-age.com/cloud-
computing-pharmaceutical-industry-123462676/

http://www.datamartist.com/data-migration-part-1-introduction-to-the-data-migration-delema

http://gsa.rice.edu/

Graduate students

https://med.nyu.edu/our-community/life-
nyu-school-medicine/life-postdoc

Post-doctoral fellows



Lack of incentives to share data

• Labor to document data

• Benefits to unknown others

• Competition

• Control

• Confidentiality

• Lack of expertise and staff

• Lack of sustainability…

30

Image: http://www.buildingsrus.co.uk/.../ target1.htm



The Data Creators’ Advantage
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Comparative Data Reuse  <–>  Integrative Data Reuse

Goal “Ground truthing:” calibrate, 
compare, confirm 

Analysis: identify patterns, 
correlations, causal 
relationships 

Example Instrument calibration, 
sequence annotation, review 
summary-level data

Meta-analyses, novel 
statistical analyses

Frequency Frequent, routine practice Rare, emergent practice

Interpretation Interactional expertise, 
‘knowledge that’

Contributory expertise, 
‘knowledge how,’ tacit 
knowledge

Pasquetto, I. V., Borgman, C. L., & Wofford, M. F. (2019). Uses and reuses of scientific data: The data creators’ advantage. Harvard Data 
Science Review, 1:2, https://hdsr.mitpress.mit.edu/.  Winner of the 2020 ASIS&T SIG SI Social Informatics Best Paper Award

https://hdsr.mitpress.mit.edu/


Why Human Interaction with Data is a Hard Problem

• Data exist in contexts

• Data are complex objects

– Signals, observations

– Software, tools, methods, models

– Digital records, physical objects

• Data management is undervalued

• Data creators have interpretive advantages

32
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Milena GolshanPeter Darch Ashley Sands Irene PasquettoChristine Borgman

Bernie Boscoe Michael ScrogginsMorgan WoffordCheryl Thompson Sharon Traweek

Alberto Pepe, David Fearon, Katie Shilton, Jillian Wallis, Christine Borgman, Matthew Mayernik (2009)

For a full list of CKI participants, collaborators, and coauthors since ca 2002, see https://knowledgeinfrastructures.gseis.ucla.edu/




