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Abstract of the Dissertation

Cooper-Pair Injection into Topological Insulators and

Helical Wires

by

Koji Sato

Doctor of Philosophy in Physics

University of California, Los Angeles, 2013

Professor Yaroslav Tserkovnyak, Chair

A Cooper-pair (CP) splitter is a device capable of spatially separating a pair of entangled

electrons by sending a weak current from a superconductor (SC) to a pair of quantum dots or

quantum wires. In this thesis, CP splitters based on quantum spin Hall insulators (QSHI),

also known as two-dimensional topological insulator, and quantum wires are theoretically

studied. Spin-entangled electrons can be extracted from the CP’s in the SC, and transmitted

by the helical electronic states hosted by these quantum heterostructures. In the introduc-

tion, the background information on the integer quantum Hall effect, QSHI, and CP splitters

is provided.

In Chapter 2, CP spitter based on QSHI is considered. Due to electron interaction, spin-

entangled CP splits into opposite edges of QSHI, which support gapless electronic helical

modes. The momentum of electrons and spin are tightly locked in a helical state. Ac-

cordingly, the spin orientation determines charge curret, and the measurable current-current

correlations can thus convey information on the initial spin entanglement of CP’s, even after

they are spatially separated.

In Chapter 3, conventional quantum wires with strong spin-orbit interactions, such as

InAs, under magnetic field are shown to mimic the behavior of the helical QSHI edge states.

These wires can thus provide a more direct and engineerable route toward spatial separation

ii



of entangled electrons.

In Chapter 4, QSHI based CP splitter equipped with beam splitters at each edge is con-

sidered. The current-current correlations in such system can be used to experimentally test

a Bell inequality. A violation of a Bell inequality indicates nonlocal quantum entanglement,

which cannot be described by classical physics. The intrinsic dephasing mechanism in our

system, which hinderes a Bell test, caused by Luttinger-liquid interactions at finite temper-

atures We study this chapter and show that it is generally still possible to obtain a violation

of classical correlations.
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CHAPTER 1

Introduction

1.1 Integer Quantum Hall Effect

1.1.1 Introduction to classical and quantum Hall effect

A two-dimensional electron gas (2DEG) under a magnetic field perpendicular to the plane

exhibits a Hall effect, where a voltage difference is induced in the transverse direction the

current. This voltage difference comes from the charge accumulation on one side of the

system caused by deflection of charge carriers due to Lorentz force. A classical treatment for

this problem is to see the equation of motion of a single electron mv̇ = −eE−ev×B−mτ−1v,

where −e < 0 is the electronic charge, and τ is the relaxation time. Note the electric field E

contains the field induced by the charge accumulation as well an applied electric field. Given

the current density j = −enev (ne is the electron density), the equation of motion above in

the DC limit (v̇ = 0 ) leads toEx
Ey

 =

ρxx ρxy

ρyx ρyy

jx
jy

 , (1.1)

where ρxx = ρyy = m/e2neτ and ρxy = −ρyx = B/ene. ρxy is the Hall resistivity, and

it linearly increases with B and is independent of the relaxation time τ . Due to the Hall

resistivity, even when jy = 0, the electric field Ex perpendicular to the current jx can be

induced. Inverting the resistivity tensor,jx
jy

 =

σxx σxy

σyx σyy

Ex
Ey

 , (1.2)
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we can find the conductivity tensor σ. Denoting the Drude conductivity σ0 = ne2τ/m and

the cyclotron frequency ωc = eB/m, the longitudinal conductivity is σii = σ0/(1 + ω2
cτ

2)

(i = x, y), and the Hall (transverse) conductivity is σxy = −σyx = −σ0ωcτ/(1 + ω2
cτ

2).

In a clean sample (τ → ∞) under a strong magnetic field (B → ∞), we find both

σii → 0 and ρii → 0, meanwhile ρxy = B/ene and σyx → ne/B stay constant. In an

experimental setting, such clean samples can be made by semiconductor heterostructures

such as AlGaAs/GaAs. On the contrary to the above limit of the Hall resistivity being

proportional to B, when the temperature kBT is sufficiently low in comparison to the energy

scale ~ωc, it was discovered that the Hall resistivity is quantized [KDP80] (see Figure 1.1),

and the precision of its quantization is astonishingly high (one part in 109). Since both ρii

and σii vanish in this limit, the Hall resistivity is reciprocally related to the Hall conductivity,

which is likewise quantized. This effect followed by quantized Hall conductivity is called the

integer quantum Hall effect (IQHE), and the Hall conductivity is given by σyx = νe2/h with

ν being an integer.

This high precision of the quantization suggests that the underlying mechanism must

not be sensitive to perturbations to some extent. It turns out the quantization mechanism

for IQHE has its root in topology. Since the topology of a system is stable against small

perturbations, and a physical phenomena arising from such a topological reason in turn be-

comes robust. Here, the distinction between the integer quantum Hall phase and an ordinary

insulator phase is made by the presence of a topological order, which can be related to the

integer arising in the Hall conductivity. This way of recognizing phases of matter is differ-

ent from the conventional view on phase transition explained by Landau-Ginzburg theory,

where a phase transition occurs by breaking underlying continuous symmetry developing

order parameters as we can see in the examples of a magnet and crystal. Unlike an order

parameter that can change contiguously, a topological order is a quantity that cannot change

continuously and usually pertains to the global property of a system, such as a genus of a

manifold. The integer of the Hall conductivity stems from such a topological quantity, hence
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Figure 1.1: The longitudinal resistivity ρxx and transverse resistivity ρxy as a function of

magnetic field B [PTG82]. Where ρxy plateaus, ρxx goes to zero.

it can be a very robust effect.

It turns out that a single-particle picture suffices to explain IQHE. However, in even

cleaner sample and under higher magnetic field, the effect of the Coulomb interactions be-

tween electrons become important. In this limit, the filling factor ν in the Hall conductivity

can take fractional values, hence this effect is called fractional quantum Hall effect (FQHE).

ν = 1/3 plateau was first discovered [TSG82], and further fine measurements revealed many

more plateaus at fractional values of ν as seen in Figure 1.2. The specific case of ν = 1/q

with q being odd integers was explained in a many-body state picture, where the ground

state of this system is an incompressible quantum fluid with fractionally charged quasielec-

trons and quasiholes [Lau83]. Other plateaus at ν = p/(2sp + 1) with the integers p and

s can be explained by the composite-fermion theory [Jai89b, Jai89a]. Furthermore, even

denominator filling factor was observed [WES87], and it was showed that the ground state

wave function of such even-denominator FQHE is described by Moore-Read Pfaffian wave

3



function [MR91, GWW91]. Its quasiparticle excitations are called anyons [Wil82], which

exhibit non-Abelian statistics. Such particles with non-Abelian statistics can be utilized to

perform topological quantum computation [NSS08].

Figure 1.2: The longitudinal resistivity ρxx and the Hall resistivity ρxy in the unit of h/e2 as

a function of the applied field B [WES87]. The plateaus of ρxy occur not only at the integer

values but also at fractional values. At the plateaus of ρxy, ρxx vanishes. .

Quantum Hall effect leads to a rich ground to study topology and strongly correlated

electron systems. In the following sections, the aspect of topology appearing in IQHE is

presented. The reviews on various other topics on quantum Hall effect can be found in

Refs. [Yos10, Eza00, DP08, Goe09, Gir99].

1.1.2 Landau Levels: Two-Dimensional Electron Gas under a Magnetic Field

The simplest model toward grasping IQHE is the single-particle Hamiltonian for a two-

dimensional electron gas in xy plane under the magnetic field B applied perpendicularly to

4



the plane, namely

H =
1

2m
(p + eA)2 , (1.3)

where −e < 0 is the electronic charge, and A is the vector potential with B = ∇×A. The

2D geometry here is in a strip form, where the length Ly in y direction is long enough so that

the momentum in y direction is a good quantum number, but the width Lx in x direction

is finite. It is natural to choose Landau gauge A = (0, Bx, 0) for this geometry, and an

eigenstate is given by

ψk(x, y) =
1√
Ly
eikyφk(x) , (1.4)

where k = ks = 2πs/Ly (s ∈ Z) from the periodic boundary condition in y direction. The

Hamiltonian in Eq. (1.3) then leads to[
p2x
2m

+
1

2m
(~k + eBx)2

]
φk(x) = Eφk(x) . (1.5)

The left hand side of Eq. (1.5) can be rewritten in a more suggestive form

p2x
2m

+
1

2
m

(
eB

m

)2 [
x+

~k
eB

]2
=

p2x
2m

+
1

2
mω2

c (x− xk)2 , (1.6)

where ωc = eB/m is the cyclotron frequency, and xk = −l2Bk corresponds to a shift of the

center of ψk state in x direction. Here, l2B = ~/eB is the magnetic length. The Hamiltonian

in Eq. (1.6) is in the form of a simple harmonic oscillator HSHO = p2/2m + mω2
cx

2/2 with

a shift in the x direction by xk, so the solution is given by

ψn,k(x, y) =
1√
Ly
eikyφn(x− xk) . (1.7)

Here,

φn(x) =

(
1

2nn!
√
πlB

)1/2

exp

(
− x2

2l2B

)
Hn(x/lB) , (1.8)

with the Hermite polynomial Hn(z). Its energy is given by the simple harmonic oscillator

form En = ~ωc(n + 1/2) with n =∈ Z. These energy levels are called Landau levels. Each

Landau level is degenerate, since the states ψn,k(x, y) for all k have the same energy En.

As indicated in Eq. (1.7), the center of an eigenstate is shifted by xk which depends on

the value of k, thus all the degenerate states in a given Landau level are juxtaposed with
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the separation ∆xk = xs+1 − xs = 2πl2B/Ly in a strip form (of width lB in x direction

and extending in y direction). The number of such states that can be fitted in the width

Lx is directly related to the number of degeneracy Nd in each Landau level; therefor Nd =

Lx/∆xk = A/2πl2B (letting φ0 = h/e be the flux quanta, Nd is also the number of flux quanta

that can be fitted in the total flux, namely Nd = AB/φ0), where A = LxLy is the area of

the two-dimensional system. If the number of electrons in the system is N , the filling factor

ν is defined by

ν =
N

Nd

=
N

A
2πl2B =

N

A

h

eB
, (1.9)

which indicates how many of Landau levels are filled by the electrons.

In summary, non-interacting electrons in a two-dimensional system under a magnetic

field forms highly degenerate Landau levels. Although we chose a specific gauge for this

problem, the features of the physical quantities such as energy are independent of a choice

of a gauge (we could have obtained Landau levels from the symmetric gauge for instance).

1.1.3 The Conductivity of 2DEG under a Magnetic Field

Now we see the transport property of such a 2DEG under a magnetic field. If an electric

field is applied along x direction, the Hamiltonian for a given k state is

Hk =
1

2m

[
p2x + (~k + eBx)2

]
+ eEx

=
p2x
2m

+
1

2
mω2

c [x− x′k]2 + eEx′k +
1

2
m

(
E

B

)2

, (1.10)

where

x′k = −l2B
[
k +

mE

~B

]
. (1.11)

In Eq. (1.10), E/B is the drift velocity, and eEx′k term corresponds to the electric potential

energy at x′k. The total energy is given by the sum of the Landau level energy, the potential

energy due to the applied electric field, and the kinetic energy associated with the drift

velocity.
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By identifying the velocity operators

vx = ẋ =
1

i~
[x,H] =

1

i~
[x, p2x/2m] =

px
m
,

vy = ẏ =
1

i~
[y,H] =

1

i~
[y, (py + eBx)2/2m] =

py + eBx

m
, (1.12)

the classical motion of the electron can be found from the expectation values of the velocities

using the Heisenberg’s equation of motion. Denoting ψn,k(x, y) → |n, k〉, the expectation

value of y momentum is 〈k, n|py|k, n〉 = ~k = −~x′k/l2B−mE/B, because x′k = 〈k, n|x|k, n〉 =

−l2B(k +mE/~B). Then, the expectation values of the velocities are

〈n, k|vx|n, k〉 =
〈
n, k

∣∣∣px
m

∣∣∣n, k〉 = 0 ,

〈n, k|vy|n, k〉 =

〈
n, k

∣∣∣∣py + eBx

m

∣∣∣∣n, k〉
= − ~x′k

ml2B
− E

B
+
eB

m
x′x = −E

B
. (1.13)

The electric field in x direction induces the drift velocity E/B in y direction, which is

independent of k.

Given the above results, the current contributed from all the filled states are found by

Iy = −e〈vy〉neLx

= −ene
ExLx
B

=
ene
B
Vx . (1.14)

Therefore, the Hall resistance is RH = −B/en. This explains the classical Hall effect, but

the quantization of the Hall conductivity doesn’t come out of this formulation, and we need

to extend the analysis furthermore.

It turns out the quantization of the Hall conductivity requires the presence of impurities.

Supposing the strength of the impurity is much smaller than the Landau level energy spacing

~ωc so that different Landau levels don’t mix, and the variation of the impurity potential

is smooth in comparison to the magnetic length. In this limit, the electric field due to

impurities appear constant within the magnetic length scale, and we can adapt the picture

that an electronic state is extended around a constant potential contour.

7



According to the scaling argument of Anderson localization [AAL79], no extended state

can survive the presence of any amount of impurity in two-dimension, and all the states

become localized. However, a magnetic field disrupts the quantum coherence needed for the

localization, and the scaling argument breaks down. In a strong magnetic field in 2D, it

is possible to have extended states in a disordered system [AA81, Pra81], indicated by the

divergence of the localization length as the energy of a state approaches the original Landau

levels [Tru83]. It turns out that each Landau level can host one current-carrying state, at

the corresponding unperturbed Landau level energy, which can percolate one side of the

sample to the other. In Figure 1.3, (a) and (b) show raising the Fermi energy populate only

localized states; on the other hand, (c) shows that the Fermi energy hits the extended state

which percolates from one side to the other. In fact, most of the equipotential contours

in the bulk are closed around some impurities, leading to the localization of the electronic

states following these closed contours. In turn, the degeneracy of each Landau level is lifted,

and the density of state at each Landau level is broadened (see Figure 1.3). However, there

exists one equipotential contour, per one Landau level, that percolates through the entire

sample.

Under a careful analysis on 2DEG under a strong magnetic field with the presence of

impurities, each Landau level contributes to one conduction channel (the state percolating

through the sample). When only the lowest Landau level is completely filled, the corre-

sponding current is calculated by

Iy = −eEx
B

Nd

A
Lx

= − e

BA

BA

h/e
Vx =

e2

h
Vx . (1.15)

Since there is only one channel that can contribute to the conduction, the above result

implies this single conduction channel contributes G0 = e2/h to the conductance (which is

the same as conductivity in 2D). Since each of these conduction channel contributes e2/h to
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Figure 1.3: The left figure shows the energy v.s. the density of states. The the density of

states around each Landau level εn are broadened due to the impurities. The figures on the

right show the equipotential contours. In (a), the Fermi level is at the tail of the density of

states from εn+1, which populates the states localized around lower energy potential contours.

In (b), the Fermi level is raised, and higher energy contours are populated. In (c), as the

Fermi level hits εn+1, the largest contour is populated, which percolates from one side of the

sample to the other.

the Hall conductivity, the total Hall conductivity is given by

σxy = −σyx = −ne
2

h
, (1.16)

where n is the largest integer below the filling factor ν = N/Nd. Note that n is the number of

the populated conduction channels. As the Fermi energy is shifted in between two adjacent

Landau levels, all the available states are localized, so the transverse conductivity doesn’t

change, which makes the Hall conductivity flat over some range of the chemical potential.

Furthermore, this lack of conducting states at the plateaus of the Hall conductivity means

that the resistivity ρii vanishes. Raising the Fermi energy furthermore eventually populates

a conduction channel in the next Landau level, and the Hall conductance jumps up by e2/h,

which explains the quantization of the Hall conductance.
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1.1.4 Edge States

A semi-classical picture of an extended states can be understood as a skipping orbit at the

edges of the sample as seen in Figure 1.4. Due to an external magnetic field, the trajectory

of an electron is bent by the Lorentz force. When a state comes close to one of the edges

of the system, it can bounce from the edge and bent by the Lorentz force to come back to

the same edge. This bouncing motion can be repeated, and it can meanwhile move forward

along the edge to carry current.

Figure 1.4: The states in the bulk are localized at the sites of impurities. In a semi-classical

picture, the extended states near the edges can propagate along the edges by bouncing being

subject to the Lorentz force from the magnetic field B.

Introducing a confinement potential that keeps electrons inside the system provides a

way to formally treat such skipping orbits, which gives rise to the idea of an edge state that

transports current [Hal82]. Suppose such a confinement potential in x direction is given by

U(x), then the Hamiltonian reads

H =
1

2m

[
p2x +

(
p2y + eBx

)2]
+ U(x) . (1.17)

The potential U(x) goes up near the edges so that the electrons feel the forces inward

to the system. Letting one edge be located at x = 0 and the other one at x = Lx, if the

potential changes slowly relative to the magnetic length lB, a linear approximation of the

potential around the edges can be justified. If the potential is linear, the associated electric

field is constant, which is the same problem as Eq. (1.10). The energy for a given k and n
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Figure 1.5: A constant energy Landau level picks up spatial dependence due to the con-

finement potential U(x). The effect of a bias is also present, which makes the dispersion

asymmetric. x = 0, Lx are the edges of the sample. These two edges have different chemical

potentials due to an applied bias. The blue (red) dot indicates the point on the disper-

sion that crosses with the chemical potential at x = 0 (x = Lx) edge. The corresponding

momentum are given by kmin and kmax respectively as indicated in the figure.

state is

εn,k = ~ωc(n+ 1/2)− eE(x)l2B

[
k +

mE(x)

~B

]
+

1

2
m

[
E(x)

B

]2
. (1.18)

The velocity for this state is

vn,k =
1

~
∂εn,k
∂k

, (1.19)

thus the current is given by counting all the filled states.

Iy = −e
Nmax∑
n=1

1

Ly

∑
k

vn,k = −e
Nmax∑
n=1

∫ kmax

kmin

dk

2π

1

~
∂εn,k
∂k

= − e
h

Nmax∑
n=1

(εn,kmax − εn,kmin) =
e2

h

Nmax∑
n=1

Vx = Nmax
e2

h
Vx , (1.20)

where −eVx = εn,kmax − εn,kmin is the potential energy difference between the two edges as

indicated in Figure 1.5. Therefore, the Hall conductivity is

σxy = −σyx = − Iy
Vx

= −e
2

h
Nmax . (1.21)
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Figure 1.6: The left figure shows the energy profiles of n = 0 and n = 1 Landau levels

without bias. Due to the confinement potential, the energy rises near the edges of the

system at x = 0, Lx. The Fermi energy EF crosses two states in a given edge, and these

states at the EF are the edge states. Note that the slopes of the dispersions of the edge

states in a given edge is opposite from the ones on the other edge, indicating that the edge

states at one edge propagate in the opposite direction from the ones on the other. The right

figure shows the propagation of the corresponding edge states on a quantum Hall bar. The

blue (red) dots on the right figure correspond to the top (bottom) edge states on the left

figure.

The integer giving rise to the Hall conductivity is directly related to the number of the edge

states on a given edge. Figure 1.6 shows the energy profile of the lowest two Landau levels

and the corresponding edge states on the quantum Hall bar.

An edge state can be perceived as an one-dimensional ballistic channel with the unity

transmission (T = 1). Connecting two reservoirs with chemical potential µ1 = eV1 and

µ2 = eV2 respectively, the current through such channel is given by I = (e/h)T (µ1 − µ2) =

(e2/h)VH [BIL85, B88, B92], where VH = V1 − V2.

If the effect of the impurities are taken into account, the Landau level energy is smeared

as shown in Figure 1.7. Nonetheless, the dispersion crosses with the Fermi level near the

edges, ensuring the existence of the edge states regardless of the perturbations from the
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Figure 1.7: Due to the impurities, the Landau level in the bulk is smeared, indicated by the

shaded area in the figure. However, the edge states are still present.

impurities [Hal82]. This robustness for the existence of the edge states explains the stability

of the quantization of the transverse conductance. In the next section, the number of the

edge state is related to a topological quantity.

1.1.5 Topological Interpretation of the quantization of σxy

Since IQHE is a very robust effect, it is natural to suspect that there is some underlying

mechanism which depends only on its global property. Such global argument often pertains

to the idea of topology, which turns out to explain the quantization in IQHE. Here, we

introduce the Laughlin’s gedanken experiment that relates such topological quantity to the

integer in the Hall conductance.

The exactness of the quantization can be explained from the gauge invariance and ex-

istence of a energy gap [Lau81, Hal82]. Consider a thin strip of two-dimensional electron

system wrapped around in a cylindrical form as shown in Figure 1.8, where the circumference

direction is define as y and the axis direction is x. An external magnetic field B is applied in

the perpendicular direction to the cylindrical surface, and there is an extra flux Φ threading

along the axis of the cylinder. The potential difference Vx is also applied in x direction. The
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Figure 1.8: A quantum Hall bar is wrapped around in a cylindrical form. A magnetic field

is applied in the radial direction, and there is an extra flux penetrating at the axis of the

cylinder. The Hall voltage Vx is induced along the height of the cylinder, and the current Iy

runs around the circumference correspondingly.

vector potential due to this extra flux is given by

A′ = (0,Φ/Ly) , (1.22)

where Ly is the length of the circumference, then the total Hamiltonian in Landau gauge is

given by

H =
p2x
2m

+
1

2m

(
py + eBx+

eΦ

Ly

)2

+ eVxx . (1.23)

By comparison to Eq. (1.10), we can simply see that xk is replaced by

xk → −l2B
(
k + l2B

mE

~B

)
− Φ

BLyφ0

. (1.24)

The extended states, whose center is initially located at xk, is shifted by −Φ/BLyφ0 as the

extra flux is changed.

The change of the extra flux is equivalent to a gauge transformation, and the wave

function correspondingly picks up a phase exp(ieA′y/~). If a state is localized at an impurity

site, such a gauge transformation multiplies a trivial phase factor to the wave function since

this localized state doesn’t enclose the extra flux. On the other hand, an extended state that
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extends around the circumference of the cylinder has to necessarily encloses the flux, thus

the single valuedness condition on the wave function around the circumference imposes non-

trivial condition exp(ieA′Ly/~) = 1. Only allowed value of the gauge field is A′ = nφ0/Ly,

where n is an integer. Then, the only allowed shift in x direction due to the flux insertion

is nφ0/BLy = 2πl2B/Ly. Hence, as one flux quanta φ0 is inserted, all the extended states

moves by φ0/BLy. This entire movement can be viewed as transporting one electron per

Landau level from one edge to the other, thus N number of electrons can be transported if

N Landau levels are filled. Since there is a potential difference Vx between the edges of the

cylinder, transporting electrons from one edge to the other changes the energy of the system.

Such a change in energy due to varying the flux can be associated with the current around

the circumference by jy = ∂E/Lx∂φ. This derivative is non-zero only if the wave function

is phase coherent around the loop. The the states localized somewhere in the cylinder only

acquires trivial phases as the flux is changed, thus the energy of such states cannot change

due to this flux change.

Here, we recall that there are energy gaps between Landau levels. Due to the gap,

the adiabatic change of the flux cannot excite electrons from one Landau level to another,

which means that the only energy change due to the flux change comes from transporting

electrons from one edge to the other. Therefore, the current contribution comes only from

the states extended around the circumference. If N Landau levels are filled, N electrons

are transported across the potential differen Vx = LxEx, so the energy gain of the system is

NeVx. The quantization of the Hall conductivity comes from the existence of the extended

states around the loop, and the integer associated with the quantization is explained by the

single valuedness condition for such a state under this gauge transformation coming from

the flux insertion:

jy =
1

Lx

∆E

∆φ
= N

eVx
Lxφ0

= N
e2

h
Ex . (1.25)

Therefore, the existence of the energy gap and gauge transformation can explain the quan-

tization of the Hall conductivity.
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1.1.6 TKNN Invariant

The integer appearing in the Hall conductivity can be explained in terms of a topological

number called TKNN invariant [TKN82, Koh85], which is also called Chern number in the

context of geometry.

Consider two-dimensional non-interacting electron system with perpendicular magnetic

field with a periodic potential U(x, y), then the Schrödinger equation is

HΨ =

[
1

2m
(p + eA)2 + U(x, y)

]
Ψ = EΨ . (1.26)

The period of the potential is characterized by U(x+a, y) = U(x, y+b) = U(x, y). By Bloch

theorem, the solution under a periodic potential is given by

ψnk(x, y) = eik·runk(x, y) , (1.27)

where k = (k1, k2) and r = (x, y), n is a band index, and the periodic conditions for the

Bloch wave functions are unk(x + qa, y) = e−iπpy/bunk(x, y) and unk(x, y + b) = eiπpx/qaunk(x, y)

when the flux through the system φ = eB/h is a rational number φ = p/q. Under a gauge

transformation A′ = A +∇χ, then the wave function picks up phase by ψ′ = e−ieχ/~ψ.

From Eq. (1.26), with pi = −i~∂xi , the Schrödinger equation can be further written as

H(k)unk(x, y) =

[
1

2m
(−i~∇+ ~k + eA)2 + U(x, y)

]
unk(x, y) = En(k)unk(x, y) .(1.28)

When a small electric field is applied, a current flows as a linear response. The response

function, which is the transverse conductivity in the context of quantum Hall effect, is given

by Kubo formula as follows;

σxy = −ie2~
∑

Eα<EF<Eβ

(vy)nm(vx)mn − (vx)nm(vy)mn
(En − Em)2

. (1.29)

The velocity operator is v = (−i~∇+eA)/m, and the matrix element of the velocity operator

above is

(v)nm = δk1,k′1δk2,k′2

∫ qa

0

dx

∫ b

0

dy(unk)∗vumk (x, y) . (1.30)
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Note this matrix element is between two states with the same k belonging to the nth and

mth bands respectively. Since we can also express the velocity operator in terms of the k

derivative of the Hamiltonian, we can denote the velocity operators as

(vi)nm =
1

~

〈
unk

∣∣∣∣∂H∂ki
∣∣∣∣umk 〉 .

= (Em − En) 〈unk|∂kiumk 〉 = −(Em − En) 〈∂kiunk|umk 〉 . (1.31)

Therefore the transverse conductance can be written in the sum of the contributions coming

from each band;

σxy = −ie
2

~
∑

En<EF<Em

[〈∂k2un|um〉 〈un|∂k2um〉 − 〈∂k1un|um〉 〈un|∂k1um〉]

= −i e
2

h2π

∑
n

∫
d2k

∫
d2r [∂k2(u

n
k)∗∂k1u

n
k − ∂k1(unk)∗∂k2u

n
k]

= −i e
2

h2π

∑
n

∫
d2k [∂k2〈unk|∂k1unk〉 − ∂k1〈unk|∂k2unk〉] =

∑
n

σnxy . (1.32)

The Berry’s connection can be defined to write the above expression in an elegant form,

An
B(k) = −i

∫
d2run∗k ∇ku

n
k = −i 〈unk|∇k|unk〉 , (1.33)

which is not to be confused with the gauge field A introduced earlier. This leads to

σnxy =
e2

h2π

∑
n

∫
d2k

[
∂k2A

n
B,1 − ∂k1AnB,2

]
=

e2

h

1

2π

∫
d2k[∇k ×An

B(k)]3 , (1.34)

where 3 refers to the component perpendicular to k1,2 plane. With this gauge field, a gauge

transformation can be performed by

A′nB = An
B +∇kχ

n . (1.35)

Going back to Eq. (1.28), we find the appropriate transformation of the Bloch wave function

under such a gauge transformation of the Berry’s connection is u′nk = eiχ
n
unk.

Due to the periodicity in the potential, k space forms a Brillouin zone. Identifying the

edges along k1, and the other edges along with k2, the first Brillouin zone forms a torus. In
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Figure 1.9: The first Brillouin zone is identified as a torus. As σxy is calculated from the

Berry’s connection in Eq. (1.34), the torus is divided into two regions DI and DII . The

Berry’s connection in DI is related to the one in DII by a gauge transformation.

order to calculate the Hall conductivity in Eq. (1.34), the Berry’s connection has to be well

defined in the entire base manifold. However, the Berry’s connection becomes ill defined if

the modulus of a Block wavefunction is zero for some k. When this happens, one function for

the Berry’s connection cannot cover the entire manifold. This can be reconciled by dividing

the torus into two regions; one is surrounded by a loop formed by the boundary of region DI ,

and another is the complement of this region in the torus is region DII as in Figure (1.9),

and assign well defined Berry’s connections An
I to DI and An

II to DII . Impossibility of

writing down a Berry’s connection that can cover the entire base manifold is associated with

topological non-triviality of the system. These two connections are related by the gauge

transformation,

An
B,II = An

B,I +∇kχ
n . (1.36)

Finally, the transverse conductance is

σnxy =
e2

h

1

2π

{∫
DI

[
∇k ×An

B,I(k)
]
3

+

∫
DII

[
∇k ×An

B,II(k)
]
3

}
=

e2

h

1

2π

∫
∂DII

dk ·
[
An
B,II(k)−An

B,I(k)
]

=
e2

h

1

2π

∫
∂DII

dk · ∇χn(k) =
e2

h

1

2π
[χn(θ = 2π)− χn(θ = 0)] , (1.37)
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where θ here parameterizes the loop ∂DII = −∂DI . Because of the phase picked up by the

wave function under gauge transformation, we need to impose single valuedness condition to

the Bloch wave function u′k = eiχuk under the gauge transformation, χn(θ = 2π) − χn(θ =

0) = 2πNn with Nn ∈ Z, which means the above integer

Nn =
1

2π

∫
∂DII

dk · ∇χn(k) (1.38)

gives an integer Nn. Therefore, the total conductance is also integral multiple of e2/h.

The integer appearing in Eq. (1.38), called a winding number, is a topological quantity

that is robust against small perturbations on the system. Introducing perturbations via

impurities may modify the bands, but this topological quantity cannot change as long as the

gap doesn’t close due to the perturbations. The winding number that captures the degree

of ”twist” in the system giving rise to non-trivial topology.

In abstraction, the gauge potential given above can be thought as mathematical object

called connection, which can be related to the curvature F in the following way. Given an

1-form connection A = Aidk
i over a base manifold M , the 2-form curvature is found by

F = dA = ∂kiAjdk
i ∧ dkj . (1.39)

Integration of this curvature over the base manifold is a topologically invariant quantity

called the first Chern number c1,

c1 =
1

2π

∫
M

F =
1

2π

∫
M

∂kiAjdk
i ∧ dkj =

1

2π

∫
M

(∂k1A2 − ∂k2A1) dk
1dk2

=
1

2π

∫
M

dA =
1

2π

∫
∂M

A . (1.40)

In the second line, Stoke’s theorem was used. This result corresponds to the integral in

Eq. (1.37). The Chern number c1 above is always an integer. The topology of the map from

the first Brillouin zone (torus) to the Bloch wave function, (k1, k2)→ unk1,k2 , is characterized

by the Chern number.

Now we have a coherent understanding of how integer quantum Hall effect comes about.

The quantization of the Hall conductivity is a robust effect because it is a manifestation of a
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topological number that cannot be changed by small perturbations. When the Fermi energy

lies in energy gap of quantum Hall system, the Kubo formula for the Hall conductance is

identified to be proportional to the Chern number, which is always integer. From Laughlin’s

gadanken experiment, this integer from the Chern number is related to the number of Landau

levels under the Fermi energy.

1.2 Topological Insulator

1.2.1 Hall Effect without an External Magnetic Field

1.2.1.1 Anomalous Hall Effect and Spin Hall Effect

The quantization of the Hall conductivity in the integer quantum Hall effect has its origin in

the topological order, which explains the robustness of the effect. The Chern number derived

from its topological property is directly related to the number of the edge states. Charges

can be transported ballistically through the edge states, hence dissipationless charge current

can flow, as indicated by the vanishing of the longitudinal resistivity at the plateaus of the

Hall resistivity.

In ferromagnetic conductors, the anomalous Hall effect (AHE) occurs, where the spin

dependent transverse conductivity is acquired by the anomalous velocity. Since there is an

imbalance between the majority and minority spin carriers in ferromagnetic conductors, the

effect of their anomalous velocities don’t cancel, which leads to non-zero contributions to

the transverse conductivity. The anomalous velocity mainly comes from three effects; the

intrinsic deflection originated from the Berry curvature of the bands, the side jump coming

from the spin dependent force due to the interaction between the electron and the electric

field from the impurity, and the skew scattering due to the effective spin-orbit coupling of

the electron or the impurity [ERH06, NSO10]. Hence, the AHE exhibits non-zero transverse

conductivity without an external magnetic field.

Since spin up and down electrons are deflected in the opposite directions due to the
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AHE, the spin Hall effect, where an external electric field induces a spin current, can be

expected [Hir99]. For an ordinary Hall effect, an external electric field in the plane of the

system induces an in-plane charge current perpendicular to the field because electrons of

both spin up and down are deflected in the same direction due to Lorentz force. For the spin

Hall effect [IO05], spin up and down electrons are deflected in the opposite directions (yet

perpendicular to the electric field), hence a spin current flows in the perpendicular direction to

the field (see Figure 1.10). Due to the spin current, a spin accumulation can be induced by an

external electric field, which have been also verified by some experiments [KMG04, WKS05].

The classical Hall effect lead to the discovery of the integer Hall effect, which exhibits

dissipationless charge current due to the topological protected edge states. This feature of

IQHE and the idea of the spin Hall effect lead to the possibility to generate a dissipationless

spin current. Theoretical proposals for a dissipationless spin current were pursued in hole-

doped semiconductors [MNZ03], and zero gap and narrow gap semiconductors [MNZ04]

where the spin Hall conductivity comes from the Berry curvature; and high-mobility 2DEG

with a strong Rashba interaction [SCN04]. Seeking a dissipationless spin current eventually

resulted in the idea of topological insulator.

1.2.1.2 Haldane Model

One of the seminal works that lead to the discovery of the topological insulator showed the

possibility of a quantum Hall effect without any external magnetic field for spinless electron

system in graphene [Hal88]. Graphene has a honeycomb lattice structure, where its unit cell is

a hexagonal lattice consisting of two triangular sublattices, and correspondingly the Brillouin

zone is also hexagonal. The band structure of a graphene, which is derived from the nearest

neighbor hopping tight binding model, is semi-metallic, where the conduction band touches

the valence band at two points in the first Brillouin zone (K and K ′ points) [CGP09, Goe11].

Furthermore, the second nearest neighbor hopping (which breaks particle-hole symmetry)
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Figure 1.10: In each figure, an in-plane external electric field is applied in the vertical

direction to induce electric current. The left figure shows the ordinary Hall effect, where both

spin up and down electrons are deflected in the same direction to cause a charge accumulation

on one edge leading to the Hall voltage. The middle picture shows the anomalous Hall effect

(AHE) in a ferromagnetic conductor. Here, spin up and down electrons are deflected in the

opposite direction. Since there is an imbalance between the spin up and down electrons

in a ferromagnetic conductor, it induces a charge accumulation on one edge leading to the

Hall voltage. Furthermore, a spin current flows in the perpendicular direction to the electric

current. The right figure shows the spin Hall effect. As in the AHE, spin up and down

electrons are deflected in the opposite directions, however the Hall voltage is not induced

because there is no imbalance between the up and down spin electrons. A spin current also

flows perpendicularly to the field in this case.

and a local flux which sums up to zero in a unit cell (which breaks the time reversal symmetry)

are considered. The graphene under this condition is known as Haldane model.

Expanding such tight binding Hamiltonian around K and K ′, two Dirac Hamiltonian

corresponding to K and K ′ points can be derived. The mass terms at K and K ′ of these

Dirac Hamiltonian depend differently on the second nearest neighbor hopping strength and

the internal flux, and the signs of the mass terms at K and K ′ are either the same or opposite

depending on the relative contributions of those two parameters. It is shown that when the

sign of the mass terms switches from K to K ′ points, an integer quantum Hall effect with
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ν = ±1 occurs. If the sign is the same, the states can be adiabatically connected to the

massless case, which is time reversal symmetric; hence the transverse conductance is zero

(an ordinary insulator phase).

Exhibiting a quantum Hall effect, the Haldane model must be associated with edge

states. In fact, the band calculation of semi-infinite graphene shows that there is a state

that traverses the gap, and this state corresponds to the edge state that gives rise to the

integer quantum Hall effect. The Haldane model can be understood as the existence of two

topologically distinct states with or without the presence of quantum Hall effect, which is

signaled by the sign of the time reversal symmetry breaking mass terms of the effective Dirac

Hamiltonian at K and K ′ pints.

1.2.1.3 Quantum Spin Hall Effect on Kane-Mele Model of Graphene

The Haldane model was extended to the model of graphene with the mass term that is both

time reversal and inversion symmetric, so called Kane-Mele model [KM05a, Kan07]. The

effective Hamiltonian around K and K ′ points are the massless Dirac Hamiltonian:

H0 = −i~vFψ†(σxτz∂x + σy∂y)ψ . (1.41)

Here, σ refers to the pseudo spin pertaining to the sublattice A and B with σz = ±1

describing the state on A (B), and similarly τ refers to K and K ′ points with τz = ±1

describing the state on K (K ′). The Hamiltonian in Eq. (1.41) gives the gapless states with

the dispersion E(q) = ±~vF |q|. There can be various mass terms that can be introduced to

open a gap. The mass term proportional to σz corresponds to a staggered sublattice potential

alternating its sign depending on A and B sublattices, is odd under parity. The mass term

in the form σzτz is even under parity and odd under time reversal, and it corresponds to the

type of term introduced in Haldane model for the zero-net-flux internal magnetic field. The

term σzτzsz is even under both parity and time reversal, and this term introduces a new

topological phase.

σzτzsz term introduces masses with opposite signs at K and K ′ points. Under such a
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Figure 1.11: The left figure shows the energy bands in a given edge of a strip of graphene.

There are two states traversing the gap have opposite spins, hence the edge is spin filtered.

In the right figure, spin filtered edges are shown. Each edge has two counterpropagating

states with the opposite spins. The figures are cited from [KM05a].

mass term, the energy of a state is rased on one of K and K ′ points and lowered on the other,

and we can realize a state that traverses the energy gap. In fact, the band calculation with

σzτzsz mass term gives rise to two gapless states with opposite slopes on a given edge, which

traverse the bulk gap, and they are localized at the edge of the graphene strip as shown

in Figure 1.11. Since the slopes of these gapless states are opposite, they propagate in the

opposite directions. The two states on a given edge are related by time reversal operation,

and such a pair is call Kramers’ pair. If sz is a good quantum number (it is the case if there

is no spin flipping interaction such as Rashba spin-orbit interaction), one state is associated

with sz = ~/2, and the other with sz = −~/2.

Thus, the edges of the graphene under the time reversal and inversion symmetric spin-

orbit interaction of the form σzτzsz are equipped with the spin filtered edge states, where a

given edge has counter propagating states with opposite spins, known as helical edge states.

Each edge state leads to quantized Hall conductance value σxy = ±e2/h [Hal88], where the

sign of the conductivity depends on the spin (or equivalently on the direction of propagation).

Due to the time reversal symmetry, the total transverse conductivity, which is the sum

of spin up and down contributions, must be zero. However, the difference in the spin up and

down currents do not vanish, and we find the spin current given by Js = ~
2e

(J↑ − J↓). This
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gives a quantized spin Hall conductivity σsxy = (~/2e)2σxy = e/2π, which is also quantized.

Since each quantum Hall edge channel can propagate ballistically, dissipationless spin current

can be generated by applying an electric field. These edge states are also robust against weak

perturbations that are time reversal symmetric, because the degeneracy where the crossing

point of these two states in the bulk gap cannot be lifted by such a perturbation. This fact

that these edge states are robust against time reversal perturbation is due to its topological

origin, and it will be discussed in the next section. Although the quantization of the spin

quantum Hall conductivity cannot persist under spin flipping perturbation such as Rashba

spin-orbit interaction, the topological order still remains [KM05b].

1.2.2 Z2 Topological Invariant

1.2.2.1 Charge Pumping and TKNN Invariant

The field of topological insulator [HK10, ZHX11, QZ11, Moo10, QZ10] grew rapidly. Al-

though it turns out that the spin-orbit interaction in graphene, which leads to the quantum

spin Hall effect, is too small to be observed experimentally, this example shed some light on

the further development in the search of quantum spin Hall effect.

The key idea in the example of graphene is that a given edge is endowed by Kramers

pair whose degeneracy is protected by the time reversal symmetry. When there is only one

Kramers pair, this degeneracy cannot be lifted by any time reversal symmetric perturbation,

hence these states form bands that necessarily traverse the gap. This state of matter is topo-

logically distinct from an ordinary insulator because they cannot be connected by adiabatic

transformation of the parameters in the Hamiltonian. However, if there are even number of

Kramers pairs, the gap traversing states can be reconnected in the way that the resultant

bands are topologically same as an ordinary insulator under some perturbation including

time reversal symmetric one such as Rashba S.O. interaction [KM05b]. This seems to sug-

gest the even or odd number of Kramers pairs at a given edge is related to the distinction

between a topologically non-trivial state and an ordinary insulator.
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Non-triviality of the integer quantum Hall system is characterized by Chern number,

which pertains to the information of the topology of the system. This number is obtained by

integrating the Berry curvature over the magnetic Brillouin zone as calculated in Eq. (1.34).

Since this number is topological, it cannot change by small perturbations in the system. If

the edge states appearing in the quantum spin Hall system are also topological, there should

be such number associated with them. It was shown that the robustness of the edge states

in quantum spin Hall system can be explained by Z2 topological invariant [KM05b, FK06]

(either 0 or 1 to distinguish non-trivial and trivial topological phases), where in the context

of graphene example, it refers to even or odd number of Kramers pairs in a given edge.

Z2 topological invariant is constructed in a similar way to Chern number in the integer

quantum Hall system. In order to gain insight for obtaining Z2 invariant, it is convenient to

go over an alternative way of finding Chern number in relation to the charge polarization of

the system.

In an one-dimensional ring of lattices with length L (there are N = L/a lattice points,

where a is the lattice spacing), we find the Bloch wave function

|ψn,k〉 =
1√
L
eikx|un,k〉 , (1.42)

where k is the crystal momentum and n is the band index. Then, the Wannier function at

a lattice point R is given by

|R, n〉 =

∫
dk

2π
e−ik(R−r)|un,k〉 , (1.43)

which describes a localized orbital function around R. The charge polarization Pρ is the

expectation value of the center of the Wannier function at one of the lattices, say R = 0,
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and it is

Pρ =
∑
n

〈0, n|x|0, n〉 =
∑
n

∑
k′,k

1

L
〈un,k′|e−ik

′xxeikx|un,k〉

=
∑
n

∑
k′,k

1

L
〈un,k′|e−ik

′x
(
−i∂keikx

)
|un,k〉 =

∑
n

∑
k′,k

1

L
ei(k−k

′)x〈un,k′|i∂k|un,k〉

=
∑
n

∑
k′,k

δk,k′
1

L
〈un,k|i∂k|un,k〉 =

∑
n

∑
k

1

L
〈un,k|i∂k|un,k〉

=

∮
dk

2π
Ak(k) . (1.44)

Note the Berry’s connection appeared on the way, which are defined by

Ak(k) =
∑
n

i〈un,k|∂k|un,k〉 ,

At(k) =
∑
n

i〈un,k|∂t|un,k〉 . (1.45)

In Eq. (1.44), only Ak came up, but At is also define here for later convenience.

Because the first Brillouin zone is periodic, k = −π and k = π are identical, which is

why we have a closed loop integral in Eq. (1.44). We can see how this charge density evolves

in time by takeing the difference in the charge polarizations at t = 0 and t = T ,

Pρ(T )− Pρ(0) =

∮
cT

dk

2π
Ak(k, T )−

∮
c0

dk

2π
Ak(k, 0)

=

∫ π

−π

dk

2π

∫ T

0

dt∂tA(k, t)

=

∫ π

−π

dk

2π

∫ T

0

dt [∂tA(k, t)− ∂kAt(k, t)]

=
1

2π

∫
S

dtdkF (k, t) . (1.46)

c0,T are the paths for time t = 0, T respectively. In the third line, the second term can be

added for free because it is zero over a loop integral of k. F (k, t) is the Berry curvature given

by

F (k, t) = i
∑
n

[〈∂tun,k|∂kun,k〉 − 〈∂kun,k|∂tun,k〉]

= ∂tAk(k, t)− ∂kAt(k, t) (1.47)
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Furthermore, if the Hamiltonian has a cycle of T , namely H(t) = H(t+ T ), the time points

t = 0 and t = T can be identified so that the base manifold is a torus in the space spanned

by k and t. Then, we can write

Pρ(T )− Pρ(0) =
1

2π

∫
T 2

dtdkF (k, t) . (1.48)

This result is to be compared to the Chern number seen in Eq. (1.40), and it must give an

integer associated with the topology of the system. Therefore the charge polarization over

one period T of the Hamiltonian is an integer. If a system has a non-trivial topology, it

can transport integer number of charges as a parameters of Hamiltonian is changed over a

period, which is known as charge pumping.

The process of charge pumping can be related to Laughling’s argument of the integer

quantum Hall cylinder threaded by a magnetic flux. The pumping parameter t is identified

as the flux in Laughlin’s context, and further this flux can be directly related to the crystal

momentum perpendicular to k in Eq. (1.48). Therefore, we can let t → k1 and k → k2 to

recover the Chern number formula in Eq. (1.40). Hence, the topological invariance for the

integer Hall system can be viewed as the charge polarization over one period of the charge

pumping cycle.

1.2.2.2 Time Reversal Polarization as Z2 Invariant

When there is no spin-orbit interaction that mixes spins, such as Rashba spin-orbit interac-

tion, the z component of spin is conserved. Under this circumstance, we can simply assign

up and down spins for a Kramers pair. Suppose we have a cylindrical geometry. One edge

has a pair of counter propagating states with spin up and down, and the other edge has also

a counter propagating pair but with opposite spin configuration due to time reversal sym-

metry. We can view such system as two copies of integer quantum Hall effect with counter

propagating edge states endowed with opposite spins [BZ06, Kan07]. Note the transverse

conductance coming from these two states are opposite in sign because they are moving in

opposite directions. The total transverse conductance, hence, is zero, which can be also
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concluded from time reversal symmetry of Kramers pair.

As in Laughlin’s argument, the integer quantum Hall system in a cylindrical form trans-

ports an integer number of charges from one end to the other upon insertion of one flux

quanta, which is related to the integer appearing in the Hall conductance. Due to this trans-

port of the charges, the final state of the cylinder is charge polarized. By analogy, as one-half

of a flux quanta threads the cylinder with a Kramers’ pairs at a given edge of the cylinder,

a half of spin up is transported from one side to the other, and a half of spin down is trans-

ported in the opposite direction. The net transport of spin ~/2 from one side to the other

thus occurs, and the cylinder becomes spin polarized. This is one instance of so called ”time

reversal polarization”. If sz is not conserved, we cannot label the time reversal polarization

by spin as we did here, but the time reversal polarization can still mean as the measure of

switching of Kramers pairs from one ends to the other. Hence, the time reversal polarization

is characterized by keeping track of the center of Wannier functions of the Kramers’ pairs.

More explicit formulation of the time reversal polarization is shown as follows. The

time reversal operator for a spin 1/2 particle is given by Θ = −iσyK, where K is complex

conjugation operator, and consequently Θ2 = −1. Suppose we have a Hamiltonian that has

properties: H[t + T ] = H[t] and H[−t] = ΘH[t]Θ−1. There are two special time points

t = 0, T/2, where the Hamiltonian becomes time reversal invariant. Suppose there are 2N

eigenstates, coming from N Kramers pairs formed at the time reversal invariant points.

We denote such Kramers’ pair by |uIk,α〉 and |uII−k,α〉, where α = 1, 2, · · · , N . The relation

between each Kramers’ pair is given by the time reversal operation as

|uI−k,α〉 = eiχα(k)Θ|uIIk,α〉 ,

|uII−k,α〉 = −eiχα(−k)Θ|uIk,α〉 . (1.49)

As in the charge polarization, we can define the Wannier center of state I and II by

P s =

∫ π

−π

dk

2π
As(k)

=

∫ π

0

dk

2π
[As(k) + As(−k)] , (1.50)
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where s = I, II, and the associated Berry’s connection is defined by

As(k) = i
∑
α

〈usk,α|∂k|usk,α〉 . (1.51)

The matrix element of an operator between time reversed states reads

〈ΘuIIk,α|i∂k|ΘuIIk,α〉 = 〈uIIk,α|Θ(i∂k)
†Θ−1|uIIk,α〉

= −〈uIIk,α,|i∂k|uIIk,α,〉 (1.52)

From Eq. (1.50), For P I , the second term containing AI(−k) is expressed as

AI(−k) =
∑
α

〈uI−k,α,|i∂k|uI−k,α〉 =
∑
α

〈ΘuII−k,α|e−iχk,αi∂keiχk,α|ΘuII−k,α〉

=
∑
α

〈ΘuII−k,α|i∂k|ΘuII−k,α〉 −
∑
α

∂kχα(k) = −
∑
α

〈uII−k,α|i∂k|uII−k,α〉 −
∑
α

∂kχα(k)

=
∑
α

〈uIIk,α|i∂k|uIIk,α〉 −
∑
α

∂kχα(k) = AII(k)−
∑
α

∂kχα(k) . (1.53)

Then, P I is further expressed as∫ π

0

dk

2π

[
AI(k) + AII(k)

]
− 1

2π

∑
α

[χα(π)− χα(0)] . (1.54)

The second term can be expressed in terms of the matrix element of the time reversal

operator:

wαβ(k) = 〈u−k,α|Θ|uk,β〉 . (1.55)

This matrix element is non-zero only when α = β, wαα is a 2× 2 matrix of the form

wαα(k) =

〈uIα,−k|Θ|uIk,α〉 〈uI−k,α|Θ|uIIk,α〉
〈uIIα,−k|Θ|uIk,α〉 〈uII−k,α|Θ|uIIk,α〉


=

 0 eiχα(k)

−eiχα(−k) 0

 , (1.56)

and wαβ is in the form of N blocks of such 2 × 2 matrixes on the diagonal. At the time

reversal invariant momentum points k = 0, π, χα(π) = χα(−π), and the matrix above is anti-

symmetric. For an anti-symmetric matrix, Pffafian, whose square is equal to determinant,

can be used to express the sum in the second term in Eq. (1.54) is given by

ei
∑
α[χα(π)−χα(0)] =

Pf[w(π)]

Pf[w(0)]
, (1.57)
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which can be written as

∑
α

[χα(π)− χα(0)] = −i log

(
Pf[w(π)]

Pf[w(0)]

)
. (1.58)

Finally, the polarization of the first Wannier state is given by

P I =

∫ π

0

dk

2π

[
AI(k) + AII(k)

]
+

i

2π
log

(
Pf[w(π)]

Pf[w(0)]

)
. (1.59)

In the similar way, we can also obtain P II , then the time-reversal polarization is defined by

the difference in the polarization of the Wannier centers of Kramers pairs:

Pθ = P I − P II

=

∫ π

0

dk

2π

[
AI(k) + AII(k)

]
−
∫ 0

−π

dk

2π

[
AI(k) + AII(k)

]
+
i

π
log

(
Pf[w(π)]

Pf[w(0)]

)
=

∫ π

0

dk

2π

[
AI(k) + AII(k)

]
−
∫ π

0

dk

2π

[
AI(−k) + AII(−k)

]
+
i

π
log

(
Pf[w(π)]

Pf[w(0)]

)
=

1

2πi

[∫ π

0

∂k log det[w(k)]− 2 log

(
Pf[w(π)]

Pf[w(0)]

)]
=

1

πi
log

(√
det[w(π)]Pf[w(0)]√
det[w(0)]Pf[w(π)]

)
. (1.60)

Since det[w] = Pf[w]2, Pθ = log(±1)/iπ = ±1, and we can also write down

(−1)Pθ =

√
det[w(0)]

Pf[w(0)]

√
det[w(π)]

Pf[w(π)]
. (1.61)

Following the charge polarization procedure for obtaining the topological invariant, we need

to take the difference of this time-reversal polarization at different times. The change in the

time-reversal polarization between t = 0 and t = T/2 is gauge invariant up to modulo 2,

therefore we define Z2 topological invariant ν as

ν = [Pθ(T/2)− Pθ(0)] , (1.62)

which can be also written as

(−1)ν =
4∏
i=1

√
det[w(Γi)]

Pf[w(Γi)]
, (1.63)

31



where Γ1,2,3,4 = (0, 0), (0, π), (π, π), (π, 0) are the time reversal invariant momentum points

shown in Figure 1.12(b).

The time-reversal polarization can be visualized by keeping track of the evolution of the

Wannier center of the Kramers’ pairs. If a system is in a topologically non-trivial phase,

Kramers’ pairs at t = 0 will switch partners at t = T/2 by leaving stray states of different

species at opposite ends as shown in Figure 1.12(a). On the other hand, in a topologically

trivial phase, initial Kramers’ pairs at t = 0 will come back to the same pairs at t = T/2, so

there will be no stray states at the ends. This difference is captured by the Z2 invariant ν

defined in Eq. (1.62), and ν = 0, 1 distinguishes trivial and non-trivial phases.

Figure 1.12: (a)The time evolution of the Kramers’ pairs. Initially paired partners at t = 0

switches partners at t = T/2, and there are stray states at each ends. In some sense, the

system is polarized because different species from the original Kramers pairs are present at

opposite ends. (b)The time-reversal invariant points Γi, where i = 1, 2, 3, 4 in the torus

Brillouin zone. The figures taken from [FK06].

1.2.2.3 HgTe/CdTe Quantum Well

One of the significant features of topological insulator is its unique helical edge states, where

a given edge has Kramers’ pairs. If sz is conserved, we can think of a Kramers pair as
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counter propagating states with opposite spins. Furthermore, if a system is in a topolog-

ically non-trivial phase, these edge states are protected against a time reversal symmetric

perturbation, and they can propagate without backscattering [WBZ06, XM06]. Since states

with opposite spins propagate in the opposite directions, in principle it is possible to have

dissipationless spin current. Hence, experimental realizations of topological insulators would

bring tremendous interest for not only theoretical but also various applications dealing with

spin current.

The model of HgTe/CdTe quantum well was proposed to exhibit a non-trivial topological

phase [BHZ06]. HgTe is a semiconductor in zinc blende crystalline structure, but the order of

the bands are inverted from the usual order. The s-type Γ6 band is usually above the p-type

Γ8 band, but the band order of HgTe is reversed because the strong spin-orbit interaction

due to heavy Hg splits the Γ8 band and places above Γ6. On the other hand, CdTe has

the normal band order, where Γ6 band is above Γ8 (Figure 1.13(A)). As a quantum well is

formed by sandwiching HgTe by CdTe, the band order in the well can be controlled by the

thickness of the HgTe. If HgTe is thicker than the critical thickness dc, the band order is

inverted. If it is less than dc, the band order is the normal order because the band feature

of CdTe becomes more dominant. It turns out that when the band order is inverted as in

Figure 1.13(B), this system exhibits a quantum spin Hall effect, which is the signature of

the non-trivial topological phase discussed in the previous section. In the case that the band

order is normal, the system loses the feature of the quantum spin Hall effect.

This quantum well can be described by a four-band model with quantum well subbands

|E1,mJ = ±1/2〉 consisting of |Γ6,mJ = ±1/2〉 and |Γ8,mJ = ±1/2〉, and other subbands

|H1,mJ = ±3/2〉 consisting of |Γ8,mJ = ±3/2〉, where mJ labels the z component of

the total angular momentum. The Hamiltonian is given in the basis of |E1,mJ = 1/2〉,

|H1,mJ = 3/2〉, |E1,mJ = −1/2〉, and |H1,mJ = −3/2〉 as

H(kx, ky) =

h(k) 0

0 h∗(−k)

 , (1.64)

33



Figure 1.13: (A)The band structures of HgTe and CdTe are shown. For CdTe, Γ6 band is

above Γ8 is normal order, however, the order of these bands is inverted with HgTe. (B)A

quantum well is formed by sandwiching HgTe by CdTe. When the thickness of HgTe exceeds

dc, the system exhibits a quantum spin Hall phase. When the thickness is less than dc, it is

in a trivial phase. The left figure is topologically trivial phase (d < dc), where the band order

in HgTe is dominated by CdTe order. The right figure shows the topologically non-trivial

phase, where the band order is inverted. The figure is taken from [BHZ06].
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where h(k) = ε(k)+d ·σ. Although the crystalline structure breaks inversion symmetry due

to its zinc blende structure, it is neglected for simplicity in this model. The the components

of the d vector and ε(k) in the 2× 2 block Hamiltonian h(k) are given by

d1 = Akx ,

d2 = Aky ,

d3 = M −B(k2x + k2y) ,

ε(k) = C − 2D [2− cos kx − cos ky] . (1.65)

Here, the lattice constants are set to unity. The gap parameter M is the energy difference

between E1 and H1 bands, and E1 > H1 when d < dc and E1 < H1 when d > dc, so M

changes sign across the critical thickness dc.

The Hall conductance for the type of Hamiltonian in Eq. (1.64) was studied in Ref. [QWZ06]

in the context of a semiconductor exhibiting quantized anomalous Hall effect. The Hall con-

ductance for each 2× 2 block is given by

σxy = −e
2

h

1

8π

∫
dkxdkyd̂ · ∂kxd̂× ∂ky d̂ , (1.66)

where d̂ = d/|d| is the unit vector in the 2 × 2 block Hamiltonian h(k). The expression

under the integral is the Jacobian of the map d̂ : R2 → S2. d3/|d| = sgn(M) for k =

0, and d3/|d| → 0 for k → ∞. Since d1 and d2 parts always cover all the azimuthal

direction, the direction of d3 determines whether the northern or southern hemisphere of

S2 is covered as all kx and ky are swept. When M > 0 (M < 0), the northern (southern)

hemisphere is covered. Therefore, depending on the sign of M , the Hall conductivity is σxy =

±e2/2h. This kind of half-integral Hall conductance is not allowed, and it is because the

approximation of this particular theory fails to capture higher-energy spectrum (the fermion-

doubling problem [NN81a, NN81b]). It turns out there is a missing contribution to either

add another half-integral Hall conductance or cancel it. Although the present theory cannot

capture this missing part, it can show that the Hall conductivity changes by ∆σxy = e2/h

as M changes its sign. Since the system has to change its Hall conductivity by e2/h, either
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Figure 1.14: The figure shows the 6 terminal geometry for transport measurement. The

blue indicate it is spin up, and the red is spin down. For a given edge, there are counter

propagating states with opposite spins.

M > 0 or M < 0 has to be topologically non-trivial phase. From Ref.[KWB07], M > 0 for

d < dc and M < 0 for d > dc. Therefore, M < 0 with d > dc, which is the inverted band order

regime, exhibits quantized Hall conductance. The contribution to the Hall conductance from

the lower 2 × 2 block h∗(−k) is opposite in sign in comparison to the one from h(k) block,

which makes the total charge Hall conductance to vanish. However, the difference between

these Hall conductances is non-zero, which means the spin Hall conductance is σ
(s)
xy = e/π.

The helical edge states result in a non-zero quantized spin Hall conductance, where each

edge has counter propagating states with opposite spins as in Figure 1.14. The existence of

such helical edge states were partially verified by transport measurements [KWB07, KBM08,

RBB09]. The four terminal resistance measurement gives R12,34 = I12/V34 = h/2e2, if there

are two ballistic channels. The experimental result for such four terminal resistance mea-

surement with HgTe is shown in Figure 1.15. When the thickness of the well is smaller than

the critical thickness (d < dc), the system is in trivial state, and the resistance is high. When

the thickness exceeds the critical thickness d > dc, the system is in the quantum spin Hall
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Figure 1.15: The longitudinal four terminal resistance measurement for different well thick-

ness is shown. I is for d = 5.5nm in the normal band order regime, and II, III, and IV are

for d = 7.3nm which is in the inverted band order regime. III and IV show that the length

of the bar doesn’t affect on the resistance, which indicates that the transport is channel is

ballistic. The figure is taken from [KWB07].

phase, and there are two channels for spin up and down that can carry current ballistically.

This means the conductance is G = 2e2/h, which can be seen in the measurements as well.

Note that the resistance in the non-trivial phase doesn’t depend on the length of the well,

indicating that the channel is ballistic.

Furthermore, various other terminal resistance measurement were performed [RBB09],

and the results show the consistency with the interpretation of quantum spin Hall effect,

which can be seen in Figure 1.16.
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Figure 1.16: The top figure shows the resistance versus gate voltage of the Hall bar devices

with different dimensions. Both two terminal and four terminal resistance measurements are

shown. The bottom figure shows four and two-terminal resistance measured on the devices

with the geometries shown in the insets. The figures are taken from [RBB09].
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1.3 Cooper-Pair Splitter

1.3.1 Entanglement

One of the distinct features of quantum mechanics is the entanglement of multi particles. A

state is entangled if it CANNOT be written as a tensor product form: Ψ = ψ1⊗ψ2⊗· · ·⊗ψN

for a N -particle system with wave functions ψi for ith particle [Wer89]. The simplest example

is a spin-singlet state, where a two-particle spin state is expressed in terms of antisymmetric

combinations of two spins:

|S〉 =
1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) , (1.67)

where the first and second ket state refer to the first and second particle respectively. Al-

though this seems to be harmless, the completeness of quantum mechanics was question by

Einstein-Podolsky-Rosen (EPR) based on the non-local feature of entangled states [EPR35,

Per93].

Suppose a spin-singlet state decays and splits into two spin 1/2 particles, and these two

particles are detected at two distant locations. Quantum mechanics permits the situation

where the spins of those two particles are still in the state of superposition, and the actual

value of the spin of each particle is not known until a measurement is performed. This

indicates that if an observer on one side makes a measurement to identify the spin of one of

the particles, the spin of the other particle on the other location is immediately determined.

In the Copenhagen interpretation, if one particle’s spin is measured, the wave function of the

two-particle state instantly collapses into the measured state, and the other particle’s spin is

correspondingly determined. This seems to somewhat contradictory, because the information

of the measurement on one side traveled to the other side faster than the speed of light, hence

EPR questioned the completeness of quantum mechanics based on the locality principle. It

was pointed out that perhaps the probabilistic interpretation of quantum mechanics is the

consequence of failing to capture some variables in nature, so called hidden variable, and we

might obtain complete description if we know all the hidden variables.
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However, such a description based on hidden variables turns out to be wrong due to

Bell’s inequality [Bel66, CHS69]. The Bell’s inequality is constructed in the way that if the

correlations of initially entangled particles can be explained by hidden variables, the inequal-

ity is satisfied. Namely, the correlations can be explained by some classical physics. If we

use quantum mechanical frame work, the inequality is violated, hence quantum mechanics

is not compatible with the hidden variable frame work. There are a number of experiments

with entangled photons, and the violation of the Bell’s inequality was verified unambigu-

ously [AGR81, AGR82, Fra89]. Therefore, the quantum mechanical entanglement cannot be

described by any hidden variable theory.

This quantum entanglement is not merely academic, but it provides ample potential

applications. Entanglement of multi particles is utilized in the field of quantum compu-

tation [NC00], quantum teleportation [BBC93], and quantum cryptography [BB84, Eke91,

GRT02] etc. Many of these applications operate in solid-state environments, which tend to

destroy the coherence of quantum systems due to the interactions happening in the systems.

Reading out the information of entanglement and controlling spatial locations of entangled

particles in a solid-state environment are important tasks necessary to achieve such applica-

tion purposes. Here, we review a few of the ways to manipulate and read out entangled states

via a solid state structure such as beam splitters and how to separate entangled particles

using Cooper-pair splitters (a good review is found in [Bur07]).

1.3.2 Detection of the Spin Entanglement

Let us first go though the basics of the correlations that arise from the statistics of parti-

cles [BB00]. A beam splitter with two incoming (1 and 2) and two outgoing (3 and 4) ports

as in Figure 1.17 is considered. Let the transmission be T and reflection be R through the

beam splitter. There are three out comes: (a) two particles are detected at 3 with probability

P (2, 0), (b) two particles are detected at 4 with probability P (0, 2), and (c) one particle is

detected at 3 and another one at 4 with probability P (1, 1). Denoting |J | as the overlap
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Figure 1.17: Particles come in from the port 1 and 2, and they come out on the port 3 and

4 through a half mirror place in the middle. Depending on whether the incoming particles

are bosons or fermions, the outgoing amplitude is different due to the interference coming

from the difference in their statistics.

integral between two incoming states, then the probabilities for the three outcomes above

with the case of classical particles, bosons, and fermions are given as shown in the charge

below.

Probability Classical Bosons Fermions

P (2, 0) RT RT (1 + |J |2) RT (1− |J |2)

P (1, 1) R2 + T 2 R2 + T 2 − 2RT |J |2 R2 + T 2 + 2RT |J |2

P (0, 2) RT RT (1 + |J |2) RT (1− |J |2)

Due to the quantum statistics, the probabilities of each outcome is different depending

on what kind of particle it is. One observation is that it is more probable for two incoming

bososns to be detected in the same outgoing port, but two incoming fermions are more

probable to be detected in the separate outgoing ports. If the overlap of the two incoming

state at the beam splitter is perfect, namely |J | = 1, two bosons are always detected in

one of the outgoing ports, but two fermions are always detected at two separate outgoing

ports. This means that bosons tend to come together, while fermions repel each other due

to Pauli’s exclusion principle. We call the effect of bosons coming together as bunching,

and fermions tending to separate as anti-bunching effect. Therefore, this type of beam
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splitter setting can generate outcomes that are sensitive to the statistics of incoming particles.

Related phenomenon are tested for light [HT56], for electrons [LOY98, OKL99, HOS99].

Interestingly, if the two incoming fermions are entangled, they exhibit bunching or anti-

bunching depending on the initial spin states of two entangled fermions.

  

Figure 1.18: Two particles come in to 1′ and 2′, and they are entangled in the entangler

region. The entangled particles come out in 1 and 2 separately and go through the beam

splitter to reach the detection points 3 and 4. The figure is taken from [BEL00].

This idea of beam splitter to detect the information of the statistics of incoming particles

can be applied for detection of the spin-entanglement (see Figure 1.18). Two particles, which

are initially unentangled, are fed into the entangler region, which entangles these two particles

in a certain way. Here we consider the case of the spin-singlet and -triplet entanglement,

and they come out separately into 1 and 2 to further go through a beam splitter. These two

particles finally reach the detection points 3 and 4.

The currents at 3 and 4 carry the information of the entangled incoming states, and the

correlations between the output currents can explicitly differentiate the incoming spin-singlet

and triplet states. The current correlations are given by

Sαβ(t) = 〈δIα(t)δIβ(0)〉 , (1.68)

where δIα(t) = Iα(t) − 〈Iα〉 is the fluctuation of the currents at outgoing port α = 3, 4.

This correlation can be Fourier transformed, and its zero frequency component give the shot

noise, which is given by

S33 = S44 = −S34 ∝ T (1− T )(1± δε1,ε2) , (1.69)
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where T is the transmission probability through the beam splitter, and εi is the energy of

incoming state, and +(−) sign refers to the spin-singlet (triplet). For the triplet case, the

sign is −, and the noise completely vanishes. This means that two incoming triplet states

always split into two separate outgoing ports. This makes the current fluctuation to vanish,

and consequently the noise vanishes. On the other hand, the singlet state corresponds to +

sign, so the noise is enhanced, which means the two particles forming a spin-singlet tend to go

into the same outgoing port to increase the current fluctuation. Here, we observe the bunch-

ing effect on the spin-singlet, and ani-bunching effect for the spin-triplet states, and these

difference is explicitly manifested in the distinction in the output noise structure [BLS00].

Figure 1.19: The top figure shows the beam splitter structure with Rasha spin-orbit inter-

action region near the incoming port 1. r and t are the reflection and transmission through

the beam splitter. The figure is taken from [EBL02]

This method of the distinguishing the entangled states via a beam splitter was extended

by introducing a region with Rashba spin-orbit interaction of the form HR = −αkσy at one of

the incoming ports [EBL02, EBS05]. The spin of the state coming into 1 is rotated by angle

θR = 2αm∗L/~2 due to the region with the Rashba spin-orbit interaction. Two particles
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forming entangled spin singlet (S) and triplet (T) states and unentangled triplet (↑↑, ↓↓)

states are injected in the separate incoming port 1 and 2. Due to the Rashba interaction,

these states are mixed and produces the output noise which depends on the rotation angle

θR.

The auto-correlation is given by

S33 =
2e2

hν
T (1− T )fX , (1.70)

where fX is the Fano factor for X = S, T, ↑↑, ↓↓ incoming states. The Fano factor can

differentiate different incoming states as in

fS = 1 + cos θRδε1,ε2 ,

f yT = 1− cos θRδε1,ε2 ,

f zT = fσσy = 1− δε1,ε2 ,

f zσσ = 1− cos θRδε1,ε2 . (1.71)

Here, f yT corresponds to the triplet T state of the spin basis in y direction, f zσσ is for ↑↑

and ↓↓ states in z basis. Therefore, introducing the Rashba spin-orbit interaction provides a

further advantage in distinguishing entangled spin-singlet and triplet states and unentangled

triplet states.

Another method of differentiating the spin singlet and triplet states were realized by a

double-quantum-dot system connected in between superconductor reservoirs [CBL00]. The

Figure 1.20(a) shows two quantum dots in between two s-wave superconductor reservoirs.

The energy states of the double dots depends on whether they are coupled in the spin singlet

or triplet states. This type of double-dot structure J can be connected in parallel to a normal

Josephson junction J ′ as shown in Figure 1.20(b). Further, magnetic flux Φ is applied in the

center region to form a SQUID structure. The Josephson current IS through this SQUID

structure depends on the spin states of the double-dot, therefore the measurement of the

Josephson current can distinguish the spin states of the quantum dots.
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(a) (b)

Figure 1.20: (a): Two quantum dots are connected to two s-wave superconductor reservoir.

(b): The system in double-dot in junction with superconductor in (a) (J in the figure (b)) is

connected in parallel to an ordinary Josephson junction J to form a SQUID structure. The

figures are taken from [CBL00]

1.3.3 Cooper-Pair Splitter

The beam splitter structure introduced in the previous section provides a mean to distinguish

the entangled spin-singlet and triplet state by the measurement of the output shot noise.

This type of system relies on some mechanisms that can entangle the incoming particles

before going into the beam splitter, and the details of how this can be done still remains

to be answered. The key idea is to extract already spin-entangled electrons from s-wave

superconductor (SC). The ground state of a s-wave superconductor is formed by Cooper-

pairs (CP) that are in spin-singlet entangled states.

The key physics for extracting a CP from SC is Andreev reflection [BTK82], which

occurs at a superconductor-normal metal interface. When an electron is incident from a

normal-metal to a superconductor, a hole can be reflected in the normal metal, which is

the result of taking out an electron from the metal and putting it in the superconductor.

The incident electron and the electron taken out from the metal form a Cooper-pair in the

superconductor. This process is called local Andreev reflection because the incident electron

and hole reflection occurs at the same interface.
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It turns out that Andreev reflection is not restricted to only a local case, but it can

also happen nonlocally. An incident electron can create a hole at a distant location from

the point of incident, and consequently an electron taken out there can form a Cooper-pair

with the incident electron. This nonlocal Andreev reflection, also known as crossed Andreev

reflection (CAR), can be viewed as the process of two electrons forming a Cooper-pair tunnel

out to two separate locations of the normal metal [BWL04, RKK05, KBT09]. Since these

two electrons are correlated over the Copper-pair correlation length ξ, the separation of these

two points cannot exceed ξ in order for CAR to happen.

Utilizing CAR, two electrons initially forming a Cooper-pair can be extracted at spa-

tially separate locations. A Cooper-pair splitter is a device to perform such separation of

a pair of entangled electrons. Various ideas of Cooper-pair splitters were proposed in the

form of a superconductor in junction with normal metal fork geometry [LMB01], quantum

dots [RSL01, RL03], Luttinger liquid wires [RL02], and carbon nanotubes [BVB02].

S

g1 g2

QD1
I2I2

I1

QD 2

VSD

Figure 1.21: A s-wave superconductor is connected to two quantum dots that are spatially

apart. Cooper-pairs from the superconductor can tunnel through the dots and go into the

leads. The figure is taken from [HCN09].
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The first experimental realization of a quantum dot based CP splitter was achieved

through s-wave superconductor in junction with InAs quantum wires acting as quantum

dots [HCN09, HCB11] (see Figure 1.21). They measured the conductance ∆G1 through

one of the dots as a function of the gate voltage on the second dot. The conductance

∆G1 closely follows the change of G2, and this signal vanishes when the superconductor in

conjunction with those dots become a normal state as the applied magnetic field exceeds

the superconducting critical field value. This indicates that the electrons coming from the

superconductor split into two dots in a correlated fashion, which supports the picture of

spatially separating two electrons from a CP. Furthermore, the experiments on CP splitter

based on carbon nanotubes (which act as quantum dots) were performed [HPR10, HBH12].

In more recently work, the splitting of CP was achieved the efficiency closed to unity [SBS12].

1.3.3.1 Quantum Dot and Luttinger Liquid based CP Splitter

Figure 1.22: A s-wave superconductor (SC) is tunnel coupled to two quantum dots D1

and D2., and each quantum dot is further coupled to a lead. Two spin-entangled electrons

forming a Cooper-pair in the SC tunnel from r1 and r2 to two quantum dots via Andreev

tuenneling. The figure is taken from [RSL01].
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Here, the CP splitter with quantum dots and Luttinger liquid wires will be discussed

in some details for their relevancy to the rest of the thesis. The quantum dot based CP

splitter setting is shown in the Figure 1.22, where a s-wave superconductor is connected

to two quantum dots by tunnel coupling TSD, and the dots are further connected to leads

with coupling TDL [RSL01]. The dots have energy levels ε1,2 respectively, and the charging

energy U of the dots is considered for the Coulomb blockade effect. The premise of a CP

splitter relies on its capability in spatially separating a pair of entangled electrons, hence the

parameters of the setup need to be carefully tuned in the appropriate regime.

First of all, the bias between the superconductor (SC) and the outgoing leads ∆µ = µs−µl

must be smaller than the SC energy gap ∆, so that no quasiparticle excitations occur in the

SC. Two electrons from a CP tunnel from SC to dots with time delay around ~/∆. One

possibility is that both electrons tunnel through the same dot, and another case is that two

electrons go through different dots. In order to spatially separate the initially entangled

electrons, the latter case is of the interest. In order to avoid the tunneling of both electrons

into the same dot, the charging energy U should be sufficiently large so that double occupancy

on one dot is suppressed. If the SC to lead bias is set lower than the charging energy U > δµ,

such process is reduced.

The spin entanglement of the incoming electrons is harmed if there is a spin flip process

through the dots. One way to prevent such spin flip is to have the number of electrons on

the dots to be even, so that their net spin is zero. Another source of loss of the entanglement

due to spin flip is that as an electron enters a given dot, and another electron with opposite

spin, which was already in the dot, leaves into the lead. This type of spin flip process is

suppressed if the energy level spacing of the dot, δε, is larger than kBT and ∆µ.

There is other type of loss of the entanglement, which comes from electron-hole excitations

in the leads. It turns out such many-body contribution is suppressed if resonance width of

the lead γl is smaller than ∆µ. Furthermore, the most efficient setting to achieve separation

of entangled pair is to work in almost empty dot, which is ensured by |TSD| < |TDL|, meaning

an electron on a dot is drained faster into the lead than being supplied from SC. Of course,
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the temperature should be smaller than any of the energy scale so that thermal fluctuations

don’t smear the entanglement. In summary, the condition for separating two electrons from

SC into different dots states

∆, U, δε > ∆µ > γl, kBT , γl > γs . (1.72)

The current from the SC to the leads is calculated by Fermi’s golden rule with T matrix

approach. The current I1 when each of the two entangled electrons tunnel through different

dot is given by

I1 =
eγ2sγ

(ε1 + ε2)2 + γ2/4

[
sin(kF δr)

kF δr

]2
e−2δr/πξ , (1.73)

where γs = 2πνs|TDS| is the resonance width coming from SC to dot coupling, γ is the energy

broadening coming from dot to lead coupling, δr is the separation of the two points that

two entangled electron pair leave SC, and ξ is the SC coherence length. The algebraic and

exponential suppression over the separation distance δr are from the effect of the SC. It is

obvious that δr cannot be too large, because if it exceeds the coherence length, Cooper-pair

coherence is lost. The current can be further maximized if we choose the energy level of two

dots to be ε1 = −ε2.

On the other hand, the current when two electrons go through the same dot is given by

I2 = 2eγsγ

(
π∆ + U

π∆U

)2

. (1.74)

In this case, there is no suppression due to the effect of the CP coherent length because both

electrons tunnel from the same location, namely δr = 0. When U � ∆, I2 ∼ U−2. The

larger the gap is, the shorter the delay time between the two electron tunneling events. If

∆ is large, soon after the first electron comes in to one of the dots, the second electron also

hops into the same dot. Then, the dot is doubly occupied to experience charging energy U ,

and the main cause of the suppression of the current hence becomes U . In the other limit,

U � ∆, I2 ∼ ∆−2. The current suppression comes from the penalty in leaving the SC in an

exited state for the time ∆−1.
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In order to split the two electron for a CP, we need I1 > I2, which leads to the condition

I1
I2

=
2

γ2

(
π∆U

π∆ + U

)2 [
sin(kF δr)

kF δr

]2
e−2δr/πξ > 1 , (1.75)

then the desired regime is obtained when π∆U/γ(π∆ +U) > kF δr, and δr < ξ. Since ξ can

be in the order of µm, the second condition is easy to satisfy. If the charging energy is very

large, and taking γ ∼ γl, then the condition is approximately ∆/γl > kF δr. The right hand

side of the inequality can be made small by choosing small δr and small density, and the

left hand side can be made large by choosing SC with large gap value and slowing down the

draining rate from the dot to lead.

Figure 1.23: A s-wave superconductor is tunnel coupled to two Luttinger liquid wires. r1

and r2 are the points where two spin-entangled electrons from a Cooper-pair (CP) tunnel.

Two electrons forming a CP can tunnel into (a)two separate wires or (b)the same wire to

produce current I1 and I2 respectively.

Another interesting realization of a CP splitter is a s-wave superconductor connected to

two Luttinger liquid wires [RL02] (see Figure 1.23). In one-dimensional system, the effect

of electron-electron interaction becomes important, and the conventional approach of Fermi

liquid theory fails to work. Such an interacting one-dimensional system is dealt by Luttinger

liquid, where a single-particle picture is replaced by collective bosonic excitations to capture

the effect of interaction. The electronic fields are expressed in terms of exponetiated bosonic

fields by bosonization procedure. Injection of CP’s into such wires are considered here. Two

electrons from the SC can again either tunnel into two separate wires or into the same wire

producing current I1 and I2 respectively.
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For the case two electrons tunneling into separate wires (see Figure 1.23(a)), the current

I1 is given by

I1 ∼
[

sin(kF δr)

kF δr

]2
e−2δr/πξV 2γ+1 , (1.76)

where V is the bias difference between the SC and wires, and γ = (g + g−1 − 2)/4 (g is

the interaction parameter of the charge sector of the spinful Luttinger liquid). g = 1 for

the non-interaction system. Here g < 1 for repulsive interaction is considered. The factor

with sin kF δr/kF δre
−2δr/πξ is due to the presence of the SC. In comparison to the quantum

dot case, the present case with Luttinger liquid picks up the power law dependence on the

bias. This is one of the characteristics of Luttinger liquid system. As the system becomes

more interacting, γ becomes larger, and the current is suppressed more due to the effect of

interaction.

The current I2 for two electron tunneling into the same wire is given by

I2 ∼ V 2γ+1

[
A+

(
eV

∆

)2γ

+ A−

(
eV

∆

)2(g−1−g)/4
]
. (1.77)

In this case, additional algebraic suppression in the ratio of eV/∆ is imposed on top of the

different wire current I1 Meanwhile, the exponential and algebraic suppression due to the

SC is not present because of δr = 0. Since (g−1− g)/4 = γ + (1− g)/2 > γ, the suppression

coming from A− term is more significant since eV > ∆, which meas that A+ term is more

dominant in Eq. (1.77). Finally, the condition for splitting a CP into different leads is I1 > I2,

which leads to

A+

(
eV

∆

)2γ

<
1

(kF δr)2
, (1.78)

where the exponential suppression was ignored because it can be made reasonably small

when ξ is sufficiently large. Hence, larger γ (more effect of the electron-electron interaction)

helps to satisfy the condition for splitting the CP.
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CHAPTER 2

Cooper-Pair Injection into Quantum Spin Hall

Insulator

2.1 Introduction

The quest for solid-state medium providing means to produce, transport, manipulate, and

detect quantum entanglement has been fueling tremendous research activity in recent years.

Many of the practical proposals rely upon an innately quantum-mechanical electron spin as

an elementary building block for quantum bits and ultimately quantum computation [LD98].

The promise for spin-based quantum manipulations hinges on its relatively long relaxation

and coherence times, in contrast to charge-based degrees of freedom that are naturally more

susceptible to various decoherence processes inherent to a solid-state environment. An al-

ternative fault-tolerant charge-based quantum computation relies on topological protection

of braiding statistics of non-Abelian anyons in certain quantum Hall states [NSS08], al-

though the experimental situation there still offers a formidable challenge [DHU08]. In this

Letter, we propose to utilize spin-dependent topological properties of newly-discovered two-

dimensional quantum spin Hall insulators (QSHI) [KM05b, KWB07, QZ10] in combination

with spin entanglement of Cooper pairs (CP’s) in superconductors as a starting point for spin-

based macroscopic quantum manipulations [BLS00, RSL01, LMB01, RL02, BVB02, KVF04].

Recent experimental strides in realizing mesoscopic CP splitters [HCN09, HPR10] and mea-

suring their cross correlations [WC10] show the feasibility of our proposal.

While spins appear to be good candidates for initialization (e.g., by spin-exchange or

superconducting correlations) and local gating (both by magnetic and electric fields) of
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quantum bits, the transport and detection remain more challenging. For the latter, some

kind of spin-to-charge conversion appears to be necessary at present [HKP07]. In this Letter,

we utilize topological helicity of the QSHI edge states to convert spin entanglement into mea-

surable charge-current correlations, which are amenable to modern experimental capabilities

[BB00]. While we will not study here the feasibility of using the same system to transport

spin entanglement, its potential to this end should also be clear from our discussion. Our

proposal exploits the ideas [RL02, BVB02, KVF04] for injecting CP’s into two Luttinger-

liquid (LL) wires. A key role will be played by electron-electron interactions along the edges

away from the contacts with the superconductor (SC), which govern nonchiral LL charge

fractionalization and interactions with Fermi-liquid contacts [SS95] as well as suppress same-

edge tunneling [RL02, BVB02]. The tunneling cross correlations thus contain a wealth of

information about LL effects, SC spin pairing (especially when dealing with unconventional

SC’s [SU91]), and topological properties of the QSHI.

2.2 Tunneling between SC and Helical Edge States

At sufficiently low voltages and temperatures (on the scale set by the superconducting gap

∆), two electrons that initially constitute a CP on the superconducting side are injected into

the QSHI coherently, with a time delay of up to ∼ ∆−1. The larger this delay, the weaker

the LL effects on the suppression of the tunneling into the same edge [RL02]. Since this

does not affect the low-energy tunneling exponent, however, we can use a simplified model

of equal-time CP injection [BVB02], reinserting the delay effects [RL02] via the appropriate

energy normalization by ∆ when necessary. The (equal-time) tunneling Hamiltonian has

two pieces corresponding to the CP injection into the same (H̄ ′) or different (Ȟ ′) edges at

x = 0:

H̄ ′ = Γ̄e−i2eV t
[
ψ

(u)
↑ ψ

(u)
↓ (0) + ψ

(l)
↑ ψ

(l)
↓ (0)

]
+ H.c. , (2.1)

Ȟ ′ = Γ̌e−i2eV t
[
ψ

(u)
↑ ψ

(l)
↓ (0)− ψ(u)

↓ ψ
(l)
↑ (0)

]
+ H.c. , (2.2)

where V is the voltage applied between the SC and QSHI and u/l label electrons in
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the upper/lower edges. ψ
(u,l)
↑,↓ (x) are electronic field operators for the helical edge modes.

Figure 2.1 shows a schematic of our setup. Since the CP density of states in the SC is

a delta function at the Fermi level, the effective tunneling Hamiltonian above determines

the total current injected from the SC. We will focus on the weak-tunneling limit, where

the overlap between different CP’s injected in the QSHI is negligible and the spin-singlet

entanglement is maximized.

In Eq. (2.1), we assumed symmetric tunneling into the two edges and in the second equa-

tion, we accounted for singlet pairing of the CP’s. It should be clear that any asymmetry in

the two tunneling contacts would enhance the relative role of the same-edge tunneling. The

electron-electron repulsion, on the other hand, can reverse this tendency toward the different-

edge tunneling [RSL01, RL02, BVB02]. There are at least two factors, however, that may

hinder this most interesting scenario. First of all, the cross-edge tunneling amplitude Γ̌ is

suppressed exponentially for the edge separations d larger than the superconducting coher-

ence length ξ. Even more problematically, CP injection into different edges is suppressed as

a power law in kFd (where kF is the SC’s Fermi wave number) due to destructive Friedel-like

interference for electrons tunneling from the SC into different contacts [RL02]. This issue

can be overcome by injecting CP’s via an intermediate layer of material with a longer Fermi

wavelength and proximity-induced SC gap [HCN09].
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Figure 2.1: Same-edge (H̄ ′) and cross-edge (Ȟ ′) singlet electron-pair injection processes from

the superconductor into the upper and lower QSHI edges.
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Electron tunneling into different edges is spin symmetric if the full structure is inversion

symmetric. The latter can be affected by, e.g., applying a local strain or gate voltage to

one of the edges, thus locally modifying its spin-orbit coupling. We will account for this

tunable asymmetry by a relative angle θ between spin-quantization axes at the two contacts

as seen in Figure 2.1, where we can see the quantization axis at the bottom edge is tilted

relatively to the top one. Tunneling Hamiltonian (2.2) then has to be modified by a relative

spin rotation at, say, the lower edge:

ψ
(l)
↑,↓ → cos(θ/2)ψ

(l)
↑,↓ ± sin(θ/2)ψ

(l)
↓,↑ . (2.3)

In comparison to Ref. [BVB02], our θ in Eq. (2.3) has a similar effect on the edge-current

cross correlations as spin filtering in carbon nanotubes along axes misaligned by θ. The key

practical difference here is that such spin filtering is difficult and has not yet been achieved

experimentally, while our proposal is based on measuring unfiltered charge currents. In other

words, an analog of spin filtering is already built into helicity of the edge states.

2.3 Helical Edge States with Interaction

The effective edge-state Hamiltonian for the QSHI, including the interband and intraband

forward-scattering processes near the Fermi points is [Gia04, WBZ06, SJ09]

H0 = v
∑
k=u,l

∫
dx

2π

[
1

g

(
∂xφ

(k)
)2

+ g
(
∂xθ

(k)
)2]

. (2.4)

Here, φ(k) ≡ (φ
(k)
↑ + φ

(k)
↓ )/2 and θ(k) ≡ ±(φ

(k)
↑ − φ

(k)
↓ )/2 for k = u/l are linear combinations

of the “spin-s” bosonic density operators φ
(k)
s , such that the bosonization identity for the

fermionic field operators along the upper edge with the spin-up/down electrons moving to the

right/left is ψ
(u)
s (x) ∝ eisφ

(u)
s (x). Since the relationship between the spin and orbital chirality

reverses at the opposite edge, ψ
(l)
s (x) ∝ e−isφ

(l)
s (x). In our convention, the commutation

relations are [θ(k)(x), φ(k)(x′)] = (iπ/2)sign(x− x′). g in Eq. (4.3) parametrizes the strength

of the electron-electron interactions (g = 1 for free electrons and 0 < g < 1 for repulsive

interactions). Interband scattering between the right and left movers within a given edge
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leads to nontrivial correlation effects (i.e., g 6= 1), making the QSHI fundamentally distinct

from an integer quantum Hall insulator with chiral edge states [Wen92]. In the special

case of equal-strength interband and intraband scattering, v = vF/g, in terms of the bare

Fermi velocity vF . In the general case with broken Galilean invariance, however, g and v are

independent phenomenological parameters governed by the interplay between band-structure

and correlation effects [Gia04]. A rough estimate [SJ09] gives g & 0.5 for helical edge states

in a HgTe quantum well [KWB07], corresponding to moderate interaction effects while the

two-electron disorder and umklapp backscattering are still irrelevant [WBZ06].

2.4 Current-Current Correlations

In order to measure current cross correlations, we place current sensors along the edges at

points 1, 2, 3, and 4, as shown in Figure 2.1. Alternatively, we can divert edge currents into

voltage probes [DHU08] and measure low-frequency voltage correlations 〈δViδVj〉. Note,

however, that the Fermi-liquid voltage probes would affect incoming currents, effectively

masking the LL charge fractionalization at low voltages [SS95]. Using bosonic representation

for the current operators along the edges, I(k) = vg∂xθ
(k)/π, we evaluate the symmetrized

noise spectrum

Sij(ω) = Sji(−ω) =

∫ ∞
−∞

dteiωt 〈{δIi(t), δIj(0)}〉 , (2.5)

where δIi(t) ≡ Ii − 〈Ii(t)〉. i labels four outgoing channels: i = 1, upper right; 2, upper left;

3, lower left; and 4, lower right branches. To this end, we use standard Keldysh formalism

[CFW96]. Note that when calculating noise correlations to the leading (second) order in the

tunneling coefficients Γi, we do not distinguish between the noise 〈δIiδIj〉 and current 〈IiIj〉

correlators, since the difference 〈Ii〉〈Ij〉 enters at the fourth order in tunneling. The current

direction is always chosen away from the SC.

Let us first discuss the most interesting regime, when a CP injected from a SC tunnels

into two separate edges. This is governed by Eq. (2.2) and sketched by the cross-edge right-

and left-moving electron pairs in Figure 2.1. A finite θ, furthermore, leads to correlations
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between leads 1 and 3 as well as 2 and 4. Initial spin-singlet entanglement is thus converted

into the θ-dependent cross-edge current correlations. In addition to this, there is a purely

LL entanglement stemming from the injected charge fractionalization [SS95], which has to

be included on equal footing with the spin entanglement. This is sketched in Figure 2.3: A

single electron injected into a given edge sets off a counterpropagating nondispersive charge

wave, which eats up a fraction (1− g)/2 of the elementary electron charge e.

Putting these superconducting and LL correlations together, we find for the low-frequency

noise cross correlators S14 = S23 = Š+:

Š+

eV
∝ |Γ̌|2

(
eV

εF

)2γ [(
e2+ + e2−

)
cos2

θ

2
+ 2e+e− sin2 θ

2

]
= |Γ̌|2

(
eV

εF

)2γ

e2
1 + g2 cos θ

2
. (2.6)

We are focusing on the low-temperature regime, kBT � eV , so that thermal noise can be

neglected. εF is the characteristic bandwidth of the LL, typically of the order of the Fermi

energy, and γ ≡ (g + g−1)/2 − 1 is the spinless nonchiral LL bulk exponent for a single-

electron injection [Gia04]. Apart from the generic LL tunneling anomaly, there are two types

of interesting factors in Eq. (2.6): LL factors e2++e2− = e2(1+g2)/2 and 2e+e− = e2(1−g2)/2

reflecting charge fractionalization [SS95] and trigonometric factors cos2(θ/2) and sin2(θ/2)

reflecting spin-singlet entanglement. Similarly, we find for S13 = S24 = Š−:

Š−
eV

∝ |Γ̌|2
(
eV

εF

)2γ [(
e2+ + e2−

)
sin2 θ

2
+ 2e+e− cos2

θ

2

]
= |Γ̌|2

(
eV

εF

)2γ

e2
1− g2 cos θ

2
. (2.7)

The geometric part of Š± containing 1 ± g2 cos θ can be also obtained by considering

the process of charge fractionalization. As a right-moving electron is injected in Luttinger

liquid with interaction strength g, it fractionalizes into a right-moving state with charge

e+ = (1 + g)/2 and a left-moving state with charge e− = (1− g)/2 as shown in Figure 2.2.

For the total interedge correlation Sul ≡ 〈IuIl〉 = S13 + S14 + S23 + S24 = 2(Š+ + Š−),

we have Sul/V ∝ V 2γ, independent of the charge fractionalization and angle θ. The self-
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Figure 2.2: A single right-moving electron injected into an edge LL “pumps” a charge of

e(1− g)/2 to the left. The net fractionalized charges propagating to the right (left) are thus

respectively given by e± = e(1± g)/2 [SS95].

correlators are determined by the respective average currents, as generally expected for the

Poissonian statistics in the tunneling regime:

Sii = 2
(
e2+ + e2−

)
〈Ii〉/e = (1 + g2)e〈Ii〉 . (2.8)

In the special case when θ = 0 and g = 1, there is a perfect positive cross correlation

of currents at contacts 1, 4 and 2, 3 (i.e., Š+ = Sii) and zero correlation at contacts 1, 3

and 2, 4 (i.e., Š− = 0). The former is certainly a manifestation of many-body entanglement,

since noninteracting electrons are required to have nonpositive cross correlations in general

multiterminal structures [BB00]. According to Eqs. (2.6) and (2.7), the LL parameter g can

be measured in the inversion-symmetric configuration (so that θ = 0) using

g =
√(

Š+ − Š−
)
/
(
Š+ + Š−

)
. (2.9)

If θ is unknown and not precisely controlled, but can, nonetheless, be swept over the half-

period (0, π), g will be found by maximizing the absolute value of the right-hand side in

Eq. (2.9), which equals g
√

cos θ according to Eqs. (2.6), (2.7). The same g experimentally

extracted from Eqs. (2.8) and (2.9) would provide direct evidence of spin entanglement as

manifested by the interedge correlations (even if g turns out to be trivial, i.e., close to 1).

2.5 Discussion

Detrimental to the above formulation would be any backscattering along the edges. While

the time-reversal symmetry protects against backscattering on nonmagnetic impurities, there
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would inevitably be interactions of the edge modes with nearby Fermi liquids (such as elec-

trostatic gates, metallic contacts etc.), and the edges would terminate somewhere, possibly

merging with a Fermi-liquid continuum. As was already mentioned above, the Fermi-liquid

probes measuring current fluctuations would conceal the LL fractionalization [SS95], effec-

tively removing positive cross correlations associated with the LL physics. In this case, we

would expect g in Eqs. (2.6)-(2.9) to be close to unity. More problematically, backscattering

engendered by charge fluctuations on nearby gates or other metallic regions, which would

scramble ballistic propagation of edge states, needs to be eliminated from a practical im-

plementation of our proposal. It should be clear, however, that various backscattering and

boundary-related effects should not affect the finite-frequency correlations on time scales

shorter than those at which they set in while still longer than ∆−1, so that the CP tunneling

delay is not resolved.

ξ
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3

4

u

l

z

θ

Figure 2.3: A schematic bending of the edges shows a close analogy of our model to the

proposed entangled CP injection into carbon nanotubes [BVB02]. The essential differences

stem from the LL correlations along the edges vs those at carbon nanotubes’ ends and the

natural spin filtering provided by the edge-state helicity in the QSHI.

In the absence of the LL fractionalization, g = 1, the noise Š± ∝ (1 ± cos θ)/2 has

the same angular dependence as the spin-current noise in the carbon-nanotube proposal of

Ref. [BVB02]. The θ dependence here is the same, in turn, as in the Einstein-Podolsky-
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Rosen thought experiment [EPR35] on a delocalized spin-singlet state of two electrons. It is

instructive to understand a close relationship between our setup and that of Ref. [BVB02]

by schematically folding two sides of either infinite QSHI edge into a semi-infinite “wire,”

as sketched in Figure 2.3. This wire is then formally identical to a semi-infinite spinful LL,

only without interactions between spins up (down) moving in opposite directions as well as

between spins up and down moving in the same direction. There is still, however, a nontrivial

interaction between spins up and down moving in opposite directions, which corresponds to

g 6= 1 in our original model shown in Figure 2.1. Hypothetical spin filtration [BVB02] in

semi-infinite carbon nanotubes is thus provided in our system by effectively unfolding the

1D modes of such semi-infinite wires into infinite edges, with half the number of 1D bands

and helical spin character (i.e., spins up and down going in opposite directions).

Owing to the difference in the interaction channels here and in Ref. [BVB02], we find a

hierarchy of the tunneling exponents that is more similar to that discussed in Ref. [RL02] for

infinite LL wires. Injecting a CP into opposite QSHI edges is characterized by the exponent

2γ = g+g−1−2, as has already been discussed above [Eqs. (2.6) and (2.7)]. We find that the

same-edge tunneling of a singlet CP is suppressed by an additional factor ∼ (eV/∆)2(γ
′−γ)

with respect to Eqs. (2.6) and (2.7), where γ′ ≡ g−1 − 1 is the end-tunneling exponent for a

nonchiral spinless LL [Gia04]. The fact that γ′ > γ for g < 1 insures that the split-tunneling

dominates at low energies [RL02, BVB02] over the same-edge tunneling, which is parasitic

for our purposes. In particular, the same-edge tunneling would introduce large positive cross

correlations S12 and S34, while not contributing to the interedge correlations.

The situation is quite different in the case of unconventional SC’s with triplet spin pairing

[SU91]. For example, a CP in the equal-spin pairing phase could be injected into the same

(left- or right-moving) edge mode, in the case of the same-edge tunneling, which is governed

by the LL exponent 4γ + 2 vs 2γ for the cross-edge tunneling. The relative suppression

factor here is ∼ (eV/∆)2γ+2, with the quadratic factor stemming from the Pauli exclusion

that hinders injection of two same-spin electrons into the same edge band [Fis94]. For a

finite θ, there are also nontrivial interedge correlations, dictated by the superconducting
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spin pairing. In this context, we can speculate, furthermore, that a QSHI not only provides

a fruitful medium for injecting and subsequently manipulating spin-entangled CP’s, but

can also serve as a probe for spin pairing, which can thus be manifested via current cross

correlations along the edges.

We finally note that our setup is distinct from that of the Hanbury Brown and Twiss

correlations of CP’s in the QSHI discussed recently in Ref. [Cho10]. In the latter imple-

mentation, CP’s are injected ballistically from an edge portion that opens a gap due to

a strong proximity effect to a nearby SC. The induced superconductivity provides perfect

Andreev reflection for electrons incoming from the normal region of the edge. Time-reversal

symmetry prohibits normal scattering in this situation. This Andreev reflection is found

to induce ordinary (i.e., negative) current cross correlations with the second edge that is

connected to the first by a point contact [Cho10]. In the present situation, on the other

hand, the contact between the SC and the QSHI is weak and the electrons are thus pass-

ing along the edges almost ballistically with little Andreev scattering. Those electrons that

rarely undergo Andreev reflection, in turn, scatter to a different edge as holes, which is called

crossed Andreev reflection (while the same-edge Andreev reflection is suppressed by the LL

correlations). This effective flipping of the scattered carrier charge reconciles our positive

cross correlations with the Hanbury Brown and Twiss perspective of Ref. [Cho10].
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CHAPTER 3

Crossed Andreev reflection in quantum wires with

strong spin-orbit interaction

3.1 Introduction

One of the key features and resources of quantum mechanics is entanglement, particularly

in the particle spin sector, which has been an enticing subject since the Einstein-Podolsky-

Rosen thought experiment [EPR35] and, more recently, fueled by the modern proposals for

spin-based quantum information processing and computation [LD98, DL99]. In order to

use an entangled pair of electrons for quantum information technology in a scalable semi-

conductor setting, it is essential to have a solid-state system that can separate the entan-

gled electrons over appreciable distance. Detecting electron spin entanglement is possible

via bunching or antibunching correlations in beam splitters [BLS00] and transport through

Coulomb-blockaded quantum dots forming a Josephson junction [CBL00]. A conceptual

headway came with a proposal to spatially separate spin-singlet Cooper pairs (CP’s) in-

jected from an s-wave superconductor via crossed Andreev reflection (CAR) [DF00] in a

quantum dot setup [RSL01] and in a normal-metal fork [LMB01]. Later, more elaborate

considerations for an s-wave superconductor in junction with quantum wires [RL02, BVB02],

quantum beam splitter [SSB04], and quantum dots [SFM04] have been put forward. CAR

is essential in all these proposals, and it has been experimentally manifested in the neg-

ative nonlocal differential resistance in the system of a superconductor in junction with

normal metal [BWL04, RKK05, WC10]. CP splitter experiments have been recently per-

formed with quantum dots [HCN09] and carbon nanotubes [HPR10]. As another form of CP
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splitter, we theoretically proposed the system with a superconductor straddling a strip of

two-dimensional quantum spin Hall insulator (QSHI) [SLT10], to inject a CP into its gapless

edge states. Utilizing the helical Luttinger-liquid character of the QSHI edges (where each

electron moves in the opposite direction to its time-reversed Kramers partner with opposite

spin), the spin entanglement can be converted into nonlocal charge-current cross correlations.

In this paper, we consider CP injection into quantum wires with strong spin-orbit inter-

action (SOI), such as self-doped (and possibly backgated, to control their electron density)

InAs nanowires. If only SOI is considered, the spin degeneracy at the Γ point (k = 0) is

preserved because of the time-reversal symmetry. However, this degeneracy can be lifted

by external magnetic field (facilitated in InAs by a large g factor of electrons and gener-

ally enhanced by electron-electron interactions [BJK10]). When the chemical potential is

set in the corresponding gap at the Γ point, gapless states which propagate in the opposite

directions with almost opposite spins can be realized at the Fermi points. Note that such

a system can closely resemble the helical edge state of the QSHI [KM05a, KM05b, BZ06].

We consider s-wave superconductor connected to a pair of such semiconductor wires in the

regime where two CP electrons split into different wires, in the presence of electron-electron

repulsion. Effective spin-quantization axes for the left- and right-moving electrons injected

into the Fermi points of the two wires are tilted—in one wire relative to the other—by their

geometric misalignment. Such tilt affects the current cross correlations in the wires in a way

that is similar to the tunable breaking of the inversion symmetry discussed in Ref. [SLT10].

When temperatures and voltage bias between the superconductor and the wires are

smaller than the superconductor gap ∆, single-particle injection into the wires is suppressed.

In this regime, transport is dominated by the CP tunneling. This process, however, is ex-

ponentially suppressed if the distance between the wires exceeds the coherence length of a

CP and algebraically on the scale of the Fermi wavelength in the superconductor (depending

sensitively on its spatial dimensionality) [RL02], posing a potentially serious constraint on

the interwire separation. Very importantly, furthermore, if the applied voltage and temper-

ature are smaller than ∆, the parasitic tunneling of two CP electrons into the same wire is
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suppressed with a power law that is governed by the Luttinger-liquid correlations [RL02]. In

this work, we thus focus on the regime where a CP splits ejecting electrons into the different

wires. There is a time lag of ∼∆−1 between two such tunneling events, the longer it is the

weaker the Luttinger-liquid suppression of the same-wire CP tunneling. However, when two

electrons are forced to split and enter different wires at low energies, the leading-order tun-

neling rates are independent of this time delay (neglecting any interwire interactions) [RL02].

Therefore, we consider a simplified model with equal-time CP injection of two electrons into

two different wires [BVB02].

This paper is organized as follows. In Sec. 3.2, we introduce the Hamiltonian for the

quantum wire with spin-orbit coupling and magnetic field, and discuss tunneling matrix

elements. We consider both Rashba and Dresselhaus SOI with the wire oriented in the

xy plane under the magnetic field in the z direction. In Sec. 3.3, we calculate the noise

spectrum of the currents in the wires with Keldysh formalism. (Details of the computation

are relegated to the appendices.) Final remarks on possible extensions of our theory and

experimental feasibility are provided in Sec. 3.4.

3.2 Hamiltonian for Quantum Wires

For the wires, Rashba and Dresselhaus SOI in combination with the Zeeman splitting are

considered. Lateral confinement in the wire governs subbands, of which we suppose (at

sufficiently low temperature and appropriate backgate bias) only the lowest one is occupied,

whose Kramers pairs are split by the lack of both time-reversal and inversion symmetries. In

this system, the one-dimensional effective Hamiltonian for a wire oriented along the x axis

is given by [SEL03, SGS07, GSS08]

H0 =
~2k2

2m∗
+ αkσ̂y + βkσ̂x − ξσ̂z , (3.1)

where m∗ is the effective mass of electron, α (β) is the strength of the Rashba (Dresselhaus)

SOI, and k is the electron wave number. The Dresselhaus part is for the case when a zinc-

blende heterostructure is grown in the [001] crystallographic direction, while the wire is
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oriented in the [100] direction [SKK08, WCW09]. 2ξ = gµBB is the Zeeman energy gap at

k = 0, with magnetic field B applied along the z axis, g is the g factor, and µB the Bohr

magneton. σ̂ = (σ̂x, σ̂y, σ̂z) are Pauli matrices. Other wire and magnetic field orientations

are discussed in Sec. IV.

Defining the k-dependent effective field R(k) = (βk, αk,−ξ), the Hamiltonian can be

written as

H0 =
~2k2

2m∗
+ R(k) · σ̂ , (3.2)

and the eigenspinors are found by rotating spinors such that R(k)·σ̂|χ±(k)〉 = ±R(k)|χ±(k)〉,

where R(k) =
√
k2(α2 + β2) + ξ2. The subscripts ± here label spin up/down along R(k).

The energy eigenstates are thus given by ψ±(k) = χ±(k)eikx, with energy ε±(k) = ~2k2/2m∗±

R(k). The upper and lower (ε+ and ε−) bands are sketched in Fig. 4.1. When the chemi-

cal potential µ is set within the gap, we can linearize the remaining left and right-moving

ε− branches within a Luttinger-liquid picture. This requires (eV, kBT ) � ξ and electron-

electron interactions that are not strong enough to hybridize the ε± bands. On the other

hand, we require the magnetic field to be weak enough on the scale set by Hc of the supercon-

ductor (which can be enhanced in mesoscopic structures up to the paramagnetically-limited

value of order ∆/µB [TMS70]).

Inversion asymmetry between the two wires is introduced by tilting the lower wire (which

is otherwise defined along the same crystallographic axis), which rotates the spin quantization

axis at each Fermi point of the ε− band. The upper wire is along the x axis, whereas we

suppose the lower wire is placed in the xy plane at an angle θ with respect to the x axis, as

shown in Fig. 4.2. (This may in practice be realized by growing both wires parallel to each

other on an unstrained crystal, and then distorting the crystal in the xy plane to effectively

tilt the wires; depending on the interwire separation, a finite θ may not require a large strain,

whose additional effect on the SOI is neglected.) The SOI in the lower wire is thus given by

HSO = αk (cos θσ̂y − sin θσ̂x) + βk (cos θσ̂x + sin θσ̂y) . (3.3)

Reflecting this rotation of the lower wire, the effective fields for the upper (u) and lower (d)
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Figure 3.1: Single-particle electron dispersion with Rashba and Dresselhaus SOI. Zeeman

splitting 2ξ is induced at k = 0 by a magnetic field in the z direction, and the chemical

potential is set in this gap. One-dimensional effective theory is then linearized near ±kF ,

which define respectively the right- and left-moving electron branches.

wires are given by

R(u)(k) ≡ R(k, θ = 0) = (βk, αk,−ξ) ,

R(d)(k) ≡ R(k, θ)

= [k(−α sin θ + β cos θ), k(α cos θ + β sin θ),−ξ] . (3.4)

The corresponding Fermi-point eigenspinors are |χ(u,d)
r,l 〉 ≡ |χ(u,d)(±kF )〉, which solve

R
(n)
r,l · σ̂|χ

(n)
r,l 〉 = −R(n)

r,l |χ
(n)
r,l 〉 (3.5)

for R
(u,d)
r,l ≡ R(u,d)(±kF ). We will assume electronic correlations are not strong enough to

significantly affect these Fermi-point spinors. Anticipating tunneling of electrons with well-

defined spins from the superconductor into the Fermi points of our wires, we can effectively

decompose the fermionic field operators ψ
(n)
σ (σ =↑, ↓) in terms of the right (left) movers

ψ
(n)
r,l in the nth wire as [SGS07]

ψ(n)
σ = 〈χ(n)

r |σ〉ψ(n)
r + 〈χ(n)

l |σ〉ψ
(n)
l . (3.6)
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Figure 3.2: S-wave superconductor bridging two identical wires. The lower wire is rotated

by angle θ with respect the upper wire. The superconductor is biased by V with respect to

the wires.

The full wire Hamiltonian (4.3) is bosonized [Gia04] near the Fermi points to give an essen-

tially helical (so long as the Zeeman term ξ is weak) Luttinger-liquid: [SJ09]

H0 = v
∑
n=u,d

∫
dx

2π

[
1

g

(
∂xφ

(n)
)2

+ g
(
∂xθ

(n)
)2]

, (3.7)

where φ(n), θ(n) = (φ
(n)
r ±φ(n)

l )/2 obey commutation relations [θ(n)(x), φ(m)(y)] = (iπ/2) sgn(x−

y)δnm. φ
(n)
r,l parametrize fermionic operators as ψ

(n)
r,l ∝ e±iφ

(n)
r,l .

The tunneling Hamiltonian, which describes nonlocal injection of the spin singlet CP

from an s-wave superconductor into the two quantum wires is given by [BVB02]

HT = T e−2eV t
[
ψ

(u)
↑ ψ

(d)
↓ (0)− ψ(u)

↓ ψ
(d)
↑ (0)

]
+ H.c. . (3.8)

In this model, two electrons from a singlet CP split and tunnel simultaneously into the

upper and lower wires at their respective origins. V is the voltage applied between the

superconductor and the wires, which is set to be smaller than ∆ to preclude quasiparticle

excitations. Expanding spin-dependent operators ψ
(n)
↑/↓ in terms of the chiral modes pertinent
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to the wires as in Eq. (3.6), we can rewire the tunneling Hamiltonian (4.4) as

ψ
(u)
↑ ψ

(d)
↓ − ψ

(u)
↓ ψ

(d)
↑ =

∑
µ,ν=r,l

Kµνψ
(u)
µ ψ(d)

ν , (3.9)

where Kµν are the complex-valued expansion coefficients, which are given by

Kµν = 〈χ(u)
µ | ↑〉〈χ(d)

ν | ↓〉 − 〈χ(u)
µ | ↓〉〈χ(d)

ν | ↑〉 . (3.10)

In Section 3.3, the current-current correlations are calculated, which depend on |Kµν |2

(reflecting spin-rotational symmetry of a singlet CP):

|Kµν |2 = 1− |〈χ(u)
µ |χ(d)

ν 〉|2 =
1

2

(
1− R̂(u)

µ · R̂(d)
ν

)
. (3.11)

Here, R̂
(n)
µ = R

(n)
µ /R

(n)
µ , and |Kµν |2 can be evaluated using Eq. (3.4). R

(n)
µ =

√
k2F (α2 + β2) + ξ2,

for n = u, l and µ = ±, independent of the orientation of the wire or electron chirality. Fur-

thermore, since R
(u)
µ · R(d)

ν = µνk2F (α2 + β2) cos θ + ξ2 (where µ and ν = ± respectively

for r, l), we find that |K++|2 = |K−−|2 and |K+−|2 = |K−+|2. Lumping Zeeman and SOI

energies into a dimensionless parameter λ = ξ/kF
√
α2 + β2, we finally arrive at a rather

simple expression for Eq. (3.11):

|Kµν |2 =
1− µν cos θ

2(1 + λ2)
. (3.12)

3.3 Noise spectrum

In this section, the current-current correlations at the four end points of the two wires in

Fig. 4.2 are considered. The symmetrized noise spectrum,

Sij(ω) = Sji(−ω) =

∫ ∞
−∞

dteiωt〈{δIi(t), δIj(0)}〉 , (3.13)

is calculated using Keldysh formalism [CFW96, SLT10]. Here δIi(t) = Ii(t)− 〈Ii(t)〉 are the

current fluctuations, i labeling four outgoing channels in the wires (i = 1, upper right; 2

upper left; 3, lower left; and 4, lower right branches)(see Fig. 4.2). We henceforth bosonize
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the current operators (with details of the computation provided in Section 3.5.1), finally

obtaining the following expressions for the noise spectra at zero frequency (ω = 0):

S13 = S31 = S24 = S42 = eI(1 + g2 cos θ) ≡ S+ ,

S14 = S41 = S23 = S32 = eI(1− g2 cos θ) ≡ S− ,

S11 = S22 = S33 = S44 = eI(1 + g2) ,

S12 = S21 = S34 = S43 = eI(1− g2) . (3.14)

Here, I is the average current flowing though each of the four branches, which is given by

Eq. (3.23). This current vanishes in the limit λ � 1, when both wires become fully spin

polarized thus blocking the CP tunneling. Notice that the magnetic field did not scramble

helical structure of the interwire cross correlations, which are the same [apart from the overall

suppression by (1 + λ2)] as the case of the time-reversal symmetric QSHI [SLT10]. This is

one of the key results of this paper.

The interwire cross-correlation spectra (4.10) are given by

S±(θ, λ) ∝ 1± g2 cos θ

1 + λ2
, (3.15)

which are modified from those in Ref. [SLT10] only by the magnetic-field suppression factor

of (1 + λ2)−1. In Ref. [SLT10], the angle θ dependence for the CP injection into the helical

edge states of a QSHI is due to a tunable asymmetry between two edges (induced by a local

application of strain or gate voltage to an otherwise inversion-symmetric system). Here, θ

dependence comes from the mechanical rotation of the lower wire by the angle θ. Notice that

the definitions for S+ and S− are interchanged here in comparison to Ref. [SLT10]. This is

because the quantum wires considered here do not have the inversion symmetry of helical

edge states on the opposite sides of a QSHI strip. Despite this fundamental difference, we

can clearly see the same structure in the CP noise cross correlations for both the present

quantum-wire system and the helical QSHI edges. According to Eq. (3.15), we can extract the

Luttinger-liquid interaction parameter g (which is typically [AYP02, ASY05] g ∼ 0.1− 1 in

semiconducting wires) from the interwire cross correlations: g2 cos θ = (S+−S−)/(S+ +S−).
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While in Ref. [SLT10] the angle θ is a parameter that may not be precisely known, in the

present setup the rotation angle θ of the lower wire can be experimentally well defined, so

that g can be found by measuring S+ and S− for an arbitrary value of θ that is away from

π/2.

3.4 Conclusion and discussion

The backscattering caused by disorder in the wire scrambles the ballistic transport and

smears the correlations pertaining to entangled electron pairs, which could hinder practical

implementation of our proposal. The nonlocal charge cross correlations thus have to be

detected on the length scales shorter than the mean free path. Partitioning of electrons

accordingly to their spin is the key feature for our result, which was obtained by setting the

chemical potential in the gap to probe into a single band. If it is set otherwise, for instance,

in the region of multiple bands, this feature is lost.

In the discussion so far, we were considering only one specific crystallographic orientation

of the wires. Namely, the heterostructure growth is in the [001] crystallographic direction

and each wire is defined (e.g., electrostatically) along the [100] direction. However, while the

Rashba SOI is rotationally invariant around the normal axis, the Dresselhaus SOI is sensitive

to the wire orientation on a crystal’s surface [MSS07, SKK08]. Suppose that with the same

crystal growth direction of [001], the wire is defined at an angle θD from the [100] direction.

In this case, the Dresselhaus SOI part of the Hamiltonian is given by [SKK08]

HD = βk [cos(2θD)σ̂x − sin(2θD)σ̂y] . (3.16)

This crystallographic orientation and the associated Hamiltonian are now chosen for the

upper wire, with our coordinate system still placed (as in Fig. 4.2) with the x direc-

tion collinear with the wire. The corresponding effective-field vector is then R(u)(k) =

[βk cos(2θD), αk − βk sin(2θD),−ξ]. Since the lower wire is rotated in the xy plane by the

angle θ with respect to the upper wire, R(l) obtained by the corresponding rotation on R(u)

is given by R(l) = [−αk sin θ + βk cos(2θD − θ), αk cos θ − βk sin(2θD − θ),−ξ]. The ab-
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solute value of R(u,l) is modified by θD: R(u,l) =
√
k2[α2 + β2 − 2αβ sin(2θD)] + ξ2. Both

the direction and the magnitude of R(u,l) are thus modified, affecting Kµν in Eq. (3.11).

We still have |K++|2 = |K−−|2 and |K+−|2 = |K−+|2 according to Eq. (3.11). In fact,

the modification of |Kµν |2 can be absorbed by redefining λ entering Eq. (3.12) as λ =

ξ/kF
√
α2 + β2 − 2αβ sin(2θD), with all subsequent relations for the noise spectra unmodi-

fied. In particular, apart from the modified geometric spin factor λ, which suppresses the

overall strength of the CAR, S± in Eq. (3.15) remain the same. This means we can choose

any wire orientation on the crystal surface without altering the essence of the noise cross

correlations. One special point is θD = π/4 when α = β (or θD = −π/4 when α = −β),

corresponding to the “persistent spin helix” [SEL03, BZ06], where λ blows up and the CAR

is fully blocked (reflecting exact cancellation of the SOI terms).

Let us also comment on a possible triplet pairing of the injected electrons, e.g., if the two

terms in the tunneling Hamiltonian (4.4) acquire a relative phase difference: eiδ/2ψ
(u)
↑ ψ

(d)
↓ −

e−iδ/2ψ
(u)
↓ ψ

(d)
↑ . We can rewrite it as cos(δ/2)(ψ

(u)
↑ ψ

(d)
↓ + ψ

(u)
↓ ψ

(d)
↑ ) − i sin(δ/2)(ψ

(u)
↑ ψ

(d)
↓ +

ψ
(u)
↓ ψ

(d)
↑ ). The corresponding modification of |Kµν |2 in Eq. (3.12) can be accounted for

by the replacement θ → θ− δ, with the same δ shift of θ appearing in the noise expressions.

Interestingly, the phase difference in the tunneling terms has the same effect on the current

correlations as a mechanical rotation of the wires. Such a triplet component in tunneling

can be effectively induced by tunneling away from the Fermi points at finite temperature

and/or voltage, and artificially enhanced in more complex tunneling setups [VR12].

Another concern to be mentioned is that, if the superconductor is in a slab shape, the

perpendicular critical field is reduced. This issue can be mitigated by applying an in-plane

magnetic field. For the case of a thin-film superconductor, the critical field is further en-

hanced (up to its paramagnetic limit [TMS70]) when the magnetic penetration depth is

greater than its thickness. R in Eq. (3.4) needs to be modified accordingly. Since the

magnetic-field and SOI contributions to R are not generally perpendicular to each other,

the resulting energy band is not symmetric as in Fig. 4.1. In turn, |Kµν |2 in Eq. (3.12) and

the formula in Eq. (4.10) acquire certain corrections. In the limit of λ � 1, the correc-
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tions are small, however, and we recover the same noise behavior as in Eq. (3.15). In the

strong-field limit, λ & 1, on the other hand, a more careful analysis would be warranted.

Now let us return to Eq. (3.15) to see the feasibility of this theory in an experiment. A

very large magnetic splitting (on the scale of the SOI) in the wires, λ� 1, blocks Andreev

reflection [JB95], when the Fermi level is inside the Γ-point gap. The SOI is large in the InAs-

based heterostructures and wires, where the Rashba parameter is α . 10−11 eV m (being

tunable by electrostatic gating) [NAT97, KNA02, DSS09, EAS10], β � α, and g factor is

≈ 15. For electron densities in the range of 10 − 100 µm−1, this gives for the magnetic

field B ∼ 0.1 − 1 T corresponding to λ ∼ 1. Both α and g factor can be considerably

lower (both up to two orders of magnitude) in InGaAs-based heterostructures, which can

make also α ∼ β [MSS07], while the corresponding magnetic field range remains roughly the

same. This gives us a favorable operational bound for the magnetic field, which opens the

Γ-point gap without compromising the strength of the CAR, while also not exceeding the

paramagnetically-limited critical field (with Tc & 1 K). Taking everything into account, this

means the experiments can be done at temperatures close to 1 K.

3.5 Supplementary Calculations

3.5.1 Average current and noise spectrum

We evaluate the average current in each wire and current-current correlations, Eq. (3.13).

Tunneling of Cooper pairs is treated perturbatively with the Keldysh formalism. Using

Luttinger-liquid bosonization formalism [Gia04, SJ09], the fermionic field is expressed as

ψ(n)
µ (x) =

1√
2πa

eiµ[kF x+φ
(n)
µ (x)] ,

where a is the short-distance cutoff. The Klein factor is omitted here as it has no effect on

the final results derived below. µ = r, l = ± labels the left- and right-moving branches. In
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this bosonized representation, the tunneling Hamiltonian, Eq. (4.4), becomes

HT =
T

2πa
e−iω0t

∑
µ,ν=r,l

Kµνe
i[µφ

(u)
µ (0)+νφ

(d)
ν (0)] + H.c. .

Here, ω0 = 2eV/~ is the Josephson frequency corresponding to the bias V applied between

the superconductor and the wires, and Kµν is given in Eq. (3.9).

We define the current to be positive as it flows away from the superconductor. The

bosonized current operators at distance x � a from the superconductor, along branches 1

through 4 in Fig. 4.2, are given by [Gia04]

I1,2 = ±I(u)(±x) = ±e(vg/π)∂xθ
(u)(±x) ,

I4,3 = ±I(d)(±x) = ±e(vg/π)∂xθ
(d)(±x) .

The average current and the noise spectrum are given by [CFW96, CGD03]

I(n)(x, t) =
1

2

∑
η

〈
Tce
− i

~
∫
c dt
′′HT (t

′′)I(n)(x, t, η)
〉
,

S(nm)(x, t;x′, t′) ≈
∑
η

〈
Tce
− i

~
∫
c dt
′′HT (t

′′)I(n)(x, t, η)I(m)(x′, t′,−η)
〉
,

respectively, where Tc is the Keldysh contour-ordering operator, η = ± labels the upper

(lower) branch of the Keldysh contour for the field operators, and the time evolution of the

operators on the right-hand side is given in the interaction picture. Since to the leading order

in tunneling the average current I is proportional to |T |2, we have dropped the 〈Ii(t)〉〈Ij(0)〉

term in the noise spectrum, which is of order |T |4. When calculating the noise spectrum, it

is convenient to exponentiate the operator θ(n) in the following way:

∂xθ
(n)(x, t) = ∂x(−i∂λ)eiλθ

(n)(x,t)
∣∣
λ=0

.
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Up to the second order in T , we finally find

I(n)(x, t) = −sgn(x)|T |2 evg

4πa2h2

∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2∂x(−i∂λ)
∫ ∞
−∞

dt1dt2e
−εiω0(t1−t2)

×
〈
Tce

iλθ(n)(x,t,η)eiε[µφ
(u)
µ (0,t1,η1)+νφ

(d)
ν (0,t1,η1)]e−iε[µφ

(u)
µ (0,t2,η2)+νφ

(d)
ν (0,t2,η2)]

〉∣∣
λ=0

, (3.17)

S(nm)(x, t;x′, t′) = −sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2 ∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2∂x∂x′∂λ1∂λ2
∫ ∞
−∞

dt1dt2e
−iεω0(t1−t2)

×
〈
Tce

iλ1θ(n)(x,t,η)e−iλ2θ
(m)(x′,t′,−η)eiε[µφ

(u)
µ (0,t1,η1)+νφ

(d)
ν (0,t1,η1)]e−iε[µφ

(u)
µ (0,t2,η2)+νφ

(d)
ν (0,t2,η2)]

〉∣∣
λ1,λ2=0

.(3.18)

Here, ε = ± corresponds to the annihilation (creation) part of HT and h is the Planck’s

constant. The above expression is then evaluated using standard bosonic operator identi-

ties [Gia04], giving

I(n)(x, t) = −isgn(x)
evg|T |2

4πa2h2

∑
µ,ν,ε
η,η1,η2

ε|Kµν |2η1η2
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−εiω0(t1−t2)

×
∑
κ

(δn,uδµ,κ + δn,dδν,κ)Pη1η2(t1 − t2) [Qκ,ηη1(x, t− t1)−Qκ,ηη2(x, t− t2)] , (3.19)

S(nm)(x, t;x′, t′) = sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2 ∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

∑
λ,κ

Lnm,λκ

×Pη1η2(t1 − t2) [Qλ,ηη1(x, t− t1)−Qλ,ηη2(x, t− t2)] [Qκ,−ηη1(x
′, t′ − t1)−Qκ,−ηη2(x

′, t′ − t2)] ,(3.20)

where Lnm,λκ = (δu,nδµ,λ + δd,nδν,λ)(δu,mδµ,κ + δd,mδν,κ) and Pηη′(t) and Qµ,ηη′(x, t) are ex-

pressed in terms of the Green’s functions of φ(n)(x, t) and θ(n)(x, t):

Pηη′(t) =
∏
n=u,d

exp
[
G

(n)φφ
ηη′ (0, t) +G

(n)θθ
ηη′ (0, t)

]
, Qµ,ηη′(x, t) = µ∂xG

(n)θφ
ηη′ (x, t)+∂xG

(n)θθ
ηη′ (x, t) .

(3.21)

Here [Gia04],

G
(n)φφ
ηη′ (x, t) = 〈Tcφ(n)(x, t, η)φ(n)(0, 0, η′)− φ(n)(0, 0)2〉 = −g

4

∑
r=±

ln
[
1 + iDηη′(t) (vt− rx) /a

]
,

G
(n)θθ
ηη′ (x, t) = 〈Tcθ(n)η (x, t)θ

(n)
η′ (0, 0)− θ(n)(0, 0)2〉 = − 1

4g

∑
r=±

ln
[
1 + iDηη′(t) (vt− rx) /a

]
,

G
(n)φθ
ηη′ (x, t) = 〈Tcφ(n)

η (x, t)θ
(n)
η′ (0, 0)〉 = G

(n)θφ
ηη′ (x, t)

= 〈Tcθ(n)η (x, t)φ
(n)
η′ (0, 0)〉 = −1

4

∑
r=±

r ln
[
1 + iDηη′(t) (vt− rx) /a

]
, (3.22)
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where Dηη′(t) = Θ(ηη′)sgn(η′t) + Θ(−ηη′)sgn(η′).

We finally obtain the current as

I(n)(x) = isgn(x)
evg

4πa2h2
|T |2

∑
µ,ν,κ

|Kµν |2(δn,uδµ,κ + δn,dδν,κ)

×
[
Qκ,++(x)−Qκ,+−(x) +Qκ,−+(x)−Qκ,−−(x)

]
×
[
P+−(ω0)− P+−(−ω0)− P−+(ω0) + P−+(−ω0)

]
= sgn(ω0)

1

1 + λ2
2πe|T |2

v2h2Γ(2γ + 2)

(
|ω0|a
v

)2γ

|ω0| , (3.23)

where Pηη′(ω) and Qµ,ηη′(x) ≡ Qµ,ηη′(x, ω = 0) denotes the Fourier transform and γ =

(g+ g−1− 2)/2. Kµν here is taken from Eq. (3.12). Similarly for the noise spectrum, we get:

S(nm)(x, x′, ω = 0)

= −sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2∑
µν

|Kµν |2
∑
λ,κ

Lnm,λκ
[
P−+(ω0) + P−+(−ω0) + P+−(ω0) + P+−(−ω0)

]
×
{[
Qλ,++(x)−Qλ,+−(x)

][
Qκ,−+(x′)−Qκ,−−(x′)

]
+
[
Qλ,−+(x)−Qλ,−−(x)

][
Qκ,++(x′)−Qκ,+−(x′)

]}
= eI

[
δn,mF1(x, x

′) + δn,−mF2(x, x
′)
]
, (3.24)

where

F1(x, x
′) = 1 + g2sgn(x)sgn(x′) (for n = m) , F2(x, x

′) = 1− g2 cos θsgn(x)sgn(x′) (for n 6= m) ,

and I is given by the absolute value of the current in Eq. (3.23).

3.5.2 Relevant integrals

The evaluation of the average current and the noise spectrum in Eqs. (3.23) and (3.24)

reduces to finding Pηη′(ω) and Qµ,ηη′(x, ω = 0) = Qµ,ηη′(x), which are the Fourier transforms

of the functions defined in Eq. (3.21). Using the Green’s functions in Eq. (3.22), we find

Pηη′(t) =
1

[1 + iDηη′(t)vt/a]2γ+2 ,

Qµ,ηη′(x, t) = i
∑
r=±

r + µg

4ag

Dηη′(t)

1 + iDηη′(t)(vt− rx)/a
.
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P−+(ω) can be evaluated by noting the integral:∫ ∞
−∞

dt
eiωt

(δ + it)ν
=

2π

Γ(ν)
|ω|ν−1e−|ω|δΘ(ω) .

Furthermore, we see P+−(ω) = P−+(−ω), and the expression appearing in Eqs. (3.23) and

(3.24) become

P−+(ω0)− P−+(−ω0)− P+−(ω0) + P+−(−ω0)

=
4π

Γ(2γ + 2)

(a
v

)2γ+2

|ω0|2γ+1e−|ω0|a/vsgn(ω0) ,

and

P−+(ω0) + P−+(−ω0) + P+−(ω0) + P+−(−ω0)

=
4π

Γ(2γ + 2)

(a
v

)2γ+2

|ω0|2γ+1e−|ω0|a/v .

To be internally consistent with the low-energy Luttinger-liquid description, we henceforth

drop the factor e−|ω0|a/v. The remaining relevant terms entering Eqs. (3.23) and (3.24) are

Qµ,++(x)−Qµ,+−(x) = Qµ,−+(x)−Qµ,−−(x)

= i
∑
r

r + µg

4g

∫ ∞
0

dt

[
1

a+ i(vt− rx)
+

1

a− i(vt− rx)

]
= i
∑
r

r + µg

2gv

[π
2
− tan−1

(
−rx
a

)]
≈ iπ

2vg
[µg + sgn(x)] .
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CHAPTER 4

Detection of entanglement by helical Luttinger liquids

4.1 Introduction

Controlled generation, manipulation, and detection of entangled quantum states are crucial

ingredients for quantum computation [NC00], quantum teleportation [BBC93], and quan-

tum cryptography [BB84, Eke91, GRT02]. The Einstein-Podolsky-Rosen (EPR) thought

experiment similarly relied on the control of entangled states [EPR35]. One of the ways to

test quantum entanglement is to observe a violation of a Bell inequality [Bel66, CHS69]. Al-

though this has been achieved with a high accuracy using entangled-photon sources [AGR81,

AGR82, Fra89, KMW95], performing such experiment with electrons is a challenging task,

because of electron-electron interactions and dephasing due to the solid-state environment.

Nonetheless, Bell tests based on electron spin entanglement [Kaw01, CBL02, LLB05], orbital

entanglement [SSB03], and electron-hole entanglement [BEK03] have been proposed, where

a Bell inequality is built upon charge current correlations.

Sources of entangled particles and mechanisms to spatially separate them are essential

requirements for performing a Bell test. This task can be achieved by a Cooper-pair (CP)

splitter, which spatially separates a spin-entangled CP by sending a weak current from a su-

perconductor (SC) into a pair of quantum dots, wires, or carbon nanotubes [LMB01, RSL01,

RL02, BVB02, RL03, SSB04]. An s-wave SC provides an excellent source of spin-entangled

electrons from CP’s, which are condensed at the Fermi level of its ground state. Spatial sepa-

ration of a CP can be achieved through crossed Andreev reflection [BWL04, RKK05, WC10],

as has been recently demonstrated using double quantum dot structures in single-wall car-
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bon nanotubes [HPR10, HBH12] and InAs semiconductor nanowires [HCN09, HCB11]. The

efficiency of CP splitting was shown to approach unity [SBS12], which encourages further

pursuit of superconducting heterostructures toward Bell tests and, in time, scalable quantum

measurements.

After a spin-entangled pair of electrons is spatially separated, their spins need to be

read out. Traditionally, the information on spin is extracted by a spin-to-charge conver-

sion [EHB04, HKP07], where a spin state governs charge current via spin filtering controlled

by a local magnetic field or exchange correlations. This, however, requires intricate fine-

tuning and could generally suffer from low efficiency and parasitic backscattering. Recent

discovery of two-dimensional topological insulators (TI) [KM05a, KM05b, BZ06, BHZ06,

HK10, QZ11], also called quantum spin-Hall insulators (QSHI), could provide robust means

for the purpose of spin-to-charge conversion, owing to its special edge states. Experimentally

it is established in inverted-band HgTe quantum-well heterostructures [KWB07, RBB09].

The edge states of a QSHI are robust against time-reversal symmetric perturbations, and

their spins and momenta are tightly correlated. A given edge of a QSHI supports a Kramers

pair of counter-propagating gapless modes with opposite spins, which we call helical edge

states. A CP splitter utilizing such helical edge states as charge carriers has been pro-

posed [SLT10], where it was shown that the entangled spin-singlet state from CP imprints a

characteristic signature in the current-current correlations. Quasi-one-dimensional semicon-

ductor wires with strong spin-orbit coupling, such as InAs, subject to an external magnetic

field can provide a way to emulate the helical states [SLT12], which shares many features

and functionalities of helical edge states. Such a CP splitter utilizing a helical electron

system was recently suggested as a mean to perform a Bell test based on nonlocal current

correlations along the edges of two QSHI’s [CSS12].

In this paper, we study a Bell test implemented by an electron-pair splitter based on

the interacting helical edge states of a QSHI. Each edge state is deformed to form a beam

splitter, as seen in Fig. 4.1, replacing a spin filter in a conventional Bell-test experiment. It
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Figure 4.1: An s-wave SC is coupled to a QSHI. Two electrons forming a CP split into top

and bottom helical edge states. The electron-electron interaction is finite in the grey regions

around SC and vanishes outside of these regions. Two beam splitters are formed at the

edges, which are indicated by the striped regions. The charge currents are detected at the

end points labeled by u± and l±. ψn,r with n = u, l and r = ± indicate the incoming electron

states moving to the right (+) and left (-) along the upper (u) and lower (l) edges, and ψ′n,r

are the outgoing states perturbed by the beam splitters.

is important to consider electron-electron interactions in the helical edge states, since they

are crucial for separating a CP into different edges of the QSHI [RL02]. The edge states are

treated as inhomogeneous helical Luttinger liquids (LL’s), whose segments in the proximity

to the SC have sizable interactions, while the outside regions, which form beam splitters,

are noninteracting Fermi gases. Although a LL wire connected to Fermi-liquid reservoirs

is known to mask the effect of electron-electron interactions in transport [MS95, SS95],

we show that the low-frequency current-current correlations can be used to construct a Bell

inequality. A violation of the inequality can be achieved by controlling scattering through the

beam splitters via external means, such as electrostatic gating or magnetic field. At finite
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temperatures, the electron-electron interaction in LL leads to decoherence due to charge

fractionalization [Le 05, Le 06], suppressing signatures of the CP entanglement.

Figure 4.2: Alternatively to the CP splitter schematically shown in Fig. 4.1, an entangled

electron-hole pair can be injected across the QSHI edges through the constriction in the

middle, by biasing the left reservoir relative to the right reservoir. Blue (red) lobe indicates an

electron-hole pair created by spin up (down) incoming state from the left reservoir, denoted

by blue (red) dashed trajectories. These entangled electrons-hole pairs then propagate along

the edges toward the two beam splitters (shaded regions).

So far, we have focused on the spin-entangled electrons entering different edges and going

through beam splitters as in Fig. 4.1. Alternatively, entangled electron-hole pairs can be pro-

duced via weak tunneling between the upper and lower edges analogously to Ref. [BEK03].

The corresponding system is sketched in Fig. 4.2. The entangled electron and hole go through

the beam splitter without backscattering, and the current-current correlations at the out-

put ports of the beam splitter can be used for constructing a Bell test. As this type of

system based on injecting electron-hole pairs instead of CP’s can in principle be operated

very similarly to the device shown in Fig. 4.1, we will henceforth limit our discussion ex-
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clusively to the latter. The advantage of the proposals based on Figs. 4.1 or 4.2 to those

of Refs. [SSB03, BEK03] is that the interedge tunneling naturally creates maximally entan-

gled quasiparticle pairs of the form (|↑↓〉 ∓ |↓↑〉)/
√

2 (spin here corresponding to chirality

of edge index, respectively). Ballistic nature of helical wires furthermore protects against

strong orbital dephasing, such that the QSHI would be advantageous even in the setting of

Ref. [SSB03], where the CP’s are injected by local Andreev processes. It is important to

mention that in the models depicted in Figs. 4.1 and 4.2, we assume structural inversion

symmetry in the central, tunneling region, in addition to the time-reversal symmetry (thus

dictating effective spin conservation on tunneling [SLT10]). In contrast, momentum conser-

vation is assumed for the beam splitters, which requires locally lifting inversion symmetry

(e.g., by a Rashba coupling) or time-reversal symmetry (e.g., by a magnetic or exchange

field), in order to allow for interedge scattering.

4.2 Model and Hamiltonian

We consider a CP splitter formed by tunnel coupling an s-wave SC to the helical edge states

of a QSHI. The total Hamiltonian of the system is H = H0 + HT , where H0 describes the

unperturbed edge states, including electron-electron interactions, and the tunneling from the

SC is given by the Hamiltonian HT . Since the spin and momentum of the edge states are

locked by their helical structure, the LL branches can be labelled by chiral index, r = ±,

for the right- and left-moving states, respectively, with the spin index being redundant. We

suppose the spin-up (down) states circulate clockwise (counterclockwise) around the QSHI

sample, as sketched in Fig. 4.1. Hence, we can denote electron field operators for the left

and right-moving LL branches on the upper (u) and lower (l) edges by

ψu,↑(↓) ≡ ψu,± , ψl,↑(↓) ≡ ψl,∓ , (4.1)

where (dropping Klein factor and the trivial phase factor eirkF x associated with the Fermi

wave number kF )

ψn,r ∝
ei(θn+rφn)√

2πδ
, (4.2)
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in terms of bosonic fields φ and θ, subjected to a short-distance cutoff δ [Gia04]. In our

convention, the commutation relation for the bosonic operators is given by [θn(x), φn′(y)] =

i(π/2)δnn′sgn(x− y). The effective LL Hamiltonian of the helical edge states in terms of the

bosonic operators reads

H0 =
∑
n=u,l

∫
dx

2π
v(x)

[
1

g(x)
(∂xφn)2 + g(x)(∂xθn)2

]
, (4.3)

where g is the interaction parameter and v is the renormalized velocity of the plasmonic

excitations, both position dependent for an inhomogeneous LL. For both edges, we take

x = 0 as the point where electrons tunnel from the SC, and we let the interacting region

be |x| ≤ L with g(x) = g < 1 (repulsive interaction). Exterior of this region (|x| > L) is

noninteracting, where we set g(x) = 1. Correspondingly, the velocity is v(x) = vF for |x| > L

and v(x) = v for |x| ≤ L. In addition, the left and right ends of each edge are connected

through a beam splitter (see Fig. 1), which will be treated using scattering-matrix formalism.

The temperature kBT and the voltage bias eV between the SC and QSHI are set below

the superconducting energy gap ∆ to prevent quasiparticle tunneling. We will be interested

in the low-temperature regime, kBT � eV , when the electric shot noise dominates over the

thermal noise. In order to achieve CP splitting into different QSHI edges, their separation

should be less than the superconducting coherence length. Furthermore, the electron-electron

(here, LL) interaction is necessary to suppress the same-edge tunneling [RL02]. Large enough

interaction strength 1 − g and gap ∆ allow for the different-edge tunneling to become the

dominant transport process. This allows one to employ a simple model of equal-time cross-

edge tunneling of spin-singlet electron pairs. As the spin-singlet wave function corresponds

to ψu,↑ψl,↓ − ψu,↓ψl,↑, one obtains the following tunneling Hamiltonian (assuming structural

inversion symmetry [SLT10]):

HT = Γe−iω0t [ψu,+(0)ψl,+(0)− ψu,−(0)ψl,−(0)] + H.c.

=
∑
r,ε=±

εrΓεe−iεω0tψεu,r(0)ψεl,r(0) . (4.4)

Here, Γ is a CP tunneling coefficient, ω0 = 2eV/~ is the Josephson frequency, and ε labels

Hermitian conjugate: ψ+ = ψ and ψ− = ψ†. Similar electron-hole tunneling Hamiltonian
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can be constructed for the set-up of Fig. 4.2, even in the absence of any LL correlations,

with ω0 = eV/~. Electron-electron interactions will, however, always be present and thus

need to be included for completeness, particularly in order to understand intrinsic dephasing

mechanisms.

4.3 Beam Splitters

The ends of each edge of the QSHI, where the interaction vanishes (g = 1), are connected to

a beam splitter as in Fig. 4.1. The regions forming the beam splitters are made sufficiently

long (on the scale of the Fermi wavelength), making the wave number conserved. Hence, we

assume no backscattering occurs from the beam splitters. In a given edge, the right- and

left-moving incoming and outgoing states through the beam splitter are related byψ′n,+
ψ′n,−

 =

cos ϕn
2
− sin ϕn

2

sin ϕn
2

cos ϕn
2

ψn,+
ψn,−

 , (4.5)

where ψ′n,± and ψn,± refer to the right (left)-moving outgoing and incoming states, respec-

tively, along the nth edge. ϕn is the beam-splitter scattering angle, which can be controlled

by local electromagnetic or elastic means [LOY98, OKL99].

The transport current operators at the detection points at u± and l± in Fig. 4.1 can be

readily expressed in terms of the outgoing filed operators ψ′n,r. Defining the currents to be

positive away from the beam splitters, the current operator In± at the edge n = u, l for the

right (+) and left (−) detection points is given by

In± = evFψ
′†
n,±ψ

′
n,± = In±,+ + In±,− + In±,i , (4.6)

where vF is the Fermi velocity in the noninteracting leads. Using Eq. (4.5), three different

terms appearing in Eq. (4.6) are given by

In±,r =
evF
2

(1± r cosϕn)ψ†n,rψn,r ,

In±,i = ∓evF
2

sinϕn

(
ψ†n,+ψn,− + H.c.

)
, (4.7)
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where ψn,+ and ψn,− are evaluated at some reference points x > L and x < −L, respectively,

before reaching the beam splitters. There are two types of contributions to the currents,

namely the incoherent current, In±,r, which is insensitive to dephasing along the edges, and

the interference current, In±,i, which carries the crucial quantum-phase information.

4.4 Current and Noise

Two spin-entangled electrons initially constituting a CP are spatially separated into the top

and bottom edges, with the currents produced by such entangled electrons being correlated

accordingly to the edge helicity. Thus, the ensuing current-current correlations reflect the

entanglement of the injected electron pair. In the following, we calculate the average current

and the low-frequency noise, to the leading order in tunneling.

The expectation value of current Īn± along the nth edge (n = u, l) is given perturbatively

by

Īn± =
〈
In±(t)

〉
=
〈
Tce
− i

~
∫
c dt
′HT (t

′)In±(t,+)
〉

≈− 1

2~2
∑

η1,η2=±

η1η2

∫
dt1dt2

×
〈
TcHT (t1, η1)HT (t2, η2)I

n
±(t,+)

〉
. (4.8)

The time evolution of the operators here is given in the interaction picture by A(t) =

eiH0t/~Ae−iH0t/~. Tc stands for the Keldysh contour ordering and η labels its branches, with

η = ± for the upper (lower) branch. Using Eq. (4.4) and (4.7), the above Eq. (4.8) can be

expressed in terms of the incoming fermionic operators. Following the standard bosonization

scheme, we proceed by expressing the fermionic operators in terms of the bosonic operators

following Eq. (4.2), and the chiral electron density appearing in the current operators can

be written as ψ†n,rψn,r = ∂x(φn + rθn)/2π [Gia04].

A detailed calculation for the average current is, for completeness, included in Ap-

pendix 4.7.2. The final expression is given in terms of the Green’s functions for bosonic fields

that incorporate the appropriate boundary conditions for the inhomogeneous LL, Eqs. (4.27)
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and (4.30). The current reads

Īn± =
〈
In±,+(t) + In±,−(t)

〉
=
e

h

(
|Γ|
~v

)2

P (ω0) ≡ Ī , (4.9)

where P (ω), which is defined in terms of the Fourier transform of the function P±∓(t),

Eq. (4.35), is proportional to the product of the tunneling densities of states of the edge

LL’s and independent of the beam splitter scattering angle ϕn. Note that
〈
In±,i
〉

= 0 for our

forward-scattering beam splitter.

As an electron tunnels in the interacting region (|x| ≤ L), resulting plasmonic charge-

density waves go trough multiple reflections between the interfaces of interacting and non-

interacting regions (at x = ±L), for which the interacting region acts as a Fabry-Pérot

resonator [SS95]. Such reflections are seen as multiple oscillations in the bosonic Green’s

functions, as in Eqs. (4.27) and (4.30), and the fermionic Green’s functions oscillate in turn.

The propagation time tL = L/v of the plasmonic excitations across the interacting region sets

the time scale of the Fabry-Pérot oscillation. The function P±∓(t) is a product of the part

related to the Green’s function in the absence of noninteracting leads (i.e., L→∞) and the

factor containing the effect of the Fabry-Pérot resonator. The applied bias V sets the time

scale tV = ~/eV = 2ω−10 . When tV � tL (large bias), the phase eiω0t in the Fourier transform

of P±∓(t) oscillates more rapidly than the time scale of the Fabry-Pérot oscillation. In this

limit, the effect of the resonator is washed out, and we can evaluate P (ω0) in the absence of

the noninteracting leads [LCM05], to find P (ω0) ∝ ω2γ+1
0 . Here, γ = (g + g−1 − 2)/2 is the

single-particle tunneling density of states exponent in a bulk LL.

The symmetrized current-current correlators between the upper and lower edges are given

by

Sαβ(t, t′) =
〈
{δIuα(t), δI lβ(t′)}

〉
=
∑
η=±

〈
Tce
− i

~
∫
c dt
′′HT (t

′′)Iuα(t, η)I lβ(t′,−η)
〉
, (4.10)

where δInα(t) = Inα(t)− Īn is the current fluctuation. The above correlation is evaluated up

to second order in Γ. The current correlations come in various combinations of the afore-

mentioned current contributions: the incoherent currents, Inα,+ and Inα,−, and the interference
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current Inα,i. Let us decompose the noise, Sαβ(t, t′) =
∑

µ,ν=±,i S
µν
αβ(t, t′), into terms corre-

sponding to different current combinations of the upper-edge current Iuα,µ and the lower-edge

current I lβ,ν :

Sµναβ(t, t′)

=
∑
η=±

〈
Tce
− i

~
∫
c dt
′′HT (t

′′)Iuα,µ(t, η)I lβ,ν(t
′,−η)

〉
. (4.11)

The cross terms between Iα,i and Iα,± give no contribution. The terms involving only Inα,±

result in

S̃
(0)
αβ ≡

∑
µ,ν=±

S̃µναβ = eĪ (1 + αβ cosϕu cosϕl) . (4.12)

Here, S̃µναβ ≡ Sµναβ(ω = 0) is the zero-frequency Fourier transform of Sµναβ(t − t′). Lastly, we

find the correlation involving only the interference terms Inα,i as

S̃
(i)
αβ = αβC(ω0)eĪ sinϕu sinϕl . (4.13)

C(ω) is the Fourier transform of C(t) given in Eq. (4.43). It characterizes dephasing and

ranges 0 ≤ C(ω0) ≤ 1. When g = 1 (i.e., the edges are everywhere noninteracting), C(ω0) =

1, which means the nonlocal spin entanglement of the electron pair persists until the currents

are measured. In this ideal case, the total noise is given by (for r = ±)

S̃r,±r = eĪ [1± cos(ϕu − ϕl)] . (4.14)

This noise reminds us of spin correlations in the EPR thought experiment, where a spin-

singlet state decays into two counter-propagating particles, whose resulting beams pass

through two distant polarizers before being detected. The coincidence signal correlations in

the distant detectors depend sinusoidally on the relative angle of the polarizers. In Eq. (4.14),

our current correlations similarly depend on the relative scattering angle of the beam split-

ters.

LL is known to exhibit a charge fractionalization [PGL00, LHY08, SBY08], where a

chiral single-particle state, say a right-moving electron, breaks down into a charge e(1 +

g)/2 moving to the right and e(1 − g)/2 moving to the left. At finite temperature, these
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counter-propagating states cease to overlap after a time τ = πkBTγ/~, as is reflected

in the exponential decay (dephasing) of a single-particle propagator for the right-moving

branch [Le 05, Le 06]. The interference effect is likewise exponentially suppressed. For in-

stance, exponential suppression in the Aharonov-Bohm oscillation of the tunneling current

between two LL wires has been studied in Ref. [Le 05].

When the electron temperature is above the finite-size crossover temperature, T � T0 ≡

~v/2πkBL, the interference in an LL system of size 2L decays exponentially. If T � T0, the

suppression occurs in a power-law form in a complicated fashion depending on the hierar-

chy of the relevant energy scales: ambient temperature, kBT , bias, eV , and the crossover

temperature, kBT0. In our case, this dephasing affects C appearing in Eq. (4.13), which is

expected to show similar reduction at finite temperatures. Using the Green’s functions in

Eqs. (4.27) and (4.30), we can extract the exponentially decaying part, which is given by

C(L, ω0) ∝ e−2γT/T0 . Such exponential suppression does not affect S̃
(0)
αβ pertaining to the

incoherent current, as a consequence of the conservation of charge. In the opposite, low-

temperature regime, T � T0, C(ω0) is instead expected to show a power-law behavior, with

details depending on the relative strength of the bias with respect to the crossover energy

scale (i.e., kBT � eV � kBT0 or kBT � kBT0 � eV ) [GL97, Le 06].

4.5 Bell inequality

In optical experiments, a violation of a Bell inequality is tested by coincidence counting of

the simultaneous arrival of a pair of entangled photons at remote locations. On the other

hand, it is more natural to measure current correlations in solid-state devices, which could

be used to construct a Bell inequality in beam-splitter based systems [Kaw01, CBL02]. The

time window for a current measurement should be short enough so that no more than a

single Cooper pair is detected at a time and the 1/f noise can be neglected, but it should

also be sufficiently long on the scale of the inverse voltage and the transport time along the

edges such that the zero-frequency approximation for the shot noise is adequate [CBL02].
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Under these conditions, the current-current correlations can be combined to give the Clauser-

Horne-Shimony-Holt Bell inequality [CHS69]. As shown in the previous section, the total

zero-frequency noise is (evaluating C at ω0 throughout)

S̃αβ = eĪ [1 + αβ (cosϕu cosϕd + C sinϕu sinϕd)] . (4.15)

The Bell inequality then is given by

B ≡ |F (ϕu, ϕl)− F (ϕu, ϕ
′
l) + F (ϕ′u, ϕl) + F (ϕ′u, ϕ

′
l)|

≤ 2 , (4.16)

where the correlation functions in the inequality are directly related to the noise spectra by

F (ϕu, ϕd) =
S̃++ − S̃+− − S̃−+ + S̃−−

S̃++ + S̃+− + S̃−+ + S̃−−

= cosϕu cosϕl + C sinϕu sinϕl . (4.17)

The noninteracting (g = 1) zero-temperature case gives maximally-entangled result with

C = 1 and F (ϕu, ϕd) = cos(ϕu − ϕd). A choice of the angles maximizing B is ϕu = π/4,

ϕd = π/2, ϕ′u = 3π/4, and ϕ′d = π, leading to B = 2
√

2.

Even in the presence of dephasing, i.e., C < 1, by adjusting the four angles, ϕu, ϕ
′
u, ϕl,

and ϕ′l, the maximum value of the Bell parameter [SSB03]

B = 2
√

1 + C2 (4.18)

still exceeds 2. This means that the Bell inequality can in principle be violated for arbitrary

nonzero C. The optimal violation angles are given by [SSB03]

tanϕu = −C cotϕs , tanϕ′u = C tanϕs ,

tan
ϕl − ϕ′l

2
= sgn(cosϕu)

√
tan2 ϕs + C2

C2 tan2 ϕs + 1
, (4.19)

where ϕs ≡ (ϕl +ϕ′l)/2 is arbitrary. Although it is possible to observe a violation of the Bell

inequality under a finite dephasing, the range of angles that can achieve a violation shrinks

as C → 0.
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4.6 Discussion and Conclusion

We discussed the construction of a Bell inequality via the current-current correlations be-

tween different edges of a QSHI equipped with beam splitters. The entanglement is produced

by coherently injecting electron Cooper pairs from a superconductor or electron-hole pairs

from a normal Fermi-liquid reservoir biased by a constant voltage V with respect to the QSHI.

Adjusting the transmission matrix through the beam splitters by local electric or magnetic

fields, a violation of the Bell inequality can be achieved even in the presence of a moderate

dephasing, parametrized by C (with C = 1 corresponding to maximal entanglement with no

dephasing and C = 0 to complete dephasing and classical correlations).

The edge states of a QSHI are modeled as helical LL’s. Electron-electron interactions are

essential ingredient in order to achieve tunneling of two electrons forming a CP into different

edges. On the other hand, the charge fractionalization furnished by LL causes dephasing

at finite temperature when T > T0 = ~v/2πkB2L. In this high-temperature regime, the

dephasing parameter suffers exponential decay as C ∝ e−2γT/T0 . In the low-temperature

limit, T < T0, C does not decay exponentially, but is expected to follow power-law scaling

characteristic of LL’s. Even with the reduction of the dephasing parameter below unity, the

entanglement of quasiparticle (electron-electron or electron-hole) pairs is visible through the

violation of the Bell inequality, albeit it becomes progressively more difficult to tune the

beam splitters to achieve the violation as C vanishes.

The QSHI edge states thus provide a promising medium for production and manipulation

of quantum information in mesoscopic systems, even in the absence of any correlations (as in

Fig. 4.2). In our minimal model, we have only considered dephasing due to internal electronic

interactions along the edges. Collective or quasiparticle modes present in the solid-state

environment can generally be expected to provide additional detrimental dephasing sources

that need to be studied and mitigated.
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4.7 Supplementary Calculations

4.7.1 Green’s functions

Evaluation of the current and noise in Eqs. (4.8) and (4.10) is based on several bosonic

Green’s functions. Since the system of interest here is an inhomogeneous LL where the

interaction parameter g depends on the position, we need to impose appropriate boundary

conditions to obtain the Green’s functions.

First, we identify the Lagrangian for the bosonic fields φ and θ from Eq. (4.3) as

L =
1

π
∂xθ∂tφ−

v

2π

[
1

g
(∂xφ)2 + g(∂xθ)

2

]
. (4.20)

The effective Lagrangian for the φ or θ field can be found by integrating out the θ or φ field,

respectively:

Lφ =
1

2πg

[
1

v
(∂tφ)2 − v(∂xφ)2

]
,

Lθ =
g

2π

[
1

v
(∂tθ)

2 − v(∂xθ)
2

]
. (4.21)

The spatial dependence of the velocity and the interaction parameter are v(x) = vF and

g(x) = gl = 1 for |x| > L, and v(x) = v and g(x) = g for |x| ≤ L. For electrons injected at

x = 0, the retarded Green’s functions are found to satisfy the following differential equations:

1

π

[
ω2

g(x)v(x)
+ ∂x

(
v(x)

g(x)
∂x

)]
Gφφ
R (x, ω) = δ(x) ,

1

π

[
g(x)ω2

v(x)
+ ∂x (v(x)g(x)∂x)

]
Gθθ
R (x, ω) = δ(x) , (4.22)

with the appropriate boundary conditions: (1) the solutions in the leads are moving away

from x = 0, (2) GR(x, ω) is continuous at x = ±L, 0, (3) the following expressions at x = ±L

are continuous:

v(x)

g(x)
∂xG

φφ
R (x, ω)

∣∣∣∣x=±L+0+

x=±L+0−
= 0 ,

v(x)g(x)∂xG
θθ
R (x, ω)

∣∣∣∣x=±L+0+

x=±L+0−
= 0 ,
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and (4) the derivative at the location of the delta function x = 0 is discontinuous as

v(x)

g(x)
∂xG

φφ
R (x, ω)

∣∣∣∣x=0+

x=0−
= π ,

v(x)g(x)∂xG
θθ
R (x, ω)

∣∣∣∣x=0+

x=0−
= π .

Neglecting electron backscattering, we suppose that both fermionic branches have contin-

uous displacement fields at the interface, thus making the fields θ and φ continuous. The

boundary conditions are then obtained from the continuity of their time derivatives, which

are calculated using the bosonic commutation relations. Microscopically, this assumes that

the electronic Hamiltonian is smooth on the scale of the Fermi wavelength, which makes the

transport ballistic at the Fermi level.

We look for the solutions of the form

Gφφ,θθ
R (x, ω) =



Ae−iωx/vF for x < −L

Beiωx/v + Ce−iωx/v for − L ≤ x ≤ 0

Deiωx/v + Ee−iωx/v for 0 ≤ x ≤ L

Feiωx/vF for L < x

, (4.23)

which, after imposing the above boundary conditions, we find

Gφφ
R (x, ω) = Aφg

 ate
iω(|x|−L)/vF for L < |x|

eiω(|x|−L)/v + are
−iω(|x|−L)/v for |x| ≤ L

, Aφ = −i π
2ω

eiωL/v

1− arei2ωL/v
,

Gθθ
R (x, ω) = Aθ

 g−1l ate
iω(|x|−L)/vF for L < |x|

g−1eiω(|x|−L)/v − are−iω(|x|−L)/v for |x| ≤ L
, Aθ = −i π

2ω

eiωL/v

1 + arei2ωL/v
.

(4.24)

Here, at = 2gl/(gl + g) and ar = (gl− g)/(gl + g) are the transmission and reflection coef-

ficients for the bosonic fields between regions with different interaction parameter strengths.

Given the retarded Green’s functions, the greater and lesser Green’s functions can be found

by the standard relationships

G> = i2[1 + nB(ω)]ImGR , G< = i2nB(ω)ImGR , (4.25)
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where nB(ω) = 1/(eβ~ω − 1) is the bosonic distribution function.

In the calculation of the current and noise, we encounter the Keldysh contour ordered

Green’s functions. The following conventions are used: GAB
ηη′ (x, t) = 〈TcA(x, t, η)B(0, 0, η′)〉,

where

GAB
−+(x, t) = GAB

> (x, t) = −i 〈A(x, t)B(0, 0)〉 ,

GAB
+−(x, t) = GAB

< (x, t) = −i 〈B(0, 0)A(x, t)〉 ,

GAB
++(x, t) = Θ(t)G>(x, t) + Θ(−t)G<(x, t) ,

GAB
−−(x, t) = −Θ(−t)G>(x, t)−Θ(t)G<(x, t) , (4.26)

for arbitrary bosonic operators A and B.

The finite-temperature Green’s functions at |x| > L (noninteracting region) are found to

be

iGφφ
ηη′(x, t) = 〈Tcφ(x, t, η)φ(0, 0, η′)〉 → −g

4
at

∞∑
n=0

anr
∑
s=±

Gn,s(x, t) ,

iGθθ
ηη′(x, t) = 〈Tcφ(x, t, η)φ(0, 0, η′)〉 → −1

4
at

∞∑
n=0

(−ar)n
∑
s=±

Gn,s(x, t) ,

iGθφ
ηη′(x, t) = 〈θ(x, t, η)φ(0, 0, η′)〉 → sgn(x)

g

4
at

∞∑
n=0

anr
∑
s=±

sGn,s(x, t) ,

iGφθ
ηη′(x, t) = 〈φ(x, t, η)θ(0, 0, η′)〉 → sgn(x)

1

4
at

∞∑
n=0

(−ar)n
∑
s=±

sGn,s(x, t) ,

(4.27)

where Dηη′(t) = Θ(ηη′)sgn(η′t) + Θ(−ηη′)sgn(η′) and

Gn,s(x, t) = ln sin

{
π

~β

[
δ

v
+ iDηη′(t)

(
t− sL(2n+ 1)

v
− s |x| − L

vF

)]}
. (4.28)

The arrow in the above equations indicate that the divergent terms on the right hand side

are left out, since they can be regularized out. From the Lagrangian in Eq. (4.20), the first
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two Green’s functions are related to the last two by

Gθφ
>,<(x, ω) = i 〈Tcθ(x, t,∓)φ(0, 0,±)〉 = −i v

gω
∂xG

φφ
>,<(x, ω) ,

Gφθ
>,<(x, ω) = i 〈Tcφ(x, t,∓)θ(0, 0,±)〉 = −ivg

ω
∂xG

θθ
>,<(x, ω) . (4.29)

We further need the Green’s functions for x = 0 case, which are given by

iGφφ
ηη′(x = 0, t)→ −g

2
Ḡ0,s(x, t)−

g

2

∞∑
n=1

∑
s=±

anr Ḡn,s(x, t) ,

iGθθ
ηη′(x = 0, t)→ − 1

2g
Ḡ0,s(x, t)−

1

2g

∞∑
n=1

∑
s=±

(−ar)nḠn,s(x, t) , (4.30)

where

Ḡn,s(x, t) = ln sin

[
π

~β

(
δ

v
+ iDηη′(t)

(
t+ sn

2L

v

))]
. (4.31)

By Eqs. (4.24), and (4.29), we can show Gθφ
ηη′(0, t) = Gφθ

ηη′(0, t) = 0.

A bosonic mode created at x = 0 propagates in the interacting region, |x| < L, before

it hits the boundary between the interacting and noninteracting regions at x = ±L. Some

part of the wave is transmitted into the noninteracting region, whereas the rest is reflected

back into the interacting region. This process of transmission and reflection is repeated,

establishing a Fabry-Pérot resonator structure. The above Green’s functions are in the form

of the sum of these transmitted and reflected parts.

4.7.2 Current

The average current in Eq. (4.9) up to second order in the tunneling coefficient in terms of

the fermionic fields is given by

〈In±(t)〉 =〈Tce−
i
~
∫
c dt
′′HT (t

′′)In(x, t,+)〉 ≈ |Γ|
2

2~2
∑

η1,η2,ε,σ=±

η1η2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

× 〈Tcψεu,σ(0, t1, η1)ψ
ε
l,σ(0, t1, η1)ψ

−ε
u,σ(0, t2, η2)ψ

−ε
l,σ (0, t2, η2)I

n
±(t,+)〉 . (4.32)

Bosonizing field operators, ψn,r = ei(θn+rφn)/
√

2πδ, where θn and φn are boson fields given

in Eq. (4.3) with the commutation relation [θn(x), φn′(y)] = i(π/2)δnn′sgn(x− y). r = +(−)
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labels the right-(left-)moving state. The current operators In±,r (r = ±) in Eq. (4.7) involve

fermionic operators in the combination ψ†n,rψn,r, which can be expressed in terms of bosonic

operators as

ψ†n,r(x, t)ψn,r(x, t) =
1

2π
∂x[rθn(x, t) + φn(x, t)] =

1

2π
∂x(−i∂λ)eiλ[rθn(x,t)+φn(x,t)]

∣∣∣∣
λ=0

. (4.33)

The expectation value of In±,i can be shown to vanish, since there are always operators

that cannot be contracted. By summing the contributions from In±,+ and In±,−, the following

result is obtained:

Ī =
〈
In±(t)

〉
=− e

h

vF |Γ|2

8π~2v2
∑

r,ε,σ,η1,η2=±

(1± r cosϕn)η1η2ε

×
[
rQ̃θ

+η1,σ
(r)− rQ̃θ

+η2,σ
(r) + σQ̃φ

+η1,σ(r)− σQ̃φ
+η2,σ(r)

]
Pη1η2(−εω0)

=
e

h

(
|Γ|
~v

)2

[P−+(ω0)− P+−(−ω0)] = sgn(ω0)
e

h

(
|Γ|
~v

)2

P (ω0) . (4.34)

Here, Q̃ηη′;σ(r) ≡ Qηη′;σ(x, ω = 0), which depend only on r ≡ sgn(x). The corresponding

real-time expressions for Q and P are given by

Qθ
ηη′;σ(x, t) = ∂xG

θθ
ηη′(x, t) + σ∂xG

θφ
ηη′(x, t)

Qφ
ηη′;σ(x, t) = ∂xG

φφ
ηη′(x, t) + σ∂xG

φθ
ηη′(x, t) ,

Pη1η2(t) =
hv2

(2πδ)2
ei2[G

θθ
η1η2

(0,t)+Gφφη1η2 (0,t)−G
θθ(0,0)−Gφφ(0,0)] . (4.35)

We can show that P∓±(ω) = Θ(±ω)P (ω), hence P−+(ω0) − P+−(ω0) = sgn(ω0)P (ω0). Fur-

thermore, the relations

Q̃
θ/φ
++,σ(x)− Q̃θ/φ

+−,σ(x) = Q̃
θ/φ
−+,σ(x)− Q̃θ/φ

−−,σ(x) =
π

2vF
[sgn(x) + σ] (4.36)

turn out to be independent of temperature.

4.7.3 Zero-frequency noise

With the current in Eq. (4.7) and tunneling Hamiltonian in Eq. (4.4), the current-current

correlations between the upper and lower edges Eq. (4.10), up to second order in the tunneling
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coefficient, are given by

Sαβ(t, t′) =
∑

µ,ν=±,i

Sµναβ(t, t′) (4.37)

=− 1

2~2
∑

µ,ν=±,i

∑
η,η1,η2,σ1,σ2,ε1,ε2=±

Γε1Γε2ε1ε2σ1σ2η1η2

∫ ∞
−∞

dt1dt2e
−iω0(ε1t1+ε2t2)

× 〈TcIuα,µ(t, η)I lβ,ν(t
′,−η)ψε1uσ1(0, t1, η1)ψ

ε1
lσ1

(0, t1, η1)ψ
ε2
uσ2

(0, t2, η2)ψ
ε2
lσ2

(0, t2, η2)〉 ,

(4.38)

where Sµναβ is the correlation between the currents Iuα,µ and Idβ,ν .

First, we calculate the contributions from Inα,+ and Inα,−:

∑
µ,ν=±

Sµναβ(t, t′)

=
|Γ|2

2~2
∑
µ,ν=±

∑
η,η1,η2,σ,ε=±

η1η2

∫ ∞
−∞

dt1dt2e
−iεω0(t1−t2)

× 〈TcIuα,µ(t, η)I lβ,ν(t
′,−η)ψεu,σ(0, t1, η1)ψ

ε
l,σ(0, t1, η1)ψ

−ε
u,σ(0, t2, η2)ψ

−ε
l,σ (0, t2, η2)〉

=
|Γ|2

2~2
(evF

2π

)2 ∑
µ,ν=±

1

4
(1 + αµ cosϕu)(1 + βν cosϕl)

∑
η,η1,η2,σ,ε=±

η1η2

∫ ∞
−∞

dt1dt2e
−iεω0(t1−t2)

×
(

1

2πδ

)2

∂x∂x′〈Tc[µθu(x, t, η) + φu(x, t, η)][νθl(x
′, t′,−η) + φl(x

′, t′,−η)]

eiε[θu(0,t1,η1)+σφu(0,t1,η1)]eiε[θl(0,t1,η1)+σφl(0,t1,η1)]e−iε[θu(0,t2,η2)+σφu(0,t2,η2)]eiε[θl(0,t2,η2)+σφl(0,t2,η2)]
∣∣x→µ
x′→ν

=
|Γ|2

2~2
(evF

2π

)2 1

4hv2

∑
µ,ν=±

(1 + αµ cosϕu)(1 + βν cosϕl)
∑

η,η1,η2,σ,ε=±

η1η2

∫ ∞
−∞

dt1dt2e
−iεω0(t1−t2)

×
[
µQθ

ηη1,σ
(µ, t− t1)− µQθ

ηη2,σ
(µ, t− t2) + σQφ

ηη1,σ
(µ, t− t1)− σQφ

ηη2,σ
(µ, t− t2)

]
×
[
νQθ
−ηη1,σ(ν, t′ − t1)− νQθ

−ηη2,σ(ν, t′ − t2) + σQφ
−ηη1,σ(ν, t′ − t1)− σQφ

−ηη2,σ(ν, t′ − t2)
]

× Pη1η2(t1 − t2) (4.39)

Here, Q
θ/φ
ηη′ (x, t) and Pηη′(t) are defined in Eq. (4.35). The zero-frequency component of the
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Fourier transform of the above expression is given by∑
µ,ν=±

S̃µναβ =
e2

h

|Γ|2

2~2v2
v2F
4π2

1

4

∑
µ,ν=±

(1 + αµ cosϕu)(1 + βν cosϕl)
∑

η,η1,η2,σ,ε=±

η1η2

×
[
µ̃Qθ

ηη1,σ
(µ)− µ̃Qθ

ηη2,σ
(µ) + σQ̃φ

ηη1,σ
(µ)− σQ̃φ

ηη2,σ
(µ)
]

×
[
ν̃Qθ
−ηη1,σ(ν)− ν̃Qθ

−ηη2,σ(ν) + σQ̃φ
−ηη1,σ(ν)− σQ̃φ

−ηη2,σ(r′l)
]

2Pη1η2(−εω0)

=
e2

h

(
|Γ|
~v

)2

(1 + αβ cosϕu cosϕl)P (ω0) = S̃
(0)
αβ . (4.40)

In the last line, we used P (ω0) = P+−(ω0) + P−+(ω0). All the temperature and bias depen-

dence is in P (ω0). Therefore,

S̃
(0)
αβ = eĪ (1 + αβ cosϕu cosϕl)P (ω0) . (4.41)

The correlations between Iu±,+(−) and I l±,i vanish. Finally, the correlation between Iui and I li

is given by

S
(i)
αβ(t, t′) =− 1

2~2
∑
η

∑
σ1,ε1,η1
σ2,ε2,η2

Γε1Γε2ε1ε2σ1σ2η1η2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iω0(ε1t1+ε2t2)

× 〈TcIu0 (l, t, η)I l0(l, t
′,−η)ψε1u,σ1(0, t1, η1)ψ

ε1
l,σ1

(0, t1, η1)ψ
ε2
u,σ2

(0, t2, η2)ψ
ε2
l,σ2

(0, t2, η2)〉

=αβ
e2v2F |Γ|2

8~2
sinϕu sinϕl

∑
η,η1,η2,ε,r=±

η1η2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

× 〈Tcψ†u,r(rl, t, η)ψu,−r(−rl, t, η)ψεu,εr(0, t1, η1)ψ
−ε
u,−εr(0, t2, η2)〉

× 〈Tcψ†l,r(rl, t
′,−η)ψl,−r(−rl, t′,−η)ψεl,εr(0, t1, η1)ψ

−ε
l,−εr(0, t2, η2)〉 . (4.42)

l is taken to be a reference point located between the end of the interacting region (x = L)

and the location of the beam splitter. After defining

C(t− t′) =
|Γ|2ev2F

4~2Ī
∑

η,η1,η2,ε,r=±

η1η2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

× 〈Tcψ†u,r(rl, t, η)ψu,−r(−rl, t, η)ψεu,εr(0, t1, η1)ψ
−ε
u,−εr(0, t2, η2)〉

× 〈Tcψ†l,r(rl, t
′,−η)ψl,−r(−rl, t′,−η)ψεl,εr(0, t1, η1)ψ

−ε
l,−εr(0, t2, η2)〉 (4.43)

and Fourier transforming the noise, we finally get

S̃
(i)
αβ = αβC(ω0, L)eĪ sinϕu sinϕl . (4.44)
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[B88] M. Büttiker. “Absence of backscattering in the quantum Hall effect in multiprobe
conductors.” Phys. Rev. B, 38:9375–9389, Nov 1988.
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