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ARTICLE

An integrative multiomic network model links lipid
metabolism to glucose regulation in coronary
artery disease
Ariella T. Cohain1,12, William T. Barrington2,12, Daniel M. Jordan 1,3,12, Noam D. Beckmann1,

Carmen A. Argmann 1, Sander M. Houten1, Alexander W. Charney1,4, Raili Ermel 5, Katyayani Sukhavasi 5,

Oscar Franzen 6, Simon Koplev 1, Carl Whatling7, Gillian M. Belbin1,3, Jialiang Yang1, Ke Hao1,

Eimear E. Kenny1,3, Zhidong Tu1, Jun Zhu 1, Li-Ming Gan 8, Ron Do 1,3, Chiara Giannarelli 1,9,

Jason C. Kovacic 9, Arno Ruusalepp5, Aldons J. Lusis 2, Johan L. M. Bjorkegren 1,10,12✉ &

Eric E. Schadt 1,11,12✉

Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery

disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk,

while individuals with hypercholesterolemia have reduced T2D risk. We explore the rela-

tionship between lipid and glucose control by constructing network models from the

STARNET study with sequencing data from seven cardiometabolic tissues obtained from

CAD patients during coronary artery by-pass grafting surgery. By integrating gene expres-

sion, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining

(GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master

regulators of the GLD network also impact lipid and glucose levels in inverse directions.

Experimental inhibition of one of the GLD network master regulators, lanosterol synthase

(LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by

our model and provides mechanistic insights.
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Low-density lipoprotein (LDL) cholesterol has a well-
established causal role in coronary artery disease (CAD),
representing not only the most significant biomarker for

CAD risk but also the primary therapeutic target for treatment
and prevention. type 2 diabetes (T2D) is another well-established
risk for CAD1,2. However, a perplexing juxtaposition between
LDL and T2D remains to be fully resolved: patients with familial
hypercholesterolemia (increased LDL) have a dramatically
increased risk for CAD and a decreased risk for T2D3. In addi-
tion, lipid transport has been shown to be involved in regulating
insulin secretion4, while both phenome wide association studies
(PheWAS) and Mendelian randomization (MR) approaches have
found that single nucleotide polymorphisms (SNPs) associated
with increased risk of CAD are associated with increased LDL
levels, but decreased fasting insulin levels and T2D risk5. MR
studies have also shown the inverse relationship with elevated
LDL or triglyceride (TG) levels associated with a reduction in
T2D risk6–8.

The relationship between LDL, CAD, and T2D has also been
well established pharmacologically. Lowering plasma LDL via
lipid-lowering drugs not only results in a reduction in CAD-
related clinical events and the lipid content of coronary athero-
sclerotic plaques9, but can also increase T2D risk10. Numerous,
large cohort studies have shown that statin therapies, while
producing a significant cardiovascular benefit, also increase the
risk of T2D10–15. Moreover, MR studies of SNPs proximal to
HMGCR, the gene encoding the enzyme targeted by statins,
suggest that increased risk of T2D noted with statins could at least
partially be explained by HMGCR inhibition16. However, the
multiple biochemical effects of statins have not been fully char-
acterized at the molecular level, and thus, how statins elevate T2D
risk is not presently understood17. Many studies have established
the specific roles genes play in lipid and glucose metabolism18–21.
At the genomic level, genetic variants that modulate these traits
have been identified22–24. However, this canonical view fails to
reveal the inter-metabolic regulatory control features that serve to
establish the inverse relationship that exists between these traits.
We hypothesize that comprehensive transcriptomic models that
place lipid and glucose modulation in a broader molecular con-
text are necessary to link canonical pathways that in turn can
uncover the causes that underlie the seemingly paradoxical links
between lipid levels, CAD, and T2D.

Here we employ a multiscale, integrative network approach
using the Stockholm-Tartu Atherosclerosis Reverse Network
Engineering Team (STARNET) study25, which to date is the
largest human dataset designed to study CAD and related car-
diometabolic disorders in a multiomics and multi-tissue frame-
work. We construct molecular network models across all seven
tissues: aortic root (AOR), mammary artery (MAM), liver (LIV),
subcutaneous fat (SF), visceral fat (VAF), skeletal muscle (SKLM),
and whole blood (Blood) in STARNET to assess the molecular
components of lipid and glucose metabolism. We discover a
highly conserved liver subnetwork, referred to as the glucose and
lipid determining (GLD) network, as the most coherent network
model providing causal regulatory linkages defining an inverse
relationship between lipid and glucose metabolism.

Results
We pursued a comprehensive data-driven computational strategy
to better elucidate the molecular control of plasma cholesterol
and glucose metabolism in the context of CAD, given that CAD
provides a more extreme context in which metabolic traits such as
cholesterol levels are more significantly perturbed, leading to
clinical manifestation of CAD and requiring surgical intervention.
Our principal data resource was STARNET, a cohort recruited at

the Tartu University hospital in Estonia including patients diag-
nosed with CAD who were eligible for coronary artery by-pass
grafting (CABG) surgery. We analyzed the extensive omic data-
sets provided in the STARNET cohort, including genotypes, gene
expression levels from seven arterial wall, blood, and metabolic
tissues, which is combined with a variety of clinical data that in
addition to age, gender, body-mass index (BMI) and ethnicity
also include standard blood biochemistry including plasma lipids
and blood glucose levels, a full Nightingale metabolomic pro-
file26–28, and additionally present and previous diagnoses and
medications. A more detailed profile of this cohort has been
published previously25.

To uncover the molecular drivers of plasma LDL and blood
glucose levels, we employed an integrative network approach
utilizing multiple different data captures as depicted in Fig. 1. The
overall goals were to systematically characterize all gene-clinical
trait associations, all clusters of coexpressed genes, and the
associations of those gene clusters with clinical trait data and
metabolomics. To achieve this, we performed a series of three
analyses. First, we performed differential expression analysis
using STARNET gene expression data across seven tissues and
clinical information, identifying a total of 12,872 unique genes
across seven tissues whose expression was correlated with at least
one glucose or lipid related clinical trait. Second, we performed
coexpression clustering analysis on all 7 tissues, identifying 140
tissue-specific gene clusters. Comparing these clusters to the
results of the differential expression analysis, we found a total of
20 clusters of coexpressed genes across three tissues enriched for
these glucose and lipid correlated genes. We identified one of
these modules in particular as a liver glucose and lipid deter-
mining (GLD) module and verified its presence in two additional
human transcriptomics datasets and one mouse transcriptomics
dataset. Finally, we constructed four different probabilistic causal
network models integrating transcriptomics, genomics, clinical
traits, and metabolomics. We then mined all four of these net-
works to identify 30 candidate master regulator genes for the
GLD module, and validated the physiological relevance of the top
candidate with respect to plasma lipid and glucose control using
an in vivo experimental mouse model system.

The first step in our integrative analysis process was to con-
struct tissue-specific differential expression (DE) signatures cor-
related with traits by identifying genes whose expression was
significantly correlated with the clinical measurements we had of
plasma lipids (total plasma cholesterol, LDL, HDL, and trigly-
cerides), diagnosis of hyperlipidemia, active statin therapy, blood
glucose traits (plasma HbA1c, blood glucose, and insulin), diag-
nosis of T2D, and active oral anti-diabetic therapy. The liver
tissue provided the largest trait-correlated DE signature, com-
prising a total of 4653 unique genes (false discovery rate, FDR,
<5%; Fig. 2A and Supplementary Data 1). We ran gene ontology
(GO) enrichment analysis separately for each trait-correlated DE
signature in each tissue to assess their biological relevance. The
glucose and lipid trait-correlated DE signatures had highly
overlapping GO terms across all traits and all tissues, with 586
GO terms shared in common across all. This represents a sig-
nificant sharing of GO terms compared to what would be
expected for independent lists (odds ratio (OR): 108.8, Fisher’s
Exact Test P < 3E-324, one-tailed), reflecting a high degree of
interaction between pathways associated with lipid and glucose
biology across tissues (Supplementary Fig. 1A and Supplementary
Data 2). For example, in liver, where the expectation had been
that lipid traits would be related to cholesterol biosynthesis and
glucose traits related to pyruvate metabolism, but not necessarily
to both, we observed that pathways enriched for both lipid and
glucose-related traits included biosynthesis of sterols and
pyruvate metabolism (Supplementary Fig. 1B).
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Identification of glucose and lipid metabolism coexpression
modules. While trait-correlated DE signatures broadly identify
genes associated with lipid and glucose traits, they do not capture
the rich correlation structure of biological processes, which are
captured with high statistical power in the STARNET data.
Coexpression network analysis provides a data-driven approach
to identify co-regulated sets of genes across the STARNET cohort.
To characterize the correlation structure among genes comprising
the different trait-correlated DE signatures within the STARNET
data, we applied Weighted Gene Coexpression Network Analysis
(WGCNA), a method that organizes all pairwise correlations
among genes to identify groups of genes that are coexpressed
(modules)29–33. We identified a total of 140 modules across all
seven tissues (Supplementary Data 3). In all, 20 of these modules
in the liver (N= 6), VAF (N= 5), and SF (N= 9) were enriched
for both lipid and glucose correlated DE signatures (Supple-
mentary Fig. 2). In all, 16 of these modules had statistically sig-
nificant correlations of any magnitude with plasma lipid and
blood glucose levels when considering the first principal com-
ponent of gene expression in each module (mean variation
explained: 52%, range: 42–64%, Supplementary Table 1). Similar
but weaker correlations were observed in higher principal com-
ponents (Supplementary Data 4).

Though no principal component of any module showed
overwhelmingly strong correlations with lipid or glucose traits,
only one module in the liver (hereafter, the glucose and lipid
determining module; GLD) had any principal component that
was negatively correlated with lipid traits (LDL and plasma

cholesterol levels) and positively correlated with glucose traits
(HbA1c and blood glucose levels; FDR < 5%, Fig. 2). The GLD
module was significantly enriched for the KEGG pathways
Steroid Biosynthesis (fold enrichment: 190.8, Fisher’s Exact Test
FDR: 7.18E-24, one-tailed) and Terpenoid Backbone Biosynthesis
(fold enrichment: 127.2, Fisher’s Exact Test FDR: 1.75E-11, one-
tailed; Supplementary Fig. 3 and Supplementary Data 5 for full
results). We further investigated the metabolic functions of GLD
through a metabolomic panel consisting of 233 higher-resolution
lipid and glucose traits measured in STARNET25 using nuclear
magnetic resonance (NMR) spectroscopy26–28. The first principal
component of GLD module gene expression had weak but
significant correlations with 113 metabolites (FDR < 5%, Supple-
mentary Data 7 and Supplementary Fig. 4), including a positive
correlation with Glucose (Glc) and negative correlations with the
cholesterol ester component of many lipoprotein size fractions
(VLDL: XS, S, M, L, XXL, LDL: S, M, L, HDL: S, M, L, and IDL),
consistent with the associations between this module and the
glucose and lipid clinical traits (Fig. 3A).

GLD replicates in non-CAD human livers and is conserved in
mice. To assess the robustness of the GLD network module in
independent human studies and across species in mouse, we
reconstructed coexpression networks from cohorts independent
of STARNET. In a previously described cohort of 600 morbidly
obese patients undergoing bariatric bypass surgery34, three tissues
(liver, subcutaneous fat, and visceral fat) were profiled using a

Fig. 1 Schematic overview of workflow. We first conducted differential expression analysis to identify genes whose expression is correlated with glucose
and lipid traits. We then used these trait correlations in combination with a coexpression analysis to identify a GLD module that simultaneously regulates
both glucose metabolism and lipid metabolism. We replicated this analysis in a mouse model and two additional human cohorts and found equivalent
modules in each. We performed causal inference and key driver analysis on the GLD module to identify master regulator genes including LSS. Finally, we
inhibited Lss in a mouse model to demonstrate the function of the GLD module.
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custom gene expression microarray34. We constructed coex-
pression networks for each tissue, identifying 40, 56, and 32
modules in liver, subcutaneous fat, and visceral fat, respectively.
We tested whether the GLD module genes were enriched in any
of these 128 modules, and observed only a single module in liver
(39 probes, 34 genes) with strong overlap (OR: 2510.8, Fisher’s
Exact Test FDR: 1.04E-70, one-tailed). This is the largest overlap
observed between any module in the obese cohort and any
module in STARNET liver (Supplementary Data 8). Consistent
with observations from STARNET, correlating the first principal
component of this liver module with clinical metabolic traits
measured in these 600 individuals found statistically significant
positive correlations with glucose levels and a statistically sig-
nificant negative correlation with plasma LDL levels (FDR < 5%;
Supplementary Table 2).

We next sought to examine the GLD network genes from
STARNET across a broader array of tissues collected from
individuals in the GTEx study35. While we did not have access to
clinical data from the GTEx study, the 12 tissues currently
represented in GTEx with sufficient sample sizes to construct
coexpression networks enabled the examination of the coherence

of the GLD network genes across multiple tissues. In order to
partially control for the lack of individual phenotype data in
GTEx, we split the GTEx cohort into two groups based on age, so
that the younger group would be more likely to be heart-healthy
(see Methods section). After splitting in this way, we built
coxpression networks for each group across all tissues. We
identified enrichments of the GLD network genes in modules
from the esophagus, transformed fibroblast, lung, aorta, thyroid,
tibial nerve, sun exposed skin, skeletal muscle, and subcutaneous
adipose tissues (Supplementary Table 3), but we found that the
GLD module was most highly conserved in liver coexpression
modules from both age groups (35/47 and 30/36 genes were
found in the original GLD, OR: 3368 and 5172, Fisher’s Exact
Test one-tailed FDR: 1.86E-88 and 1.15E-77 for old and young,
respectively).

We then sought data from another species than human
preferably mouse to examine to what extent the GLD module is
evolutionary conserved and to enable subsequent experimental
validation of the GLD module. We identified the hybrid mouse
diversity panel (HMDP)36. The HMDP represents not only one
but a diverse panel of over 100 mouse strains which makes the

Fig. 2 Differential expression analysis shows genes and modules associated with glucose and lipid traits. A The number of trait-correlated differentially
expressed (DE) genes at an FDR≤5% for each tissue and clinical traits related to lipid and glucose metabolism. The x-axis displays the tissues and y-axis is
a total of all the different signatures. B The 20 modules which were enriched for lipid and glucose trait-correlated DE signatures are shown, where the x-
axis and y-axis correspond to the number of lipid and glucose traits, respectively and the direction of correlation of the module’s 1st PC with the traits. Point
size and text represents the total number of signatures the module is enriched for and color represents the tissue the module is found in. The areas of
inverse relationship are shown in a gray box. C Correlation of the 20 modules’ 1st PC with the glucose & lipid clinical traits, color represents the direction of
correlation (only FDR≤ 5% are depicted).
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data more reflective in capturing natural diversity. In addition to
data from the wild-type chow fed HMDP mice, we focused on the
HMDP strains that have been bred onto an Apoe Leiden genetic
background providing a human-like dyslipidaemia making these
mice more susceptible to atherosclerosis. Looking at the liver
expression values for these two sets of HMDP mice, we found
that the GLD gene mouse orthologues were positively correlated
with blood glucose and some genes that were negatively
correlated with cholesterol (Supplementary Fig. 5).

Association between therapeutic drugs and the GLD module.
Given the well-established pharmacologic effect of cholesterol-
lowering medications such as statins to simultaneously increase
glucose levels, and given that the GLD module was found asso-
ciated with the diagnoses of hypertension and diabetes, as well as
medication with statins, oral anti-diabetics, and beta-blockers
(FDR < 5%; Fig. 2C), we explored whether the GLD module and
its association with glucose and lipid traits were driven by
patients who were taking these medications. We divided the
STARNET cohort into two groups: one comprised of individuals
reported to take statins (N= 334, from here on referred to as the
statin group), and one of individuals not reported to take any
lipid-lowering drugs (N= 182, from here on referred to as the no
statin group). We then separately constructed coexpression net-
work modules for each of these two groups (N= 32 in the statin
group and N= 22 in the no statin group). We found that the
original GLD module was conserved only in one specific module
in both groups, with a 90% gene overlap in the statin group (OR:
15113, Fisher’s Exact Test FDR: 3E-140, one-tailed) and a 92.5%
overlap in the no statin group (OR: 11523, Fisher’s Exact Test
FDR: 2E-126, one-tailed). The first principal component of the
GLD equivalent module in the statin group, explaining 54.4% of
its variation, was positively correlated with HbA1c and blood
glucose and negatively correlated to total and LDL plasma cho-
lesterol levels at an FDR < 5% (Fig. 3B and Supplementary
Data 6). The first principal component of the GLD equivalent
module in the no statin group, also explaining 54.5% of its var-
iation, was again positively correlated to HbA1c and blood glu-
cose (FDR < 5%) but the negative correlation to total plasma
cholesterol was only significant at FDR < 10% and the plasma

LDL correlation was lost (Fig. 3B). In the metabolomics data, 110
features were significantly different (FDR < 0.05) between
STARNET individuals in the statin versus the no statin groups
(Supplementary Data 7). Of these 110 features, 64 cholesterol,
lipoprotein, and fatty acid measurements coincided with those
correlated to the GLD module (inferred from all individuals),
representing a significant overlap (OR: 2.09, Fisher’s Exact Test P:
0.0038, one-tailed).

To assess whether the structure of the GLD module may be
affected by statins or HbA1c levels, we further split the two
groups defined above based on high and low HbA1c levels (≤6
representing the low HbA1c group and >6 the high group). Given
that the smallest sample size across the four resulting groups was
67 (in the no statin and high HbA1c group), we had sufficient
sample sizes to produce robust coexpression networks for each
group. Across the four coexpression networks, only one module
for each network significantly overlapped the original GLD
module, indicating that under different drug and HbA1c
conditions, the GLD module is highly conserved, and thus the
correlation structure reflected in this module cannot solely be
driven by statins or HbA1c levels. The GLD module correlations
to the lipid and glucose traits were also largely conserved across
the different groups. For example, on the statin group with low
HbA1c levels the GLD module had a significant negative
correlation to plasma cholesterol (FDR < 5%), whereas in the no
statin group with high HbA1c the GLD module was positively
correlated with blood glucose (Fig. 3B).

Fine-mapping genetic risk loci for metabolic traits with GLD
module genes. Leveraging DNA information allows us to deter-
mine causality, as we know that DNA must be causally upstream
of gene expression – that is, a genetic variant can cause altered
gene expression but a change in gene expression cannot modify
germ line DNA. We started by assessing expression quantitative
trait loci (eQTL) in STARNET liver samples. At an FDR < 5% we
detected 7010 genes containing an eQTL (46.67% genes in the
liver). Of the GLD genes, 22/60 had an eQTL. Next, we sought to
understand the genetic architecture of the GLD module and link
this architecture to the extensive database of risk loci identified
for metabolic disease traits across many genome-wide association
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Fig. 3 Association of GLD module gene expression with glucose and lipid traits. A Correlation plots for cholesterol ester component of VLDL, LDL, HDL
(particle size Small), and Glucose (Glc) with the GLD module 1st PC. Linear regression line is shown in blue with equation in red. B GLD module across all
individuals, those split based only on statins and those split by statins and HbA1c levels. Each module’s 1st PC was correlated with the clinical traits of
interest (shown on the x-axis). Correlations in a dashed gray box represent FDR < 10%, all other correlations have an FDR <5%.
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and genome sequencing studies. To do so, we first constructed
genetic models of gene expression to map eQTLs using MetaX-
can37 for all genes in the GLD module. We then explored the
SNPs composing the genetic models of gene expression MetaX-
can produced for association to human disease traits by incor-
porating GWAS summary statistics for the following traits of
interest: LDL22, HDL22, total cholesterol22, Triglyceride22,
HbA1c23, and blood glucose38. These analyses helped establish
whether variations in DNA that drive changes in gene expression
also drive susceptibility to disease. We ran these analyses on the
STARNET liver GLD genes, and find eight unique genes
(DHCR7, FADS1, FADS2, FLVCR1, LSS, MMAB, MVK, and
VPS37D) to be significantly and causally associated with LDL
(FADS1, FADS2, and LSS), HDL (FADS1, FADS2, FLVCR1,
MMAB, and MVK), total cholesterol (DHCR7, FADS1, FADS2,
MMAB, and MVK), and TG (FADS1, FADS2, VPS37D; FDR <
5%; Supplementary Data 9). On average these eight genes explain
3.63% of the traits’ variation, with LSS standing out as an outlier,
explaining 26% of the variance of LDL cholesterol (mean variance
explained without LSS is 2.39%). We further examined these
genes with respect to HbA1c levels and found FLVCR1, FADS1,
and FADS2 were significantly causally associated (FDR < 5%),
although each explained <1% of the variation in HbA1c levels.
While these results support causal associations between GLD
genes and LDL, HDL, total cholesterol, and HbA1c, the approach
assesses only a single gene at a time, whereas we identified these
genes in a coherent regulatory network. To model the relation-
ship between these genes and the common regulatory control that
defines this network as a coherent unit, we constructed predictive
causal network models related to the GLD module genes in which
we considered the eQTL and associated causal relationships as
prior input into this reconstruction process.

Constructing probabilistic causal network models of the GLD
module. The GLD module not only represents canonical lipid
biosynthesis pathways and known drug targets for lipid control,
but also contains genes whose functions with respect to lipid
biosynthesis are either not fully characterized or are completely
unknown. In addition, the association of this module to glucose
levels suggests unknown interactions in this module that may link
lipid control to glucose control, highlighting that our under-
standing of lipid biology as represented by canonical pathways is
incomplete. To expand our understanding of the canonical lipid
metabolism pathways and their associations to glucose metabo-
lism, we constructed four different probabilistic causal networks
on the STARNET data using the RIMBANET software package
that we developed and that we have previously applied to a wide
array of diseases to identify networks and their master regulators
underlying these diseases31–33,39–45. The first network we con-
structed was based only on the GLD module genes to elucidate
the regulatory structure among these genes (referred to as GLD
network). We then constructed a multiscale, integrative network
comprised of the GLD genes, metabolites, and clinical traits to
further elucidate the connections among GLD genes, metabolites,
and clinical features (referred to as multiscale GLD network). Our
third network construction took as input a GLD-focused
expanded set of genes to explore whether genes outside the
GLD module may modulate its state (referred to as expanded
GLD network). And finally, we constructed a network based on
all genes represented in the liver coexpression networks in order
to place the GLD network and its regulators in a broader fra-
mework (referred to as global liver network).

In the GLD network, LSS, lanosterol synthase, is the most
upstream gene (Fig. 4A). LSS catalyzes the cyclization of
oxidosqualene into lanosterol, a key intermediate in cholesterol

biosynthesis. This gene has previously been identified as an
important driver of various disease-related processes in liver as
well as in other tissues46, but it has not previously been associated
with glucose metabolism. The multiscale GLD network (Supple-
mentary Fig. 6A) is comprised of a single connected network
component in which the GLD gene expression traits are linked to
metabolites and clinical features. Interestingly, in the multiscale
network the metabolites valine, leucine, and isoleucine are
prominently positioned. These branched-chain amino acids
directly connect the glucose (as measured by metabolomics) to
the HbA1c clinical trait that in turn is linked to the GLD module
genes. Importantly, branched-chain amino acid metabolism has
previously been causally linked to the etiology of T2D47.

To explore the molecular link between lipid and glucose
metabolism, we expanded the GLD network by including 1592
genes across all other modules whose expression correlated with
the first PC of the GLD module at an FDR < 5%. This gene list was
then further expanded using the PEXA algorithm48, a method for
expanding gene lists by incorporating known interactions from
KEGG and PPI networks. This expanded the GLD module to 3163
genes (Fig. 4B). To construct the global liver network, we took all
the coexpressed genes in the liver (7646 genes) and expanded each
module using PEXA, to realize the final expanded set of 8812
genes (Supplementary Fig. 6B and Supplementary Data 10).

In order to elucidate the regulatory framework of the GLD
networks, we identified master regulators (key driver genes, or
KDGs) predicted to modulate the state of the GLD genes across
all networks we constructed, using an artificial intelligence key
driver analysis (KDA) algorithm. We applied KDA to the GLD
and multiscale GLD networks to identify master regulators within
these networks, and then applied KDA to the expanded GLD and
global liver networks to identify master regulators both inside and
outside of the GLD network that modulated the state of the GLD
network. KDA on the GLD network resulted in the identification
of 4 KDGs (LSS, DHCR7, HMGSC1, and CYP51A1); in the
multiscale GLD network three genes were found as KDGs (LSS,
SNAI3-AS1, and HMGCS1). In the expanded GLD network 10
genes were identified as KDGs (all belonging to the GLD
module), and in the global liver network, 26 genes were identified
as KDGs of the GLD network (of which 9 belong to the GLD
module). Of KDGs identified in the different networks, only two
genes were overlapping across all four networks: LSS and
HMGCS1 (Supplementary Data 11). To validate and prioritize
the KDGs identified across all liver networks constructed in
STARNET, a composite score reflecting the number of times a
KDG was found in STARNET networks was computed (see
Methods section; Table 1). Using this ranking system, LSS was
identified as the most significant key driver gene in the liver and
selected for experimental validation.

Exploring the molecular connection between lipid and glucose
metabolic co-regulation. To characterize how LSS regulates
processes associated with glucose metabolism, we examined the
impact of LSS on the expanded GLD and global liver networks
(Fig. 4B). In the expanded GLD network, the module that was
most highly correlated with the GLD module was the bisque
module (r value for pairwise correlation of PCs: 0.40, paired
Student’s t test FDR: 4.42E-20, two-tailed). When edges were
collapsed at the module level, the GLD module had the most out
edges to the bisque module (Supplementary Table 4). The bisque
module contains many genes related to glucose and pyruvate
metabolism including GCK, PKLR, KHK, and GPD1. Of these,
PKLR, encoding the liver type pyruvate kinase, is of particular
interest, as it is not only a key enzyme in glycolysis, but also a
regulator of gluconeogenesis given its key role in pyruvate
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recycling18 (Fig. 4B). We identified the bisque module contains
the branched-chain ketoacid dehydrogenase kinase (BCKDK)
gene. BCKDK regulates the branched-chain ketoacid dehy-
drogenase complex and therefore catabolism of branched-chain
amino acids (BCAAs), the products of which eventually lead to
the formation of substrates for lipogenesis, ketogenesis, or

gluconeogenesis in the liver. Importantly, key driver detection in
the global BN revealed that LSS is predicted to be a KD of the
bisque module as well as the GLD module (upstream of: FASN,
THRSP, PKLR, SLC28A1, FANCC, CYP4F22, and SLC25A44;
Fig. 4B). Thus, our network models support LSS as a master
regulator of networks underlying lipid and glucose metabolism.
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In vivo drug perturbation of lanosterol synthase. To test the
effects of LSS as a GLD module key driver involved in regulating
both cholesterol levels and glucose metabolism, we inhibited the
enzyme in B6 mice and observed clinical and transcriptional
effects. Our model predicted that inhibiting Lss would reduce the
activity of the GLD module, resulting in decreased production of
LDL cholesterol and increased glucose levels. Pharmacological
inhibition of Lss was achieved by using BIBB-515, a compound
that selectively inhibits Lss enzymatic activity. BIBB-515 was
developed as a non-statin cholesterol reducing medication and
has been shown to significantly disrupt hepatic cholesterol
synthesis in rats and mice and rapidly decrease LDL cholesterol
levels in hamsters. These earlier findings reinforce our model’s
prediction that inhibiting Lss lowers LDL cholesterol levels. In
contrast, effects of Lss inhibition on hepatic gene expression and
associated blood glucose levels have never been investigated. Our
model predicted that inhibiting Lss should significantly alter
expression of downstream GLD module genes, accompanied with
increased levels of blood glucose. To validate these model pre-
dictions, we treated C57BL/6J (B6) mice with a diet containing
BIBB-515 (55 mg/kg) for 10 days, and compared the plasma
glucose and hepatic gene expression profiles to mice fed a control
diet (n= 11 per group). Differential expression analysis showed a
total of 1714 genes whose expression was significantly altered in
mice treated with BIBB-515 (FDR < 0.05). Of these, 14 were
orthologs of GLD genes, a substantially larger overlap than would
be expected by chance (odds ratio: 2.46, Fisher’s exact p-value
0.0059, one-tailed). Targeted measurement of fold-change in gene
expression by quantitative PCR (qPCR) showed increased
expression of GLD module genes involved in cholesterol synthesis
in mice treated with BIBB-515: Lss (FC:+ 1.9, Student’s t test P:
0.004, two-tailed), Dhcr7 (FC:+ 1.9, Student’s t test P: 0.0009,
two-tailed), Idi1 (FC:+ 1.7, Student’s t test P: 0.04, two-tailed),
and Hmgcr (FC:+ 2.4, Student’s t test P: 0.0005, two-tailed;
Fig. 5A). Other GLD module genes that also showed increased
expression in response to Lss inhibition were Pcsk9, Mvd, and
Rdh11 (Supplementary Fig. 7). Adipor2 was the only GLD module
gene analyzed by qPCR that did not show a significant change in
expression (Student’s t test P: 0.06, two-tailed). In agreement with
our STARNET models demonstrating correlation between
expression of GLD module genes blood glucose levels, blood
glucose level increased 14.5% in response to Lss inhibition by
BIBB-515 (Student’s t test P: 0.0006, two-tailed; Fig. 5B). Corre-
spondingly, the expression of key gluconeogenesis genes, phos-
phoenolpyruvate (Pck1), and glucose-6-phosphatase (catalytic
subunit G6pc), increased two- to three-fold in response to the Lss

inhibition (FC:+ 3.0 and 2.1; Student’s t test P: 2E-7 and 0.0006,
two-tailed, respectively; Fig. 5C). In contrast, we observed no
significant effects on levels of non-HDL plasma cholesterol in
response to the Lss inhibition (Student’s t test p= 0.17, two-
tailed). This was not entirely unexpected given previously reports
showing minimal response to lipid-lowering drugs in wild-type
normolipemic mice49. The lack of response to lipid-lowering
drugs in mice may have several explanations, including hepatic
synthesis and assembly of apoB48-containing lipoproteins
(apoB100 in humans)50 and having HDL as its main carrier of
blood cholesterol (LDL in humans). On this note, the Lss inhi-
bition did increase the levels of HDL cholesterol (FC:+ 10.0%,
Student’s t test P: 0.003, two-tailed) and in parallel total plasma
cholesterol (FC:+ 9.4%, Student’s t test P: 0.014, two-tailed;
Supplementary Fig. 8). Since the levels of HDL cholesterol is
normally negatively correlated with LDL cholesterol, the increase
in plasma HDL represents a perturbation of cholesterol meta-
bolism in the predicted direction. Overall, the results from the
experimental validation is consistent with our model’s predictions
that inhibiting Lss should perturb the GLD module genes and
increase blood glucose levels. In addition, taking previous reports
establishing that inhibition of Lss disrupts hepatic production of
LDL cholesterol particularly in other species than mice and the
reciprocal increase in HDL levels observed in our experiments
together, the model prediction of decreased LDL was at least
partly fulfilled.

Discussion
Through our integrative analysis of multiomic data generated on
the STARNET cohort, we uncovered novel gene interactions and
predicted new regulators of the complex and paradoxical links
between T2D and LDL levels that impact CAD risk. Using the
STARNET dataset, we demonstrated that of all the tissues pro-
filed, liver harbored the most genes associated with lipid and
glucose-related traits. By organizing the gene expression traits
into coexpression networks, we discovered a module of genes
coexpressed in liver – the GLD module – with an inverse rela-
tionship to plasma lipids and blood glucose levels. The GLD
module is highly enriched for genes involved in cholesterol bio-
synthesis and contains the majority of the genes that encode for
enzymes involved in the classic mevalonate pathway as well as its
transcriptional regulator SREBF2. GLD also contains several
genes involved in intracellular cholesterol transport, including
PCSK9, NPC1, and NPC1L1. We speculate that the tight network
of these genes specifically in liver is related to the crucial role that
this organ plays in cholesterol and glucose homeostasis. Indeed,
the liver does not only play a role in lipoprotein metabolism, but
it also converts a significant amount of cholesterol into bile acids.
Furthermore, these GLD genes are affected by lipid-lowering
drugs and replicated in liver data from another human cohort
and experimental mouse populations.

Given that the GLD module reflects interactions driven by a
common regulatory framework, we employed probabilistic causal
reasoning to construct causal network models of this module and
the context in which it occurs in liver. Such probabilistic causal
network models can elucidate the regulatory architecture of core
subnetworks, leading to the identification of liver key driver genes
(KDGs) predicted to modulate network states. Given the inverse
relationship between LDL and HbA1c, we predicted that the KDGs
of the GLD module would affect cholesterol and glucose meta-
bolism through the GLD module genes and the larger network
context in which the GLD subnetwork operates. In our liver net-
works, LSS, lanosterol synthase, is the most upstream KDG in GLD
and the larger networks containing GLD (Fig. 4A), producing the
highest KDG score out of the all KDGs in the network (Table 1).

Table 1 Top 15 Key Driver Genes based on a weighted score.

Gene STARNET score

LSS 3.9
DHCR7 2.71
HMGCS1 2.44
IDI1 1.25
TMEM97 1.24
SC5D 1.12
ACACB 0.92
MVK 0.88
MMAB 0.85
CYP51A1 0.83
MRPS15 0.77
PTPRJ 0.73
ABCC6 0.69
SNAI3-AS1 0.67
SPG7 0.5
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Fig. 5 Inhibition of Lss in mouse model. A Boxplots of qPCR expression for Lss, Dhcr7, Idi1, and Hmgcr measured from liver samples of B6 mice fed either
chow (control) diet or drug (BIBB515, Lss inhibitor) diet. B Boxplots of fasted glucose measured from blood at the end of 10 days of diet. C Boxplots of two
key gluconeogenesis genes, PEP Carboxykinase (Pck1), and Glucose-6-Phosphatase (G6Pase), measured from qPCR of liver samples. n= 11 animals with
control diet and 11 animals with drug diet. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, all individual
data points.
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LSS catalyzes a crucial step in the biosynthesis of cholesterol and its
downstream products include vitamin D, bile acids, oxysterols and
steroid hormones. Lanosterol is the first cyclic sterol intermediate
in the cholesterol synthesis pathway and is involved in post-
transcriptional regulation of HMGCR51. LSS has been studied as a
possible drug target for cholesterol lowering52, and potent LSS
inhibitors have been developed. Indeed, pharmacologic inhibition
of LSS with BIBB-515 rapidly reduces LDL cholesterol levels in
normolipemic hamsters53. In our mouse study, given liver LSS is a
KDG of GLD, our model indicated that inhibition of liver LSS
would alter the GLD network state, which in turn would lower
cholesterol levels and increase glucose levels. We found that
inhibition of hepatic Lss in our mouse model significantly per-
turbed the GLD network and increased glucose levels, as our model
predicted. While total and LDL cholesterol were not reduced, as we
would predict in humans, this may have been expected here since
the metabolism and regulation of plasma cholesterol in mice is
quite different from that in humans. Most notably, wild-type mice
carry a majority of their plasma cholesterol in HDL particles, not
in LDL particles as in humans. As a consequence, mice have low
and stable levels of LDL cholesterol unless they have been
genetically engineered to model hyperlipidemias. In particular, it
has been shown that statins do not alter LDL levels in normoli-
pemic mice49. Since our model predicts that the target of statins,
HMGCR, is downstream from LSS, a similar unresponsiveness to
inhibition of LSS could be expected. Nevertheless, it is clear that
inhibition of LSS caused a significant perturbation in cholesterol
synthesis. This is consistent with previously published results that
inhibition of LSS measurably reduced the rate of LDL cholesterol
synthesis in rats and mice, even though no change in the total
levels of serum LDL cholesterol was reported53.

While the effect of LSS on cholesterol metabolism has been well
established, its effect on glucose metabolism has not been well
studied. We identified that pharmacologic inhibition of LSS in
mice caused increased levels of fasting blood glucose, paralleled
by increased expression of two key gluconeogenic genes, Pck1 and
G6pc. These observations raise the possibility that GLD impacts
blood glucose levels in part through LSS activity by changing the
rate of gluconeogenesis. This is further evidenced by additional
network analyses that identified the bisque module in liver as the
most closely correlated with GLD. The bisque module contains
key enzymes in glucose and pyruvate metabolism including
pyruvate kinase. Although pyruvate kinase is classically viewed as
a glycolysis enzyme, it is well established that pyruvate recycling
via pyruvate carboxylase, phospoenolpyruvate carboxykinase
(Pck1), and pyruvate kinase is an important regulator of gluco-
neogenesis under non-fasting conditions18. Bisque also contains
the gene encoding glucokinase, which catalyzes the first step in
glycolysis. Again, production of glucose through glucose-6-
phospatase and hepatic reuptake is in part mediated through
glucokinase (glucose cycling) and is an important determinant of
gluconeogenesis. Thus, the opposing effects on glycolysis and
gluconeogenesis are in part controlled by GLD, and bisque may
ultimately determine net glucose production by the liver with
subsequent consequences for levels of blood glucose (Fig. 4B).

In addition, the bisque module contains genes involved in
branched-chain amino acid metabolism, which has been
demonstrated to play a causal role in T2D47. Of note, the bisque
module contains BCKDK, which encodes a kinase that inactivates
the branched-chain ketoacid dehydrogenase complex, a key
enzyme in branched-chain amino acid catabolism. Branched-
chain amino acids are relatively abundant and their breakdown
yields carbon that can be used for gluconeogenesis (valine and
isoleucine, Fig. 4B). We speculate that the fine-tuning of carbon
fluxes within the liver plays a role in the relationship between
cholesterol and glucose metabolism.

Not only does the GLD module contain the target of statins,
HMGCR54, but also the targets of other lipid-lowering drugs such
as NPC1L154(ezetimibe), ACLY55, and PCSK954. The coherence
of the GLD network module even when splitting the STARNET
cohort by drug usage and HbA1c levels supports the importance
of this network module to sustain proper balance between cho-
lesterol and glucose metabolism in the liver. Furthermore, this
establishes that the observed inverse relationships of GLD with
lipid and glucose traits are not driven by the medication usage,
even though medications such as statins can alter GLD through
its impacts on HMGCR, which in turn may explain impacts on
T2D risk.

In summary, using a data-driven approach we identify a small
gene network that inversely regulates hepatic lipid and glucose
metabolism. Our study highlights the capability of this multiscale,
integrative network approach to uncover novel gene interactions,
even in highly studied canonical pathways, that underlie the dual
co-regulation of plasma lipids and blood glucose metabolism.

Methods
Normalization and QC. For each tissue, the counts matrix were taken as the
starting point (see Methods section from Franzen et al.25). From that, transcripts
were filtered using the criteria of having at least 1 count per million in at least 10%
of the samples in that tissue. After removing lowly expressed transcripts, counts
were normalized using the Trimmed M Means methods using limma in R version
3.1.0. The normalized counts were then transformed to fit to a negative binomial
distribution using the voom method from the same limma package56. Using var-
iance partition, we found large batch effects in each tissue mostly due to the flow
cell that it was sequenced on57. As such, for all tissues, we corrected for flow cell.
For the multiple samples which were sequenced twice to increase coverage we
made sure that it was counted as a part of both FC_1 and FC_2 instead of a third
unique group “FC1_FC2”. We further checked that all of these flow cell covariates
were not co-linear, and if they were, we removed them. We also ensured that each
group (flow cell) had at least 10 samples as we ran a linear model to correct for
batch effect. After doing this, we ran PCA on the residuals (corrected for flow cell)
to detect outliers; we defined outliers as samples, which were three standard
deviations outside of PC1 and PC2. After removing these individuals, we re-
corrected the data for only the remaining individuals again ensuring that there
were at least five individuals in each flow cell and that none of the covariates were
co-linear.

To make sure this was the best method for normalization, we ran differential
expression analysis on the residuals against the different batch effects that we had
(sequencing lab, protocol used, and hardware identifier). For two tissues, Blood and
VAF, we found that there were multiple genes that were still significantly
differentially expressed in regard to batch effect. Thus, in these two tissues, we re-
corrected them adding in the covariate hardware-identifier.

Differential expression. We used the edgeR package in R version 3.1.0. In each
tissue, we ran differential expression analysis on the normalized data against the
clinical phenotypes of interest. P-values were adjusted for multiple testing using the
BH method (FDR). For the differential metabolite analysis, the metabolites were
first z-normalized.

Enrichment analysis. We annotated each gene with its associated GO categories
and KEGG pathways using the goseq package in R version 3.1.0. We performed the
enrichment analysis using the topGO package in R version 3.1.0, which performs a
Fisher’s Exact Test on each annotation category using the provided foreground and
background gene lists and uses the Benjamini–Hochberg procedure to select sig-
nificantly enriched annotations. We used as our foreground the list of significant
trait-correlated DE genes in each tissue, and as our background the list of all genes
expressed in the same tissue. Visualizations of GO terms were made using
Revigo58.

Coexpression analysis. We used the parallelized version of WGCNA in R version
3.1.1. (https://bitbucket.org/multiscale/coexpp). All parameters were default and we
used “tree cut” algorithm to define clusters.

Coexpression analysis for GTEx. We collected gene expression data from the
GTEx portal (Version 7)59, and divided all individuals into two groups according to
their chronological ages: (1) young group (age ≤ 35) and (2) old group (age ≥ 65).
We chose to perform coexpression analysis only on tissues with at least 30 samples,
as this is the approximate minimum number of samples required to compute a
reliable correlation coefficient between expression levels60. There are 11 tissues
with sample sizes in both young and old group ≥30, namely esophagus,
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transformed fibroblast, lung, aorta, thyroid, tibial nerve, tibial artery, sun exposed
skin, skeletal muscle, subcutaneous adipose, and whole blood, which were kept for
further analysis. For the liver tissue, we split by median age of 55 for the young
(≤55) and the old (>55) in order to have sample size greater than or equal to 30.

Similar to the GTEx study59, for each tissue we only kept genes having at least 0.1
FPKM in 2 or more individuals and then normalized the expression of each gene
(across samples) into a standard normal distribution. We adjusted for the following
confounding factors: (1) gender, (2) collection center, (3) RIN, (4) ischemic time, and
(5) three genotyping principal components. The genotype PCs were constructed using
GCTA61 by a few quality controls using plink (e.g., – MAF 0.1, – geno 0.05, –hwe
1e-6, –Chr 1–22). Finally, we constructed young and old networks for each tissue by
weighted gene correlation network analysis (WGCNA)29 with the soft powers to be 5
for all tissues.

MetaXcan analysis. We applied MetaXcan37,62 to integrate GWAS summary level
data and sample level STARNET eQTL data (genotype and gene expression) to
identify genes underlying LDL22, HDL22, total cholesterol22, triglyceride22,
HbA1c23, and blood glucose38 traits. Based on MetaXcan pvalue, false discovery
rate was derived using Benjamini–Hochberg procedure.

eQTLs. Using fastQTL we called cis eQTLs for the tissue of interest63. First we
checked the ancestry of our population and identified four individuals as outliers
(non European). We then ran PEER to identify surrogate variables. Using the
known covariates for batch effect as well as age, gender, and surrogate variable (SV)
1 through 20 we ran fastQTL. We ended up using 7 SVs for the LIV as that was
where the number of cis eQTLs plateaued.

Bayesian network. RIMBAnet was employed to construct the probabilistic causal
networks39. The input for this was the continuous gene expression values for every
individual, as well as the same values discretized into three states. This enables the
compute time to be tractable and reduces the search space for every gene to be
defined as either high, no, or low expressed in each individual. We also used cis
eQTLs as priors. Due to the central dogma of biology, we know that DNA ->RNA
so the eQTLs can be used to break equivalent structures. In all, 1000 MCMC
reconstructions were run and a posterior probability of 0.3 was taken as a cutoff for
returning results. These parameters are based on a previously reported simulation
study, where using a posterior probability cutoff of 0.3 in 1000 reconstructions was
found to provide the best balance between precision and recall40,41. After the 1000
reconstructions, the networks were all merged together, and cycles identified and
broken by removing the “weakest link” (edge with the lowest posterior probability).
This results in a network that is a directed acyclic graph (DAG) and a Bayesian
Network.

Discretization. Every gene was discretized into three states of expression: high,
none, or low. This was done using Matlab and k-means clustering with a k= 3.
First, each gene’s expression was normalized to a normal distribution and then
clustering was run to find the three clusters. If there were only two clusters
detected, we allowed two (high, low) and did not force a third cluster.

Causal inference test. In order to identify if there were any prior edges of SNP
->gene -> metabolite, or SNP ->metabolite -> gene, we ran the causal inference test
(CIT)64,65. For the genes of interest, we identified the top eSNP (SNP that had the
highest eQTL for that gene). We then took those corresponding SNPs and looked
to see if any were associated with the metabolites (FDR < 5%). Further, we took the
metabolites and the genes and checked their correlation. This resulted in 3,410 trios
of SNP - gene - metabolite trio that were all correlated. For each of these, we ran
the CIT test in R to identify both the causal model (SNP ->gene -> metabolite) and
the reactive model (SNP -> gene -> metabolite). If the causal omnibus p-value
(p_cit) that was significant after multiple testing and the reactive omnibus p-value
was not significant, we called that edge a prior edge for gene -> metabolite. And, if
the reactive omnibus p-value was significant and the causal omnibus p-value was
not significant, we called the edge of metabolite -> gene significant25. We identified
95 causal interactions of SNP -> gene -> metabolite.

Multiscale network. For the multiscale network, we used RIMBAnet as well. The
data was discretized in the same manner as above. For clinical traits, the same
process was followed and categorical traits were assigned to 2 states (yes and no) or
3 if there was a third option such as “quit” or “maybe”. Priors from the CIT test
were inputted as “strong priors”. These edges were forced to be present in each of
the 1000 independent networks in the seed network with a probability of 1. All 95
edges inputted as prior edges remained in the consensus network.

PEXA analysis. We applied the PEXA algorithm48 to select genes to include in
our expanded networks. PEXA takes a seed list of genes, which in the original
PEXA publication are genes identified by an siRNA screen, and uses KEGG
pathway data and protein–protein interaction data to select related genes. For the
GLD expanded network, our seed list contained all genes in the GLD module, and
all genes whose expression in LIV was correlated with the first PC of the GLD

module at an FDR < 5%. For the global liver network, we ran PEXA separately for
each of the 28 modules in LIV identified by WGCNA, including the GLD module.
For each run, we used as our seed list all the genes in that single module. We then
combined the resulting 28 expanded gene lists to produce a single global expanded
gene list.

Key driver analysis. We performed key driver analysis (KDA) to detect key dri-
vers of networks of interest using the KDA software package30,31,66. In the gene
only networks, we identified key drivers of the GLD module genes at a maximal
path of 7. For multiscale network, we ran KDA to identify KDGs of the GLD genes,
KDGs of the clinical traits, and KDGs of the metabolites.

Key driver ranking. For every network, we took the KDGs and their ranking based
on p-value (or number of targets downstream if the p-value was 0) with the least
significant being at top and then divided the rank by the total number of KDGs to
get a weighted KDG. This method allowed for the top KDG to have a rank= 1. We
then summed the ranks across the four BNs for the STARNET data to come up
with a score for each gene with the max possible being 4 (would have had to been
the #1 KDG in all 4 BNs).

Animal studies. Six-week-old female C57BL/6J (B6) mice were obtained from The
Jackson Laboratory (Bar Harbor, ME) and acclimated for 2 weeks prior to initia-
tion of experiments. Mice were housed three or four per cage and maintained at
22 °C under a 12-h light cycle. Mice were maintained in accordance with University
of California, Los Angeles Institution Animal Care and Use Committee protocols.
Three days prior to initiation of experiments, all mice were switched from a chow
diet (Ralston Purina Company) to the control diet (Research Diets D111112201;
kcal= 15% fat, 65% carbohydrate, 20% protein). At experiment initiation, mice
(n= 11/group) were randomized to control diet or a matched diet containing
BIBB-515 (dosed at 55 mg/kg body weight).

Hepatic RNA isolation and gene expression analysis. Flash frozen hepatic
samples were homogenized in Qiazol (QIAGEN) and RNA isolated according to
the manufacturer’s protocol with RNeasy columns (QIAGEN). Isolated RNA was
converted to cDNA using a High Capacity cDNA Synthesis Kit (ThermoFisher)
according to the manufacturer’s instructions. Primers targeted at genes of interest
were designed and reactions were run in triplicate using KAPA SYBR FAST qPCR
Master Mix (Roche) with 8 ng of cDNA per reaction. Quantification was per-
formed on the LightCycler 480 (Roche) with an initial 95 °C step followed by 45
cycles of denaturation at 95 °C for 45 s, annealing at 57 °C for 45 s, and extension at
72 °C for 45 s. Melting curves were performed by 95 °C for 5 s, followed by 65 °C
for 60 s, and a continuous read step of seven acquisitions per second between 65 °C
and 97 °C. Results were expressed as averages of three independent reactions and
normalized to B2M as a housekeeping gene.

Blood glucose and plasma cholesterol. Retro-orbital blood was collected used
isoflurane anesthesia after 5 h of fasting. Blood glucose was determined immedi-
ately following blood collection using a AlphaTrak glucometer (Zoetis). Total and
HDL plasma cholesterol were determined by enzymatic processes employing col-
orimetric end points67,68. Samples were diluted with saline so their measured
absorbance values were within the linear range of established standard curves.
Measured absorbances were divided by the absorbance of a single standard con-
centration near the midpoint of the linear range of the established standard curve.
The product of this factor and the standard concentration yielded the unknown
value. Values were expressed as milligrams per deciliter. Each sample was mea-
sured in quadruplicate. An external control sample with a known analytic
concentration.

(Accutrol, Sigma No. 2034) was run in each plate to assure accuracy. TC was
determined according to Allain et al.69, as provided in a kit (Sigma procedure 352).
HDL-C was separated from LDL-C+VLDL-C by precipitating the latter with
phosphotungstic acid and magnesium chloride according to Marz and Gross70 and
Assmann et al.71. Precipitation reagents were obtained in a kit (Sigma procedure
352-4). All reaction volumes were scaled down from recommended levels so that
the entire reaction could be run in a 96-plate microtiter well.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from the STARNET study are available through the Database of Genotypes and
Phenotypes (dbGaP) under accession phs001203.v1.p1. Data from the mouse study are
available through the Gene Expression Omnibus (GEO) under accession GSE157223.
Data from the Molecular Signatures Database (MSigDB) are available at https://www.
gsea-msigdb.org/gsea/msigdb. Data from GTEx are available at https://gtexportal.org/.
Data shown in Fig. 2a, c are included as Supplementary Data 1. Data shown in Fig. 2b are
included as Supplementary Table 1. Data shown in Fig. 3a are included as Supplementary
Data 7. Data shown in Fig. 3b are included as Supplementary Data 6. Data shown in
Fig. 4 are included as Supplementary Data 10.
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Code availability
Code sharing not applicable to this article as the conclusions do not rely on any custom
software. All software used in the analyses reported in this article has been previously
published, and is either publicly available or is available on request from its original
authors. Details on how these previously published software packages were used are
provided in Supplementary Note 1.

Received: 23 May 2019; Accepted: 8 December 2020;

References
1. Beckman, J. A., Creager, M. A. & Libby, P. Diabetes and atherosclerosis:

epidemiology, pathophysiology, and management. JAMA 287, 2570–2581 (2002).
2. Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality

from coronary heart disease in subjects with type 2 diabetes and in
nondiabetic subjects with and without prior myocardial infarction. N. Engl. J.
Med. 339, 229–234 (1998).

3. Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A. & Hovingh, G. K.
Association between familial hypercholesterolemia and prevalence of type 2
diabetes mellitus. JAMA 313, 1029–1036 (2015).

4. Lees, J. A. et al. Lipid transport by TMEM24 at ER-plasma membrane contacts
regulates pulsatile insulin secretion. Science 355, eaah6171 (2017).

5. Klarin, D. et al. Genetic analysis in UK Biobank links insulin resistance and
transendothelial migration pathways to coronary artery disease. Nat. Genet.
49, 1392–1397 (2017).

6. White, J. et al. Association of lipid fractions with risks for coronary artery
disease and diabetes. JAMA Cardiol. 1, 692–699 (2016).

7. Lotta, L. A. et al. Association between low-density lipoprotein cholesterol-
lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA
316, 1383–1391 (2016).

8. Fall, T. et al. Using genetic variants to assess the relationship between
circulating lipids and type 2 diabetes. Diabetes 64, 2676–2684 (2015).

9. Kini, A. S. et al. Changes in plaque lipid content after short-term intensive
versus standard statin therapy: the YELLOW trial (reduction in yellow plaque
by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 62, 21–29 (2013).

10. Maki, K. C., Dicklin, M. R. & Baum, S. J. Statins and diabetes. Endocrinol.
Metab. Clin. North Am. 45, 87–100 (2016).

11. Olotu, B. S. et al. Use of statins and the risk of incident diabetes: a
Retrospective Cohort Study. Am. J. Cardiovasc. Drugs 16, 377–390 (2016).

12. Cannon, C. P. Balancing the benefits of statins versus a new risk-diabetes.
Lancet 375, 700–701 (2010).

13. Simpson, W. G. Statins and risk of incident diabetes. Lancet 375, 2140 (2010) .
14. Ridker, P. M., Pradhan, A., MacFadyen, J. G., Libby, P. & Glynn, R. J.

Cardiovascular benefits and diabetes risks of statin therapy in primary
prevention: an analysis from the JUPITER trial. Lancet 380, 565–571 (2012).

15. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-
analysis of randomised statin trials. Lancet 375, 735–742 (2010).

16. Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes,
and bodyweight: evidence from genetic analysis and randomised trials. Lancet
385, 351–361 (2015).

17. Oesterle, A., Laufs, U. & Liao, J. K. Pleiotropic effects of statins on the
cardiovascular system. Circ. Res. 120, 229–243 (2017).

18. Groen, A. K., Vervoorn, R. C., Van der Meer, R. & Tager, J. M. Control of
gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the
effect of glucagon. J. Biol. Chem. 258, 14346–14353 (1983).

19. Demers, A. et al. PCSK9 induces CD36 degradation and affects long-chain
fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver.
Arterioscler. Thromb. Vasc. Biol. 35, 2517–2525 (2015).

20. Prabhu, A. V., Luu, W., Sharpe, L. J. & Brown, A. J. Cholesterol-mediated
degradation of 7-dehydrocholesterol reductase switches the balance from
cholesterol to vitamin D synthesis. J. Biol. Chem. 291, 8363–8373 (2016).

21. Ding, J. et al. Alterations of a cellular cholesterol metabolism network are a
molecular feature of obesity-related type 2 diabetes and cardiovascular disease.
Diabetes 64, 3464–3474 (2015).

22. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels.
Nat. Genet. 45, 1274–1283 (2013).

23. Wheeler, E. et al. Impact of common genetic determinants of Hemoglobin
A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a
transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).

24. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral
adipose storage capacity in the pathogenesis of human insulin resistance. Nat.
Genet. 49, 17–26 (2017).

25. Franzen, O. et al. Cardiometabolic risk loci share downstream cis- and trans-
gene regulation across tissues and diseases. Science 353, 827–830 (2016).

26. Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative
serum nuclear magnetic resonance metabolomics in cardiovascular
epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).

27. Wurtz, P. et al. Metabolite profiling and cardiovascular event risk: a
prospective study of 3 population-based cohorts. Circulation 131, 774–785
(2015).

28. Wurtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics
in large-scale epidemiology: a primer on -omic technologies. Am. J. Epidemiol.
186, 1084–1096 (2017).

29. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinform. 9, 559 (2008).

30. Wang, I. M. et al. Systems analysis of eleven rodent disease models reveals an
inflammatome signature and key drivers. Mol. Syst. Biol. 8, 594 (2012).

31. Zhang, B. et al. Integrated systems approach identifies genetic nodes and
networks in late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

32. Bunyavanich, S. et al. Integrated genome-wide association, coexpression
network, and expression single nucleotide polymorphism analysis identifies
novel pathway in allergic rhinitis. BMC Med. Genomics 7, 48 (2014).

33. Jostins, L. et al. Host-microbe interactions have shaped the genetic
architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

34. Greenawalt, D. M. et al. A survey of the genetics of stomach, liver, and adipose
gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016
(2011).

35. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat.
Genet. 45, 580–585 (2013).

36. Lusis, A. J. et al. The Hybrid Mouse Diversity Panel: a resource for systems
genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 57,
925–942 (2016).

37. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific
gene expression variation inferred from GWAS summary statistics. Nat
Commun 9, 1825 https://doi.org/10.1038/s41467-018-03621-1 (2018).

38. Manning, A. K. et al. A genome-wide approach accounting for body mass
index identifies genetic variants influencing fasting glycemic traits and insulin
resistance. Nat. Genet. 44, 659–669 (2012).

39. Zhu, J. et al. Stitching together multiple data dimensions reveals interacting
metabolomic and transcriptomic networks that modulate cell regulation. PLoS
Biol. 10, e1001301 (2012).

40. Zhu, J. et al. Integrating large-scale functional genomic data to dissect the
complexity of yeast regulatory networks. Nat. Genet. 40, 854–861 (2008).

41. Zhu, J. et al. Increasing the power to detect causal associations by combining
genotypic and expression data in segregating populations. PLoS Comput. Biol.
3, e69 (2007).

42. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene
networks in segregating populations. Cytogenet. Genome Res. 105, 363–374
(2004).

43. Yoo, S. et al. Integrative analysis of DNA methylation and gene expression
data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 11, e1004898
(2015).

44. Peters, L. A. et al. A functional genomics predictive network model identifies
regulators of inflammatory bowel disease. Nat. Genet. 49, 1437–1449 (2017).

45. Miller, C. L. et al. Integrative functional genomics identifies regulatory
mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).

46. Lee, S. et al. Network analyses identify liver-specific targets for treating liver
diseases. Mol. Syst. Biol. 13, 938 (2017).

47. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the
branched-chain amino acids and risk of type 2 diabetes: a mendelian
randomisation analysis. PLoS Med. 13, e1002179 (2016).

48. Tu, Z. et al. Integrating siRNA and protein-protein interaction data to
identify an expanded insulin signaling network. Genome Res. 19, 1057–1067
(2009).

49. Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in
mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

50. Larsson, S. L., Skogsberg, J. & Bjorkegren, J. The low density lipoprotein
receptor prevents secretion of dense apoB100-containing lipoproteins from
the liver. J. Biol. Chem. 279, 831–836 (2004).

51. Song, B. L., Javitt, N. B. & DeBose-Boyd, R. A. Insig-mediated degradation of
HMG CoA reductase stimulated by lanosterol, an intermediate in the
synthesis of cholesterol. Cell Metab. 1, 179–189 (2005).

52. Thoma, R. et al. Insight into steroid scaffold formation from the structure of
human oxidosqualene cyclase. Nature 432, 118–122 (2004).

53. Eisele, B., Budzinski, R., Muller, P., Maier, R. & Mark, M. Effects of a novel
2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and lipid
metabolism in vivo. J. Lipid Res. 38, 564–575 (1997).

54. van der Laan, S. W. et al. From lipid locus to drug target through human
genomics. Cardiovasc Res. 114, 1258–1270 (2018).

55. Burke, A. C. & Huff, M. W. ATP-citrate lyase: genetics, molecular biology
and therapeutic target for dyslipidemia. Curr. Opin. Lipidol. 28, 193–200
(2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20750-8

12 NATURE COMMUNICATIONS |          (2021) 12:547 | https://doi.org/10.1038/s41467-020-20750-8 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-03621-1
www.nature.com/naturecommunications


56. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29
(2014).

57. Carcamo-Orive, I. et al. Analysis of transcriptional variability in a large human
iPSC library reveals genetic and non-genetic determinants of heterogeneity.
Cell Stem Cell 20, 518–532 e9 (2017).

58. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and
visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

59. Consortium, G. T. Human genomics. The Genotype-Tissue Expression
(GTEx) pilot analysis: multitissue gene regulation in humans. Science 348,
648–660 (2015).

60. Cohen, J. Statistical power analysis for the behavioral sciences, xxi, p. 567
(L. Erlbaum Associates, Hillsdale, N.J., 1988).

61. Yang, J. A., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

62. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific
gene expression variation inferred from GWAS summary statistics. Nat.
Commun. 9, 1825 (2018).

63. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and
efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics
32, 1479–1485 (2016).

64. Millstein, J., Zhang, B., Zhu, J. & Schadt, E. E. Disentangling molecular
relationships with a causal inference test. BMC Genet. 10, 23 (2009).

65. Millstein, J. & Volfson, D. Computationally efficient permutation-based
confidence interval estimation for tail-area FDR. Front. Genet. 4, 179 (2013).

66. Schadt, E. E. et al. An integrative genomics approach to infer causal associations
between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

67. Castellani, L. W. et al. Apolipoprotein AII is a regulator of very low density
lipoprotein metabolism and insulin resistance. J. Biol. Chem. 283,
11633–11644 (2008).

68. Mehrabian, M. et al. Influence of the apoA-II gene locus on HDL levels and
fatty streak development in mice. Arterioscler. Thromb. 13, 1–10 (1993).

69. Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. Enzymatic
determination of total serum cholesterol. Clin. Chem. 20, 470–475 (1974).

70. Marz, W. & Gross, W. Analysis of plasma lipoproteins by ultracentrifugation
in a new fixed angle rotor: evaluation of a phosphotungstic acid/MgCl2
precipitation and a quantitative lipoprotein electrophoresis assay. Clin. Chim.
Acta 160, 1–18 (1986).

71. Assmann, G., Schriewer, H., Schmitz, G. & Hagele, E. O. Quantification of
high-density-lipoprotein cholesterol by precipitation with phosphotungstic
acid/MgCl2. Clin. Chem. 29, 2026–2030 (1983).

Acknowledgements
We thank all participants for contributing to this research. We acknowledge research
support from NIH R01HL125863 (J.L.M.B.), HL030568 (J.L.M.B.), and GM115318
(A.J.L.), American Heart Association A14SFRN20840000 (J.L.M.B.), Swedish Research
Council 2018-02529 (J.L.M.B.) and Heart Lung Foundation 20170265 (J.L.M.B.),
Foundation Leducq PlaqueOmics: Novel Roles of Smooth Muscle and Other Matrix
Producing Cells in Atherosclerotic Plaque Stability and Rupture, 18CVD02 (J.L.M.B.),
Foundation Leducq CADgenomics: Understanding CAD Genes, 12CVD02 (J.L.M.B.,
A.J.L.) and Astra-Zeneca, Molndahl, Sweden (J.L.M.B.). This work was supported in part
through the computational resources and staff expertize provided by Scientific Com-
puting at the Icahn School of Medicine at Mount Sinai. STARNET study was approved

by IRB 154/7(2006), 188-M12 (2009), 277/T17 (2018) by the Research Ethics Committee
of the University of Tartu (UT REC).

Author contributions
A.T.C., W.T.B., D.M.J., J.C.K., A.J.L., J.L.M.B., and E.E.S. conceived, designed, and
managed the study. A.T.C. performed statistical and computational analyses under the
direction of E.E.S., with advisory input from NBD. W.T.B. performed all biological
experiments under the direction of A.J.L., with experimental support from J.L.M.B.;
STARNET data was collected and processed by O.F., S.K., C.W., K.S., R.E., A.R., K.H.,
L.M.G., and C.G. under the supervision of J.L.M.B.. D.M.J., N.D.B., G.M.B., A.W.C.,
E.E.K., C.A.A., S.M.H., R.D., J.Z., and Z.T. provided computational support and technical
assistance. GTEx analysis was performed by J.Y. under the supervision of CAA and Z.T.
MetaXcan results were performed by K.H.; A.T.C., DMJ, J.L.M.B., and EES wrote the
manuscript, with input from W.T.B., AJL, C.A.A., S.M.H., and C.G. All authors critically
reviewed the manuscript and contributed significantly to the work presented in
this paper.

Competing interests
J.L.M.B. and AR are shareholders and part of the board of directors in Clinical Gene
Networks AB (CGN). CGN has an invested interest in the STARNET database. The
remaining authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20750-8.

Correspondence and requests for materials should be addressed to J.L.M.B. or E.E.S.

Peer review information Nature Communications thanks Liliana Lopez-Kleine, Adil
Mardinoglu, Enrico Petretto and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20750-8 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:547 | https://doi.org/10.1038/s41467-020-20750-8 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-020-20750-8
https://doi.org/10.1038/s41467-020-20750-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease
	Results
	Identification of glucose and lipid metabolism coexpression modules
	GLD replicates in non-CAD human livers and is conserved in mice
	Association between therapeutic drugs and the GLD module
	Fine-mapping genetic risk loci for metabolic traits with GLD module genes
	Constructing probabilistic causal network models of the GLD module
	Exploring the molecular connection between lipid and glucose metabolic co-regulation
	In vivo drug perturbation of lanosterol synthase

	Discussion
	Methods
	Normalization and QC
	Differential expression
	Enrichment analysis
	Coexpression analysis
	Coexpression analysis for GTEx
	MetaXcan analysis
	eQTLs
	Bayesian network
	Discretization
	Causal inference test
	Multiscale network
	PEXA analysis
	Key driver analysis
	Key driver ranking
	Animal studies
	Hepatic RNA isolation and gene expression analysis
	Blood glucose and plasma cholesterol

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




