
UCSF
UC San Francisco Previously Published Works

Title
Human genetics and sleep behavior

Permalink
https://escholarship.org/uc/item/1gm6k8sm

Authors
Shi, Guangsen
Wu, David
Ptáček, Louis J
et al.

Publication Date
2017-06-01

DOI
10.1016/j.conb.2017.02.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gm6k8sm
https://escholarship.org/uc/item/1gm6k8sm#author
https://escholarship.org
http://www.cdlib.org/


Human genetics and sleep behavior
Guangsen Shi1,2, David Wu1, Louis J Ptá9cek1,2 and Ying-Hui Fu1
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ScienceDirect
Why we sleep remains one of the greatest mysteries in science.

In the past few years, great advances have been made to better

understand this phenomenon. Human genetics has contributed

significantly to this movement, as many features of sleep have

been found to be heritable. Discoveries about these genetic

variations that affect human sleep will aid us in understanding

the underlying mechanism of sleep. Here we summarize recent

discoveries about the genetic variations affecting the timing of

sleep, duration of sleep and EEG patterns. To conclude, we

also discuss some of the sleep-related neurological disorders

such as Autism Spectrum Disorder (ASD) and Alzheimer’s

Disease (AD) and the potential challenges and future directions

of human genetics in sleep research.
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Introduction
The field of human genetics began to gain momentum as

a powerful approach for defining the causes of diseases

beginning in the 1980s. This approach continues to be

fruitful nearly 3 decades later. Over the past 30 years,

human genetics has revolutionized the field of biomedical

research and medicine in general. The identification of

genetic causes for diseases generated a dramatic paradigm

shift in the process of studying disease pathophysiology.

The great hope is that understanding of genetics and

biology of specific diseases will lead to a more rational

approach to devising better treatments.

Sleep is known to have a large impact on human health

but remains a great mystery today. Studies of human

behaviors, including sleep, are more challenging than
www.sciencedirect.com 
studies of diseases because behavioral phenotypes are

typically more complex and are generally subject to many

environmental factors. Nonetheless, an opportunity arose

in the late 1990s with identification of the first familial

circadian phenotype (familial advanced sleep phase syn-

drome-FASP) that made it possible to begin genetic

mapping and cloning of genes/mutations that have strong

effects on human circadian timing. Less than 20 years

after the recognition of these families [1], we have made

great strides into understanding regulatory mechanisms

of human sleep behavior. Growing evidence has accumu-

lated over the last 2 decades and revealed that a number

of sleep traits in humans are heritable, such as timing of

sleep, total daily sleep requirement, response to sleep

deprivation, and various EEG measurements/patterns.

In these Mendelian sleep phenotypes, single mutations

of large effect were shown to be causative for different

phenotypes. Therefore, mutations identified using

genetics in human families have led to new insights into

the detailed molecular mechanisms regulating sleep

behavior.

Here, we summarize recent discoveries in the field of

human genetics implicating genes in sleep regulation. We

will focus primarily on natural variations in sleep traits

including the timing, duration and the EEG character-

istics of sleep (Figure 1).

Timing of sleep
The timing of sleep is determined by the circadian clock,

which is entrained to the environment primarily by light.

At a molecular level, the periodicity of biological clocks

is generated by transcriptional–translational feedback

loops [2–5]. A growing list of core clock genes have been

discovered that encode proteins participating in this

feedback loop. Components of the molecular clock are

highly conserved in vertebrates [3,4]. Theoretically,

mutations that alter the molecular clock feedback loops

may result in altered circadian timing. Indeed, our lab has

identified several genetic mutations including casein
kinase 1 delta (CK1d) T44A and H46R, period2 (PER2)
S662G, period3 (PER3) P415A/H417R and cryptochrome2
(CRY2) A260T from subjects affected by familial advance

sleep phase (FASP) (Table 1) (Figure 2) [6–8,9�,10�,11].
Sleep onset and offset times are significantly advanced in

individuals with FASP. Most of the mutations character-

ized to date accelerate the clock and shorten the period,

which leads to the advanced phase phenomena [7,8,10�].
In addition, the importance of clock protein post-transla-

tion modifications was elucidated by mutations found in

PER2 and CK1d [7,8]. The fact that control of clock

protein turnover and stability is critical for sleep
Current Opinion in Neurobiology 2017, 44:43–49
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Figure 1
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Genes highlighted in this review that affect the timing, duration, or EEG characteristics of sleep.

(a) Mutations in CK1d, CRY2, PER2, and PER3 have all been shown to shift the timing of sleep forward in their carriers, causing Familial Advanced

Sleep Phase (FASP).

(b) DEC2 mutations have been linked to reduced sleep length or sleep deprivation resistant traits. Carriers of one mutation require only around six

hours of sleep per night. This trait was named as Natural Short-Sleep (NSS).

(c) Multiple genes have been implicated in changing the EEG characteristics of sleep, primarily through affecting changes in Slow-Wave Amplitude

(SWA) or the spectral power of the delta (.25–4 Hz) and theta (6–8 Hz) bands.

Table 1

Sleep related genetic variations highlighted in this review

Genes Pathology Experimental design Associated SNP,

allele, or mutation

Notes

Csnk1d FASP & migraine Candidate gene sequencing T44A and H46R Autosomal-dominant transmission;

validation in in vitro and mouse models

PER2 FASP Linkage analysis and

candidate gene sequencing

S662G Autosomal-dominant transmission;

validation in in vitro and mouse models

PER3 FASP & SAD

(seasonal affective

disorder)

Candidate gene sequencing P415A/H417R Autosomal-dominant transmission;

validation in in vitro and mouse models

CRY2 FASP Candidate gene sequencing A260T Autosomal-dominant transmission;

validation in in vitro and mouse models

DEC2 NSS Candidate gene sequencing P384R and Y362H Only P384R was tested in mouse models.

ABCC9 NSS GWAS rs11046205A in intron Potentially affected the expression levels;

not fully testified.

PER3 EEG variations &

SAD (seasonal

affective disorder)

polymorphism described in

previous studies

54-nucleotide variable

number tandem

repeat

PER3(5/5) carriers showed increased delta

activities in NREM sleep and a greater

detrimental impact of sleep deprivation.

ADA EEG variations &

Multiple Sclerosis &

Depression

polymorphism described in

previous studies

D8N Carriers had deeper sleep and were under

higher sleep pressure.

ADORA2A EEG variations &

acute anxiogenic

response to caffeine

polymorphism described in

previous studies

polymorphisms

at 30 UTR
Power in the high-theta/low-alpha range

was invariably enhanced in the carriers in

NREM, REM sleep, and wakefulness.

Power in the waking EEG was higher in

frequency bins between 11.5–17.5 Hz.

BDNF EEG variations &

autism spectrum

disorders

polymorphism described in

previous studies

V66M Carriers showed reduced SWS and

decreased spectral power in specific

bands at different stages of NREM sleep.

Current Opinion in Neurobiology 2017, 44:43–49 www.sciencedirect.com
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Figure 2
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Schematic diagram of the known FASP mutations found in humans.

PER2 and CRY2 are core clock components and their protein levels are tightly regulated in a circadian manner to ensure stable clock oscillation.

All mutations discovered to date impact the protein levels of these two critical core clock components. The PER2 S662G mutation results in

hypophosphorylated of PER2 by casein kinase I (CKI), which in turn causes both increased repressor activity and decreased protein stability.

Consistent with this theme, two CK1d mutations (T44A and H46R) were found to decrease its enzyme activity for substrates including the PER2

S662 site. Thus, these mutations also lead to altered transcription repressor activity and protein stability of PER2. Another FASP mutations, PER3

P415A/H417R, reduces the ability of PER3 to stabilize PER2, resulting in decreased protein stability once again. In addition to this PER2 axis, a

more recent finding revealed that the CRY2 A260T mutation increases its accessibility and affinity for ubiquitin E3 ligase, thus promoting its

degradation. Both the PER2 and CRY2 mutations have provided insight into the connection between circadian clock and metabolism, while the

PER3 mutation offers possible revelation in linking clock and mood regulation. In all the cases mentioned here, the mutations accelerate the

endogenous clock, causing mutation carriers to wake up around 4:00 o’clock in the morning. As PERs and CRYs are the major repressive factors

in the circadian feedback loop, these genetic findings strongly imply that these repressors play a dominant role in regulating the human sleep

wake cycle.
regulation is demonstrated repeatedly by studies of

PER2, PER3, and CRY2 mutations [7,9�,10�]. Each of

the mutations found by this approach contributed to a

better overall picture of regulatory clock mechanisms.

Importantly, some people who have the strong sleep

phase advance phenotype do not carry any mutation in

known clock genes (unpublished data). Although muta-

tions in (as yet) unidentified (novel) clock genes may be

responsible for this phenotype, other possibilities exist.

Altered phase in the setting of a normal core clock may

result from altering the connection between the environ-

ment and the clock system in the body or the coupling of

the core clock to physiological outputs. For example, the
www.sciencedirect.com 
light entrainment pathway from retina to SCN may be

affected by the potential genetic mutation. Consistent

with this hypothesis, circadian and phototransduction

genes and pathways were enriched in the recent

genome-wide association analysis of self-reported morn-

ing-ness [12,13�]. Therefore, discovery and study of such

novel genes with more intensive genetic tools promise to

be fruitful.

Duration of sleep
The duration of sleep and response to sleep loss varies

among individuals. We are particularly interested in a

cohort of individuals known as Natural Short-Sleepers

(NSS). These people sleep significantly less than the
Current Opinion in Neurobiology 2017, 44:43–49
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normal population. Moreover, this phenotype is heritable

in some families. Importantly, unlike the patients suffer-

ing from sleep disorders, Natural Short-Sleepers are often

healthy and free of any apparent detrimental conse-

quence caused by short sleep duration. Previously, we

identified a mutation (P384R) in the basic helix-loop-helix
family member e41 (BHLHE41or DEC2) gene that is asso-

ciated with a human familial natural short sleep pheno-

type (FNSS) [14]. The habitual self-reported total sleep

time (average 6.25 hours) for affected individuals per day

was much shorter than the non-carrier controls (average

8.06 hours). Mouse models carrying the exact human

mutation largely recapture the short sleep phenotype,

further confirming the causative role of the mutation [14].

An independent study from another human cohort found

other DEC2 missense mutations. One DEC2 mutation

(Y362H) occurred in one member of a fraternal twin pair

who slept one hour less and showed more resistance to

sleep deprivation than his mutation-negative twin. The

second mutation, identified in three unrelated individu-

als, resulted in a glutamine (rather than arginine, P384N)

substitution at the same codon as our finding, but led to

no obvious phenotype [15��]. At the molecular level,

Y362H and P384R, but not P384N, reduced the ability

of DEC2 to suppress CLOCK/BMAL1 transactivation,

which suggested a possible underlying mechanism

[14,15��]. Together, these findings highlight the role of

the DEC2 gene in regulation of human sleep duration.

Although several other intriguing candidate genes have

been identified, statistical and functional evidence is

lacking for many implicated cases [16–19]. Interestingly,

ion-channel genes have been shown to regulate duration

of sleep or sleep-like behavior in model organisms

[20��,21,22], though it is still unclear whether such genes

also regulate sleep duration in humans. A plausible case

was the ATP-binding cassette sub-family C member 9 (ABCC9)
gene which encodes a pore-forming subunit of an ATP-

sensitive potassium channel, but the SNPs found by

different studies were all intronic [16,17,23].

Recent report from the UK Biobank study suggested two

association polymorphisms for sleep duration [13�]. One

of the polymorphisms is located upstream and the other

downstream of the Vaccinia Related Kinase 2 gene.

Although intriguing, further validation by both in vitro
and in vivo characterizations of these polymorphisms are

needed to confirm their roles in sleep duration.

Characteristics of EEG
(electroencephalogram) during sleep
The architecture of sleep is defined by EEG based

parameters. Although not fully confirmed, it is believed

that some characteristics of EEG may reflect the quality

or efficiency of sleep. The features of EEG can also be

modulated by the genes that regulate the duration and

timing of sleep (Table 1). One example is the DEC2 gene
Current Opinion in Neurobiology 2017, 44:43–49 
mentioned above. DEC2 Y362H mutation carriers showed

higher delta power during NREM and less REM sleep

compared to the non-carriers [15��]. Another example is a

polymorphism in PER3 that also influences EEG vari-

ability. This polymorphism is a 54-nucleotide variable

number tandem repeat (VNTR) in exon 18 of PER3 that

encodes 18 amino acids. Approximately 10% of the pop-

ulation is homozygous for the 5-repeat allele PER35/5

[24]. EEG slow wave activity in NREM sleep, theta

and alpha activity during wakefulness, and REM sleep

were all increased in PER35/5 compared to PER34/4 indi-
viduals [25]. In another study of older subjects (55–75

years), PER35/5 carriers also showed increased EEG fron-

tal delta activity and decreased EEG frontal sigma activ-

ity during NREM sleep compared with PER34/4 subjects
[26]. Furthermore, sleep deprived PER35/5 individuals

had elevated sleep homeostatic pressure as measured,

physiologically, by EEG slow-wave energy, and showed

a greater detrimental impact of sleep deprivation

[24,25,27,28]. Thus, different genetic alterations of the

PER3 gene give rise to different effects on human sleep.

Recent studies also suggested a possible role for PER3 in

mood regulation, which provides the first direct molecular

genetic evidence for the long suspected connection

between sleep and mood [9�,29–31]. It will be of interest

to probe whether (and how) PER3 serves as a nexus for

sleep and mood regulation.

The neuromodulator adenosine is known to contribute to

sleep homeostasis [32]. A genetic variant of adenosine
deaminase (ADA) D8N, which is associated with the

reduced metabolism of adenosine to inosine, specifically

enhances deep sleep and SWA during sleep [33,34]. A

larger population-based study corroborated some findings

that variant carriers have a deeper sleep and are under

higher sleep pressure although other details were not

identical [35]. In addition, a distinct polymorphism of

adenosine A2A receptor (ADORA2A), which occurred in the

30 UTR region and changed the expression level of this

gene, affected EEG during sleep and wakefulness in a

non-state-specific manner [33].

Another example is the brain-derived neurotrophic factor
(BDNF) gene. A V66M mutation in the encoded protein is

linked to impairment of dendritic trafficking and synaptic

localization of BDNF and a reduced activity-dependent

BDNF secretion [36]. Mutation carriers showed reduced

SWS [37] and decreased spectral power in specific bands

at different stages of NREM sleep [38]. Thus, BDNF is

likely to modulate the electrical activity of the brain,

predicting the inter-individual variation of sleep EEG

parameters.

Perspectives on human genetics in sleep
studies
We have focused here on normal variants of human

circadian timing and total sleep requirement. These
www.sciencedirect.com
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are not diseases per se. Some individuals find it trouble-

some to wake up in the early morning hours while others

feel virtuous for getting up early. Separate from this, there

are many primary sleep disorders like restless leg syn-

drome, obstructive sleep apnea or narcolepsy. In addition,

sleep problems also are seen in many disorders that lead

to abnormal brain development or degeneration of normal

brain. For example, autism spectrum disorder (ASD) is a

neurodevelopmental disorder with evidence for strong

genetic susceptibility and a high prevalence of insomnia

[39]. Defects in synaptic pruning during the development

of neural circuits disrupt the excitatory/inhibitory balance

of synapses, which may underlie the atypical neurodeve-

lopment in ASD [40]. Thus, it is intriguing to consider

whether sleep problems exacerbate atypical synaptic

pruning or if severe neurodevelopmental problem

leads to sleep disorders in ASD. Another example is

Alzheimer’s disease (AD). Most patients with AD have

severe sleep problems but recent evidence suggests that

sleep disruption is a major contributing factor to AD. Ab
plaques, the hallmark of AD, are formed by Ab accumu-

lation. The level of Ab in brain interstitial space is high

while awake and lowest upon awakening from a night of

sleep [41,42]. Importantly, sleep disruption abolishes this

Ab reduction, suggesting a neurotoxin clearance function

for sleep [43]. These examples highlight the importance

of understanding the regulatory mechanisms of sleep and

sleep functions. Although much remains to be learned

about sleep abnormalities in people with brain disorders,

it is likely the case that in general, brain dysfunction leads

to alterations in sleep. At the same time, chronic sleep

deprivation or desynchrony of the clock from the solar day

contributes to development or progression of brain

disorders.

One issue for many sleep studies conducted in humans is

the use of self-reported phenotypes like sleep duration,

timing, etc. Several environmental factors such as drugs,

seasonal cycle, modern lifestyle and even lunar cycle may

affect human sleep [44–46]. Such factors are not easily

controlled and can confound phenotyping. Usually,

genetic association studies only provide suggestions that

the disease could result from an interaction of environ-

mental factors on a susceptible genetic background.

Thus, introducing the genetic mutations into labora-

tory-housed animals is a powerful approach to test the

contribution of a gene to a phenotype. Moreover, in

contrast to many well established model organisms, the

human population is genetically more heterogeneous,

which adds another layer of complexity. In recent years,

we and others have mainly focused on single-gene phe-

notypes, especially those where mutations have dominant

effects. However, mutant alleles that segregate as auto-

somal dominant traits must have a large enough effect to

arise on a heterogeneous genetic background. These

families with FASP and FNSS are in the ‘tails’ of the

normal distributions in general human populations.
www.sciencedirect.com 
We speculate that most of the variation in the middle

of the normal distribution for human sleep phenotypes

results from a combination of many genetic variants of

small effect that, together, contribute to each individual’s

unique phenotype. More extensive sequencing efforts for

exomes or whole genomes in large populations of indi-

viduals representing the spectrum of human phenotypes

will be necessary to address this hypothesis.

Conclusion
Here we have summarized published genetic mutations

discovered to affect the timing, duration and EEG fea-

tures of human sleep behaviors. Today, the sleep field has

expanded its focus from mammalian model organisms to

Drosophila, zebrafish, and even worms [47]. Genetic tools

in these systems have allowed researchers to undertake

large-scale screens to identify new genes for regulation of

sleep-like behavior. Such progress has further provided

opportunities to probe sleep circuitry and sleep function

on a molecular level. Nonetheless, due to the large

variation of sleep characteristics among different species

and the unique features of human sleep, human genetics

will continue to be an indispensable and invaluable

source of insight providing critical information on this

mysterious phenomenon—sleep.
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