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Abstract. Wildfires are becoming more frequent in parts of the globe, but predicting where
and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous
United States, we integrate a 30-yr wildfire record with meteorological and housing data in
spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We com-
pared different distributions for the number and sizes of large fires to generate a posterior pre-
dictive distribution based on finite sample maxima for extreme events (the largest fires over
bounded spatiotemporal domains). A zero-inflated negative binomial model for fire counts
and a lognormal model for burned areas provided the best performance. This model attains
99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year
withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities.
Housing density has a hump-shaped relationship with fire occurrence, with more fires occur-
ring at intermediate housing densities. Statistically, these drivers affect the chance of an
extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency,
which influences sampling from the tails of fire size distributions. We conclude that recent
extremes should not be surprising, and that the contiguous United States may be on the verge
of even larger wildfire extremes.
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INTRODUCTION

Wildfire frequency and burned area has increased over
the past couple decades in the United States (Dennison
et al. 2014, Westerling 2016), and elsewhere (Krawchuk
et al. 2009, Pechony and Shindell 2010). In addition to
the ecological and smoke impacts associated with
increased burned area, there has been an increasing inter-
est in extreme wildfires (Williams 2013) given their impact
on human lives and infrastructure (Kochi et al. 2010,
Diaz 2012). While case studies of particular extremes pro-
vide insight into what caused past events (Peterson et al.
2015, Nauslar et al. 2018), predictions of future extremes
at a national level could inform disaster related resource
allocation. The term “extreme” has multiple meanings
with respect to wildfires (Tedim et al. 2018), and, in this
paper, we consider an extreme wildfire to be a fire with
the largest burned area over a bounded spatiotemporal
domain, i.e., the block maximum within a spatial region
and a temporal interval (Coles et al. 2001). For example,

the block maxima for wildfires across the contiguous
United States can be defined on a yearly basis (Fig. 1).
Factors driving wildfire extremes vary in space and

time (Barbero et al. 2014), but it is unclear how best to
account for this in a predictive model. Previous efforts
have used year- or recognition-specific models, aggregat-
ing over space or time (Bermudez et al. 2009), tempo-
rally or spatially explicit models (Mendes et al. 2010),
and spatial models with year as a covariate (D�ıaz-Avalos
et al. 2016). Recently, rich spatiotemporal models have
been described with linear, spatially constant, covariate
effects (Serra et al. 2014a, b). However, linear, spatially
constant effects are suboptimal over large spatial
domains with nonlinear drivers (Fosberg 1978, Goodrick
2002, Preisler et al. 2004; Preisler and Westerling 2007,
Balshi et al. 2009, Krawchuk et al. 2009, Pechony and
Shindell 2009, Vilar et al. 2010, Woolford et al. 2011,
2014). For example, global wildfire probability shows a
hump-shaped relationship with temperature and mois-
ture (Moritz et al. 2012). Interactions among drivers
also impose nonlinearity, e.g., in hot and dry climates
fires are fuel limited (McLaughlin and Bowers 1982),
but in cold and wet climates fires are energy limited
(Krawchuk and Moritz 2011).
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Prediction is also complicated by uncertainty in which
distribution(s) to use to assign probabilities to extreme
events. The generalized Pareto distribution (GPD) has
frequently been used (Bermudez et al. 2009, Jiang and
Zhuang 2011), but the GPD requires a threshold to
delineate extreme events (Davison and Smith 1990,
Coles 2014). The utility and validity of a threshold for
extremes in a heterogeneous region is debatable (Tedim
et al. 2018). Recently proposed metastatistical extreme
value (MEV) approaches do not require such a thresh-
old, and are based on the statistical distribution of finite
sample maxima, i.e., the probability distribution of the
maximum value for a finite number of events (Marani
and Ignaccolo 2015, Zorzetto et al. 2016). In the MEV
framework, the occurrence and size of future events, and
the parameters of their distributions are treated as ran-
dom variables which together imply a distribution for
extremes. This approach has roots in compound distri-
butions (Dubey 1970, Wiitala 1999), doubly stochastic
processes (Cox and Isham 1980), superstatistics (Beck
and Cohen 2003), and the Bayesian posterior predictive
distribution (Gelman et al. 2013). The link to Bayesian
inference is particularly useful, as it provides an easy
way to propagate uncertainty forward to to predictions
of extremes (Coles et al. 2003).
Here, we extend the finite sample maximum approach

to account for non-linear, spatially varying covariate
effects with the goal of predicting extreme wildfire events
from a statistical perspective across the contiguous Uni-
ted States. Specifically, we aim to predict occurrence
(where and when), and magnitude (burned area) of large
wildfires at a monthly time scale and regional spatial
scale across the contiguous United States.

METHODS

Data description

We acquired wildfire event data for the contiguous
United States from the Monitoring Trends in Burn

Severity (MTBS) program (Eidenshink et al. 2007),
which includes spatiotemporal information on the
occurrence of wildfires in the United States from 1984 to
2016. The MTBS data contain fires >1,000 acres
(~405 ha) in the western U.S. and >500 acres (~202 ha)
in the eastern U.S. For consistency across the United
States, we discarded all records in the MTBS data
<1,000 acres, retaining 10,736 fire events (Fig. 2A).
Each event in the MTBS data has a discovery date, spa-
tial point location, and final size.
To explain fire size and occurrence, we used a combi-

nation of meteorological variables including humidity,
air temperature, precipitation, and wind speed. These
variables were selected on the basis of previous work,
and also with an aim to drive a predictive model with
interpretable meteorological quantities. Meteorological
layers were acquired from the gridMET data (Abat-
zoglou 2013) that blends monthly high-spatial resolution
(~4-km) climate data from the Parameter-elevation Rela-
tionships on Independent Slopes Model (Daly et al.
2008) with high-temporal resolution (hourly) data from
the National Land Data Assimilation System
(NLDAS2) using climatologically aided interpolation.
The resultant products are a suite of surface meteorolog-
ical variables summarized at the daily time step and at a
4-km pixel resolution. Daily total precipitation, mini-
mum relative humidity, mean wind speed, and maximum
air temperature were averaged at a monthly time step for
each of 84 Environmental Protection Agency level 3
(L3) ecoregions for each month from 1984 to 2016
(Omernik 1987, Omernik and Griffith 2014). We also
computed cumulative monthly precipitation over the
previous 12 months for each ecoregion-month combina-
tion. We chose to segment the United States with level 3
ecoregions as a compromise between the more numerous
(computationally demanding) level 4 ecoregions, and the
coarser level 2 ecoregions.
We used publicly available housing density estimates

that were generated based on the U.S. 2000 decennial
census as explanatory variables that may relate to
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FIG. 1. Sizes of wildfires over 405 ha in the contiguous United States, from the Monitoring Trends in Burn Severity multia-
gency program. Each point represents a fire event, and the largest fires for each year (the block maxima) are shown as solid black
points.
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human ignition pressure (Radeloff et al. 2010). These
are provided at decadal time steps, and spatially at the
level of census partial block groups. To generate approxi-
mate measures of housing density at monthly time inter-
vals, we used a simple linear interpolation over time for
each block group, then aggregated spatially across block
groups to compute mean housing density for each ecore-
gion in each month.

Model development

We built two types of models: one describing the
occurrence of fires within each L3 ecoregion over time
(i.e., the total number of fires occurring in each ecore-
gion for each month from 1984 to 2016), and another
describing the size of each wildfire in each ecoregion and
month. For occurrence models, the response variable
was a count (number of fires), and for burned area mod-
els, the response was a continuous positive quantity (size
of each fire event). We used the period from 1984 to
2009 for training, witholding the period from 2010 to
2016 to evaluate predictive performance.

Fire occurrence.—We constructed four models for fire
occurrence and compared their predictive performance
based on test-set log likelihood and posterior predictive

checks for the proportion of zeros, maximum count, and
total count. The models differed in the distributions
used in the likelihood, representing counts as a Poisson,
negative binomial, zero-inflated Poisson, or zero-inflated
negative binomial random variable. The Poisson distri-
bution is a common choice for counts, and the negative
binomial distribution provides an alternative that can
account for overdispersion. The zero-inflated versions of
these distributions include a component to represent
extra zeros, which might be expected to work well if
there are independent processes that determine whether
nonzero counts are possible (Lambert 1992).
For spatial units (ecoregions) s ¼ 1; . . .;S and time

steps (months) t ¼ 1; . . .;T , each model defines a proba-
bility mass function for ns;t: the number of fires over
405 ha in ecoregion s and time step t. For each of the
four count distributions under consideration, location
parameters ls;t and (for zero-inflated models) structural
zero inflation parameters ps;t were allowed to vary in
space and time. We used a log link function to ensure
that ls;t [ 0, and a logit link function to ensure that
ps;t 2 ð0; 1Þ. Concatenating over spatial and temporal
units, so that l ¼ ðls¼1;t¼1; ls¼2;t¼1; . . .; ls¼S;t¼1;
ls¼S;t¼2; . . .; ls¼S;t¼T Þ, and similarly for p, we modeled
location and (when applicable) zero inflation parameters
as
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FIG. 2. (A) Large wildfire ignition locations are shown as points across the study region. Colors in panels (B), (C), and (D)
show level 1, 2, and 3 ecoregions respectively.
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logðlÞ ¼ aðlÞ þ XbðlÞ þ /ðlÞ þ logðaÞ

logitðpÞ ¼ aðpÞ þ XbðpÞ þ /ðpÞ

where aðlÞ and aðpÞ are scalar intercept parameters, X is
a known ðS � TÞ � p design matrix, where p is the num-
ber of input features, bðlÞ and bðpÞ are column vector
parameters of length p, /ðlÞ and /ðpÞ are column vector
parameters of length S � T containing spatiotemporal
adjustments, and a is a known offset vector of areas for
spatial unit s ¼ 1; 2; . . .;S, repeated T times.

Burned area.—We developed five candidate models for
fire size, each of which specified a different distribution
for the size (burned area) of individual fire events (Reed
and McKelvey 2002, Hernandez et al. 2015), including
the generalized Pareto (Hosking andWallis 1987), tapered
Pareto (Schoenberg et al. 2003), lognormal, gamma, and
Weibull distributions. We evaluated each model in terms
of test set log likelihood, and posterior predictive checks
for fire size extremes. We defined the response yi as the
number of hectares burned over 405 for the ith fire event,
which occurred in spatial unit si and time step ti.
Because each burned area distribution has a different

parameterization, we included covariate effects in a dis-
tribution-specific way. For the generalized Pareto distri-
bution (GPD), we assumed a positive shape parameter,
leading to a Lomax distribution for exceedances (Ber-
mudez et al. 2009). The GPD and Lomax shape parame-
ters are related by jðGPDÞ ¼ 1=jðLÞ, and the GPD scale
parameter is related to the Lomax scale and shape
parameters by rðGPDÞ ¼ rðLÞ=jðLÞ. We introduced
covariate dependence via the Lomax scale parameter
using a log link. For event i, logðrðLÞ

i Þ ¼ aþ X ðsi ;tiÞ
bþ /si ;ti , where a is an intercept parameter, b is a length
p vector of coefficients, X ðsi ;tiÞ is a row vector from X,
and /si ;ti is a spatiotemporal adjustment for si and ti.
For the tapered Pareto model, we modeled the shape
parameter as logðjiÞ ¼ aþ X ðsi ;tiÞbþ /si ;ti. The lognor-
mal model included covariate dependence via the loca-
tion parameter: li ¼ aþ Xðsi ;tiÞbþ /si ;ti . The gamma
model used a log link for the expected value:
logðEðyiÞÞ ¼ aþ Xðsi ;tiÞbþ /si ;ti . Last, we modeled the

Weibull scale parameter as logðriÞ ¼ aþ Xðsi ;tiÞbþ /si ;ti.
More detail on the parameterization of each burned area
distribution is provided in Appendix S2.

Accounting for nonlinear forcing.—The design matrix X
was constructed to allow for spatially varying nonlinear
effects of housing density and meteorological drivers.
We used B-splines to account for nonlinearity (Fig. 3)
and allowed the coefficients for each basis vector to vary
spatially (Wood 2017). First, we constructed univariate
B-splines for log housing density, wind speed, same
month precipitation, previous 12 month precipitation,
air temperature, and humidity, with five degrees of free-
dom (including an intercept) for each variable. This step
generated 30 basis vectors (five for each of six variables).
To allow for spatial variation in these nonlinear

effects, we added interaction effects between each of the
basis vectors and ecoregions (Brezger and Lang 2006,
Kneib et al. 2009). The hierarchical nesting of ecoregion
designations (Fig. 2B–D) lends itself to such interac-
tions. Conceptually, coefficients in a level 3 ecoregion
may be related to coefficients in the level 2 ecoregion
containing the level 3 region, the level 1 ecoregion con-
taining the level 2 region, and a global effect. The coeffi-
cient associated with a basis vector for any level 3
ecoregion is treated as a sum of a global effect, a level 1
ecoregion adjustment, a level 2 ecoregion adjustment,
and a level 3 ecogregion adjustment. Thus, for every uni-
variate basis vector, we included interaction effects with
ecoregion at each of the three ecoregion levels. This
allows borrowing of information across space (level 3
ecoregions in a level 2 ecoregion are often adjacent), and
for regions that are ecologically similar. We also included
adjustments on the global intercept for each level 1, 2,
and 3 ecoregion to account for spatial variation that is
unrelated to climate or housing density. This specifica-
tion induces sparsity in X that we exploit to increase the
efficiency of computing l and p. In total, X has
p = 3,472 columns, with 97% zero entries.

Prior specification

To avoid overfitting, we used a regularized horseshoe
prior on the coefficients associated with the spatially
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FIG. 3. Conceptual Figure to illustrate the use of B-splines to construct nonlinear functions. In the left panel, five B-spline vec-
tors are shown, which map values of an input variable (on the x-axis) to a value on the y-axis. The middle panel shows the same B-
spline vectors, but weighted (multiplied) by real numbers, with the weights illustrated as annotations. These weighted B-spline vec-
tors are summed to produce the values of a nonlinear function (right panel).
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varying nonlinear effects described above (Piironen et al.
2017). This prior places high probability close to zero,
while retaining heavy enough tails that nonzero coeffi-
cients are not shrunk too strongly toward zero. This is
consistent with our prior expectation that most of the
coefficients associated with the columns in X were close
to zero. For the zero inflated count models, we used a
multivariate horseshoe to allow information sharing
between the zero inflated and distribution specific loca-
tion parameters (Peltola et al. 2014). For the remaining
count models and all burned area models, this was a uni-
variate horseshoe prior. Spatiotemporal random effects
were constructed using a temporally autoregressive, spa-
tially intrinsically autoregressive formulation (Besag and
Kooperberg 1995, Banerjee et al. 2014). Details of these
priors and the resulting joint distributions are provided
in Appendices S1 and S2, respectively.

Posterior predictive inference for finite sample maxima

We used the posterior predictive distribution to check
each model and make inference on extremes. The poste-
rior predictive distribution provides a distribution for
replications of observed data (yrep), and predictions of
future data (Gelman et al. 2013). Conceptually, for a
good model, yrep should be similar to observed training
data y, and future predictions should be similar to future
data. Distributions over both quantities can be obtained
by conditioning on y and marginalizing over model
parameters h, e.g., ½yrepjy� ¼ R ½yrepjh�½hjy�dh.
Posterior predictive distributions facilitate model

checks that compare predicted and observed test statis-
tics (Gelman et al. 1996). To evaluate whether models
captured tail behavior, we compared empirical maxima
(TðyÞ ¼ maxðyÞ) to the predicted distribution of max-
ima TðyrepÞ. We also include predictive checks for the
proportion of zero counts, and totals for count and
burned area models. Posterior predictive inference for
finite sample maxima is similar in spirit to the MEV
approach. Both obtain a distribution over maxima by
marginalizing over unknowns including the number of
events, size of each event, and parameters of their distri-
butions (Marani and Ignaccolo 2015). However, a Baye-
sian approach explicitly conditions on the observed data
to obtain a posterior distribution of parameters.
Seeing this connection is useful in the context of

including priors and propagating uncertainty to derived
parameters. For any ecoregion s and timestep t, if we
define a particular maximum fire size conditional on a
fire having occurred as zs;t, and let Zs;t represent the ran-
dom variable of maximum fire size, then the cumulative
distribution function (CDF) for zs;t is given by
PrðZs;t � zs;tÞ ¼ Fðyðs;tÞÞns;t , where Fðyðs;tÞÞ is the CDF of
fire size, and ns;t is the number of wildfire events. Thus,
PrðZs;t � zs;tÞ is the distribution function for the finite
sample maximum. The CDF for zs;t can be inverted to
produce a quantile function that permits computation of
prediction intervals for maximum fire sizes, conditional

on fires having occurred. Given a collection of posterior
draws from a burned area model that parameterize
Fðyðs;tÞÞ, and a collection of posterior draws of nreps;t from
the posterior predictive distribution of a wildfire count
model, a posterior distribution for the CDF or quantile
function of maximum fire size can be generated which
combines the two models to facilitate inference on the
distribution of extremes.

Parameter estimation

We used a combination of variational approximations
and Hamiltonian Monte Carlo methods to sample from
the posterior distributions of count and burned area mod-
els. A variational approximation (Kucukelbir et al. 2015)
was used for count models to quickly identify a preferred
model. The best performing count model and all burned
area models were fit using the No-U-Turn Sampler (Hoff-
man and Gelman 2014). Models were fit in the Stan prob-
abilistic programming language using the rstan
package (Carpenter et al. 2016, Stan Development Team
2018). We ran four chains for 1,000 iterations each, dis-
carding the first 500 iterations as warmup. Convergence
was assessed using visual inspection of trace plots, with
potential scale reduction statistic values R̂� 1:1 as an indi-
cator convergence failure (Brooks and Gelman 1998).

Implementation

All data processing, model fitting, and visualization
were implemented with open source software, primarily
in the R programming language (R Core Team 2017),
and wrapped in a reproducible workflow via GNU Make
and Docker (Stallman et al. 2004, Boettiger 2015). Data
cleaning and transformation required the R packages
assertthat (Wickham 2017a), lubridate (Grolemund and
Wickham 2011), Matrix (Bates and Maechler 2018),
pbapply (Solymos and Zawadzki 2018), splines (R Core
Team 2018), tidyverse (Wickham 2017b), and zoo (Zeileis
and Grothendieck 2005). Spatial datawere processed with
raster (Hijmans 2017), rgdal (Bivand et al. 2018), sf
(Pebesma 2018), and spdep (Bivand and Piras 2015).
Finally, we used cowplot (Wilke 2017), ggrepel (Slowi-
kowski 2018), ggthemes (Arnold 2018), patchwork (Ped-
ersen 2017), and RColorBrewer (Neuwirth 2014) for
visualization. The manuscript was written in R Mark-
down (Allaire et al. 2018). Analyses were run on an Ama-
zon Web Services m5.2xlarge EC2 instance with four
physical cores and 32 GB of RAM, and the whole work-
flow requires ~72 h. All code to reproduce the analysis is
available online (seeData Availability; Joseph 2019).

RESULTS

Wildfire occurrence

The zero-inflated negative binomial distribution per-
formed best on the held-out test set (Table 1), and was
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able to recover the proportion of zeros, count maxima,
and count totals in posterior predictive checks for both
the training and test data (Fig. 4). All of the other count
models that we considered exhibited lack of fit to at least
one of these statistics in posterior predictive checks.
Hereafter, we report results from the zero-inflated nega-
tive binomial model.
Minimum relative humidity and maximum air temper-

ature had the strongest effects on both the zero-inflation

component and the expected value of the negative bino-
mial component (Fig. 5, posterior median for q, 0.665,
95% credible interval [CI]: 0.319–0.861). The model
uncovered unique effects of meteorological variables at
level 1, 2, and 3 ecoregions (Fig. 6). For example, a posi-
tive interaction effect between the second air tempera-
ture basis vector and the L1 Great Plains ecoregions
indicates that the expected number of wildfires in plains
ecoregions with cold conditions is high relative to other
ecoregions. The Ozark/Ouachita-Appalachian forest and
Ozark Highlands were also identified as having region-
specific temperature effects (Fig. 6). Twelve month total
precipitation also had region specific effects in the Mis-
sissippi Alluvial and Southeast Coastal Plains ecoregion,
where it was associated with lower expected fire counts
(Fig. 6). In contrast, increasing cumulative twelve
month precipitation was associated with higher counts
in desert ecoregions (Fig. 5). Housing density showed a
unimodal relationship to expected count (Fig. 5), with
lower expected counts in sparsely populated ecoregions,

TABLE 1. Performance of count models on the test set in
descending order.

Model Holdout log likelihood

ZI negative binomial �3,671 (70)
ZI Poisson �4,093 (77)
Negative binomial �4,298 (114)
Poisson �4,572 (139)

Note: Posterior means are provided with standard deviations
in parentheses. ZI, Zero-inflated.
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FIG. 4. Count predictive checks. Row one shows observed count frequencies as black points and predicted frequencies as lines.
Rows two, three, and four show predicted proportions of zeros, maxima, and sums (respectively) in the training and test data, with
empirical values as dashed lines. Rows two through four facilitate comparison of performance on training and test sets. Ideally,
model predictions cluster around the dashed lines for both the training (x-axis direction) and test (y-axis direction) sets, leading to a
tight cluster of points at the intersection of the dashed lines. ZI, zero inflation; max: test is the maximum value in the test data, sum:
test is the sum of values in the test data, Pr(0): test is the probability of zero in the test data, while max: train, sum: train, and Pr(0):
train represent the same quantities for the training data.
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and higher expected counts with moderately populated
ecoregions.
Posterior 95% credible interval coverage for the num-

ber of fires over 405 ha in the test set was 98.8%. The

lowest test set interval coverage was 89.3%, in the Cross
Timbers L3 ecoregion. When observed counts fell out-
side the 95% prediction interval, counts were larger than
predicted 100% of the time. The largest difference
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for each level 3 ecoregion, colored by level 1 ecoregion. Lines are posterior medians. Results are similar for the zero-inflation com-
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between observed numbers and predicted 97.5% poste-
rior quantiles (the upper limit for the 95% credible inter-
val) occurred for the Columbia Mountains/Northern
Rockies L3 ecoregion in August 2015, when 36 fires over
405 ha occurred and at most 22 were predicted. For
nearly half of the level 3 ecoregions (43 of 85), account-
ing for 39.7% of the land area of the contiguous United

States, the zero-inflated negative binomial model had
100% test set prediction interval coverage.

Wildfire burned areas

The lognormal distribution performed best on the test
set (Table 2), and captured tail-behavior better than
other burned area distributions (Fig. 7). The GPD
model was too heavy-tailed to adequately capture the
pattern in the empirical data, predicting fires far larger
than those observed in the training and test sets (Fig. 7).
The tapered Pareto distribution was too light-tailed
(Fig. 7). The gamma and Weibull models performed
very poorly overall on the test set (Table 2), apparently
due to a lack of congruence between the shapes of these
distributions and the actual burned area distribution.
Despite a poor fit to the bulk of the wildfire burned area
distribution, both performed adequately in the upper
tails (Fig. 7). Hereafter we present results for the lognor-
mal model, which had the highest test set log likelihood

TABLE 2. Performance of burned area models on the test set in
descending order.

Model Holdout log likelihood

Lognormal �26,341 (43)
Generalized Pareto �26,377 (45)
Tapered Pareto �26,386 (49)
Weibull �27,592 (236)
Gamma �30,675 (993)

Note: Posterior means are provided with standard deviations
in parentheses.
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FIG. 7. Predictive checks for burned area models. The top row shows predicted density in color and empirical density for the
training set in black, which reveals overall lack of fit for the gamma and Weibull models. Row two shows the complementary cumu-
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points, which shows that the Generalized Pareto distribution predicts values that are too extreme. The third and fourth rows show
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colored points. These final two rows facilitate checks for summary statistics on both the training and test set, with the ideal model
generating predictions (colored points) clustered close to where the dashed lines intersect.
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and captured tail behavior of the empirical fire size dis-
tribution.
Relative humidity was the primary driver of expected

burned area for a fire event (Fig. 8A). The first basis
vector for mean daily minimum relative humidity was
the only coefficient with a 95% credible interval that did
not include zero (posterior median: 1.68, 95% CI 0.8–
2.29). This nonlinear effect can be observed in Fig. 8B
as an increase in the expected burned area below 20%
mean daily minimum humidity. This leads to a seasonal-
ity gradient among ecoregions of expected fire sizes, with
little or no seasonal signal in typically humid ecoregions
such as Marine West Coast Forests of the Pacific North-
west, and seasonal oscillations in ecoregions that have
periodic fluctuations between dry and humid conditions
such as the Temperate Sierras (Fig. 8C). There was not
strong evidence that meteorological variables had spa-
tially variable effects on expected wildfire burned area.
Overall, 95% posterior predictive interval coverage in

the test set for burned areas was 93%. The lowest test set
coverage was 0%, for the Eastern Great Lakes Lowlands
L3 ecoregion, followed by 50%, for the Central Califor-
nia Valley L3 ecoregion, though these ecoregions had
just one and two wildfire events in the test set. When
observed fire sizes fell outside the 95% prediction inter-
val, 24.9% of wildfires were smaller than predicted, and
75.1% of wildfires were larger than predicted. The lar-
gest discrepancy between the actual size of a wildfire and

the predicted 97.5% posterior quantile was observed
with the Wallow Fire in 2011, which burned 228,107 ha,
but the predicted upper limit for size was 20,756. We
investigate this discrepancy further in the case study
below. The lognormal burned area model achieved 100%
interval coverage in 24 of 67 ecoregions that had wildfire
events in the test set, accounting for 26% of the land area
of the contiguous United States.

Inference on extremes

By combining the output of the event count and
burned area models, we derived posterior prediction
intervals for the size of the largest fire in a month for
each region (the “burned area maximum”), integrating
over uncertainty in the number of fires, as well as the log-
normal mean and standard deviation for burned area.
We evaluated the posterior distribution for the quantile
function of the finite sample maximum of a lognormal
distribution (expðlþ r

ffiffiffi
2

p
erf�1ð2P1=n � 1ÞÞ, where n is

the number of wildfire events, erf�1 is the inverse error
function, and P is a probability) to generate prediction
intervals for maximum fire sizes by month and ecore-
gion, conditional on one or more fires having occurred.
In the holdout period from 2010 to 2016, a 99% predic-
tion interval achieved 77.4% interval coverage, with
14.8% of the burned area maxima (140 fire events) being
larger than predicted (Fig. 9). As an additional check,
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we used the posterior distribution of the model to pre-
dict the total area burned by wildfires in the test set. The
model predicted the total area burned over the entire
contiguous United States in test period from 2010 to
2016 to be 30,597,494 (95% CI 20,423,596–49,741,080)
and the actual value was 30,440,173.
While fires over a million acres (~404,686 ha) in size

have happened historically in the contiguous United
States (Pernin 1971), no such fires were represented in in
the training or test sets. If we extrapolate, the probability
of at least one fire this large in the period from 2010 to
2016 was estimated to be between 0.191 and 0.651 (95%
CI), with a posterior median of 0.348. The highest prob-
ability for such an event was 0.014 (posterior median),
with a 95% CI of (0, 0.237) seen for the Southwestern
Tablelands ecoregion in June 2011. The second highest
probability was 0.004 (posterior median), with a 95% CI
of (0, 0.056) seen for the Arizona/New Mexico Moun-
tains ecoregion in June 2011. Aggregating spatially, we
estimated monthly probabilities of a million acre
(1 acre = 0.40 ha) wildfire. These probabilities show sea-
sonal signals corresponding to peak fire seasons, with a
shift toward higher and broader peaks beginning in the
21st century (Fig. 10).

Error analysis case study: the 2011 Wallow Fire

To better understand how well the model could or
could not anticipate notable extreme events, and why, we
used the largest fire in the test set as a case study. The
Wallow Fire was accidentally ignited on 29 May 2011 by
two campers in the L3 Arizona/New Mexico Mountains

ecoregion. It burned through the month of June and into
early July. The model underpredicted the total burned
area of the Wallow Fire. Integrating over uncertainty in
the predicted number of fires and expected fire size, the
99% credible interval for the maximum fire size for May
2011 was 730–107,419 ha, but the Wallow Fire is
recorded as 228,103 ha.
We evaluated the contribution of each covariate to the

linear predictor functions of the three model compo-
nents (lognormal mean for burned areas, negative bino-
mial mean for counts, and the logit probability of the
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zero-inflation component) to understand why these pre-
dictions differed. We defined the contribution of a vari-
able as the dot product of the elements in the design
matrix X corresponding to a particular driver variable
(e.g., humidity), and the estimated coefficients in b corre-
sponding to that variable. This provides a quantitative
measure of how each input variable contributes to the
linear predictor for an ecoregion, and incorporates the
overall, level 1, level 2, and level 3 ecoregion adjustments
on these effects. Humidity is the primary driver of varia-
tion in the model’s predictions overall, and June 2011,
the month after ignition, favored more large fires, with
drier, hotter conditions (Fig. 11). The 99% credible
interval for June 2011 was 4,258–428,765 ha, which con-
tains the true value. Had the Wallow Fire ignited two
days later, the true final size would have been contained
in the prediction interval. Evidently, conditions in May
that drove (under)predictions of maximum burned area
were not representative of the conditions over most of
the Wallow Fire’s duration.
Temporal mismatch aside, meteorological conditions

local to the Wallow Fire differed from the monthly
regional means (Fig. 12). In particular, wind speeds in
the Wallow Fire vicinity exceeded the regional
monthly mean values on the date of ignition and in
the weeks following ignition. Over the majority of the
duration of the Wallow Fire (29 May to 8 July), local
daily conditions were drier and hotter on average than
regional mean monthly conditions in May, which were
used to drive the statistical model. This local variabil-
ity is not represented in the regional models devel-
oped here. The failure of the model to correctly

predict the size of the Wallow fire suggests potential
avenues for improvement.

DISCUSSION

Extreme wildfires are often devastating, but perhaps
they need not be surprising. By allowing the non-linear
effects of weather and housing density to vary across
space, this model achieves good predictive accuracy for
fire extremes at a regional scale over a six year prediction
window. This model predicts that extremely large wild-
fires, perhaps even over one million acres (404,686 ha),
have a non-negligible probability of occurrence in the
contiguous United States. Such predictions can support
regional wildfire management and probabilistic hazard
assessment.
Driving a model with meteorological features raises

challenges related to predictive uncertainty and covari-
ate shift: a change in the underlying distribution of forc-
ing variables, potentially outside of the historic range.
Ideally, this uncertainty would be propagated forward in
a predictive model, possibly through stacking of predic-
tive distributions that are generated from multiple mod-
els of future climate dynamics (Yao et al. 2017). But,
even if one had a perfect forecast, novel conditions pre-
sent a challenge for predictive modeling (Quionero-Can-
dela et al. 2009). For example, the High Plains ecoregion
had its highest mean monthly precipitation, lowest
12 month running precipitation, driest, hottest, and
windiest conditions in the test set period. Extrapolating
beyond the range of training inputs is generally difficult,
but the hierarchical spatial effect specification used here
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allows partial pooling among climatically similar ecore-
gions that can inform such predictions, unlike models fit
separately to disjoint spatial regions.
Similar issues could arise when making predictions for

observed but rare meteorological conditions. For exam-
ple, mean daily minimum humidity values over 60%
accounted for just 3.76% of the ecoregion-months in the
training data, and 0 fires occurred in such months. As a
consequence, there is relatively little data that can be
used to inform the model for such conditions, and the
prior distribution which shrinks coefficients toward zero
may dominate the likelihood in the posterior distribu-
tion. In this case, the posterior distribution for the last
basis coefficient for the partial effect of humidity is likely
to be close to zero. This could explain why the estimated
partial effect of humidity on the expected counts was less
negative at the upper end of the observed humidity
range, although previous work has found similarly non-
linear partial effects (Preisler et al. 2004). The count
model performed extremely well in this range, with
100% interval coverage for the 299 ecoregion-months
with mean daily minimum humidity values >60% in the
withheld test data. The model nearly always predicted
zero counts with high confidence when conditions were
this humid: 298 of 299 predictions made for such

conditions were 95% credible intervals of (0, 0). The
remaining prediction had a posterior median of zero,
along with a 95% credible interval from 0 to 1. Mono-
tonicity constraints could be incorporated into these
models via monotonic spline bases (Ramsay et al. 1988),
or an ordered prior distribution for basis coefficients
(Brezger and Steiner 2008). In this case, the count model
performs well under humid conditions without mono-
tonicity constraints, and there seems to be little room for
performance improvements that might result from such
constraints.
Human-caused climate change is expected to increase

fire activity in the western United States (Rogers et al.
2011, Westerling et al. 2011, Moritz et al. 2012, Abat-
zoglou and Williams 2016) and elsewhere (Flannigan
et al. 2009), but the nonlinear effect of housing density
could provide additional insight into future expectations.
While housing density is increasing over time in most
U.S. ecoregions, some of these ecoregions are in the
range of values in which this increases the expected num-
ber of large fires, while others are so populated that fur-
ther increases would reduce the chance of a large fire.
The hump-shaped effect of human density on the
expected number of large fires is likely driven by ignition
pressure and fire suppression (Balch et al. 2017). As
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human density increases from zero, ignition pressure
increases, but eventually landscapes become so urban-
ized, fragmented, and/or fire-suppressed that wildfire
risk decreases (Syphard et al. 2007, 2017, Bowman et al.
2011, Bistinas et al. 2013, Knorr et al. 2013, Mcwethy
et al. 2013, Nagy et al. 2018). At intermediate density,
wildfire regimes respond to human ignition and altered
fuel distributions (Guyette et al. 2002), but these
responses depend on environmental context and charac-
teristics of the human population (Marlon et al. 2008,
Li et al. 2009). This model indicates that the combina-
tion of moderate to high human density and dry condi-
tions would nonlinearly increase the chance of an
extreme fire event. Both human density and dryness are
expected to increase in the future across large swaths of
the United States (Radeloff et al. 2010, Stavros et al.
2014, Lloyd et al. 2017), with potential implications for
human mortality, health risks from smoke and particu-
late emission, and the financial burden of wildfire man-
agement (Reid et al. 2016, Radeloff et al. 2018).
This work points to promising directions for future

predictive efforts. Default choices such as Poisson and
GPD distributions should be checked against alternative
distributions. Further, the predictive skill of this model
seems to suggest that ordinary events provide informa-
tion on extremes, which would not be the case if the gen-
erative distribution of extremes was completely unique.
Previous case studies have identified that extremes or
anomalies in climatological drivers play a role in the evo-
lution of extreme wildfires (Peterson et al. 2015), but for
this work, monthly averages of climatological drivers
over fairly large spatial regions were used, which may
smooth over anomalous or extreme conditions. Enhanc-
ing the spatiotemporal resolution of predictive models
could better represent climatic and social drivers and
provide localized insights to inform decision-making.
This raises computational challenges, but recent
advances in distributed probabilistic computing (Tran
et al. 2017), efficient construction of spatiotemporal
point processes (Shirota and Banerjee 2018), and com-
pact representations of nonlinear spatial interactions
(Lee and Durb�an 2011) may provide solutions.
The Wallow Fire case study reveals at least one limita-

tion of increasing the spatiotemporal resolution. When
the model predictions are driven by covariates that are
summarized in space and time (e.g., a mean across an
ecoregion in a month), summary values may not repre-
sent conditions that are most relevant to an event. With
a discrete space-time segmentation, events can occur at
the boundary of a spatiotemporal unit, e.g., if a fire
spreads into an adjacent ecoregion or ignites on the last
day of the month. Large wildfires can span months, and
a model that only uses conditions upon ignition to pre-
dict total burned area can fail to account for conditions
that change over the course of the event. Modeling igni-
tions as a point process in continuous space and time
(Brillinger et al. 2003), and explicitly modeling subse-
quent fire duration and spread could better separate

conditions that ignite fires from those that affect propa-
gation. Such an approach might be amenable to includ-
ing information on fuel continuity, which is likely to
limit the size of extremely large fires and did not factor
into the current predictions (Hargrove et al. 2000, Roll-
ins et al. 2002).
To the extent that a model reflects the generative pro-

cess for extreme events, the decomposition of contribu-
tions to the model’s predictions may provide insight into
attribution for meteorological and anthropogenic drivers
of extremes. However, a model trained to represent a
region-wide distribution of fire sizes will inevitably fail
to capture local factors that are relevant to specific
events such as the Wallow Fire. If predicting the dynam-
ics of particular fire events is a goal, process-based mod-
els designed to model fire spread are likely to be more
appropriate than regional statistical models such as
those developed here.
This paper presents and evaluates a statistical

approach to explain and predict extreme wildfires that
incorporates spatially varying non-linear effects. The
model reveals considerable differences among ecoregions
spanning the mountain west to the great plains, deserts,
and eastern forests, and suggests a non-negligible chance
of extreme wildfires larger than those seen in over the
past 30 yr in the contiguous United States. Predictive
approaches such as this can inform decision-making by
placing probabilistic bounds on the number of wildfires
and their sizes, while provide deeper insights into wild-
fire ecology.
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