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RESEARCH

Determining the optimal stage 
for cryopreservation of human embryonic stem 
cell-derived retinal pigment epithelial cells
Ting Zhang1,2,3,4, Xianyu Huang1,2,3,4, Sujun Liu1,2,3,4, Xinyue Bai1,2,3, Xinyue Zhu1,2,3, Dennis O. Clegg5, 
Mei Jiang1,2,3,4,6*   and Xiaodong Sun1,2,3,4,6 

Abstract 

Background: Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-derived RPE) are a promis-
ing source for cell-replacement therapy to treat retinal degenerative diseases, but research on RPE cryopreservation 
is limited. This study aimed to determine the best phase for RPE cryopreservation to preserve the post-thaw function 
and uncover the mechanism underlying RPE freezing tolerance.

Methods: hESC-derived RPE cells were cryopreserved at various time points after seeding. After thawing, the survival 
and attachment rates, RPE marker gene expression, apical-basal polarity, PEDF secretion, transepithelial resistance, and 
phagocytotic ability of post-thaw RPE cells were evaluated. RNA sequencing was performed on RPE cells at three-time 
points, differentially expressed genes were identified, and gene ontology, Kyoto encyclopedia of genes and genomes, 
and protein–protein interaction analyses were used to investigate the key pathways or molecules associated with RPE 
cell freezing tolerance.

Results: RPE frozen at passage 2 day 5 (P2D5) had the highest cell viability and attachment after thawing. They also 
retained properly localized expression of RPE marker genes and biological functions such as PEDF secretion, high tran-
sepithelial resistance, and phagocytic ability. The RNA-sequencing analysis revealed that RPE cells at P2D5 expressed 
high levels of cell cycle/DNA replication and ECM binding associated genes, as well as THBS1, which may serve as a 
possible hub gene involved in freezing tolerance. We also confirmed that the RPE cells at P2D5 were in the exponen-
tial stage with active DNA replication.

Conclusions: We propose that freezing hESC-derived RPE cells during their exponential phase results in the best 
post-thawing outcome in terms of cell viability and preservation of RPE cell properties and functions. The high 
expression levels of the cell cycle and ECM binding associated genes, particularly THBS1, may contribute to better cell 
recovery at this stage.
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Background
The retinal pigment epithelium (RPE) is a pigmented cell 
monolayer between the neural retina and the choroid. 
It is required for the maintenance of the blood-retinal 
barrier (RBB), the secretion of growth factors, the recy-
cling of retinoids, the phagocytosis of photoreceptor 
outer segments (OS), the delivery of nutrients, and the 
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disposal of metabolic waste products [1]. The occur-
rence and progression of many retinal degenerative dis-
eases, such as age-related macular degeneration (AMD), 
retinitis pigmentosa (RP), and Stargardt’s disease, are 
closely linked to RPE dysfunction and death, which even-
tually leads to the degeneration of overlying photorecep-
tor cells [2]. As a result, RPE cells derived from human 
embryonic stem cells (hESC) could provide an unlimited 
source of RPE replenishment and better support for the 
overlying photoreceptor cells [3, 4]. The safety and effi-
cacy of cell-replacement therapy as a treatment for reti-
nal degenerative diseases are being tested in phase I/II 
clinical trials using hESC-derived RPE [5–8] (for more 
information, visit http:// www. clini caltr ials. gov). To date, 
much emphasis has been placed on developing methods 
to differentiate hESCs to RPE, the best delivery strategy, 
and the development of scaffolds for RPE transplantation 
[9–13]. However, research on RPE cryopreservation to 
preserve post-thaw function is still limited.

Cryopreservation is the most widely used method 
of storing biomaterials, which can be deep-frozen and 
stored in liquid nitrogen for an almost infinite time. 
The differentiation of human pluripotent stem cells 
toward RPE is laborious and time-consuming, and once 
obtained, RPE cells can only proliferate for a limited 
number of passages before the cells undergo an epithe-
lial-to-mesenchymal transition (EMT). As a result, effi-
cient cryopreservation of hESC-derived cells is required 
for clinical use to maximize shelf life and ensure con-
venient transportation for later on-demand distribu-
tion [14]. Successful cryopreservation can result in high 
cell recovery and viability, as well as the preservation 
of cell function after the freeze–thaw cycle. However, 
the importance of selecting the optimal stage/phase for 
RPE cryopreservation has always been underestimated 
in optimizing freezing medium and cooling strategies 
[15–17]. Some studies suggested that RPE cells be frozen 
shortly after passaging when they have not reached con-
fluency or regained pigment [18, 19]. Other reports used 
other time points for cryopreservation [20–23]. It is still 
unclear whether the phase/stage of cell culture used for 
cryopreservation affects post-thaw RPE functions. Fur-
thermore, the mechanism underlying RPE cell tolerance 
to freezing has not been investigated. Identifying key 
molecules or pathways involved in this process could aid 
in optimizing cryopreservation strategies.

In this study, we cryopreserved hESC-derived RPE 
cells at various time points after seeding and evalu-
ated the characteristics and functions of post-thaw RPE 
cells. We discovered that cryopreservation of RPE at day 
5 after passaging (P2D5) resulted in a better post-thaw 
outcomes than other time points, as evidenced by higher 
cell survival and attachment rate, higher expression of 

RPE markers, polarized cell morphology, increased PEDF 
secretion, higher transepithelial resistance, and improved 
phagocytic function. The RNA-seq analysis revealed that 
RPE cells at P2D5 showed higher expression of genes 
associated with cell cycle/DNA replication and extra-
cellular matrix (ECM) binding, which could explain the 
freezing tolerance of cells at this stage. We also con-
firmed that the hESC-derived RPE cells were in the 
exponential phase with active DNA replication at P2D5. 
Overall, our findings show that the exponential phase 
of cell growth (P2D5) is the best stage for hESC-derived 
RPE cryopreservation.

Methods
Cell culture
Human embryonic stem cells (hESC) (H9, Wicell, USA) 
were differentiated using a 14-day differentiation proto-
col by sequential exposure to various molecules including 
Nicotinamide, Noggin, Activin A and IGF-1, as previ-
ously described [18]. The induced cells were then dissoci-
ated with TryPLE (Thermo Fisher Scientific) and cultured 
in XVIVO-10 for another 4–5 weeks on matrigel-coated 
surface with the seeding density of  105 cells/cm2. During 
this period, the cells started to exhibit the characteristic 
hexagonal morphology with pigmentation, which were 
defined as Passage 0 (P0). The RPE cells were further 
cultured in XVIVO-10 for 4–5  weeks before they were 
subjected to the subsequent passages or characteriza-
tion except phagocytosis assay, for which the cells were 
cultured in “Miller” medium (MEM alpha supplemented 
with 5% FBS, 1% N1 supplement, NEAA (1X), Glu-
tamax (1X), 250 μg/ml taurine, 20 ng/ml hydrocortisone, 
0.013  ng/ml triiodo-thyronin) [24]. To generate polar-
ized RPE monolayers, cells were seeded at  105 cells/cm2 
onto matrigel-coated transwell membranes (0.4 μm pore, 
Corning). Media were refreshed twice a week.

Cryopreservation and thawing experiments
For cryopreservation experiments, the RPE cells at vari-
ous time points were dissociated with TryPLE and frozen 
in CryoStor CS10 (Biolife Solutions) or Genxin (Selcell) 
at a concentration of 2 ×  106 cells/ml. Cells were imme-
diately placed in a Nalgene Cryo freezing container, 
frozen at − 80  °C overnight to achieve a cooling rate of 
−  1  °C/min, and then transferred to liquid nitrogen for 
long-term storage. Rapid thawing was carried out using 
ThawSTAR CF2 Automated Thawing System (BioLife 
Solutions) and cells were diluted by dripping pre-warmed 
XVIVO-10 medium and centrifuged at 250×g for 3 min. 
After resuspension in XVIVO-10 medium, the thawed 
RPE cells were counted with a hemocytometer to deter-
mine the recovery rate and survival rate using standard 
trypan blue exclusion (trypan blue stain 0.4%, Thermo 
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Fisher). Cells were then cultured on matrigel-coated sur-
faces at 105 viable cell/ml in XVIVO-10 with the addition 
of Y27632 (final concentration: 10 μM), which was with-
drawn 24  h later. The attachment rate was determined 
24  h after thawing by dissociating the cells again with 
TryPLE and counting the cell number.

Analysis of cell growth
hESC-derived RPE cells at P1D35 were passaged and 
seeded on multiple matrigel-coated wells in a 12-well 
plate at a density of  105/cm2. At the indicated time points 
during the culture period, the RPE cells were harvested 
by dissociation with TryPLE and resuspended in 1  ml 
culture medium. Cell number was then determined by 
counting with a hemocytometer.

EdU labeling assay
EdU is an efficient and convenient method to detect pro-
liferating cells both in vitro and in vivo. The EdU labeling 
of P2 RPE was carried out at different time points dur-
ing culture and was detected using Click-iT EdU Imaging 
Kits (Thermo Fisher Scientific) following the manufac-
turer’s protocol. Briefly, hESC-derived RPE cells at P1D35 
were passaged and seeded on multiple matrigel-coated 
coverslips at a density of  105/cm2. At indicated time 
points, the RPE cells were incubated with 10 μM EdU in 
the medium for 24 h, and were then fixed, permeabilized 
and stained with the Click-iT reaction cocktail for the 
detection of incorporated EdU. Images from 5 random 
fields were captured (Axio Observer A1, Zeiss), and the 
percentages of EdU-positive cells were calculated.

Immunofluorescence staining
Immunofluorescence staining of hESC-derived RPE 
cells was performed as previously described [25]. Briefly, 
the RPE cells were fixed with 4% paraformaldehyde 
for 15  min, permeabilized with 50% ethanol for 5  min, 
and blocked with a solution containing 5% normal goat 
serum, 0.5% BSA and 0.05% saponin for 30 min. The cells 
were then incubated overnight at 4 °C with primary anti-
bodies that were diluted in the blocking solution. After 
several washes with PBS, cells were incubated with Alexa 
Fluro-conjugated goat anti-rabbit secondary antibod-
ies (Thermo Fisher Scientific) for 1 h at 25 °C. Cells were 
then stained with  Phalloidin-647  (1:1000, Abcam) to 
visualize the actin cytoskeleton and subsequently DAPI 
to counterstain nuclei. The following primary antibodies 
were used: anti-RLBP1 (1:200; Proteintech 15356-1-AP), 
anti-ZO-1 (1:200; Thermo Fisher Scientific 33–9100), 
and anti-BEST1 (1:1000; Abcam ab2182). The images 
were captured with Leica TCS SP8 confocal laser scan-
ning microscope. To observe polarized properties of the 
RPE cultured on transwell membranes, Z-stack confocal 

microscopy was performed. For quantification of immu-
nofluorescence staining, 5 fields were randomly chosen 
for each experiment.

Quantitative real‑time PCR (qPCR)
Total RNA from RPE cells was extracted using the 
RNAsimple Total RNA Kit (Tiangen), and the cDNA was 
synthesized using PrimeScript RT Master Mix (TaKaRa). 
TB Green Fast qPCR Mix (Takara) and the ViiA7 real-
Time PCR System (Thermo Fisher) were used to amplify 
cDNA with a program consisting of 40 cycles of ampli-
fication  (Tm = 60  °C). Gene-specific primers were syn-
thesized by Shanghai Sunny Biotechnology and the 
sequences of the primers are listed in Table S1. GAPDH 
gene expression was used as an internal control. mRNA 
levels of target genes were calculated using the  2−ΔΔCt 
method. A minimum of three biological replicates from 
two independent experiments were analyzed.

Phagocytosis assay
Porcine rod outer segments (POS) were isolated from 
fresh porcine eyes, labeled with Alexa Fluor 488 NHS 
Ester (Succinimidyl Ester, Thermo Fisher) and aliquoted 
as previously described [26]. Phagocytosis assay was per-
formed on the RPE cells cultured in a 96-well plate fol-
lowing a previously described protocol [27]. Briefly, the 
hESC-derived RPE cells were seeded in quadruplicate 
in a matrigel-coated 96-well plate at a concentration of 
 105/well and allowed to grow for 4–5  weeks in “Miller” 
medium. On the day of phagocytosis assay, the thawed 
ROS aliquots were centrifuged at 2400×g for 5 min and 
resuspended in “Miller” medium in the concentration 
of  107 POS/ml. 100 µl of ROS per well was applied to 
the RPE cells for 3.5 h at 37 °C. The unbound ROS were 
washed away by rinsing with DPBS containing  Ca2+ and 
 Mg2+ and the RPE cells were immediately fixed with 4% 
paraformaldehyde in DPBS. The plate was then scanned 
with Tecan Spark microplate reader (Tecan, Austria) for 
the quantification of the fluorescence signal. To control 
for different cell numbers in different wells, cells were 
stained with Hoechst 33342 and the fluorescence inten-
sity was also determined by the microplate reader. The 
phagocytic ability of RPE cells was therefore represented 
as the value of POS fluorescence intensity/ Hoechst fluo-
rescence intensity.

Measurement of TEER (transepithelial electrical resistance)
For the measurement of TEER, the RPE cells were 
grown on matrigel-coated transwell membranes. A 
membrane without cells was used as a background con-
trol. After 4–5  weeks of culture, TEER of the RPE cells 
was measured using an epithelial voltmeter (World Pre-
cision Instruments) and calculated by subtraction of 
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background TEER from the control membrane. The 
TEER per unit area (Ω.cm2) was obtained by multiplying 
the raw TEER value by the surface area of the transwell 
membrane (0.33  cm2).

Enzyme‑linked immunosorbent assay (ELISA)
To determine secretion of PEDF, hESC-derived RPE cells 
were thawed and cultured onto matrigel-coated tran-
swell membranes. At Day 35 post thaw, the apical- and 
basal- side conditioned media were collected after 24 h of 
culture and the concentration of PEDF protein was meas-
ured by ELISA following the manufacturer’s instructions 
(BioVendor Laboratory Medicine).

RNA‑seq library construction
Three independent batches of hESC-derived RPE cells at 
P1D35, P2D5 and P2D11 (9 samples in total) were sub-
jected to RNA sequencing. Total RNA was extracted 
with Trizol (Thermo Fisher), and mRNA was purified by 
using poly-T oligo-attached magnetic beads. The RNA 
was reversed transcribed by using random hexamer 
primer and M-MuLV Reverse Transcriptase (NEB). The 
double-stranded cDNA was amplified using KAPA HiFi 
HotStart ReadyMix (KAPA Biosystems) and purified 
using AMPure XP beads (Bechman Coulter). After quan-
tification by Qubit2.0 Fluorometer, cDNA was applied 
to a Bioanalyzer 2100 on a High-Sensitivity DNA Chip 
(Agilent Bioanalyzer) to check the library size distribu-
tion. All sample libraries were sequenced on an Illu-
mina NovaSeq 6000 to generate 150 bp paired-end reads 
(Novogene, Beijing).

RNA‑seq data analysis
Clean data were obtained from FastQ raw data by remov-
ing adapter, ploy-N sequences and low-quality reads. All 
the downstream analyses were based on the clean data 
with high quality. The reads were mapped to the hg38 
version of human genome using TopHat2 version 2.0.9 
program [28]. We calculated fragment per kilobase per 
million (FPKM) as expression level using the Feature-
Counts (v1.5.0-p3) [29]. Genes with the FPKM > 1.0 in at 
least one sample across all samples were retained for fur-
ther analysis, and the expression levels were transformed 
to log-space by using the log2 (FPKM + 1). Differentially 
expressed genes (DEGs) among different samples were 
identified using DESeq2 R package (1.20.0) [30]. The 
resulting P-values were adjusted using the Benjamini 
and Hochberg approach for controlling the false discov-
ery rate (FDR). Genes with Padj values < 0.05 and log2 fold 
change > 1 were assigned as differentially expressed genes. 
DEG heat maps were clustered by hierarchical clustering 
and visualized using Java Tree View software [31]. Prin-
cipal component analsysis (PCA) analysis was performed 

using R (http:// www.r- proje ct. org). Gene Ontology 
(GO) enrichment analysis of differentially expressed 
genes was implemented by the clusterProfiler R pack-
age (3.8.1), in which gene length bias was corrected [32]. 
GO terms with corrected P value < 0.05 were considered 
significantly enriched by differential expressed genes. 
The KEGG database was used to analyze high-level cel-
lular functions (http:// www. genome. jp/ kegg) [33]. We 
used clusterProfiler R package (3.8.1) to test the statisti-
cal enrichment of differential expression genes in KEGG 
pathways. Then, a protein–protein interaction network 
of KEGG enriched DEGs was analyzed using the Search 
tool for the retrieval of interacting genes (STRING data-
base, http:// string- db. org/) [34]. An interaction with a 
combined score higher than 0.4, which is a widely used 
threshold, was considered statistically significant.

Statistical analysis
All statistical analyses were performed in GraphPad 
Prism software (GraphPad Prism 8), and data were pre-
sented as mean ± SD.  Student’s t test  (two-tailed) was 
performed for statistical analysis between two groups. 
One- or two-way ANOVA with Tukey’s or Bonferroni’s 
multiple comparison post hoc test was used when three 
or more groups were compared. The statistical analyses 
were obtained from three biological replicates or inde-
pendent experiments. Statistical significance was set at 
*P < 0.05.

Results
Frozen RPE cells at P2D5 achieved the highest cell viability 
and attachment after thawing
Consistent with previous studies [35], we observed 
that when RPE were dissociated and replated, the cells 
underwent a period during which they lost their clas-
sic hexagonal RPE morphology and pigmentation, and 
proliferated until they formed a monolayer again. This 
period usually lasted 10–14  days after passaging, then 
the cells readopted their hexagonal morphology and 
slowly gained pigmentation after around 4 weeks of cul-
ture. Accordingly, we selected four different timepoints 
P1D35, P2D5, P2D11 and P2D28 (Fig. 1A), to determine 
the optimal stage for cryopreservation of hESC-derived 
RPE cells. We started with hESC-derived RPE cells at 
passage 1 day 35 (P1D35). After passage, these cells were 
labeled as passage 2 (P2). We froze the cells in CryoStor 
CS10, a widely used commercial freezing solution, for 
1–3  months before being subjected to thaw (Fig.  1A). 
After thawing, some cells were damaged and degenerated 
into subcellular debris, some cells underwent apoptosis, 
and the remaining cells survived. Hence, it is important 
to analyze the recovery and survival rates, apoptosis and 
attachment. The recovery rate was calculated as the live 
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cell number/the number of cells initially frozen. The sur-
vival rate was calculated as the live cell number/the total 
cell number after thawing. The recovery rate for cells fro-
zen at P1D35, P2D5, P2D11 and P2D28 was 80%, 80%, 
64% and 64%, respectively, while their viability was 83%, 
85%, 88% and 76%, respectively. The experiments were 
repeated three times. No significant recovery or survival 
rate differences were observed (Fig. 1B, C). At 24 h after 
thawing, cells were dissociated, and the cell number was 
counted. The attachment rate was then calculated as the 
attached cells/the seeded cells. RPE cells frozen at P2D5 
showed a higher attachment rate than other time points 
(Fig.  1D, E). Cell death and viability were also assessed 
using Calcein-AM/PI staining at D1 post thaw. The RPE 
frozen at P2D5 had the highest viability (Fig. 1F), indicat-
ing that hESC-derived RPE cells at P2D5 perform better 
in the freeze–thaw cycle than other time points.

Frozen RPE at P2D5 showed highly expressed and properly 
localized RPE markers after thawing
Although viability and attachment rates are important 
parameters for determining cell freezing success, the 
ultimate goal of freeze–thaw is to maintain normal RPE 
cell properties and function after thaw. RPE cells frozen 
at P2D5 displayed characteristic hexagonal morphol-
ogy of RPE cells with distinct cell–cell adhesions (tight 
junctions) as early as 14 days after thawing, whereas cells 
frozen at other time points exhibited a fibroblastic phe-
notype, indicating they were experiencing an EMT tran-
sition for a relatively long period (Fig. 2A). RPE frozen at 
various time points had adopted typical RPE morphology 
by D28 post thaw, though heterogeneity was observed 
in the case of cells frozen at P2D11 and P2D28 (Fig. 2A). 
RT-qPCR at D28 post thaw revealed that P2D5-frozen 
RPE cells had the highest expression levels of RPE mark-
ers (BEST1, MITF, RLBP1, and PMEL17) of any time 
point studied (Fig. 2B). Immunohistochemistry revealed 
that expression of RLBP1 and ZO-1 (a tight junction 
marker) was significantly lower in P2D28-frozen RPE 
cells compared to the P2D5 and P2D11 groups (Fig. 2C). 
Furthermore, BEST1 and F-actin expression (stained 
with phalloidin) showed proper polarity in cells thawed 
from P2D5-frozen RPE, with BEST1 expressed on the 
basolateral side and F-actin on the apical side (Fig. 2D). 
However, in thawed cells from P2D11- and P2D28-frozen 

RPE, BEST1, and F-actin expression were reduced and 
mislocalized, indicating that polarity was impaired or 
even abolished in these groups of cells (Fig. 2D).

Frozen RPE at P2D5 maintained function after thaw
The biological function of thawed RPE cells was then 
evaluated by examining PEDF secretion, transepithelial 
electrical resistance (TEER), and phagocytosis ability 
at D28 post thaw. ELISA revealed that RPE cells thawed 
from P2D5 secreted a high level of PEDF into the api-
cal medium, whereas the cells from the other groups 
secreted much lower levels of PEDF (Fig.  3A). There 
was no significant difference in apical and basal levels of 
PEDF between the P1D35 and P2D28 groups, confirming 
the loss of cell polarity (Fig. 3A). P2D5 cells had a signifi-
cantly higher TEER after thaw compared to other time 
points (Fig. 3B). Furthermore, an Alexa Fluor 488-labeled 
porcine rod outer segments (POS) phagocytosis assay 
revealed that P2D5 RPE had the best phagocytic ability 
compared post thaw (Fig.  3C). Overall, these findings 
demonstrated that freezing RPE at P2D5 preserved opti-
mal biological functions after thaw.

P2D5 was the optimal time point for RPE cryopreservation 
regardless of freezing medium
To confirm that P2D5 was the best time for RPE cryo-
preservation, we used Genxin, a DMSO-free freezing 
medium, to cryopreserve the hESC-derived RPE cells. 
As expected, freezing RPE at P2D5 resulted in a higher 
attachment rate at D1 after thaw (Additional file  1: Fig. 
S1A). P2D5-frozen RPE cells expressed significantly 
higher levels of RPE markers at D28 post thaw than 
P2D11-frozen RPE cells (Additional file 1: Fig. S1B), indi-
cating that freezing RPE at P2D5 provided the best post-
thaw outcome regardless of the freezing medium used.

Cell cycle and ECM‑associated gene expression 
was enriched in P2D5 RPE
To investigate the molecular mechanisms underlying 
RPE cell tolerance to freezing at P2D5, we used RNA-seq 
to analyze RNA isolated from three independent cultures 
of hESC-derived RPE cells at P1D35, P2D5, and P2D11, 
respectively. The expected grouping among replicates 
of each time point was demonstrated by principal com-
ponent analysis (PCA), with PC1 accounting for 57.8 

(See figure on next page.)
Fig. 1 hESC-derived RPE cells frozen at P2D5 achieved the highest cell viability and attachment after thawing. A The flow diagram for hESC-derived 
RPE cell differentiation, passaging, and cryopreservation (created with BioRender.com). B, C The recovery rate (B) and viability rate (C) were 
measured upon thawing of hESC-derived RPE cells frozen at indicated time points. D The attachment rate was measured 24 h post thaw. n = 3 
independent experiments; Data are represented as mean ± SD. Statistical differences are evaluated with one-way ANOVA with Tukey’s post hoc test. 
*P < 0.05. E The bright-field images of RPE cells from different groups 24 h post thaw.F . At 24 h post thaw, the RPE cells were stained with Calcein 
AM/PI, where live and dead cells were depicted as green and red fluorescence, respectively. Scale bars: 100 μm
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percent of the variance and PC2 accounting for an addi-
tional 16.76% (Fig.  4A). We identified 4600 DEGs from 
RNA-seq data using the fold change > 2 and Padj < 0.05 
for comparisons between the three groups. Heatmap and 

hierarchical clustering analysis of all samples revealed 
distinct expression patterns of DEG sub-clusters and 
revealed that P2D5’s transcriptomic profile resembled 
P2D11 more than P1D35 (Fig.  4B). 1462 DEGs were 
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found to be upregulated in the P2D5 versus P1D35 com-
parison group, while 2064 were found to be down-regu-
lated (Fig. 4C). 334 DEGs were found to be upregulated 
in the P2D5 vs. P2D11 comparison group, while 611 were 
found to be down-regulated (Fig.  4D). Venn diagrams 
revealed that when comparing P2D5 to the other two 
groups, 323 genes were down-regulated and 239 were 
upregulated (Fig. 4E, F).

Because RPE cells at P2D5 were more resistant to 
freezing than P1D35 and P2D11, these shared DEGs that 
were either up or down-regulated in P2D5 vs. the other 
two groups are more likely to play roles in cell tolerance 
to freezing. According to Gene Ontology (GO) analysis, 
the shared down-regulated genes in P2D5 were enriched 
in visual perception, ion channel activity, and trans-
membrane transport activity, all of which were associ-
ated with RPE cell maturation, implying that RPE cells at 
P2D5 were indeed immature (Fig. 5A). Noteworthily, the 
shared upregulated genes in P2D5 were enriched in the 
GO of extracellular matrix (ECM) binding and chromo-
some segregation, an important event during cell mito-
sis (Fig.  5B). The KEGG pathway analysis revealed that 
the cell cycle, ECM-cell interaction, and focal-adhesion 
pathways were among the only five significantly enriched 

pathways (Padj < 0.05). (Fig.  5C). Indeed, 13 cell cycle-
related genes and 6 ECM-cell interaction related genes 
(overlapping with focal-adhesion related genes) were 
found to be highly expressed exclusively in RPE cells at 
P2D5 (Fig.  5D, E). The STRING database was used to 
analyze further the interactions of the clustered genes 
enriched from KEGG analysis, which revealed that 
THBS1 and MYC were located at the core of the inter-
action network diagram (Fig. 5F). Overall, these findings 
suggested that high expression of cell cycle/mitosis genes 
and ECM-associated genes may contribute to P2D5 RPE 
cell tolerance to freezing.

hESC‑derived RPE experienced a 1‑week exponential stage 
upon passaging
To validate the RNA-seq analysis results, we observed 
the cell morphology and counted the cell number over 
time in hESC-derived RPE. After being passaged, the 
cells lost their hexagonal morphology and melanin pig-
mentation (Fig.  6A). After 10  days, the cells gradually 
reestablished the tight junction and regained hexagonal 
morphology and pigmentation. During the first week, 
RPE cells increased steadily and gradually. Following that, 
the growth rate slowed dramatically, and the cell number 
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(See figure on next page.)
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reached a plateau (Fig. 6B). We performed an EdU labe-
ling assay over a 24-h period to further detect DNA syn-
thesis in proliferating RPE cells [36]. EdU incorporation 
was abundant in the first week (Fig. 6C), indicating that 
the cells were actively proliferating. Only sporadic EdU 
incorporation was observed on days 11–14 (Fig. 6C, D). 
By day 28 (D28), the cells had matured, with increased 
melanin pigmentation and little EdU incorporation 
(Fig. 6A, C, D). Furthermore, four groups of RPE marker 
genes, including MITF, TYR and PMEL17 (pigmenta-
tion associated), RDH5, RLBP1 and RPE65 (visual cycle 
associated), BEST1, EZR and ZO-1 (polarity and tight 
junction), and VEGFA/B and PEDF (secretion), were 
selected from the RNA-seq data and their expression 
pattern indicated that RPE cells at P2D5 were immature 
and less functional compared to other time points (Addi-
tional file  1: Fig. S2). These findings demonstrated that 
the hESC-derived RPEs cells entered an exponential stage 
after passaging and underwent dedifferentiation only in 
the first week. As a result, RPE cells at P2D5 were pro-
liferative with active DNA synthesis, consistent with the 
RNA-seq findings. To confirm that freezing RPE during 
the exponential phase is critical for cryopreservation suc-
cess, we frozed cells at P2D3, P2D7, P2D14, and P2D21 
and examined the recovery and survival, and attachment 
rates after thawing. Indeed, RPE cells frozen at P2D3 
and P2D7 at the exponential phase showed significantly 
higher attachment rates than other time points (Fig. 6E), 
confirming that the exponential phase is optimal for RPE 
cryopreservation.

Discussion
The clinical use of hESC-derived RPE in cell-replacement 
therapy for retinal degenerative diseases requires suc-
cessful cryopreservation. However, it is unclear whether 
the freezing time point/phase affects the success of cry-
opreservation. To answer this question, we froze hESC-
derived RPE cells at various time points (P1D35, P2D5, 
P2D11, and P2D28) after seeding and found that the cry-
opreserved cells at P2D5 retained the best RPE cellular 
phenotype and function in vitro and exhibited the high-
est post-thaw viability. Furthermore, RNA-seq analysis 
was performed and differentially expressed genes (DEGs) 

were identified in P2D5 RPE cells compared with other 
two groups (P1D35 and P2D11). Gene Ontology analysis 
was implemented to recognize the functions of DEGs in 
P2D5 group. KEGG pathway enrichment and PPI net-
work were employed to address the key elements respon-
sible for better cryopreservation outcomes.

The main objective of this study was to investigate the 
optimal timing for processing and cryopreservation of 
hESC-derived RPE cells. The first step was to analyze the 
recovery rate and viability rate for cells frozen at differ-
ent timepoints (P1D35, P2D5, P2D11, and P2D28). Our 
results showed that in all cases, cryopreservation of RPE 
in CS10 maintained a high cell recovery and cell viability 
(Figs. 1, 6). No difference was observed between cells fro-
zen at different timepoints right after thawing (Fig. 1, 6). 
For cells frozen at P2D11 and P2D28, their recovery rate 
was lower than viability rate, suggesting relatively more 
cells were lost during washing (Fig.  1). Further charac-
terization was performed to monitor RPE molecular and 
phenotypic characteristics and function after cryopreser-
vation. Molecular injuries could take hours or days to 
manifest. Herein, we evaluated apoptosis and cell attach-
ment after 24-h culture. As shown in Fig. 1D, cell attach-
ment of RPE frozen at different timepoints was variably 
affected. The attachment rate observed in cells frozen at 
P2D5 remained high (88%), while the percent of attached 
cells reduced to less than 35% for cells frozen at P1D35, 
P2D11, and P2D28 (33%, 32% and 35%, respectively). Of 
the detached cells in P2D5 group, about 8% were apop-
totic, 10% in P1D35, 24% in P2D11, and 37% P2D28 
groups (Fig. 1F), suggesting that lower adherence capabil-
ity but not apoptosis was the key factor for cell loss. Func-
tional assessment was performed after 28 days of culture. 
As a result, cryopreserved P2D5 cells exhibited a more 
homogeneous population with hexagonal shape, better 
epithelial polarity, better tight junctions that resulted in 
higher TEER values, RPE-related gene expression, PEDF 
secretion, and phagocytosis activity post-thaw com-
pared with other groups (Figs. 2, 3). We noted patches of 
cells presented with darker pigmentation and a stronger 
RLBP1 immunostaining in the culture well of cells frozen 
at P2D28 in comparison with the other groups (Fig. 2A, 
C). This might be due to the longer culture time before 

(See figure on next page.)
Fig. 5 GO enrichment and KEGG pathway analysis. A Dot plots displaying the top 30 enriched GO categories among the shared down-regulated 
DEGs in P2D5 versus P1D35 and P2D11. B Dot plots displaying the top 30 enriched GO categories among the shared upregulated DEGs in P2D5 
versus P1D35 and P2D11. The size of the circles indicates the number of DEGs that fall into the GO terms. The color of the circle represents the 
significance of the enriched GO terms. C KEGG pathways significantly enriched in shared upregulated DEGs in P2D5 vesus P1D35 and P2D11 
(Padj < 0.05). D Heatmap representing the relative FPKM of cell cycle-associated genes indicated by KEGG pathway analysis among the samples 
(normalized to average FPKM of P2D5 group). E Heatmap represented the FPKM of ECM-receptor interaction associated genes indicated by KEGG 
pathway analysis among the samples (normalized to average FPKM of P2D5 group). F Protein–protein interaction (PPI) network diagram of the 
DEGs that were clustered in significantly enriched KEGG pathways. Line thickness indicates the strength of data support
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freezing, which enhanced maturation of those cells. 
Unlike the P2D5 group, which grew into highly pure RPE 
cells, cells frozen at P2D28 grew into heterogeneous RPE 
population with more fibroblast-like cells after 28  days 
of culture post thaw. As a result, the average expression 
levels of pigmentation related genes (MITF and PMEL17) 
and RLBP1 were significantly lower than cells frozen at 
P2D5 (Fig. 2B). Overall, the choice of freezing time signif-
icantly affected the thawing outcomes and the RPE cells 
frozen at P2D5 recovered best after thaw.

RNA-Seq enabled us to compare gene profiles of RPE 
cells at different culture time points. As a result, a total of 
562 DEGs, including 323 down-regulated and 239 upreg-
ulated DEGs, were identified in P2D5 cells. KEGG analy-
sis of DEGs exclusively upregulated in P2D5 revealed that 
the DEGs were mainly enriched in five signal pathways, 
such as cell cycle, ECM-cell interaction, and focal-adhe-
sion pathways and likely contributed to increased prolif-
eration and adhesion of P2D5 cells (Figs. 4, 5). Cell cycle 
was the most enriched signal pathway for the P2D5-high 
DEGs (Fig.  5C). To validate the transcriptomic data on 
the proliferation state of cells in each group, cell growth 
curve analysis and EdU cell proliferation assay were per-
formed. As shown in Fig.  6, P2D5 cells demonstrated a 
higher proliferation rate than the other 3 groups. They 
grew exponentially (in exponential phase) while P2D11 
cells had entered a deceleration phase, and P2D28 had 
almost no proliferation. Previous studies have shown that 
induced pluripotent stem cells (iPSC) were also found to 
be best cryopreserved at the exponential growth phase 
[37]. We therefore hypothesized that exponential phase 
was the optimal growth phase for RPE cryopreservation 
and then addressed this hypothesis by comparison of 
the recovery rate, viability rate and attachment rate for 
cells frozen at different phases of the growth. Our results 
confirmed that cells at exponential growth phase (P2D3, 
P2D5 and P2D7) favored a good recovery (Fig. 1, 6). We 
noticed that the changes in growth rate were correlated 
with those in morphology. The characteristic hexagonal 
morphology and pigmentation were lost during the lag 
phase (around 2 days). RPE cells gradually reestablished 
hexagonal morphology in the exponential phase (around 
5  days) and entered the deceleration phase (around 
6 days) with more polygonal morphology (Fig. 6A, C, D). 
At this time, pigmentation levels were still low, although 

patches of pigmentation could be observed. Cells became 
polarized, hexagonal and fully pigmented at the station-
ary stage. Although the morphological changes of the 
RPE cells were useful to grossly evaluate stages of cells, 
hESC-RPE cells from the same well did not always mature 
with the same speed, which made accurate quantifica-
tion challenging. It would be impractical to use the cell 
morphology as the selection criterion for timing of RPE 
cryopreservation. Previous studies have suggested that 
RPE cells freeze best prior to pigmentation, which was 
between 2 to 7 days after plating [19, 38]. For our cells, 
pigmentation started to show at around day 3 and freez-
ing cells at day 3 did not perform better than other time-
points in exponential growth phase (Fig.  6E). Although 
the expression levels of pigmentation related genes in 
P2D5 group showed a tendency toward downregulation 
compared to the other groups, the differences did not 
reach statistical significance (Additional file  1: Fig. S2). 
This was not surprising to us since it had been reported 
earlier that the level of pigmentation did not reflect the 
maturation state of hESC-RPE [39]. However, we cannot 
rule out that pigment has some role in cryopreservation 
tolerance. The role of pigmentation in cryopreservation 
requires more investigation. Taken together, we propose 
that RPE cells at the exponential phase can be selected for 
cryopreservation. Since the cell state may vary between 
differentiation methods or cell lines, determination of the 
exponential phase is preferred for RPE cultured in differ-
ent labs before freezing the cells.

To define the core factors responsible for the 
improved post-thaw outcomes of P2D5 group, GO 
(Gene Ontology) and STRING analysis were con-
ducted. GO analysis identified that biological pro-
cesses and molecular functions associated with RPE 
cell polarity and maturation were down-regulated while 
those associated with extracellular matrix (ECM) bind-
ing and cell cycles were significantly upregulated in the 
P2D5 group (Fig.  5A), indicating the less maturation, 
active proliferation, and higher attachment properties 
of P2D5 cells. These interconnected properties of P2D5 
cells may be vital for cell recovery post thaw [40]. Our 
results corroborated previous reports that had sug-
gested a correlation between the stage of differentiation 
and abilities to adhere and thrive post thaw [41] as well 
as a report on the cryopreservation of mesenchymal 

Fig. 6 hESC-derived RPE required a 1-week exponential stage upon passaging. A Representative bright-field images showed the morphology 
of hESC-derived RPE cells at different time points in culture. B The growth curve of hESC-derived RPE was plotted as the cell number versus 
culture time. The data were fitted with an exponential-plateau model with R2 = 0.9404. C Representative fluorescent images of EdU-labeled RPE 
cells at different time points in culture. The nuclei were counter-stained with DAPI. Scale bars: 100 µm. D The quantification of the percentage 
of EdU-labeled RPE cells at different time points in culture. E The recovery, viability, and attachment rates were measured upon thawing of 
hESC-derived RPE cells frozen at indicated time points. n = 3 independent experiments; Data are represented as mean ± SD. Statistical differences 
are evaluated with one-way ANOVA with Tukey’s post hoc test. *P < 0.05

(See figure on next page.)
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stem cells, where upregulation of ECM-related genes 
was correlated with the improved post-thaw function 
[42]. STRING database was used to conduct protein–
protein interactions (PPI) network of the DEGs exclu-
sively significantly enriched in five KEGG pathways of 
P2D5. MYC, Thrombospondin-1 (THBS1) and ID1, 
were identified as the hub genes of PPI. Considering the 
central role of ECM-cell interactions in cell adhesion 
and differentiation, the ECM molecule THBS1 drew 
our attention. RPE cells produce and secrete THBS1 
[43], and it is intergrated into the laminin-rich extracel-
lular matrix. THBS1 is recognized by multiple integrin 
receptors[44]. At P2D5, subunits of laminin, LAMB3, 
as well as the two integrin family members, ITGA3 
and ITGA5, were found highly expressed (Fig. 5E). It is 
possible that THBS1 plays a key role in the formation 
of focal adhesions during attachment of cells [45, 46]. 
Studies have identified THBS1 partnering with different 
proteins to affect proliferation [44]. As an important 
regulator for ECM adhesion control and cell prolifera-
tion, THBS1 could be a potential target for improve-
ment in RPE cryopreservation. However, more studies 
are needed to confirm this.

Aside from the cell cycle and ECM-associated path-
ways, KEGG analysis revealed that TGF-β signaling was 
more prevalent in P2D5 than P1D35 and P2D11. We 
observed that the cells displayed a fibroblastic-like mor-
phology during the first week after passaging, particularly 
on day 5. Because TGF-β is known to be a potent inducer 
of EMT and pro-fibrosis in many organs, including the 
eyes, we speculate that the enriched TGF-β pathway in 
P2D5 RPE cells is linked to the transient EMT that occurs 
shortly after passage [47, 48]. Modulation of TGF-β path-
way, either by adding TGF-β or by treatment with the 
TGF-β inhibitor SB431542, had no discernible effect on 
post-thaw attachment rate (data not shown), implying 
that the TGF-β pathway is not involved in cell tolerability 
to freezing.

Although this study focuses on determining the opti-
mal stage for RPE cryopreservation, other critical fac-
tors, such as cooling rate and freezing solution, should 
be considered to achieve the best results. This study 
primarily used CryoStor CS10, a widely used cryo-
preservation medium containing 10% dimethylsulfoxide 
(DMSO) as a cryogenic protection agent (CPA). While 
CS10 is a cryopreservation solution designed specifically 
for human use, there are still concerns that DMSO may 
cause toxicity, impair normal cell function, and impede 
its use in cell-replacement therapy for retinal degenera-
tive diseases. Our study also investigated the possibility 
of cryopreservation of RPE cells in another animal com-
ponent-free cryopreservation solution (Genxin) that did 

not contain DMSO in this study (Additional file  1: Fig. 
S1). The results were preliminary but exciting, as the RPE 
at P2D5 frozen in Genxin demonstrated an equally high 
post-thaw attachment rate as that in CS10, indicating 
that CPA other than DMSO may be applicable for RPE 
cryopreservation and P2D5 is the optimal time point for 
RPE cryopreservation regardless of freezing medium.

Limitations
This study was not designed to evaluate optimal freezing 
time of RPE derived from different stem cells lines using 
different protocols for differentiation. RPE derived from 
different stem cells lines using alternate methods may dif-
fer in maturity or expression of adhesion proteins, which 
could affect the cryopreservation process. A previous 
study reported that freezing the hiPSC-derived RPE cells 
at P1D14 (56 days after differentiation) could obtain good 
post-thaw functional recovery, when the thawed cells 
were passaged once and then cultured for 2–14  weeks 
[21]. It seems possible to freeze RPE cells at different 
passages. However, the time needed to regain a mature 
phenotype after thaw may vary. Likewise we did not 
investigate cryopreservation of adherent cells, although a 
recent study found that immature hESC-RPE adherent to 
a parylene scaffold is amenable to cryopreservation [19]. 
It is possible that cells exponential growth phase may 
recover from thaw even better if adhered to a scaffold. 
Another limitation of this study is that we only evaluated 
two different types of cryopreservation media. We used 
a commercial cell cryopreservation media CS10 con-
taining DMSO and did a preliminary test using another 
commercial cell cryopreservation media Genxin contain-
ing no DMSO. Different cryopreservation media might 
prevent cryoinjury in different ways, thus variations in 
cryopreservation media may have an influence on which 
freezing time gives the best thawing outcomes. Effects 
of different cryopreservation media on optimal freezing 
time require further evaluation.

Conclusions
Our studies show the cryopreservation of hESC-derived 
RPE cells at P2D5 produced the best results in terms of 
survival, attachment, and function after thaw. RPE cells 
at P2D5 were in the exponential phase with active DNA 
synthesis and expressed a high level of cell cycle/mitosis 
and ECM-associated genes, which we believe contributed 
to post-thaw survival. Our findings provide a new insight 
for successful cryopreservation of RPE cells for clinical 
application and might serve as a paradigm for studying 
the optimal stage for cryopreservation of other differenti-
ated cell types.
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