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Toward a Connectionist Model of Symbolic Emergence
YVES CHAUVIN

PSYCHOLOGY DEPARTMENT
STANFORD UNIVERSITY

This paper examines how and why empirical results related to first-word acquisition in infants
can occur in a generic associative PDP model. During learning, a network is exposed to a
micro-world composed of categories made of clusters of "images" and of labels attached to these
clusters. The architecture of the network allows encoding of labels and images in a common
level of representation and subsequent extraction of labels from images and images from labels.
If (1) the learning rule is an error-correction/steepest descent algorithm, (2) the image clusters
are sufficiently "fuzzy", (3) the mapping image/label is consistent and (4) the network capacity
1s adapted to the size of the micro-world, this simple generic model can be shown to account for
a broad spectrum of first-word acquisition data including acquisition "burst", underextensions,
overextensions, gradual generalization, comprehension before production and decontextualiza-
tion.

INTRODUCTION

Acquiring the meaning of words may be seen as a categorization or pattern recognition problem.
The task of the infant is to classify the world into labeled categories, in agreement with the
categories and labels used by adults. In this sense, there is early symbolic emergence or mean-
ing acquisition when an entity in a modality becomes consistently mapped to another entity in a
different modality. In the model below, patterns of activations are presented to a PDP network.
The model has two types of inputs corresponding to two different modalities. One of them can
be seen as corresponding to the auditory modality, the other to a visual modality. The model is
simply exposed to a micro-world made of a micro-set of categories. Each category is composed
of a set of micro-images and of an associated label. This micro-world is structured: images asso-
ciated with identical labels are similar. During learning, images and labels are presented to the
network, separately or together. The network learns how to build internal representations of
these labels and images, and under certain conditions, to associate images with the correspond-
ing labels.

MODEL
Microworld.

Images are simple random dot patterns constructed on a grid composed of 61 rows and 21
columns. Nine random cells are turned on to form a pattern. Before being used as input to a
connectionist network, the grid is preprocessed to reduce the computational demands and create
a "smearing" effect allowing a notion a similarity between patterns (Knapp and Anderson, 1984).
We can call "retina" a two-dimensional layer of units (or "cells") that transform these random
dot patterns into another two-dimensional pattern of activations. The units of this "retina" form
a regular lattice that is superimposed on the original grid and have their receptor fields centered
on a grid cell. In all the simulatons described below, the shape of the receptor fields is chosen
as a bi-dimensional decreasing exponential of the form exp(-d/k) where k is the spread parameter
and d is the distance between the center of the field and a point of the "retina".

When a pattern is presented to the model, each unit computes its activation by summing
the activations due to each of the grid cells in its receptor fields. The retinal units that are too far
from the active cells of the original grid cannot get enough activation and are "filtered out" of
the final retinal grid. Figure 1 shows an original pattern of dots and the resulting pattern after
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Figure 1. On the left, a random pattern of dots. On the right, a filtered pattem of dots represented on a 17x7 grid and stored into the pdp network.
The size of each rectangle corresponds to the activation of the corresponding unit in the filtered grid. In this case, the filtering parameters are the
following: the grain is 4, the profile is an exponential and the spread parameteris 1.2.

filtering. The filtered grid is then presented to a connectionist network for learning (see below).
The microworld consists of 4 categories of such images. For each category, a basic random dot
pattern was created. Out of each of these 4 basic patterns, 7 distorted patterns were generated by
moving each dot around its original basic location. Each category of images is then associated
to a single label (A, B, C or D).

Network Archltecturs.

The basic architecture of the network is shown in Figure 2. The learning rule used during the
simulations is the back-propagation algorithm (Rumelhart, Hinton & Williams, 1986). The net-
work is an auto-associative network. With this architecture, the input and output layers are
identical and the network learns how to encode the incoming information in the hidden layers
(Cottrell, Munro & Zipser, 1987; Zipser, 1987, Baldi & Hornik, 1988). In the present network,
there are two pairs of input and output layers. One input layer theoretically corresponds to the
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Figure 2. The network has two input layers, two cormresponding output layers and three hidden layers: one for each input layer and one common to
both. This last layer will encode the information that is necessary to reproduce the input pattemns. Each layer is given a name that will be used in
the paper. L-in stands for labels at the input level, L-rep for the representation of the labels, L-out for the labels at the output level, L-in for the
"images" at the input level, L-rep for the representation of the "images"”, L-out for the "images” at the output level, and Li-rep for the representa-
tion common to both labels and "images"
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"auditory modality" and the other one to the "visual modality". In the simulations, the "auditory
modality" corresponds to the category labels used in the experiments. The "visual modality"
will receive its input from the preprocessed random dot patterns. As we can see in Figure 2, the
hidden layers L-rep and I-rep are specific to each "modality” and will specifically encode the
corresponding stimuli. The common hidden layer L/-rep receives activations from both "modal-
ities" and must have the capacity to regenerate the input patterns at the output level. If there is a
correlation between the visual patterns and the labels, this common layer should be able to dis-
cover and represent it (Zipser, 1987).

Learning Dynamics.

Training consisted in three auto-associations: images to images, labels to labels, and images
plus labels to images plus labels. With a linear auto-associative network using the delta rule, it
is possible to show that the principal components of the input patterns (eigenvectors of the asso-
ciated covariance matrix) are encoded "successively", in an order depending of the size of their
respective eigenvalues (Chauvin, 1988). Thus, learning can be seen as a differentiation process
where the "central tendencies" are encoded first. The present network is a multi-layer non-linear
network using a generalization of the delta rule (back-propagation, sigmoid units). Formal
analysis of this type of network have not been made possible so far. However, simulations show
that, to some extent, similar processes happen during learning in both types of network.

Figure 3 represents a geometrical interpretation of the generic phenomena that happen in a
simple linear network. In this case, the network is composed of two input units, 1 hidden unit,
and 2 output units. The two input units correspond to two dimensions (weight and height) col-
lected from a sample of people. The main principal component is represented in the figure by a
45 degree slanted axis. Because the considered network has only one hidden unit, only one prin-
cipal component will be encoded after learning (Baldi and Hornik, 1988). This hidden unit will
represent the projection of an input pattern on this major principal component. Two projections
are shown in the figure. For the first one, a complete pattern is given as input to the network,
corresponding to the data point x1. The activation of the hidden unit represents the projection of
x1 to the major principal component. The activation of the output units represents the back-
projection of this hidden unit to the original space. As we can see, the coordinates of x1 in the
original space are basically retrieved by these projections. If we suppose now that only the
height coordinate of x2 is given as input to the network, the coordinate becomes projected to the
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Figure 3. Geometrical interpretation of pattern completion by linear projection on the major principal component (see text). Two points are pro-
jected. The first one, x1, is projected from the complete original position to the major principal component. For x2, the "height” coordinate only
is projected. Each of these principal component projections is then reinterpreted by back-projection in the original weight/height space.
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major principal component and then back to the original space. As we can see, some informa-
tion has been retrieved about the "weight" of x2. This corresponds to a pattern completion
phenomenon by projection on the principal component.

SIMULATIONS
Categorization

After leamning, a label presented to L-in reproduces itself in L-out and an image presented to /-in
reproduces itself in /-out. The layers L-rep, I-rep, and LI-rep then represent the compressed
information (Cottrell, Zipser, & Munro, 1987) of the input patterns. For a right amount of hidden
units, presented with an image, the network is able to produce the label that corresponds to the
associated category: there is production. Presented with a label, the network is able to give an
image that basically corresponds to the average of all the images that have been stored with the
same label: there is comprehension. For a sufficient number of images per category and a right
set of low-level filtering parameters, the prototype effect can be observed for comprehension, as
observed with infants (Thomson & Chapman, 1977), and production. Interestingly, because
images form clusters, knowing the shape of an image provides some information about what the
label should be. However, the network is not being trained to produce a label when an image is
presented. The network does use the image information and automatically learns the cross asso-
ciation only because there is auto-association image to image and subsequent cluster extraction
during learning: the internal representation of the images is necessary for the development of
the labeling process.

Gradual Generallzations

Three levels of distortion are used to test generalization of categorization to new images (the net-
work was trained on patterns created with the medium level only). These levels of distortions
correspond to different standard deviations of a Gaussian noise added to each dot location of the
prototypical images. Figure 4 shows the acquisition orders of each distortion level. As we can
see, the network gradually learns how to generalize production and comprehension to more and
more distorted patterns. Thomson and Chapman (1977) and others observed gradual generaliza-
tion for comprehension with infants. Interestingly, generalization actually occurs earlier and fas-
ter for comprehension than for production.
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Figure 4. Gradual generalization for production and comprehension. The network gradually leams how to respond correctly to more and more
distorted patterns.
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Comprehension before Production.

Figure 5 shows production and comprehension data as a function of the number of learning
cycles. We can see that production and comprehension performances are similar after sufficient
training but that comprehension performance is clearly higher than production during early
learning, in agreement with comprehension/production data observed during human first word
acquisition (e.g. Bates, 1976). Label and image features can actually be considered as category
features. Among these features, labels are the most "significant” because they are consistently
present in all the examples of the category. For that reason, labels become good indicators of the
category clusters and will allow good reconstitution of the images. In contrast, image features
may be present or absent or "graded” among the examples and will not reconstitute the labels as
well.

Acquisition Rates

Typically, categorization rates are low during early learning and suddenly increase as learning
goes on. This initial period is usually longer for production than for comprehension and the pro-
duction rate increase is not as sharp. During the differentiation process, the network actually
learns how to distinguish the categories before distinguishing the exemplars within each
category. As long as the categories are not distinguished, the network is still able to categorize
some of the patterns correctly, "by chance", depending on their "projection” to the category aver-
ages. However, there is very little generalization during this period: the network is only able to
generalize to patterns that are closely correlated to already stored patterns. When the network
starts to "realize" that there exist category clusters, by "pulling apart” the corresponding aver-
ages, there is generalization and sharp increase in the acquisition rates. This sharp increase in
comprehension and production rates can be compared to the well-known vocabulary explosion
observed in production with humans (e.g. Barrett, 1983).

Decontextualization and Underextensions

Here, decontextualization is viewed as the process of shifting from temporarily associating a
label with a single image to extending the association to the complete set of images correspond-
ing to the label. Simulations show various cases of decontextualization depending on the initial
weights of the network. In the most common case, a label is correctly mapped to only one image
for some time and becomes slowly extended to the whole category while being generalized to
new category examples. In another case, two category labels are decontextualized one after the
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Figure 5. Comprehension versus production. During early leaming, performance on comprehension is better than on production.
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other: one is decontextualized much later than the other one, but also much faster. In other
cases, the opposite phenomenon occurs, where a first category label is quickly decontextualized
whereas another one is decontextualized much later and much more slowly. Interestingly, the
simulations are very consistent with recent human data on decontextualization. There does not
seem to exist an initial period where labels are first slowly decontextualized and a subsequent
period where they are decontextualized from the onset (as previously suggested by Bates, 1979).
In agreement with Barrett (1986, In Press), a label can be correctly mapped to a complete
category early in learning while some other label might appear later and be slowly decontextual-
ized. Furthermore, underextension followed by a forgetting stage followed by correct extension
might occur, as observed by Bloom (1973).

Overextensions.

During very early learning, the network extracts the general average taken over the entire set of
stored patterns. However, after this initial period, the network encodes the first principal com-
ponent of the patterns and finds a steepest slope in a direction that might better correspond to
one of the categories. Any other pattern correlated with this biased category will be similarly
categorized by the network and overextensions might occur. In the model, if a label unit activa-
tion in L-out is above a given threshold but does not correspond to the label associated with a
presented image, it can be considered as an over-extension of the indicated category. Simula-
tions show that for production, over-extensions do occur for some of the categories and can be
highly variable. When they occur, they are generally followed by periods of underextension,
before being slowly readjusted to a correct "extension level". Overextensions are also much
more likely to occur during early learning than during late learning. Figure 6 shows the total
amount of overextensions and the total amount of correct extensions as a function of the number
of cycles during a typical run. Overextensions also occur during comprehension. However, they
start earlier, they end earlier, and they are not as numerous as overextensions during production.
This difference between production and comprehension is also due to the fact that labels are
good cluster indicators. Again, there are interesting similarities between the way the network
learns and the way children acquire their first words. First, the network produces overexten-
sions, in spite of equiprobable presentations (e.g. Rescorla, 1980). Second, the overextensions
occur mostly during early learning: the late acquired categories are not overextended (Rescorla,
1976). Third, overextensions can be followed by a "recession” stage before correct extensions
begin to take place. Fourth, overextensions are more frequent in production than in comprehen-
sion (Thomson & Chapman, 1977). Fifth, if a category is being correctly extended, then no other
category can overextend to it (Leopold, 1949).
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Figure 6. Total number of correct and over extensions as a function of the number of cycles for production during a typical nm.
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SUMMARY AND DISCUSSION

The patterns stored in the network can be viewed as multi-dimensional correlated vectors. The
delta learning rule encodes these sets of vectors by first representing their major principal com-
ponents. Figure 3 shows a geometrical interpretation of the phenomena occurring in a simple
linear network for a low dimensional space. The projections represent the "knowledge" that the
network has about the world. To retrieve the world knowledge from this representation means
back-projecting these projections to the original space. If there is sufficient information
compression in the hidden layers, labels will be retrieved from images and prototypical images
from words (production and comprehension). The strictly consistent mapping between labels
and image categories creates learning asymmetries between comprehension and production. In
general, the direction of the main principal components depends on the image clusters and on the
consistency between labels and image clusters. Therefore, a category prototype closer to the
first principal component might dominate the whole set of examples during early learning, creat-
ing over-extensions to the related category. As the "category directions" are being discovered by
the network, it becomes much easier to classify the examples belonging to the corresponding
clusters (comprehension and production rate explosions). From this onset onwards, examples
are really classified according to their prototypical directions. Finally, images can reproduce
labels only because there is a differentiation process happening during auto-association of the
images. During this process, the image clusters are reinforced in the internal representations and
the labels can "understand" the information coming from the images. In this sense, the internal
representation of the world, seen as a principal component or "central tendency" analysis, is
necessary for the linguistic mapping.

The goal of this study is not to construct a realistic model of first word acquisition. Rather,
it is to explore if phenomena related to symbolic emergence in infants could be "naturally under-
stood” in a Parallel Distributed Processing framework. The differentiation process proposed by
psychologists such as Piaget and Wemner during early language acquisition is reminiscent of the
phenomena occurring in simple linear networks using an error correction rule. Therefore, the
original idea was to store in a network using such a rule, a set of patterns that would correspond
to labels and images and to observe how and understand why associations between these labels
and patterns could be built during learning. The network had to internalize the presented pat-
terns in such a manner that resulting representations would be able to reproduce images and
labels from images or labels. This constraint forced a level of representation that would
compress labels and images into a common encoding layer. The present network can then be
seen as a simple generic model that "embodies” these very general principles. Interestingly, the
network was able to mimic quite a number of first word acquisition phenomena just by using
these few principles.
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