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Infection of the central nervous system (CNS) by neurotropic viruses represents an increasing worldwide
problem in terms of morbidity and mortality for people of all ages. Although unique structural features of the
blood-brain-barrier (BBB) provide a physical and physiological barrier, a number of neurotropic viruses are
able to enter the CNS resulting in a variety of pathological outcomes. Nonetheless, antigen-specific lymphocytes
are ultimately able to accumulatewithin the CNS and contribute to defense by reducing or eliminating the invad-
ing viral pathogen. Alternatively, infiltration of activated cells of the immune systemmay be detrimental, as these
cells can contribute to neuropathology that may result in long-term cellular damage or death. More recently,
myeloid cells e.g. neutrophils have been implicated in contributing to both host defense and disease in response
to viral infection of the CNS. This review highlights recent studies using coronavirus-induced neurologic disease
as a model to determine how neutrophils affect effective control of viral replication as well as demyelination.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Intracranial infection of susceptible mice with the JHM strain of
mouse hepatitis virus (JHMV) causes an acute encephalomyelitis
followed by a chronic demyelinating disease similar to the human
demyelinating disease multiple sclerosis (MS). Early following JHMV
infection of the CNS, the virus targets ependymal cells lining the ventri-
cles, replicates, and rapidly disseminates into the brain parenchyma at
which point the virus infects and replicates within astrocytes, oligoden-
droglia, and microglia throughout the brain and spinal cord [45]. In
response to viral infection of glial cells, a rapid and orchestrated expres-
sion of chemokines occurs that contribute to attracting inflammatory
cells into the CNS. In terms of host defense, secretion of chemokines de-
rived from the CNS, including CXCL10 and CCL5, promote themigration
and accumulation of virus-specific CD4+ and CD8+ T cells that control
viral replication via secretion of IFN-γ and cytolytic activity. While in-
flammatory T cells are effective in eliminating virus, sterile immunity
is not achieved; viral protein and/or RNA persist within astrocytes and
oligodendroglia resulting in chronic expression of chemokine genes
leading to chronic neuroinflammation and demyelination. Histological
features associated with viral persistence include the development of
an immune-mediated demyelinating disease similar to the human de-
myelinating diseaseMS in that both T cells andmacrophages are critical
mediators of disease severity and contribute to myelin damage [5,32].

Through the course of both acute and chronic JHMV-induced neuro-
logic infection, there is a coordinated expression of chemokines and
chemokine receptors that regulate inflammation contributing to
both host defense and disease exacerbation. Among the chemokines
expressed during infection are members of the ELR(+) chemokine
family CXCL1, CXCL2, and CXCL5. CXCL1 and CXCL2 are potent
chemoattractants for neutrophils via binding and signaling through
the receptor CXCR2 [28,39,48]. Moreover, PMNs have been shown to
enhance CNS inflammation by disrupting blood brain barrier (BBB)
integrity in various animal models of chronic neuroinflammation in-
cluding spinal cord injury (SCI) [9,44] and autoimmune demyelination
[4] while blocking or silencing of CXCR2 signaling mutes inflammation
and tissue damage inmousemodels in which PMN infiltration is critical
to disease initiation [2,4,9,18,24,25,43,47].

2. Neutrophils and acute viral-induced encephalomyelitis

Neutrophils represent a component of the innate immune response
and provide an essential role in killing invading pathogens through an
arsenal of defense mechanisms including release of microbicidal gran-
ules and release of reactive oxygen/nitrogen species [3,30]. While a
clear role for neutrophils in combating bacterial pathogens is docu-
mented [3,30], how these cells contribute to host defense and disease
in response to CNS viral infection is less well characterized. McGavern
et al. [19] employed two-photon microscopy to elegantly demonstrate
that neutrophils, along with monocytes, were responsible for vascular
leakage and acute lethality following lymphocytic choriomeningitis
virus (LCMV) infection of the CNS. Human immunodeficiency virus-1
(HIV-1) infection of monocyte-derived macrophages increases expres-
sion of CXCL5 that serves to attract neutrophils that may augment
neuropathology by contributing to neuron death [10]. Experimental
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infection of mice with West Nile virus (WNV) in which neutrophil traf-
ficking to the CNS is impaired results in increased protection fromWNV
encephalitis by limiting immune cell access to the CNS thus diminishing
neuropathology [46]. With regards to JHMV-induced encephalomyeli-
tis, early work by Stohlman et al. [50] highlighted a previously unrecog-
nized role for neutrophils in effectively controlling viral replication
within the CNS. The underlyingmechanisms by which neutrophils con-
tribute to an effective host defense are related to neutrophil-mediated
permeabilization of the blood-brain-barrier (BBB) through release of
matrix metalloproteinase 9 (MMP-9) [50] although other factors inde-
pendent of MMP-9 may also be involved [37]. In addition, monocytes
can also enhance T cell accumulation within the CNS of JHMV-infected
mice through the glia limitans [37]. Neutrophils are rapidly mobilized
from the bone-marrow and into the blood in response to CNS infection
by JHMV and this most likely reflects the precipitous increase in expres-
sion of the neutrophil chemoattractants CXCL1, CXCL2, and CXCL5 that
all bind to their cognate receptor CXCR2with high binding [12]. Indeed,
treatment of JHMV-infected mice with a blocking antibody specific for
CXCR2 resulted impaired migration of CXCR2-bearing neutrophils to
the CNS and this resulted in increased mortality that was associated
with impaired ability to control viral replication within the CNS [12].
Blocking neutrophil accumulation within the CNS resulted in reduced
expression of MMP-9, limited permeabilization of the BBB, and dimin-
ished infiltration of virus-specific T cells [12]. Collectively, these findings
illustrate that neutrophils are an important component of an effective
host defense following CNS infection with a neurotropic virus.

3. Neutrophils and viral-induced demyelination

Neutrophil infiltration into the CNS has been associated with neuro-
logic disease in pre-clinical animal models [6,14,34,38,40]. Herz et al.
[11] have recently demonstrated that CXCR2 antagonization reduced
neurological deficits and infarct volumes following middle cerebral
artery occlusion and this was associated with reduced neutrophil
infiltration into the CNS. Similarly, depletion of neutrophils following
subarachnoid hemorrhage was found to improve memory in a model
of aneurysmal subarachnoid hemorrhage (SAH) [33]. Additionally,
Zenaro et al. [49] have demonstrated a role for the adhesion molecule
lymphocyte function-associated antigen 1 (LFA-1) in promoting neu-
trophil accumulation within the CNS and amplifying AD-like pathology
in transgenic models of Alzheimer's disease (AD). Depletion of neutro-
phils and/or a deficiency in LFA-1 resulted in protection from cognitive
decline and reduced gliosis arguing that blocking neutrophil trafficking
may be beneficial in AD [49]. Within models of spinal cord injury/
trauma, neutrophils are among the first cells to accumulate within the
site of injury and a number of studies argue for a pathogenic role for
these cells through limiting tissue sparing andmotor recoverywhile in-
creasing expression of pro-inflammatory cytokines [1,36]. Collectively,
these studies demonstrate that in animal models of chronic neuroin-
flammation/neurodegeneration neutrophils can amplify the severity
histologic disease and argue that blocking entry into the CNS may
limit the severity of neurologic disease.

A role for neutrophils in immune-mediated demyelination remains
to be well characterized. Ransohoff et al. [22], have shown that
CXCR2-positive neutrophils are essential for cuprizone-induced demye-
lination and potentially contribute to oligodendrocyte cell loss.
Questions remain regarding the importance of neutrophils in the path-
ogenesis of MS given the paucity of these cells in active lesions; howev-
er, elevated neutrophil numbers within the cerebrospinal fluid (CSF) of
MS patients have been correlated with clinical relapse [20]. Administra-
tion of granulocyte-colony-stimulating factor (G-CSF), a neutrophil
activatingmolecule, toMS and neuromyelitis optica (NMO) patients re-
sulted in disease exacerbation arguing for a role for these cells in ampli-
fying disease severity [16,31]. Additionally, neutrophils have been
reported to be more numerous and exhibit a more primed state in
MS patients [29]. Recent studies [15,35] highlight the importance
of CXCL1 as well as other myeloid-chemoattractant molecules as
having a possible role in potentiating disease in patients with either
relapsing-remitting or progressive forms of MS, suggesting that soluble
factors that attract neutrophils and/or neutrophil-related molecules
may be important therapeutic targets for MS patients. Support for this
notion is derived from studies employing experimental autoimmune
encephalomyelitis (EAE) as a model for MS in which disease onset is
mute when neutrophil trafficking to the CNS is disrupted [4,27]. More
recently, Stoolman et al. [42] have expanded on these findings to
show that enriched expression of CXCL2 within the brainstem attracts
neutrophils that substantially contribute to atypical EAE. Similarly,
mice in which neutrophils lack suppressor of cytokine signaling 3
(SOCS3) exhibit an increase in susceptibility to the atypical EAE and
this correlates with preferential recruitment of neutrophils into the cer-
ebellum and brainstem [23]. The site of neutrophil recruitment may be
critical in terms of amplifying histopathology as neutrophil accumula-
tion within the brain, but to a limited extent in the spinal cord, contrib-
ute to tissue injury [41]. Collectively, these findings indicate that
neutrophils can affect the severity of clinical disease and neuroinflam-
mation in EAE.

4. A transgenic model to study viral-induced neutrophil-mediated
neuropathology

In attempt to better understandhowneutrophils influence both host
defense and disease following CNS viral infection, we have recently
engineered transgenic mice to utilize the tetracycline-controlled tran-
scriptional activation system in which the human glial fibrillary acidic
protein (hGFAP) promoter drives expression of a modified version
of the reverse tetracycline transactivator protein (rtTA*M2) [26]
(Fig. 1A). Astrocytes were chosen for targeted expression of CXCL1 as
previous studies [7,8,17] have shown that JHMV-infected astrocytes ex-
press CXCL1 [13,21]. In the presence of doxycycline (Dox), transcription
initiates at a tet-operon and leads to production of recombinant CXCL1
mRNA transcripts. Double transgenic (tg) mice (pBI-CXCL1-rtTA) and
single tg mice (pBI-CXCL1) were generated; characterization of double
tg mice revealed Dox-dependent expression of CXCL1 from cultured
astrocytes as determined by ELISA (Fig. 1B) [26]. I.c. infection of Dox-
treated double tg mice with JHMV resulted in a selective increased
expression of CXCL1 mRNA transcripts and protein within the brain
and spinal cords when compared to Dox-treated single tg mice infected
with JHMV (Fig. 1C) [26]. Dox-induced overexpression of CXCL1 did not
enhance control of viral replication within the CNS as both infected
double and single tg mice exhibited similar viral titers at defined
times post-infection (p.i.) norwere there differences in either frequency
or numbers of virus-specific CD4+ and CD8+ T cells within the CNS of
double tg mice compared to single tg mice [26]. However, Dox-
treatment of JHMV-infected double tgmice resulted in increased clinical
disease and mortality when compared to infected single tg mice [26].

In conjunction with increased expression of CXCL1 initiated within
the CNS of Dox-treated double tg mice infected with JHMV, there was
a rapid increase in CXCL1 protein levels in serum [26]. Correspondingly,
there is a rapid increase in neutrophils within the blood at days 4
(p b 0.05) and 7 (p b 0.001) in double tg mice compared to infected sin-
gle tg controls [26]. Dox-induced CXCL1 production in JHMV-infected
double tg mice also resulted in an increase in neutrophil frequency
within the brain at days 4 and 7 p.i. [26]. Similarly, therewas an increase
in neutrophil frequency within spinal cords of double tg mice at days 4
(p b 0.01) and 7 (p b 0.05) p.i. compared to single tg mice [26]. Immu-
nofluorescence staining for neutrophils (Ly-6B.2) supported the flow
cytometric data and revealed increased numbers of neutrophils
accumulating within the meninges of double tg mice at day 7 p.i. [26].
The increased presence of neutrophils within the CNS of double tg
mice suggested that there would also be a corresponding increase in
blood-brain-barrier (BBB) permeability. Surprisingly, no differences
were observed in BBB permeability within the brain or spinal cord at



Fig. 1. Derivation and characterization of a mouse model in which CXCL1 expression within the CNS is under control of a Doxycycline promoter. (A) Cartoon depiction of experimental
strategy to generate double (dbl) transgenic (tg) mice in which expression of mouse CXCL1 is under control of the GFAP promoter upon doxycycline treatment. (B) Cortex tissue from
double tg and single tg post-natal day 1 (P1) mice was dissociated and enriched for astrocytes. Following 24-h of Dox (100 ng/ml) treated double tg astrocyte cultures,
immunofluorescence confirmed CXCL1 expression within GFAP-positive astrocytes while vehicle treatment yielded no CXCL1 fluorescence. (C) Within the SC, dox-treated double tg
mice had statistically significant increases in CXCL1 mRNA expression over Dox-treated single tg mice at days 7 and 12 p.i. Images adapted from [26] with permission.
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day 4 p.i. as measured by sodium fluorescein (NaF) uptake [26]. Exam-
ination of spinal cords from JHMV-infected Dox-treated double tg mice
revealed an overall increase (p b 0.05) in the severity of demyelination
when compared to infected single tg animals (Fig. 2A) [26]. The increase
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B 

C 

Fig. 2. Elevated CXCL1 expression is associated with increased demyelination. Histopathol
(A) Representative luxol fast blue (LFB)-stained spinal cords reveals increased (p b 0.05) dem
(B) Flow cytometric analysis revealed a significant increase in the frequency and total num
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arrowheads) within the spinal cord parenchyma of JHMV-infected double tg compared to sing
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[26] with permission.
in demyelination in double tg mice was associated with a significant
(p b 0.05) loss of mature oligodendrocytes (as determined by expres-
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microglia in Dox-treated JHMV-infected double tg mice compared to
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yelination in JHMV-infected Dox-treated double tg mice compared to single tg controls.
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rol IgG2a or anti-Ly6G antibody between days 3–15 p.i. Quantification of the severity of
dy compared to mice treated with isogenic IgG2a control antibody. Images adapted from
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infected single tgmice [26]. Flow cytometric data indicated that neutro-
phil frequencies within the spinal cords of infected double tg were
significantly increased (p b 0.01) as well as their total numbers
(p b 0.001) at day 12 p.i. compared to single tg mice (Fig. 2B) [26].
Additionally, neutrophils were detected within the spinal cord paren-
chyma of double tg mice compared to single tg mice (Fig. 2B) [26].
Elimination of neutrophils via administration of anti-Ly6g monoclonal
antibody injection into JHMV-infected double tg mice treated with
Dox resulted in a reduction in the severity of demyelination when
compared to mice treated with isotype control antibody (Fig. 2C) thus
demonstrating that neutrophils are capable of augmenting the severity
of white matter damage [26].

5. Perspectives

Although a role for neutrophils in host defense following infection
with bacterial pathogens has been appreciated for a number of years,
how neutrophils affect host defense in response to viral infection of
the CNS has not been as well studied. However, it is now clear that
neutrophils are capable of enhancing control of viral replication within
the CNS through increasing the permeabilization of the BBB thereby
allowing antigen-specific lymphocytes access to sites of infection.
Equally interesting is how neutrophil infiltration into the CNS contrib-
utes to neuropathology e.g. demyelination. Compelling new informa-
tion derived from clinical studies from MS patients as well as
preclinical animal models of MS have emphasized a potential role for
these cells in amplifying white matter damage opening the possibility
of targeting neutrophil migration into the CNS as a therapeutic strategy
to limit CNS damage.
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