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1.  Introduction
Geothermal energy is considered a key base-load resource for transitioning to a zero-emissions sustainable energy 
future (Sbrana et al., 2021). Geothermal energy currently accounts for only 0.4% of net electricity generation 
(∼18.3 GW) in the United States (EIA, 2021). However, the U.S. Department of Energy has established an ambi-
tious goal of supplying 60 GW of enhanced geothermal (EGS) and expanded hydrothermal by 2050 (GTO, 2022). 
Accomplishing these goals will require significant advances in exploration, reservoir characterization, and 
resource development. Studies assessing the electric power production potential from US moderate-to-high 
temperature geothermal resources estimate that the power production potential from undiscovered geothermal 
resources is more than three times the estimated potential from identified geothermal systems (C. Williams 

Abstract  The Imperial Valley, CA, is a tectonically active transtensional basin located south of the Salton 
Sea; the area hosts numerous geothermal fields, including significant hidden hydrothermal resources without 
surface manifestations. Development of inexpensive, rugged, and highly sensitive exploration techniques 
for undiscovered geothermal systems is critical for accelerating geothermal power deployment as well as 
unlocking a low-carbon energy future. We present a case study utilizing distributed acoustic sensing (DAS) and 
ambient noise interferometry for geothermal reservoir imaging, utilizing unlit fiber-optic telecommunication 
infrastructure (dark fiber). The study exploits two days of passive DAS data acquired in early November 2020 
over a ∼28-km section of fiber from Calipatria, CA to Imperial, CA. We apply ambient noise interferometry to 
retrieve coherent signals from DAS records and develop a bin stacking technique to attenuate the effects from 
persistent localized noise sources and to enhance retrieval of coherent surface waves. As a result, we are able 
to obtain high-resolution two-dimensional (2D) S wave velocity (Vs) structure to 3 km depth, based on joint 
inversion of both the fundamental and higher overtones. We observe a previously unmapped high Vs and low 
Vp/Vs ratio feature beneath the Brawley geothermal system, which we interpret to be a zone of hydrothermal 
mineralization and lower porosity. This interpretation is consistent with a host of other measurements including 
surface heat flow, gravity anomalies, and available borehole wireline data. These results demonstrate the 
potential utility of DAS deployed on dark fiber for geothermal system exploration and characterization in the 
appropriate geological settings.

Plain Language Summary  Geothermal resources are considered a valuable component of our 
global transition to a zero-emissions sustainable energy future. In the Imperial Valley, CA, three of the four 
producing geothermal fields have no active surface features. The development of inexpensive, rugged, and 
highly sensitive exploration techniques for undiscovered geothermal systems is a critical step in accelerating 
geothermal power discovery and deployment. We utilize a novel technology that converts ∼28-km section 
of existing unused telecommunication fiber into seismic sensors (called distributed acoustic sensing, DAS) 
to characterize the subsurface geothermal resources. Ambient seismic noise data are recorded and processed 
to retrieve high quality coherent seismic waves after localized noise sources are attenuated. Our results 
reveal significant high-velocity anomalies beneath the Brawley Geothermal Field; these are coincident with 
observations from boreholes, heat flow, and gravity surveys which indicate hydrothermal alteration has a 
pronounced effect on the physical properties of the metamorphosed sediments.
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et  al.,  2008). A significant portion (∼30%) of the estimated undiscovered resource in the US is predicted to 
occur within the Imperial Valley (C. Williams et al., 2009). Development of improved exploration strategies for 
undiscovered geothermal systems is critical for accelerating geothermal power deployment (Dobson, 2016; C. 
Williams et al., 2009).

Active hydrothermal systems are often associated with measurable differences in physical properties (e.g., 
high heat flow, low electrical resistivity, elevated density, and attenuation of high frequency elastic waves). As 
a result, geophysical methods can play a key role in geothermal exploration (e.g., Combs,  1978; Flóvenz & 
Saemundsson, 1993; Santos & Rivas, 2009; Thanassoulas, 1991; Zucca et al., 1994). For example, heat flow 
anomalies, derived from temperature measurements in shallow boreholes, can be used to locate and outline poten-
tial geothermal fields (Burton-Johnson et al., 2020; Fahnestock et al., 2001; Kratt et al., 2008; Zehner et al., 2012). 
Gravity surveys can be used to study the depth of fill in intermontaine valleys, locate intrusive masses of rock 
and delineate geothermal features (Atef et al., 2016; Guglielmetti & Moscariello, 2021). A combination of resis-
tivity profiles, derived from active or passive electromagnetic (EM) surveys, and heat flow measurements from 
temperature gradient wells are often used to search for zones likely to host permeable geothermal reservoirs 
sealed with an overlying clay cap (Anderson et al., 2000; Gao et al., 2018; Munoz, 2014). Active-source seismic 
reflection profiles can be used to identify faults, which may facilitate flow, in hot sedimentary systems using 
reflection offsets, as well as image basement contacts and verify structures related to tectonic processes relevant 
to geothermal system development (Brogi et al., 2005; Lüschen et al., 2011; McGuire et al., 2015). Lastly, passive 
microseismic surveys are widely used for studying slip on seismogenic faults, which may create and maintain 
permeability (Combs & Hadley, 1977; Lellouch et al., 2020; Ward, 1972). However, considering the limitations 
of these different approaches, suites of methods are typically used in concert to verify proposed system location, 
conditions, and associated structures before exploratory wells are drilled (Ars et al., 2019; Soyer et al., 2018).

Compared to relatively expensive active-source seismic methods, ambient noise interferometry can be a 
cost-effective imaging approach, valuable for both characterization and long-term monitoring. Following the 
pioneering work of Campillo and Paul (2003), ambient noise interferometry can be used to estimate an empir-
ical Green's function (EGF) between two receivers by cross-correlating the ambient seismic wavefield (Behm 
et al., 2019; Bensen et al., 2007; Cheng et al., 2016, 2018; Fichtner et al., 2020; Nakata et al., 2015; Shapiro & 
Campillo, 2004; Snieder, 2004; Snieder et al., 2009; Wapenaar, 2004). In recent years, ambient noise interfer-
ometry techniques have found a variety of applications for geothermal reservoir imaging, often leveraging dense 
arrays of nodal (i.e., passive autonomous) seismometers (e.g., Cheng, Xia, Ajo-Franklin, et al., 2021; Lehujeur 
et al., 2018; Martins et al., 2019, 2020; Planès et al., 2020; Spica et al., 2018; Zhou et al., 2021). Recorded EGFs 
are often rich in surface wave energy, hence the most commonly retrieved physical property from ambient noise 
studies are shear wave velocities estimated using surface wave tomography methods.

Currently, there are still large portions of western basins in the U.S. that are relevant to geothermal energy 
production but poorly mapped using classical high-resolution seismic methods. This is due to the high costs of 
active seismic surveys and the lack of availability of “Large-N” passive seismic datasets required for ambient 
noise imaging. These factors likely result in both missed prospects as well as limitations in our understanding of 
regional geological frameworks relevant to geothermal prospecting.

Distributed fiber optic sensing is a family of techniques that utilizes standard optical fibers to make measurements 
of local physical parameters including temperature (Tyler et al., 2009), static strain (Masoudi & Newson, 2016), 
and most recently low amplitude dynamic strain or strain rate (Lindsey & Martin,  2021). The last approach, 
referred to as distributed acoustic sensing (DAS), is an emerging technology that repurposes a fiber-optic cable 
as a dense array of seismic sensors and in some environments is transforming seismic acquisition (Ajo-Franklin 
et al., 2019; Cheng, Chi, et al., 2021, 2022; Daley et al., 2013; Dou et al., 2017; Lindsey et al., 2017; Martin 
et al., 2021; Zhan, 2020). DAS utilizes laser pulses to interferometrically measure minute extensional strains 
(or strain rates) over spatially continuous intervals along an optical fiber (Hartog, 2017), and has advantages 
of fine spatial resolutions down to the meter scale with linear extents from tens to hundreds of km, and broad 
bandwidth from the kHz range to quasi-static depending on interrogator unit and measurement parameters 
(Lindsey et al., 2020; Paitz et al., 2021). DAS has been successfully used for urban near-surface characterization 
(Ajo-Franklin et al., 2019; Dou et al., 2017; Fang et al., 2020), monitoring of unconventional reservoirs (Cheng 
et al., 2021; Daley et al., 2013; Jin & Roy, 2017), glacial deformation (Booth et al., 2020; Walter et al., 2020), and 
ocean dynamics (Cheng, Chi, et al., 2021; Lindsey et al., 2019; E. F. Williams et al., 2021; Viens et al., 2022). 
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Recently, several DAS-related feasibility studies have been conducted to characterize geothermal reservoirs (e.g., 
Chalari et al., 2019; Chang & Nakata, 2022; Feigl & Parker, 2019; Feigl & Team, 2017; Kasahara et al., 2020; 
Lellouch et al., 2021; Schölderle et al., 2021).

In the Imperial Valley, CA, there are three producing geothermal systems that have no active surface thermal 
features and additional undiscovered resources likely exist in the region (e.g., C. Williams et al., 2009). In this 
study we investigate the potential of high-resolution ambient noise imaging, using DAS data acquired on existing 
unused telecommunications fiber, to image geothermal reservoir structure. We briefly summarize the acquisition 
and the main characteristics of ambient seismic noise records obtained from the ∼28-km Imperial Valley Dark 
Fiber (IVDF) DAS array that runs along a portion of Imperial Valley, CA, and crosses the producing Braw-
ley geothermal field; a detailed overview of the acquisition and associated metadata was recently presented in 
Ajo-Franklin et al. (2022). We then extract high-quality Rayleigh waves based on ambient noise interferometry, 
and apply surface wave inversion across the profile to generate a two-dimensional (2-D) S wave velocity model. 
The resulting image identifies a zone of high Vs closely correlated with the Brawley heat flow anomaly. We 
hypothesize that the imaged feature is due to a zone of hydrothermal mineralization at the core of the Brawley 
geothermal field, which has resulted in significant reduction in porosity. We conclude by attempting to verify this 
hypothesis using secondary datasets including regional velocity models, existing wireline logs, gravity measure-
ments, and heat flow data. Our results demonstrate the feasibility of such passive DAS surveys for detecting and 
characterizing structures relevant to geothermal systems at the basin scale.

2.  Area and Data
The Imperial Valley, south of the Salton Sea, is part of the landward extension of the Gulf of California, within 
a broad, structural trough (referred to as the Salton Trough) partly filled with late Tertiary deltaic sediments 
which are in turn covered by Quaternary alluvium and lacustrine deposits (Jackson, 1981). The Salton Trough is 
a tectonically active rift basin located at the southern terminus of the San Andreas Fault system as it steps over 
into the continental transitional zone between the North American and Pacific Plates (Kaspereit et al., 2016). The 
transition from transform faulting to rifting results in a series of smaller-scale pull-apart basins of different sizes 
that connect right-stepping, strike-slip faults that strike generally northwest (Elders et al., 1972; Fuis et al., 1982; 
Hill, 1977; Hill et al., 1975; Johnson & Hadley, 1976). This pattern of faulting forms in transtensional shear zones 
where there are structures related to both strike-slip and extension. Major faults (red lines in Figure 1a) in the 
region include the Imperial Fault (IF), the Superstition Hills Fault (SHF), the Superstition Mountain Fault (SMF) 
and the Brawley Fault (BF, we use the Brawley fault as mapped by Hill et al. (1975) and Jackson (1981)). The 
southeast end of the San Andreas Fault is linked to the northwest end of the Imperial Fault by a band of seismicity 
referred to as the Brawley Seismic Zone (outlined by the orange line in Figure 1a).

Within the Salton trough, these tectonic forces are currently active and allow mantle-sourced magmas to intrude 
into the shallower sediments, which are evidenced by the presence of young rhyolitic domes along the southern 
shore of the Salton Sea and the intersection of buried rhyolitic domes in a number of geothermal wells in the 
Salton Sea Geothermal Field (e.g., Herzig & Jacobs, 1994; Hulen & Pulka, 2001; Schmitt & Hulen, 2008). Past 
studies have inferred igneous intrusion at depth due to the existence of potential field anomalies (both gravity 
and magnetic), high seismic velocities, and a localized zone of elevated heat flow; these geophysical signatures 
are aligned with Quaternary volcanism visible in surface exposures on the southern shore of the Salton Sea 
(Biehler, 1964; Elders et al., 1972; Larson et al., 1968; Lomnitz et al., 1970). Current regional thermal models 
hypothesize that these intrusive features provide a heat source for hydrothermal activity and drive sediment 
alteration (McGuire et al., 2015). The thick deltaic sediment stack filling the basin contains geothermal brines 
in some locations, referred to as known geothermal resource areas (KGRA, highlighted with green polygons in 
Figure 1a): Salton Sea Geothermal Field (SSGF), Brawley Geothermal Field (BGF), East Mesa Geothermal Field 
(EMGF) and Heber Geothermal Field (HGF); there are additional KGRAs in the area (such as Westmorland, 
Glamis, and Dunes) that have yet to be developed.

Local seismicity and earthquake focal mechanisms across the area have been extensively studied (Brodsky & 
Lajoie,  2013; Hauksson et  al.,  2013; Hill et  al.,  1975; Lin et  al.,  2007; Lohman & McGuire,  2007; Marone 
et  al.,  1991). Historical seismicity has been characterized by narrow zones of right lateral events extending 
between the Brawley and the Imperial faults within the Brawley Seismic Zone, and a broader zone of right lateral 
activity along the San Jacinto Fault. Seismic activity was also observed at the Salton Sea and Brawley geothermal 
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fields, which lie on the Brawley fault, and at the Heber geothermal field near the extension of the San Jacinto 
Fault. In contrast, the Glamis and Dunes geothermal areas and the East Mesa geothermal field have experienced 
low levels of seismicity in the past. These observations are consistent with the historical earthquake catalog 
(green-to-blue scatters in Figure 1a) relocated by Hauksson et al. (2012).

Past efforts to locate hidden geothermal systems in the Imperial Valley have yielded an unusually detailed map 
of regional heat flow (C. Williams et al., 2007, 2008). Figure 1b clearly shows that the SSGF geothermal system 
and three previously hidden geothermal systems (BGF, EMGF, and HGF), highlighted with green polygons, 
are visible as areas of elevated heat flow with local values >350 mW/m 2. The average heat flow in the region is 
roughly twice as large as the national average heat flow (Lachenbruch & Sass, 1973). The visibility of thermal 
anomalies beyond previously mapped KGRAs suggests that significant untapped resources may still exist within 
the basin (Dobson, 2016; C. Williams et al., 2007, 2008). The blue contours in Figure 1b show Bouguer gravity 
data, acquired by Biehler (1964, 1971), overlain on the heat flow map. As can be seen, the positive Bouguer 
anomaly is aligned with the basin axis, north-northwest; observed gravity highs typically coincide with zones of 
higher heat flow and known hydrothermal systems.

Our experiment, described in detail in Ajo-Franklin et al. (2022), utilized an existing fiber-optic telecommuni-
cation cable (dark fiber) starting in Calipatria, CA, running through Brawley and Imperial CA, and then turning 
West at El Centro, terminating in Plaster City. The total path length (∼65 km) is too long for the DAS interro-
gator unit used in this experiment to fully probe; only the first ∼28-km section, the black line in Figure 1, is 
utilized with a roughly straight path crossing the previously hidden geothermal resources of the Brawley Geother-
mal Field and the complex transition zone, the Brawley Seismic Zone, where the Brawley Fault lies. The fiber 
cable was entirely subsurface over this section; while detailed engineering drawings were not available from the 
provider, we believe the bulk of the fiber was trenched and housed in PVC conduit.

Figure 1.  Site overview of the Imperial Valley dark fiber experiment. (a) Maps of the Imperial Valley with distributed acoustic sensing cable array (black line), 
Quaternary faults (red lines), Brawley seismic zone (orange dash-line polygon), rivers (Alamo River and New River, steelblue lines), geothermal fields (green 
polygons), geothermal wells (magenta triangles, #1, #8, and #9) discussed in this paper, and historical earthquakes from 1981 to 2019 (blue-to-green colored dots). The 
colors of earthquakes are coded by the relocated depths (Hauksson et al., 2012). Five yellow squares mark the cable length at 5/10/15/20/25 km locations referring to 
the north starting end. Major faults in the region are indicated by capital letters as follows: Imperial Fault (IF), Superstition Hills Fault (SHF), Superstition Mountain 
Fault (SMF) and Brawley Fault (BF). (b). Heat flow map (C. Williams et al., 2007, 2008) of the Imperial valley area overlaying with Bouguer gravity contours (blue 
lines) (Biehler, 1964, 1971).
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The IU data collection system was installed on 9 November 2020 in an Intermediate Light Amplification (ILA) 
hut in Calipatria, CA. To build a calibrated network geometry, the DAS channel locations across the array were 
updated by tap tests, where an operator uses a hammer to create a vibration at a known location like the fiber 
surface marker to provide the interpreter a known point for channel index along the fiber profile. For acquisition, 
we utilized an iDAS v2 IU (Silixa LLC) which wrote onto a local RAID storage system (QNAP). Data were 
acquired at a fixed 10 m gauge length in strain-rate with a 2 kHz laser pulse rate and a 500 Hz sampling rate. 
Ambient noise data were continuously recorded at 4 m channel interval across the ∼28 km (total 6,912 channels) 
dark fiber (single-mode SMF-28) from 10 November 2020 till the spring of 2022. Continuous records were stored 
in 1-min blocks in HDF-5 format; each record was approximately 415 MB in size.

After the first round of data retrieval in the spring of 2021, we obtained close to 4 months of continuous data 
(approximately 65T in size) from 10 November 2020 to 8 March 2021. In this study, we utilize only the first two 
days of recording to evaluate the feasibility of using DAS-based ambient noise data for high-resolution geother-
mal reservoir mapping. Complete details about experiment, installation information, earthquake observations as 
well as metadata are provided in Ajo-Franklin et al. (2022).

3.  Methods
3.1.  Noise Characteristics

Figure 2a shows a sample time-domain ambient noise record from the DAS fiber with several identified seismic 
signatures associated with anthropogenic sources. Noise characteristics vary significantly across the profile. The 
signatures of moving vehicles are visible with linear moveouts, a common observation in urbanized areas on 
both dense nodal (Cheng et al., 2018, 2019) and DAS arrays (Ajo-Franklin et al., 2019; Rodríguez Tribaldos 
et al., 2021; Wang et al., 2020). A series of persistent noise sources are also observed across the DAS array, 
visible as stationary surface wave generators and highlighted by the dashed lines in Figure 2a. Examples include 
agricultural and transport infrastructure, such as the grain silos and a loading facility, located at approximately 
0.9 km along the array, an overpass excited in resonance around 15 km, and an agriculture products wholesale 
facility close to 16 km. These powerful noise sources generate coherent surface waves visible propagating over 
multiple km; however, the persistent localized sources with strong spatial consistency (almost zero moveout 
indicated by the vertical dashed lines) will produce non-negligible spurious signals superimposed on empirical 
Green's functions (EGFs) during ambient noise interferometry, an issue which will be discussed in later sections. 
Finally, toward the southern end of the array, increasing noise levels are observed due to optical losses (Cedilnik 
et al., 2019; Waagaard et al., 2021) as well as the lack of traffic activities in the southern cropland area.

An average of 1 min power spectrum (Figure 2b) of the first 2 days of DAS ambient noise data along the cable 
shows that the dominant noise band is between 1 and 20 Hz, a typical spectra for anthropogenic noise sources 
(Cheng et al., 2019; Groos & Ritter, 2009; Zhu & Stensrud, 2019). The variable spectrum at the southern end of 
the array indicates the lack of anthropogenic signals. It is worth mentioning that the slightly quieter interior array 
section with dominant lower-frequency spectrum is located near the BGF. In this zone, and in urban areas, we 
also observe the existence of many discrete frequencies (e.g., 10, 20, and 30 Hz) that might be due to power line 
subharmonics coupled into an unknown mechanical sources. Due to the all-optical nature of DAS, they are likely 
not inductively coupled. These frequencies are ignored in our low frequency (<5 Hz) DAS seismic imaging study 
but might be relevant for near-surface ambient noise investigations.

3.2.  Ambient Noise Interferometry

Ambient noise interferometry is a family of processing approaches that attempts to reconstruct the Green's function 
between two receivers by cross-correlating the random seismic wavefields (i.e., noise) recorded at both locations. 
Assuming a homogeneous distribution of random noise sources, the cross-correlation of recorded displacement 
components at sensors A and B can be written as (Gouedard et al., 2008; Lobkis & Weaver, 2001; Snieder, 2004)

𝑑𝑑

𝑑𝑑𝑑𝑑
𝐶𝐶𝐴𝐴𝐴𝐴(𝜏𝜏) = −

𝜎𝜎
2

4𝑎𝑎
(𝐺𝐺𝐴𝐴𝐴𝐴(𝜏𝜏) − 𝐺𝐺𝐴𝐴𝐴𝐴(−𝜏𝜏))� (1)

where, CAB is the time domain cross-correlation between the displacement at the two receivers A and B, GAB 
is the Green's function between A and B, σ is the variance of the ambient noise field and a is a small atten-
uation coefficient. Despite the known challenges in retrieval of empirical Green's functions (EGFs), ambient 
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noise interferometry has been adapted to extract EGFs from surface DAS array using plane-wave theory (Dou 
et  al.,  2017; Martin et  al.,  2017,  2021). Generalized strain (DAS) interferometry equations have also been 
presented in the form of a representation theorem (Paitz et al., 2019). More recently, hybrid EGFs for strain-rate 
and velocity/strain-rate cross-correlations were introduced by Nayak and Ajo-Franklin et al. (2021) expanding the 
application of ambient noise seismology for networks including both DAS and inertial sensors.

Using ambient noise interferometry, we generated empirical Green's functions from the passive DAS data 
recorded on the Imperial Valley dark fiber array. Considering the large array size and high temporal sampling, 
interferometric processing was not applied to the raw data. We initially decimated the data set to 100 Hz in the 
time domain after applying a FIR anti-aliasing low-pass filter; this step was followed by sequential spatial median 
stacking with a five channel window, which transformed the data set from 6,912 channels (ΔX = 4 m) to 1,382 
channels (ΔX = 20 m). As a result of these steps, each 1 min noise record was reduced in size from 415 Mb to 
∼17 Mb, simplifying downstream analysis.

We then applied a classical ambient noise data preprocessing workflow (e.g., Bensen et  al.,  2007; Cheng 
et al., 2015; Cheng, Xia, Ajo-Franklin, et al., 2021) to the continuous DAS data set (2 days) by processing each 
1 min data block in native recording units (strain rate). Preprocessing steps included mean and trend removal 
to minimize the impact of drift as well as a 5% window Hanning taper applied to both ends of the time series. 

Figure 2.  Observations of ambient noise on a ∼28 km distributed acoustic sensing array. Panel (a) 60-s-long ambient noise 
record in strain-rate (unit, nanostrain/s) with seismic signatures from moving vehicles and persistent localized sources, like 
factories, crossing roads, Brawley overpass, and Brawley Airport. A rotated street map on the top of (a) shows the main 
infrastructures crossing the cable. Panel (b) 2-day averaged spectrum of the noise along the cable. Three colored stars 
represent the detected persistent localized sources, like grain silos (the red star) and crossing roads (the blue stars).

 21699356, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025240, W
iley O

nline L
ibrary on [12/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

CHENG ET AL.

10.1029/2022JB025240

7 of 23

These steps were followed by temporal and spectral normalization. The temporal normalization was performed 
by applying a 5% window running absolute mean filter. This step, advocated by Bensen et al. (2007), effectively 
equalizes nonstationary noise sources including earthquakes and large amplitude transient noise events in the 
record. We utilize a frequency domain whitening approach to improve EGF bandwidth; the weighting function 
exploits the smoothed amplitude of complex Fourier spectrum of each record (e.g., Bensen et al., 2007; Cheng, 
Chi, et al., 2021).

To extract EGFs from the preprocessed ambient noise data set, we utilized the cross-coherence algorithm which 
consists of cross-correlation followed by spectral whitening (Nakata et al., 2011; Prieto et al., 2009; Schuster 
et al., 2004). Following Cheng, Xia, Ajo-Franklin, et al. (2021), the cross-coherence algorithm has advantages 
over the cross-correlation algorithm for mitigating pseudo-arrivals associated with spectral spikes and improving 
the signal-to-noise ratio (SNR) of the resulting EGFs. After cross-coherence, we employ phase-weighted stacking 
(PWS), a technique that emphasizes contributions of coherent components to the stack and degrades weights of 
incoherent noise that do not share the same instantaneous phase, on 2 days of EGFs to boost coherent signals 
(Schimmel & Paulssen, 1997; Schimmel et al., 2011; Ventosa et al., 2017).

In the case of this data set, special attention was paid to the effects of persistent localized noise sources, several 
of which are distributed across our array as discussed previously. Figure 3a displays an example of an extracted 
EGF gather after 2 days of phase-weighted stacking with a virtual source at 1.2 km location (indicated by the red 
dashed line). Coherent signals are observed as far as ∼5 km offset range. Superimposed are three two-sided linear 
events which radiate from sources at 0.9, 1.8, and 2.6 km as highlighted with colored stars:

1.	 �The northernmost feature is identified as persistent noise from a grain silo complex; Figure 3b shows a photo-
graph of the site where vibrations are sufficiently strong to be felt by humans at a distance. High-frequency 
energy can also be observed on the averaged noise spectrum shown in Figure 2b.

Figure 3.  Example of the effect from persistent localized source. (a) Empirical Green's function gather with virtual source 
at 1.2 km location (indicated by the red dashed line). The colored stars indicate the persistent localized sources, from the 
working grain silo (red star), Yocum Rd (blue star) and Albright Rd (magenta star), which have been notated on the raw 
waveform map. Panel (b) shows the site photo of the grain silo beside the cable line as indicated by the red star on (c). The 
street map on (c) shows Yocum Rd and Albright Rd crossing the fiber-optic cable (the black line). The red dashed line on (c) 
shows the location of the virtual source on the cable. Seismic signature of the grain silo is significantly different to that of the 
crossing roads and shows dominant higher frequency components.
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2.	 �The other two dominant events are identified as source effects from roads 
crossing the fiber as indicated by the blue and magenta stars on the street 
map (Figure 3c). Compared with the energy from the grain silos, events 
from the persistent traffic noise usually show relatively lower frequencies 
and lower velocities with smaller moveouts.

It is worth mentioning that the term “persistent localized source” in this work 
mainly indicates that the source is spatially persistent and temporally frequent, 
breaking the assumptions of randomly distributed noise sources underlying 
much of the theory of ambient noise imaging. Studies focused on persistent 
localized noise sources have gained increasing attention with recent work rang-
ing from source localization (Zeng & Ni, 2010) to seismic monitoring (Dales 
et al., 2017). However, these studies are usually limited by the sparse spatial 
sampling available with conventional seismic networks; DAS offers an alterna-
tive approach to study and utilize these persistent localized sources for potential 
seismic imaging and monitoring (Song et al., 2021; E. F. Williams et al., 2021; 
Zeng et al., 2017).

Other recent studies have attempted to utilize these spurious events for struc-
tural seismic imaging (Yang et  al.,  2022). However, we believe that these 
events are source-related rather than structure-related according to our 
observations; for example, these events are usually located around the traffic 
intersections and disappear during the late evening hours. Our focus is on 
strategies to attenuate these persistent localized sources to improve the qual-
ity of conventional ambient noise imaging.

We developed a simple processing workflow to reduce these spurious events 
associated with persistent localized noise sources and to enhance the SNRs 
of the resulting EGF. For conventional ambient noise imaging utilizing 
linear arrays and multichannel analysis of surface waves (MASW) tech-
nique, a roll-along strategy, commonly applied in active-source surface wave 
surveys (Mi et al., 2017; Park, 2005; Xia et al., 2009), is often utilized. In this 
approach, the array is separated into a series of subarrays that are “rolled” 
along the profile to image subsurface lateral variations. In this workflow, 
each subarray contains only one virtual-source cross-correlation/coherence 
gather with the first trace selected as the virtual-source (we refer to these 
as CN1 virtual-source gather) to ensure the uniform spatial coverage. In 
this study, CN1 virtual-source gathers are replaced by bin-offset stacked 
CN2 virtual-source gathers for each subarray where 𝐴𝐴 𝐴𝐴

2

𝑁𝑁
= 1 + 2 + . . .𝑛𝑛 − 1 

and n is the number of traces in each subarray. Here CN1 and CN2 are defined after the basic combinatorics 
formula. Bin-offset stacks simply stack all EGF source-receiver pairs that have the same spatial offset into a 
single super-gather. Bin-offset stacking techniques have been used for signal enhancement for 2-dimensional 
(2D) dense arrays (Cheng, Xia, Ajo-Franklin, et  al.,  2021; Nakata et  al.,  2015; Zeng et  al.,  2021); we apply 
this technique to our dense 1-dimensional (1D) DAS array. In our approach, cross-coherence functions are first 
extracted for all possible inter-station pairs (CN2) after 2 days of PWS stacking. The resulting gathers are then 
spatially averaged using bin-offset stacking to generate an enhanced virtual-source gather. This binning approach 
increases the quality of the retrieved EGFs, particularly for cross-coherence pairs with small offsets, and tends to 
mitigate artifacts due to persistent noise sources and local lateral heterogeneity within each subarray. As a result, 
the stacked EGFs are more uniform, and generate more consistent dispersion curves that are more effectively 
inverted using traditional surface wave analysis algorithms. However, as one would expect, some degree of lateral 
resolution is lost in the stacking process.

Figure 4 shows a typical example of the performance of bin stacking. Compared with the CN1 virtual-source 
gather (Figure 4a), the CN2 bin stacked virtual-source gather (Figure 4b) has been significantly improved with 
attenuation of spurious arrivals associated with persistent localized sources and SNR enhancement as indicated 
by the trace-by-trace comparison shown in Figure 4c. The interval of the offset bins used in this work is 20 m, 
similar to the spatial sampling of the decimated data set.

Figure 4.  Performance of the bin stacking strategy. (a) The CN1 shot gather 
with the first channel as virtual source and the other N channels as virtual 
receivers (highlighted by the black box in Figure 3a). (b) The bin stacked shot 
gather with every channel as virtual source and the channels behind the virtual 
sources as virtual receivers. (c) Single trace comparison between CN1 (black) 
and CN2 bin stacking (red) shot gather at offset 0.7 km (highlighted by the red 
dashed line in (a and b)).
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3.3.  Surface Wave Imaging

As described above, a MASW roll-along strategy is implemented for ambient 
noise imaging. In order to ensure sufficient imaging depth and lateral resolu-
tion for geothermal reservoir characterization, a 5-km-subarray was selected to 
allow observations of surface waves with sufficient wavelengths for constrain-
ing properties at a depth of ∼3 km (Foti et al., 2018; Xia et al., 2006). Subarrays 
roll along the DAS cable with a coverage overlap of 80% to ensure continuity of 
lateral variations beneath the DAS array. In total, we obtain 57 subarrays across 
the DAS cable; for each subarray the enhanced virtual-source gather after bin 
stacking is analyzed for dispersion imaging and subsequent 1D shear wave 
velocity (Vs) inversion. An integrated workflow of DAS ambient noise imaging 
developed for this study is presented in Figure 5, and consists of five steps:

1.	 �Data preprocessing which decimates the data matrices and normalizes 
the time series (both temporal and spectral);

2.	 �Subarray assignment which separates the whole DAS array into a series 
of short subarray targets under consideration of both spatial coverage and 
lateral resolution;

3.	 �Interferometric processing and stacking that generates one enhanced 
virtual-source gather for each subarray after bin stacking;

4.	 �Dispersion analysis based on the obtained virtual-source gather for each 
subarray;

5.	 �Vs inversion, which constructs a series of 1D Vs profiles for all subarrays 
and aligns them along the cable to build a pseudo-2D velocity structure.

Surface wave dispersion analysis is conducted on each virtual-source gather 
by applying an improved frequency domain slant-stacking algorithm (Cheng, 
Xia, Zhang, et  al.,  2021), which employs a phase-weighted stacking tech-
nique to enhance spatial coherency during dispersion measurement. Figure 6 
shows a typical example of the DAS-based surface wave retrieval (a) and 
dispersion image (b) at location ∼22 km. Clear Rayleigh waves with appar-
ent velocities varying between 200 and 800 m/s are visible on the enhanced 
virtual-source gather after bin stacking, without interference from spurious 
arrivals associated with persistent localized sources. It is worth mentioning 
that our surface radial-radial cross-correlation is not sensitive to Love waves 
because DAS is single-component sensing method and mainly responds to 
waves that induce an extensional strain across the length of the fiber (Martin 
et al., 2021). Higher overtones are clearly identified on the high-resolution 
dispersion spectrum. For accurate dispersion curve picking, we limit the 
target zone using the effective wavenumber range or Nyquist limits defined 
by kmin = 1/L (L, array length 5 km) and kmax = 1/dx (dx, spatial interval 20 m) 
as indicated by the blue dashed lines on Figure 6b. Based on the enhanced 

surface wave shot gather and the high-resolution dispersion imaging technique, dispersion curves for multiple 
modes are manually picked across the DAS profile (see Figure S2 in Supporting Information S1 for all the picked 
curves in supporting information). Note that the offset information has been calibrated by tap tests results rather 
than the fixed channel interval, so that the geometry across the two curved sections around 6 and 12 km locations 
will not impact phase velocity estimation; considering the curved sections are only around 2 km width, the weak 
curvature effect could be negligible after the spatial average of the bin stacking procedure.

To extract 1D Vs profile for each subarray, we simultaneously invert the multimode Rayleigh wave disper-
sion curves by using a neighborhood algorithm (NA) as implemented in the Geopsy package, which tends to 
be less sensitive to the initial model (Wathelet et  al.,  2004). We initialize the Vs model based on the picked 
fundamental-mode dispersion curves by following the empirical formula described in Xia et al. (1999),

𝑣𝑣𝑣𝑣𝑖𝑖 = 𝑐𝑐𝑐𝑐(𝑓𝑓𝑖𝑖)∕𝛼𝛼𝛼 𝛼𝛼 = 0.88, 𝑖𝑖 = 1. . .𝑚𝑚� (2a)

Figure 5.  Workflow of distributed acoustic sensing ambient noise imaging 
including preprocessing, virtual source gather (VSG) generation, dispersion 
curve (DC) measurement, and Vs inversion. The raw ambient noise data are 
sampled in 4 m spatial interval and 500 Hz sampling rate; the decimated 
data are resampled in 20 m spatial interval and 100 Hz sampling rate. The 
virtual-source gather is constructed by bin stacking the retrieved CN2 EGFs 
within one subarray (5 km), and used for dispersion spectra imaging as well as 
1D Vs profile inversion. See Figure S1 in Supporting Information S1 for details 
of the data processing flow chart.
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𝑑𝑑𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑖𝑖∕𝑓𝑓𝑖𝑖 ∗ 𝛽𝛽𝛽 𝛽𝛽 = 0.63� (2b)

where, cr(fi) indicates the picked dispersion curve at frequency fi; m is the number of the picks; vsi and di denote the 
appropriated shear wave velocity and the corresponding depth. Equation 2b depicts an empirical velocity-depth 
profile directly converted from the picked phase-velocity dispersion curve.

Our starting earth model pool is initiated with weak (±50% parametric perturbations) bounds based on the defined 
14-layer initial Vs model; considering that the phase-velocity dispersion curve is less sensitive to the density and 
P wave velocity (Vp) values compared to the target Vs model, density is treated as a free parameter with a constant 
initial value (2.0 g/cm 3), and Vp is linked to Vs during the inversion with a limited Poisson ratio range from 0.4 to 
0.45. The number of layers is fixed as defined in the initial model, and the thickness of each layer is flexible with 
±50% perturbations. For each subarray, we invert the multimode dispersion curves with three independent runs of 
the inversion process. Each run retains 2500 models for target search. To reduce potential uncertainties within the 
neighborhood algorithm as well as to avoid overfitting, we extract the optimal Vs model with a misfit-weighted 
mean model rather than the individual model with the smallest/best misfit: we select the first 100 models with 
smallest misfit values from all retained models of all three runs. We then perform a weighted average of this 
family of 100 models using their corresponding misfits

𝑣𝑣𝑣𝑣 =

𝑁𝑁
∑

𝑗𝑗

𝑣𝑣𝑣𝑣𝑗𝑗 ∗ (1 − 𝜀𝜀𝑗𝑗)∕

𝑁𝑁
∑

𝑗𝑗

(1 − 𝜀𝜀𝑗𝑗)� (3)

where, vsj indicates the jth model of the selected N = 100 models; ɛj is the misfit of the jth model, thus 1 − ɛj 
indicates the corresponding confidence degree of this model; versus denotes the final misfit-weighted averaged 
model.

Figure 7 shows an example of a DAS-based surface wave inversion utilizing the multimode dispersion curve 
picks from Figure 6b. For all modes, acceptable misfits between the observed and inverted dispersion curves 
are obtained (Figure 7a1–7a4). In order to verify the accuracy of the inverted velocity model, we generate a 
synthetic shot gather using a finite-difference solver, SOFI2D (Bohlen, 2002), to allow direct comparison of vari-
ous wave modes. A horizontal force with source signature defined by the EGF autocorrelation function at location 
∼22 km is used as the source input function. We use a grid spacing of 20 m in both X and Z to avoid numerical 
dispersion; a time step of 0.5 millisecond is used to guarantee model stability. Figure 8 shows a direct compar-
ison of the modeled shot gather (blue) and the measured Rayleigh waves using DAS (red). The modeled and 
observed waveforms are highly consistent in terms of kinematics and bolster our confidence in the accuracy of the 

Figure 6.  Distributed acoustic sensing-based surface wave retrieval and dispersion analysis. Panels (a and b) show the 
extracted Rayleigh wave shot gather after bin stacking and the corresponding dispersion measurement with multiple modes 
identified and picked. The blue dashed lines indicate the minimum wavenumber defined by kmin = 1/L (L, array length) and 
the maximum wavenumber defined by kmax = 1/dx (dx, spatial interval).
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Figure 7.  Distributed acoustic sensing-based multimode surface wave dispersion inversion. Panel (a) shows the measured (the black dotted curves) and the best 400 
forward (the colored curves) dispersion curves; the gray curves show the dispersion curve from the best-fitting model; the red curves depict the dispersion curve 
modeled from the misfit-weighted mean model. Panel (b) presents the best 400 Vs models; the gray and red curves indicate the best fitted model and the misfit-weighted 
median model; the gray dashed lines indicate the upper and bottom velocity boundaries. Colors in (a and b) are coded by misfits as shown on the color map.

Figure 8.  Comparison between the forward waveforms, based on the inverted Versus model in this figure, and the observed 
Rayleigh waves recovered from distributed acoustic sensing ambient noise interferometry in Figure 7. A bandpass filter 
between 0.1 and 5 Hz is applied to the combined waveforms. The blue color filled traces represent the forward waveforms; 
the red color filled traces represent the measured waveforms. Clear consistency can be observed between two types of 
waveforms. Note that, the forward modeled waveforms are exported as the default unit of particle velocity instead of strain 
rate, so we did not apply trace-by-trace waveform fitting comparison here.
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recovered velocity model. Some local differences, particularly in amplitudes 
and frequency components at far offset, are also visible; this is likely due to 
a combination of source wavelet accuracy and the absence of attenuation (Q) 
in the forward model.

We used the Computer Programs in Seismology (CPS) package 
(Herrmann,  2013) to compute dispersion curves and Fréchet sensitivity 
kernels for further analysis. The forward modeled dispersion curves from the 
misfit-weighted model (the red curve in Figure 7b) also show a good match 
with the measured picks. Figure 9 shows the sensitivity kernels of different 
Rayleigh wave modes; compared with the sensitivity kernel of the fundamen-
tal mode (Figure 9a), higher sensitivities are observed at deeper depths for the 
lower frequency band of the first overtone (Figure 9b) and at shallower depth 
for higher frequencies of all the higher modes (Figures 9b–9d). These obser-
vations indicate that simultaneous inversion of multiple modes has advan-
tages over using only the fundamental mode, both reducing non-uniqueness 
and improving sensitivity at depth (Beaty et al., 2002; Fu et al., 2022; L. Pan 
et al., 2019; Xia et al., 2012).

4.  Results
Our high-resolution inverted Vs model, based on the initial model (Figure 10a) 
derived from the picked dispersion curves along our DAS array, is shown in 
Figure 10c with the Unified Community Velocity Model (UCVM) (Small 
et  al.,  2017) shown for comparison (Figure  10b). The unified community 
velocity model in the Imperial Valley is constrained by a combination of 
regional earthquake picks and active source travel-time data collected by 
the Salton Sea Seismic Imaging Project, SSIP (Ajala et al., 2019; Persaud 
et al., 2016). While both models are broadly similar in depth, our inversion 
resolves a zone of high S-wave velocity beneath the BGF which is only hinted 
at in the unified community velocity model. Likewise, the DAS Vs profile 
resolves two zones of lower S-wave velocity north and south of the BGF. 
The high velocity zone is also coincident with a region of elevated Vp at 
3 km depth (see the reference Vp model on Figure S3 in Supporting Informa-

tion S1) observed in SSIP inversions (Han et al., 2016; Persaud et al., 2016). To evaluate the sensitivity of the 
observed high S-wave velocity zone to the choice of initial earth model, we conducted an identical inversion using 
the interpolated unified community velocity model as a starting model. The results are quite similar in terms of 
both the location and magnitude of the anomaly (see Figure S4 in Supporting Information S1).

At the 5 km location, where our DAS cable crosses over the Alamo River, a low-velocity zone (LVZ) is visible 
on the inverted Vs structure as indicated by the magenta arrow on Figure 10b, and coincides with the LVZ hinted 
at by the unified community velocity model as indicated by the dip in the 1.5 km/s contour line around the 5 km 
location on Figure 10a. This LVZ could indicate an unmapped fault located between Calipatria and Brawley; 
a localized discontinuity has also been inferred from electrical log offsets (Towse & Palmer,  1976), surface 
magnetic surveys (Meidav & Furgerson,  1972), and a seismic refraction survey conducted by Frith  (1978). 
Around the 20 km location, a second LVZ indicated by the break contour line at 1.8 km/s on the DAS result 
could be associated with the previously mapped Brawley Fault (BF) and the complex fault network associated 
with the southern termination of the Brawley Seismic Zone. The mapped Brawley Fault from USGS Quaternary 
fault database crosses our cable at ∼21 km location on the surface (see Figure 1a), and our model indicates that 
it might extend farther to the north at depth.

Discontinuities in EGF waveform character (Figure 10d), observed on common offset (5 km) gathers derived 
from interferometric processing, also support these observations and suggest a substantial structural contrast 
across the previously mentioned transition regions. The earlier/faster wave train around the BGF area, likely 
Rayleigh wave components and highlighted by the red dashed curve, indicates the higher velocity structure which 
is consistent with the observations on the inverted Vs model (Figure 10c). We hypothesize that this feature is 

Figure 9.  Sensitivity kernel of the fundamental (a), first higher mode (b), 
second higher mode (c) and third higher mode (d) surface waves, respectively. 
ci (i = 0…3) denotes the phase velocity at fundamental and higher modes; 
Vs denotes the Shear wave velocity. The gray zone indicates the frequency 
band that could not be reliably identified in the distributed acoustic sensing 
dispersion analysis.
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due to secondary mineral precipitation caused by hydrothermal brine circulation and corresponding water-rock 
interaction at depth. Discontinuities of the waveforms at two sides of the 5 km location, including both the funda-
mental EGFs highlighted by the red shadow zone and higher overtones arrived around 10 s, suggest an unmapped 
structural feature, possibly fault-related. The complex waveforms around 20 km may be related to the complex 
fault convergence at the termination of the Brawley Seismic Zone.

Figure 10.  Vs imaging of the Brawley geothermal reservoir and Brawley fault. (a) Initial Vs model converted from picked 
dispersion curves based on Equation 2. (b) Reference Vs model from the unified community velocity model. (c) Inverted Vs 
model from distributed acoustic sensing ambient noise data. The gray dashed line indicates the location of the model used for 
comparison in Figure 12a. The black lines show the contour lines for Vs. (d) Common-offset gather derived from the retrieved 
EGFs with interval distance of 5 km. The red shadow zone highlights the discontinuities in the fundamental EGF waveform 
character.
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5.  Discussion
5.1.  Geothermal Imaging Using Vp/Vs

In geothermal settings within sedimentary basins, high seismic velocities are often associated with low poros-
ity units with high degrees of cementation and/or secondary alteration (e.g., McGuire et  al.,  2015; Ryan & 
Shalev, 2014). Constraints on the ratio of P- to S-wave velocities (Vp/Vs) can help to clarify the nature of subsur-
face anomalies and is sometimes a more significant indicator than Vp or Vs separately in identifying the pres-
ence of fractures and the effects of pore pressure (Behm et  al.,  2019; Hamada, 2004; Nakajima et  al.,  2001; 
Takei, 2002; Walck, 1988). We utilize the Vp model from SSIP by slicing the three-dimensional (3D) model of 
Persaud et al. (2016) along our DAS cable and interpolating the 2D slice to the same grid as our inverted Vs model 
(see the reference Vp model on Figure S3 in Supporting Information S1). Compared with the inverted 2D Vs 
model, the reference 2D Vp model exhibits lower spatial resolution due to the limited shot and receiver coverage in 
the SSIP experiment. Although the obtained Vp/Vs model does not have as high a spatial resolution as the original 
Vs model, it is still a useful aid in interpreting the lateral variations beneath the BGF. A similar Vp/Vs profile can 
also be obtained by using the original reference Vp model and a version of the DAS Vs model downsampled to the 
same resolution (Figure S5 in Supporting Information S1).

The resulting mapped Vp/Vs profile (Figure 11a) displays a prominent low Vp/Vs feature near the BGF area, as 
indicated by the contour line at Vp/Vs = 1.8. It coincides with observations presented in Lin (2013), which show 
that one of the most significant features in the Vp/Vs model for the Salton Trough is a zone of low Vp/Vs values 
below 2 km depth, and the lowest Vp/Vs ratios occur in the SSGF area with values varying from 1.510 to 1.811 
according to Lin (2020). In addition to the low Vp/Vs feature, likely associated with the BGF geothermal reservoir 
or underlying structures, two high Vp/Vs zones around 5 and 20 km locations are co-located with low velocity 
zones observed on the inverted Vs profile. This observation agrees with our hypothesis that these features are 
damage zones related to faulting.

This low Vp/Vs feature is strikingly correlated with a high heat flow anomaly (the red curve in Figure 11b) as well 
as a gravity high (the blue curve in Figure 11b). The higher Bouguer gravity anomaly near the heat flow anomaly 
(Figure 1b) may result from intrusion of basaltic dikes or the reduction of sediment porosity due to hydrothermal 
brine circulation (Mase et al., 1981).

Boreholes in geothermal areas in the Imperial Valley have encountered greenschist facies metamorphism, reduced 
porosity due to cement in-fill, altered rhyolites, and basalt dikes. Several prior geologic studies have concluded 

Figure 11.  Seismic imaging of Brawley geothermal reservoir and Brawley fault. (a) Vp/Vs profile based on Vp from Persaud 
et al. (2016) and Vs from distributed acoustic sensing. The gray dashed line indicates the location of the model used for 
comparison in Figure 12a. (b) Distribution of microseismicity, heat flow, and the detrended Bouguer gravity anomaly along 
the ∼28 km fiber-optic cable. For better visualization, the linear trend of the Bouguer gravity has been removed.
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that hydrothermal alteration can have a pronounced effect on the physical properties of the sediments by reducing 
porosity and increasing density (Browne, 1976; Elders et al., 1979; McDowell, 1987; McDowell & Elders, 1979; 
Miller & Elders, 1980; Muffler & White, 1969; Robinson et al., 1976). These hydrothermal alteration effects may 
coincide with the observation of low Vp/Vs anomalies on Figure 11a, which might be used as an indicator for the 
“roots” of high-temperature geothermal systems.

The Imperial Valley exhibits active deformation and seismicity associated with both extension within the rift 
centers and shear across strike-slip faults systems (Elders et al., 1972; Han et al., 2016; Parsons & McCarthy, 1996). 
The relocated historical earthquakes (Figure 1a) from 1981 to 2019 (Hauksson et al., 2012), with most of seismic 
events occurring in the Brawley Seismic Zone, indicate the northernmost extension of the spreading center axis 
associated with the East Pacific Rise. In order to statistically analyze the distribution of seismicity along our DAS 
cable, we project the near-line (distance <2 km) events to the vertical plane where our DAS cable is located. 
Abundant earthquakes are distributed around the 20 km location (as shown on the histogram on Figure 11b); this 
observation is consistent with interpreting the high Vp/Vs values as damage related to faulting at the terminus of 
the Brawley Seismic Zone (Choi et al., 2016). However, the relationship between the seismicity and the Vp/Vs 
distribution is still ambiguous considering the substantial offset between our inversion depth (<3 km) and the 
relocated earthquake depths ranging mainly between 5 and 10 km (Hauksson et al., 2012). Earthquakes occurring 
in the BGF area at depths from 10 to 15 km (much deeper than the geothermal reservoir) may have a remote 
connection to shallower hydrothermal systems or at least related structures (Ellsworth, 2013); the histogram peak 
around 13.5 km is associated with the 2012 Brawley swarm (Wei et al., 2013), which has been hypothesized 
to be induced indirectly through poroelastic coupling rather than directly through pore pressure change (Wei 
et al., 2015). During our DAS deployment, the primary seismic network observed no events close to the BGF 
despite varying production rates, suggesting that the current production/injection strategy employed at the field 
is not strongly coupled to local seismicity.

5.2.  Brawley Geothermal Field System

The Brawley geothermal field was discovered and developed by Union Oil Company (Unocal) in the 1980’s. 
Initial characterization and exploitation of the field involved drilling a sequence of deep (1.5–2.1 km) geothermal 
wells and operation of a 10 MWe power plant. The high dissolved solids content of this deep resource resulted 

Figure 12.  Velocity models, borehole observations and the inferred geothermal system. (a) Velocity models at location 
12.5 km (highlighted by the gray dashed line in Figures 10 and 11). Vs model from distributed acoustic sensing (DAS) (the 
gray solid line) and the unified community velocity model (the blue dotted-dashed line), Vp model from Persaud et al. (2016) 
(the blue dotted line) and geothermal well Veysey #1 (the magenta solid line). (b) Vp/Vs profile at location 12.5 km with Vs 
from DAS and Vp from Persaud et al. (2016) (the gray dotted line) and geothermal well Veysey #1 (the magenta solid line). 
Panels (c–e) show the smoothed temperature, neutron and density porosity observations from geothermal wells, Veysey #8 
(the gray dotted line) and Veysey #9 (the black diamond line), respectively. The gray triangles indicate the depths of the 
new production wells developed by Ormat Nevada Inc; the blue triangles indicate the depths of the older production wells 
developed by Unocal. The red square in c shows the temperature record observed in old geothermal well of Unocal.
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in corrosion and scaling issues for the plant and the facility was eventually closed. Ormat Nevada Inc subse-
quently investigated geothermal production from a shallower sandstone unit in 2006 and found that sufficient 
matrix permeability and porosity existed for production and operation of a binary-type plant. After resurrection 
of the previously developed geothermal field and the drilling and completion of new wells tapping the shallower 
(0.5–1.4 km) reservoir, a power plant with a nameplate capacity of 49.9 MWe is currently operating (Matlick & 
Jayne, 2008).

To better evaluate the geothermal system beneath the Brawley field, we focus on the depth variation of the low Vp/
Vs anomalies detected by DAS as well as observations from three nearby geothermal wells (magenta triangles in 
Figure 1a). For better display, well logs are smoothed with a 150 m averaging window (Figure S6 in Supporting 
Information S1 provides images of the original well logs).

Figure 12a provides a comparison between various velocity models in BGF area, which allows assessment of the 
obtained structural models. Compared with the lower resolution Vs model from the unified community velocity 
model (the blue dotted-dashed line), the inverted Vs model obtained using DAS (the gray solid line) shows a simi-
lar trend; the reference Vp model (the blue dotted line) is smoother but generally matches the sonic log from the 
Veysey #1 geothermal well (the magenta line). We observe that the Vp/Vs model utilizing the reference Vp from 
Persaud et al. (2016) (the gray line in Figure 12b) matches well with the one with the reference Vp from the sonic 
log (the magenta line in Figure 12b), except for the shallower zones where the Vp model was poorly resolved from 
travel-time tomography in Persaud et al. (2016).

The updated Vp/Vs model, using the high-resolution Vp model from the sonic log, gradually decreases from a value 
of 3 to 2.2 until a depth of 800 m; then rapidly increases from 2.2 to 2.7 and decreases again to a relatively constant 
value of ∼1.8 at depths below 1,600 m. We interpret the small zone of increasing Vp/Vs to be associated with the 
higher porosity upper geothermal reservoir, dominated by small-scale fractures which can be reactivated, after being 
filled, with high fluid pressures in the reservoir (Younker et al., 1982). This interval is also closely aligned with the 
vertical depths and completions of the 18 new production wells highlighted by the gray triangles on Figures 12b–12d.

Hydrothermal alteration of reservoir rocks leads to the self-sealing process and can create impermeable cap 
rocks over geothermal reservoirs (Facca & Tonani, 1967). In our Vp/Vs model, however, any interface between 
the upper reservoir and altered zones above is ambiguous due to the lower resolution of the inverted Vs model in 
comparison to the sonic log-derived Vp model. The zone at lower depths with almost constant, low Vp/Vs houses 
the lower geothermal reservoir, likely dominated by larger fractures with potential cementation, recrystallization, 
and thermal metamorphism caused by circulating hydrothermal fluids. Seismic as well as “silent” slip, both 
significant at the Brawley field (Materna et al., 2022), may assist in maintaining fracture permeability in the 
deeper reservoir sections.

Historical logs show dramatically reduced temperature gradients with depth below 800 m, from approximately 
85°C/km to 3°C/km and nearly constant at greater depths. The transition in the character of the gradient occurs 
within the upper geothermal reservoir (highlighted by the light-red shallow zone on Figure 12c), and it might 
indicate a change in the mode of heat transport. The constant temperature records from Veysey #9 well in the 
lower reservoir, with low gradients of ∼1°C/km, suggest that convection is occurring at depths below ∼1.6 kmin 
the Brawley system. However, we do not have information on the timing of the historical temperature logs with 
respect to well drilling, completion, and other in-well operations so a risk exists that these lower gradients might 
be influenced by near-well thermal transients. The fact that a hotter reported point measurement was made in the 
Veysey #9 well suggests that the available logs may not fully capture the temperature profile. Reduced porosity 
is observed in the lower reservoir compared to that in the upper reservoir (Figures 12d and 12e), consistent with 
both seismic observations and the Bouguer anomaly. We hypothesize that this is due to hydrothermal alteration 
of this section of the reservoir.

As mentioned previously, the lower reservoir is where Unocal identified the fractured high-temperature resource 
with fluid temperatures of up to 273°C (the red square on Figure 12c) and operated the older production wells 
(the blue triangles on Figures 12b–12d). Unfortunately, high salinity brine and the non-condensable gas caused 
the carbon steel casing and surface equipment to rapidly develop scale and corrode; this problem led Unocal to 
abandon the project since the early exploration focus was on the higher temperature resources.

Our high-resolution 2D Vs profile from DAS ambient noise successfully mapped the thermally altered zone of the 
high-temperature geothermal reservoir. We should note that the low Vp/Vs region is likely a signature of the lower 
matrix porosity and altered mineral assemblages, driven by localized heat flow, rather than related to fracture 
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permeability which would have the opposite trend. In this sense, the high Vs values and low Vp/Vs ratio are acting 
as a seismic “geothermometer” (Ryan & Shalev, 2014) for alteration zones. If validated, this might provide a 
strategy for seismically identifying local hot spots for further exploratory studies. Further work investigating the 
seismic rock physics of the Brawley field, similar to studies conducted near the Salton Sea (Bonner et al., 2006), 
would aid more quantitative interpretation of similar regional data.

With the assistance of legacy sonic logs, the improved 1D Vp/Vs model with higher vertical resolution also 
detected the weakly thermally altered upper geothermal reservoir, which contains moderately saline water and 
relatively high porosity. Unfortunately, it is challenging to distinguish this upper reservoir with ambient noise 
results alone due to the limited vertical resolution of the seismic imaging technique. While we would also expect 
a somewhat higher Vp/Vs ratio in the flowing zones of the lower reservoir due to fracturing, our surface wave 
study likely has insufficient resolving power to isolate such localized features at depth. Further work is required to 
image fine-scale crustal structures beneath linear arrays, using for example, waveform-based inversion methods 
(Y. Pan et al., 2021; Zhang et al., 2018) or extraction of refracted body waves and/or reflected phases from the 
ambient noise wavefield.

6.  Conclusions
We extract high-quality surface waves from ambient noise data acquired using distributed acoustic sensing (DAS) 
and a 28-km-long telecommunication cable, and apply high-resolution surface wave imaging to retrieve the S 
wave velocity structure of the top 3 km of the Imperial Valley. We develop a linear spatial stacking technique, 
referred to as bin stacking, to attenuate spurious events associated with persistent localized sources and enhance 
the quality of the retrieved empirical Green's function (EGF). We jointly invert multiple surface wave modes 
retrieved from this data set to reduce non-uniqueness inherent in Vs inversion and improve sensitivity at depth. 
Based on our inverted Vs model and the Vp model obtained from Persaud et al. (2016), we generate a 2D Vp/Vs 
profile across the valley, and observe a significant low Vp/Vs feature beneath the Brawley field, which is likely 
related to hydrothermal alteration within and beneath the currently producing reservoir. We have also identified 
two low velocity zones, north and south of the field, which we hypothesize are associated with an unmapped fault 
between Calipatria and Brawley and the mapped Brawley Fault and Brawley Seismic Zone termination zone, 
respectively, although this association is slightly more speculative.

With the assistance of legacy sonic logs, we were also able to improve the 1D Vp/Vs model, allowing poten-
tial identification of the seismic signature associated with the upper geothermal reservoir. Based on observa-
tions from wireline data, heat flow, and gravity surveys, we attempt to understand the geophysical signatures of 
different geothermal system components including the upper and lower reservoir units at the field. Nevertheless, 
further investigation would be required to validate components of our interpretation, particularly refinement of 
our Vp model to better relate our DAS observations ambient noise observations to the rock properties. While 
future studies might benefit from incorporation of a larger variety of wave modes and earthquake signals recorded 
on the same network, our investigation effectively demonstrates the utility of high spatial-resolution geothermal 
characterization with DAS at the basin scale, as well as the potential for high temporal-resolution geothermal 
monitoring even with the short imaging period (2 days).

Appendix A:  Imperial Valley Dark Fiber Team
The Imperial Valley Dark Fiber Team includes Jonathan Ajo-Franklin (Rice University), Feng Cheng (Zhejiang 
University and Rice University), Verónica Rodríguez Tribaldos (GFZ Potsdam and LBNL), Avinash Nayak 
(LBNL), Todd Wood (LBNL), Michelle Robertson (LBNL), Kesheng Wu (LBNL), Bin Dong (LBNL), Patrick 
Dobson (LBNL), Robert Mellors (Scripps Institution of Oceanography), Cody Rotermund (ESnet and LBNL), 
Benxin Chi (Chinese Academy of Sciences, formerly Rice University); Eric Matzel (LLNL), Dennise C. Temple-
ton (LLNL), Christina Morency (LLNL).

Data Availability Statement
The extracted empirical Green's functions, the picked dispersion curves, and the inverted shear velocity model 
used in this work, as well as 40 min of raw DAS waveforms, are available in the following OSF repository: https://
osf.io/ckt9q. The three geothermal wells used in Figure 11 are digitized from https://www.conservation.ca.gov/ 
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with API #02590043/02590182/02590183. The Geopsy package 3.3.6 is available at https://www.geopsy.org/
download.php. The SOFI2D package is available at https://git.scc.kit.edu/GPIAG-Software/SOFI2D. The CPS 
package 3.30 is available at https://www.eas.slu.edu/eqc/eqccps.html. The phase-weight slant-stacking algorithm 
can be found at https://github.com/marscfeng/pwslantstacking. All websites were last accessed in Dec 2022.
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