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ARTICLE

Snow depth variability in the Northern Hemisphere
mountains observed from space
Hans Lievens 1,2*, Matthias Demuzere 2,3, Hans-Peter Marshall4,5, Rolf H. Reichle 6, Ludovic Brucker 6,7,

Isis Brangers1, Patricia de Rosnay 8, Marie Dumont 9, Manuela Girotto 6,7,10, Walter W. Immerzeel 11,

Tobias Jonas12, Edward J. Kim6, Inka Koch 13, Christoph Marty 12, Tuomo Saloranta14,

Johannes Schöber 15 & Gabrielle J.M. De Lannoy1

Accurate snow depth observations are critical to assess water resources. More than a billion

people rely on water from snow, most of which originates in the Northern Hemisphere

mountain ranges. Yet, remote sensing observations of mountain snow depth are still lacking

at the large scale. Here, we show the ability of Sentinel-1 to map snow depth in the Northern

Hemisphere mountains at 1 km² resolution using an empirical change detection approach. An

evaluation with measurements from ~4000 sites and reanalysis data demonstrates that the

Sentinel-1 retrievals capture the spatial variability between and within mountain ranges, as

well as their inter-annual differences. This is showcased with the contrasting snow depths

between 2017 and 2018 in the US Sierra Nevada and European Alps. With Sentinel-1 con-

tinuity ensured until 2030 and likely beyond, these findings lay a foundation for quantifying

the long-term vulnerability of mountain snow-water resources to climate change.
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Snow has a large-scale cooling effect on our planet by
reflecting most of the incoming solar radiation and by
dissipating energy during seasonal melt1,2. Water resources

from snowmelt, of which the majority originates in mountain
ranges, are indispensable. For instance, they provide drinking
water to over a billion people3,4, supply 3/4th of the crop pro-
duction in the western US5, generate hydro-electric power
worldwide4, and sustain the vast urban settlements in Himalayan
watersheds6–8. Despite this importance, we lack quantitative
estimates of how much snow is stored in each mountain range on
Earth9. The current estimates from the interpolation of local
measurements are unrealistic where measurements are sparse9,
whereas estimates from numerical weather prediction systems are
poor due to the large uncertainty in mountain snowfall4.

Remote sensing provides essential snow depth information, yet
currently operational observations have shortcomings9. Passive
microwave observations10,11 typically exclude mountains because
their coarse (~25 km) footprints cannot resolve the spatial
variability, and the observations saturate in deep snow (>0.8 m
depth)12,13. Airborne lidar systems5,14 are likely the most accurate
to date, but are limited to targeted mountain areas and favorable
weather conditions. Some alternative methods have shown pro-
mise at the local scale. These include structure-from-motion15,16,
constructing snow depth from overlapping image pairs, X-/Ku-
band (8–18 GHz) Synthetic Aperture Radar (SAR)17–19, retriev-
ing snow properties based on the backscattered energy from an
illuminated snowpack, and SAR interferometry20,21, measuring
changes in the radar signal phase from refraction in the snow. A
community effort to compare some of the above-mentioned and
more experimental remote sensing techniques is currently
ongoing within the NASA SnowEx activity that should ultimately
lead to a space mission designed for snow22. New and robust
satellite observations are critically needed to fill the mountain-
snow observation gap4.

In this study, we demonstrate the ability of the ESA and
Copernicus Sentinel-1 constellation (two satellites: 1A and 1B) to
map snow depth across the Northern Hemisphere mountains.
Presently, Sentinel-1 is the only SAR mission providing high-
resolution backscatter measurements (at C-band; 5.4 GHz) with a
revisit time of 6 days suitable for snow monitoring. Given the
strong absorption of C-band microwave radiation by wet snow,
monitoring applications have so far focused on the mapping of
melt23. The use of C-band backscatter for estimating snow depth
(or mass, related to depth by the density) has long been swept
aside after early satellite measurements had shown a limited
sensitivity24,25. However, these studies were mostly surveying
shallow snow outside mountain environments and, more
importantly, were limited to backscatter measurements in co-
polarization. Cross-polarized backscatter measurements were to-
date only investigated at the local scale using tower installations,
with strongly contradicting results26,27. Here, we demonstrate the
value of including cross-polarized backscatter measurements
from C-band satellite to retrieve snow depth in mountainous
areas at the large scale.

The Sentinel-1 snow depth retrievals over the Northern
Hemisphere mountain ranges allow for near-real-time monitor-
ing that complements current snow tracking systems from the
World Meteorological Organization (WMO). Unlike currently
available space-borne passive microwave measurements, Sentinel-
1 measurements are suitable for retrieving snow depth in
mountainous environments owing to their high resolution and
the herein demonstrated sensitivity to deep snow. We provide
clear evidence of the value of the empirical Sentinel-1 retrievals
through a comparison against point-scale snow depth measure-
ments at ~4000 sites and coarse-scale global reanalysis data. Over
the US Sierra Nevada and the European Alps, snow depths of two

consecutive winters are stratified by elevation to highlight inter-
annual differences. While resembling the large-scale patterns of
the reanalysis data, Sentinel-1 more accurately reveals the spatial
detail and the elevation profile of snow depth. Finally, we estimate
total snow volumes for the top 100 snowiest mountains in the
Northern Hemisphere to support their water resources
monitoring.

Results
Sentinel-1 backscatter signatures over snow. The Sentinel-1
constellation routinely illuminates the land surface with C-band
radiation and measures the backscatter (σ 0) in co-polarization
and cross-polarization, i.e., vertical-vertical (vv) and vertical-
horizontal (vh) transmit-receive, respectively. The total back-
scatter (σtotpq ) for transmit-receive polarizations p and q, origi-
nating from a snowpack without vegetation, can be approximated
by a four-component model28:

σtotpq ¼ σair�snow
pq þ σsnowvolpq þ σsnowvol�grnd

pq þ e �2τp= cos θð Þ � σgrndpq

ð1Þ
with σair�snow

pq the backscatter from the air-snow interface, σsnowvolpq

the backscatter from the snow volume, σsnowvol�grnd
pq the higher-

order interactions between the snow volume and the ground, and
σgrndpq the backscatter from the ground, attenuated by the snow-

pack through e �2τp= cos θð Þ. The amount of attenuation depends on
the optical thickness of the snow (τp) and the radar incidence
angle (θ). Commonly, σair�snow

pq and σsnowvol�grnd
pq are neglected29

and thus not further considered here.
Sentinel-1 σ 0 measurements are processed at 1 km² resolution

over the Northern Hemisphere mountains30 (Fig. 1a), using
standard processing techniques (Fig. 2 and Methods), and their
temporal signatures are compared to those of in situ snow depth
measurements. Figure 3 illustrates the temporal evolution in σ 0

and snow depth measurements at 4 representative sites, along with
corresponding snow presence observations at 1 km² resolution
from the Interactive Multi-sensor Snow and Ice Mapping System
(IMS31). The co-polarized σ 0

vv measurements (Fig. 3, left column)
show little variation throughout the winter, due to the limited
absorption or scattering by dry snow in vv-polarization at C-band.
In contrast, a sharp (~5 dB) decrease in σ 0

vv is observed with the
wetting and depletion of the snow through spring. This confirms
previous studies that demonstrated the limited sensitivity of C-
band co-polarized satellite measurements to changes in dry snow
and the large absorption and reflection of the signal by wet
snow23–25. It also confirms previous findings that C-band vv-
polarized measurements are suitable for snowmelt mapping23. The
increase in σ 0

vv towards the end of the snowmelt period in late
spring is caused by the decreasing surface area covered by wet
snow that contributes to absorption32. Simultaneously, surface
thaw and vegetation green-up in snow-free areas can increase
scattering32. The evolution of σ 0

vv during the snow season is
dominated by the fourth term in Eq. (1): the backscatter from the
ground surface, which is attenuated by the snowpack only when
the snow is wet. The second term, representing the scattering in
vv-polarization within a dry snow volume, is generally too small to
have a noticeable impact at C-band.

The Sentinel-1 cross-polarized σ 0
vh measurements (Fig. 3,

middle column) gradually increase with the accumulation of
(dry) snow during the winter. This suggests an increasing
depolarization of the incoming v-polarized signal through
anisotropic or multiple scattering on ice crystals, bonds or clusters
of ice crystals, or inhomogeneities within the snow
volume17,19,26,33–35. As the thickness of the snowpack increases,
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the path length of the radar signal through the snow increases,
increasing the opportunities for scattering19. Note that this
anisotropic and multiple scattering in theory also impacts the
backscatter in co-polarization (σ 0

vv), but with a negligible

contribution compared to that of the ground surface. During
snow ablation, σ 0

vh decreases considerably, which we hypothesize
is caused by the absorption and reflection of the signal by wet
snow, and a decreasing amount of snow volume scattering in a
shallowing snowpack. To explain the variations in σ 0

vh, both the
second and fourth terms in Eq. (1) are needed. The snow volume
scattering component in vh-polarization is no longer negligible
compared to the contribution of the ground surface.

The cross-polarization ratio σ 0
vh/σ 0

vv (in linear scale, converted
to dB) shows overall a stronger correlation with snow depth than
σ 0
vh (Fig. 3, middle and right columns). Taking the ratio may

partially eliminate the effects of temporal changes in the ground
surface, vegetation, or snow conditions, which similarly impact
both co- and cross-polarization. In autumn and winter, σ 0

vh/σ 0
vv

increases due to the increased amount of volume scattering σ 0
vh

for approximately constant surface scattering σ 0
vv. During spring

melt, the ratio decreases because of the relatively higher decrease
of σ 0

vh compared to that of σ 0
vv. Changes in snow properties

between dry and wet conditions, such as in snow microstructure
and liquid water content, potentially modify the proportionality
of volume versus surface scattering, and therefore the sensitivity
of the ratio to snow depth. Thereby, the sensitivity to snow depth
for wet snow is much more uncertain. Strong melt events, with
associated high liquid water contents, may cause fluctuations in σ
0
vh/σ 0

vv as the signal is more strongly reflected and absorbed by wet
snow layers27. Although this effect may be less severe at C-band
than at higher frequencies and may occasionally be alleviated by
the refreezing of snow27 prior to the early-morning (6 a.m.) and
evening (6 p.m.) overpass times of Sentinel-1, it is likely to have a
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Fig. 2 Flowchart of the Sentinel-1 processing. a The standard backscatter
processing techniques are performed using the Google Earth Engine
Python’s api. b Further processing steps, and c the application of the
retrieval algorithm are performed offline
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confounding impact on the C-band sensitivity to snow depth.
Similarly, the backscatter signals are impacted by successive melt-
refreeze cycles that can modify the microstructure and strati-
graphy of the snowpack. The primary objective of this study is to
map the snow depth for dry snow conditions. However, we do
not exclude wet snow conditions from the analysis and assess the
performance of the retrievals throughout the snow season.

Sentinel-1 snow depth retrievals. The retrievals of ~weekly snow
depth at 1 km² resolution for September 2016 through August
2018 over the Northern Hemisphere mountains are based on the
temporal changes in the Sentinel-1 backscatter polarization ratio
(σ 0

vh/σ 0
vv) and scaled to the range of snow depth measurements at

in situ sites (Fig. 2), as discussed in the Methods section. The
temporal and spatial resolutions of the ~weekly 1 km² retrievals
meet the requirements for watershed-scale applications in
mountain regions4, and with the Sentinel-1 follow-on missions
(1C and 1D) multi-decadal data will be provided for trend ana-
lysis. Figure 4 illustrates the Sentinel-1 snow depth averaged over
February 2018. We select the month of February as it corresponds
with the climatological maximum snow-cover extent according to
the WMO Global Cryosphere Watch. The insets illustrate details
in snow depth variability in the western United States and Hindu-
Kush Himalaya (Fig. 4b, c).

An assessment based on measurements at 4175 locations
(Fig. 1b, Table 1 and Methods) reveals the effectiveness of the
Sentinel-1 retrievals to capture the overall spatial snow depth

variability. For February 2018, the spatial correlation (Rs) with
monthly-averaged snow depths from all in situ measurement sites
is 0.76 (other months in Table 2). Both the variability between and
within mountain ranges is accurately captured. For instance, when
averaging snow depths for 11 selected mountain ranges (Fig. 1b),
the Rs between these ranges is 0.92. Within these mountain ranges,
the Rs is 0.72 on average. The latter value is lower due to the
limited number of sites in some ranges and the potentially large
differences in spatial representativeness. More specifically, mea-
surement sites suitable for instrumentation are typically in
relatively flat areas and may not represent the snow conditions
of the surrounding slopes36 that are included in the satellite
footprint. The spatial variability in snow depth characterized by
Sentinel-1 C-band SAR data is a clear improvement over currently
available global estimates from reanalysis data, such as MERRA-2
(Modern-Era Retrospective analysis for Research and Applica-
tions, Version 237; selected because it does not assimilate snow
depth measurements and thus provides an independent compar-
ison). Corresponding Rs values for MERRA-2 in February 2018
are 0.36, 0.67, and 0.29 for the overall, in-between and within
mountain-range variability, respectively.

Figure 5 displays the weekly evolution in snow depth over two
consecutive winters averaged over all Northern Hemisphere
mountain ranges and over the 11 focus ranges. Across the
Northern Hemisphere (Fig. 5a), the retrievals accurately char-
acterize the accumulation of (dry) snow, whereas a slight
underestimation is noticeable during snow ablation from March
onwards. This underestimation is likely caused by wet snow
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vh/σ 0
vv; in dB). Snow cover presence (dimensionless) from IMS is

shown in gray. Site details, including mountain range and latitude/longitude/elevation: a Omineca Mountains, British Columbia, Canada (57.53°N/
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between sites to improve visualization
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Table 1 Description of the in situ measurements

Region Network name Provider N sites Median elevation References

Global SYNOP ECMWF 894 432 51

Global GHCN-D NOAA 3303 1024 59,60

USA SNOTEL USDA-NRCS 733 2409 –
USA SNOLITE USDA-NRCS 16 1982 –
USA & Canada Snow course/aerial marker USDA-NRCS 615 1981 –
USA & Canada Cooperator snow sensors USDA-NRCS 32 1591 –
Canada ASWS British Columbia Government 50 1510 –
Nepal – ICIMOD, DHM, KU, Utrecht University,

NVE Norway
9 4888 61–63

France – Météo France 129 1713 –
Austria – ZAMG 209 864 –
Austria – TIWAG 9 1920 64,65

Switzerland BEOB, IMIS WSL SLF 407 1560 66

Details of the global and regional in situ networks, including the regional coverage, network name (if applicable), data provider, number (N; dimensionless) of sites, median elevation (m), and references
(if applicable). The number of sites is reported before averaging into 1 km² EASE-2 grid cells and the total thus exceeds 4175

Table 2 Correlations between measured and retrieved snow depths

Month Overall Rs (−) Rs (−) between mountain ranges Rs (−) within mountain ranges

December 0.67 (<0.01) 0.96 (<0.01) 0.58 (<0.01)
January 0.72 (<0.01) 0.93 (<0.01) 0.60 (0.02)
February 0.76 (<0.01) 0.92 (<0.01) 0.72 (<0.01)
March 0.69 (<0.01) 0.85 (<0.01) 0.67 (<0.01)
April 0.72 (<0.01) 0.84 (<0.01) 0.60 (0.04)

Spatial correlations (Rs; dimensionless) and their statistical significance level (p; in parentheses) are shown for monthly-averaged Sentinel−1 and in situ snow depth from December 2017 through April
2018. To calculate the overall Rs, all available measurements across the Northern Hemisphere are used. The Rs between mountain ranges is calculated from snow depths averaged per mountain range for
the 11 ranges shown in Fig. 1b. The Rs within mountain ranges is the average of the spatial correlations within each of these ranges
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conditions partly reflecting and absorbing the radar signal.
However, the underestimation in spring does not occur in all
mountain ranges. For example, the temporal evolution in the US
Sierra Nevada (Fig. 5d) during 2017–2018, including the spring
melt phase, is accurate. Similarly, no underestimation is notice-
able in the San Juan Mountains (Colorado, US; Fig. 5e) and
Southern Scandinavian mountains (Norway; Fig. 5k). Future
research shall therefore investigate under which precise condi-
tions wet snow could cause underestimation. In some ranges,
such as the Canadian Rocky Mountains (Fig. 5b) and US Sierra
Nevada (Fig. 5d), the evolution of snow depth in the winter of
2016–2017 is less accurate than in 2017–2018, due to the smaller
number of Sentinel-1 observations.

Figure 6 shows histograms of performance metrics that
evaluate the correspondence between time series of weekly snow
depth measurements and Sentinel-1 retrievals across the North-
ern Hemisphere mountain area, from September 2016 through
August 2018. Temporal correlation coefficients (Rt; gray

histogram in Fig. 6a) most frequently range between 0.8 and
0.9, have a mean of 0.77 (with significance level p < 0.01), and are
distributed with a negative skew. When zero snow depths are
excluded from the analysis (white histogram), the associated
reduction in the snow depth range decreases the mean correlation
(Rt= 0.65; p < 0.01). The lowest temporal correlations occur in
sites with shallow snow depth and short or intermittent snow
cover. The mean-absolute-error (MAE) histogram (Fig. 6b) has a
positive skew, with values most frequently below 0.1 m and a
mean of 0.18 m. When we exclude zero values from the analysis,
the average MAE increases to 0.31 m. The bias (Fig. 6c) remains
within ± 0.1 m for most of the sites, has a mean of −0.01 m and a
nearly normal distribution. Large errors (MAE and bias) can
again originate from the differences in representativeness between
point-scale measurements and grid-scale retrievals.

For reference, the most accurate snow depth estimates today
are likely provided by airborne lidar, offering decimeter-scale
accuracy in surface height (either snow-on or snow-off) over local

2
a b c

d e f

g h i

j k l

Northern Hemisphere Mountains

In situ Sentinel-1

Canadian Rocky Mountains

San Juan Mountains

Dinaric Alps

Southern Scandinavian Mountains

Coast Mountains

Appalachian Mountains

Carpathian Mountains

Hindu-Kush Himalaya

Sierra Nevada

European Alps

Pyrenees

1.5

Rs = 0.76, N = 3289
Rt = 0.77, N = 1800

Rs = 0.77, N = 22
Rt = 0.79, N = 19

Rs = 0.65, N = 50
Rt = 0.82, N = 26

Rs = 0.81, N = 125
Rt = 0.83, N = 45

Rs = 0.73, N = 68
Rt = 0.82, N = 48

Rs = 0.75, N = 349
Rt = 0.64, N = 84

Rs = 0.73, N = 584
Rt = 0.77, N = 495

Rs = 0.77, N = 22
Rt = 0.52, N = 9

Rs = 0.84, N = 70
Rt = 0.69, N = 32

Rs = 0.59, N = 32
Rt = 0.67, N = 22

Rs = 0.36, N = 206
Rt = 0.68, N = 159

Rs = 0.94, N = 18
Rt = 0.75, N = 9

S
no

w
 d

ep
th

 (
m

)

1

0.5

0
01/09/16 01/03/17 01/09/17 01/03/18 01/09/18 01/09/16 01/03/17 01/09/17 01/03/18 01/09/18 01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

01/09/16 01/03/17 01/09/17 01/03/18 01/09/18

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

Fig. 5 Time series of snow depth measurements and retrievals. a The average weekly snow depth (m) over all measurement sites and corresponding
Sentinel-1 grid cells across the Northern Hemisphere. b–l As in a, but averaged over the focus mountain ranges (Fig. 1b). The performance metrics shown in
the top left of each figure include the temporal correlation (Rt; dimensionless), the February spatial correlation (Rs; dimensionless), and the number of sites
(N; dimensionless) used to calculate the metrics

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12566-y

6 NATURE COMMUNICATIONS |         (2019) 10:4629 | https://doi.org/10.1038/s41467-019-12566-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


areas14. As an example, lidar snow depth estimates from the
Airborne Snow Observatory have an MAE of ~0.08 m (at the
15 m × 15m scale) with respect to manual in situ measurements
over a relatively flat area near Tioga Pass in the Sierra Nevada,
California, USA5. The Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) snow depth
retrievals, available at global-scale, have correlations of ~0.25
and ~0.41 with estimates from the Snow Data Assimilation
System (SNODAS) and WMO in situ measurements12, and an
MAE of 0.20 m against WMO in situ measurements10. However,
a direct comparison with the Sentinel-1 retrieval performance is
hampered by the limitation of the AMSR-E retrievals to areas
without complex topography and with snow depths typically
below 0.8 m.

Inter-annual differences stratified by elevation. Characterizing
the inter-annual change in snow depth and how it varies with
elevation is critical to assess the vulnerability of mountain systems
to climate change. For snow cover, there is considerable evidence
that global warming reduces the area and duration, thereby
reinforcing climate change38. Recent studies indicate that this
impact may be stratified by elevation, with projections of
decreased snow cover at low or medium elevation, but no clear
trend at high elevation4,13,39,40. Whether snow depth (and mass)
are similarly affected remains uncertain, particularly in mountain
areas where adequate observations are missing4,9. The most
accurate trend estimates of mountain snow depth are currently
provided by model reanalysis, although with only moderate
consistency between different reanalysis products41,42. Unfortu-
nately, within the complex topography of a mountain range,
reanalysis data are too coarse for a stratification by elevation to be
meaningful.

Figure 7 illustrates the benefit of Sentinel-1 over the European
Alps and the US Sierra Nevada for two consecutive years with
contrasting snow conditions. In the European Alps, snow depth
in February 2018 greatly exceeded that of February 2017. The
Alps were hit by several episodes of extreme snowfall in January
2018, caused by a low-pressure area over the western Mediterra-
nean that brought moist air northwards and resulted in the
anomalously high snow depths. The Sierra Nevada featured
exceptionally deep snow in February 2017, caused by a series of
atmospheric river events43,44, whereas the snow depth in

February 2018 was relatively low. Over both the Alps and Sierra
Nevada, similar large-scale patterns in snow depth differences
(February 2018 minus 2017) are seen in the Sentinel-1 retrievals
(Fig. 7a, d) and MERRA-2 reanalysis data (Fig. 7b, e). But the 1
km² Sentinel-1 retrievals provide a much more detailed
representation, showing a gradual increase with elevation that
closely follows that of the measurements and is poorly
represented in MERRA-2 (Fig. 7c, f). Averaged over the
11 selected mountain ranges, the Rs between snow depth
measurements and elevation is 0.58. A similar Rs is observed
for the Sentinel-1 retrievals (0.50), whereas the MERRA-2 data
are overall much less constrained by elevation (Rs of 0.12).

Mountain range snow volumes. Worldwide, mountain snow-
packs seasonally store and release substantial amounts of water45.
Observations of the total snow volume (depth × area) in a moun-
tain range can be used to estimate this water storage as a mass, if
snow density is known. At the global scale, snow density can for
instance be estimated from information on the snow climate class
and mechanical compaction, depending on snow depth and day of
the year46,47. Figure 8 shows the snow volume (km³) retrievals for
February 2018 from Sentinel-1 for the top 100 snowiest mountain
ranges in the Northern Hemisphere, excluding glaciated areas48.
The largest snow volume (~380 km³) by far is in the Coast
Mountains in western Canada, featuring a deep snowpack over a
vast area. Given the maritime snow climate of the Coast Moun-
tains, the February snow density is ~310 kgm−3. Correspondingly,
the first-order estimate of the total water mass in this mountain
range is ~11.8 × 1010 ton (or equally, ~400 kgm−²). Averaging the
relatively few (48) measurements in this area results in a volume of
260 km³ (black cross in Fig. 8), considerably below the 380 km³
area-wide snow volume retrieval from Sentinel-1 (bar). This sig-
nificantly lower estimate is likely due to the locations of the in situ
measurements. About 75% of the sites are located in the southern
half of the mountain range in a warmer climate. Moreover, 70% are
located below the mean elevation (964m) of the mountain range,
with the highest site (1835m) much below the highest mountain
peak (4019m). Confidence in the area-wide Sentinel-1 snow
volume retrievals is supported by the close agreement between the
cross-masked Sentinel-1 retrievals (i.e., averaged only over grid cells
that include measurement sites; purple dots in Fig. 8) and the
measurements (black crosses).
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For most of the other featured mountain ranges in North
America, snow volumes compare reasonably well between area-
wide and cross-masked Sentinel-1 retrievals and in situ measure-
ments. Mountain ranges with noticeable differences are mostly
limited to those with few measurement sites, such as the
Mackenzie and Chugach Mountains and the Alaska Range.
Similar findings apply to the European ranges, whereas more
contrasting results are obtained in Asia. Here, insufficient
measurements preclude confident estimates of the total snow
volume. A clear example is the Himalaya, where the local
variability in snow conditions is huge and the few (6) clustered
measurement sites in Langtang Valley, Nepal, do not represent
even the cross-masked Sentinel-1 snow volume retrieval, much
less the area-wide mountain range Sentinel-1 retrieval. This
highlights the need for extending measurement networks in High
Mountain Asia, where water resources from snowmelt are
critical8,49. At the same time, it also stresses the value of the
frequent and systematic C-band SAR observations from Sentinel-
1 to quantify snow depth in areas where expanding the network is
difficult owing to extreme altitude, poor accessibility or safety.

Discussion
The Sentinel-1 snow depth retrievals are primarily depending on
the cross-polarized backscatter measurements. Temporal varia-
tions in σ 0

vh with snow depth evolution have, to our knowledge,
not been investigated before with C-band satellite observations.
Only few studies deployed tower-mounted radar instruments,
with contradictory results. Overall, our study aligns well with the
scatterometer measurements over a site in Michigan, USA,
revealing an increase in σ 0

vh with an increase in snow depth26.

However, the scatterometer measurements showed signs of
saturation for depths exceeding ~60 cm, which is not observed in
the Sentinel-1 measurements. Potential causes for this dis-
crepancy include the use of artificial snow in the scatterometer
experiments (characterized by a homogeneous layer of snow
composed of small, rounded particles and the absence of snow
melt-freeze metamorphism), or differences in the spatial support
of the measurements (18 m × 30m for the scatterometer versus 1
km² for the processed Sentinel-1 data). In strong contrast, a
(minor) decrease in σ 0

vh with increasing snow depth was observed
from scatterometer measurements over a site in the Swiss Alps27.
An inverse relationship can occur with site-specific ground,
vegetation and snow conditions, if the attenuation of ground
scattering by the snowpack is stronger than the scattering con-
tribution from the snowpack25. However, the results of the study
in the Swiss Alps could also be impacted by the backscatter
measurement principle: the total backscatter was calculated by
integrating the scattering contributions from a few dominant
surfaces, i.e., the snow surface, the ground surface and/or hor-
izontal layers within the snowpack, and was thus not including
the multiple scattering27.

In agreement with the scatterometer measurements in Michi-
gan26 and with our Sentinel-1 observations, radiative transfer
model simulations generally indicate an increase in σ 0

vh with
snow depth. Recent model developments tend towards a relatively
weak dependence on frequency34. A critical aspect in this context
is the development of state-of-the-art, theoretically-based
radiative transfer models, which allow for simulating volume
scattering from snow, represented by clustered, non-spherical
particles17,33–35. This presents a major improvement over con-
ventional solutions for scattering from individual, spherical snow

48°N

46°N

44°N

40°N

38°N

36°N

40°N

38°N

36°N

48°N

46°N

44°N

6°N 8°N 10°N 12°N 14°N 16°N

124°W 122°W 120°W 118°W 116°W 114°W 124°W 122°W 120°W 118°W 116°W 114°W

6°N 8°N 10°N 12°N 14°N 16°N

1.5

1

0.5

0.05

–0.05

–0.5

–1

–1.5

1.5

1

0.5

0.05

–0.05

–0.5

–1

–1.5

1.5

1

0.5

0.05

–0.05

–0.5

–1

–1.5

1.5

1

0.5

0.05

–0.05

–0.5

–1

–1.5

3.5
In situ

Sentinel-1
3

2.5

2

1.5

1

0.5

0

3.5

3

2.5

2

1.5

1

0.5

0

0 1000 2000 3000

Elevation (m)

0 1000 2000 3000

Elevation (m)

S
no

w
 d

ep
th

 (
m

)
S

no
w

 d
ep

th
 (

m
)

European Alps

US Sierra Nevada

a

d e f

b c

MERRA-2

In situ

Sentinel-1

MERRA- 2

20
18

20
17

20
17

20
18

Fig. 7 Inter-annual snow depth differences stratified by elevation. a Snow depth differences (February 2018 minus February 2017; in m) according to 1 km²
Sentinel-1 retrievals over the European Alps. b As in a, but for coarse-resolution (0.625° × 0.5°) MERRA-2 reanalysis data. c Snow depth (m) of February
2017 and February 2018 stratified by elevation (m), for in situ measurements, Sentinel-1 retrievals and MERRA-2 reanalysis data (subsampled to the 1 km²
grid). d–f As in panels a–c, but for the US Sierra Nevada mountain range. Source data for c,f are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12566-y

8 NATURE COMMUNICATIONS |         (2019) 10:4629 | https://doi.org/10.1038/s41467-019-12566-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


particles using Rayleigh theory, assuming that scattering is pro-
portional to the fourth power of frequency and third power of
grain size35. Most of these advances in radiative transfer modeling
were thus far focusing on microwave measurements at higher
frequencies (e.g., X-band and Ku-band). We encourage future
modeling efforts to unravel the different mechanisms that cause
the demonstrated sensitivity to deep snow at C-band.

To further improve the Sentinel-1 retrieval algorithm, we
recommend future tower-mounted radar experiments, for
instance to investigate the impacts of snow wetness on σ 0

vh/σ 0
vv.

Such measurements would support a quantitative assessment of
the uncertainty in the snow depth retrievals caused by wet snow,
which in turn may result in a correction for snow liquid water
content in the retrieval algorithm. In fact, previous studies
demonstrated the retrieval of the snow wet-dry state23 (and even
liquid water content50) directly from C-band SAR observations.

Wet snow maps derived from Sentinel-1 could be provided as
auxiliary information (quality flag) with the snow depth retrie-
vals. Similarly, the retrievals may be further refined by accounting
for the temporal evolution in snow microstructure10. For
instance, a climatological snow classification with associated snow
microstructure and density estimates is available at the global
scale46,47 and could be used to improve the parameterization.
Further research is also recommended to investigate the retrieval
performance in glaciated areas. Currently, data from the Ran-
dolph Glacier Inventory 6.048 are processed and provided with
the snow depth retrievals to allow for an optional masking of
glaciated areas.

In the future, sensor synergies can be exploited by merging our
data over mountain areas with passive microwave observations10–12

outside these areas, providing global coverage, or with active
observations at higher frequency (e.g., X-band or Ku-band) that are

Area-wide Sentinel-1 Measurements
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  Snow volume (km3)

Fig. 8 Snow volumes for the top 100 snowiest mountain ranges. The snow volumes (km³) are averaged estimates over February 2018 and exclude
glaciated areas. Bars represent the area-wide Sentinel-1 estimates averaged over the entire mountain range, black crosses the average of in situ
measurements, and purple dots the corresponding average of cross-masked Sentinel-1 estimates, averaged only over grid cells that include in situ
measurement sites. The number of in situ measurement sites, if any, is indicated next to the mountain range name. Source data are provided as a Source
Data file
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likely more favorable for areas with shallow snow17–19. The com-
bination with estimates from SAR interferometry20,21 could further
improve the representation of temporal changes. Finally, the
assimilation of the snow depth retrievals into a land surface model
could yield improved and continuous (in time and space) global
estimates of snow depth and mass that may also improve the
initialization of numerical weather and climate models and thus
improve predictions51. For such applications, the long-term con-
tinuity in C-band backscatter measurements with the Sentinel-1
constellation and the RADARSAT Constellation Mission is a strong
asset, offering the systematic observations that are required to
improve the representation of the cryosphere.

Methods
Study domain. We processed Sentinel-1 observations for the period September 1,
2016 through August 31, 2018 over the Northern Hemisphere mountain areas
north of 20°N (Fig. 1a). To delineate mountainous areas, we used the Global
Mountain Biodiversity Assessment (GMBA) inventory30, providing features such
as geographic coordinates, area, name, and bioclimatic region for more than 1000
individual mountain ranges in the world, which are classified based on the com-
bination of elevation and ruggedness.

In situ measurements. Daily, point-scale measurements of snow depth were
assembled over mountainous areas for the period September 1, 2016 through
August 31, 2018. The measurements originate from a variety of sources, including
regional, national and global networks (Table 1). Quality control was applied to the
measurements by eliminating values higher than twice the 90th-percentile of the
time series (after excluding zero values), and eliminating sites with less than 3
reported values during the evaluation period. The measurement locations were
projected onto the 1 km² global cylindrical Equal Scalable Earth version 2.0 (EASE-
2) grid52. Where several locations fell within the same grid cell, their time series
measurements were averaged. This resulted in 4175 unique grid cells with in situ
measurements (Fig. 1b).

Sentinel-1 data processing. The processing of the ground-range detected (GRD)
Sentinel-1A and Sentinel-1B Interferometric Wide Swath (IW) σ 0 measurements
in vv-polarization and vh-polarization was performed using Google Earth Engine’s
Python api. We applied the standard Sentinel-1 processing techniques, including
thermal noise correction, radiometric calibration, and range-Doppler terrain cor-
rection (Fig. 2). Further, the σ 0 data with native 5 m × 20m resolution and 10 m ×
10m grid spacing were resampled (by averaging in linear scale) and projected onto
the 1 km² global cylindrical EASE-2 grid. The 1 km² scale of the resampled
Sentinel-1 data matches the resolution of the auxiliary information on snow and
land cover used in the retrieval algorithm (Section Sentinel-1 snow depth retrieval
algorithm). Moreover, the averaging reduces the speckle noise inherent in radar
observations and improves the signal-to-noise ratio, which is typically low for the
cross-polarized σ 0

vh data. Future research will investigate the potential of retrieving
snow depths at a higher spatial resolution.

Each Sentinel-1A and Sentinel-1B satellite has an exact 12-day repeat cycle,
with 175 orbits per cycle. In a given 1 km² EASE-2 grid cell, the Sentinel-1
observations from the different orbits within one repeat cycle have different
incidence angles, ranging from 29.1° to 46.0° relative to a flat surface. Over
mountain areas, the impact of the incidence angle on σ 0 may be large, e.g., when a
terrain slope is facing towards or away from the sensor line of sight in ascending
and descending overpasses. To account for the effect of the incidence angle, we
separated the σ 0 values pertaining to each of the 175 orbits in a 12-day cycle
(repeated for every cycle, with identical incidence angles for each of the orbits). The
static bias between σ 0 values from different orbits was then removed by rescaling
the mean σ 0 of each orbit to the overall mean (i.e., of the entire σ 0 time series,
including all orbits) and applying this mean correction to the individual σ 0

measurements. The accuracy of the incidence-angle normalization increases as
more observations become available. Outliers were removed by excluding values
that are 3 dB above the 90th-percentile or 3 dB below the 10th-percentile of the
time series. Four sub-sets of Sentinel-1 data (i.e., ascending (6 p.m.) and descending
(6 a.m.) data from Sentinel-1A and Sentinel-1B) were pre-processed separately and
combined into a single Sentinel-1 dataset.

Both Sentinel-1 satellites share the same orbital plane with a 6-day offset, thus
the two-satellite constellation offers an exact 6-day repeat cycle. However, the
observation frequency during the period considered here varies from as much as
~daily (for certain areas in Europe) to every ~2 weeks (Fig. 1a), depending on the
latitude, the availability of ascending and descending orbits, the availability of
Sentinel-1B data (reaching full capability in early 2017), and the evolving Sentinel-1
observation acquisition strategy. Prior to 2017, observations can (regionally) be
irregular in time, with extended no-data gaps. For instance, relatively few
observations were available over parts of the USA and Canada for September-
December 2016 (Fig. 3a–c). We did not process any Sentinel-1 data taken before
September 2016 owing to the extremely limited coverage outside Europe.

Sentinel-1 snow depth retrieval algorithm. The snow depth (m) retrieval algo-
rithm relies on an empirical change detection method applied to the Sentinel-1
measurements of the cross-polarization ratio (σ 0

vh/σ 0
vv; in dB). As auxiliary input

data, it uses 1 km² snow cover (SC; 1 if present or 0 if absent) from IMS and
fractional forest cover (of evergreen species) from the 1 km² global consensus land
cover dataset53. Firstly, a change detection index (hereafter referred to as snow
index, SI; in dB) is calculated for each location i and time step t. This index links
the temporal changes in Sentinel-1 σ 0

vh/σ 0
vv with the accumulation or ablation of

snow:

SI i; tð Þ ¼ max 0; SI i; t � 1ð Þ þ σ0vh=σ
0
vv i; tð Þ � σ0vh=σ

0
vv i; t � 1ð Þ� �� �

if SC i; tð Þ ¼ 1

0 if SC i; tð Þ ¼ 0

(

ð2Þ
where the maximum operator avoids negative indices. Secondly, the SI is rescaled
into snow depth (SD; in m) as:

SD i; tð Þ ¼ a
1� bFC ið Þ

� �
SI i; tð Þ ð3Þ

where the parameters a (in m dB−1) and b (dimensionless) are constant in space
and time, and FC(i) is the evergreen forest cover fraction (dimensionless). Forests
typically attenuate snow backscatter54: they scatter part of the incoming energy,
thus preventing it from reaching the snow, and part of the signal backscattered
from the snow, thus preventing it from reaching the satellite sensor. This
attenuation is corrected as in established coarse-scale passive microwave retrie-
vals12, with the same parameter value b= 0.6. The performance of the algorithm
can potentially be further improved by optimization of b. Moreover, vegetation
dynamics can have a very similar impact as snow on backscatter55. Therefore, the
snow depth retrievals are masked when climatological leaf area index (LAI) from
the Moderate Resolution Imaging Spectroradiometer (MOD15A2) exceeds 25% of
the dynamic range in the LAI climatology time series. Finally, the snow depth
retrievals based on Eq. (3) are smoothed to further reduce the impact of Sentinel-1
observation noise and to reduce short-term, high-magnitude fluctuations10. This is
done using linear inverse distance weighting with a 2 km radius in space and a 10
day radius in time. Depending on user requirements, the smoothing can be
adjusted or switched off (e.g., for data assimilation).

The parameter a (Eq. (3)), impacting the magnitude of the Sentinel-1 snow
depth retrievals, was estimated based on in situ measurements. More specifically, a
was optimized by minimizing the MAE between the times series of the global
average snow depth measurements and corresponding Sentinel-1 retrievals. For the
optimization, we excluded the time periods from March to August to limit the
impact of wet snow, which is not yet accounted for in the algorithm and would
likely increase errors in the retrievals. The in situ measurement locations (Section
In situ measurements) were randomly sampled in two subsets with equal size: one
for calibration and the other for validation. The calibrated value of a is 1.1 m dB−1.

Validation. Several performance metrics are calculated to validate the Sentinel-1
snow depth retrievals using in situ measurements. As the retrieval algorithm
includes the rescaling parameter a (Eq. 3) that is optimized based on a subset of the
in situ measurements (i.e., the calibration subset), some metrics are only calculated
using the remaining subset of the measurements (i.e., the validation subset) to
provide an independent assessment. The spatial Pearson correlation coefficient (Rs;
dimensionless) is calculated between monthly-averaged point-scale in situ snow
depth measurements and Sentinel-1 retrievals for corresponding grid-cell locations
(N= 4175). The calculation of Rs uses data from both the calibration and valida-
tion subsets, because the calibrated parameter a does not impact the metric.
Similarly, temporal correlation coefficients (Rt; dimensionless) between time series
of in situ snow depth measurements and corresponding Sentinel-1 retrievals are
also calculated for sites pertaining to both the calibration and validation subsets for
the same reason. However, we included only sites (N= 1800) with more than 25
(i.e., once every 4 weeks, on average) non-zero values, since the calculation of Rt is
sensitive to the sample size. The MAE and bias (mean of retrievals minus mea-
surements) are calculated only for sites (N= 2000) of the validation subset with at
least one non-zero value, as these metrics are less dependent on the sample size.
This also allows evaluating the performance for sites with occasional snow or few
reported values (such as the monthly USDA Aerial Markers).

We use point-scale in situ measurements for evaluating the performance of the
Sentinel-1 snow depth retrievals. However, this likely provides a conservative
estimate of the true retrieval performance. Especially in mountain areas, the point-
scale snow measurements do not necessarily resemble the 1 km² grid-cell average
snow conditions represented by Sentinel-1. The local variability in conditions can
be large due to differences in elevation, slope and aspect, as well as wind and
vegetation impacts on snow distribution56. In situ sites are preferentially located in
relatively flat and non-forested terrain that is often not representative of the large
variations in slope and forest cover in the surrounding area36. Consequently, in situ
measurements often poorly represent the snow accumulation and melt rates on
nearby slopes9,57. Ideally, the validation of the Sentinel-1 retrievals would therefore
be performed using data that can be processed at the matching scale, such as
gridded estimates from airborne lidar5,14, regional model simulations41 or high-
resolution model reanalysis58. However, such information is not available at the
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global scale, which limits this study to the comparison with in situ measurements,
despite the representativeness differences.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The Sentinel-1 snow depth retrievals are available online at https://ees.kuleuven.be/
project/c-snow. The source data for Figs. 1a, 4, 5, 7a, d correspond to the Sentinel-1 snow
depth retrievals provided through the above-mentioned website. The source data
underlying Figs. 7c, f and 8 are provided as a Source Data file.

Code availability
The source code is available from the corresponding author upon reasonable request.
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