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ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL

DAVID S. BUNCH
Graduate School of Management, University of California, Davis, Davis, CA 95616, U.S.A.

(Received 11 July 1989; in revised form 15 February 1990)

Abstract-Random utility models often involve terms which represent alternative-specific errors,
and the main attractive feature of the multinomial probit (MNP) model is that it allows a rather
general covariance structure for these errors. However, since observed choices only reveal informa-
tion regarding utility differences, and since scale cannot be determined, not all parameters in an
arbitr~iry MNP specification may be identified. This paper examines identification restrictions that
arise in the linear-in-parameters multinomial probit framework, and provides discussion and rec-
ommendations for estimation and analysis of probit normalizations.

1. INTRODUCTION

Recent advances in computational methods for estimating multinomial probit models have
stimulated renewed interest on this topic: for example, McFadden (1989) and Pakes and
Pollard (1989) suggest simulation methods which may lead to practical probit estimation
codes for more than four alternatives. In addition, Kamakura (1989) demonstrates, via 
simulation study, that the Mendell-Elston approximation to the multivariate normal CDF
is more accurate than the Clark method, and may provide an alternative solution to the
problem. Bunch and Kitamura (1989) corroborate Kamakura’s results in a study using
empirical data, and discuss improved algorithms for maximum likelihood estimation.

This paper considers another important practical issue, the problem of formulating
multinomial probit (MNP) model specifications for which the parameters are estimable. 
discussion of parameter estimability issues and some illustrative examples appear in sec-
tion 3. l of Daganzo (1979); however, the topic is difficult and no general comprehensive
theory is offered by Daganzo, nor do we believe one is likely to be offered in the near
future. The discussion and conclusions presented here focus on the linear-in-parameters
MNP model with taste variation and correlated random errors. This framework is quite
flexible and is consistent with many specifications discussed in the literature.

The identification difficulties which arise are primarily due to the random errors,
which are usually associated with the effect of unobserved attributes on a choice object’s
utility. A general model specification includes the possibility of correlations among the
utilities of objects which might share unobserved attributes. Unfortunately, information
about the underlying utilities is available only through observation of discrete choices,
which depend on differences of utilities. This, plus the issue of scaling, lead to restrictions
on the number of estimable parameters.

The material presented here overlaps that of Dansie (1985) and Albright, Lerman,
and Manski (1977), and is perhaps well-known to some (certainly not all) workers in 
field. However, the extent to which this is true is unclear. Bunch and Kitamura (1989) give
a brief review of empirical applications, and a significant proportion of them were found
to contain model specification errors. This is important since misspecified models poten-
tially compound the already troublesome computational difficulties inherent in computing
MNP estimates, and could be a contributing factor to the relative dearth of successful
empirical applications of MNP in the published literature.

2. LINEAR-IN-PARAMETERS MULTINOMIAL PROBIT MODELS

In this paper we will consider a standard discrete choice modeling situation in which
an individual drawn at random from a population makes a choice from a set of J mutually
exclusive alternatives. A common example in the transportation literature is the choice of
mode for the Work commute, where J = 3 or 4 and the alternatives consist of car, train,
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bus, shared ride, etc. Following McFadden (1981, 1989), assume that the utility of aiterna-
tivej for individual n, U.1, is given by the general form

(I)

where X.j is a K-vector of explanatory variables which may be a function of the attributes
of alternative j and individual n. The K-vector a. contains the taste weights for individual
n, and may be rewritten as a. = 8 + 6., where O is the mean taste weight for the popula-
tion and 6. is the (unobserved) random deviation from the mean for individual n. (Ideally,
8 and the distribution of 6. would vary as an explicit function of the observed characteris-
tics of the individual, but this consideration is usually suppressed for simplicity.)

In theory, utility should be a function of generic (or "real") attributes, and should not
depend on nominal attributes such as the labels "car," "bus," etc. In practical applications
it is also desirable for the model to include only generic variables, since the model may
then be used more effectively in forecasting, especially for testing the effect of adding new
choice alternatives. However, it has generally been observed that including alternative-
specific dummy variables significantly improves the fit of discrete choice models. One
interpretation is that unobserved attributes are often empirically correlated with the nomi-
nal labels of the alternatives (McFadden et al., 1977). For example, the attributes "lack of
flexibility," or "lack of comfort," might be correlated with the nominal label "bus."

Equation (1) readily accommodates the inclusion of dummy variables, which is the
approach taken by Albright, Lerman, and Manski (197"1). Alternatively, we may assume
that X~s in eqn (1) includes only generic variables, and add the additional terms/~j and 
where p.j is the mean of the alternative-specific errors, and ~.i represents a random devia-
tion from the mean. The e.j term may be regarded to include both the effects of unob-
served attributes and any other sources of observation-specific random error. This gives
the following model, expressed now in vector notation:

or. = X~(O + a.) + # + e., (2)

where U., #, e. e 91 ’, 0, an E 91 K and X. e 91 x.J. To get a multinomial probit model, one
adds the theoretically appealing assumption that the random terms have multivariate
normal distributions:

(3)

Note that in this formulation the ~ and e terms are assumed to be independent, which is
slightly more restrictive that the model implied by eqn (1). This framework is consistent
with Hausman and Wise (1978).

Now, the probability that individual n selects alternative j is given by the MNP
model:

where

and 4J(x (re.S) is the multivariate normal density function with mean m and covariance S,
If we assume that ga and 2, are positive definite then it is straightforward to show that
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X~X6, X,, X,) is also positive definite, which is desirable for establishing regularity condi-
tions: see Daganzo (1979), or, hereafter, "Daganzo."

The purpose of this paper is to discuss the issues and problems of specifying the
linear-in-parameters MNP model so that all the parameters are estimable. A primary
concern is specification of X,, which is especially important since most published applica-
tions of MNP focus exclusively on estimating the effects of observation-specific errors (i.e.
they assume (2) with ~5, = 0).

3. REDUCTION OF DIMENSION

As has been often noted, one of the difficulties with MNP is that it requires evalua-
tion of the multivariate integral (4b), which does not have a closed form solution. The
usual first step is to reduce the dimension of the integral from J to J-I using the transfor-
mation discussed by Daganzo (1979, pp. 43-44 and pp. 94-95). Assume that we wish 
compute P(j [ V~O,/~, X), Xo(~6, X,, X)) and define Aj ~ ̄  J-~J 

1
2
3

j-1
J

J-2
J-1

I 2 3 ’’ j-I j j+l "’ J-I J

1 0 0 °’ 0 --1 0 "" 0 0

0 1 0 "’ 0 -1 0 "" 0 0
001 0 -1 0 " 0 0
: : : : : : ¯ .

000 1 -1 0 0 0
000 0 -1 1 0 0
. : : . . : . :

000 "" 0 -1 0 "" 1 0
000 "" 0 -1 0 "" 0 1

(5)

The transformation Z = AjU applied to (4) gives

P(J I Vo(O,/~, X), Xv(X,, X,, X)) = Prob [Ui - Uj < O,i :# 
= ,I,(0 I Vz, Xz) (6)

where

(7a)

(7b)

Z, Vz e ~ J-t, Xz ~ ~ ~J-i~.tJ-t~, and el, is the cumulative distribution function for the (J 
l)-dimensional multivariate normal distribution.

Define mj ~ ~ J-z by mj = Ai# and Cj ~ ~ ~J-,i,~J-,~ by Cj = Aj~;,Ar, where Cj is sym-
metric. Consider the matrix Mj E ~R tJ"~’~J-’~ which is obtained by taking Aj and deleting the
Jth column; Mj is of full rank (i.e. rank J - 1). Next, without loss of generality choose
alternative J as the "reference alternative." It is straightforward to show that Aj = MjAj for
all j, and hence mj = Mjmj and Cj = MjCjM’f for allj. It follows that (7) may be rewritten
as

(Sa)

(Sb)

and thus choice probabilities evaluated via (6) may always by expressed in terms of m~ and
C~, which together contain (J - 1) J(J - 1)/2 parameters. Itfol lows that t~ andX,
together only have (J - 1) J(J - 1)/2 identifiable parameters. Asan ill ustration, con
sider the case J = 3 andj = 2, which gives (taking into account the symmetry of X,):
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and

c2:I ..,-.3,-.3.+.,2]0"21 -- 0’31 -- 0"32 + 0"22 0"33 -- 20"31 + 0"22

= 0 --1 o’21 -- o’31 -- o’32 + o’3~ azz -- 2o’j2 + o3j

where the %’s denote the elements of E,.
In addition to these considerations, it turns out that one can also rescale the problem

so as to eliminate another parameter. Specifically, evaluation of (~(0 ] k Vz, k2~,z) gives the
same result as evaluating 6(0 I Vz, Xz), for k > 0. Hence, suitable selection of k can
eliminate one more parameter. This leads to the assertion that the model (3) has a total 
K + K(K + I)12 + J + J(l - I)/2 - 2 identifiable parameters. Since 0, #, ~6, and 
together have K + K(K + I)12 + d + J(J + I)12 parameters, this implies that J + 2 pa-
rameters are inestimable and must be fixed via some normalization. (The fact that E, has
only l(J - I)/2 identifiable parameters was noted by Daganzo, who also recognized that
one could sometimes eliminate another parameter by rescaling. Albright, Lerman, and
Manski 0977) state the above result for the number of free parameters, referring the
reader to technical memoranda.)

Note that for the binary probit model with no taste variation (i.e. J = 2 and 8 = 0),
there are K taste weights, J - I alternative specific dummy variables, and J(J - I)12 
I = 0 free parameters in Y.,. Although this is generally known, even experienced investiga-
tors publishing in refereed journals can miss this point; for example, in a study of travel
mode choice Johnson and Hensher (1982) erroneously assume that Z, has one free parame-
ter. In studies involving more complex MNP models, other authors have completely
missed the requirements described above, and assume that all the parameters are in princi-
ple estimable. See, for example, Currim (1982) and van Lierop (1986). For a brief review 
MNP empirical applications which includes further discussion, see Bunch and Kitamura
(1989).

These restrictions have implications for practical estimation of MNP models. Recall
that Daganzo discusses MNP in a slightly more general framework by considering the
MNP function P(j [ V(8, A), Z(8, A)), where 0 is a general parameter vector and A is 
matrix of attributes. (Note, however, that many of his examples fit in the linear-in-parame-
ters framework.) In discussing the practical issues of parameter estimation, he recom-
mends that Z(0, A) be specified so as to be positive definite over all feasible values of O,
since otherwise it "would not represent a covariance matrix and the program would not
return meaningful values." Daganzo recommends two possibilities:

(i) express ~(0, A) as a product of a matrix and its transpose (i.e. };(0, A) 
CO, A)C(O, A)D,

(ii) express ~(0, A) as a function of 0 and A directly, placing simple bounds on 0 so as 
ensure positive definiteness.

We may regard C(O, A) to be lower triangular with positive diagonal elements (i.e. the
Cholesky factorization of Y.(0, A)). For the case we are considering here, either of these
approaches could be difficult when choosing a specification for Y~c,. Directly writing Eu =

CCr is not practical if taste variation is included in the model. One could express each of 26
and ~, in terms of Cholesky factorizations, but this could be tricky for E, (or, Eu in the case
of fixed tastes) since we have at most J(J - 1)/2 free parameters to work with in ~,. For
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most of the following discussion, we will assume that we wish to choose a normalization
which utilizes all available parameters.

Albright, Lerman, and Manski (1977), which we denote "ALM" in the sequel, deal
with the issue by choosing one normalization from "among the alternative formally equiv-
alent normalizations." First, they choose to express both I: 6 and I:, in terms of Cholesky
factorizations. Next, they choose to fix J parameters by setting the last row (and column)
of E,, and correspondingly, the last row of its Cholesky factorization, to zero. Finally, they
choose to fix the scale of the specification by constraining the diagonal elements of E, so
that (trace ~,,)/J equals the variance of the standard Weibull distribution. (This was done to
facilitate comparisons between MNP and multinomial logit estimates.) Note that this is
inconsistent with Daganzo’s recommendation in the no-taste-variation case: this specifica-
tion of Y..,, while a valid covariance matrix, is only positive semi-definite and hence violates
Daganzo’s regularity conditions.

In fact, ALM are doing slightly more than simply choosing an "arbitrary normaliza-
tion": they are choosing to work directly in (J - D-space, estimating Cj so that Cj is
constrained to be positive definite (which implies that Cj for all/’ ~ Jmust also be positive
definite). This is a more general approach than choosing to perform the estimation using
arbitrarily constrained formulations in the original J-dimensional space.

As an example, consider the case J -- 3. For simplicity, we suppress the scaling issue
at this stage: one can assume that scale has been fixed via elimination of a parameter
component from either 0, it, or E6. For J = 3 E, has 3(3 - I)/2 = 3 free parameters. The
ALM normalization (with no rescaling) is given by:

’ "ilTM
~-~ I 0"22 "

0
(9)

Another possible normalization, which assumes independence of the random errors, is
given by a diagonal covariance matrix:

ro,,o
0 as3

(I0)

with ott, an, o. > 0 to ensure positive definiteness. Now, suppose that a maximum
likelihood estimation routine produces an estimate for Cj and returns the following result:

1.5

]

-0.4Cj = -0.4 1.2 (11)

Then the ALM normalization is simply

I 1.5 -0.4 i]
Z LM= -0.4 1.2 .

0 0
(12)

However, the corresponding Z,° is computed to be:

[,,0 0]~:o = 0 1.6 ,
0 0 -0.4

(13)

which is clearly not a valid covariance matrix. Problems could arise if the estimation
routine were attempting to directly estimate the diagonal normalization: a boundary solu-
tion would probably be the result.
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It seems clear that the best course to follow is to first estimate Cj, and to then explore
the various possible normalizations by performing transformations between Cj and E,.
If any particular specification is inappropriate, it will show up as an invalid covari-
ance matrix without jeopardizing the performance of the estimation routine. In addition,
the possibility of accidentally choosing an inestimable normalization will be minimized,
since the process of analyzing the transformation will reveal the mistake. This is discussed
next.

4. TRANSFORMATIONS

As above, assume for now that fixing the scale is not an issue. In addition, assume
that the specifications we are considering are fairly simple, (i.e. parameters do not appear
simultaneously across 0, ~, Zb, 2;,). (Although this restriction is not necessary, it greatly
simplifies the analysis and discussion.) In what follows, it will often be convenient to
regard symmetric matrices as vectors in packed storage form (e.g. when J -- 3 then

~, ~ ~d(J+l}/2 with Z, = (air, ozt, ou, aji, ou, csj)r, and Cj e~ u-,J2 with Cj = (cl~, c.,~,
c22)~3.

Suppose that/~ e ~ tJ-,s,2 denotes the vector of "identified" parameters. Then candi-
date normalizations may be represented as mappings from ~ fJ-,J,2 to ~ ~1~’":. For exam-
ple, consider the (J = 3) ALM normalization in eqn (9) which in matrix form can 
written as

In packed form this particular normalization may be represented by the (linear) mapping

1 0
0 1
0 0
0 0
0 0
0 0

0

0
0

= Hl~. (15)

Recall that the "observable" parameters reside in C~ e~ ~:-,J,2 (in packed form),
which is obtained through the mapping g( ¯ ) from ~ ,~s.,/2 to 9t ~:-~J~-’, defined below.
Define the function f(fl) g(h(f3)) which maps ~ ts-,s,2 to its elf. The n theidentification
problem reduces to verifying that f(" ) represents a unique invertible transformation
between ~3 and Cj. The relevant requirement from the Inverse Function Theorem-see
Apostol (1974)-is that the Jacobian determinant of f be different from zero.

To illustrate, consider the simple class of J = 3) normalizations which are restricted
so that either o,s = 0 or oU = ak~, This includes both of the previous examples:

2~ = 82 8~ 0 ---> h~(~) =
0 0 0

#,

0
0
0

m

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

= H,~ (16)

and



0]~2 0
0 /33
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ih2(~) 
~

=

0

-1 0 0-
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

/3 = H2/3. (17)

Some additional possibilities are:

~3 = ~1 ~3 ~ h3(~) 

I_ 0 ~3 B,

I! °1 B3 0
0 133

~ = --> hs(#) 
°1

~t 0
0 B3

~3 ~1

&

0
0

_/33

-1
&

0
0

_/33

"1
~2

~3
~

7
0
1
0
0
1

m

q
0
0
0
0
0

-1
0
1
0
0

Lo
-1
0
1
0
0
1

o o-
1 0
0 0
0 0
0 1
0 0

o o-
1 0
0 1
0 0
0 0
0 1

o o-
1 0
0 0
0 0
0 0
0 1

o o-
1 0
0 0
0 1
0 1
0 0

fl = ns~, (18)

= H4~, (19)

= Hs~, (20)

= H~. (21)

The function g( ¯ ) which maps Z, to Cs may be defined by the linear transformation
G given by

g(g,) = i 0

0 -2
1 0 -1
0 1 0

"0.t I "~

-- 1
0"22 /-2 0.31|
0"321

0"33._I

= G~,,, (22)

and hence for this class of normalizationsf(B) g(h(B)) = GHis th e composite of tw o
linear transformations. Application of the chain rule gives the Jacobian of f, Df =
DgoDh = GH. It follows that



o]Df~ = I 0 , D f2 =
0 I

ool
Df3 = 0 -2 , D f4 =

1 -1

Df~ = 1 1 , D f6 =
0 1

[i° ’]1 1 ,
0 1

[!o 111 1 ,
0 2

[io2]1 -2 .
0 -2

The Jacobians Df~ through Df4 are of full rank, and hence the 3’s are identifiable for
the corresponding specifications. In contrast, Df5 and Df6 are not of full rank, and the 3’s
are not identifiable in Y-s and ~6. Thus, one may not arbitrarily choose any normalization
which appears to have the correct number of free parameters. It is also essential to verify
that the transformation implied by the normalization is invertible, a point which has been
overlooked until recently.

In particular, consider Z. If the scaling of this specification is fixed by dividing by 3~,
the resulting normalization is

IZs’ = 32’ 1 . (23)
0 0 33’

This unidentified normalization appears in Daganzo (1979), is quoted by Currim (1982),
and is used in a simulation study by Horowitz et al. (1982). The fact that Zs’ is unidentified
was pointed out by Dansie (1985).

The above approach is general and is easily extended to J > 3. For example, consider
a mode choice problem with J = 4 where the choice set is [drive alone, carpool, train,
bus}. There are 4(4 - 1)/2 = 6 identifiable parameters in Z,, and two possible candidate
normalizations are:

and

For E6, the assumption is that each of the alternatives has an error term with a different
variance, and that there is correlation of unobserved attributes between the pairs [drive
alone, car pool} and Itrain, bus}, respectively. Error terms for Idrive, carpool} are assumed
to be uncorrelated with error terms for Itrain, bus}. In contrast, for Y~, the error terms for
[drive, carpool] are assumed to be correlated with the error terms for Itrain, bus[, and each
of these pairs is assumed to have the same variance. A straightforward application of the
procedure developed above reveals that ~6 is identified, where as Y., is not.
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5. SCALING

Although one can generally consider fixing the scale of (2) by dividing through by 
coefficient parameter, the standard practice in published MNP applications is to incorpo-
rate scaling in the specification of 2,. This seems more intuitive, and is based on what are
probably more acceptable assumptions. The identification results for the examples of the
previous section still hold if one chooses to include scaling, as a consequence of the simple
structure that was assumed.

If thinking about the specification in J-space, one could divide 2, by a constant
multiple of one of the (nonzero) variance components, leaving one or more constant terms
on the diagonal. (If one is keeping track, a corresponding adjustment would take place for
0 and ~, multiplying them by the positive square root of the same expression.) Alternative-
ly, one could consider the "observable" parameters to live in (J - 1)-space, and divide all
the elements of Cj by c~t (=o~ - 2otj + oss) so that the estimated parameters reside in 
symmetric (J- l)-dimensional matrix with a "1" in the upper left-hand corner. The
matrix Cj may be constrained to be positive definite through a convenient Cholesky
factorization Bj with J(J - 1)/2 - 1 free parameters (i.e. Cj BjB~ where:

I
1 0 0 "’’ 01

b21 b22 0 " ’ " 0

Bs = b3, b~2 b, " " " 0 .
: : . . .

b jl b~ b~; " " " bjj

(26)

Transformations which directly incorporate scaling, defined using the spaces
t~ J(J÷lb2-1 and ~ {J-I)S’2-1, may be studied using the ideas of the previous section, although
the exercise is more tedious and a bit less intuitive. It should be clear that one can readily
move from one normalization to another via Cj, and rescale when it is convenient. This is
illustrated in the next section.

6. NUMERICAL EXAMPLES

A major application of choice models in transportation is the estimation of commut-
er mode choice. Most applications of this type have used the logit model, but two major
examples using linear-in-parameters MNP are Hausman and Wise (1978) and the report 
Albright, Lerman, and Manski. Both use a data set collected in Washington, D.C. in
which the choices are [car, shared-ride, bus}.

Hausman and Wise (HW) use a subset containing 100 observations, and restrict
themselves to models for which the most general specification assumes uncorrelated ran-
dom errors (i.e. that ~ and ~;, are diagonal). The generic attributes are trip cost divided 
personal income, in-vehicle travel time, and out-of-vehicle travel time. The choice proba-
bilities are evaluated using numerical integration.

In contrast, ALM use 1353 observations, and estimate a quite general specification
which allows for correlated random errors. They use essentially the same generic attributes
as HW, but include two mode-specific variables on available autos per licensed driver.
They evaluate choice probabilities via Clark’s approximation-see Daganzo (1979).

An interesting feature of these reported results is that both obtain estimates for a
fully-specified ~, matrix. In fact, the two specifications are essentially those given by eqns
(9) and (10) above, but with the following adjustments for scaling purposes:

Io’tl Oil 0 ]

2~TM 0O’21 W -- 0"11

0 0 0
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Based on the discussion in the previous two sections, one can transform the HW and
ALM results into various identifiable normalizations for comparison purposes. Table l
includes such a comparison using the (identified) normalizations discussed above. There
are no striking differences between the two sets of results, even though they were obtained
with different sample sizes and different assumptions regarding taste variation. It is clear
from this example that, depending upon the modeling assumptions one is willing to make,
different interpretations involving the effect of unobserved variables are possible.

However, recall from the example in eqns (I l) through (13) that in some situations
candidate normalizations could be rejected if they produce invalid covariance matrices.
This is illustrated in Bunch and Kitamura (1989), in which trinomial probit models of car
ownership are estimated using the approach recommended here. A comparison of various
normalizations is made, with some being rejected as invalid.

7. MORE PARSIMONIOUS SPECIFICATIONS

In the section on transformations we limited ourselves to normalizations which utilize
all available parameters; however, this is not necessary and one might wish to consider
more parsimonious specifications involving fewer parameters. In this case the relation-
ships between Cj and E, may still be examined, but the researcher must give careful
thought to what is being assumed.

For example, the specification ~5 (or, equivalently, E~’) is unidentified. Dansie (1985)
shows that the three covariance matrices

I1 a2= 0 1
a21 1 0
0 0 1

~C "~ II° ]0 1
0 0 a33

are equivalent, but that only the second two are identified, with one free parameter. As a
consequence, he recommends estimating the model using a one-parameter Cj matrix given
by

Table I. Alternative ]~, normalization for
MNP mode choice results

Albright, Lerman,
and Manski Hausman and Wise

}
0.45

0

1
0
0

I 1
-0.21

0

I 1
-0.39

0

1.21 0.50 1.51
o o o

o ool[, o
1.38 0 2.02

0 0.82 0 0

!] [
o,

1 -0.3 -0.51 I
-0.34 0 -0.51

1.53 - 1.04 3.08
0 1.53 0 0

-0.5!]

 oil
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.]1 "

This is equivalent to assuming that, whatever the normalization may look like, we expect
that the variance of e~-e3 equals the variance of e2-e3. Note that many normalizations may
satisfy this requirement. In particular, if the estimation routine produces a result with p <
0, then neither of the two normalizations Z~ and I~c will be valid covariance matrices; of
course others could be found which are.

8. SUMMARY

The linear-in-parameters multinomial probit framework in eqn (2) includes a random
error vector which in general has a covariance matrix Z,, but unfortunately not all the
covariance parameters are identified. Section 4 develops the arguments which give the
number of estimable parameters, and recommends that estimation be performed in terms
of a matrix Cj. Multiple normalizations may correspond to the same estimated Cj, but
some may not produce valid covariance matrices. Choosing a particular (valid) normaliza-
tion is essentially a modeling decision, as illustrated via the examples in section 4. This
feature of MNP is often overlooked in the sweeping laudatory descriptions of the model,
which extol the generality of the approach versus more highly restrictive models such as
multinomial logit. In fact, users of probit must in the final analysis make modeling
assumptions which are analogous to choosing among various alternative tree structures in
the nested multinomial logit or tree extreme value models.

To perform this exercise, however, knowledge of the number of estimable parameters
is still not enough. Arbitrarily selected specifications for ~;~ which contain the prescribed
number of estimable parameters may not be identified, since the transformation between
the parameters in the specification and the "observable" Cj parameters may not be unique
and invertible. Examples are given which demonstrate that an analysis is essential for
ensuring valid results. Specification errors are common in the literature and these issues
appear to not be generally understood. The results presented here provide useful guidelines
for those practitioners seeking to apply probit models.
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