
UC Irvine
ICS Technical Reports

Title
Environments for deployable components

Permalink
https://escholarship.org/uc/item/1gf0m7b5

Author
Luer, Chris

Publication Date
2002-05-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gf0m7b5
https://escholarship.org
http://www.cdlib.org/

Environments for Deployable Components

Chris Luer

Department of Information and Computer Science

University of California, Irvine

Technical Report #02-15

May 14, 2002

Notice: This Material
may be protected
by Copyright Law
(Title 17 UwS.C.)

Environments for Deployable Components

Chris Luer

Department of Information and Computer Science

University of California, Irvine

Technical Report #02-15

May 14, 2002

Abstract

Deployable components are software components that can easily be in
stalled and uninstalled. This usually means that they are compiled and
do not consist of source code. Composition environments enable the
use of deployable components by making it possible to compose appli
cations out of deployable components and to execute those applica
tions. A composition environment is based on a component model, and
consists of a set of tools to support the composition process performed
by a user. We describe the basic features of composition environments,
and survey a representative selection of environments from research
and industry. We conclude that the domain of composition environ
ments is not well understood yet, and point out possible directions of
future research.

ACKNOWLEDGEMENTS ... 4

1 INTRODUCTION ... 5

2 DEFINITIONS ~ ... 8

2.1 COMPONENT ... 8

2.2 COMPONENT MODEL .. 8

2.3 COMPOSITiON ENVIRONMENT .. 9

2.4 CONNECTION .. 9

2.5 CONFIGURATION ... 9

2.6 INTERFACE .. 10

3 FEATURES .. 11

3 .1 COMPONENT MODEL FEATURES ... 12

3.1.1Components .. 12

3.1.2 Interfaces .. 14

3.1.3 Self-Description ... 15

3.1.4 Configuration ... 16

3 .2 PROCESS LEVEL .. 18

3.2.1 Searching ... 19

3.2.2 Leveraging Component Self-Description ... 19

3:2.3 Connecting and Adapting ... 19

3.2.4 Executing .. 22

4 APPROACHES .. 23

4.1 SOFTWARE ARCHITECTURE .. 23

4.1.1 C2 I Archstudio .. 2 3

4.1.2 Koala .. 25

4.1.3 Unicon .. · .. 25

4.2 PROGRAMMING LANGUAGES .. 26

4.2.1 Java Plaiform ... 26

4.2.2 Jiazzi .. 27

4.3 VISUAL PROGRAMMING ENVIRONMENTS ... 28

4.3.1 Visual Basic .. 29

4.3.2 Visual Age .. 30

4.3.3 Bean Box .. 32

4.3.4 Vista ... : ... 33

4.4 SOFTWARE REUSE .. 33

4.4.1 Code Broker ... 34

4.4.2 Agent Sheets ... 34

4.5 COMPUTER NETWORKS AND INTEROPERABILITY .. 35

4.5.1 Enterprise Java Beans Containers ... 36

4.5.2 The Worldwide Web ... 37

2

4.6 OPERATING SYSTEMS ... 38

4. 6.1 Pipe and Filter ... 38

4.6.2 MS Windows I Win 32 : ... 39

4.6.3 MS Windows I Dot-Net Framework ... 39

4.7 PLUG-IN SYSTEMS .. 40

4.8 COMPARISON .. 41

5 CONCLUSIONS ~ .. 45

6 RESEARCH PLAN ... 47

BIBLIOGRAPHY ... 50

3

Many thanks to Andre van der Hoek, who provided a lot of useful advice.

4

1 1 ,..

Component-based software engineering is a well-established discipline in industry. Com
ponents written in Java, Visual Basic, or C++ are widely available for a variety of do
mains [128]. However, the "component revolution" has happened without much partici
pation by researchers [66]. As a consequence, research and practice in component-based
software engineering are largely separated. This has led to a situation in which widely
used tools are not based on research results as much as they could be. For example, con
nectors have been recognized by researchers as a useful means for decoupling compo
nents [116], but they are rarely employed in industrial systems.

Existing approaches in component technology focus either on expressiveness or on us
ability, but few systems achieve both. Expressiveness is the degree of choice the devel
oper has when writing a program. An assembler is the most expressive tool for most
computers; any program that is possible in a given hardware can be implemented using
an assembler. But assemblers provide a minimum level of usability. On the other hand,
user applications with graphical interfaces that fulfill a single, well-defined task (such as
a simple text editor) are maximally usable, but not very expressive. Component environ
ments should be as expressive as possible while being usable enough to require little
technical skill.

Existing component environments typically fail to acknowledge this tension between us
ability and expressiveness. Some of them are based on programming language technolo
gies, and thus have a high degree of expressiveness, but also require a large amount of
technical knowledge (for example, technologies based on C++ and Java such as COM
[15] and Enterprise Java Beans [26]). Others focus on usability, but their expressiveness
is severely restricted. For example, graphical user interface builders are intuitive to learn,
but cannot be used to build anything except user interfaces.

One of the main benefits anticipated for component-based software engineering is its
ability to support division of labor (see Fig. 1, based on [132]). While in the traditional
development scenario two groups of stakeholders exist, developers and users, in the com
ponent based scenario three groups exist: component developers, application builders,
and users. The component developer focuses on the domain of the component, which is
usually technical in nature. The application builder, who wants to compose an application

- out of components manufactured by component developers, focuses on the domain of the
application, which is usually inore business oriented. In other words, technical experts
develop components, while business experts use these components to compose business
applications.

However, in reality, application composition requires so much technical knowledge that
the desired division of labor remains elusive. Application builders still need to be versed
in programming technologies in order to understand components and compose applica
tions from them. Composition environments that help application builders to compose
industrial quality applications from components manufactured by component developers
are needed. Similar to the way that spreadsheets turned calculations involving large sets
of numbers and formulas from a technical problem into a standard business application
found on everybody's desktop, composition environments could tum component-based

5

Users

today

application knowledge

Users

Application
Builders

component-based future

technical knowledge

Figure 1. Traditional and component-based development
scenarios.

software engineering from an activity that requires a solid technical background in soft
ware development into a business-oriented task.

In this paper, we survey technologies for composition environments. We discuss both the
underlying component models, and features to support the composition process. The
component model determines what kinds of components can be used and how they can be
composed, and thus influences the expressiveness of the environment. Process properties
determine how the user interacts with components and composed applications, and thus
influence the usability of the environment.

While a large amount of research about software components and environments for them
has been done before [56, 81], the bulk of this work was done on source code compo
nents. However, in order to make end-user composition possible, components should be
deployable. Deployable components are software components that can be installed and
uninstalled without complex technical procedures. Generally, this means that deployable
components are available in compiled form, and can be used without any modifications.

A number of existing environments provide functionality that can be used to compose
applications from deployable components, but the systems are varied, their solutions are
unsystematic, and they address the problem only partially. Composition is typically not
their main focus. In this survey, we will point out the commonalties and differences be
tween existing composition environments, and systematize the underlying technologies in
order to gain insights into the design of such environments. We will discuss selected en
vironments from a variety of research areas, such as software architecture, visual pro
gramming, and operating systems.

Section 2 of this survey precisely defines several important terms of component technol
ogy. In Section 3, we define and categorize relevant features of composition environ
ments. Section 4 describes a representative selection of composition environments, and

6

presents a detailed comparison of functionality. Section 5 contains our conclusions, and
Sections 6 points out possible directions of future research.

7

2 Definitions
We are giving definitions for several important terms that are used throughout this paper.
While most of these terms are commonly used in software engineering, their precise
meanings often vary. We selected definitions that seem appropriate for the purposes of
this paper, which are discussion and comparison of existing composition environments.

2.1 Component
There is a large amount of literature comparing definitions of "component" [16, 18, 24,
44, 55, 83, 122]. Many of these definitions suffer from one or more of the following
drawbacks:

Technological bias. The definition is based on a single technology, and defines a
component as whatever is a convenient unit of reuse in that technology. For example,
in object-oriented programming, convenient units would be either objects or classes.

Domain bias. The definition is geared towards a single domain and cannot easily be
extended to other domains. Examples include defining components as user interface
widgets, or defining components as processes in distributed systems.

• Vagueness. While a certain amount of vagueness seems to be unavoidable if the defi
nition is to be broad enough to cover different technologies, the definition should give
clear criteria that can be used to distinguish components from other artifacts.

For these reasons, we decided on the definition given by Szyperski [122]. However, for
the purposes of this paper, we remove his restriction that components cannot have per
sistent state, because many existing composition environments violate this condition. We
believe that the resulting definition is not biased towards a technology or domain, and it
stipulates the comparatively concrete criteria of deployability and reusability.

A component is:

• A unit of third-party composition. Components can be used to build an
application by an organization that is different from the organization
that developed them. In other words, components are reusable.

• A unit of independent deployment. Components can be deployed eas
ily and individually. Components do not have to be compiled or other
wise manipulated in a non-trivial manner by the person reusing them.
They have been specifically prepared for reuse.

2.2 Component Model
A component model is a standard that components adhere to. Without any kind of com
ponent model, it would be hard to make components interoperate. As a simple example,
components that want to communicate with each other through remote procedure calls
need to agree on a standard for passing parameters. What kind of standards a component
model should exactly define is a matter of debate, and depends very much on the specific
goals of the component model in question. Generally, component models suffer from a
tension between application composition and component development: the more restric
tive a component model, the easier it is to compose applications. Conversely, the less re-

8

strictive it is, the easier it is to develop components. Weinreich and Sametinger [13 8]
propose several criteria that a component model should fulfill: it should contain standards
for interfaces, naming, metadata, interoperability, adaptation, composition, and packag
ing. With the exception of interoperability, these component model features are among
the ones covered below.

The term 11 component model 11 is most often used for the industrial component standards
Com [21], Java Beans -[49], and the Corba Component Model [23]. However, all of the
composition environments surveyed in this paper include a component model of some
kind, even though it may not be explicitly defined.

A component model is a specification of the common features of a set of
components that make it possible to compose these components into ap
plications.

2.3 Composition Environment
Without a composition environment of some kind, components are useless. Since com
ponents are usually not executable programs of their own, applications built from com
ponents require special environments. Composition environments may be very simple
tools, very complex tools, or anything in between. In the simplest case, a composition
environment does nothing more than to let the user define the relations between compo
nents, and to execute the resulting application. In the complex case, it may include a wide
variety of supporting tools that make application composition and related tasks easier.

A composition environment is a program that is used: (1) to build an appli
cation out of components, and (2) to execute this application. A composi
tion environment uses one or more component models.

2.4 Connection
Connections are what turns a set of components into an application. They define how the
components interact to form a larger whole. Ideally, all dependencies or communications
between components should be modeled as connections - if this is the case, components
are context independent, because their whole context is created by the connections. Con
nections that can be changed without changing the components that they connect are
called connectors (see Section 3.1.4).

A connection is a logical link between two or more components. It repre
sents an exchange of data or control between the components.

2.5 Configuration
The configuration of an application is the result of the application builder's work. It con
sists of connections between components and adaptations of components. An adaptation
is something about a component that the application builder has modified in order to
make it fit better into the application. Configuration is a useful concept to separate the
structure of an application from its constituents. The constituents are the components; the
configuration is everything else.

9

The configuration of an application specifies:

• the names of the components that are part of the application,

• how these components are adapted,

• the connections among the components.

Interface
Interfaces specify the services that components provide or require. Each component can
provide or require several interfaces, and each interface can be provided or required by
several components. A typical example of an interface is a set of method specifications.

An interface is a specification of (part of) the functionality of a component.

10

3 Features
In this section, we define and describe the various features that are relevant to composi
tion environments. We will use these features to characterize the environments surveyed
in Section 4. Section 3.1 describes component model features, such as components, inter
faces, and connections'. In Section 3 .2, process level features such as scripts and diagrams
are discussed. Table 1 gives an overview of all the features contained in these sections.
Table 2 shows our categories of features, and how they interrelate. The left column shows
the steps of the composition process. The second column represents component self
description, which is related both to the composition process, and to the component
model. The last two columns show the remaining categories of component model fea
tures.

The features selected are the ones that are most relevant to composition environments,
and have been cited most often in the literature. Both component model and process level
features are essential to realize end-user composition. A good component model will
make composition easy and expressive. But in reality, composition is often difficult be
cause programming or other complex procedures are necessary to configure components,
or even source-level changes to components need to be performed. Composition is often
unexpressive because only components from a limited domain can be used, or because
configuration is restricted in some way.

Without appropriate process level support, the benefits of a good component model will
be accessible only to technical experts. Composing an application from prefabricated
components is a significantly less complex task than programming the same application
from scratch, and thus there should be no need to be familiar with complex tools such as
programming languages in order to perform this task. Instead, users of composition envi
ronments should receive tool support in all steps of the composition process.

Component model
Components

Components and component instances
Component identity

Interfaces
Interfaces
Interface instances
Interface identity
Interface location
Versioning
Directions of interface instances

Self-description
Syntax
Semantics
Quality of service
Non-technical

Configuration
Connection semantics
Connectors
Connector types
Connection cardinality
Anticipated adaptation
Composite components

Process
Searching and selecting

Remote search
Search criteria

Leverage self-description
Syntax
Semantics
Quality of service
Non-technical

Configuration
Scripts and diagrams
Ad-hoc adaptation
Constraints
Consistency
Distributed applications

Execution
Execution in the environment
Packaging
Runtime changes

Table 1. Overview of the features discussed in this section.

11

!Ml--- - - - - Component Model I I~"- - --

searching and
selecting c

0

configuration
+:i

interfaces, (/) a..
·c c
() configuration (I)
en c
(I) 0

execution 'U a..
~ E
(I) 0
en (..)

Table 2. Relationship between the features of composition environments.

3.1 Component Model Features
We describe in this section the features of a component model. Thus, we are defining a
component metamodel [85]. We use this metamodel as a basis for the discussion of the
component models used in composition environments. While it would be desirable to be
able to compare component models from a completely neutral and unbiased point of
view, this is not possible. We need a terminological framework that we can use as a basis
for comparisons. The metamodel presented here has been chosen as a compromise be
tween neutrality among the existing approaches, and our intent to focus on those features
of component environments that we believe to be the most relevant ones [62].

3.1.1 Components
Components are the building blocks of applications. They are usually licensed from an
other organization, installed, and then adapted and connected to other components to
form an application. While the definition in Section 2.1 already restricts possible compo
nent concepts, the exact characteristics of a component are defined by the component
model in question. While there is substantial variation, the common property of the vari
ous component models is that components are those artifacts that can be composed into
applications.

Component Category

We distinguish five categories of components. Each component model surveyed defines
its components as members of one of these categories. See Section 3 .1.4 for a discussion
of the relation between these categories and connection semantics. The categories are:

Process. A process is an executable program running in an operating system.

• Object. An object is a set of data with associated behavior, is generally created by in
stantiation from a class, and usually belongs to exactly one process.

• Procedural library. Libraries of procedures are supported by many operating systems,
for example in the form of dynamic link libraries.

• Class. A class is an abstract data type specification. Classes can be instantiated into
objects. Szyperski argues that components should not be identified with data types
[125].

12

• Class library. A class library is a set of classes.

Component Types I Component Instances

The relationship between components, types, and instances may be confusing. The
meanings of these terms differ significantly among component models. This is illustrated
by Table 3, which compares the realization of component types and component instances
in C2 (see Section 4.1.1) and Java (see Section 4.2.1). C2 components are either proc
esses in the distributed case, or objects in the localized case. Its component types are ab
stract specifications of components (expressed in the SAD EL language), which may in
clude syntactic and semantic constraints, but do not include concrete implementations.
There is no concept of component instances in C2. Java components are classes. Classes
can be instantiated into objects; thus objects are component instances in Java. There is no
concept of component types in Java, although it would be possible to introduce such a
concept analogously to C2 component types.

We define component types [70, 72] as a high-level mechanism to classify components
according to certain concepts of substitutability, or to express architectural constraints.
Composition environments may or may not support different component types. In sys
tems where components are objects, classes are obvious candidates for component types,
but component type systems may be more complex than programming language type
systems.

Component instances may exist in systems where components are associated with data
types. Instances of a component are the instances of the associated data type. Thus, each
component may have one or more instances at any point of time in a given application.
Modeling of both components and component instances may be useful in systems that
infrequently create new instances, or that have a limited number of instances per compo
nent. For example, many graphical user interfaces have a fixed, small number of in
stances per component, which makes component instance modeling feasible.

C2 Java

Component Type abstract specification of a component -

Component process I object class

Component Instance - object

Table 3. Comparison of component types and component instances in C2 and Java.

Global Component Identity

Since components are reusable, it has to be possible to identify them across organiza
tional boundaries. In a global market, global identification becomes desirable. Compo
nents can be identified either through a name space [2, 54], such as the Uniform Resource
Locator name space [130], or through unique decentralized identifiers [15].

Name spaces provide a human-readable classification of names, based on conventions
about the structure of the name space. Name spaces should be global to accommodate a
global component market, so that each name space element is worldwide unique. Name
spaces are logically centralized (the name space has a root), but can often be used in a
distributed way through selection of appropriate conventions. For example, by using

13

Internet domain names as the basis of a component name space, the non-distributed part
of the name space is adopted from another, well-established name space, thus delegating
the problem of centralization.

Decentralized identifiers are strings that are randomly generated in a way that makes it
impossible or very improbable to generate the same identifier twice. Thus, decentralized
identifiers are also global. They take up less space than name space identifiers and do not
require naming conventions.

Versioning

Components may have versions [22]. Versions are an extension of the component name
space with a specific meaning; components with the same name, but different version
numbers are typically considered evolutions of one another, which may or may not imply
backwards compatibility.

3.1.2 Interfaces
In component models, interfaces are used to realize information hiding. When compo
nents specify their functionalities through interfaces, their implementations can remain
hidden.

Interfaces

An interface is a specification of an abstract data type. It consists of specifications of the
operations that define the data type, but does not specify its implementation. Components
may use instances of interfaces to describe the services they provide or require. Interfaces
can be associated with all levels of component self-description (see Section 3.1.3), so that
they can specify not only the syntax and semantics of an operation, but also properties
such as performance.

Component models that do not support interfaces are untyped. Without interfaces, there is
no way to restrict connections, and thus all possible connections are legal, making the
component model simple to use, but not very expressive. The trade-offs between typed
and untyped component models are analogous to the trade-offs between typed and un
typed programming languages.

Since interfaces specify types, interfaces may require an underlying type system that de
termines type compatibility. In the simplest case, two interfaces have to be identical to be
compatible, but the various subtyping relations known from programming languages can
occur [20].

Interface Instances I Ports

An interface instance, also called a port, is an association between an interface and a
component. It represents a set of services that the component provides or requires; thus,
each port has a direction: it is either a provision port (also called out-port), or a require
ment port (in-port). While an interface is just a specification of an abstract data type, an
interface instance is a part of a component that expresses that the component provides or
requires an implementation of that interface.

14

When a connection is created between two components, the connection is linked to a port
of each involved component. Ports can only be connected if they are compatible accord
ing to the underlying type system, and if their directions are different. Thus, a connection
is always established between a requirement port and a provision port that are instances
of compatible interfaces. Ports may limit the number of connections that can be linked to
them.

Component models differ in the number of ports they allow per component. Environ
ments may have one provision port per component, or a variable number of provision
ports. Component models may either support or not support requirement ports. Environ
ments with requirement ports have one or a variable number of requirement ports per
component. Component models that do not support requirement ports suffer from insuffi
cient component encapsulation, because component requirements cannot explicitly be
specified. Untyped systems provide at most one port in each direction.

Global Interface Identity

Similar to components (see Section 3 .1.1), interfaces may be identified either through a
name space, or through random unique identifiers. Without mechanisms such as these,
name conflicts can occur when interfaces from different sources are used in one applica
tion.

Interface Location

Composition environments and components need to be able to access interfaces (i.e., ab
stract data type specifications) in order to perform type checks, and to receive informa
tion about components. Therefore, there has to be a way to find an interface by its inter
face identifier. Environments differ in where the interface itself is stored.

Specifically, interfaces may either be copied or referenced. In component models with
interface copying, each component that uses an interface contains a copy of it. This ap
proach can cause consistency problems, because with a large number of components us
ing the same interface it is hard to guarantee that all the copies of the interface are
equivalent. In component models with interface referencing, a unique copy of each inter
face is referenced through identifiers, but never copied. This master copy of the interface
is stored in a location that is not part of any component.

Versioning

Interface name spaces may be augmented by a versioning scheme, similar to versioning
of components (see Section 3 .1.1).

3.1.3 Self-Description
Self-description [10, 57, 62, 93, 97, 140] gives components and interfaces the ability to
specify or describe themselves at various levels of detail; self-description is a way of pro
viding component meta-data. Description that is contained in a component has many ad
vantages over externally stored description. External description can get lost, may have to
be updated manually, cannot easily be queried by composition environments, and is usu
ally static. Self-description applies to both required and provided features [88], and is

15

categorized into four levels (syntactic, semantic, quality of service, and non-technical),
each of which is described in the following.

Syntactic Self-Description

The first level of self-description, syntactic self-description, describes the operations of
an interface at the programming language level. It is needed to check compatibility be
tween interfaces; if there is no syntactic compatibility, one of the components will have
to be adapted for both to be connected.

Semantic Self-Description

Semantic self-description [12] (second level of self-description) specifies the behavior of
the operations in an interface. Semantic description can be formal, semi-formal, or infor
mal. Informal specifications often take the form of natural language keywords. Since
complete formal specifications are hard to use, assertions [34, 11 O] have been developed
as a pragmatic form of incomplete formal specifications.

Quality-of-Service Self-Description

The third level of component self-description [64, 107] is concerned with all technical
issues that are not functional. Examples include qualities such as performance, precision,
or reliability. However, what is considered a functional requirement is not clear in many
domains. For example, resizability of user interface windows may both be considered a
functional requirement (because program code has to be written for it), and a non
functional requirement (because it is a usability concern). Quality-of-service description
can be applied both to interfaces and to components as a whole.

Non-Technical Self-Description

Non-technical self-description, the last level, includes all other, non-technical properties
that may be of interest to component users. Examples include the price of a component,
the author of a component or interface, and licensing information. Similar to quality of
service, this level is applicable both to interfaces and components.

3.1 Configuration
Configuration features determine how components are adapted and connected to form an
application. Connections are necessary to make components talk to each other; adapta
tions are desirable so that components can be modified to fulfill the requirements of an
application better. Composite components are a means to structure large applications into
smaller parts.

Connection Semantics

Connections can have different meanings in different component models. Without speci
fying the semantics of connections, one cannot deduce the semantics of composed appli
cations. A connection can either mean that code is being exchanged between two compo
nents (for example, when a Java applet is transferred from Web server to Web browser),
or that state is being exchanged (for example through remote procedure calls). The first

16

case is type-based or code-based semantics, the second case is service-based or instance
based semantics [63].

Instance-based connections are further categorized into stream-based and event-based
connections, depending on the mechanism used to exchange information. Stream-based
connections exchange data as a continuous stream to which new data is written by the
sender, and from which the receiver can read the data. Event-based connections [86] di
vide data into discrete messages that are exchanged at certain points of time.

The connection semantics employed in a given system correlates with the component
category (Section 3 .1.1) used. Components that are processes and objects usually employ
instance-oriented semantics; components that are procedural or class libraries usually
employ type-based connection semantics.

Connectors

Connectors [96, 114] are explicit connections (also called external connections). They are
connections that exist independently from the components that they connect. In compo
nent models that do not provide connectors, components have to be modified whenever a
connection is being changed.

Often, connectors have a certain functionality that does not logically belong to either
component, but rather to their connection, for example, a specific network communica
tion protocol. Component models that provide connectors with functionality or user
defined connectors raise the question what the exact difference between components and
connectors is. In distributed systems, components can easily be identified with hosts and
connectors with communication connections between hosts. In localized systems, how
ever, no obvious analogy exists, and thus the distinction between components and con
nectors may depend on a specific architecture or a specific architectural style. Table 4
briefly summarizes the differences between components and connectors.

Component models may allow composite connectors [3 8]. Composite connectors are
user-defined connectors that have been created by linking several existing connectors.
Connectors can be introduced to programming languages in order to make classes or
modules exchangeable [35].

Components Connectors

provide the bulk of application function- only small, specialized amounts of func-
ality tionality

many different components available only a few different connectors available

can have any number of ports often have a fixed number of connection
points (usually 2)

related to network hosts; localized related to network wires; may be distrib-
uted

Table 4. Comparison of components and connectors.

17

Connector Types

Environments may provide several types of connectors with different connection seman
tics or different quality of service characteristics. Some environments additionally let the
user define new types of connectors. Mehta et al. survey possible connector types [7 4].

Connector Cardinality

The cardinality of a connector determines how many ports can be linked to it at each end.
A basic connector has cardinality 1-1; more complex connector cardinalities are 1-n (or
n-1) and n-m. Connector cardinality may depend on the type of the connector.

Anticipated Adaptation

Components are more reusable if they can be adapted by an application builder to fit the
needs of a certain project. Towards this goal, component developers can provide means
to adapt components through anticipated adaptation [14]. Anticipated adaptation is op
posed to ad-hoc adaptation (see Section 3.2.3), which is done without preparation by the
component developer. Popular means of anticipated adaptation are property sheets and
configuration wizards. A property sheet is a list of simple properties (such as numeric,
boolean, or string properties) that can be changed by the user and that function as pa
rameters of component behavior. A configuration wizard is a dialog that guides the user
through a sequence of configuration steps.

Heineman and Ohlenbusch [41] survey adaptation techniques and list requirements for
them. However, many of the techniques described require some degree of source access
and thus cannot be used with deployable components. Especially, inheritance (as com
monly used in object-oriented languages) is not compatible with deployable components
because of the fragile base class problem [80, 122].

Composite Components

Applications easily become confusing when they consist out of a large number of com
ponents. Composite components may alleviate this problem by providing internal struc
ture. Composite components are components that are not implemented in a programming
language, but are instead composed out of other components. Components that are not
composite are called atomic. Without support for composite components, large applica
tions become hard to understand. Composite components hide part of the complexity and
thus make application composition more scalable.

Composite components can be hierarchical or non-hierarchical. In a hierarchical model,
every component is an immediate part of at most one composite component.

3.2 Process Level
Process level features make composition environments usable. They guide and inform the
application builder so that the process of application composition becomes as easy as
possible. While many accepted criteria for the design of usable environments apply, we
focus on those user level features that are characteristic of composition environments. We
categorize them according to the application composition process [62]; first, the builder
searches for components, then self-description is used to get information about the com-

18

ponents and to select appropriate ones, third, the application is configured, and last, it is
executed.

3.2.1 Searching
Searching is an integral part of the application composition process. When requirements
are determined, components to fulfill these requirements have to be found. Every compo
nent that is found and selected may depend on other components, which also have to be
searched for, although tools that help in this task exist [42].

Remote Search

Components may be developed by an organization that is different from the organizations
using it. The organizations that want to use a component have to search for it in remote
repositories.

Composition environments may differ in the degree to which they integrate remote
searching capabilities. At the one extreme, there may be no support at all. Application
builders have to manually locate components and integrate them into the local repository.
At the other extreme, a composition environment may be completely distributed and hide
the actual location of components from the user.

3.2.2 Leveraging Component Self-Description
Self-description of components (see Section 3.1.3) can be leveraged by environments to
guide the user, to provide information for searching and selecting components, and to
guarantee application consistency analysis. Composition environments differ by the
amount and way in which they make use of self-description capabilities defined by the
underlying component model.

All levels of self-description can be used by environments for the following purposes:

• User guidance. Components provide information about themselves that is used to in
form the user about components, and to guide the process in which the components
are used. Diagrammatic notations can make use of component self-description in
many ways, for example they can use color schemes to visually categorize compo
nents into groups.

• Searching and selecting. Component description is used to search for matching com
ponents, and to select among a set of components returned by a search inthe compo
nent-based development process.

• Consistency and analysis. Environments may guarantee consistency of a composed
application by checking connections for agreement between provided and required
features when they are specified in the tool, or in a separate consistency analysis step
later. In either case, component self-description is needed to ensure that connections
are legal. ·

3.2.3 Connecting and Adapting
In order to create an application out of a set of components that have been found, the
components need to be connected and adapted. This activity is also known as the con
figuration step. Connecting means that the abstract dependencies between components

19

are instantiated with concrete relations, typically by defining a connection between two
ports. Adapting means that individual components are changed to make them fit better
into the system that is being built.

Composition Notation

Composition environments enable composition through scripts, diagrams, or a program
ming language interface. Scripts and diagrams are often intended to be usable by non
programmers; programming interfaces are more expressive, but require extensive techni
cal knowledge and are not suitable for users without programming skills.

Scripts are text files that are written in a scripting language. A scripting language [98] is a
programming language that is geared towards quick and easy programming. Develop
ment times with scripting languages are significantly lower than with system program
ming languages; as a trade-off, program performance in space and time is significantly
worse. Most scripting languages reach their flexibility through being typeless and inter
preted; they are typically Turing-complete programming languages though. For applica
tion composition, even simpler notations may be sufficient. Assuming that all complex
tasks are handled by components, a composition language only needs to be able to define
connections and adaptations.

Diagrams are specifications that are expressed in a graphical notation [117]. Typically,
notations consist out of boxes and arrows between them; in the context of a composition
environment, boxes often represent components and arrows connections. Diagrammatic
languages are often equivalent to scripting languages; it may be possible to automatically
convert diagrams into scripts and scripts into diagrams. Similar to scripting languages,
there is a spectrum from full-featured visual programming languages to simple diagrams
that express nothing more than connections between components.

Environments use scripts, diagrams, as their composition notation, or they may require
compositions to be expressed programmatically. They may support more than one com
position mechanism, in which case they have to ensure consistency between the different
models that they employ.

Ad-Hoc Adaptation

Ad-hoc adaptation (as opposed to anticipated adaptation, see Section 3.1.4) is the task of
adapting components to use them in a way that was not anticipated by the component de
veloper. Ad-hoc adaptation, also called external adaptation, is often used with legacy
components that are no longer supported, so that the application builder has to adapt them
to function with current technology. Since components are encapsulated and hide their
implementations, adaptations cannot change the components themselves. Instead, wrap
ping techniques have to be used.

A wrapper [37, 43] is a class that provides a new interface to another class. Clients use
the wrapper and its new front-end instead of the wrapped class. In the simplest case, a
wrapper just maps its own method names to the method names of the wrapped class. In
the more complex case, a wrapper may also adapt the behavior of a wrapped method by
adding processing steps before or after the call to the wrapped method. Transferred to
component systems, wrappers can be either components or connectors. A component can
wrap another component simply by using it as a server, and providing a different inter-

20

face. A connector can act as a wrapper by translating communication between the com
ponents it connects.

Shaw discusses types of ad hoc adaptation, many of which require source code modifica
tion, though [113].

Constraints

Constraints are logical expressions that constrain the structure of an application [1]. Con
straints can be either configuration constraints, or component constraints. Configuration
constraints regulate the way a set of components interoperate. Topological constraints are
configuration constraints (for example, a constraint that forces the architecture of the ap
plication to be layered). Component constraints limit the kinds of components that can be
used in an application, for example, a constraint specifying that every component has to
support a given interface.

Constraints are useful as application-specific extensions to the underlying component
model. Using a set of constraints in an environment is comparable to an ad-hoc speciali
zation of the underlying component model. Thus, constraints provide a flexible way to
extend the environment. Architectural styles [116] are examples of popular sets of con
straints. Other kinds of constraints might be domain-specific constraints that serve to
adapt a generic composition environment to a specific domain; Medvidovic et al. [69]
present a case study that shows how a specific architectural style can be expressed in a
constraint language.

Guaranteeing Consistency

Composition environments should guarantee the consistency of composed applications as
much as possible. Inconsistency may arrive from not complying with constraints given by
components, such as restrictions to which other components a component may be con
nected, or with application constraints defined by the application builder (see above).

Consistency checks can be done either at design time, or at runtime. Design time consis
tency checks are performed either on-the-fly, or as a separate analysis step [108]. On-the
fly checks are done while a specific design step is performed, for example, while a con
nection is made between two components. If the check fails, the user will be prevented
from creating that connection or warned about a possible error, for example with the help
of design critics [109]. Separate consistency checks are performed once an application is
designed, or once the user initiates the check. If the check fails, an error message is re
turned and the user will have to update the application in order to make it consistent.
Runtime consistency checks are analogous to assertions (pre- and post-conditions) in
programming languages.

Composition of Distributed Applications

Component technology has close ties to distributed technologies [101]. Therefore, many
composition environments have integrated support for distributed applications (applica
tions that are distributed over several hosts on a network).

21

Executing
Executing the composed application, is, of course, the goal of the application composi
tion process. But execution is also a part of testing the application, and thus a process step
in its own right. A flexible, usable composition environment will allow the user to build
and run applications in quick iterations.

Execution of Partial Applications

Composition environments must provide ways to execute composed applications. Envi
ronments differ in the way they do this. They may require an application to be completed,
or they may allow execution of incomplete applications or even individual components
for testing purposes.

Packaging

Once an application has been built out of components, it needs to be packaged, so it can
be shipped and executed independently from the environment. Depending on the host
platform on which the packaged application is to be deployed (installed and executed),
packaging may be more or less complex. In the simplest case, the components and their
configuration are copied into a file that can directly be executed on the host platform. In
more complex cases, the generation of installation scripts may be necessary.

Runtime Changes

Environments may support the changing of configurations (connections and adaptations)
at runtime. For example, applications for which the acceptable downtime is very small
may have to be updated at runtime, because updating of individual components instead of
updating the application as a whole may reduce downtime.

Since configuration changes at runtime are still a research issue [94, 95], environments
usually support them in a limited manner only. It is often possible to change configura
tions dynamically as long as no guarantees are needed that no program state is lost. Envi
ronments may provide mechanisms such as transaction support, roll-backs, and state ex
traction to support dynamic changes.

22

4 Approaches
Composition environments combine solutions from various areas of research. Work re
lated to composition has so far been spread among many communities both in research
and industry. In this section, we will look at each of these areas, and present exemplary
approaches from them. The areas that we discuss are: software architecture, programming
languages, visual programming, programming environments, computer networks and
interoperability, operating systems, and plug-in systems. We list representative composi
tion environments from each area, and briefly discuss similar approaches, where appro
priate. While· we try to cover each of these areas equally well, we focus on those ap
proaches that show the current state of technology. At the end of this section, Tables 6
and 7 give a detailed comparison of the approaches according to the features introduced
in Section 3. Table 5 gives a quick overview of the terminologies of the different ap
proaches.

Component Connection
C2 component connector
Koala component binding
Un icon component connector
Java class file class path
Jiazzi unit connection
Visual Age part connection
Visual Basic control (VBX) -
Bean Box bean connection
Vista component link
Code Broker - -
Agent Sheets agent -
EJB enterprise bean -
Pipe and Filter filter pipe
Win32 dynamic link library (DLL) -
Dot-Net assembly -
Plug-In plug-in -

Table 5. Comparison of the terms for components and connections in the surveyed
approaches.

4.1 Software Architecture
Software architecture [27, 73, 99, 116, 139] is concerned with the large-grained structure
of applications. Often, the· term is used for any large-grained design including design of
compile-time structure (sometimes called logical architecture); the software architecture
literature, however, focuses on design of the runtime structure. Software architecture
deals with architectural components and connectors. Components in software architecture
are not necessarily components in the sense of this paper, but may be so-called abstract
components [18], which are pure design artifacts without realization in the implementa
tion. Both instance-oriented application design and the concept of connectors, which is
not limited to instance-oriented design, are contributions of software architecture. We
discuss two architecture environments that support deployable components.

4.1.1 C2 I Archstudio
C2 is an architectural style developed in 1995 [126]; Archstudio is an environment to
support building applications in the C2 style [8, 68, 95]. C2 was originally developed for
adding graphical user interfaces to legacy software, but it has proven suitable for large-

23

Figure 2. Representation of a C2 style architec
ture in Archstudio.

scale distributed applications in general. Archstudio contains tools to allow display and
modification of architectures (Argo/C2, see Fig. 2, and Archshell), and to map architec
tural changes between model and implementation.

C2 structures applications in a layered manner; components communicate only by ex
changing asynchronous messages through connectors. There are two types of messages,
events and requests. Depending on their type, messages can flow only upwards or down
wards in an architecture. Connectors are heavy-weight and can have complex implemen
tations of their own [25].

Component Model. Components are Java objects with their own control threads. Each
component has two ports, one called top and one called bottom; both ports are bidirec
tional and untyped. Connectors are explicit, have unlimited cardinality, and exist in sev
eral kinds that implement different event-based communication mechanisms. Both prede
fined and user-defined connector types are supported, and connectors may be distributed.
There is no support for anticipated adaptation or composite components.

Process-level support. Applications can be built and modified by using either scripts, a
command-line shell, or a graphical tool. They can be tested and executed in the environ-

24

ment and exported in the form of scripts. There is no support for component develop
ment.

Summary. Archstudio is one of the most advanced typeless, instance-based composition
environments to date. While it is restricted in its applicability by being limited to one,
rather complex architectural style, it provides extensive support for this type of environ
ment. Various interesting connector technologies have been implemented in C2 [25]. Be
cause of the fact that C2 connectors are heavy-weight and have variable cardinality, it is
well suited for experimentation with novel connector types.

Related ApprQaches. C2 is extended by an architecture description language, C2 SADEL,
that focuses on component evolution, and a supporting tool, Dradel, which has been inte
grated into Archstudio [71]. Several architecture description languages (for example,
Darwin [65], Weaves [39), or Wright [7]) address similar issues as C2; most of them,
however, do not have tool support for deployable components.

4.1.2 Koala
Koala [90, 91] is a component model and associated tool set for embedded software in
TV sets. Koala is based on the Darwin architecture description language [65]. Compo
nents are implemented as C modules. The Koala language describes these components,
and allows textual modeling of applications out of them. When the application is com
piled, components are statically bound to each other. Procedures that are connected to
each other are in this way are resolved, if necessary, by adding macro definitions to the
modules that result in replacing the names of the two connected procedures by a common
name.

Component model. Koala components have provision and requirement ports, but no self
description beyond this level. Koala interfaces are sets of C functions, and are explicit
entities. Connectors are explicit, but no connector types exist. Connection semantics are
type-oriented, since connections establish matchings between functions. There is no sup
port for component adaptations. Composite components, called compound components,
can easily be defined as Koala scripts. Koala has specific rules for component evolution
which constrain what may change between versions of a component.

Process-level support. Koala applications are defined using a textual notation. There also
exists a graphical notation for visualization purposes. Since embedded system have no
user interface, no post-design user support is needed.

Summary. Koala combines the architectural modeling features of Darwin with a compo
nent model. While the applicability of Koala's techniques is certainly wider than the very
specific domain that it is built for, it is geared towards high-performance applications. As
a consequence, deployability of components was not one of its design goals. Possible
extensions should easily be able to add this feature though.

4.1.3 Unicon
Unicon [115, 143] is an architecture description language that defines various types of
connectors, and supports implementation of applications using these connectors. Most of
its connection mechanisms are source-code based, but it also provides an extension of the
pipe-and-filter mechanism for the composition of deployable components (see Section
4.6.1, Pipe and Filter).

25

4.2 Programming Languages
Programming language research, especially in the area of object-oriented languages, has
developed many mechanisms to support design of the compile-time structure of programs
by making program code more understandable and more reusable. Examples of such
mechanisms are inheritance, polymorphism, encapsulation, and explicit interfaces.
Lately, many programming systems have started to support dynamic linking [36], which
is meant to make libraries independently deployable. Dynamic link libraries (DLLs) ex
tend reusability from the source code to the compiled code. We discuss Java, a popular
object-oriente~ programming system that puts a strong focus on dynamic linking and de
ployability, and Jiazzi, an extension of the Java platform.

Java Platform
The Java programming system [119] was introduced by Sun Microsystems in 1995. It
consists out of a programming language [40], a class library [48], and a virtual machine
[142]. The Java virtual machine and the Java standard class library are together known as
the Java platform. Design goals of the Java platform include:

• Portability: Java provides a platform that allows execution of programs on a large
number of different locations of the Internet independent of the host hardware;

• Object-orientation and ease of programming: The object-oriented core concepts of
encapsulation, inheritance, and polymorphism are built into the platform. For exam
ple, programs for the Java platform cannot use pointer arithmetic, and there is internal
support for automatic garbage collection. There are no program files; the only kind of
executable files are class files which each encapsulate one class.

• Internet-wide deployment: Class files can be loaded from remote hosts on the Inter-
net, and dynamically linked at program runtime.

Components for the Java platform are class files, or Jar files, which are sets of class files
that are bundled and compressed into one file. Each class file contains either the imple
mentation of a class or of an interface. Interfaces are definitions of data types that do not
include method bodies; they are meant to be inherited from by classes, which provide full
implementations. To compose an application, the "class path" has to be set. The Java
class path is an operating system variable (alternatively, a command line parameter of the
Java runtime environment) that determines where the runtime environment looks for
class files. The class path can include local directories, files, or remote locations specified
by URLs. Additionally, in order to execute a program on the Java platform, the main
class has to be set. The main class is the class with which program execution is to start; it
needs to have a specifically labeled main method. When an application is executing, the
runtime environment searches for classes that are needed by using the class path. If sev
eral classes with the same name exist, only the one that is listed first in the class path is
used. ·

Component model. Components (class files) are encapsulated and deployable [28, 59].
They provide syntactic self-description of provided features through the reflection
mechanism of the Java platform. Interfaces are entities of the same rank as components,
since they are also stored as class files. Both components and interfaces are identified
through a naming convention that guarantees globally unique names by including the
component developer's Internet domain name. Components are limited by the fact that

26

they are data types (classes) at the same time. This makes it impossible to create large
grained components without compromising principles of object-oriented design, and it
prevents the creation of composite components [125]. The class path is an explicit con
nector; the class path facilitates changing the architecture of an application without hav
ing to change its components. However, use of the class path is tedious, because there is
no mapping between the structure of the class path and the application architecture.
Components do not describe their required features, so creating an architectural descrip
tion requires program analysis.

Process-level support. The Java platform is provided in the form of a command-line
based interpreter. Therefore, there is no process-level support beyond the connecting and
executing of applications.

Summary. While severely limited as a composition environment, Java was the first ob
ject-oriented system with a precise specification of compatibility of deployable compo
nents. Class paths are a simple, though limited, means to compose applications. Together
with binary compatibility, they make it easy to substitute deployable components for each
other.

Related approaches. Binary Component Adaptation [53] and Load-Time Adaptation [29]
are add-on techniques that can be used to modify Java class files after compilation. They
can be used to adapt the syntax of a class declaration (for example, by renaming methods)
or to extend classes by adding semantics that do not require knowledge of the implemen
tation (for example, adding pre- and postcondition checks).

4.2.2 Jiazzi
Jiazzi [67] is a script-based tool that adds a component concept to the Java platform. Un
like Java Beans and similar technologies, it is aimed at realizing deployable, type-based
components. Jiazzi is based on research geared at introducing connectors to programming
languages [35].

Components, called units, are sets o{ Java classes, specified through scripts that either
map a unit to a single Java file ("atoms"), or define a compound, which is a composite
component that refers to several atoms. Another kind of script, called signature, is used to
specify packages in the Java code. The Jiazzi Linker generates an application out of
scripts and class files; it does so by modifying the constant names (such as names of
classes) in the class files: it replaces the names of signatures by the names of the classes
that they are bound to in the unit definitions. The modified class files then constitute the
complete application and can be executed in the usual manner. Figure 3 shows two ex
ample Jiazzi scripts: "ui", which is a user interface component specified through the sig
nature "ui_s", and "linkui", which is a compound that connects "ui" with another compo
nent called "applet".

Component model. Components are largely deployable, but suffer from a lack of encap
sulation: each component consists both of a set of class files and the add-on scripts before
linking, and it is not possible to prevent component implementations from communicat
ing with each other in ways not specified in the scripts. Components are type-based, and
provide syntactic self-description of both provided and required features. Signatures
serve as interfaces; they specify Java packages (sets of classes), and are thus more ab
stract than Java interfaces, which specify only individual classes. The scripting language

27

atom ui {
export ui out ui_s<ui_out>;

}

compound linkui {

} {

}

export ui_out : ui_s<ui_out>,
app_out : applet_s<ui_out>;

local u : ui, a : applet;
link u @ ui out to a @ ui in, u @ ui in to ui_out,

a @ app_out to app_out;

Figure 3. Example of two Jiazzi scripts defining an atom and a compound.

provides explicit connectors, and composite components. There is no support for adapta
tion.

Process-level support. The user interface is limited to the simple scripting language and
the execution of the Linker. The separate linking process (the modification of the class
files) makes it possible to avoid almost any performance loss when using this environ
ment, but reduces interactivity. Since generated applications exist in the standard Java
distribution format, no additional packaging process is needed; however, the configura
tion of an application cannot be reverse-engineered out of the generated code, nor is any
self-description included. As a result, generated applications are not suitable as a distri
bution format when further changes to the configuration might be necessary.

Summary. Jiazzi is an environment with a simple component-based notation (in-ports,
out-ports, connectors) that works on top of the Java Virtual Machine. It shows how a tool
that does not support these concepts can easily be extended to include them.

Related approaches. Arch Java [6] is an extension of the Java language that allows for
connectors and ports, and can enforce their use. However, it allows composition only at
compile time, and does not support deployable components.

4.3 Visual Programming Environments
Visual programming [117] is a subarea of programming language research focusing on
graphical, instead of textual, notations for programs. While visual programming lan
guages are not commonly used, visual design notations (such as the various notations in
cluded in UML [89] and software architecture diagrams) are widespread. Composition
environments often include a kind of visual notation with an expressiveness that is
somewhere in between UML-like design diagrams and Turing-complete visual program
ming languages. The area of visual programming environments is concerned with the de
sign of tools to support software development tasks. A composition environment is such
an environment, though the underlying process and many of the process steps are differ
ent than in traditional programming environments. We survey Visual Basic, Visual Age,

28

and the Bean Box, three popular commercial environments, and Vista, an academic vis
ual programming environment.

4.3.1 Visual Basic
Microsoft Visual Basic [30, 78, 129] (see Figure 4) is an integrated development envi
ronment for the MS Windows operating system introduced by Microsoft in 1991. Its goal
is to simplify the development of applications that make heavy use of the MS Windows
application programming interface. Visual Basic programs consist out of forms and con
trols. Forms are dialog windows, whose user interface can be created by dragging con
trols (window elements such as buttons) on a grid in the usual way of GUI builders.
Forms and controls can be adapted through property sheets to set attributes such as color
and font. Any program code must be inserted into event handler procedures associated
with the individual events that can happen in a form, for example the pressing of a button.
Controls are usually predefined, but it is possible to import custom controls into the envi
ronment. Since the introduction of Visual Basic, many other IDEs for Microsoft Win
dows have been extended to support integration with Visual Basic custom controls.

Component model. The large popularity of the Visual Basic environment has been ex
plained with its file format for custom controls [66]. Controls are well encapsulated and
can easily be exchanged, thus promoting component reuse. They provide syntactic self
description that is used by the environment to display and adapt them visually. Custom

\~,Projec:tl - Mic:rosoft Visual Basic: EdesignJ 111!1£1

~. v
CJ ~

i5l '
·~.~
111

Another But ton 111•

. ' ..• ·, ••• lljl·, , · •.• ,11(

I Co.rnma~dl Comma~dButton .

Alphahetrc j Categorized I
(t'J.a.m~) · Command2
Appearance !o - Flat
BackColor .•. [j ~sqo.9001~~
Cancel : False

f.3LJ.~€l.~Validation ! True
Default : False

i(rlJone)
DownPicture . . : (Na.rie)
Dragicon :(N9ne)
Dra.gMode O - Manual
Enabled . True
Font . Sydriie
Height . 1455
HelpC:~ntextID · o
I~d~x·· .. ··.

1,,.fr ?RRn

iCaption
!Returns/sets the text displayed in an
!object's title bar or below an object's

Figure 4. Composition of a GUI in Visual Basic, version 6. The form shows
two button controls and a timer control; the property sheet for one of the buttons is
visible.

29

controls that are displayed in the graphical environment are instances of the types defined
by their files. Event handlers can be considered as connectors. However, they often con
tain functionality of their own and thus should better be classified as components. In this
case, there are no explicit connectors. The architecture of an application is not visible,
because the visual environment shows only top-level component instances, that is, those
that are immediate constituents of the application. Other components that these might de
pend on are not shown.· Composite components do not exist.

Process-level support. Predefined components can be visually arranged and adapted in
the environment. To connect components, it is usually necessary to write textual event
handler code. The application can be executed in the environment, but can also be pack
aged in a proprietary format that is closely integrated with the MS Windows operating
system.

Summary. Visual Basic opened components to the mass market. The combination of an
easy-to-learn programming environment with a robust file format for deployable compo
nents proved to be commercially very successful.

4.3.2 Visual Age
Visual Age [131, 132] (see Figure 5) is an integrated development environment for the
Smalltalk language published by IBM in 1994. Since then, versions for C++ and Java
have been added. Apart from the traditional features of an IDE, such as program editing
and debugging, Visual Age has support for component-oriented visual programming. The
goal of Visual Age is to increase the separation of labor among programmers by reducing
the amount of technical skill needed to build an application. It builds on and extends the
metaphor of graphical user interface builders (tools to visually create dialog windows out
of predefined visual elements such as buttons, check boxes, and text fields) by including
support for non-visual components and different kinds of explicit connectors.

To compose an application, components (which are called "parts") are dragged from a
toolbar onto the part composition editor, where they can be adapted with property sheets
and connected. The interface of each component consists of attributes, actions, and
events. Connections are created by linking these interface elements graphically; legal
types of connections include:

• attribute-to-attribute (whenever one attribute changes, the other one is updated to the
same value),

• event-to-action (whenever an event occurs, the action is started),

• event-to-attribute (whenever the event occurs, the attribute is set to its parameter), and

• attribute-to-action (the action is triggered whenever the attribute changes).

New components can either be defined visually, or through scripts (i.e., Smalltalk meth
ods). After a new component is implemented, the interface editor is used to define its
public interface. For example, if the interface includes an attribute, the component devel
oper has to define which methods are used internally to get and set the attribute.

Component model. Components are visual entities that are realized as instances of
classes. The visual environment, however, realizes features that go beyond the object
oriented class concept, such as composite components and explicit connectors. Compo
nents have syntactic self-description; the direction of ports depends of the types of con-

30

:1 nEgi\or ;l ... Swing ..,. ,..-------...;........ ~----------------......._-~_.._......;....--'--.;.....,..~......._...,,.

Jrr@
Jl~.·~,r~
l i0j•••tn··121
:11~+~·.~
:11·~~!1.

:II[~_:__
;ii Io Qi. (Il.
''El(@)~

JI~~~
dro

111~:',~+-
ll

II
II
;)1

Fiie ·. . • .~ /'Edit ., · · . •· ~

1. N. ew. "--.~y' f' Unif o··:. :c~'.:,...,-1
i Open · _ f Redo i ·.~!lite /I 1.-"i -'--Cut-. --,'-'---j

I · savef:··· ! ! copy
I Ext· · I I Paste

Delete

·Select All

FiiidJRepfuce

Figure 5. Screen shot of the Visual Age composition editor. Several visual
parts (GUI components) are connected. Blue connections are attribute-to-attribute
connections (linking the selection status, of a menu bar element to the visibility
status of a pull-down menu) green ones are event-to-action connections (linking
the pressing of a menu item to a method).

nectors attached to it. For example, an action port has always direction In, whereas an
attribute port can have both directions. Connectors are explicit and serve as communica
tion channels between components.

Process-level support. Visual Age has extensive support for connecting and adapting
components visually. Since it is a full IDE, textual representations in the underlying pro
gramming language can also be used. There is limited support for reverse engineering
textual programs into visual representations. Newer versions of Visual Age include re
mote repositories that can be used to store and retrieve components in local area net
works. There is no deployment support beyond the support of the underlying platform.

Summary. Visual Age was one of the first commercial tools to realize visual, component
based programming. Unlike other development environments, Visual Age is not limited

31

to GUI components. It is, however, limited by its identification of components with ob
jects.

Related Approaches. Many integrated development environments support similar mecha
nisms for visual composition. Examples are Microsoft Visual Studio [79], Borland Del
phi [13], and JBuilder [51]. These environments use visual composition mechanisms
mainly for construction of graphical user interfaces, and do not visually represent con
nections, which makes them unsuitable for more complex configuration tasks.

4.3.3 Bean Box
The Bean Box is a protypical environment for Java Beans [11, 49], a component archi
tecture for the Java platform introduced by Sun Microsystems in 1996. Its original pur
pose was to test Java Bean components for compatibility, and to provide an orientation
for people wishing to implement Java Beans environments. Several companies have since
provided industrial-quality environments with technology very similar to the Bean Box,
for example JBuilder [51].

The Bean Box is based on the technologies of Visual Age (see above), but simplifies
them. It consists of a workspace with a toolbar; components can be dragged onto the
workspace, and can be adapted and connected there. There is no support for component
development. Only three of the connection types of Visual Age are supported, event-to
action, attribute-to-attribute, and attribute-to-action.

Component Model. Components are Java classes that are stored in Jar files. A Jar file can
contain several classes, but only one of them can be a Bean; any other classes in the Jar
file could only be support classes used by the Bean class. Jar files contain meta
information to identify Bean classes. In the environment, Bean classes are instantiated
when a Bean is dragged into the graphical builder. Connectors are explicit; they are real
ized as individual classes that are generated when a connection is established. The Java
Beans component model defines syntactic self-description that goes beyond the self
description provided by the Java platform, especially through naming conventions. For
example, there is a convention saying that methods that return the value of an attribute
have to be named as "get" concatenated with the attribute name. Limited semantic de
scription is also available. Simple method calls between components are allowed, but
cannot be modeled by explicit connectors since there are no input ports for method calls.
There are no composite components. Ohlenbusch and Heineman give a formal specifica
tion of the types of ports in the Java Beans component model [87].

Process-level support. Components can be connected and adapted through property
sheets. The environment leverages the self-description of the Java Beans standard
through specific dialogs that display information about components. Applications can be
executed in the environment; the Bean Box can also generate an "applet", that is a Java
program executable in a Web browser, that encapsulates the connections that were made
between Beans.

Summary. The Bean Box is an attempt to combine the technologies of visual develop
ment environments such as Visual Age with the Java language. Through the associated
Java Beans component model, the Bean Box shows the power of self-description, and
how it can easily be realized using naming conventions.

32

Related approaches. Arabica [111] is an extension of the Bean Box with focus on archi
tectural concerns. It supports composition in the C2 architectural style (see Section 4.1.1)
by generating wrappers that tum C2 components into Java Beans, and enforcing the C2
style rules. The Bean Markup Language [137] is a textual, XML-based notation to con
nect and adapt Java beans. It comes with both an interpreter and a compiler, and shows
how a new composition notation for the Java Beans component model can be realized.

4.3.4 Vista
Vista is an environment for visual composition of applications [75, 76]. While originally
developed for the composition and manipulation of multimedia applications, it supports a
generic concept of components and connectors. A Vista component consists of an inter
face, a behavior, and a presentation, which is responsible for displaying it in the graphical
environment. The environment is relatively independent from a component model, be
cause the component model can be explicitly specified by the application composer as a
set of constraints. Data-flow-diagram-like composition and GUI-building are two differ
ent example component models supported by Vista.

To create an application, components are dragged into the visual editor and connected in
the usual, graphical manner. However, the application composer does not only need to
get appropriate components, but must also get access to an appropriate component model.
Just like the development of components, the development of new component models is
non-trivial and requires technical knowledge.

Component Model. Vista allows for user-defined component models, however these have
to adhere to and be expressed in an underlying model, a meta-model. The meta-model has
explicit representations of components, ports, and connectors (called "links"). Compo
nents need to provide self-description about their ports so that they can be connected
graphically. Ports are either supplier ports (out-ports), or user ports (in-ports). Compo
nents are instantiated by the environment when they are being dragged into the editor; but
the concrete meaning of "instantiation" is left to the component, so that both instance
oriented and type-oriented component models are possible. Composite components can
easily be created graphically. There is no support for adaptation.

Process-level support. The usual support for graphical configuration exists. Because of
the flexibility of the system, however, the concrete user-interaction model is determined
by the designer of the component model. Composed applications can be executed in the
environment.

Summary. Vista is a fully-configurable visual programming environment with support for
code-based components and connector support. It represents the first attempt to combine
a visual environment with a complex component model.

4.4 Software Reuse
Software reuse research [56, 120] has been concerned with the problems of identifying
reusable code, storing it in a reuse repository, and enabling software developer to retrieve
reusable code from the repository when they need it. However, the task of composing ap
plications is generally not supported; the code retrieved from a reuse repository has to be
adapted and integrated with other code manually by the developer. Often, only source
code components are supported. However, reuse environments provide relevant support

33

for searching and selecting of components. We discuss Code Broker, which focuses on
the task of finding components, and Agent Sheets, which focuses on usability.

4.4.1 Code Broker
Code Broker [141] is a software development environment that integrates autonomous
delivery of task-relevant and personalized information from a reuse repository. When a
developer sets on to write a method in the code editor, the system uses a machine
learning technique to check the natural-language comments and the signature of the
method to look for similar methods in the repository. Possible matches are presented to
the developer; the developer can receive more information about them, if desired. The
system adapts itself to the developer and the task at hand, and can also be adapted manu
ally; for example, methods about which the developer already knows are excluded from
the search results. The current prototype of Code Broker is implemented as an extension
to the Emacs text editor and uses the Java standard class library as its component reposi
tory. It uses the Java documentation to search for methods.

Component model. Components are deployable by their virtue of being Java components.
However, there is no composition support.

Process-level support. Code Broker is tightly integrated with a component repository.
The repository used is a very specific one (few components will have such good docu
mentation available as the Java standard library), but the mechanisms applied are univer
sal. Searching support is extensive and is largely done on an automated basis; the user
does not have to decide on search criteria and initiate searches, since this is done oppor
tunistically by the environment. The only kind of component self-description used is the
syntactic information from method signatures, but extensive use is made of semantic de
scription from other sources than the components themselves. There is no additional sup
port for configuration or execution.

Summary. While not a composition environment in itself, Code Broker shows how much
automated support can be provided for searching and selecting, tasks that are typically
still done manually. Composition environments should integrate these techniques.

4.4.2 Agent Sheets
Agent Sheets [5, 105] is a visual programming environment that allows for easy manipu
lation of applications represented as two-dimensional grids of agents. An agent developer
defines agents by giving them a two-dimensional, rectangular depiction, and an associ
ated behavior. The behavior consist out of simple event-action sequences that allow the
agent to change its depiction and to cause events in the adjacent agents. Simulations
based on Agent Sheets have been successfully used for elementary school education.

Figure 6 shows a simple Agent Sheets worksheet that simulates automobile traffic on a
bridge. The user's task is to modify the bridge without causing cars to crash. The simula
tion consists out of two kinds of interesting agents: cars and bridge elements. Cars move
to the right, and if there is nothing under them, they crash. Bridge elements simulate
weight; if they are not kept in place by a sufficient number of elements below them or at
their sides, they will drop.

Component Model. Components can internally be complex, their interfaces, however, are
restricted to simple interactions with their four adjacent components. There is no support

34

for self-description or any configuration support beyond mere connecting of components.
The grid on which agents are places acts as an explicit connector; it decides which com
ponents are adjacent to which and thus how events are routed.

Process-level support. There is extensive support for the graphical creation of applica
tions from agents. Applications are configured by placing components on the graphical
grid. There is no support for the technical steps of the development process; applications
are assumed to be built from a small number of predefined components, so that no
searching or selecting procedures are needed. Applications need not be complete in order
to be executable.

Summary. Agent Sheets is an extremely usable composition environment. Building appli
cations has a similar touch-and-feel as moving pieces on a game board. However, it is
limited to application domains that can be represented as a two-dimensional grid, such as
map-based simulation.

4.5 Computer Networks and Interoperability
Computer networks have in common with component systems the fact that applications
are composed out of heterogeneous, decoupled parts. In a networked, or distributed, sys
tem, each part of the application may run on a different platform and be under different
administrative control. In a component-based application, each part may have been de
veloped by a different component developer. Systems that are both network-based and
component-based combine the properties of both. Since its runtime structure is an essen-

Figure 6. An Agent Sheets worksheet simulating cars on a
bridge.

35

tial attribute of a network-based system, software architecture is often used to analyze
such systems. Waldo et al. [135] argue that there are fundamental differences in the de
sign of distributed versus local applications because of network latency, network reliabil
ity, and similar issues. These differences are analogous to the differences between dis
tributed and local composition environments. We discuss Enterprise Java Beans, an in
dustrial client-server component standard, and the Worldwide Web, an example of an
Internet standard that allows composition of independently developed components into
networked applications.

4.5.1 Enterprise Java Beans Containers
Enterprise Java Beans (EJB) [26, 82, 112, 127] is an extension of the Java Beans compo
nent model for client-server applications. It provides components with common services
such as transaction processing or lifecycle management. An Enterprise Java Beans con
tainer is a runtime environment that can execute Enterprise Java Beans. Examples of EJB
containers are Bea Web Logic [9], IBM Web Sphere [46], and Oracle Application Server
[92]. EJBs are designed to represent the middle (business logic) tier of three-tier client
server applications, where the top tier consists of views on the client side, and the bottom
tier consists of a database. EJBs use Java Remote Method Invocation for communication
between client and server [134].

Component model. Components are deployable, because they can be used by the con
tainer without human intervention. The units of deployment are so-called EJB Jar files,
which contain one or more Enterprise Java Bean classes. However, not EJB classes, but
their instances are the units of composition by the EJB container. The syntactic self
description of Java Beans is extended in many ways and is stored in XML-based De
ployment Descriptors; for example, to differentiate between data types that have state and
those that do not, or to include information about required data types that are not imple
mented in the same component. There is no concept of component identity. Composite
components are supported in a rudimentary way. However, to create a composite, the
self-description of contained components has to be manipulated, which violates the prin
ciple of encapsulation. Connectors and anticipated adaptation are not supported.

Process-level support. None. Unlike the Bean Box, EJB containers do not provide
mechanisms for user composition. All configuration parameters are specified program
matically either inside the Enterprise Java Beans, or inside the container implementation.

Summary. Enterprise Java Beans is an industrial-strength standard for composition envi
ronments for enterprise-scale client-server applications, and shows how a simpler envi
ronment (Java Beans on top of the Java Virtual Machine) can be extended to include the
needs of such applications. As a trade-off, it ignores aspects of usability.

Related Approaches. Bean Bag [93] is a repository for Enterprise Java Beans that extends
deployment descriptors by adding semantic and non-technical information. The Corba
Component Model [23, 136] is similar to the Enterprise Java Beans model. However, it is
based on the Corba platform for distributed objects instead of the Java platfotm, which
makes it more universally employable.

36

4.5.2 The Worldwide Web
The Worldwide Web [32, 33] is a distributed, Internet-based hypermedia system devel
oped in the early 1990s. Unlike previous Internet systems such as FTP, its goal was to
reference remote data instead of requiring users to copy them to their local systems. Un
like previous hypermedia systems, the Web made integration of documents published by
many different organizations possible, and provided a uniform user interface to them. The
Web provides information through resources located on origin servers. When a user agent
(that is, a Web browser) requests a resource from a server, the server creates a represen
tation of the resource, and sends it along with metadata to the user agent. The user agent
then uses the· metadata to determine the way in which the representation is displayed to
the user, for example, by using an appropriate plug-in.

Component Model. Components fall into two categories: server-side components and cli
ent-side components. Server-side components are resources located on servers; these may
be simple, static data (such as hypertext pages or pictures), or complex programs that
generate dynamic replies (such as the results of database queries). Client-side compo
nents are viewers used to display or interpret representations of resources, such as image
viewers, Java virtual machines, or Shockwave plug-ins. An application is composed out
of one server-side component, and a variable number of client-side components. An ex
ample of a complex Web application is an online auctioneer; the server component con
tains a large database with many bids and auctions, client components are the various
tools customers use to display auction information and embedded information such as
pictures or movies.

Connections are always established between one server component and one client com
ponent. A user enters a URL into the Web browser, or clicks on a link pointing to that
URL, and this causes the browser to request the corresponding resource. URLs thus serve
as connectors between the resource named and the client components active on the user's
desktop. Proxies and user agents can filter incoming representations, and can thus adapt
them. It is not possible to adapt components as a whole, though.

Process-level support. The composition notation is simple - a short character string de
scribing the location and name of the desired resource. Support for component searching
is not integrated, but is provided through additional services, such as Web search engines,
for example Google. These search engines can deploy optional self-description provided
by resources. Only a small number of connections can be deployed at a given time, and it
is not possible to persistently store connections, so that composite components and appli
cation packaging are not applicable.

Summary. The Web is specified as an open system in the tradition of Internet standards.
This made it possible to implement a wide variety of Web servers, browsers, proxies, and
other supporting applications. As a consequence, the Web has become an immensely suc
cessful system. Although it is a composition environment with a very specific domain
(distributed hypertext applications), it exemplifies the importance of well-defined stan
dards for a composition environment.

Related approaches. Many other Internet technologies are based on similar open stan
dards, such as Internet Mail [47, 118] or Usenet [45]. Java Server Pages [50] and Active
Server Pages [3] provide ways to integrate Web server applications with composition en
vironments (Java and MS Windows, respectively). Java Applets [48] integrate mobile

37

Java components into Web pages; they are defined by the server, but executed on the cli
ent host.

4.6 Operating Systems
Operating systems support installing, configuring, and executing applications, and, to a
small degree, connecting them. Operating systems also include many interoperability
techniques. Connection mechanisms include messaging services, data exchange through a
central registry, and remote procedure call capabilities. Thus, operating systems can be
considered as precursors of composition environments [122, 123]. The main difference
between operating systems and composition environments is their implementation of the
performance versus configurability trade-off: operating systems focus on performance
with little concern about configurability; composition environments focus on configura
bility with less focus on performance. We survey Pipe and Filter systems, which provide
a simple, yet popular technology found in many operating systems, and two versions of
the MS Windows platform, Win 32 and Dot-Net, which is the current industry standard
for personal computer operating systems.

Pipe Filter
Pipe and filter systems [116] are used in command shells for the quick and easy connec
tion of text-based tools. The C Shell [52], which is frequently provided with Unix-like
operating systems, is an example. A Unix program has one standard input port (" stdin"),
and one standard output port ("stdout"). Programs are called filters, and they can be con
nected with pipes. A pipe links an output port to an input port. It acts as a stream buffer to
which the input port writes and from which the output port reads. Input and output are
usually interpreted as text strings that are structured only by convention; for example,
space and tab symbols are usually considered separators. Tools that are connected with
pipes are typically text-based operating system commands (such as "print directory"), or
simple string manipulation tools that can sort or otherwise modify text streams.

Component Model. Pipe and filter systems are designed for quick ad-hoc connection, and
this is usually all that they can do. Components have a predefined number of ports; each
of those ports is untyped, as a result of which the validity of a connection cannot be
checked. Components are processes, that is, running instances of Unix programs. Pipes
are explicit connectors.

Process-level support. The C Shell allows users to quickly connect and execute larger
applications by using the filter symbol ("!"). Using this symbol, several tools can be con
nected at once in a command line. If so desired, connections can be stored in a shell script
so that they can be used more than once. Anticipated adaptation of components is possi
ble through command line parameters by adding the parameter symbol("-") and the pa
rameters after the name of the tool.

Summary. Pipe-and-filter impresses through its simplicity. It is by far the simplest com
position environment that is commonly used. On the other hand, it is limited by its com
mand-line interface.

Related Approaches. Unicon [115, 143] is an architecture description language that sup
ports modeling and executing of Unix pipe and filter architectures. It extends the capa-

38

bilities of shells by handling arbitrary topologies, so that filters with more than one input
or output port can be used. As a consequence, branches and loop backs can be modeled.

4.6.2 MS Windows I Win 32
MS Windows is an operating system for Intel PCs developed by Microsoft Corporation.
Originally developed as a graphical front-end to the MS Dos operating system, MS Win
dows grew into a stand-alone system that includes a host of technologies. Win 32 is the
programming platform that the 95, 98, Me, and NT 4 versions of MS Windows are based
on. Components in MS Windows are dynamic link libraries (DLL files); some of the
limitations of DLL technology were removed by the Component Object Model (COM)
standard introduced in 1995 [11, 15, 21, 121]. COM makes it possible to extend a DLL
by adding procedures without making recompilation of all the clients of the DLL neces
sary.

To install applications and components, automated installation scripts are usually used.
When a new component is installed, it is registered in the Windows Registry for a set of
services. Clients can locate these services without having to know the component that
implements them.

Component model. Component describe the services they require and provide through
interfaces. Interfaces are identified by randomly generated unique numbers. Registry en
tries advertising services can be considered as explicit connectors, since the registry de
cides which server component is used for a specific service. However, there is no way to
display the architecture of applications. For anticipated adaptation, the registry can also
be used by providing keys that can be filled in with appropriate values. There are no
composite components.

Process-level support. The user has little control over configurations, because they are
usually changed automatically (without user interaction). Users familiar with the techni
cal details of MS Windows can use the registry editor to manually edit the list of pro
vided services in a script-like manner. Further, MS Windows includes tool support for the
syntactic description of components, both of provided and required features, and to re
trieve versioning information.

Summary. MS Windows exemplifies the attempt to realize component reuse in the setting
of a large, performance-oriented operating system. While the performance focus mini
mizes usability, the Windows I COM approach works well for many commercial appli
cations.

4.6.3 MS Windows I Dot-Net Framework
The Dot-Net Framework [31, 58, 77, 102, 104, 106] is the platform planned for future
version of MS Windows. It consists of a virtual machine (the "Common Language Run
time") and a standard library, and is an extension of the Win 32 platform and the Micro
soft Foundation Classes (MFC) library. It was announced in 2000, and is currently avail
able as a beta version. The main goals of the Dot-Net Framework are support for lan
guage interoperability and support for Web services.

Applications consist out of "assemblies" of files: While assemblies are not files them
selves, operating system extensions make it possible to treat them in the same way as in
dividual files. Assemblies are components that have self-description. Unlike in Win 32,

39

entries in the central registry are not necessary for component interoperation. Assemblies
can be private or shared. Private assemblies are used by only one application, and only
need to be copied to the directory of this application in order to be used. Shared assem
blies are shared among applications, and they are installed by using a simple command
line tool ("gacutil.exe", the Global Assembly Cache Utility). All further configuration is
done internally by accessing the self-description of the assembly.

Component model. Components are deployable and type-oriented. Syntactical component
self-description includes name and versioning information, description of the data types
and resources provided by the component, a list of required components, and the security
level needed to run the component. A component has a globally unique identifier, in
which versioning information is cryptographically encoded, so that updates can be pro
vided only by the originally manufacturer of the component. There is a global name
space of interfaces. No concept of connectors is present; since dependencies are specified
through component identities (as opposed to interfaces or ports), the environment can re
solve each requirement in a unique way. There are no composite components. It is un
clear at this time whether there will be support for anticipated adaptation.

Process-level support. There is no Process-level support so far. Especially, there is no
way to visualize the overall architecture of an application; all architectural information is
encapsulated in the components and cannot be separated from them.

Summary. Dot-Net is intended to be the future platform of MS Windows. It attempts to
unify the strengths of Win 32, such as performance and backwards compatibility, with
those of the Java Virtual Machine, such as platform independence and component de
ployability. In how far this will be successful remains to be seen.

4. 7 Plug-In Systems
Systems with a plug-in architecture, such as Netscape Navigator [l 03] and Adobe Photo
shop [4], provide an easy, low-overhead way of extending their functionality. A complex,
large application, often called the plug-in framework, defines an API that other manu
facturers can use to extend the functionality of the application through plug-ins. The ex
tent to which a plug-in can cooperate with the framework, or how closely coupled the two
products are, depends on the API in question. All plug-ins are optional; a plug-in can ex
tend the functionality of the framework, but it is not required for its use. Also, the number
of plug-ins is unlimited; it is possible to install and use more than one plug-in at the same
time.

Component model. The component model used is defined by the framework and its spe
cific plug-in API, and may differ for each framework. Since plug-ins provide a function
ality, composition is type-based. Since there is only one framework in each system, the
architecture of composed applications is limited to two levels (platform level and compo
nent level), and there is no need for composite components or component adaptation. Be
cause of their specialized nature, plug-in systems typically have only a small number of
available components per framework.

Process-level support. Since plug-ins are developed for a specific framework, they are
usually delivered with dedicated installation programs. Since the application architecture
has a simple two-level tree topology (plug-ins usually do not have plug-ins of their own),
no visualization or scripting support is needed.

40

Summary. Plug-ins are an ad-hoc solution for platforms that want to interoperate with a
small number of very specific components. As such, they are very useful, but their scope
cannot easily be extended.

Related approaches. Compound document standards, such as Opendoc [100] or OLE
[17], represent a symmetric extension of plug-in technologies. While in a simple plug-in
system there is exactly one program that acts as a framework, and a number of plug-in
programs that act as components, in compound document systems each program can act
both as framework and as component. This makes it possible, for example, to embed
spreadsheets into a text document, and conversely to embed text documents into a
spreadsheet. Compound document technologies have largely been replaced by component
models such as COM and Java Beans.

4.8 Comparison
Figure 7 gives an overview of the historical relations between the approaches and the re
search areas. On the horizontal scale, approaches are laid out by area; on the vertical
scale, approaches are laid out by approximate chronological sequence. An arrow from A
to B means that A influenced B, or that B is in some way based on A.

Tables 6 and 7 summarize the surveyed composition environments and their properties.
Each row corresponds to one feature, each column to one approach. As can easily be

Architecture I Reuse I

Code Broker

Dot Net

Figure 7. Historical relations among composition environments.

41

seen, the approaches vary in their focus; none implement functionalities from the whole
spectrum of features described in Section 3. Almost all approaches focus either on com
ponent model concerns or on process level concerns, but not on both. Features related to
self-description are not represented very often, even though there is theoretical agreement
on the importance of component self-description. It is interesting to see that approaches
stemming from very different research areas often focus on similar issues in the feature
spectrum.

42

Archstudio Koala Java Jiazzi Visual Basic Visual Age Bean Box Vista
1.1 Components Categories process proc.lib. class class lib. proc. lib. object object user-def.

Types +
Global identity +
Versioning + +

1.2 Interfaces Interfaces untyped + + + +
Instances (ports) P1 R1 P* R* P* RO P* R* P* RO P* R*
Global identity + namesp. namesp. namesp.
Location ref. ref. ref. ref.
Versioning + +

1.3 Self-Description Syntax + + + + +
Semantics informal informal
Quality of service
Non-technical

1.4 Configuration Connection Semantics event type type type event event event user-def.
Connectors + + + + + + +
Connector types (no.) user-def. 1 1 3 2 user-def.
Connection cardinality n-n 1-n 1-n 1-1 n-n 1-n, 1-1 1-n, 1-1 user-def.
Anticipated adaptation + + + +
Composite components non-hier. non-hier. non-hier.

2.1 Searching Remote Search
2.2 Lever. Self-Description Syntax + + + +

Semantics + +
Quality of service
Non-technical

2.3 Configuration Composition notation scr, dia scr, dia prog scr prog, dia prog, dia prog, dia scr, dia
Ad-hoc adaptation ...
Constraints + +
Guaranteeing consistency fly, analysis runtime analysis on-the-fly on-the-fly on-the-fly on-the-fly
Distributed applications + + ?

2.4 Execution Partial applications + + + + + +
Packaging + + + + + + +

Runtime changes + ... +

Table 6. Comparison of approaches, part 1. Legend: + yes, (empty) no, ... some, * variable number, P provision ports, K re
quirement ports.

Code Agent EJB Web Pipe/F. Win32 Dot-Net Plug-In
Broker Sheets

1.1 Components Categories NA object class process process proc. lib. proc. lib. proc. lib.
Types
Global identity + ... random id
Versioning ... +

1.2 Interfaces Interfaces + untyped + + untyped
Instances (ports) P4R4 P* RO P1 R1 P*RO P* RO P1 R1
Global identity namesp. random id random id
Location ref. cop. cop.
Versioning +

1.3 Self-Description Syntax + + + +
Semantics informal informal
Quality of service
Non-technical

1.4 Configuration Connection Semantics event type event stream type type type
Connectors + + +
Connector types (no.) 1
Connection cardinality 1-n 1-n 1-1 1-n 1-n 1-n
Anticipated adaptation + + +
Composite components non-hier. non-hier.

2.1 Searching Remote Search
2.2 Lever. Self-Description Syntax + +

Semantics +
Quality of service
Non-technical

2.3 Configuration Composition notation prog dia prog script script prog prog scr
· Ad-hoc adaptation
Constraints
Guaranteeing consistency runtime runtime
Distributed applications + + +

2.4 Execution Partial applications + + + + + + N/A
Packaging + + ... +
Runtime changes +

Table 7. Comparison of the approaches, part 2. Legend: +yes, (empty) no, ... some,* variable number, P provision
ports, R requirement ports.

44

5 Conclusions
This survey has classified issues surrounding composition environments, and described
and compared several such environments with the help of this classification. As a result,
we can now characterize what is missing from existing systems for enabling end-user
composition of applications.

Most importantly, an integrated approach to composition is needed. Composition envi
ronments have been built in both industry and research, but none of them integrates all
capabilities that are desirable. Operating system or networking based approaches focus on
performance, but require extensive technical experience from the user. Visual program
ming environments, on the other hand, provide user guidance, but do not sufficiently ad
dress the underlying component model. We need to combine solutions from these areas in
order to build composition environments that are both usable and performant.

Many existing approaches are domain dependent in some way. They support only a spe
cific kind of program (such as programs that focus on graphical user interfaces), or sup
port only a specific architectural style (such as client-server architectures). While domain
specific solutions are useful, there seems to be a lack of universal, domain independent
solutions in the area of composition environments. The degree of universality that a com
position environment could achieve is an open question.

Several important concepts of composition environments seem not to be employed as
frequently as one might wish. Component self-description, connectors, composite com
ponents, and component adaptation are generally accepted as good things by researchers,
but are not used in some of the most popular environments. The reason for this seems to
be that many questions about their realizations are still open:

• Should interfaces be referenced or duplicated, or do intermediate solutions exist?

• Should self-description be static or dynamic?

• In what format should data be described?

• Should description be required or optional?

• How much of it can be automatically generated and checked?

• Should connectors be light-weight or heavy-weight (i.e. with complex implementa
tions of their own)?

• What are the trade-offs between the different connection semantics, and can they be
combined?

• Should composite components be hierarchical or non-hierarchical?

• How can adaptation be expressive without breaking encapsulation?

• Are diagrams or scripts preferable as composition notations?

• How much support for end-users is desirable, and how different is it from support for
developers?

• Which process steps have to be integrated into a composition environment, and which
can be left to external tools?

Scalability seems to be a key issue in the design of composition notations. While many
technologies work fine on a small scale, when a large number of components are in-

volved, they become unusable. Especially diagrammatic approaches seem to suffer from
this problem: diagrams that show more than a few components typically require careful
manual layout to stay readable. But some text-based approaches, such as pipe-and-filter
systems and Java class paths, are also severely limited in size. Scripting languages are an
alternative, but they tend to deteriorate over time by becoming more and more complex.
Many of these scalability issues have been solved on the programming language level
(for example, through the use of name spaces), but the solutions have not been ported to
composition environments. Both architectural solutions (for example, new mechanisms
for composite components) and solutions on the user interface level (for example, new
layout algorithms) might be feasible. It is not clear yet how powerful exactly a composi
tion notation should be. Novel language features needed by composition notations, such
as type-system support for non-functional properties, are still a matter ofresearch [124].

Compared to the large number of systems supporting source code components [56, 81],
few environments for deployable components exist. We believe, however, that deploy
able components are fundamentally different from pieces of source code, because their
implementation is hidden and cannot easily be changed. It is known that requirements
elicitation [19], testing [60, 97], and maintenance [133] present new problems in the
context of deployable components. Many software engineering techniques still need to be
applied (and adapted, if necessary) to deployable components. For example, the Unified
Modeling Language [89], which provides vast support for source-based design, does not
provide sufficient support for design with deployable components [61].

Software architecture addresses many issues that are also addressed by component tech
nology, so a clear definition of the commonalties and differences between the two re
search areas would be desirable [84]. In general, it seems that architecture research fo
cuses more on the overall structure of applications and on the connections between com
ponents, while component research focuses more on the structure of the components
themselves. But both problem areas are intertwined. Each component model introduces
some architectural constraints; what constraints are acceptable is an important question in
the design of a component model. On the other hand, architecture description languages
would be much more effective if they could enforce architectures instead of just specify
ing them [6]; for this to happen, they need to be integrated with component technologies.
Composition environments should unify research from both communities.

As we have shown, a large number of open research questions exist in the field of com
position environments. We believe that composition environments constitute an impor
tant research area with the potential of having a large impact on the future of software
engmeermg.

46

6 Research Plan
We will briefly outline possible topics of future research in this section. We believe that
end-user composition of applications is a promising technology, and we identify some
preconditions that need to be met for this technology to succeed.

It is our opinion that there is a large space in the usability/expressiveness spectrum that
has not been sufficiently explored. By reusing premanufactured components and devel
oping adequate mechanisms to build applications from them, it might be possible to fill
this void. One half of this problem is to provide useful, usable components. Component
self-description, our first subsection, will be the biggest part of the solution to this prob
lem. The other half of the puzzle is to provide tools and notations that make it easy to
build applications without restricting expressiveness; we will investigate this in the con
text of process support. Third, remote services are a research area of strong current inter
est; to integrate them with composition environments seems promising. Finally, we will
investigate a possible case study for the use of a composition environment.

Self-Description

Component metadata, realized in the form of component self-description, are essential for
reusability of components. Reuse can succeed only when the effort needed to understand
a component is significantly less than the effort needed to reimplement it. Component
self-description helps to make components understandable. It can provide information
both to users and to tools. Information provided to tools can be modified before it is pre
sented to users.

We are planning to define mechanisms to realize self-description in flexible, extensible
ways. It should be possible to implement only a minimum of self-description, for exam
ple for components intended to be reused by in-house projects, so that extensive docu
mentation is not needed. But it should be equally easy to give full self-description of all
the potentially relevant properties of a component without interfering with the compo
nent's functionality. Further, self-description should be dynamic, so that self-adapting
components or components that wrap external functionality, which might change over
time, are possible.

Quality-of-service (not just performance) self-description seems especially promising. It
poses the question of how to describe non-functional properties. As far as possible, they
should be described in machine-readable notations, so that automatic evaluations can be
performed. Questions to be answered are: Which non-functional properties of software
are suitable for such notations? What do the notations look like? To what degree can a
composed application be described automatically based on the descriptions of its con
stituent components?

The role of interfaces in component self-description has not been adequately researched
yet. Many component properties that should be described are, in fact, properties of inter
faces, part of the contracts that exist between components. But interfaces generally exist
in the context of a type system, and that raises the question how non-functional specifi
cations affect this type system. In other words, we need to find ways to represent self
description in interfaces without negatively influencing their traditional tasks.

47

Process Support

The different steps of the application composition process require a variety of tool sup
port. Of course, the desirable amount of tool support may be unlimited, because it is al
ways possible to include more sophisticated tools into an integrated environment. There
fore, the question becomes relevant which tools should be closely tied to a composition
environment, and which tools may be added externally.

We are planning to identify those tools that need to be closely integrated, so that imple
mentation of a user-friendly composition environment becomes possible without having
to bother with less essential functionality that can be added later. Starting with the core
functionalities of configuring an application out of components and then executing it, we
will prioritize desirable features of composition environments and investigate if they can
benefit from inclusion into the "kernel" of the composition environment.

For example, integration of component download from a component repository on the
Internet should be integrated into the core composition environment, as we have shown in
previous research [62]. The problem of maintenance of component-based applications
becomes easily untractable because of the potentially large number of components from
different sources in one application. Maintaining hundreds of components from dozens of
sources manually is very difficult. Therefore, automated support for notification about
updates, retrieval and integration of updates is desirable.

Remote Services

Remote services are services that are offered through a network and that can be used by
software that is not part of the organization offering them. When they are provided
through the Worldwide Web, remote services are often called Web services. A reusable
service makes it possible to acquire another organization's development effort, just like a
reusable component. Analogous to the connection semantics defined in Section 3, down
loading a component establishes a type-based connection between the component user
and the component provider, while accessing a remote service establishes an instance
based connection between client and server.

Thus, remote services try to solve the same problem as components. We believe that it
makes only sense to take a closer look at the commonalties and differences between the
two. It seems promising to explore possibilities to integrate support for both components
and services in one environment. It is known that components and services complement
each other: components are well-suited for tasks that are frequently executed and do not
require a large amount of data, while remote services are suited for infrequent tasks that
depend on a large amount of data. For example, a container library would be a good ex
ample of a component, while a natural language translation system would be a good ex
ample of a service.

Self-description seems to be a very promising candidate for unification. Both services
and components require self-description in order to be usable by third parties. Thus, when
developing self-description mechanisms for components, we will explore how they can
be extended to remote services. Similarly, we will investigate which other parts of a
composition environment might profit from integration between components and remote
services.

48

Case Study

To evaluate a prototypical composition environment, an appropriate case study will have
to be defined. Performing a case study for a composition environment means identifying
a domain with a sufficient number of available components, and using those components
to build a number of different applications using the composition environment. Since de
ployable components have to be compatible to the composition environments, a domain
with open source components will be needed. These open source components will have to
be converted manually into deployable components of the appropriate format.

The selection of the application domain for this case study will mainly depend on the
availability of components. However, the area of applications for space-constrained plat
forms with graphical user interfaces, such as handheld computers, seems especially
promising. A user interface is necessary so that end users have access to the system, and
can configure it according to their needs. Space-constrained systems have the property
that only a limited amount of software can be installed at a given time, which increases
the need for component technologies. In systems with a large storage space, such as most
workstations, software can just be duplicated inside of preconfigured, monolithic appli
cations. Limited space systems make it desirable for both developers and users to create
applications in a flexible, space-saving, component-based form.

49

Bibliography
1. Gregory D. Abowd, Robert Allen and David Garlan. Formalizing Style to Under

stand Descriptions of Software Architecture. A CM Transactions on Software En
gineering and Methodology 4, 4 (1995), 319-364.

2. Franz Achermann and Oscar Nierstrasz. Explicit N amespaces. In Joint Modular
Languages Conference 2000. Springer, Berlin, 2000, 77-89.

3. Active Server Pages Guide.
http :(/msdn.microsoft.com/library /psdk/iisref/ aspguide.htm. 2002.

4. Adobe Photoshop: Application Programming Interface Guide. Version 6.0 Re
lease 1.
http://partners.adobe.com/asn/developer/gapsdk/download/win/Photoshop60sdk.z
ip. 2000.

5. AgentSheets. http://agentsheets.com. 2002.

6. Jonathan Aldrich, Craig Chambers and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. In 2002 International Conference on
Software Engineering. 2002, to appear.

7. Robert Allen and David Garlan. A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology 6, 3 (1997), 213-
249.

8. ArchStudio 3. http://www.isr.uci.edu/projects/archstudio/.

9. BEA WebLogic Server. Version 6.1.
http://www.bea.com/products/weblogic/server/index.shtml.

10. Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau and Damien Watkins.
Making Components Contract Aware. Computer 32, 7 (1999), 38-45.

11. Dietrich Bimgruber, Werner Kurschl and Johannes Sametinger. Comparison of
JavaBeans and COM/ActiveX - A Case Study. In 5. Fachkonferenz Smalltalk und
Java. Erfurt, 1999.

12. Alex Borgida and Prem Devanbu. Adding More "DL" to "IDL": Towards More
Knowledgeable Component Inter-Operability. In Proceedings of the 1999 Inter
national Conference on Software Engineering. ACM, New York, 1999, 378-387.

13. Borland Delphi. Version 6. http://www.borland.com/delphi/.

14. Jan Bosch. Adapting Object-Oriented Components. In Object-Oriented Technol
ogy. Springer, Berlin, 1998, 379-383.

15. Don Box. Essential COM Addison-Wesley, Reading, 1997.

16. Paul Brereton and David Budgen. Component-Based Systems: A Classification of
Issues. Computer 33, 11 (2000), 54-62.

17. Kraig Brockschmidt. Developing Applications with OLE 2.0.
http ://msdn.microsoft.com/library I en-us/ dnolegen/html/msdn _ devwole2 .asp.
1994.

18. Alan W. Brown and Kurt C. Wallnau. The Current State of CBSE. IEEE Software
15, 5 (1998), 37-46.

50

19. Lisa Brownsword, Tricia Obemdorf and Carol A. Sledge. Developing New Proc
esses for COTS-Based Systems. IEEE Software 17, 4 (2000), 48-55.

20. Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. Computing Surveys 17, 4 {1985), 471-522.

21. The Component Object Model Specification. Version 0.9.
http://www.microsoft.com/com/resources/comdocs.asp. 1995.

22. Reidar Conradi and Bernhard Westfechtel. Version Models for Software Configu
ration Management. ACM Computing Surveys 30, 2 (1998), 232-282.

23. CORBA 3.0 New Components Chapters. ftp://ftp.omg.org/pub/docs/ptc/01-11-
03.pdf. 2001.

24. Bill Councill and George T. Heineman. Definition of a Software Component and
Its Elements. In Component-Based Software Engineering. Addison-Wesley, Bos
ton, 2001, 5-19.

25. E. M. Dashofy, N. Medvidovic and R. N. Taylor. Using Off-the-ShelfMiddle
ware to Implement Connectors in Distributed Software Architectures. In Proc.
1999 International Conference on Software Engineering. ACM, New York, 1999,
3-12.

26. Linda G. DeMichiel, L. Umit Yalc;inalp and Sanjeev Krishnan. Enterprise Java
Beans Specification, Version 2.0. http://java.sun.com/products/ejb/docs.html.
2001.

27. Elisabetta Di Nitto and David Rosenblum. Exploiting AD Ls to Specify Architec
tural Styles Induced by Middleware Infrastructures. In Proceedings of the 1999
International Conference on Software Engineering. ACM, New York, 1999, 13-
22.

28. Sophia Drossopoulou, David Wragg and Susan Eisenbach. What is Java Binary
Compatibility? Sigplan Notices 33, 10 (1998), 341-358.

29. Andrew Duncan and Urs Holzle. Load-Time Adaptation: Efficient and Non
Intrusive Language Extension for Virtual Machines. Technical Report TRCS99-
09. University of California, Santa Barbara, Santa Barbara, 1999.

30. Laura Euler, Eric Maffei and Adam Rauch. Create Real Windows Applications in
a Graphical Environment Using Microsoft Visual Basic. Microsoft Systems Jour
nal 6, 4 (1991), 57-70, 116.

31. Jim Farley. Microsoft Dot-Net vs. J2EE: How Do They Stack Up?
http://java.oreilly.com/news/farley_0800.html. 2000-2001.

32. Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henryk Frystyk Nielsen, Larry
Masinter, Paul J. Leach and Tim Bemers-Lee. Hypertext Transfer Protocol -
HTTP/1.1. Request for Comments 2616. Internet Engineering Task Force, 1999.

33. Roy T. Fielding and Richard N. Taylor. Principled Design of the Modem Web
Architecture. ACM Transactions on Internet Technology (to appear).

34. Robert Bruce Findler, Mario Latendresse and Matthias Felleisen. Behavioral
Contracts and Behavioral Subtyping. Softw~re Engineering Notes 26, 5 (2001),
229-236.

51

35. Matthew Flatt. Programming Languages for Reusable Software Components.
PhD Thesis. Rice University, Houston, 1999.

36. Michael Franz. Dynamic Linking of Software Components. Computer 30, 3
(1997), 7 4-81.

37. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Pat
terns.Addison-Wesley, Reading, 1995.

38. David Garlan. Higher-Order Connectors. In Workshop on Compositional Software
Architectures. Monterey, 1998.

39. Michael Gorlick and Alex Quilici. Visual Programming-in-the-Large versus Vis
ual Programming-in-the-Small. In Proceedings of 1994 IEEE Symposium on Vis
ual Languages. IEEE, Los Alamitos, 1994, 137-144.

40. James Gosling, Bill Joy and Guy Steele. The Java Language Specification.
http://java.sun.com/ docs/books/j ls/html/index.html. 1996.

41. George T. Heineman and Helgo M. Ohlenbusch. An Evaluation of Component
Adaptation Techniques. In 1999 International Workshop on Component-Based
Software Engineering. 1999. http://www.sei.cmu.edu/cbs/icse99/papers/.

42. Andre van der Hoek, Richard S. Hall, Dennis Heimbigner and Alexander L. Wolf.
Software Release Management. In Proceedings of the Sixth European Software
Engineering Conference. Springer, Berlin, 1997, 159-175.

43. Urs Holzle. Integrating Independently-Developed Components in Object-Oriented
Languages. In ECOOP '93 - Object-Oriented Programming. Springer, Berlin,
1993, 36-56.

44. Jon Hopkins. Component Primer. Communications of the ACM 43, 10 (2000), 27-
30.

45. M. Horton and R. Adams. Standard for Interchange of USENET messages. RFC
1036. Internet Engineering Task Force, 1987.

46. IBM WebSphere Application Server. Version 4.0.
http://www.ibm.com/software/webservers/appserv/.

47. Internet Message Format. RFC 2822. Internet Engineering Task Force, 2001.

48. Java 2 Platform, Standard Edition, v 1.4.0 API Specification.
http://java.sun.com/j2se/1.4/docs/api/index.html. 2002.

49. Java Beans: API Specification, Version 1.01.
http://java.sun.com/products/j avabeans/ docs/spec.html. 1997.

50. JavaServer Pages Specification. Version 1.2. http://java.sun.com/products/jsp/.
2001.

51. JBuilder. Version 6. http://www.borland.com/jbuilder/.

52. William Joy. An Introduction to the C Shell. 4.3BSD User's Supplementary
Documents. University of California, Berkeley, 1994.

53. Ralph Keller and Urs Holzle. Implementing Binary Component Adaptation for
Java. Technical Report TRCS98-21. University of California, Santa Barbara,
Santa Barbara, 1998.

52

54. Rohit Khare. Internet-Scale Namespaces. In The Workshop for Internet-Scale
Technologies. 1999.
http://www.ics.uci.edu/--irus/twist/twist99/presentations/khare/ISN-Survey
Talk.pdf.

55. Wojtek Kozaczynski. Composite Nature of Component. In Proceedings of the 2nd
Workshop on Component-Based Software Engineering. Los Angeles, 1999.
http://www.sei.cmu.edu/cbs/icse99/papers/.

56. Charles W. Krueger. Software Reuse. ACM Computing Surveys 24, 2 (1992), 131-
183.

57. Magnus Larsson and Ivica Crnkovic. Component Configuration Management. In
Proceedings of 5th Workshop on Component Oriented Programming. 2000.

58. Christopher Lauer. Introducing Microsoft Dot-Net.
http://www.dotnetl 01.com/articles/artO 14 _ dotnet.asp. 2001.

59. Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual Ma
chine. Sigplan Notices 33, 10 (1998), 36-44.

60. Chang Liu and Debra Richardson. Software Components with Retrospectors. In
International Workshop on the Role of Software Architecture in Testing and
Analysis. Marsala, 1998.

61. Chris Luer and David S. Rosenblum. UML Component Diagrams and Software
Architecture. In 1st !CSE Workshop on Describing Software Architecture with
UML. Toronto, 2001, 79-82.

62. Chris Luer and David S. Rosenblum. Wren-An Environment for Component
Based Development. Software Engineering Notes 26, 5 (2001), 207-217.

63. Chris Luer, David S. Rosenblum and Andre van der Hoek. The Evolution of
Software Evolvability. In International Workshop on Principles of Software Evo
lution (IWPSE 2001). Vienna, 2001, 127-130.

64. Mark Lycett and Ray J. Paul. Component-Based Development: Dealing with
Non-Functional Aspects of Architecture. In ECOOP '98 Workshop on Compo
nent-Oriented Programming. 1998.
http://www.abo.fi/~Wolfgang.Weck/WCOP/98/Papers/.

65. Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. Soft
ware Engineering Notes 21, 6 (1996), 3-14.

66. Peter M. Maurer. Components: What If They Gave a Revolution and Nobody
Came? Computer 33, 6 (2000), 28-34.

67. Sean McDirmid, Matthew Flatt and Wilson C. Hsieh. Jiazzi: New-Age Compo
nents for Old-Fashioned Java. In Proceedings of the ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications. 2001.

68. Nenad Medvidovic, Peyman Oreizy, Richard N. Taylor, Rohit Khare and Michael
Guntersdorfer. An Architecture-Centered Approach to Software Environment In
tegration. Technical Report UCI-ICS-00-11. University of California, Irvine, Ir
vine, 2000.

53

69. Nenad Medvidovic, David S. Rosenblum, David F. Redmiles and Jason E. Rob
bins. Modeling Software Architectures in the Unified Modeling Language. ACM
Transactions on Software Engineering and Methodology 11, 1(2002),2-57.

70. Nenad Medvidovic, David S. Rosenblum and Richard N. Taylor. An Architec
ture-Based Approach to Software Evolution. In Proceedings of the !CSE '98
Workshop on the Principles of Software Evolution (IWPSE '98). Kyoto, 1998.

71. Nenad Medvidovic, David S. Rosenblum and Richard N. Taylor. A Language and
Environment for Architecture-Based Software Development and Evolution. In
Proce~dings of the 1999 International Conference on Software Engineering.
ACM, New York, 1999, 44-53.

72. Nenad Medvidovic, David S. Rosenblum and Richard N. Taylor. A Type Theory
for Software Architectures. Technical Report UCI-ICS-98-14. University of Cali
fornia, Irvine, Irvine, 1998.

73. Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Transactions
on Software Engineering 26, 1 (2000), 70-93.

74. Nikunj R. Mehta, Nenad Medvidovic and Sandeep Phadke. Towards a Taxonomy
of Software Connectors. In Proceedings of the 2000 International Conference on
Software Engineering. ACM, New York, 2000, 178-187.

75. Vicki de Mey. Visual Composition of Software Applications. In Object-Oriented
Software Composition. Prentice Hall, London, 1995, 275-304.

76. Vicky de Mey and Simon Gibbs. A Multimedia Component Kit. In Proceedings
of the 2nd ACM International Conference on Multimedia. 1994, 299-306.

77. Microsoft Dot-Net Framework FAQ. http://msdn.microsoft.com/library/en-
us/dndotnet/html/faql 11700.asp?frame=true. 2001.

78. Microsoft Visual Basic. Version Dot-Net. http://msdn.microsoft.com/vbasic/.

79. Microsoft Visual Studio. Version Dot-Net. http://msdn.microsoft.com/vstudio/.

80. Leonid Mikhajlov and Emil Sekerinski. A Study of the Fragile Base Class Prob
lem. In ECOOP '98. Springer, Berlin, 1998, 355-382.

81. Hafedh Mili, Fatma Mili and Ali Mili. Reusing Software: Issues and Research
Directions. IEEE Transactions on Software Engineering 21, 6 (1995), 528-562.

82. Richard Monson-Haefel. Enterprise JavaBeans. O'Reilly, Sebastopol, 2001.

83. Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technology.
In Object-Oriented Software Composition. Prentice Hall, London, 1995, 3-28.

84. Oscar Nierstrasz and Theo Dirk Meijler. Research Directions in Software Compo
sition. ACM Computing Surveys 27, 2 (1995), 262-264.

85. Jim Q. Ning. A Component Model Proposal. In Proceedings of the 2nd Workshop
on Component-Based Software Engineering. Los Angeles, 1999.
http://www.sei.cmu.edu/cbs/icse99/papers/.

86. David Notkin, David Garlan, William G. Griswold and Kevin Sullivan. Adding
Implicit Invocation to Languages: Three Approaches. In Object Technologies for
Advanced Software. Springer, Berlin, 1993, 489-510.

54

87. Helgo Ohlenbusch and George T. Heineman. Complex Ports and Roles within
Software Architecture. Technical Report WPI-CS-TR-98-12. Computer Science
Department, Worcester Polytechnic Institute, Worcester, 1998.

88. Asgeir Olafsson and Doug Bryan. On the Need for "Required Interfaces" of
Components. In Special Issues in Object-Oriented Programming. Dpunkt, Hei
delberg, 1997, 159-165.

89. OMG Unified Modeling Language Specification. Version 1.4.
http://www.omg.org/cgi-bin/doc?formal/01-09-67.pdf. 2001.

90. Rob van Ommering. Koala, a Component Model for Consumer Electronics Prod
uct Software. In Development and Evolution of Software Architectures for Prod
uct Families. Springer, Berlin, 1998, 76-86.

91. Rob van Ommering, Frank van der Linden, Jeff Kramer and Jeff Magee. The Ko
ala Component Model for Consumer Electronics Software. Computer 33, 3
(2000), 78-85.

92. Oracle9i Application Server. Version 1.0.2.2.
http://www.oracle.com/ip/deploy/ias/.

93. Caroline O'Reilly. BeanBag: An Extensible Framework for Describing, Storing
and Querying Components. MS Thesis. University of Dublin, Dublin, 1999.

94. Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum and Al
exander L. Wolf. An Architecture-Based Approach to Self-Adaptive Software.
IEEE Intelligent Systems 14, 3 (1999), 54-62.

95. Peyman Oreizy, Nenad Medvidovic and Richard N. Taylor. Architecture-Based
Runtime Software Evolution. In Proceedings of the 1998 International Confer
ence on Software Engineering. IEEE, Los Alamitos, 1998.

96. Peyman Oreizy, David S. Rosenblum and Richard N. Taylor. On the Role of Con
nectors in Modeling and Implementing Software Architectures. Technical Report
UCI-ICS-98-04. Department oflnformation and Computer Science, University of
California, Irvine, Irvine, 1998.

97. Alessandro Orso, Mary Jean Harrold and David S. Rosenblum. Component Meta
data for Software Engineering Tasks. In Proceedings of the 2nd International
Workshop on Engineering Distributed Objects (EDO 2000). Springer, Berlin,
2000, 126-140.

98. John K. Ousterhout. Scripting: Higher-Level Programming for the 21st Century.
Computer 31, 3 (1998), 23-30.

99. Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture. Software Engineering Notes 17, 4 (1992), 40-52.

100. Kurt Piersol. A Close-Up 6f OpenDoc. Byte 19, 3 (1994), 183.

101. Frantisek Plasil and Michael Stal. An Architectural View of Distributed Objects
and Components in CORBA, Java RMI and COM/DCOM. Software - Concepts
& Tools 19, (1998), 14-28.

102. David S. Platt. Introducing Microsoft Dot-Net. Microsoft, Redmond, 2001.

55

103. Plug-in Guide.
http://developer.netscape.com/docs/manuals/communicator/plugin/pgpr.pdf.
1998.

104. Steven Pratschner. Simplifying Deployment and Solving DLL Hell with the Dot
N et Framework. http ://msdn.microsoft.com/library /techart/ dplywithnet.htm. 2000.

105. Alexander Repenning and Tamara Sumner. Agentsheets: A Medium for Creating
Domain-Oriented Visual Languages. Computer 28, 3 (1995), 17-25.

106. Mike Ricciuti. Strategy: Blueprint Shrouded in Mystery.
http://l)ews.cnet.com/news/0-10003-201-7502765-0.html. 2001.

107. Bert Robben, Frank Matthijs, Wouter loosen, Bart Vanhaute and Pierre Verbae
ten. Components for Non-Functional Requirements. In Object-Oriented Technol
ogy. Springer, Berlin, 1998, 151-152.

108. Jason E. Robbins and David F. Redmiles. Cognitive Support, UML Adherence,
and XMI Interchange in Argo/UML. Information and Software Technology 42,
(2000), 79-89.

109. Jason E. Robbins and David F. Redmiles. Software Architecture Critics in the
Argo Design Environment. Knowledge-Based Systems 11, 1 (1998), 47-60.

110. David S. Rosenblum. A Practical Approach to Programming with Assertions.
IEEE Transactions on Software Engineering 21, 1 (1995), 19-31.

111. David S. Rosenblum and Rema Natarajan. Supporting Architectural Concerns in
Component-Interoperability Standards. JEE Proceedings-Software 147, 6 (2000),
215-223.

112. Bill Shannon. Java 2 Platform Enterprise Edition Specification. Version 1.3.
http://java.sun.com/j2ee/docs.html. 2001.

113. Mary Shaw. Architectural Issues in Software Reuse: It's not Just the Functional
ity, It's the Packaging. In Symposium on Software Reusability. 1995, 3-6.

114. Mary Shaw. Procedure Calls Are the Assembly Language of Software Intercon
nection. Technical Report CMU-CS-94-107. School of Computer Science, Carne
gie Mellon University, Pittsburgh, 1994.

115. Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young
and Gregory Zelesnik. Abstractions for Software Architecture and Tools to Sup
port Them. IEEE Transactions on Software Engineering 21, 4 (1995), 314-335.

116. Mary Shaw and David Garlan. Software Architecture. Prentice Hall, Upper Sad
dle River, 1996.

117. Nan C. Shu. Visual Programming. Van Nostrand Reinhold, New York, 1988.

118. Simple Mail Transfer Protocol. RFC 2821. Internet Engineering Task Force,
2001.

119. Sandeep Singhal and Binh Nguyen. The Java Factor. Communications of the
ACM 41, 6 (1998), 34-37.

120. Software Reusability. Ellis Horwood, New York, 1994.

121. Kevin J. Sullivan, Mark Marchukov and John Socha. Analysis of a Conflict Be
tween Aggregation and Interface Negotiation in Microsoft's Component Object
Model. IEEE Transactions on Software Engineering 25, 4 (1999), 584-599.

56

122. Clemens Szyperski. Component Software. ACM, New York, 1997.

123. Clemens Szyperski. Independently Extensible Systems-Software Engineering
Potential and Challenges-·. Australian Computer Science Communications 18, 1
(1996), 203-212.

124. Clemens Szyperski. Modules and Components-Rivals or Partners? In The
School ofNiklaus Wirth: The Art of Simplicity. D-Punkt, Heidelberg, 2000, 121-
132.

125. Clemens A. Szyperski. Import is Not Inheritance-Why We Need Both: Modules
and Cl.asses. In ECOOP '92 European Conference on Object-Oriented Program
ming. Springer, Berlin, 1992, 19-32.

126. Richard N. Taylor, Nenad Medvidovic,Kenneth M. Anderson, E. James White
head, Jason E. Robbins, Kari A. Nies, Peyman Oreizy and Deborah L. Dubrow. A
Component- and Message-Based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering 22, 6 (1996), 390-406.

127. Anne Thomas. Enterprise Java Beans Technology. 1998.

128. Vincent Traas and Jos van Hillegersberg. The Software Component Market on the
Internet: Current Status and Conditions for Growth. Software Engineering Notes
25, 1 (2000), 114-117.

129. Jon Udell. Componentware. Byte May (1994), 46-56.

130. Uniform Resource Locators. Request for Comments 1738. Internet Engineering
Task Force, 1994.

131. VisualAge for Java. Version 4.0. http://www.ibm.com/software/ad/vajava/.

132. VisualAge: Concepts and Features. IBM Red Book GG24-3946-00. IBM Corpo
ration, Boca Raton, 1994.

133. Jeffrey Voas. Maintaining Component-Based Systems. IEEE Software 15, 4
(1998), 22-27.

134. Jim Waldo. Remote Procedure Calls and Java Remote Method Invocation. IEEE
Concurrency 6, 3 (1998), 5-7.

135. Jim Waldo, Geoff Wyant, Ann Wollrath and Sam Kendall. A Note on Distributed
Computing. In The Jini Specification. Addison-Wesley, Reading, 1999, 307-326.

136. Nanbor Wang, Douglas C. Schmidt and Carlos O'Ryan. Overview of the Corba
Component Model. In Component-Based Software Engineering. Addison-Wesley,
Boston, 2001, 557-571.

137. Sanjiva Weerawarana, Francisco Curbera, Matthew J. Duftler, David A. Epstein
and Joseph Kesselman. Bean Markup Language: A Composition Language for
JavaBeans Components. In Proceedings of the 6th Usenix Conference on Object
Oriented Technologies and Systems (COOTS 'OJ). Usenix, Berkeley, 2001, 173-
187.

138. Rainer Weinreich and Johannes.Sametinger. Component Models and Component
Services: Concepts and Principles. In Component-Based Software Engineering.
Addison-Wesley, Boston, 2001, 33-48.

139. E. James Whitehead, Jason E. Robbins, Nenad Medvidovic and Richard N. Tay
lor. Software Architecture: Foundation of a Software Component Marketplace. In

57

Proc. First International Workshop on Architectures for Software Systems. ACM,
New York, 1995, 276-282.

140. Sherif Yacoub, Hany Ammar and Ali Mili. Characterizing a Software Compo
nent. In 1999 International Workshop on Component-Based Software Engineer
ing. 1999, 133-138.

141. Yunwen Ye and Gerhard Fischer. Supporting Reuse by Delivering Task-Relevant
and Personalized Information. In Proceedings of the 2002 International Confer
ence on Software Engineering. 2002, to appear.

142. Frank Yellin and Tim Lindholm. The Java Virtual Machine Specification.
Addison Wesley, 1998.

143. Gregory Zelesnik. The UniCon Language Reference Manual. http://www-
2.cs.cmu.edu/afs/cs/project/vit/www/unicon/reference-
manual/Reference Manual l .html. 1996. - -

58

