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Abstract 
 

Ecology and evolution of the mammalian gut microbiota 
 

by 
 

Taichi Suzuki 
 

Doctor of Philosophy in Integrative Biology  
 

University of California, Berkeley  
 

Professor Michael W. Nachman, Chair 
	
Symbiotic microbial communities can affect the health and fitness of the host. Recent 
studies in humans and mouse models have demonstrated previously unknown roles for 
the gut microbiota in mammalian digestion, immunity, behavior, and development. These 
findings suggest that the compositional variation in gut microbiotas may play a 
fundamental role in host biology. However, the determinants and implications of the gut 
microbiota in natural populations of mammals are less well understood. My dissertation 
aims to identify genetic and environmental factors shaping variation in the gut microbiota 
and to understand the role of gut microbiota in mammalian biology. First, I reviewed 
studies over the last decade that show links between variation in symbiotic microbiota 
and variation in host phenotype in natural populations of mammals to motivate the work. 
Next, I found obesity-associated gut microbial composition tend to be more prevalent in 
humans living in colder environments consistent with the ecological pattern known as 
Bergmann’s rule. The results suggest a link between the gut microbiota and climatic 
adaptation. To further investigate whether the pattern observed in humans is general, I 
conducted a series of studies where I combined field observations and laboratory 
experiments to investigate the determinants of the gut microbiota and their roles in 
environmental adaptation using natural populations of house mice (Mus musculus) as a 
model system. I have characterized the gut microbiota of wild house mice using 16S 
amplicon sequencing within individuals’ gastrointestinal tract and between individuals’ 
cecum across two altitudinal and three latitudinal transects across the Americas. 
Microbiotas of the lower gastrointestinal tract showed greater individual differences 
compared to the upper gastrointestinal tract. The individual differences in the cecal 
microbiota were explained by differences in host genetic distance independent of 
geographic distance. Several gene-bacteria associations were identified from a 
microbiome genome-wide association study (mGWAS) using exome sequences. The 
results from the altitudinal and latitudinal transects suggest that differences in partial 
pressure of oxygen and host body mass may cause changes in gut microbiota. Beneficial 
functions of the gut microbiota regulating blood pressure at high altitudes and facilitating 
energy harvest at high latitudes were proposed. Many of the findings here have been 
replicated in other mammalian systems, including humans. Together, the results suggest 
general mechanisms governing the assembly and function of the mammalian gut 
microbiota.   
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Chapter 1 
 
Links between Natural variation in the microbiome and host 
fitness in wild mammals 
 
This chapter has been previously published and is reproduced here in accordance with the 
journal’s article sharing policy:  

Suzuki, T.A. 2017. Links between natural variation in the microbiome and host 
fitness in wild mammals. Integrative and Comparative Biology. 
DOI: 10.1093/icb/icx104 

 
 

Abstract 
 

Recent studies in model organisms have shown that compositional variation in the 
microbiome can affect a variety of host phenotypes including those related to digestion, 
development, immunity, and behavior. Natural variation in the microbiome within and 
between natural populations and species may also affect host phenotypes and thus fitness 
in the wild. Here, I review recent evidence that compositional variation in the 
microbiome may affect host phenotypes and fitness in wild mammals. Studies over the 
last decade indicate that natural variation in the mammalian microbiome may be 
important in the assistance of energy uptake from different diet types, detoxification of 
plant secondary compounds, protection from pathogens, chemical communication, and 
behavior. I discuss the importance of combining both field observations and manipulative 
experiments in a single system to fully characterize the functions and fitness effects of the 
microbiome. Finally, I discuss the evolutionary consequences of mammal-microbiome 
associations by proposing a framework to test how natural selection on hosts is mediated 
by the microbiome.  
 
 
1.1. Introduction 

 
Recent studies in animal models have shown that variation in the microbiome can 

affect the host phenotype in many ways, including through traits related to digestion, 
development, immunity, and behavior (McFall-Ngai et al. 2013). These findings suggest 
that compositional differences in symbiotic microbial communities may play a 
fundamental role in host ecology and evolution. Understanding the beneficial effects of 
the mammalian microbiome in natural populations is particularly important for 
understanding human health as well as for generalizing the findings from lab-reared 
models and domestic animals. Although the importance of microbes in host health has 
been well-established mainly using culturing methods, we know less about how natural 
variation in the microbiome can affect host fitness in wild mammals.  

The idea that the microbes may play a beneficial role in host fitness is not new. 
For example, one of the best studied beneficial functions of the mammalian microbiome 
is its role in the digestion of plant materials, such as cellulose. In the late 1800s, 
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microbial fermentation was proposed as a mechanism of cellulose digestion (Zuntz 1879) 
and was supported empirically (Tappeiner 1884). In the 1940s, protozoa (Hungate 1942, 
1943) and bacteria (Hungate 1947; Sijpesteijn 1948) with capabilities to digest cellulose 
were isolated from the stomach of ruminants. Fermentation products, such as volatile 
fatty acids, have been shown to be absorbed by the host from the rumen wall into the 
blood system as energy sources (Barcroft, Mcanally and Phillipson 1944). The 
concentration of these fatty acids is highest in the fermentation chambers compared to the 
rest of the gastrointestinal tract in herbivores (Elsden et al. 1946). These findings led to 
classic reviews and books on gut microbiota and digestion (Hungate 1966; Van Soest 
1994; Stevens and Hume 1995; Hume 1999).  

In the last decade or so, the advancement of DNA sequencing technology has 
made it possible to investigate variation of the entire microbial community (which was 
impossible to study based on culturing methods alone). For example, the host-associated 
microbiome varies between species as well as within and between natural populations. 
Interspecific variation in microbiomes exists both in captivity (Ley et al. 2008a; Muegge 
et al. 2011) and in the wild (Ochman et al. 2010; Phillips et al. 2012). Between-
population variation in the microbial composition has been observed in rodents 
(Linnenbrink et al. 2013; Kohl et al. 2014b; Kreisinger et al. 2015) and primates (Amato 
et al. 2013; Moeller et al. 2013a) including humans (Suzuki and Worobey 2014). Within-
population variation in the microbiome has also been observed in humans (Arumugam et 
al. 2011), chimpanzees (Moeller et al. 2012), and house mice (Wang et al. 2014). Most 
of the work has focused on the gut microbiome, but studies have also described microbes 
associated with other body sites of the host (Costello et al. 2009; Huttenhower et al. 
2012).   

In principle, variation in the microbiome could have a positive effect, a negative 
effect, or no effect on host fitness. However, it appears unlikely that compositional 
differences in microbiome would have no impact on host fitness given the known role of 
microbes in digestion (Hungate 1966; Van Soest 1994; Stevens and Hume 1995; Hume 
1999), the abundant biomass of symbiotic microbes associated with hosts (Sender et al. 
2016), the known association between microbes and host immunity (Round and 
Mazmanian 2009a), and the observations that even rare microbes are suggested to play a 
large role in microbial ecosystem functions (reviewed in Jousset et al. 2017).  
Nevertheless, it is possible that some rare and transient microbes have little or no effect 
on host fitness. The current examples of positive and negative effects of microbes on host 
fitness are sometimes restricted to studies of a single bacterial lineage. For example, the 
positive effects of bacteria in sap-sucking insects are well-established including the role 
of bacteria in providing essential nutrients (Baumann 2005), defense from pathogens 
(Oliver et al. 2003), and tolerance to heat (Dunbar et al. 2007). The negative effects of 
microbes on host fitness have also been studied, primarily in the context of microbial 
pathogens including protists (Allison 1964), bacteria (Lowy 1998), and viruses (Piertney 
and Oliver 2006). However, fitness effects of variation in an entire microbial community 
are not well understood. Understanding the association between variation of the 
microbiome and variation of host fitness requires molecular tools to characterize 
differences in microbial community composition in natural populations.  

Here, I review studies over the last decade investigating inter- and intraspecific 
variation in the mammalian microbiome that suggest a link between variation in the 
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microbiome and variation in host phenotype and thus fitness (Table 1). Although most of 
the evidence is correlational, these studies suggest that natural variation in host-
associated microbiomes play a role in mammalian host biology including aspects of 
digestion, detoxification, immunity, and behavior. I then identify potential future research 
directions, including the need for manipulative experiments.  

 
 
1.2. Literature review  
 
1.2.1.  Assistance of energy uptake from diet 
 

A series of studies by Gordon and colleagues using fecal transplant experiments 
in mouse models showed that the gut microbiome can affect fat storage and energy 
extraction from the diet (Bäckhed et al. 2004; Turnbaugh et al. 2006). Distantly related 
mammalian host species kept in zoos show convergence in the microbiome by diet types 
despite the significant effects of host phylogeny and numerous other factors affecting the 
composition of the microbial community (Ley et al. 2008a; Muegge et al. 2011). 
Furthermore, differences in the microbiome may reflect functional differences in 
digestion.  For example, the microbiomes of mammalian herbivores are enriched for 
microbial genes that synthesize amino acids compared to those of carnivores which are 
enriched for microbial genes that degrade amino acids (Muegge et al. 2011). Together, 
the convergence in microbiomes in distant mammalian groups that share a similar diet 
suggests that the microbiome may play a fundamental role in the ability of mammals to 
specialize on a particular source of food. 

Similar patterns of convergence of microbiomes associated with dietary types 
have been observed in wild mammals. For example, convergence in microbiomes has 
been observed among myrmecophagous mammals such as anteaters, aardvarks, and 
aardwolves that feed on ants and termites (Delsuc et al. 2014), among bat species that 
share similar diet types (Phillips et al. 2012; Carrillo-Araujo et al. 2015), between 
chimpanzees and gorillas that share a large fraction of fruit diet (Moeller et al. 2013a), 
and between carnivorous marine mammals (Nelson et al. 2013a; Nelson 2013b; Soverini 
et al. 2016). Population-level differences in the microbial composition of humans were 
also associated with differences in the amount of dietary fiber (De Filippo et al. 2010; Ou 
et al. 2013; Schnorr et al. 2014; Angelakis et al. 2016). Although these studies are 
consistent with the idea that convergent microbiomes are involved in diet-specific 
digestion, there are alternative explanations. For example, some of the observed patterns 
might be explained by common microbes in the shared diet or co-variation with other 
aspects of the shared environment (Moeller et al. 2013a; Suzuki and Worobey 2014).  
Thus, convergence of microbiomes among distant mammalian lineages does not, by 
itself, provide definitive evidence of the beneficial effects of the microbiome on the host. 
In fact, microbes can compete for resources with the host when the nutrients, such as 
simple sugars and iron, can be utilized by both hosts and microbes (Wasielewski et al. 
2016).  

The best evidence of the beneficial role of microbes in energy extraction comes 
from components of the diet that cannot be utilized directly or easily by the host, such as 
cellulose. Mammalian herbivores have evolved two major mechanisms for breaking 
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down plant polysaccharides; foregut fermentation (as in ruminants) and hindgut 
fermentation (Stevens 1995; Feldhamer et al. 2007). In the case of foregut fermenters, the 
stomach and/or esophagus are modified and enlarged, while in hindgut fermenters, the 
main site of fermentation can be either the large intestine or the enlarged cecum. Foregut 
and hindgut fermenters each have distinct microbial communities that contain high 
densities of microbes which aid in digestion (Ley et al. 2008a; Muegge et al. 2011). As 
mentioned briefly above, the role of microbes in ruminant digestion has been studied 
extensively in large part due to its economic and agricultural importance (Hungate 1966; 
Van Soest 1994; Stevens and Hume 1995; Hume 1999). This is now being followed up 
using molecular techniques (Mccann et al. 2014). Culture-based studies have suggested a 
role for protozoa, bacteria, and fungi in plant digestion not only in domestic animals, but 
also in various wild herbivores (Sahu and Kamra 2002). Shotgun metagenomic studies 
have revealed that microbiomes of herbivorous mammals contain bacterial genes 
involved in fiber fermentation (Pope et al. 2010; Zhu et al. 2011; Fang et al. 2012). 

Species-rich microbial communities may be important for digestion of plant 
fibers. From interspecific comparisons, the gut microbial communities of herbivores 
often have the highest species richness (i.e. alpha-diversity) compared to those of other 
dietary types (Ley et al. 2008a; Muegge et al. 2011; Phillips et al. 2012). An exception to 
this pattern is the giant panda which has one of the lowest alpha-diversity measures 
across mammals (Ley et al. 2008; Xue et al. 2015). Although microbial genes involved in 
cellulose degradation and lignin oxidation were identified in panda feces (Zhu et al. 
2011; Fang et al. 2012), their poor digestion rate may be due to deficiencies in cellulose-
digesting bacteria and low alpha-diversity (Xue et al. 2015). Interestingly, even within an 
individual’s gastrointestinal tract, there appears to be an association between alpha-
diversity and plant fermentation. The foregut and hindgut fermentation chambers have 
greater alpha-diversity compared to the small intestine in multiple species of wild-caught 
rodents (Kohl et al. 2014a; Lu et al. 2014; Suzuki and Nachman 2016). The stability-
diversity relationship (Tilman and Downing 1994), an observation that species-rich 
communities are more stable, resilient, and recover faster from disturbance, has been 
suggested as an explanation for the species-rich communities observed in herbivores’ 
fermentation chambers (Lu et al. 2014; Suzuki and Nachman 2016). 
  Chitin is the second most abundant biopolymer on the planet and common in the 
cell walls of fungi and the exoskeletons of arthropods. Although chitin can be broken 
down by both mammalian and microbial enzymes, microbes may play a particularly 
important role in chitin degradation (Herwig et al. 1984; Simůnek et al. 2001; Delsuc et 
al. 2014; Sanders et al. 2015). Chitinase-producing bacteria have been isolated in 
insectivorous bats (Whitaker et al. 2004) as well as in herbivorous and omnivorous 
mammals that are not adapted uniquely to a chitin-rich diet (Simůnek et al. 2001). 
Chitinase activity has also been detected in the stomach of nine-banded armadillos (Smith 
et al. 1998) and the intestines of insectivorous bats (Whitaker, Dannelly and Prentice 
2004). The involvement of microbes in chitin degradation has been suggested in 
myrmecophagous mammals that show convergence in their microbial composition 
(Delsuc et al. 2014). Baleen whales also feed on prey that is rich in chitin, and their 
foregut stomach has been suggested to play a role in the microbial degradation of chitin 
(Herwig et al. 1984). In fact, a recent metagenomic study found an enrichment of 
bacterial genes associated with chitin degradation in baleen whales (Sanders et al. 2015).  
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Seasonal changes in diet and gut microbial composition in wild mammals also 
support the involvement of the microbiome in energy extraction. In multiple species of 
primates (Amato et al. 2014; Fogel 2015; Gomez et al. 2015; Sun et al. 2016), wood 
mice (Maurice et al. 2015), and reindeer (Salgado-Flores et al. 2016), microbial 
composition was found to vary seasonally. The seasonal change in the microbial 
composition was correlated with the changes in the metabolic profiles in gorilla (Gomez 
et al. 2015) and howler monkeys (Amato et al. 2014). Hibernation and torpor are perhaps 
the most extreme cases of seasonal shifts in diet, requiring both hyperphagia and fasting 
(Carey et al. 2003). The microbiota is known to differ between active seasons and 
hibernation periods in thirteen-lined ground squirrels (Carey et al. 2013; Dill-Mcfarland 
et al. 2014) and arctic ground squirrels (Stevenson et al. 2014). Microbially-provided 
energy sources such as short-chain fatty acids (SCFAs) have been suggested to serve as a 
source of fuel during hibernation by bacteria degrading host-derived polysaccharides 
such as mucins (Carey et al. 2013). Although hibernation reduces the total amount of 
cecal SCFAs, the relative proportion of acetate (a specific SCFA) increases during 
hibernation compared to active seasons in the two species of ground squirrels (Carey et 
al. 2013; Stevenson et al. 2014). The increase in acetate-producing bacteria such as 
Akkermansia mucinphila that degrades mucins (Derrien et al. 2008) was observed in 
fasting and hibernating ground squirrels (Carey et al. 2013; Stevenson et al. 2014) and 
fasting Syrian hamsters (Sonoyama et al. 2009).  

Together, these studies are consistent with the hypothesis that variation in the gut 
microbiome is associated with the variation in energy extraction from diverse diets in 
mammalian hosts. 

 
1.2.2. Detoxification of plant dietary toxins 
 

Plants defend themselves from herbivores by producing plant secondary 
compounds or dietary toxins. Thus, detoxifying dietary toxins is a critical challenge for 
herbivores specializing on plant diets. Mammalian hosts often rely on microbes to 
detoxify plant toxins. For example, culture-based studies have isolated dietary toxin-
degrading bacteria from a wide range of mammalian hosts including various domestic 
species (Osawa and Sly 1992; Nemoto et al. 1995), marsupials (Osawa 1990; Osawa and 
Sly 1992; Nemoto et al. 1995), Ethiopian ruminants (Ephraim et al. 2005), and rodents 
(Sasaki et al. 2005; Dai et al. 2014; Miller et al. 2014; Kohl et al. 2016b). The occurrence 
of toxin degrading bacteria was associated with mammals that consume tannin rich diet 
(Osawa and Sly 1992), but not in others (Nemoto et al. 1995). Although detoxification 
enzymes can be produced both by the host tissue and the microbes, microbial enzyme 
activity per unit protein greatly exceeds that of the host in spiny mice (Kohl et al. 2016a) 
consistent with the findings in lab rats (Nakano and Gregory 1995). Two species of 
woodrats that consume dietary toxins in the wild converged on microbial community 
composition when they were fed dietary toxins in a common environment (Kohl et al. 
2012). Dietary toxin feeding experiments in Japanese large wood mice demonstrated that 
individuals that have prior experience to dietary toxins were associated with a greater 
abundance of toxin-degrading bacteria and have better performance measured by weight 
change over time (Shimada et al. 2006).  
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 A series of elegant papers by Kohl and Dearing used manipulative experiments to 
show that microbes aid woodrats in detoxifying plant secondary compounds (reviewed in 
Kohl and Dearing 2016). Microbes cultured from woodrat guts can degrade plant 
secondary compounds (Miller et al. 2014; Kohl et al. 2016b), and the ability of woodrats 
to consume dietary toxins is impaired when rats are given antibiotics (Kohl et al. 2014b). 
When feces of woodrat donors that regularly consumed dietary toxins were fed to 
woodrat recipients that were naive to the dietary toxin, the recipients showed an increased 
ability to feed on the dietary toxin (Kohl et al. 2014b). Similarly, microbial transplant 
experiments from woodrats to laboratory rats increased the ability of laboratory rats to 
consume tannic acids (Kohl et al. 2016b).  Together, these studies provide strong 
evidence that differences in the gut microbiome in natural populations are involved in 
detoxification of dietary toxins of herbivores.  
 
1.2.3. Pathogen defense and development of immune system  
 

While the microbiome clearly plays an important role in digestion and 
detoxification, another well-studied role is its effect on host immunity (Round and 
Mazmanian 2009a). In model organisms, the microbiota has been shown to benefit hosts 
by occupying the niche space of pathogens or by priming the development of the immune 
system. Recently, viruses in the gut mucus layer were suggested to play a role in 
protection against bacterial pathogens (Barr et al. 2013). Understanding the role of the 
microbiome in host immunity in wild mammals is another growing research area.  

The microbiome of a host may help provide protection from lethal pathogens in 
natural populations. For example, white-nose syndrome is an emerging infectious disease 
in North American hibernating bats caused by the fungus, Pseudogymnoascus 
destructans (Warnecke et al. 2012). Recent studies isolated bacteria from the skin of 
healthy bats and showed anti-fungal effects against P. destructans, suggesting a 
beneficial role of skin microbes in pathogen defense (Hoyt et al. 2015; Hamm et al. 
2017). A similar link has been identified in chytrid fungus infections in amphibians 
(reviewed in Rollins-Smith et al. 2011; Colombo et al. 2015). Thus, natural variation in 
the non-pathogenic microbial community may affect the susceptibility and transmission 
of fungal diseases in wild mammals. 

Infections of viruses and macroparasites are also associated with differences in 
the gut microbiota in wild mammals. Immunodeficiency virus infection (e.g. HIV in case 
of humans) was associated with changes in the microbiota of humans (reviewed in Salas 
and Chang 2014; Williams et al. 2016), chimpanzees (Moeller et al. 2013b), and 
domestic cats (Weese et al. 2015), but not in gorillas (Moeller et al. 2015). After HIV 
infection in humans, gut microbiomes may affect the progression of the disease 
(Vujkovic-Cvijin et al. 2013). Microbial communities seem to respond differently 
towards different infectious agents. For example, in wild-caught house mice, the degree 
of viral infection was positively correlated with alpha-diversity of the gut microbial 
community, whereas the degree of nematode and mite infection was negatively correlated 
with the alpha-diversity (Weldon et al. 2015). Aberrant immune gene expression and 
intestinal histopathology in hybrid house mice were associated with changes in the 
microbial community composition compared to the two parental species (Wang et al. 
2015). Associations between helminth infection and the microbial composition were 
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observed in yellow-necked mice, although the effect size was very low (Kreisinger et al. 
2015). These correlations between host immunity and the microbial composition in wild 
mammals are interesting, but the correlations alone cannot disentangle the cause and the 
consequence of the association. Nor is it always clear whether these associations reflect 
positive or negative effects on host fitness.  Manipulative experiments including infection 
trials are necessary to understand the role of microbial communities in host immunity. 

 
1.2.4. Modification of chemical communication and host behavior 
 
 Emerging evidence suggests that the microbiome can alter the behavior of 
mammalian hosts in two ways; (1) changes in olfactory signaling by microbial 
communities in the scent glands (Ezenwa and Williams 2014), and (2) changes to the 
central nervous system by microbial communities in the gut (Sampson and Mazmanian 
2015). The relationship between the host behavior and the microbiome can be reciprocal 
in the sense that social interactions between hosts can affect variation in the microbiome 
(Archie and Tung 2015; Tung et al. 2015; Moeller et al. 2016a). Using computer models, 
Lewin-Epstein et al (2017) suggested that microbes might play a role in the evolution of 
host altruism. The implications of the microbiome in behavioral ecology have been 
reviewed elsewhere (Archie and Theis 2011; Archie and Tung 2015).  
 In mammals, olfactory communication plays an important role in various 
behaviors, including mate preference and individual and species recognition (Ezenwa and 
Williams 2014). The fermentation hypothesis of chemical recognition is the idea that 
microbial communities in mammalian scent glands play an important role in the 
production of volatile odors (Albone et al. 1974; Albone and Perry 1976; Gorman 1976; 
Albone 1984). There is now evidence for microbe-produced signals in a variety of 
animals (reviewed in Ezenwa & Williams, 2014). In wild mammals, the microbiomes in 
scent glands are known to differ among closely related species (Theis et al. 2013), social 
groups (Theis et al. 2012; Theis et al. 2013; Leclaire et al. 2014), individuals (Gorman 
1976; Merritt et al. 1982) and individuals with different sex (Gassett et al. 2000; Alexy et 
al. 2003; Voigt et al. 2005; Theis et al. 2013; Leclaire et al. 2014), reproductive status 
(Sin et al. 2012; Li et al. 2016a), and age (Sin et al. 2012; Leclaire et al. 2014). 
Furthermore, bacteria-mediated odor significantly altered the outcomes of choice tests in 
Indian mongooses (Gorman 1976) and Brazilian guinea pigs (Zechman et al. 1984), 
consistent with findings in lab mice (Li et al. 2012).  
 Involvement of microbes in olfactory signaling has been observed in humans as 
well. Humans exhibit MHC-dependent mate preference and kin recognition based on 
odors (Wedekind et al. 1995; Wedekind and Füri 1997; Weisfeld et al. 2003).  Axillary 
odors are known to be associated with microbial composition (Leyden et al. 1981) and 
there is evidence that microbes transform odorless host axillary secretions into volatile 
odors (James et al. 2013). Bacteria-produced odorant was more similar between 
monozygotic twins compared to unrelated individuals (Kuhn and Natsch 2009) 
supporting the potential involvement of axillary microbes in inbreeding avoidance and 
kin recognition in humans. The behavioral, hormonal, and neurochemical effects of gut 
microbiomes through the gut-brain axis has been studied in humans and lab mice 
including the role of the microbiota on anxiety-like behavior, depression-like behavior, 
Parkinson’s disease, Alzheimer’s disease, and autism spectrum disorder (reviewed in 
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Sampson and Mazmanian 2015). However, outside of humans and lab mice, the 
implications of the gut-brain axis in the ecology and evolution of wild mammals are 
largely unexplored.   
 
1.2.5. Manipulative experiments are needed 
 

Overall, the studies presented above are consistent with the idea that natural 
variation in the microbiome can affect differences in host fitness. One of the advantages 
of omics-approaches (metagenomics, transcriptomics, proteomics, and metabolomics) is 
the ability to connect the compositional variation in the microbiome to functional 
variation in the microbiome, and eventually to the differences in host phenotypes and 
fitness. However, most of the current evidence is correlative (Table 1). Manipulative 
experiments in controlled settings are needed to identify causal relationships.   

The effects of the microbiome on host phenotype have commonly been tested in 
model organisms mainly using two approaches; (1) measuring the phenotype of the host 
without the microbiome by knocking-down the microbial community with antibiotics or 
by using germ-free animals, or (2) measuring the phenotype of the host with a modified 
microbiome through transplant experiments, either using bacterial isolates or a whole 
bacterial community. Although the use of antibiotics has been criticized by having many 
confounding effects (reviewed in Lundberg et al. 2016), there are several advantages over 
germ-free models such as studying the depletion of microbiome at different 
developmental stages and the ability to target bacterial groups by using different classes 
of antibiotics. While germ-free models also have their own limitations, germ-free models 
still seem to be the best system for microbial transplant experiments (Lundberg et al. 
2016). For example, germ-free lab mice exhibit a variety of abnormalities including the 
development of the gut, immune system, and brain (Martín et al. 2016). Fecal transplant 
experiments have demonstrated a causal role of the microbiome in fat storage (Turnbaugh 
et al. 2006), anxiety-like behavior (Heijtz et al. 2011) and priming the immune system 
(Olszak et al. 2012). Conducting manipulative experiments to test hypotheses generated 
by field observations would greatly increase our understanding of the functions of the 
compositional variation of the microbiome in wild mammals (Kohl et al. 2014b; Brooks 
et al. 2016; Kohl et al. 2016b).  

A particularly powerful approach would be to combine field observations and 
manipulative experiments in a single species. In human microbiome research, laboratory 
mice are often used as a stand-in for human subjects because conducting manipulative 
experiments in humans can be difficult or impossible (Nguyen et al. 2015). However, 
results from mice may not translate easily to humans due to differences in anatomy, 
physiology, and genetics (Nguyen et al. 2015) as well due to the existence of species-
specific bacterial lineages (Moeller et al. 2016b) and communities (Ochman et al. 2010; 
Phillips et al. 2012; Brooks et al. 2016).  A system that can combine both observations in 
natural populations and manipulations in the lab would be useful for assessing the role of 
microbiome variations on host fitness. Rodents are a particularly tractable group for 
combining these two approaches for microbiome research in general (Kohl et al. 2014b; 
Brooks et al. 2016; Kohl et al. 2016b).  
 
1.2.6. Evolutionary consequence of microbiome functions 
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 Evolutionary change in a host that is driven by natural selection could be 
mediated by microbiome in cases where microbes are faithfully transmitted from one 
generation to the next. The implications of the fitness effects of the microbiome for host 
evolution have been widely discussed in the literature (Margulis and Fester 1991; 
Rosenberg et al. 2007; Zilber-Rosenberg and Rosenberg 2008; McKnite et al. 2012; 
Bordenstein and Theis 2015; Moran and Sloan 2015). Here, I propose a framework for 
testing for evidence of host evolution mediated by the microbiome.   

The three components of natural selection can be applied to the microbiome; 
variation, differential success, and inheritance (Fig. 1). First, in order for natural selection 
to act on the microbiome, variation in the microbiome is required. Second, some of the 
variation in the microbiome must affect the host fitness. Lastly, inheritance of the 
microbiome associated with the host fitness is also required, where the offspring 
microbiome resembles the parent microbiome. Providing evidence of each of the three 
components in a single system will support the idea that natural selection on hosts is 
mediated by the microbiome. However, resemblance of the microbiome among related 
individuals can be generated by a variety of processes and the mechanism is largely 
unexplored especially in natural populations.  

Resemblance of the microbiome between parent and offspring can occur through 
genetic and non-genetic mechanisms. For example, reciprocal transplant experiments 
between zebrafish and mice have demonstrated that the host genotype can assemble 
species-specific microbial communities (Rawls et al. 2006). Genes with immune and 
behavioral functions are known to affect the microbiome from gene knockout mouse 
strains (Spor et al. 2011). In contrast, the mammalian offspring can acquire beneficial 
microbes either vertically (e.g. mother’s vaginal canal, milk, skin) or horizontally (e.g. 
environment) without host genotype effects. For example, rodents and lagomorphs often 
acquire microbes through coprophagy (e.g. eat mother’s feces), whereas young ungulates 
commonly consume soil to acquire microbes (Feldhamer et al. 2007). Some insect hosts 
can acquire beneficial bacteria that confer insecticide resistance from the soil every 
generation (Kikuchi et al. 2012). In lab mice, exposure to a different temperature resulted 
in different assemblages of microbiome that improves host energy metabolism by 
plasticity, without any genotypic differences (Chevalier et al. 2015; Ziȩtak et al. 2016). 
Therefore, studying the degree and the stability of the inheritance of the beneficial 
microbiome including genetic and non-genetic mechanisms is important to understand 
the evolutionary outcomes of the host.  

Finally, a major goal in evolutionary genetics is to link genotypes to phenotypes 
that affect fitness. Identifying the genetic basis of host phenotypes (e.g. immunity, 
behavior) that interact with the microbiome is important for understanding how the host 
genome might regulate the functions of the microbiome (Spor et al. 2011). Host genomic 
regions that associate with the microbial composition have been identified in genome-
wide association studies in humans (reviewed in Goodrich et al. 2016b) and quantitative 
trait locus mapping studies in mice (Benson et al. 2010a; McKnite et al. 2012; Srinivas et 
al. 2013; Leamy et al. 2014b; Wang et al. 2015). Conversely, “heritable” microbial taxa 
have been identified and can have significant effects on host phenotype such as weight 
gain (Goodrich et al. 2014, 2016a). Linking host genotype to microbiome variation that 
affects host fitness will help to understand the evolution of host-microbial interactions.  
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1.3. Chapter 1 Table 
 

Table 1. Suggestive evidence of compositional and functional variation of the microbiome affecting the host phenotype in natural 
or semi-natural populations of mammals using culture-independent techniques. See text for culture-based studies and functional 
studies for further evidence on microbiome functions. 

Host phenotype Mammalian host species Links between variations of the microbiome and the host phenotype  References 

Energy 
uptake from 

diet 

Plant fiber 
digestion 

Humans Homo sapiens Population differences in fiber-rich diet were associated with differences in the 
microbiota in a way that is consistent with the findings in experimental studies. 

De Filippo et al. 2010, 
Ou et al. 2013, 

Schnorr et al. 2014, 
Angelakis et al. 2016 

Tammar 
Wallaby* Macropus eugenii 

The foregut microbiome varied compositionally from other herbivores, but the 
microbiome converged functionally in plant fiber breakdown pathways using 
metagenomics.  

Pope et al. 2010 

Giant panda* Ailuropoda 
melanoleuca 

Genes involved in cellulose metabolism and lignin oxidation were identified, but the 
microbiome differs compositionally from other herbivores and similar to carnivorous 
bears. 

Zhu et al. 2011, Fang 
et al. 2012, Xue et al. 

2015 

Flying squirrel Petaurista alborufus 
lena Convergence in microbiota of fermentaion chambers along the gastrointestinal tract was 

observed (e.g. fermentation chambers tend to have greater alpha-diversity compared to 
the small intestines regardless of the presence or absence of the foregut chambers). 

Lu et al. 2014 

White-throated 
woodrat Neotoma albigula Kohl et al. 2014a 

House mouse Mus musculus Suzuki et al. 2016 

Chitin digestion  

Baleen Whales Mysticeti sp. The microbial composition is distinct from other mammals and enriched in bacterial 
genes associated with chitin degradation using metagenomics. Sanders et al. 2015 

Myrmecophagous 
mammals* 

(e.g. echidna, 
aardvark, anteater, 

tamandua, armadillo, 
ardwolf, etc.) 

Convergence of microbiota was observed across a wide range of myrmecophagous 
mammals.  Delsuc et al. 2014 

Fish digestion 

Marine 
mammals* 

Mirounga leonina, 
Hydrurga leptonyx, 

Dugong dugong 

Convergence of microbiota was observed among marine carnivorous, distinct from the 
rest of marine and terrestrial mammals. 

Nelson et al. 2013a, 
2013b 

Bottlenose 
dolphins* Tursiops truncatus Convergence of microbiota was observed between bottlenose dolphins and carnivores 

fish that share precocious diet.  Soverini et al. 2016 

Fruit digestion Chimpanzee and 
Gorilla Pan and Gorilla Convergence of microbiota was observed between chimpanzees and gorillas that share 

large fraction of a fruit diet. Moeller et al. 2013a 

* Captive individuals in semi-natural environment were used mostly or entirely. 
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Table 1. Continued.  
Host phenotype Mammalian host species Links between variations of the microbiome and the host phenotype  References 

Energy 
uptake from 

diet 

Seasonal diet 
shifts 

Lemurs 
Lemur catta and 

Propithecus 
verreauxi 

Seasonal shifts in diet were associated with the shifts in microbiota. 

Fogel et al. 2015 

Wood mouse Apodemus 
sylvaticus Maurice et al. 2015 

Reindeer* Raingifer tarandus 
tarandus 

Salgado-Flores et al. 
2016 

Gorrila Gorilla gorilla sp. Seasonal shifts in diet were associated with shifts in the microbiota and the metabolome. Gomez et al. 2016 

Black Howler 
Monkey Alouatta pigra Seasonal shifts in diet were associated with shifts in the microbiota and volatile fatty acids. Amato et al. 2014 

Tibetan 
Macaques Macaca Thibetana Seasonal shifts in diet were associated with shifts in microbiota and predicted bacterial 

gene functions. Sun et al. 2016 

Mucin digestion 
during food 
limitation  

Thirteen-lined 
ground 
squirrel 

Ictidomys 
tridecemlineatus Fasting was associated with changes in the microbiota. The increase in acetate (%) was 

associated with the increase in acetate producing bacteria (%) during fasting and 
hibernation. 

Carey et al. 2013 

Arctic ground 
squirrel Urocitellus parryii Stevenson et al. 2014 

Syrian 
hamster* 

Mesocricetus 
auratus 

Fasting was associated with changes in the microbiota and the increases in acetate 
producing bacteria. Sonoyama et al. 2009 

Detoxification 
of plant 

dietary toxins 

Oxalate 
detoxification 

White-
throated 
woodrat 

Neotoma albigula Bacterial communities that are associated with oxalate-degradation are most abundant in 
the foregut compared to the rest of the gastrointestinal tract.  Miller et al. 2014 

Resin 
detoxification Desert 

woodrat Neotoma lepida 

Population differences in microbial composition and functions were associated with 
creosote diet. Antibiotic treatment and transplant experiments demonstrated a causal link.  Kohl et al. 2014b 

Tannin 
detoxification 

Transfering the microbiome of woodrats to a lab rats revlealed that differences in the 
microbial community structure can increase the ability of recipients to comsume tannic 
acid. 

 Kohl et al. 2016b 

* Captive individuals in semi-natural environment were used mostly or entirely. 
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Table 1. Continued.  
Host phenotype Mammalian host species Links between variations of the microbiome and the host phenotype  References 

Immunity and 
pathogen 
defense 

Interaction with 
viruses 

Humans Homo sepiens 

Immunodeficiency due to viral infection was associated with shifts in the microbiota. 

reviewed in Salas and 
Chang 2014, Williams 

et al. 2016 

Chimpanzee Pan troglodytes Moeller et al. 2013b 

Gorilla Gorilla gorila 
gorilla Moeller et al. 2015 

House mice Mus musculus 
domesticus 

Antibody-based viral infection status was positively correlated with alpha-diversity of 
microbiota.  

Weldon et al. 2015 

Interaction with 
macroparasites 

Infection statuses of nematodes and mites were negatively correlated with alpha-diversity 
of the microbiota. 

Yellow-
necked mouse 

Apodemus 
flavicollis 

A weak association was observed between microbial composition and helminth 
composition.   Kreisinger et al. 2015 

Immune gene 
expression House mice Mus musculus spp. Aberrant immune gene expression and intestinal histopathology in hybrids were 

associated with differences in the microbiota in relation to the parental species. Wang et al. 2015 

Chemical 
communication 

and behavior 

Olfactory 
signaling in 
scent glands 

Spotted and 
Striped 
hyenas 

Crocuta crocuta 
and Hyaena hyaena 

The microbiota including odor-producing bacteria in scent gland secretions differed 
among species, social groups, sex, and reproductive status using pyrosequencing. Theis et al. 2012, 2013 

Meerkat Suricata suricatta The microbiota (based on ARISA) in scent secretion differed among sex, age, and social 
groups. Leclaire et al. 2014 

Musk deer* Moschus 
berezovskii 

The chemical and microbial composition of musk secretion differed between mated and 
unmated males using pyrosequencing. Li et al. 2016 

European 
Badger Meles meles The chemical and microbial composition (based on T-RFLP) of subcaudal gland secretion 

were significantly correlated and varied by age and female reproductive status.   Sin et al. 2012 

* Captive individuals in semi-natural environment were used mostly or entirely. 
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1.4. Chapter 1 Figure 
 
 

 
Figure 1. Three components of natural selection applied to the host-associated microbiome. (A) Evidence of variation in microbiome 
represented by hypothetical PCA plot of microbial taxa or genes. (B) Evidence of the differential success of the host based on the 
differences in the microbiome. (C) Evidence of inheritance of the microbiome, where offspring microbiome resembles the parent 
microbiome. All three components are required for the host to evolve in response to the natural selection on the microbiome across 
multiple generations. * See the text for genetic and non-genetic mechanisms of microbiome inheritance.  
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Chapter 2 
 
Geographical variation of gut microbial composition in 
humans 
 
This chapter has been previously published and is reproduced here with permission from 
the co-author and in accordance with the journal’s article sharing policy:  

Suzuki, T.A. and M. Worobey. 2014. Geographical variation of gut microbial 
composition in humans. Biology Letters. 10(2): 20131037. 

 
 

Abstract 
 

Although we know there is considerable variation in gut microbial composition 
within host species, little is known about how this variation is shaped and why such 
variation exists. In humans, obesity is associated with the relative abundance of two 
dominant bacterial phyla: an increase in the proportion of Firmicutes and a decrease in 
the proportion of Bacteroidetes. Since there is evidence that humans have adapted to 
colder climates by increasing their body mass (e.g. Bergmann’s rule), we tested whether 
Firmicutes increase and Bacteroidetes decrease with latitude, using 1020 healthy 
individuals drawn from 23 populations and six published studies. We found a positive 
correlation between Firmicutes and latitude and a negative correlation between 
Bacteroidetes and latitude. The overall pattern appears robust to sex, age, and bacterial 
detection methods. Comparisons between African Americans and native Africans and 
between European Americans and native Europeans suggest no evidence of host 
genotype explaining the observed patterns. The variation of gut microbial composition 
described here is consistent with the pattern expected by Bergmann’s rule. This 
surprising link between large-scale geography and human gut microbial composition 
merits further investigation.         
 
 
2.1.  Introduction 

There is growing appreciation that the gut microbial community (i.e. microbiota) may 
have played an important role in the evolution of host species (Muegge et al. 2011). 
Although the gut microbial composition is quite distinctive between host species 
(Muegge et al. 2011), there is also considerable variation within host species (Lay et al. 
2005; Mueller et al. 2006; Turnbaugh et al. 2009; De Filippo et al. 2010; Wang et al. 
2012; Yatsunenko et al. 2012). Nonetheless, how within-species microbial variation is 
shaped and why such variation exists remains largely unexplored.  

One of the factors that is associated with gut microbial composition is host 
physiology (Bäckhed et al. 2004; Ley et al. 2005, 2006; Jumpertz et al. 2011). For 
example, obese mice have distinct bacterial composition compared to lean mice 
characterized by relative abundance of two dominant phyla: increase in Firmicutes and 
decrease in Bacteroidetes (Ley et al. 2005). Lean mice transplanted with the microbiota 
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from obese mice demonstrated increased fat storage without increased food consumption 
when compared to control mice (Bäckhed et al. 2004). This suggests that relative 
increases in Firmicutes and decreases in Bacteroidetes can increase energy extraction and 
fat storage from a given diet. Interestingly, the pattern is consistent in humans where 
increases in Firmicutes and decreases in Bacteroidetes are associated with obesity (Ley et 
al. 2006) and also associated with increased energy harvest from the diet (Jumpertz et al. 
2011). 

It seems plausible that an increase in energy extraction and fat storage may be 
more important for animals in colder regions compared to animals in warmer regions as 
an environmental adaptation to climate. It is generally accepted that humans follow 
‘Bergmann’s rule’ (Bergmann 1847) at least to some degree, whereby populations in 
higher latitudes tend to have larger body mass compared to populations in lower latitudes 
(Roberts 1953). We speculated that such large-scale eco-geographic observations might 
be mediated in part by gut microbial communities that modulate energy extraction and fat 
storage. However, few studies have applied ecological theories to the geographic 
variation of gut microbial composition in humans or other animals across broad 
latitudinal scales. Here, we test whether the relative of abundance of Firmicutes in the 
human gut increases with latitude and whether that of Bacteroidetes decreases (i.e. the 
pattern that might be expected given body mass variation with latitude) using six 
published human microbial studies (Lay et al. 2005; Mueller et al. 2006; Turnbaugh et al. 
2009; De Filippo et al. 2010; Wang et al. 2012; Yatsunenko et al. 2012), including more 
than twenty populations from a variety of geographic locations worldwide. 

 
 

2.2. Methods  

We searched human gut microbial studies that included population samples. We either 
requested the data for each individual used in the study from the original authors or 
acquired the data from MG-RAST (Meyer et al. 2008). We were able to access six 
microbial studies in this way (Lay et al. 2005; Mueller et al. 2006; Turnbaugh et al. 
2009; De Filippo et al. 2010; Wang et al. 2012; Yatsunenko et al. 2012) including 23 
population samples representing a total of 1020 healthy individuals (Table 1, S8, Fig. 1). 
The relative abundance of Firmicutes (i.e. Firmicutes/total bacteria), the relative 
abundance of Bacteroidetes (i.e. Bacteroidetes/total bacteria), sex, age, sampling 
localities, and bacterial detection methods were collected from the studies. Age was 
divided into five age classes: Z (<1), A (1-10), B (11-20), C (21-54), and D (>60). 
Latitudes were based on sampling locality of the population. The bacterial detection 
methods were divided into two categories: FISH-based or 16S-sequencing-based 
methods. Ethnicity information was also collected when available. Spearman correlations 
were used for all correlations and the Wilcoxon rank sum test was used for all pairwise 
comparisons.  
 
 
2.3. Results and discussion 

There was a highly significant positive correlation between Firmicutes abundance 
and latitude (rho = 0.857, P < 0.0001) and a negative correlation between Bacteroidetes 
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and latitude (rho = -0.637, P = 0.001) using the population averages from all 23 
population samples (Fig. S1). The pattern is robust even when considering individual data 
points (Table 2 and Fig. 2). Although one might expect opposite correlations between the 
two phyla since the majority of the human gut microbiome consists of Firmicutes and 
Bacteroidetes (i.e. if one phylum increases the other phylum is likely to decrease), the 
correlation between Firmicutes and latitude is consistently greater compared to 
Bacteroidetes and latitude. This pattern can be explained either by taxa in Firmicutes 
mainly driving the pattern relative to Bacteroidetes or by taxa in minor phyla (e.g. 
Proteobacteria, Actinobacteria, Tenericutes, etc.) sharing some functional roles with 
Bacteroidetes. How individual bacterial taxa relate to the net effect of the microbiota 
remains an open question. Regardless, the correlations observed here are consistent with 
the pattern expected by Bergmann’s rule (Roberts 1953) where increases in Firmicutes 
and decreases in Bacteroidetes are known to be associated with an increase in body 
weight (Ley et al. 2005) potentially due to an increase in energy extraction and fat 
storage from a given diet (Bäckhed et al. 2004; Jumpertz et al. 2011). However, the 
pattern might be explained not only by latitude but also perhaps by age, sex, or bacterial 
detection methods. Therefore, we tested the potential factors that might be driving the 
observed pattern as described below.  

First, it is unlikely that age is biasing the overall pattern. Although bacterial 
composition differed among different age classes (Table S1), all of the significant 
correlations within all age classes were in the directions expected by Bergmann’s rule 
except in the >60 age class (Table S2). Interestingly, elderly individuals showed 
significant correlations in the opposite direction for both bacterial phyla (Table S2). 
However, elderly individuals (and infants) are known to have less stable and distinct gut 
microbial compositions compared to non-elderly adults (Spor, Koren and Ley 2011); we 
therefore analyzed the data using not only all of the data (n=1020) but also a subset of 
data representing non-elderly adults (age class C, n=438) (Table 2), with similar results in 
each case. 

Second, sex is apparently not biasing the results since the relative abundances of 
two bacterial phyla between men and women are similar (Table S3) and the correlation 
between the bacterial phyla and latitude remained significant within each sex (Table S4).   

Next, we tested potential biases between different microbial detection methods. 
The populations with FISH-based methods had higher Firmicutes and lower 
Bacteroidetes values compared to populations investigated with 16S-sequencing-based 
methods (Table S5). This could cause a potential bias in our data set since FISH-based 
methods were concentrated in the higher latitudinal populations and 16S-sequencing-
based methods were concentrated in the lower latitudinal populations (Table 1). 
However, there were significant correlations within populations with 16S-sequencing-
based methods alone (Table 2 and S7). Although the Spearman rho values became 
weaker, the overall pattern cannot be explained by the potential method bias alone. This 
issue could in the future be resolved by characterizing gut microbial composition in 
European samples using consistent 16S-sequencing-based methods. Sampling an 
independent latitudinal transect in the Southern hemisphere would also help to test this 
pattern in a more robust way.  

Finally, to investigate whether there is an effect of host genotype on the variation 
of gut microbiota, we focused on four ethnic groups: native Africans (AF), native 
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Europeans (EU), African Americans (AA), and European Americans (EA) (Turnbaugh et 
al. 2009; De Filippo et al. 2010; Yatsunenko et al. 2012). All populations were studied 
using 16S-sequencing methods. Applying the concept of a common garden experiment, if 
there is a host genotype effect on gut microbial composition, we expect populations of 
African ancestry (i.e. AF and AA) to have similar composition to each other compared to 
populations of European ancestry (i.e. EU and EA) due to genetic relatedness. The result 
did not support the prediction of host genotype effect: abundance of bacterial phyla was 
always different in native African populations (AF) from the other populations (i.e. EU, 
AA, and EA) (Table S7). Although quantitative measures of diet were unavailable from 
most populations, the pattern could potentially be explained by the effect of diet since at 
least AF-Burkina Faso had a low fat/high fiber diet and EU, AA, and EA had high fat/low 
fiber diet or non-restricted typical western diet (Turnbaugh et al. 2009; De Filippo et al. 
2010). Also, climate and pathogen/parasite distribution might potentially explain the 
overall pattern. Dissecting the co-varying factors of latitude may help identify the 
potential driver of gut microbial variation.   

If gut microbial community is playing a role in Bergmann’s rule (or, more 
generally, size or physiology differences between latitudes), there are three major models 
that could explain the observed pattern, and they are not mutually exclusive. I) Host 
genes could maintain the observed microbial community variation as an environmental 
adaptation. For example, immune genes such as antimicrobial peptides or behavioral 
genes that can alter food preferences or amount of food intake could potentially regulate 
the microbiota. II) The environment itself could maintain the observed microbiota 
variation if a key environmental factor is co-varying with latitude. For example, if food 
availability (e.g. food cultural variation in the case of humans) or microbial availability 
were correlated with latitude, environmental variation itself could explain the pattern 
without a fitness consequence of microbes to the host. III) Host plasticity could also 
maintain the observed microbiota variation. For example, cold environment increases 
food intake in animals (Brobeck 1948). If different microbiota have different fitness 
consequence to the host (e.g. different microbiota add different amounts of fat), non-
genetic vertical or horizontal transmission of microbes could maintain the observed 
pattern. Which of the models explains the observed variation of human gut microbiota 
remains an open question.  

Although further investigation is necessary to characterize the geographic 
variation of gut microbial composition in humans, the robust pattern raises some 
interesting points in microbial ecology. 1) “Healthy microbiota” may differ in different 
geographic regions. 2) Independent latitudinal transects using consistent methods may 
help to identify environmental variables that shape gut microbial composition. 3) Gut 
microbial composition could potentially help mediate the fit of host phenotype to its 
environment with or without a host genotype effect. 4) We can generate novel hypotheses 
by understanding the geographic variation of host-associated microbial communities 
within species. Studying other species that show clinal variation in body size may help 
establish whether the observations reported here are general.  
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2.4. Chapter 2 Tables 
 

Table 1. Six studies used in this study                     

sample locations latitude sample 
size 

# of individuals per age class 

female 
(%) reference map 

ID1 

Z (<1) 

A
 (1-10) 

B
 (11-20) 

C
 (21-54) 

D
 (>60) 

N
o data 

Coromoto, Venezuela 5.4 53 6 19 6 16 4 2 57 7 1 
Platanillal, Venezuela 5.4 45 1 24 7 8 5 - 58 7 2 

Burkina Faso 12.3 14 - 14 - - - - 36 2 3 
Chamba, Malawi 15.3 21 5 6 - 3 - 7 56 7 4 
Mayaka, Malawi 15.4 51 9 17 - 12 - 13 73 7 5 
Mbiza, Malawi 16.0 31 11 5 - 6 - 9 83 7 6 

Makwhira, Malawi 16.2 5 2 1 - 1 - 1 75 7 7 
Shanghai, China  31.2 56 - - - 56 - - 54 6 8 
Missouri, USA 38.6 120 - - 82 38 - - 100 5 9 
Missouri, USA 38.6 30 - - - 23 - 7 100 7 10 
St.Louis, USA 38.6 235 22 12 106 95 - - 54 7 11 
Boulder, USA 40.0 9 1 7 - 1 - - 67 7 12 

Philadelphia, USA 40.0 23 - 13 - 10 - - 78 7 13 
Camerino, Italy 43.1 58 - - - 20 38 - 53 4 14 
Tuscany, Italy 43.4 13 - 13 - - - - 31 2 15 
Paris, France 48.9 48 - - - 22 26 - 58 4 16 

France 48.9 21 - - - 21 - - 52 3 17 
United Kingdom 51.5 10 - - - 10 - - 80 3 18 

Netherlands 52.4 20 - - - 20 - - 70 3 19 
Potsdam, Germany 52.4 58 - - - 21 37 - 62 4 20 

Germany 52.5 20 - - 1 19 - - 80 3 21 
Denmark 55.7 20 - 3 1 16 - - 55 3 22 

Stockholm, Sweden 59.3 59 - - - 20 39 - 53 4 23 
(1 map ID corresponds to Fig.1)             
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Table2. Correlations with latitude 

  
data 

  correlations between latitude 
phyla n Spearman's ρ p-value 

Firmicutes (%) 

whole data 1020 0.563 <0.0001 
whole data (age C) 438 0.606 <0.0001 
only 16S seq. data 706 0.434 <0.0001 

only 16S seq. data (age C) 269 0.375 <0.0001 

Bacteroidetes (%) 

whole data 1020 -0.279 <0.0001 
whole data (age C) 438 -0.464 <0.0001 
only 16S seq. data 706 -0.117 0.002 

only 16S seq. data (age C) 269 -0.319 <0.0001 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

	 	 	

20 

2.5. Chapter 2 Figures 
 

Figure 1.	Distribution map of human populations used in this study. Pie chart indicates the relative abundance of two bacterial phyla: 
Firmicutes (Light gray) and Bacteroidetes (Dark gray). The numbers indicate Map ID (see Table 1). 
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Figure 2. Correlations between (a) relative abundance of Firmicutes and latitude and between (b) relative abundance of 
Bacteroidetes and latitude for all adults (n = 438).  
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2.6. Chapter 2 Supplemental information 
 
 
 

Table S1. Effects of age (Wilcoxon rank sum test)             

phyla data n age classes mean s.d. significance1 

Firmicutes whole data 

57 Z (0-1) 0.42 0.16 a       
134 A (1-10) 0.52 0.15   b     
203 B (11-19) 0.64 0.12     c   
438 C (20-54) 0.66 0.14     c   
149 D (>60) 0.70 0.14       d 

Bacteroidetes whole data 

57 Z (0-1) 0.15 0.12 a       
134 A (1-10) 0.25 0.17       d 
203 B (11-19) 0.22 0.13     c d 
438 C (20-54) 0.20 0.12   b c   
149 D (>60) 0.17 0.11 a b     

1 Rows not connected by same letter are significantly different, Bonferroni corrected 
α=0.005       
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Table S2. Correlations within age class (Spearman rho)     

phyla data n age classes 
correlations between latitude 
Spearman rho p value 

Firmicutes whole data 

57 Z (0-1) 0.342 0.009 
134 A (1-10) 0.361 <0.0001 
203 B (11-19) 0.200 0.004 
438 C (20-54) 0.606 <0.0001 
149 D (>60) -0.248 0.002 

Bacteroidetes whole data 

57 Z (0-1) 0.000 0.99 
134 A (1-10) 0.080 0.4 
203 B (11-19) -0.091 0.2 
438 C (20-54) -0.464 <0.0001 
149 D (>60) 0.334 <0.0001 

 
 

TableS3. Effects of sex (Wilcoxon rank sum test)       

phyla data n sex mean s.d. p value 

Firmicutes 
whole data 636 Female 0.63 0.15 0.8 

349 Male 0.63 0.15 

whole data (age C) 308 Female 0.65 0.14 0.02 
128 Male 0.68 0.13 

Bacteroidetes 
whole data 636 Female 0.21 0.13 0.04 

349 Male 0.19 0.13 

whole data (age C) 308 Female 0.21 0.13 0.1 
128 Male 0.18 0.12 
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Table S4. Correlations within sex (Spearman rho)     

phyla data n sex correlations between latitude 
Spearman rho p value 

Firmicutes  
whole data 637 Females 0.491 <0.0001 

349 Males 0.474 <0.0001 

whole data (age C) 308 Females 0.638 <0.0001 
128 Males 0.508 <0.0001 

Bacteroidetes 
whole data 637 Females -0.313 <0.0001 

349 Males -0.312 <0.0001 

whole data (age C) 308 Females -0.480 <0.0001 
128 Males -0.420 <0.0001 

 
 

Table S5. Effects of Method (Wilcoxon rank sum test)       

phyla data n methods mean s.d. p value 

Firmicutes 
whole data 706 16S seq. 0.58 0.14 <0.0001 

314 FISH 0.73 0.12   

whole data (age C) 269 16S seq. 0.60 0.11 <0.0001 
169 FISH 0.76 0.11   

Bacteroidetes 
whole data 706 16S seq. 0.23 0.13 <0.0001 

314 FISH 0.15 0.1   

whole data (age C) 269 16S seq. 0.24 0.13 <0.0001 
169 FISH 0.14 0.09   
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Table S6. Correlations within methods (Spearman rho)     

phyla data n methods correlations between latitude 
Spearman rho p value 

Firmicutes 

whole data 706 16S Seq. 0.434 <0.0001 
Only adults (age C) 269 16S Seq. 0.375 <0.0001 

whole data 314 FISH -0.244 <0.0001 
Only adults (age C) 169 FISH -0.028 0.7 

Bacteroidetes 

whole data 706 16S Seq. -0.117 0.002 
Only adults (age C) 269 16S Seq. -0.319 <0.0001 

whole data 314 FISH 0.201 0.0003 
Only adults (age C) 169 FISH -0.013 0.9 

 
Table S7. Effects of ancestry (Wilcoxon rank sum test)           

phyla data n ethinc groups mean s.d. significance1 

Firmicutes whole data 

14 AF (Brkina Faso) 0.28 0.17 a     
108 AF (Malawi) 0.48 0.17   b   
81* AF (Malawi)* 0.51* 0.08*   b*   
13 EU 0.65 0.15     c 
62 AA 0.66 0.15     c 
58 EA 0.69 0.13     c 

Bacteroidetes whole data 

14 AF (Brkina Faso) 0.58 0.26 a     
108 AF (Malawi) 0.24 0.11   b   
81* AF (Malawi)* 0.26* 0.08*   b*   
13 EU 0.26 0.09   b   
62 AA 0.29 0.15   b   
58 EA 0.28 0.13   b   

* age class Z (<1) excluded               
1 Rows not connected by same letter are significantly different, Bonferroni corrected α=0.005     
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Figure S1. Correlation between latitude and population average bacterial abundance. The error bar shows standard deviations. 
(a) Correlation between latitude and average relative abundances of Firmicutes representing 23 populations (all data, n=1020). 
(b) Correlation between latitude and average relative abundances of Bacteroidetes representing 23 populations (all data, 
n=1020). (c) Correlation between latitude and average relative abundances of Firmicutes representing 21 populations (only 
adults, n=438). (d) Correlation between latitude and average relative abundances of Bacteroidetes representing 21 populations 
(only adults, n=438).    
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Chapter 3 
 
Spatial heterogeneity of gut microbial composition along the 
gastrointestinal tract in natural populations of house mice.  
 
This chapter has been previously published and is reproduced here with permission from 
the co-author and in accordance with the journal’s article sharing policy:  

Suzuki, T.A. and M.W. Nachman. 2016. Spatial heterogeneity of gut microbial 
composition along the gastrointestinal tract in natural populations of house 
mice. PLOS ONE 11(9): e0163720. 

 
 

Abstract 
 

There is a growing appreciation of the role of gut microbial communities in host 
biology. However, the nature of variation in microbial communities among different 
segments of the gastrointestinal (GI) tract is not well understood. Here, we describe 
microbial communities from ten different segments of the GI tract (mouth, esophagus, 
stomach, duodenum, ileum, proximal cecum, distal cecum, colon, rectum, and feces) in 
wild house mice using 16S rRNA gene amplicon sequencing.  We also measured carbon 
and nitrogen stable isotopic ratios from hair samples of individual mice as a proxy for 
diet.  We identified factors that may explain differences in microbial composition among 
gut segments, and we tested for differences among individual mice in the composition of 
the microbiota. Consistent with previous studies, the lower GI tract was characterized by 
a greater relative abundance of anaerobic bacteria and greater microbial diversity relative 
to the upper GI tract. The upper and lower GI tracts also differed in the relative 
abundances of predicted microbial gene functions, including those involved in metabolic 
pathways. However, when the upper and lower GI tracts were considered separately, gut 
microbial composition was associated with individual mice. Finally, microbial 
communities derived from fecal samples were similar to those derived from the lower GI 
tract of their respective hosts, supporting the utility of fecal sampling for studying the gut 
microbiota of mice. These results show that while there is substantial heterogeneity 
among segments of the GI tract, individual hosts play a significant role in structuring 
microbial communities within particular segments of the GI tract.  
 
 
3.1. Introduction 
 

Recent advances in microbial ecology have demonstrated important roles of gut 
microbes in digestion (Hooper, Midtvedt and Gordon 2002), immunity (Round and 
Mazmanian 2009b), development (Fraune and Bosch 2010), and behavior (Heijtz et al. 
2011) of hosts. Despite the importance of gut microbial communities in host biology, 
many studies depend solely on fecal samples to investigate the gut microbial community. 
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Less attention has been given to spatial heterogeneity along the gastrointestinal (GI) tract 
or to the mechanisms structuring microbial variation along the GI tract.  

In mammals, diet seems to be a major driver of fecal microbial communities 
within (Carmody et al. 2015) and between species (Ley et al. 2008a; Muegge et al. 
2011). However, hindgut and foregut fermenters show distinct fecal microbial 
communities despite eating similar herbivorous diets (Ley et al. 2008a; Muegge et al. 
2011). Hindgut fermenters have a simple stomach, and the majority of fermentation takes 
place in the enlarged cecum. In contrast, foregut fermenters have, in addition to the 
cecum, a segmented stomach where the majority of fermentation takes place. This 
suggests that fecal microbial communities could be partly determined by gut anatomy 
(Ley et al. 2008a) along with other factors including host genotype (Spor, Koren and Ley 
2011) and geography (Suzuki and Worobey 2014).  

One approach to understanding the factors affecting the gut microbiota along the 
GI tract is to assess the relative importance of gut segments and individual hosts in 
explaining the composition of the microbial community. For example, if variation among 
gut segments explains most of the variation in microbial composition, this might suggest 
that gut-segment-specific biochemical differences (e.g. pH, oxygen, nutrients, etc.) 
determine microbial communities along the GI tract (Durbán et al. 2011; Stearns et al. 
2011; Gu et al. 2013; Kohl et al. 2014a; Lu et al. 2014). In contrast, if variation among 
individuals explains most of the microbial variation, this would suggest that differences 
in diet, host genotype, and/or host habitat are important in determining the composition 
of microbial communities (Eckburg et al. 2005; Zhang et al. 2014). The two hypotheses 
above are not mutually exclusive. 

Characterizing the complete GI tract is important not only for understanding 
microbial composition in different gut segments but also for assessing the efficacy of 
fecal sampling for studying gut microbial communities. The assumption that fecal 
microbial communities are similar to those in the colon has been examined mostly in 
humans, and the two types of samples usually show significant differences (Ott et al. 
2004; Ouwehand et al. 2004; Eckburg et al. 2005; Durbán et al. 2011; Stearns et al. 
2011). Recently, multiple sites along the GI tract have also been characterized in 
laboratory mice (Gu et al. 2013), wood rats (Kohl et al. 2014a), flying squirrels (Lu et al. 
2014), and rhesus macaques (Yasuda et al. 2015). For example, in wood rats, the fecal 
microbial community is different from that in the large intestine and is more similar to 
the communities found in the stomach or small intestine (Kohl et al. 2014a). In contrast, 
in rhesus macaques, the relative abundances of bacterial taxa in fecal samples were 
significantly correlated with those in both the large and small intestines (Yasuda et al. 
2015). Together, these studies suggest that fecal microbial communities may be most 
similar to different parts of the GI tract in different host species.  

Wild house mice provide a useful mammalian model for studying microbial 
variation along the GI tract. Laboratory strains of house mice have been used extensively 
as a model in gut microbial ecology. Microbial variation along the GI tract has been 
characterized in one strain of inbred mice in a laboratory environment (Gu et al. 2013).  
The authors sampled seven locations along the GI tract in six individuals of a single 
genotype, and found differences in the microbial community mainly between the upper 
and lower GI tract (Gu et al. 2013). Wild mice are genetically variable, and host genotype 
is known to play an important role in shaping the gut microbiota (Benson et al. 2010b). 
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Wild mice may also show variation in microbial communities due to differences among 
animals sampled from different localities (Linnenbrink et al. 2013; Weldon et al. 2015). 
In addition, laboratory diets and environment have been shown to alter the gut micobiota 
in Drosophila (Chandler et al. 2011) and house mice (Kreisinger et al. 2014; Wang et al. 
2014, 2015) compared to their wild relatives. Finally, house mice live in close association 
with humans. The parallel ecology between humans and house mice highlights the 
importance of studying the microbial composition of wild house mice for translational 
research (Guénet and Bonhomme 2003; Phifer-Rixey and Nachman 2015). 

Here, we collected wild house mice in Tucson, Arizona. First we describe the 
microbial heterogeneity along ten segments of the GI tract.  We then assess the relative 
importance of gut segment, host individual, and diet in explaining the composition of the 
microbial communities observed in our samples. 
 
 
3.2. Methods 
 
3.2.1. Animal and sample collections 
 

Three adult male and three adult female Mus musculus were collected from 
Tucson, Arizona on September 19, 2012 (Table S1 in Supplemental information). 
Animals were collected on private property with the permission of the landowners under 
a State of Arizona scientific collecting permit (LIC# SP791101 to Taichi Suzuki). 
Sherman live traps were used without bait to assess the “natural” gut microbial 
composition. Animals were collected from four localities (Table S1 in Supplemental 
information). Animals were kept in Sherman traps, euthanized by cervical dislocation, 
and all samples were collected within 24 hours after capture. All procedures involving 
animals were reviewed and approved by the University of Arizona Institutional Animal 
Care and Use Committee (protocol 07-004). Museum specimens (skins and skulls) were 
prepared and have been deposited in the mammal collection of the Museum of Vertebrate 
Zoology at the University of California, Berkeley (catalog numbers MVZ230525, 
230526, 230530, 230535, 230537, and 230539).      

The samples were collected from the following 10 locations along the GI tract 
under sterile conditions: oral cavity, esophagus, stomach, duodenum, ileum, proximal 
half of cecum, distal half of cecum, proximal colon, rectum, and fresh feces (Fig 1A). 
The oral cavity was swabbed using 1 cm2 kimwipe. All tissues were collected 
immediately after the animal was euthanized. All samples were stored immediately at -
80°C.   
 
3.2.2. Stable isotope analyses 
 
 Hair samples were used to infer diet based on carbon and nitrogen stable isotope 
ratios. Hair samples (0.4 mg) were collected from the base of the right hind leg from each 
individual. The hair was rinsed in 2:1 chloroform:methanol to remove the surface oils, 
rinsed in distilled water, and dried in collection tubes. Stable isotope analyses were 
performed in the Environmental Isotope Laboratory at the University of Arizona. Carbon 
(δ13C) and nitrogen (δ15N) stable isotope ratios were measured on a continuous-flow gas-
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ratio mass spectrometer (Finnigan Delta PlusXL), which was coupled to an elemental 
analyzer (Costech). Standardization was based on acetanilide for elemental concentration 
(δ13C: NBS-22 and USGS-24, δ15N: IAEA-N-1 and IAEA-N-2).  
 
3.2.3. DNA extraction and Sequencing 
 

The frozen samples were chopped into pieces with a sterile razor blade in a petri 
dish on dry ice. We used 200 mg of each sample, except for those from the mouth and 
esophagus which were smaller. To study microbes living in the gut contents and on the 
mucosal surface, the entire sample with the host tissue was immediately disrupted and 
rinsed with sterile forceps in 1.4ml ASL (from QIAamp DNA stool Minikit). Most of the 
host tissue was removed by this procedure. Following a protocol developed by Smith et 
al. (2011) to extract microbial DNA (Smith et al. 2011), 0.2 g of sterile zirconia/silica 
disruption beads (0.1mm, Research Products International Corp.) were added and 
vortexed until the samples were thoroughly homogenized.  Samples were then placed in a 
TissueLyser LT (Qiagen) 30HZ for 6 min for further mechanical disruption. The 
suspension was heated at 95°C for 5 min, and DNA was extracted following step 4 
(vortex and centrifugation) in the protocol from the QIAamp DNA stool Minikit 
(Qiagen). The quality of the DNA was evaluated based on Nano Drop 3300 (Thermo 
Scientific). DNA samples were stored at -20°C before sequencing.  
 The DNA samples were shipped to Argonne National Laboratory for 16S rRNA 
amplicon sequencing at their Next Generation Sequencing Core Facility. The V4 region 
of the 16S rRNA gene was amplified and the samples were multiplexed for sequencing 
on a 150bp paired-end Illumina MiSeq platform using primers 515F (5’ - 
GTGCCAGCMGCCGCGGTAA) 806R (5’ -  GGACTACHVGGGTWTCTAAT) and 
barcodes described in (Caporaso et al. 2010). All data have been deposited into the 
European Nucleotide Archive (accession number PRJEB15238). 
 
3.2.4. Analyses 
 

The paired-end reads were merged in PANDAseq (Masella et al. 2012) and all the 
merged sequences were analyzed in QIIME version 1.8.0 (Caporaso et al. 2010). 
Sequences were demultiplexed and quality-filtered using the default parameters in 
QIIME. Chimeric sequences were detected and removed by following both the reference 
(Greengenes 13_8) (DeSantis et al. 2006) and de-novo based approaches using 
USEARCH/UCHIME 6.1 (Edgar 2010; Edgar et al. 2011). One sample (TAS203.7, 
Table S1 in Supplemental information) was excluded from all analyses due to low 
sequence reads. We assigned sequences to OTUs by using the subsampling open-
reference approach with default parameters in QIIME (Rideout et al. 2014). Briefly, 
sequences were initially clustered against a reference database (Greengenes 13_8) 
(DeSantis et al. 2006) using UCLUST (Edgar 2010) with a minimum sequence identity 
of 97%. A random subsample of the reads that fail to hit the reference database was 
subsequently clustered de novo with default parameters. Singleton OTUs were removed. 
Taxonomy was assigned using uclust-based consensus taxonomy with default parameters. 
A phylogenetic tree was created from representatives of all OTUs using FastTree (Price, 
Dehal and Arkin 2009). The OTU table was rarefied by random sampling (without 
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replacement) at an even depth of 2000 reads to maximize the samples included in the 
analyses. On average, a total of 16,026 merged pair-end reads per sample were obtained 
after default quality filtering and chimera removal. The median amplicon length was 
253bp after merging. These sequences resulted in a total of 7,137 OTUs. The major 
conclusions hold at different sequencing depths (Fig S1 in Supplemental information). 
Detailed information on the number of reads per sample is provided in Table S1 in 
Supplemental information. 

The relative abundances of bacterial families and several measures of diversity 
were calculated using the rarefied OTU table. The number of OTUs, Shannon diversity 
index, and Faith’s phylogenetic diversity (Faith 1992) were calculated.  The number of 
OTUs provides a measure of species richness, while Shannon’s diversity index provides 
an integrative measure of evenness and richness, and Faith’s phylogenetic diversity is 
based on the cumulative phylogenetic branch lengths. For each sample, we calculated the 
mean of 20 iterations based on a subsampling of 2000 sequences. The differences in 
relative abundances of bacterial taxa and microbial diversity between the gut segments 
were tested using Kruskal-Wallis tests and Wilcoxon rank sum tests with Bonferroni 
corrections in JMP 12.1 (SAS institute). A two-tailed significance threshold of 0.05 was 
used for all the statistical tests. 

To evaluate potential functional differences of the microbiome along the GI tract, 
gene family abundances were predicted from the 16S rRNA gene sequences using 
PICRUSt (Langille et al. 2013). OTUs that are only present in the reference database 
(Greengenes 13_5) were included in the analyses, a requirement of PICRUSt. The OTUs 
were rarefied to a single depth (2000 reads) for each sample. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) ortholog abundances were predicted for each sample, the 
KEGG pathway functions were categorized at level 3, and the relative abundances of 
functional categories were calculated. Principle component values were calculated from 
all of the functional categories. Kruskal-Wallis tests and Wilcoxon rank sum tests with 
Bonferroni corrections were used to test for differences among gut segments.  

Overall similarities between microbial communities were quantified using 
UniFrac distances which integrate the phylogenetic information of the community 
(Hamady, Lozupone and Knight 2010). Unweighted UniFrac distances (community 
membership; presence and absence of taxa) and weighted UniFrac distances (community 
structure; taking into account the relative abundances of taxa) were calculated in QIIME. 
To visualize the community similarity, PCoA and UPGMA hierarchical clustering 
analyses were conducted. Jackknife support of nodes in UPGMA trees were calculated 
using default settings in QIIME. 

To quantify the effect size of variables explaining unweighted and weighted 
UniFrac distances, ADONIS was used with 999 permutations in QIIME.  We also tested 
the effects of gut segment, individual, and diet (carbon and nitrogen stable isotopes) on 
gut microbial membership using Generalized Linear Models (GLMs) in R (version 3.3.0). 
To perform model selection, we used the Akaike information criterion with sample size 
correction (AICc) with the “AICc” function in the package “AICcmodavg”, as well as 
likelihood ratio tests in cases where models were hierarchically nested using the “lrtest” 
function in the package “lmtest”. We ran four separate analyses: (1) a full model, 
including fixed effects for gut segment, carbon, nitrogen, and individual; (2) fixed effects 
of carbon, nitrogen, and individual; (3) fixed effects of gut segment and individual; and 



	

	 	 	32 

(4) fixed effects of gut segment, carbon, and nitrogen. Models 2, 3, and 4 are each nested 
within model 1 and were compared to model 1 in likelihood ratio tests.  These tests 
evaluate whether gut segment, diet, and individual explain significant variation in 
microbial communities in the context of models that include the other variables.  Each of 
these analyses was run on each of three datasets: the complete GI data, the upper GI data, 
and the lower GI data, for a total of twelve analyses (see Table S2 in Supplemental 
information).  For each dataset, the response variable was unweighted UniFrac PC1, 
which was calculated independently in the complete GI, the upper GI, and the lower GI. 
The fractions of the variation explained by PC1 were 24%, 13%, and 22%, respectively.  
 

 
3.3. Results 
 
3.3.1. Obligately anaerobic bacteria are more abundant in the lower GI tract than 
they are in the upper GI tract  

 
The relative abundances of the dominant phyla showed significant differences 

among gut segments (Kruskal-Wallis test, Firmicutes P = 0.004, Bacteroidetes P < 
0.0001, Proteobacteria P < 0.0001, Tenericutes P = 0.001, and Cyanobacteria P = 0.02). 
Dominant bacterial families showed a similar pattern, in which 8 out of the 10 highly 
abundant bacterial families displayed significant differences in relative abundance among 
the gut segments after Bonferroni corrections (Fig 1B and Table S3 in Supplemental 
information). The observed differences in the relative abundances of bacterial taxa along 
the GI tract were consistent with a decrease in oxygen concentration from the mouth to 
the anus. For example, the upper GI tract (mouth to ileum) was dominated by mostly 
facultatively anaerobic bacterial families such as Pasteurellaceae, Mycoplasmataceae, and 
Lactobacillaceae (Table S4 in Supplemental information). In contrast, the lower GI tract 
(cecum to feces) was dominated by mostly obligately anaerobic bacterial families (Table 
S5 in Supplemental information).  For example, within the phylum Firmicutes, 
facultatively anaerobic Firmicutes (Class: Bacilli) were more abundant in the upper GI 
tract than in the lower GI tract (Upper GI mean: 0.21, Lower GI mean: 0.01, Wilcoxon 
rank sum test: P < 0.0001). In contrast, obligately anaerobic Firmicutes (Class: 
Clostridia) showed the opposite pattern (Upper GI mean: 0.04, Lower GI mean: 0.37, 
Wilcoxon rank sum test: P < 0.0001).  

Greater spatial heterogeneity in the relative abundances of bacterial taxa was 
observed within the upper GI tract compared to the lower GI tract (Table S4 and S5 in 
Supplemental information). For example, the relative abundances of Pasteurellaceae and 
Mycoplasmataceae showed significant differences among the gut segments within the 
upper GI tract (Kruskal-Wallis test, P < 0.005). Pasteurellaceae were more abundant in 
mouth, esophagus, and stomach samples (mean relative abundance = 0.57) compared to 
small intestine samples (mean relative abundance = 0.08) (Fig1B and Table S4 in 
Supplemental information). In contrast, Mycoplasmataceae were less abundant in mouth, 
esophagus, and stomach samples (mean relative abundance = 0.003) and were more 
abundant in small intestine samples (mean relative abundance = 0.52) (Fig1B and Table 
S4 in Supplemental information). However, within the lower GI tract, none of the 10 
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most abundant bacterial families showed significant differences in relative abundance 
between the gut segments (Table S5 in Supplemental information).  

A total of 42 core OTUs (OTUs that are present in all individuals for each gut 
segment) was observed in the total dataset of 7,137 OTUs (Table S6 in Supplemental 
information). The number of core OTUs was greater in the lower GI tract (mean = 17.6) 
compared to the upper GI tract (mean = 4.8) (Wilcoxon rank sum test, P = 0.01). The 
distal cecum had the greatest number of core OTUs of all the gut segments. Fecal 
samples shared a greater fraction of core OTUs with the lower GI tract (93.3%) compared 
to the upper GI tract (6.7%) (Table S6 in Supplemental information).  
 
3.3.2. Microbial diversity and community phylogenetic measurements differ 
between upper and lower GI tract 

 
Microbial diversity differed among the gut segments overall (Kruskal-Wallis test, 

P < 0.0001 for Shannon index and Phylogenetic diversity). This result was mainly driven 
by the significant shifts in microbial diversity between the upper and lower GI tract. The 
Shannon index and Phylogenetic diversity were lower in the upper GI tract compared to 
the lower GI tract (Fig 1C) (Wilcoxon rank sum test: P < 0.0001 for each). 

Although diversity measures were calculated after rarefying the number of 
sequences to an equal depth to control for sampling effort, both the Shannon index and 
Phylogenetic diversity were significantly correlated with the number of raw sequence 
reads in each sample (Fig S2 in Supplemental information). In principle, this might lead 
to a bias in estimates of diversity.  However, three lines of evidence suggest that our 
conclusion of lower diversity in the upper GI tract is robust. First, when we restricted the 
comparison to samples where the read depths were comparable between upper and lower 
GI tract (i.e. samples with between 11634 and 18531 reads, Fig S2 in Supplemental 
information), the lower GI tract had consistently higher diversity measures compared to 
the upper GI tract (Wilcoxon rank sum test: P < 0.0001). Second, we took the residual 
values between the sequence reads and the rarefied diversity measures and we compared 
these residuals among gut segments; the overall pattern remained the same between the 
upper and lower GI tract using these residual values (Wilcoxon rank sum test: P < 
0.0001) (Fig S3 in Supplemental information). Finally, comparisons at different sequence 
depths gave a consistent pattern using the rarefaction curves (Fig S1 in Supplemental 
information). Therefore, we conclude that microbial diversity is greater in the lower GI 
tract compared to the upper GI tract.  
 
3.3.3. Predicted gene functions differ between the upper and lower GI tract 

 
The predicted functions of the gut microbial community differed between the 

upper and lower GI tract. The first principle component of the relative abundances of 
microbial gene functions (KEGG pathway categories) predicted from the 16S rRNA gene 
data showed a significant difference between the upper and lower GI tract  (Wilcoxon 
rank sum test P < 0.0001) (Fig 1D). The gene function PC1 was enriched in metabolism 
functions, where 11 out of the top 15 eigenvectors were categorized to functions related 
to metabolism (Table S7 in Supplemental information). Gene function PC1 significantly 
differed among the gut segments within the upper GI tract (Kruskal-Wallis test, P = 
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0.006), but not within the lower GI tract (Kruskal-Wallis test, P = 0.14). The differences 
among the gut segments in the upper GI tract were not significant after multiple 
corrections (Wilcoxon rank sum test, Bonferroni corrected P < 0.005). To test whether 
the abundance of genes in various metabolic pathways differed between the upper and 
lower GI tract, we focused on the top 15 most abundant metabolism gene function 
categories. Most of the metabolism gene function categories showed significant 
differences in their relative abundances between the upper and lower GI tract (Fig 2).  
 
3.3.4. The effects of individual host, gut segment, and diet on microbial community 
composition  

 
For the complete GI tract dataset, gut segment best explained the variation in 

microbial community membership (R2 = 0.31, P < 0.001) (Fig 3A) and structure (R2 = 
0.76, P < 0.001) based on ADONIS (Table 1). Analyses using generalized linear models 
(GLMs) showed a similar pattern (Table S2 in Supplemental information). The model 
excluding gut segment (model 2) had a significantly lower log likelihood score compared 
to the full model (Likelihood ratio test, P <0.001). In contrast, the model excluding diet 
(model 3) and the model excluding individual (model 4) were not significantly different 
from the full model (Table S2 in Supplemental information).  This indicates that variation 
in diet and variation among individuals are not contributing to variation in gut microbial 
composition when the entire GI tract is considered. Given the large differences in 
microbial communities between the upper and lower GI tract, we next restricted our 
analyses to datasets consisting of samples from the upper GI tract alone and the lower GI 
tract alone.  

Within the upper GI tract, gut segment was associated only with community 
structure (weighted UniFrac distance) (R2 = 0.66, P < 0.001), but not with community 
membership (unweighted UniFrac distance) (R2 = 0.15, P = 0.2) (Fig 3B and Table 1). 
Instead, community membership was significantly associated with host individual (R2 = 
0.28, P < 0.001) (Table 1). The model comparison of GLMs showed a similar pattern; a 
model without individual (model 4) was significantly worse than the full model 
(Likelihood ratio test, p < 0.001). In contrast, models excluding gut segment (AICc = -
19.96) or excluding diet (AICc = -12.53) were comparable to the full model (AICc = -
12.53) (Table S2 in Supplemental information). Within the lower GI tract, variation in 
community membership and variation in community structure were both significantly 
associated with host individual and diet, but not with gut segments (Fig 3C and Table 1). 
Similarly, a model without individual (model 4) was significantly worse than the full 
model (Likelihood ratio test, p < 0.001) (Table S2 in Supplemental information).  Models 
without gut segment (AICc = -94.81) or without diet (AICc = -91.61) were comparable to 
or better than the full model (AICc = -19.61) (Table S2 in Supplemental information). 
These results indicate that differences among individuals account for significant variation 
in the gut microbial community when the upper or lower GI tract are considered 
separately.  Moreover, these differences among individuals explain more of the variation 
in the lower GI tract than in the upper GI tract (Fig 3C, Table 1, and Table S2 in 
Supplemental information). 

The stronger effect of individuals on microbial variation in the lower GI tract is 
further supported by UPGMA trees of community membership, where the samples 
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(cecum to feces) from the same individual were each clustered with a jackknife support 
of 1.0, unlike the pattern seen in samples from the upper GI tract (Fig 4). Although the 
lower GI tract samples from the same individual did not always form a clade when the 
taxa were weighted by relative abundances, the UPGMA tree based on community 
structure also showed a similar trend (Fig S4 in Supplemental information). Samples 
collected from the same geographic site grouped individuals in some cases (Female 1 and 
Male 1) but not in others (Female 2 and Male 2) (Fig 4). Although the sample size is very 
small, there seemed to be no obvious associations between geographic site and diet 
measures in the current dataset (Fig S5 in Supplemental information).  
 
 
3.4. Discussion 
  

We characterized the microbial communities from 10 locations along the GI tract 
in wild-caught house mice. We evaluated the relative importance of gut segment, 
individual host, and diet (as reflected in stable isotope measurements) in shaping 
differences in microbial composition. We found significant differences in microbial 
composition both among individuals and among gut segments. The effect of gut segments 
was most pronounced between the upper and lower GI tract.  When these major divisions 
were considered separately, individual gut segments within each major division showed 
few differences, and differences among individual hosts showed the strongest effects on 
microbial composition.  This suggests that individual-specific communities exist within 
both the upper and the lower GI tract. Below we discuss potential mechanisms underlying 
differences in microbial composition along the GI tract.  
 Observed differences in the relative abundance of anaerobic bacteria between the 
upper and lower GI tract were consistent with microbial oxygen requirements in humans 
(Hayashi et al. 2005) and in lab mice (Gu et al. 2013).  Oxygen concentrations show a 
clinal decrease from the proximal to the distal GI tract in mice (He et al. 1999). The 
observed distribution of anaerobic microbial taxa can be explained by this oxygen 
gradient. Microbial oxygen requirements have been used as an explanation of microbial 
distribution in mucosal and luminal samples in mice, humans, and macaques (Espey 
2013; Albenberg et al. 2014; Yasuda et al. 2015). However, we observed discrete shifts 
in the relative abundances of anaerobic taxa along the GI tract despite the gradual 
decrease in oxygen concentration.    

Gut anatomy may help explain the discrete shifts in the distribution of anaerobic 
microbes along the GI tract. For example, house mice are hindgut fermenters, and most 
anaerobic fermentation takes place in the cecum, a pouch separating the small and large 
intestines. The cecum is where we observed an increase in anaerobic taxa.  Others have 
made similar observations in hindgut fermenting rodents (Gu et al. 2013; Lu et al. 2014). 
In contrast, woodrats are foregut fermenters characterized by a segmented stomach in 
which fermentation takes place. In woodrats, anaerobic taxa were abundant throughout 
the GI tract including the stomach (Kohl et al. 2014a).  Therefore, the distribution of 
anaerobic taxa may in part be determined by the particular anatomy associated with 
different kinds of fermentation chambers. It is also possible that anaerobic taxa were 
overrepresented in the lower GI tract compared to the upper GI tract due to differences in 
luminal versus mucosal biomass along the GI tract. Alternative explanations for the 
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distribution of microbial taxa are certainly possible (e.g. nutritional gradient, cell 
densities, immunity, etc.) and these explanations are not mutually exclusive. 
Characterizing the biochemical environment among the gut segments will aid in 
understanding the factors structuring the observed microbial communities.  

Microbial diversity was greater in the lower GI tract compared to the upper GI 
tract. This pattern is consistent with studies in flying squirrels and lab mice (Gu et al. 
2013; Lu et al. 2014) but different from humans and woodrats.  In humans, mouth 
samples had the highest diversity (Stearns et al. 2011), and in woodrats, segmented 
stomach samples (where foregut fermentation takes place) were as diverse as the lower 
GI tract samples (Kohl et al. 2014a). The differences between humans and house mice 
could partly be explained by differences in sampling methods and by the greater 
sequencing depth in humans (Stearns et al. 2011). Although mouth and esophagus 
samples had smaller biomass compared to the rest of the GI tract in the current study, the 
initial biomass differences alone cannot explain the overall pattern because the rest of the 
gut segments were of equal weight. In rodents, the location of the fermentation chambers 
(the segmented stomach and/or cecum) along the GI tract might explain the diversity 
pattern; the small intestine shows the least diversity and the fermentation chambers show 
the highest diversity (Gu et al. 2013; Kohl et al. 2014a; Lu et al. 2014).  

Natural selection may favor higher microbial diversity in fermentation chambers.  
Lu et al. (2014) suggested that the high diversity in fermentation chambers might reflect 
the stability-diversity relationship observed in macro-ecology (Tilman and Downing 
1994; Doak et al. 1998): species-rich communities in fermentation chambers may be 
more stable, resilient, and recover faster from disturbance. Interestingly, herbivorous 
mammals also have the highest gut microbial diversity compared to omnivorous and 
carnivorous mammals (Ley et al. 2008b) suggesting the need for high microbial diversity 
for plant digestion. However, diversity measures should be interpreted with caution when 
different sample types are compared, since the sampled luminal volume or total cell 
numbers are likely to be different among the gut segments. Also our data cannot 
distinguish live cells from dead cells. Quantifying the number of cells sampled from each 
gut segment, and the viability of the cells will provide a better estimate of the microbial 
diversity across the GI tract.  

Gut microbes in the lower GI tract showed a stronger pattern of individual-
specific communities compared to the upper GI tract. The harsher environment in the 
upper GI tract (e.g. stomach acids) may filter certain bacterial taxa and potentially reduce 
the individual variation in the upper GI tract compared to the lower GI tract. 
Alternatively, individual differences in immunity in the lower GI tract might increase the 
individual variation in the lower GI tract compared to the upper GI tract (Mowat and 
Agace 2014). Understanding the effects of hosts on microbial composition is challenging 
for several reasons.  The present study is limited not only due to the small sample size, 
but also due to the co-variation of multiple factors including diet, geographic site 
captured, sex, and host genotype. Manipulative experiments in a common environment 
would help characterize the effect of each variable in structuring the individual 
differences in microbial communities along the GI tract.  

Microbiota of fecal samples were similar to those from the lower GI tract. Fecal 
samples had a comparable relative abundance of bacterial families, diversity measures, 
and predicted gene functions in comparison to those from the lower GI tract. Most of the 
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core OTUs (93.3%) found in the fecal samples were present in the lower GI tract 
samples. In terms of community membership and structure, fecal samples were 
indistinguishable from those derived from the lower GI tract. Surprisingly, the fecal 
samples accurately predicted the microbial community in the lower GI tract of each 
individual despite the fact that some individuals in this study were captured in the same 
geographic site and were eating a similar diet based on isotope diet measures. Although 
direct sampling from the gut segments of interest is ideal when possible, fecal samples 
are easy to collect, non-disruptive, comparable to previous studies, and are required for 
some longitudinal experiments. The similar community composition between the lower 
GI tract and feces, and the stronger effect of individuals in the lower GI tract compared to 
the upper GI tract support the utility of fecal sampling for studying gut microbial 
communities.  

We characterized substantial heterogeneity among segments of the GI tract in 
wild house mice.  However, individual hosts also play a significant role in structuring 
microbial communities within particular segments of the GI tract. Further research is 
required to understand the specific factors affecting the microbial community 
composition among gut segments and among individuals. 
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3.5. Chapter 3 Tables 
 
Table 1. Variables explaining gut microbial communities based on ADONIS. 

  Complete GI tract Upper GI tract Lower GI tract 

  Community 
membership1 

Community 
structure2 

Community 
membership1 

Community 
structure2 

Community 
membership1 

Community 
structure2 

  R2 p-values R2 p-values R2 p-values R2 p-values R2 p-values R2 p-values 
Gut segments 0.31 0.001 0.76 0.001 0.15 0.166 0.66 0.001 0.10 0.995 0.10 0.807 

Individual 0.18 0.001 0.09 0.441 0.28 0.001 0.14 0.658 0.56 0.001 0.74 0.001 
Diet (δ13C‰) 0.04 0.020 0.03 0.192 0.06 0.003 0.06 0.182 0.09 0.007 0.23 0.001 
Diet (δ15N‰) 0.05 0.004 0.03 0.140 0.06 0.003 0.03 0.347 0.15 0.001 0.31 0.001 

1 Unweighted UniFrac distance, which does not depend on relative abundance. 
2 Weighted UniFrac distance, which does depend on relative abundance. 
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3.6. Chapter 3 Figures 

 

Fig 1. Spatial heterogeneity of microbial composition along the gastrointestinal (GI) tract. Ten samples were collected along the GI 
tract per individual (A). The averages of relative abundance of bacterial families (B), the microbial diversity measures (C), and the 
first principle component value from predicted gene function categories (D) across the GI tract are shown. The error bars are standard 
deviations. Asterisks denote unclassified families within the listed order. 
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Fig 2. The relative proportions of the most abundant metabolism related KEGG pathways (level 3) predicted by PICRUSt between 
upper and lower GI tract. The error bars are standard deviations. The star indicates Bonferroni corrected P < 0.0033 using Wilcoxson 
rank sum test. 
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Fig 3. PCoA plots of microbial community membership (unweighted UniFrac distance). Each dot represents a microbial community 
from one gut segment in one individual. The first principle component (PC1) mostly accounts for differences between the upper and 
lower GI tract (A). Within the upper GI tract, microbial communities were grouped by host individual to some degree (B). Within the 
lower GI tract, microbial communities were strongly grouped by host individual (C).   
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Fig 4. Microbial community membership is strongly associated with host individual in the lower GI tract.  Tree is based on UPGMA 
clustering of unweighted UniFrac distance. Different colors show different gut segments (see Fig 3A). Larger node sizes indicate 
stronger jackknife support. The brackets show the clustering by individuals in the lower GI tract with a jackknife support of 1.0.  
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3. 7. Chapter 3 Supplemental information  
 
Table S1. Sample information.                     

ID GI location Filtered 
reads1 

Included 
in 

analyses? 
Sex ID in 

paper 
δ13C 

‰ 
δ15N 

‰ Latitude Longitude Captured 
locality Arctos ID 

Sequence 
Sample IDs 

(ENA Accession 
PRJEB15238) 

TAS.194.1 Mouth 15254 Yes 

M Male1 -18 8.7 32.174 111.01 

Location 1 
: Arizona, 
Pima Co., 
2509 W. 
Zinnia 
Ave. 

MVZ230525 

TAS_ENA121 
TAS.194.2 Esophagus 9943 Yes TAS_ENA122 
TAS.194.3 Stomach 12117 Yes TAS_ENA123 
TAS.194.4 Duodenum 17187 Yes TAS_ENA124 
TAS.194.5 Ileum 18531 Yes TAS_ENA125 
TAS.194.6 Distal Caecum 23251 Yes TAS_ENA126 
TAS.194.7 Proximal Caecum 20575 Yes TAS_ENA127 
TAS.194.8 Colon 21309 Yes TAS_ENA128 
TAS.194.9 Rectum 25201 Yes TAS_ENA129 

TAS.194.10 Feces 24592 Yes TAS_ENA130 
TAS.195.1 Mouth 15750 Yes 

F Female1 -20 10.3 32.174 111.01 

Location 1 
: Arizona, 
Pima Co., 
2509 W. 
Zinnia 
Ave. 

MVZ230526 

TAS_ENA131 
TAS.195.2 Esophagus 14925 Yes TAS_ENA132 
TAS.195.3 Stomach 15350 Yes TAS_ENA133 
TAS.195.4 Duodenum 14514 Yes TAS_ENA134 
TAS.195.5 Ileum 13032 Yes TAS_ENA135 
TAS.195.6 Distal Caecum 20365 Yes TAS_ENA136 
TAS.195.7 Proximal Caecum 24801 Yes TAS_ENA137 
TAS.195.8 Colon 22263 Yes TAS_ENA138 
TAS.195.9 Rectum 22952 Yes TAS_ENA139 

TAS.195.10 Feces 22436 Yes TAS_ENA140 
TAS.200.1 Mouth 5493 Yes 

F Female2 -20 6.2 32.1 111.05 

Location 
2: 

Arizona, 
Pima Co., 
5665 W 

Ajo Hwy 

MVZ230535 

TAS_ENA141 
TAS.200.2 Esophagus 5505 Yes TAS_ENA142 
TAS.200.3 Stomach 15909 Yes TAS_ENA143 
TAS.200.4 Duodenum 17873 Yes TAS_ENA144 
TAS.200.5 Ileum 16539 Yes TAS_ENA145 
TAS.200.6 Distal Caecum 21436 Yes TAS_ENA146 
TAS.200.7 Proximal Caecum 23087 Yes TAS_ENA147 
TAS.200.8 Colon 19749 Yes TAS_ENA148 
TAS.200.9 Rectum 20599 Yes TAS_ENA149 

TAS.200.10 Feces 20262 Yes TAS_ENA150 
1 Reads after removing singletons and chimeras (reference based and de nov based chimeras).           
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Table S2. Sample information (continued). 

ID GI location Filtered 
reads1 

Included 
in 

analyses? 
Sex ID in 

paper 
δ13C 

‰ 
δ15N 

‰ Latitude Longitude Captured 
locality Arctos ID 

Sequence Sample 
IDs (ENA 
Accession 

PRJEB15238) 

TAS.201.1 Mouth 15334 Yes 

M Male2 -18 8.7 32.1 111.05 

Location 2: 
Arizona, 

Pima Co., 
5665 W 

Ajo Hwy 

MVZ230537 

TAS_ENA151 
TAS.201.2 Esophagus 14525 Yes TAS_ENA152 
TAS.201.3 Stomach 4607 Yes TAS_ENA153 
TAS.201.4 Duodenum 9808 Yes TAS_ENA154 
TAS.201.5 Ileum 11065 Yes TAS_ENA155 
TAS.201.6 Distal Caecum 21695 Yes TAS_ENA156 
TAS.201.7 Proximal Caecum 18606 Yes TAS_ENA157 
TAS.201.8 Colon 20071 Yes TAS_ENA158 
TAS.201.9 Rectum 26219 Yes TAS_ENA159 

TAS.201.10 Feces 23159 Yes TAS_ENA160 
TAS.202.1 Mouth 13273 Yes 

F Female3 -20 8.5 32.08 111.04 

Location 3: 
Arizona, 

Pima Co., 
4517 W 
Valencia 

Rd. 

MVZ230530 

TAS_ENA161 
TAS.202.2 Esophagus 12947 Yes TAS_ENA162 
TAS.202.3 Stomach 13585 Yes TAS_ENA163 
TAS.202.4 Duodenum 16484 Yes TAS_ENA164 
TAS.202.5 Ileum 2347 Yes TAS_ENA165 
TAS.202.6 Distal Caecum 11634 Yes TAS_ENA166 
TAS.202.7 Proximal Caecum 15059 Yes TAS_ENA167 
TAS.202.8 Colon 12193 Yes TAS_ENA168 
TAS.202.9 Rectum 14362 Yes TAS_ENA169 

TAS.202.10 Feces 17859 Yes TAS_ENA170 
TAS.203.1 Mouth 11713 Yes 

M Male4 -11 11.3 32.169 110.57 

Location 4: 
Arizona, 

Pima Co., 
University 
of Arizona 
agricultural 

center 

MVZ230539 

TAS_ENA171 
TAS.203.2 Esophagus 13280 Yes TAS_ENA172 
TAS.203.3 Stomach 11321 Yes TAS_ENA173 
TAS.203.4 Duodenum 6169 Yes TAS_ENA174 
TAS.203.5 Ileum 11224 Yes TAS_ENA175 
TAS.203.6 Distal Caecum 26153 Yes TAS_ENA176 
TAS.203.7 Proximal Caecum 215 No TAS_ENA177 
TAS.203.8 Colon 14177 Yes TAS_ENA178 
TAS.203.9 Rectum 15875 Yes TAS_ENA179 

TAS.203.10 Feces 15789 Yes TAS_ENA180 
1 Reads after removing singletons and chimeras (reference based and de nov based chimeras).           
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Table S2. Model selection using Genelalized Linear Models on gut microbial membership (unweighted UniFrac PC1) along the GI tract. 

Generalized Linear Models1 
Complete GI tract   Upper GI tract   Lower GI tract 

  Fixed effects AICc Log 
likelihood3   AICc Log 

likelihood3   AICc Log 
likelihood3 

Model 
1 gut segment2 + carbon + nitrogen + individual -

101.69 60.29   -12.53 24.60   -
91.61 64.57 

Model 
2 carbon + nitrogen + individual 19.29 -1.55***   -19.96 19.52*   -

94.81 57.07** 

Model 
3 gut segment2 + individual -

101.69 60.29   -12.53 24.6   -
91.61 64.57 

Model 
4 gut segment2 + carbon + nitrogen -

104.65 57.89   -2.91 12.89***   -
30.16 26.68*** 

1 The response variable, unweighted UniFrac PC1 was calculated independently in Complete GI, Upper GI, and Lower GI tract. The fractions of 
the variation explained by PC1 are 24%, 13%, and 22%, respectively.  
2 Two parameters (upper GI and lower GI) were used for gut segment in "Complete GI tract" models.  Five parameters (mouth, esophagus, 
stomach, dudenum, ileum) were used for gut segment in "Upper GI tract" models. Five parameters (proximal cecum, distal cecum, colon, rectum, 
feces) were used for gut segment in "Lower GI tract" models. 
3 Significant differences compared to the full model were determined based on the likelihood ratio test; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table S3.  Testing differences in relative abundance of dominant bacterial families between 
gut segments across the complete GI tract using Kruskal-Wallis test. 

Complete GI tract taxa Mean relative 
abundance P-value1 Slope2 

Proteobacteria; Pasteurellaceae 19.1% < 0.0001 - 
Tenericutes; Mycoplasmataceae 11.1% 0.009 - 
Firmicutes; Clostridales* 10.6% < 0.0001 + 
Bacteroidetes; S24-7 9.0% < 0.0001 + 
Firmicutes; Lactobacillaceae 8.4% 0.0007 - 
Bacteroidetes; Bacteroidaceae 7.7% < 0.0001 + 
Firmicutes; Ruminococcaceae 6.0% < 0.0001 + 
Proteobacteria; Helicobacteraceae 4.1% 0.01 + 
Bacteroidetes; Rikenellaceae 3.0% < 0.0001 + 
Firmicutes; Lachnospiraceae 3.0% < 0.0001 + 
1 Raw p-values are reported. P-values that remain significant after Bonferroni correction 
(alpha = 0.005) are bolded. 

2 Positive or negative slopes indicate decrease or increase in relative abundance of bacterial 
taxa from mouth to feces, respectively. 
* unclassified family 
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Table S4. Testing differences in relative abundance of dominant bacterial families between 
gut segments within the upper GI tract using Kruskal-Wallis test. 

Upper GI tract taxa Mean relative 
abundance P-value1 Slope2 

Proteobacteria; Pasteurellaceae 37.5% 0.0002 - 
Tenericutes; Mycoplasmataceae 20.9% 0.0049 + 
Firmicutes; Lactobacillaceae 15.5% 0.0064 + 
Proteobacteria; Helicobacteraceae 4.0% 0.09 NA 
Cyanobacteria; Streptophyta* 2.4% 0.7 NA 
Bacteroidetes; Streptococcaceae 2.3% 0.2 NA 
Bacteroidetes; Porphyromonadaceae 1.9% 0.02 - 
Firmicutes; Clostridales* 1.7% 0.6 NA 
Bacteroidetes; Weeksellaceae 1.3% 0.01 - 
Bacteroidetes; S24-7 1.2% 0.11 NA 
1 Raw p-values are repored. P-values that remian significant after Bonferroni correction 
(alpha = 0.005) are bolded. 
2 Positive or negative slopes indicate decrease or increase in relative abundance of bacterial 
taxa from mouth to ileum, respectively. Slopes for non-signifcant taxa were indicated by NA. 

* unclassified family 
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Table S5. Testing differences in relative abundance of dominant bacterial families between 
gut segments within the lower GI tract using Kruskal-Wallis test. 

Lower GI tract taxa Mean relative 
abundance P-value1 Slope2 

Firmicutes; Clostridales* 19.7% 0.8 NA 
Bacteroidetes; S24-7 17.1% 0.5 NA 
Bacteroidetes; Bacteroidaceae 14.8% 0.4 NA 
Firmicutes; Ruminococcaceae 11.5% 0.07 NA 
Bacteroidetes; Rikenellaceae 5.8% 0.7 NA 
Firmicutes; Lachnospiraceae 5.4% 0.09 NA 
Proteobacteria; Helicobacteraceae 4.2% 0.8 NA 
Bacteroidetes; Bacteroidales* 4.1% 0.6 NA 
Proteobacteria; Desulfovibrionaceae 3.7% 0.7 NA 
Bacteroidetes; Porphyromonadaceae 2.7% 0.8 NA 
1 Raw p-values are repored. P-values that remian significant after Bonferroni correction 
(alpha = 0.005) are bolded. 
2 Positive or negative slopes indicate decrease or increase in relative abundance of bacterial 
taxa from proximal cecum to feces, respectively. Slopes for non-signifcant taxa were 
indicated by NA. 

* unclassified family 
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Table S6. A list of OTUs present in all individuals for each gut compartment (100% core OTUs).  

Gut 
compartments OTU IDs Phyla Order Family Genus Species 

Mouth 4298224 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Mouth 744251 Firmicutes Lactobacillales - - - 

Mouth 70728 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter pneumotropica 

Mouth 4352772 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter - 

Mouth 9610 Proteobacteria Pasteurellales Pasteurellaceae Mannheimia - 

Mouth 4295455 Proteobacteria Pasteurellales Pasteurellaceae - - 

Mouth 82728 Proteobacteria Pasteurellales Pasteurellaceae - - 

Esophagus 4298224 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Esophagus 70728 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter pneumotropica 

Esophagus 4352772 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter - 

Esophagus 4352772 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter - 

Esophagus 82728 Proteobacteria Pasteurellales Pasteurellaceae - - 

Stomach 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Stomach 70728 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter pneumotropica 

Stomach 82728 Proteobacteria Pasteurellales Pasteurellaceae - - 

Duodenum 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Duodenum 4298224 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Duodenum 303652 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Duodenum 70728 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter pneumotropica 

Duodenum 82728 Proteobacteria Pasteurellales Pasteurellaceae - - 

Ileum 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Ileum 4298224 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Ileum 303652 Firmicutes Lactobacillales Streptococcaceae Streptococcus - 

Ileum 70728 Proteobacteria Pasteurellales Pasteurellaceae Aggregatibacter pneumotropica 

Proximal Cecum 264325 Bacteroidetes Bacteroidales Rikenellaceae - - 

Proximal Cecum 271418 Bacteroidetes Bacteroidales S24-7 - - 

Proximal Cecum 174573 Bacteroidetes Bacteroidales S24-7 - - 

Proximal Cecum 258849 Bacteroidetes Bacteroidales S24-7 - - 

Proximal Cecum 264734 Bacteroidetes Bacteroidales S24-7 - - 

Proximal Cecum 185587 Firmicutes Clostridiales Lachnospiraceae - - 

Proximal Cecum 263337 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

- unclassified 
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Table S6. Continued.  

Gut 
compartments OTU IDs Phyla Order Family Genus Species 

Proximal Cecum 4357315 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Proximal Cecum 259699 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Proximal Cecum 263546 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Proximal Cecum 230268 Firmicutes Clostridiales Ruminococcaceae Ruminococcus - 

Proximal Cecum 189840 Firmicutes Clostridiales Ruminococcaceae - - 

Proximal Cecum 267689 Firmicutes Clostridiales Ruminococcaceae - - 

Proximal Cecum 179547 Firmicutes Clostridiales Ruminococcaceae - - 

Proximal Cecum 4410988 Firmicutes Clostridiales Ruminococcaceae - - 

Proximal Cecum 263977 Firmicutes Clostridiales Ruminococcaceae - - 

Proximal Cecum 3957916 Firmicutes Clostridiales - - - 

Proximal Cecum 163997 Firmicutes Clostridiales - - - 

Proximal Cecum 3919797 Firmicutes Clostridiales - - - 

Proximal Cecum 1684221 Proteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio - 

Distal Cecum 575041 Bacteroidetes Bacteroidales Rikenellaceae - - 

Distal Cecum 264325 Bacteroidetes Bacteroidales Rikenellaceae - - 

Distal Cecum 175646 Bacteroidetes Bacteroidales S24-7 - - 

Distal Cecum 271418 Bacteroidetes Bacteroidales S24-7 - - 

Distal Cecum 258849 Bacteroidetes Bacteroidales S24-7 - - 

Distal Cecum 262148 Bacteroidetes Bacteroidales S24-7 - - 

Distal Cecum 264734 Bacteroidetes Bacteroidales S24-7 - - 

Distal Cecum 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Distal Cecum 176868 Firmicutes Clostridiales Dehalobacteriaceae Dehalobacterium - 

Distal Cecum 173892 Firmicutes Clostridiales Lachnospiraceae - - 

Distal Cecum 263138 Firmicutes Clostridiales Lachnospiraceae - - 

Distal Cecum 321484 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Distal Cecum 263337 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Distal Cecum 259699 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Distal Cecum 263546 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Distal Cecum 337727 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Distal Cecum 162005 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

- unclassified 
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Table S6. Continued.  

Gut 
compartments OTU IDs Phyla Order Family Genus Species 

Distal Cecum 189840 Firmicutes Clostridiales Ruminococcaceae - - 

Distal Cecum 267689 Firmicutes Clostridiales Ruminococcaceae - - 

Distal Cecum 179547 Firmicutes Clostridiales Ruminococcaceae - - 

Distal Cecum 4410988 Firmicutes Clostridiales Ruminococcaceae - - 

Distal Cecum 266411 Firmicutes Clostridiales Ruminococcaceae - - 

Distal Cecum 3957916 Firmicutes Clostridiales - - - 

Distal Cecum 163997 Firmicutes Clostridiales - - - 

Distal Cecum 274546 Firmicutes Clostridiales - - - 

Distal Cecum 1684221 Proteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio - 

Colon 264325 Bacteroidetes Bacteroidales Rikenellaceae - - 

Colon 271418 Bacteroidetes Bacteroidales S24-7 - - 

Colon 174573 Bacteroidetes Bacteroidales S24-7 - - 

Colon 258849 Bacteroidetes Bacteroidales S24-7 - - 

Colon 262148 Bacteroidetes Bacteroidales S24-7 - - 

Colon 264734 Bacteroidetes Bacteroidales S24-7 - - 

Colon 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Colon 263337 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Colon 162005 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Colon 267689 Firmicutes Clostridiales Ruminococcaceae - - 

Colon 179547 Firmicutes Clostridiales Ruminococcaceae - - 

Colon 4410988 Firmicutes Clostridiales Ruminococcaceae - - 

Colon 3957916 Firmicutes Clostridiales - - - 

Colon 163997 Firmicutes Clostridiales - - - 

Colon 1684221 Proteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio - 

Rectum 4449518 Bacteroidetes Bacteroidales Rikenellaceae - - 

Rectum 264325 Bacteroidetes Bacteroidales Rikenellaceae - - 

Rectum 175646 Bacteroidetes Bacteroidales S24-7 - - 

Rectum 271418 Bacteroidetes Bacteroidales S24-7 - - 

Rectum 174573 Bacteroidetes Bacteroidales S24-7 - - 

Rectum 258849 Bacteroidetes Bacteroidales S24-7 - - 

- unclassified 
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Table S6. Continued.  

Gut 
compartments OTU IDs Phyla Order Family Genus Species 

Rectum 262148 Bacteroidetes Bacteroidales S24-7 - - 

Rectum 264734 Bacteroidetes Bacteroidales S24-7 - - 

Rectum 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Rectum 259699 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Rectum 267689 Firmicutes Clostridiales Ruminococcaceae - - 

Rectum 179547 Firmicutes Clostridiales Ruminococcaceae - - 

Feces 328617 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides uniformis 

Feces 271418 Bacteroidetes Bacteroidales S24-7 - - 

Feces 174573 Bacteroidetes Bacteroidales S24-7 - - 

Feces 258849 Bacteroidetes Bacteroidales S24-7 - - 

Feces 262148 Bacteroidetes Bacteroidales S24-7 - - 

Feces 264734 Bacteroidetes Bacteroidales S24-7 - - 

Feces 135956 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus - 

Feces 263337 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Feces 259699 Firmicutes Clostridiales Ruminococcaceae Oscillospira - 

Feces 267689 Firmicutes Clostridiales Ruminococcaceae - - 

Feces 179547 Firmicutes Clostridiales Ruminococcaceae - - 

Feces 4410988 Firmicutes Clostridiales Ruminococcaceae - - 

Feces 263977 Firmicutes Clostridiales Ruminococcaceae - - 

Feces 3957916 Firmicutes Clostridiales - - - 

Feces 1684221 Proteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio - 

- unclassified             
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Table S7. Top 15 eigenvectors (PC loadings) for gene function PC1.    

KEGG categories (level 1) KEGG categories (level 3) Eigenvectors for 
PC1 (33.2%) 

Genetic information processing Sulfur relay system -0.14139 

Metabolism Glutathione metabolism -0.13928 

Metabolism Phenylpropanoid biosynthesis 0.13874 

Genetic information processing Transcription machinery 0.13703 

Metabolism Metabolism of cofactors and vitamins -0.1371 

Metabolism Cyanoamino acid metabolism 0.13582 

Metabolism Sphingolipid metabolism 0.13488 

Metabolism Alanine, aspartate, and glutamate metabolism 0.13469 

NA* Function unknown -0.13458 

Metabolism Methane metabolism 0.13252 

Metabolism Other glycan degradation 0.13239 

Metabolism Glycosphingolipid biosynthesis - globo series 0.13175 

Metabolism Starch and sucrose metabolism 0.12869 

Metabolism One carbon pool by folate 0.12598 

Human Diseases Bacterial toxins 0.12531 

* NA indicates not apply.     
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Figure S1. Rarefaction curves for Observed species (A), Phylogenetic diversity 
(B), and Shannon index (C). The error bars are standard deviations.  
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Figure S2. Linear regression between raw sequence reads and rarefied diversity 
measurements. Upper GI tract samples are shown in blue and lower GI tract 
samples are shown in red. 
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Figure S3. Normalized diversity measurements (residual values between raw sequence reads and rarefied diversity 
measurements) and gut segments. The normalized diversity measurements in lower GI tract are greater compared 
to upper GI tract (Wilcoxon rank sum test: P<0.0001), consistent with Fig.1C. Error bars are standard errors.  
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Figure S4. Stronger effect of individual explaining microbial structure membership in lower GI tract compared to 
upper GI tract based on UPGMA clustering. Different colors show different gut segments (see Fig.2). Larger node 
size indicates stronger jackknife support. The brackets show the clustering by individuals in lower GI tract. 
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Figure S5. Carbon and nitrogen stable isotope diet measures from hair. No clear association between diet and 
geographic site captured. See Table S1 for captured locality. 
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Abstract 
 

Identifying a common set of genes that mediate host-microbial interactions across 
populations and species of mammals has broad relevance for human health and animal 
biology. However, the genetic basis of the gut microbial composition in natural 
populations remains largely unknown outside humans. Here, we characterized variation 
in the gut microbiota of wild house mice using 16S amplicon sequencing and found that 
host genetic distance is a strong predictor of gut microbial composition. Using a common 
garden approach, we then identified differences in microbial composition between 
populations that persist in a shared laboratory environment. Finally, we used exome-
sequencing to associate host genetic variants with microbial measurements in wild 
individuals. We identified 20 genes that were associated with bacterial measurements 
including a macrophage-derived cytokine (IL12a) that contained three nonsynonymous 
mutations. Surprisingly, we found a significant overrepresentation of candidate genes that 
were previously associated with microbial measurements in humans. All eight genes that 
overlapped between wild mice and humans were expressed in the brain, and some of the 
loci have also been associated with traits related to host immunity and obesity in humans. 
Gene-bacteria associations identified in both humans and wild mice suggest some 
commonality to the host genetic determinants of gut microbial composition across 
mammals. 
	
4.1. Introduction 
 

Host-associated microbial communities play an important role in health and fitness 
(McFall-Ngai et al. 2013). Compositional and functional variation in the gut microbiota 
has been linked to a variety of diseases in humans and lab mouse models including 
obesity, inflammatory bowel disease, and autism (Knight et al. 2017). Links between the 
gut microbiota and fitness-related traits have also been reported in wild mammals 
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including traits related to digestion, immunity, and behavior (Suzuki 2017). Therefore, 
understanding the mechanisms governing the maintenance and function of gut microbial 
communities is important in medicine and animal biology more broadly. 

Genetic differences among hosts may play an important role in structuring gut 
microbial communities. For example, genome-wide markers have been associated with 
differences in microbial measurements in humans (Ma et al. 2014; Blekhman et al. 
2015). Twin studies have shown that monozygotic twins tend to have more similar 
microbial composition compared to dizygotic twins (Goodrich et al. 2014, 2016a). Mouse 
knockout experiments have identified genes involved in immunity, metabolism, and 
behavior that affect the gut microbiota (Spor, Koren and Ley 2011). Mouse quantitative 
trait loci (QTL) mapping studies have also identified multiple genomic regions associated 
with the relative abundance of different microbial taxa (Benson et al. 2010; McKnite et 
al. 2012; Leamy et al. 2014; Org et al. 2015; Wang et al. 2015).	

In human populations, microbiome genome-wide association studies (mGWAS) have 
identified specific candidate genes associated with natural variation of the gut microbiota 
(Knights et al. 2014; Blekhman et al. 2015; Davenport et al. 2015; Bonder et al. 2016; 
Goodrich et al. 2016a; Turpin et al. 2016; Wang et al. 2016). Although identifying the 
same gene-bacteria associations in different human populations has been challenging due 
to the low reproducibility of mGWAS, a few gene-bacteria associations have been 
replicated in multiple human populations (Goodrich et al. 2016b; Hall, Tolonen and 
Xavier 2017). This approach of comparing multiple mGWAS has been successful for 
identifying robust gene-bacteria associations within species, however, this approach has 
not been applied to look for gene-bacteria associations between species of mammals. 
Genes identified from human mGWAS are often compared with those identified in 
laboratory mice, but gene-bacteria associations identified in a controlled laboratory 
environment may differ from those in a complex natural environment. In fact, the 
function and composition of the gut microbiota in lab mice are known to differ from their 
wild relatives (Rosshart et al. 2017). Population samples from a wild species would 
provide an opportunity for mGWAS that are more directly comparable to human 
mGWAS.	

Wild house mice (Mus musculus domesticus) are globally distributed and live in a 
wide range of environments in association with humans (Phifer-Rixey and Nachman 
2015).  The house mouse is a powerful model because it is possible to disentangle 
variables via experimental manipulation directly in captivity (Wang et al. 2014, 2015) 
and assess the functions of the microbiome by using germ-free laboratory mice (Rosshart 
et al. 2017).  Previous work has shown that geographic and genetic distances 
(Linnenbrink et al. 2013), diet as measured by stable isotopes (Wang et al. 2014), 
reproductive status, body size, age, viral and parasite infection status (Weldon et al. 
2015), and gut regions (Suzuki and Nachman 2016) have all been associated with the 
compositional differences in the gut microbiota of wild house mice. However, there have 
been no previous efforts to identify specific genes underlying compositional variation in 
the gut microbiome of wild mice.	
 Here, we characterized natural variation of the gut microbiota in wild house mice 
sampled from five populations along an environmental gradient in eastern North America 
using 16S amplicon sequencing, and we identified specific genes in mice associated with 
gut microbial composition. First, we tested how environmental factors and genetic 
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distance correlate with beta-diversity of the gut microbiota within and between 
populations. Second, we tested whether population differences in the wild mouse gut 
microbiota are due to environmental differences by conducting a common garden 
experiment in the laboratory. Third, we identified gene-bacteria associations in wild mice 
using a mGWAS with complete exome sequences of all mice. Finally, we tested whether 
there was significant overlap between the genes associated with microbiota variation in 
mice and genes associated with microbiota variation in humans.	
 
 
4.2. Materials and Methods 
 
4.2.1. Field collected animals 
	
 A total of 50 adult house mice (Mus musculus domesticus) were collected from 
the eastern North America during summer 2012 by Phifer-Rixey et al (in review) and 
summarized in Table S9. 10 individuals each were collected from a total of five 
populations; Florida (FL), Georgia (GA), Virginia (VA), Pennsylvania (PA), and spanning 
New Hampshire and Vermont (NH-VT). Sherman live traps were used with peanut butter 
and oats. Each individual was separated by a minimum 500m to avoid sampling close 
relatives. Animals were kept in Sherman traps, euthanized by cervical dislocation, and all 
tissues (liver, spleen, kidney, and cecum) and external measurements (body weight and 
body length) were collected within 24 hours after capture. All tissues were stored in 
liquid nitrogen in the field, and stored in deep freezer (-80°C) until sequencing. To infer 
diet, carbon (δ13C) and nitrogen (δ15N) stable isotope analyses were conducted using 
mouse hair following the protocol of Suzuki and Nachman (2016). To infer climate for 
each collection site, 19 climatic variables were downloaded based on GPS localities using 
WorldClim database (Hijmans et al. 2005) and the R package “dismo”. First two 
principle components were calculated which accounts for 91.3% of the total variation 
(Table S10) using JMP 13.0 (SAS institute). All procedures involving animals were 
reviewed and approved by the Institutional Animal Care and Use Committee at the 
University of Arizona (protocol 07-004). Museum specimens (skins and skulls) were 
prepared and have been deposited in the mammal collection of the Museum of Vertebrate 
Zoology at the University of California, Berkeley and uploaded to a public database 
ARCTOS. See Phifer-Rixey et al. (in review) for more details.	
 
4.2.2. Lab reared animals 
	
 Live animals were captured close to the most northern and southern populations 
using Sherman live traps during summer 2013; Saratoga Springs, NY and Gainsville, FL. 
Within each location, animals were collected from at least 10 sites that are minimum 
500m apart. Animals were shipped to the animal facility at University of California 
Berkeley under IACUC protocol (R361-0514). Animals were kept in 23°C with 10 hours 
dark and 14 hour light cycles. Teklad Global food (18% Protein Rodent Diet) was fed ad 
libitum. After quarantine, we conducted 10 independent crosses per population where 
wild-caught individuals from the same site were not used in different crosses. Multiple 
individuals were housed in a cage (i.e. 1-3 individuals) with their siblings throughout 
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their life. Body weight and fresh fecal samples were collected from 40 individuals per 
population representing four adult individuals (two females and two males) each from 10 
independent crosses of wild-caught founders. The age of the animals when fecal samples 
were collected ranged from 100 to 266 days old. Fecal samples were stored in -80°C until 
sequencing. Detailed information of lab-reared animals is in Table S11.      	
 
4.2.3. DNA extraction and 16S rRNA gene sequencing 
	

For wild caught individuals, the distal portion of frozen cecal samples was 
weighted equally (~200mg) using a sterile razor blade in a petri dish on dry ice. For lab 
reared individuals, frozen fecal samples were weighted equally (~200mg). The samples 
were immediately mixed with sterile forceps in 1.4ml ASL (from QIAamp DNA stool 
Minikit). For mechanical disruption, 0.2g of sterile zirconia/silica beads (0.1mm, 
Research Products International Corp.) were added to the tubes and vortexed in 
TissueLayser LT (Qiagen) at 30HZ for 6 min (Smith et al. 2011). The suspension was 
heated at 95°C for 5 min, and we followed step 4 (vortex and centrifugation) in the 
protocol from the QIAamp DNA stool Minikit (Qiagen) to complete the DNA extraction. 
The DNA quality was evaluated based on Nano Drop 3300 (Thermo Scientific), and the 
samples were stored at -20°C before sequencing.	
 The extracted DNA samples were shipped to Next Generation Sequencing Core 
Facility at Argonne National Laboratory for 16S amplicon sequencing. The V4 region of 
the 16S rRNA gene was amplified and the samples were multiplexed. The PCR primers 
(515F and 806R) and the barcodes are described in (Caporaso et al. 2012). The samples 
from wild-caught mice and lab-reared mice ran on two different lanes of 150bp pair-end 
Illumina MiSeq platform. To avoid the potential lane bias between the two lanes, the 
same DNA aliquot of six samples from the first lane (MPR108, MPR114, MPR120, 
MPR135, MPR138, and MPR144) was run on the second lane.  	
 
4.2.4. 16S data processing 
	

All of the 16S data were analyzed in QIIME version 1.9.0 (Caporaso et al. 2010). 
The forward reads were demultiplexed and quality-filtered using default parameters for 
each lane using split_libraries_fastq.py. Subsampled open-reference OTU picking 
approach (pick_open_reference_otus.py) was employed on two lanes of sequence data 
with default parameters. 97% OTUs were generated using UCLUST (Edgar 2010) and 
taxa were assigned based on Greengene database 13.8 (DeSantis et al. 2006). To remove 
sequence errors and very rare OTUs, OTUs with <10 reads across all samples were 
removed. A phylogenetic tree was created using FastTree (Price, Dehal and Arkin 2009). 
The OTU table was rarefied to even depth of 5,000 reads. Two samples (FL08M1 and 
FL08M2) were removed from all analyses due to low sequence reads (<200 reads).	

Despite rarefying the reads to equal depth for all samples, the OTU counts were 
consistently higher in run2 compared to run1 for the six control samples (Fig. S6). This 
lane bias is likely due to the greater average sequence depth of run2 (68,196 reads per 
sample) compared to run1 (13,918 reads per sample) resulting in excess of rare OTUs in 
run2. To account for this, we removed rare OTUs from run2 to a degree that the control 
samples having equal OTU counts between the lanes (i.e. OTUs with relative abundance 
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less than 8.0x10-6 were removed) (Fig. S6). The OTU table corrected for the lane bias 
was used for all the downstream analyses.	

 
4.2.5. Mouse exome data 
	

We used the same exome data for the same individuals as in Phifer-Rixey et al. (in 
review). Briefly, the DNA was extracted from frozen liver, kidney, or spleen. Genomic 
libraries were enriched for mouse exome using a NimbleGen in-solution capture array 
(SeqCap EZ) and sequenced using 100bp pair-end Illumina HiSeq2000. After quality 
filtering and SNP discovery using custom perl script and PERL program, we filtered the 
SNPs based on minor allele frequency to be at least 5%. This resulted in 279,278 SNPs. 
Each SNP were annotated to a single or multiple genes using Variant Effect Predictor in 
Ensembl. See details of quality filtering and SNP discovery in Phifer-Rixey et al. (in 
review).	
 
4.2.6. 16S data analyses 
	

For beta-diversity measurements, Bray-Curtis dissimilarity, unweighted- and 
weighted-UniFrac distances were calculated among all individuals using 
beta_diversity.py. Distance matrix of predictor variables were created using 
distance_matrix_from_mapping.py for the following variables; geographic distance, body 
weight (g), body mass index (BMI), diet (δ13C), diet (δ15N), climate PC1, and climate 
PC2. Pairwise distances for geography (km) were calculated based on GPS coordinates of 
the captured site. Pairwise distances for host genomes were calculated based on the 
exome data (~280,000 SNPs) using ngsDist (Vieira et al. 2016) which takes into account 
uncertainty of the genotype calls.	

To test correlations between beta-diversity and eight predictor variables across 
populations, we used Mantel test and Generalized Linear Models (GLMs) in R (version 
3.3.2). To identify variables that significantly explain the major PC axes (PC1-3) of Bray-
Curtis dissimilarity while controlling for all variables, we performed model selection 
using the Akaike information criterion with sample size correction (AICc) with the 
“AICc” function in the package “AICcmodavg” and likelihood ratio tests using the 
“lrtest” function in the package “lmtest”. We ran nine separate GLMs each for Bray-
Curtis PC1, 2, and 3 as response variables where models were hierarchically nested. A 
full model included fixed effects for genetic distance, geographic distance, body weight, 
BMI, carbon, nitrogen, climate PC1, and climate PC2. Eight other models included fixed 
effects where each variable was subtracted from the full model in turn. All eight models 
are each nested within the full model and were compared to the full model using 
likelihood ratio tests (Table S1). To test whether host genetic distance and geographic 
distance are independently associated with Bray-Curtis dissimilarity across populations 
while controlling the effects of each other, a partial mantel test was used. To ask the same 
question between individuals within populations, we used Spearman’s rho correlation 
with residuals between Bray-Curtis dissimilarity and geographic distance to control for 
geography and residuals between Bury-Curtis dissimilarity and genetic distance to 
control for genetics. Similarly, to test correlations between beta-diversity and body size 
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measurements, Spearman’s rho correlation with residuals between body size and latitude 
were used to control for the known effect of latitude on body size (Table S2).	

To identify bacterial measurements that are associated with latitude, body weight, 
and BMI, we calculated alpha-diversity using alpha_diversity.py and relative abundances 
of bacterial taxa using summarize_taxa.py using the rarefied OTU table. For bacterial 
measurements, we used phylogenetic diversity (Faith 1992) as an alpha-diversity 
measurement and relative abundances of 17 bacterial genera that had an average relative 
abundance of >1% across all individuals which includes four Phyla. First, we tested the 
correlations between the bacterial measurements and latitude. Second, we tested the 
correlation between the microbial measurements and the residual values between body 
size measurements (i.e. body weight and BMI) and latitude to control for bacteria that is 
covaried with latitude (Fig. S4). Spearman’s correlation with Bonferroni correction was 
used.	
 
4.2.7. Common garden experiment 
	

To confirm whether the observed host genetic associations with microbiota 
measurements are not due to environmental differences, we conducted a common garden 
experiment in the laboratory using the first-generation animals of wild-caught founders 
from the most northern and southern populations described above (Table S10). Although 
cecal and fecal samples were used to characterize the gut microbiota in wild and lab 
mice, respectively, the fecal samples have been shown to reflect individual differences in 
cecal samples in wild house mice (Suzuki and Nachman 2016).	

We calculated Bray-Curtis dissimilarity among the northern-wild population (NH-
VT), the southern-wild population (FL), the northern-lab population (NY), and the 
southern-lab population (FL). We tested the significance using Wilcoxon permutation test 
based on 9999 Monte-Carlo resampling with the “Wilcox_test” function in the R package 
“coin”. The mean and standard deviation were calculated for three alpha-diversity 
measurements (OTU counts, phylogenetic diversity, and Shannon index) and relative 
abundances of four bacterial phyla and 17 bacterial genera described above for the four 
groups. The differences in bacterial measurements among the four groups were tested 
using Wilcoxon rank test with Bonferroni correction (Table S4).	
	
4.2.8. Genome-wide association 
	

To identify host genes that are associated with microbial measurements, 
Multivariate Linear Mixed Models was used for association test in GEMMA (version 
0.94) using the entire exome (279,278 SNPs).  A total of 21,953 genes were identified in 
our exome data (see Phifer-Rixey et al. in review for more details). Relatedness was 
accounted by using the relatedness matrix estimated in GEMMA. Population structure 
was accounted by using the first four genetic principle components as covariates 
calculated from SNPRelate (version 1.10.2). To control for bacteria that vary latitudinally 
(Thompson et al. 2017), we also used latitude as a covariate. To control for experimental 
and batch effects, we accounted for hidden factors by inferring 10 cofounders in PEER. 
Manhattan plot and QQ-plot were generated using R package “qqman”. Phylogenetic 
diversity and 17 bacterial genera were chosen for genome-wide association analyses 
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based on average relative abundance of  >1% across all samples representing four 
dominant phyla; Firmicutes (6 genera), Bacteroidetes (7 genera), Proteobacteria (3 
genera), and Deferribacteres (1 genus). The motivation to only select 17 common 
bacterial genera is both statistical (e.g. avoid 0 values and minimize multiple testing) and 
biological reasons (e.g. host genetic control seems to be stronger at the tips of the 
phylogenetic tree (Benson et al. 2010a)). To control for false discovery, q-value was 
calculated using R package “qvalue” based on Likelihood ratio p-values. Significant 
SNPs were called at q-value < 0.1.	
 To test the overlap of bacteria-associated genes identified between this study and 
previously published human and mouse mapping studies, we compiled SNPs and genes 
that were associated with microbial measurements in seven human mGWAS studies. For 
human mGWAS, we collected genes and SNPs that are reported as significantly 
associated with microbial measurements in humans and tested them in mice. We 
converted positions to genes using biomart (GRCh37) and identified human-mouse 
orthologous based on Ensembl (Sep. 2017). Among the 555 unique human genes that we 
collected from seven studies, a total of 469 genes had human-mouse orthologous based 
on Ensembl (Sep. 2017). This resulted in 10,194 SNPs for human candidates in our 
exome. To test whether the overlap of candidate genes between groups was significant, 
we used a hypergeometric test using “phyper” function in R.  We used the total number of 
possible human-mouse orthologous genes in our exome (19,100) based on Ensembl 
database (Sep 2017). To test whether the proportion of significant gene-bacteria 
associations was greater in the candidate gene set compared to all genes using the entire 
exome, we used a chi-square test with Yate’s correction.	
 To test whether different genotypes have significantly different relative 
abundances of bacterial taxa among the top candidate genes from each bacterial 
measurement and among the candidate genes that overlapped between wild mouse and 
human mGWAS, we used Wilcoxon/Kruskal-Wallis tests in JMP 13.0. Residuals after 
covariate regression (i.e. Genetic PC1-4 and Latitude) on box-cox transformed relative 
abundances of bacterial taxa and alpha-diversity were used for all tests. For the 20 genes 
identified in mouse mGWAS (q-value < 0.1), we first tested genotypic differences on the 
microbial measurements using all individuals using ANOVA. Next, to confirm the 
associations are not driven by population structure, we tested whether the directions of 
genotype-bacteria association persists within populations using ANOVA (Table S5). We 
used a sign test to ask whether the directionality of genotype-bacteria associations within 
populations deviates significantly from the expected 50:50 ratio. Effect sizes for the 20 
candidate genes in mouse mGWAS (q-value < 0.1) and 8 candidate genes (q-value < 0.2) 
that overlapped between mouse and human mGWAS were calculated using ANOVA by 
using microbial measurements controlled for covariates described above. 
 
 
4.3. Results and Discussions 
	
4.3.1. Host genetic distance and body size are associated with compositional 
variations in the gut microbiota 
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The gut microbial community, as measured by Bray-Curtis dissimilarity, was 
significantly different among the five populations of house mice along the east coast of 
North America (Fig. 1A&B, ADONIS, R2=0.095, p=0.04) consistent with findings in 
European populations of house mice (26). However, the population differences observed 
in this study were relatively small. To understand how host genetic and environmental 
factors contribute to variation in gut microbial communities across all samples, we 
measured correlations between Bray-Curtis dissimilarity and eight predictor variables 
using Mantel tests (Table 1) and Generalized Linear Models (GLMs) (Table S1). Bray-
Curtis dissimilarity was significantly correlated with both host genetic distance and body 
mass index (BMI) after correcting for multiple tests (Mantel r = 0.14, p = 0.004 and 
Mantel r = 0.25, p < 0.0001, respectively). Diet (δ13C), climate PC1, and geographic 
distance also showed weak correlations with Bray-Curtis dissimilarity (Table 1). Diet 
measurements (δ13C and δ14N) did not vary among populations (Fig.S1) or by latitude 
(Table S2). GLMs that did not include host genetic distance, climate PC1, and body mass 
index (BMI) provided a significantly worse fit than a full model, indicating that these 
variables significantly correlate with Bray-Curtis dissimilarity after controlling for all 
other variables (Table S1). The overall results were similar using other beta-diversity 
measurements (Table S3).	

The observed correlation between microbial distance and genetic distance was 
independent of geographic distance. First, there was no pattern of genetic isolation-by-
distance among these populations (Fig. S2). Second, the correlation between host genetic 
distance and Bray-Curtis dissimilarity remained significant after controlling for 
geographic distance using a partial mantel test (r = 0.12, p = 0.008) and controlling for all 
other variables using GLMs (Table S1, likelihood ratio test p = 0.008). When 
comparisons were made between individuals within populations, both host genetic 
distance and geographic distance showed significant correlations with Bray-Curtis 
dissimilarity (Fig.1C&D). Consistent with the results among populations, the correlation 
between host genetic distance and Bray-Curtis dissimilarity within populations remained 
significant after controlling for geographic distance using residuals of covariate 
regression (Spearman’s rho = 0.26, p < 0.0001). In contrast, the correlation between 
geographic distance and Bray-Curtis dissimilarity did not remain significant after 
controlling for genetic distance (Spearman’s rho = 0.06, p = 0.38). These results suggest 
that host genetics or vertical transmission have stronger effects on the gut microbiota than 
the geographic distance between individuals.	

The correlation between BMI and Bray-Curtis dissimilarity also remained 
significant after controlling for geographic distance (partial mantel r = 0.25, p < 0.001) 
and all other variables (Table S1, GLMs likelihood ratio test p = 0.03). This association is 
interesting because BMI and body weight vary clinally with latitude (Table S2), a pattern 
consistent with Bergmann’s rule presumably reflecting thermoregulatory adaptation 
(Lynch 1992) (Phifer-Rixey et al. in review). Moreover, at higher latitudes, individuals 
tend to have a more obesity-associated microbial composition (i.e. a greater ratio of 
Firmicutes/Bacteroidetes) (Fig. S3). This result is consistent with observations in human 
populations (Suzuki and Worobey 2014). We also identified various microbial taxa that 
correlated with latitude and body size measurements after accounting for latitude (Fig. 
S4). Further experiments, including transplants into gnotobiotic mice, would be useful for 
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testing the role of the gut microbiome in Bergmann’s rule and thermoregulatory 
adaptation.	

 
4.3.2.	Population	differences	in	the	microbiota	persist	in	a	common	laboratory	
environment	
	

The two populations from the ends of the transect had significantly different 
microbial compositions (Fig.1E). To test whether these differences were driven by 
environmental differences, we conducted a common garden experiment. Twenty 
unrelated wild mice were collected from each population and returned to the lab (10 
males, 10 females). For each population, 10 crosses between wild-caught parents were 
created to produce 40 offspring which were reared under identical conditions. The lab-
born mice showed major shifts in alpha-diversity and in the relative abundances of 
bacterial phyla and genera compared to the wild-caught animals (Table S4). For example, 
alpha-diversity and the relative abundances of Firmicutes and Proteobacteria significantly 
decreased, and the relative abundance of Bacteroidetes significantly increased in lab-
reared animals compared to wild-caught animals (Table S4), consistent with previous 
studies (Wang et al. 2014, 2015). Interestingly, the lab diet was not significantly different 
from the diet in the wild as assessed from carbon and nitrogen stable isotope 
measurements (Fig. S1).	

Despite the dramatic shifts in the microbiota from the wild to the lab environment, 
population differences in the microbiota persisted among lab-reared offspring (Fig.1E). 
Moreover, the microbial community composition of lab populations was more similar, on 
average, to the wild populations from which they came than to the wild populations at the 
other end of the transect (Wilcoxon permutation test, P = 0.029, Fig. S5). Although the 
gut microbiota of the southern wild population was equally similar to the gut microtiota 
of the northern and southern lab populations (Wilcoxon permutation test, P = 0.44), the 
gut microbiota of the northern wild population was significantly more similar to the gut 
microbiota of the northern lab population compared to the southern lab population 
(Wilcoxon permutation test, P = 0.0014). Overall, these results indicate that 
environmental differences alone (e.g. diet, environmental microbes, temperature, etc.) 
cannot explain the population differences in the microbiota. The observed population 
differences are consistent either with a role for host genetics or simply with vertical 
transmission shaping the variation of the gut microbiota in wild mice.	

	
4.3.3.	Identification	of	genetic	loci	underlying	gut	microbiota	variation	in	wild	
mice	
	

To identify host genes contributing to differences in the gut microbiota, we 
conducted a mGWAS using ~280,000 SNPs identified from sequencing the complete 
exomes of the 50 wild-caught mice (Phifer-Rixey et al. in review).  We searched for 
associations between host genetic variation and each of 17 bacterial genera that had an 
average relative abundance of > 1%.  We also searched for associations between host 
genetic variation and alpha-diversity represented by phylogenetic diversity.  Analyses 
were done using Multivariate Linear Mixed Models in GEMMA while controlling for 
population structure, relatedness, latitude, and hidden factors. Among the 18 bacterial 
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measurements, three showed significant associations with host genetic loci; Odoribacter, 
Bacteroides, and phylogenetic diversity (Table 2).  Across all tests, we identified a total 
of 24 SNPs in 20 genes that passed a genome-wide significance threshold (q-value < 0.1). 
Although none of the overrepresented GO terms were significant after false discovery 
correction, the top three GO terms include mRNA transcription (Mier1, p-value = 0.006), 
protein lipidation (Zdhhc7, p-value = 0.04), and nucleobase-containing compound 
transport (Slc35d1, p-value = 0.07).	

Although we attempted to account for population structure in identifying these 
genes using GEMMA, observed gene-bacteria associations might still be be driven by 
differences among populations that are not fully accounted for by the model. To further 
account for population structure, we looked at associations within individual populations 
and we asked whether the direction of the association was consistent among populations. 
Overall, most of the within-population genotype-bacteria comparisons showed the same 
direction as the all-population comparisons (37 out of 43 comparisons, sign test p-value < 
0.0001, Table S5). Moreover, 20 of these 37 comparisons were individually significant 
(ANOVA, p-value < 0.05) despite the fact that these tests are underpowered with only 10 
individuals per population (Table S5). Together, the results suggest that the observed 
genotype-bacteria associations are unlikely to be explained by population structure.	

Among the 20 genes that were associated with bacterial measurements, the 
interleukin 12a gene (IL12a) included a SNP with the lowest p-value across all tests in 
this study (Table 2). IL12 is a cytokine that plays a key role in innate and adaptive 
immunity by activating natural killer cells and regulating differentiation of T cells 
(Trinchieri 1998). Six SNPs in IL12a were significantly associated with the relative 
abundance of Odoribacter after accounting for population structure, latitude, and hidden 
factors as covariates (Fig. 2A-D, Table 2). Three of these six SNPs were non-
synonymous changes (Table 2). The up-regulation of IL12a production has been linked 
Crohn’s disease in humans (Parronchi et al. 1997) and mucosal inflammation in mice 
(Liu et al. 2001). Furthermore, a recent study in humans demonstrated that inflammatory 
cytokine responses are associated with microbial taxa composition, metagenomic 
functional profiles, and microbial metabolites (Schirmer et al. 2016). Interestingly, the 
relative abundance of Odoribacter was significantly correlated with tumor necrosis factor 
alpha (TNF-α) (34), which is another macrophage-derived cytokine that interacts with 
IL12a in mediating inflammatory responses in mammals (Ma 2001). These observations 
lend further support to the role of IL12a in mediating host-microbial interactions in wild 
mice.	
 
4.3.4. Homologous genes underlie gut microbiota variation in humans and mice 
 

A common set of genes may underlie host-bacterial interactions across diverse 
mammals.  To test this idea, we asked whether there was significant overlap between the 
genes underlying variation in the microbiota of mice and humans using two different 
approaches. First, we compiled genes that were associated with microbial measurements 
in seven different human mGWAS.  This comprised a set of 469 genes with one-to-one 
mouse-human orthologs (Table S6).  We then conducted association analyses in GEMMA 
using this set of 469 genes in mice and found that 10 were significantly associated with 
one or more bacterial measurements (q-value < 0.1) (Table S6).  This fraction of genes 
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showing associations (10 out of 469 = 2.13%) is significantly greater than the fraction 
discovered in the initial analysis using all genes (20 out of 21,954 = 0.09%) suggesting 
that mouse mGWAS hits are overrepresented among genes previously identified in 
human mGWAS (Chi-square test with Yate’s correction p < 0.0001).	

Second, we asked how many genes overlapped between the 469 genes identified 
in human mGWAS and the 20 mouse-human orthologous genes that were identified in 
the mouse mGWAS. Using the genome-wide cut-off of q-value < 0.1, there was only one 
gene, Csmd1 that overlapped between these sets, and this proportion of overlap was 
marginally not significant (hypergeometric test p = 0.06). However, when we made the 
genome-wide cut-off less stringent (q-value < 0.2), we identified 96 mouse-human 
orthologous genes (Table S7) and eight genes overlapped with 469 human candidate 
genes (Fig. 2E, Table S8). The number of overlapped genes identified at q-value < 0.2 
was more than expected by chance (hypergeometric test p = 0.0006). Not surprisingly, all 
eight genes were the same genes identified by the candidate gene approach mentioned 
above (Table S6 & S8).	
Among the eight homologous overlapping genes between human and mouse mGWAS, all 
show expression in the brain of mice and humans using public databases (Table S8) and 
some have been associated with phenotypes related to obesity and immunity in other 
human GWAS. For example, a SNP in Csmd1 was associated with alpha-diversity (i.e. 
phylogenetic diversity) and showed the lowest p-value among the eight human-mouse 
overlapping genes. Csmd1 is highly expressed in central nervous system and epithelial 
tissue and is involved in the regulation of development of the central nervous system 
(Kraus et al. 2006). In humans, Csmd1 was associated with beta-diversity of the gut 
microbiota (Wang et al. 2016), obesity-related traits (Irvin et al. 2011; Comuzzie et al. 
2012; Liu et al. 2013), parasite infection status (Deng et al. 2013), and antibody response 
to smallpox vaccine (Ovsyannikova et al. 2012). Similarly, Gpr158 is also highly 
expressed in mouse and human brains and was associated with bacterial taxa in the order 
Clostridiales in both wild mice and humans (Goodrich et al. 2016a). Gpr158 has been 
associated with variation in energy expenditure in a native American population that has a 
high prevalence of obesity (Piaggi et al. 2017). These results support the previously 
known links between gut microbial measurements and mammalian host genes related to 
the nervous system, immunity, and obesity. 
 
4.3.5. Conclusion 
 

Understanding how mammalian hosts control the composition and function of the 
gut microbiota remains a major challenge in microbial ecology and biomedical research. 
We showed that differences in host genome and body mass were associated with 
compositional differences in the wild mouse gut microbiota. We next identified 
population differences in the gut microbiota that persist in a common laboratory 
environment, supporting the role of host genetics or vertical transmission in shaping 
variation of the gut microbial communities. Finally, we identified both novel and 
previously known gene-bacteria associations in wild mice using a genome-wide mapping 
approach. Moreover, a significantly greater number of genes were associated with gut 
microbial variation in both humans and mice than expected by chance, including genes 
related to the nervous system, immunity, and obesity. Replicating these results in 
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independent populations of wild mice and validating the functions of candidate SNPs in 
wild-derived inbred mice would further strengthen the observed gene-bacteria 
associations. Gene-bacteria associations identified in wild mice and human subjects using 
similar mapping methods are strong candidates for genes influencing the mammalian gut 
microbial composition in their natural environment.	
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4.4.	Chapter	4	Tables	
	
	

Table 1. Correlations between microbial beta-diversity and 
predictor variables using Mantel test.	

  n Bray Curtis distance 
  Mantel r p-value 

Genetic distance 50 0.14 0.004 
Geographic distance 50 0.07 0.078 

Body weight 50 0.08 0.232 
BMI 50 0.25 <0.001 

Diet (δ13C)	 50 0.14 0.044 
Diet (δ15N)	 50 0.04 0.67 
ClimatePC1 50 0.10 0.066 
ClimatePC2 50 0.01 0.913 

*Bonferroni corrected p-value = 0.05/8 = 0.0063 
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Table 2. Loci significantly associated with microbial measurements (q-value < 0.1) in wild mouse mGWAS. 

Chr Bp Annotated gene(s)  Associated microbial 
measurements P-values1 Q-values Effect size 

(%)2 Missense? 

3 68695209 

Il12a Odoribacter 

8.41E-07 0.042 23.1 yes 
3 68695333 1.10E-06 0.045 19.9 yes 
3 68695379 5.37E-07 0.033 18.0 - 
3 68695382 5.37E-07 0.033 18.0 - 
3 68695502 4.13E-07 0.033 22.2 - 
3 68695548 7.79E-09 0.002 24.4 yes 
3 86138475 

Snord73a, Rnu73b, Rps3a1 Bacteroides 
1.77E-06 0.054 18.1 - 

3 86138574 6.90E-07 0.028 18.4 - 
3 86138625 2.00E-06 0.054 29.8 - 
4 103170679 Mier1, Slc35d1 Phylogenetic diversity 2.19E-06 0.092 5.4 - 
4 89692441 Dmrta1 Bacteroides 4.73E-07 0.023 27.9 - 
5 90490831 

Afp Bacteroides 
1.27E-08 0.002 27.0 - 

5 90490846 1.27E-08 0.002 27.0 - 
5 90491657 8.67E-08 0.007 17.5 - 
6 121221243 

Tuba8, Gm15856 Bacteroides 
4.19E-06 0.086 23.4 - 

6 121222841 3.03E-06 0.074 23.3 - 
6 128374454 

Foxm1, Tex52 Phylogenetic diversity 
4.09E-07 0.051 33.3 - 

6 128374521 4.09E-07 0.051 33.3 - 
6 128374742 9.63E-07 0.055 34.0 - 
8 120092803 Zdhhc7, Gm20388, Gm15898 Bacteroides 3.38E-07 0.021 38.2 - 
8 13142468 Cul4a Bacteroides 3.56E-06 0.079 22.5 - 
8 16358320 Csmd1 Phylogenetic diversity 1.09E-06 0.055 17.0 - 

11 3132802 Sfi1, Pisd-ps1 Phylogenetic diversity 8.39E-07 0.055 12.0 - 
13 33671503 Serpinb6d Bacteroides 1.38E-06 0.048 31.7 - 

1 Likihood ratio p-values. 
2 ANOVA R2 values. Residuals after covariate regression (i.e. Genetic PC1-4 and Latitude) on the box-cox transformed relative abundance of 
bacterial taxa was used.  
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4.5.	Chapter	4	Figures	

 
Figure 1. Population differences and host genetic distance are associated with compositional variations in the gut microbiota. (A) Sampling locations of five 
house mouse populations. (B) PCoA plot of Bray-Curtis dissimilarity. The color corresponds to populations in Fig.1A. Populations show weak, but significant 
clustering (ADONIS R2=0.095, p=0.04). (C) Positive correlation between microbial distance and host genetic distance (rho = 0.35, P < 0.0001) and (D) between 
microbial distance and geographic distance (rho = 0.23, P = 0.0004) within populations. Correlations for all individual comparisons (including between 
population comparisons) are shown in Table 1. (E) Average Bray-Curtis dissimilarity within population comparisons (within) and between population 
comparisons (between) of most northern and southern populations in the wild (white bars) and lab (gray bars). P-values are Wilcoxon permutation test based on 
9999 Monte-Carlo resampling. Error bars are SE. 
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Figure 2. Results of mGWAS in wild mice. (A) Manhattan plot of Odoribacter. Six SNPs in IL12A gene on chromosome 3 are highlighted. Red line shows the 
genome-wide cut-off of the likelihood ratio test p-value (q-value < 0.1). (B) Quantile-quantile plot of Odoribacter p-values. The red diagonal line represents the 
expected distributions of p-values. (C) Zoom in plot around the SNP (3:68695548) that has the lowest p-value (represented by purple). Rest of the color 
represents pairwise linkage disequilibrium measures (r2) between the SNP and SNPs within the surrounding 1 Mb window. r2 was calculated based on genotype 
allele counts using PLINK. (D) Box-plot of Odoribacter abundance and IL12A genotypes. A missense SNP in IL12A gene has significantly different abundances 
of Odoribacter (ANOVA R2 = 0.224, p = 0.0014). Residual values were used for the y-axis controlling for population structure, latitude, and hidden factors using 
covariate regression. (E) Eight genes were associated with mouse and human microbial measurements and this overlap is more than expected by chance 
(hypergeometric test p = 0.0006). A total of 96 mouse-human orthologous genes were identified in wild mouse using the cut-off of q-value < 0.2. 
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4.6. Supplemental information 
	
Table S1. Model selection using Generalized Linear Models on Bray-Curtis dissimilarity PC1-3. 

Generalized Linear Models1 Bray-Curtis PC1 (9%)   Bray-Curtis PC2 (7%)   Bray-Curtis PC3 (6%) 

  Fixed effects2 AICc Log 
likelihood3   AICc Log 

likelihood3   AICc Log 
likelihood3 

Full Model Genetics + Geography + BW + BMI + Carbon + Nitrogen + ClimatePC1 + ClimatePC2 -29.88 27.83   -53.36 39.57   -54.45 40.12 

Model 1             
(no Genetics) Geography + BW + BMI + Carbon + Nitrogen + ClimatePC1 + ClimatePC2 -32.03 27.32   -56.53 38.39   -50.62 36.62*** 

Model 2            
(no Geography) Genetics  + BW + BMI + Carbon + Nitrogen + ClimatePC1 + ClimatePC2 -31.44 27.03   -54.93 38.77   -57.37 39.99 

Model 3             
(no BW) Genetics + Geography + BMI + Carbon + Nitrogen + ClimatePC1 + ClimatePC2 -32.23 27.42   -55.98 39.30   -55.24 38.93 

Model 4              
(no BMI) Genetics + Geography + BW +  Carbon + Nitrogen + ClimatePC1 + ClimatePC2 -32.78 27.70   -51.66 37.14**   -57.59 40.10 

Model 5            
(no Carbon) Genetics + Geography + BW + BMI +  Nitrogen + ClimatePC1 + ClimatePC2 -30.30 26.46*   -56.51 39.56   -57.59 40.10 

Model 6                 
(no Nitrogen) Genetics + Geography + BW + BMI + Carbon +ClimatePC1 + ClimatePC2 -33.00 27.81   -56.35 39.48   -57.50 40.06 

Model 7              
(no ClimatePC1) Genetics + Geography + BW + BMI + Carbon + Nitrogen + ClimatePC2 -30.50 26.56   -49.82 36.22***   -56.94 38.78 

Model 8              
(no ClimatePC2) Genetics + Geography + BW + BMI + Carbon + Nitrogen + ClimatePC1 -30.37 26.49   -56.53 39.57   -56.21 39.41 

1 The response variable, Bray-Curtis dissimilarity PC1-3 was calculated using all wild individuals. The fractions of the variation explained were PC1 (9%), PC2 (7%), and PC3 (6%).  

2 Eight continuous variables were used for the Full Model. "Genetics" is an average genetic distance (ngsDist) from all individual comparisons. "Geography" is an average genetic distance (km) from all 
individual comparisons. "BW" is body weight (g). "BMI" is body mass index."Carbon" and "Nitrogen" are stable isotope diet measurements. "Climate PC1" and "Climate PC2" are climate PC axes.  Each 
variable was substracted from the Full Model for model comparisons (Models 1-8). See SI methods for more detail.  

3 Significant differences compared to the full model were determined based on the likelihood ratio test; * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table S2. Correlations with latitude and metadata. 

Variable All individuals   Only adults 
n rho p-value   n rho p-value 

Body weight 50 0.32 0.02   40 0.51 0.0008 

BMI 50 0.21 0.14   40 0.35 0.03 

Diet (Carbon) 49 0.19 0.19   40 0.25 0.12 

Diet (Nitrogen) 49 0.14 0.35   40 0.24 0.14 

Climate PC1 50 -0.97 <0.0001   40 -0.98 <0.0001 

Climate PC2 50 0.32 0.02   40 0.23 0.15 
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Table S3. Correlations between microbial beta-diverisity measurements and predictor variables using Mantel 
test. 

  n Bray Curtis 		 unweighted UniFrac 		 weighted UniFrac 
  Mantel r p-value* 		 Mantel r p-value* 		 Mantel r p-value* 

Genetic distance 50 0.14 0.004 		 0.12 0.012   0.10 0.037 
Geographic distance 50 0.07 0.078 		 0.10 0.035   0.06 0.148 

Body weight 50 0.08 0.232 		 0.12 0.121   0.07 0.337 
BMI 50 0.25 <0.001 		 0.12 0.165   0.23 0.005 

Diet (δ13C) 50 0.14 0.044 		 0.06 0.482   -0.01 0.898 
Diet (δ15N) 50 0.04 0.67 		 -0.01 0.924   0.00 0.993 
ClimatePC1 50 0.10 0.066 		 0.09 0.156   0.10 0.072 
ClimatePC2 50 0.01 0.913 		 0.04 0.488   -0.05 0.403 

*Raw P-values that are lower than Bonferroni corrected p-value = 0.05/8 = 0.0063 are bolded 
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Table S4. Differences in microbial measurements among wild and lab populations. 

Microbial measurements 

Wild   Lab   Significance (Wilcoxon test) 

North (n=10) South (n=10) 
  

North (n=40) South (n=38) 
  

Wild vs Lab1 
  Wild   Lab 

      North South   North South 

Mean (SD) Mean (SD)   Mean (SD) Mean (SD)   Raw p-values   Pairwise comparisons2 

Alpha-diversity   

    OTU counts 408.5 (46.8) 351.2 (41.4)   365.7 (43.5) 345.9 (44.7)   NS   a ab   ab b 
    Phylogenetic diversity 38.7 (3.4) 34.6 (2.5)   33.7 (3.2) 32.6 (3.4)   0.0005   a b   b b 
    Shannon index 6.57 (0.41) 6.15 (0.63)   5.87 (0.45) 5.89 (0.41)   0.0002   a ab   b b 
Phylum Firmicutes 0.477 (0.100) 0.426 (0.162)   0.284 (0.090) 0.366 (0.150)   0.0004   a ab   b ab 
    Genus Clostridiales_unc 0.251 (0.081) 0.213 (0.120)   0.181 (0.054) 0.234 (0.101)   NS   a a   a a 
    Genus Lachnospiracea_unc 0.063 (0.040) 0.057 (0.030)   0.025 (0.017) 0.044 (0.028)   0.0003   a a   b a 
    Genus Lactobacillus 0.016 (0.023) 0.007 (0.006)   0.014 (0.016) 0.022 (0.018)   0.01   a a   a a 
    Genus Oscillospira 0.062 (0.023) 0.064 (0.014)   0.028 (0.016) 0.031 (0.020)   <0.0001   a a   b b 
    Genus Ruminococcaceae_unc 0.049 (0.014) 0.050 (0.023)   0.018 (0.013) 0.021 (0.019)   <0.0001   a a   b b 
    Genus Ruminococcus 0.013 (0.006) 0.017 (0.008)   0.004 (0.002) 0.006 (0.004)   <0.0001   ac a   b bc 
Phylum Bacteroidetes 0.325 (0.109) 0.420 (0.201)   0.618 (0.100) 0.535 (0.158)   <0.0001   a ab   b b 
    Genus Bacteroides 0.084 (0.051) 0.112 (0.089)   0.090 (0.057) 0.093 (0.071)   NS   a a   a a 
    Genus Bacteroidales_unc 0.036 (0.022) 0.016 (0.020)   0.073 (0.035) 0.064 (0.043)   <0.0001   ab a   b b 
    Genus Odoribacter 0.013 (0.013) 0.013 (0.020)   0.044 (0.038) 0.058 (0.038)   <0.0001   a a   b b 
    Genus Parabacteroides 0.016 (0.015) 0.012 (0.007)   0.003 (0.006) 0.004 (0.004)   <0.0001   a a   b b 
    Genus Prevotella 0.020 (0.024) 0.022 (0.033)   0.011 (0.035) 0.004 (0.015)   <0.0001   a a   b b 
    Genus Rikenellaceae_unc 0.046 (0.029) 0.033 (0.026)   0.181 (0.092) 0.148 (0.083)   <0.0001   a a   b b 
    Genus S24_7_unc 0.103 (0.053) 0.199 (0.129)   0.202 (0.128) 0.149 (0.102)   NS   a a   a a 
Phylum Proteobacteria 0.161 (0.054) 0.117 (0.103)   0.072 (0.037) 0.063 (0.036)   <0.0001   a ab   b b 
    Genus Desulfovibrionaceae_unc 0.044 (0.042) 0.027 (0.038)   0.001 (0.002) 0.004 (0.006)   <0.0001   a ab   b b 
    Genus Helicobacteraceae_unc 0.039 (0.025) 0.047 (0.102)   0.050 (0.034) 0.029 (0.024)   NS   a a   a a 
    Genus Helicobacter 0.064 (0.064) 0.001 (0.003)   0.165 (0.019) 0.008 (0.013)   NS   ab a   b a 
Phylum Deferribacteres 0.021 (0.016) 0.028 (0.052)   0.004 (0.005) 0.012 (0.014)   0.03   a ab   b ab 
    Genus Mucispirillum 0.021 (0.016) 0.028 (0.052)   0.004 (0.005) 0.012 (0.014)   0.03   a ab   b ab 
1 Comparisons between Wild (North and South combined, n=20) and Lab (North and South combined, n = 78).  
2 Non-overapping letters indicate significance based on Wilcoxon test using Bonferroni corrected p-value (alpha = 0.05/24 = 0.002)  
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Table S5. Genotype-bacteria associations using all populations and within populations. 

Ch
r Bp Genes1 Bacterial 

measurements2 

All populations   Within Populations 

Genotype 
directions3 

ANOV
A P-

values 

  Consistent 
genotype 

directions4 

ANOVA P-values5 

  FL GA VA PA NH_V
T 

3 68695548 Il12a Odoribacter AA > GA > GG 0.0014   3 out of 5 0.020 0.001 (0.259) 0.428 (0.045) 
3 86138574 Snord73a, Rnu73b, Rps3a1 Bacteroides AC > AA 0.0021   2 out of 3 0.013 - - 0.001 (0.830) 

4 10317067
9 Mier1, Slc35d1 Phylogenetic diversity TT > TC 0.1107   2 out of 2 - - - 0.130 0.220 

4 89692441 Dmrta1 Bacteroides GG > GA > AA 0.0005   2 out of 3 0.017 - (0.367) 
< 

0.0001 - 
5 90490831 Afp Bacteroides AA > GA > GG 0.0006   3 out of 4 0.030 - (0.336) 0.001 0.978 

6 12122284
1 Tuba8, Gm15856 Bacteroides TC > TT 0.0004   3 out of 4 0.010 - 0.209 0.001 (0.813) 

6 12837445
4 Foxm1, Tex52 Phylogenetic diversity GG > GT < 

0.0001   5 out of 5 0.046 0.018 0.128 0.025 0.250 

8 12009280
3 Zdhhc7, Gm20388, Gm15898 Bacteroides CT > CC < 

0.0001   3 out of 3 0.010 0.059 - 0.001 - 
8 13142468 Cul4a Bacteroides CT > CC 0.0006   4 out of 4 0.334 0.076 - 0.001 0.720 
8 16358320 Csmd1 Phylogenetic diversity CC > CT > TT 0.0125   4 out of 4 0.681 0.352 - 0.014 0.541 

11 3132802 Sfi1, Pisd-ps1 Phylogenetic diversity CC > CA 0.0159   4 out of 4 0.262 0.560 - 0.041 0.220 

13 33671503 Serpinb6d Bacteroides CT > CC < 
0.0001   2 out of 2 0.0014 - - 0.0007 - 

Total: 37 out of 43   
1 The SNP with lowest p-value was selected when more then one SNP was included in the gene. 
2 Residuals after covariate regression (i.e. Genetic PC1-4 and Latitude) on box-cox transformed relative abundances of bacterial taxa and alpha-diversity were used.  
3 The directions of the genotype-bacteria associations were based on the average values of bacterial measurements for each genotype. 
4 The proportions of individual populations that genotype-bacteria associations are in the the same direction as the all-population result. 
5 P-values in prentices indicate that genotype-bacteria associations are in the opposite direction compared to the all-population result.  
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Table S6. Loci significantly associated with microbial measurements (q-value < 0.1) in wild 
mouse mGWAS using human candidate genes. 

Chr Bp Annotated gene(s) Associated microbial 
measurements P-values1 Q-values 

2 21367906 Gpr158 Clostridiales_unc 9.03E-06 0.053 

5 148315352 Mtus2 Phylogenetic diversity 5.44E-05 0.084 

6 113765833 

Atp2b2 

Ruminococcus 7.55E-06 0.074 

6 113817432 Phylogenetic diversity 4.01E-05 0.074 

6 113817441 Phylogenetic diversity 1.31E-05 0.030 

6 144993723 Bcat1 Clostridiales_unc 1.12E-05 0.053 

6 48445226 Sspo Bacteroides 4.38E-05 0.088 

8 16358320 
Csmd1 Phylogenetic diversity 

1.09E-06 0.010 

8 16358359 3.89E-06 0.018 

12 104780917 Clmn Bacteroides 3.07E-05 0.088 

12 75308870 

Bcat1 Bacteroides 

1.90E-05 0.088 

12 75308871 5.83E-05 0.093 

12 75308874 1.53E-05 0.088 

12 75394205 Rhoj Phylogenetic diversity 5.70E-06 0.018 

13 69612885 Nsun2 Bacteroides 4.40E-05 0.088 

15 5217545 Ptger4 Bacteroides 6.50E-05 0.093 
1 Likelihood ratio p-values. 
2 ANOVA R2 values. Residuals after covariate regression (i.e. Genetic PC1-4 and Latitude) on 
box-cox transformed relative abundances of bacterial taxa and alpha-diversity were used.  
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Table S7. Significant loci associated with microbial measurements in wild mouse mGWAS (Q<0.2) 
Taxa chr ps allele1 allele0 p_lrt qvalues p_score EnsembleID 

Phylogenetic diversity 6 128374454 T G 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374454 T G 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374454 T G 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000079304 
Phylogenetic diversity 6 128374521 C T 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374521 C T 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374521 C T 4.09E-07 0.051478057 4.62E-05 ENSMUSG00000079304 
Phylogenetic diversity 11 3132802 A C 8.39E-07 0.054876364 6.32E-05 ENSMUSG00000023764 
Phylogenetic diversity 11 3132802 A C 8.39E-07 0.054876364 6.32E-05 ENSMUSG00000023764 
Phylogenetic diversity 11 3132802 A C 8.39E-07 0.054876364 6.32E-05 ENSMUSG00000082286 
Phylogenetic diversity 11 3132802 A C 8.39E-07 0.054876364 6.32E-05 ENSMUSG00000023764 
Phylogenetic diversity 6 128374742 A T 9.63E-07 0.054876364 6.71E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374742 A T 9.63E-07 0.054876364 6.71E-05 ENSMUSG00000001517 
Phylogenetic diversity 6 128374742 A T 9.63E-07 0.054876364 6.71E-05 ENSMUSG00000079304 
Phylogenetic diversity 8 16358320 T C 1.09E-06 0.054876364 7.10E-05 ENSMUSG00000060924 
Phylogenetic diversity 4 103170679 C T 2.19E-06 0.09188015 9.78E-05 ENSMUSG00000028522 
Phylogenetic diversity 4 103170679 C T 2.19E-06 0.09188015 9.78E-05 ENSMUSG00000028521 
Phylogenetic diversity 8 13142468 T C 3.48E-06 0.122401981 1.22E-04 ENSMUSG00000031446 
Phylogenetic diversity 8 13142468 T C 3.48E-06 0.122401981 1.22E-04 ENSMUSG00000031446 
Phylogenetic diversity 8 16358359 C A 3.89E-06 0.122401981 1.28E-04 ENSMUSG00000060924 
Phylogenetic diversity 8 16358359 C A 3.89E-06 0.122401981 1.28E-04 ENSMUSG00000060924 
Phylogenetic diversity 12 75394205 T C 5.70E-06 0.159426744 1.55E-04 ENSMUSG00000046768 
Phylogenetic diversity 12 75394205 T C 5.70E-06 0.159426744 1.55E-04 ENSMUSG00000046768 
Phylogenetic diversity 1 88236753 T C 7.16E-06 0.161824139 1.73E-04 ENSMUSG00000079429 
Phylogenetic diversity 1 88236753 T C 7.16E-06 0.161824139 1.73E-04 ENSMUSG00000079429 
Phylogenetic diversity 1 88236753 T C 7.16E-06 0.161824139 1.73E-04 ENSMUSG00000079429 
Phylogenetic diversity 5 90526381 A G 8.32E-06 0.161824139 1.87E-04 ENSMUSG00000029369 
Phylogenetic diversity 11 57787336 A G 6.91E-06 0.161824139 1.70E-04 ENSMUSG00000020520 
Phylogenetic diversity 6 128375274 T C 8.79E-06 0.161824139 1.92E-04 ENSMUSG00000001517 
Phylogenetic diversity 6 128375274 T C 8.79E-06 0.161824139 1.92E-04 ENSMUSG00000001517 
Phylogenetic diversity 6 128375274 T C 8.79E-06 0.161824139 1.92E-04 ENSMUSG00000079304 
Phylogenetic diversity 2 94301405 T A 1.16E-05 0.161824139 2.21E-04 ENSMUSG00000027194 
Phylogenetic diversity 7 141426886 T A 1.20E-05 0.161824139 2.25E-04 ENSMUSG00000019082 
Phylogenetic diversity 7 141426886 T A 1.20E-05 0.161824139 2.25E-04 ENSMUSG00000060240 
Phylogenetic diversity 7 141426886 T A 1.20E-05 0.161824139 2.25E-04 ENSMUSG00000060240 
Phylogenetic diversity 6 128374511 T A 1.22E-05 0.161824139 2.27E-04 ENSMUSG00000001517 
Phylogenetic diversity 6 128374511 T A 1.22E-05 0.161824139 2.27E-04 ENSMUSG00000001517 
Phylogenetic diversity 6 128374511 T A 1.22E-05 0.161824139 2.27E-04 ENSMUSG00000079304 
Phylogenetic diversity 7 24925094 A G 1.25E-05 0.161824139 2.30E-04 ENSMUSG00000040940 
Phylogenetic diversity 7 24925094 A G 1.25E-05 0.161824139 2.30E-04 ENSMUSG00000040940 
Phylogenetic diversity 12 32205995 T C 1.27E-05 0.161824139 2.32E-04 ENSMUSG00000020573 
Phylogenetic diversity 12 32205995 T C 1.27E-05 0.161824139 2.32E-04 ENSMUSG00000020573 
Phylogenetic diversity 6 113817441 T C 1.31E-05 0.161824139 2.35E-04 ENSMUSG00000030302 
Phylogenetic diversity 3 10314899 G A 1.32E-05 0.161824139 2.36E-04 ENSMUSG00000027531 
Phylogenetic diversity 2 91674525 T G 1.35E-05 0.161824139 2.39E-04 ENSMUSG00000027247 
Phylogenetic diversity 2 91674525 T G 1.35E-05 0.161824139 2.39E-04 ENSMUSG00000027244 
Phylogenetic diversity 7 134270142 T C 1.65E-05 0.188794829 2.65E-04 ENSMUSG00000030994 

Clostridiales_unc 9 106071836 T C 5.05E-07 0.123470422 5.06E-05 ENSMUSG00000032572 
Clostridiales_unc 2 21367906 T C 9.03E-06 0.157699846 1.95E-04 ENSMUSG00000085680 
Clostridiales_unc 2 21367906 T C 9.03E-06 0.157699846 1.95E-04 ENSMUSG00000045967 
Clostridiales_unc 2 21367906 T C 9.03E-06 0.157699846 1.95E-04 ENSMUSG00000045967 
Clostridiales_unc 3 87440123 G T 7.48E-06 0.157699846 1.77E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87440335 C G 5.25E-06 0.157699846 1.48E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87440340 T C 9.02E-06 0.157699846 1.95E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87440341 G A 9.02E-06 0.157699846 1.95E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87442103 A G 2.84E-06 0.157699846 1.10E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87442103 A G 2.84E-06 0.157699846 1.10E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87442187 G A 2.84E-06 0.157699846 1.10E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87442187 G A 2.84E-06 0.157699846 1.10E-04 ENSMUSG00000048031 
Clostridiales_unc 3 87443684 A C 6.14E-06 0.157699846 1.61E-04 ENSMUSG00000048031 
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Table S7. Continued. 
Taxa chr ps allele1 allele0 p_lrt qvalues p_score EnsembleID 

Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000066043 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000085241 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000066043 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000091021 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000064387 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000065353 
Clostridiales_unc 4 132356533 A G 5.04E-06 0.157699846 1.46E-04 ENSMUSG00000028896 
Clostridiales_unc 10 13553200 G T 4.97E-06 0.157699846 1.45E-04 ENSMUSG00000019809 
Clostridiales_unc 10 13553200 G T 4.97E-06 0.157699846 1.45E-04 ENSMUSG00000019808 
Clostridiales_unc 10 70448825 A T 6.61E-06 0.157699846 1.67E-04 ENSMUSG00000043259 
Clostridiales_unc 12 112775647 T A 5.24E-06 0.157699846 1.48E-04 ENSMUSG00000072812 
Clostridiales_unc 12 112775647 T A 5.24E-06 0.157699846 1.48E-04 ENSMUSG00000072812 
Clostridiales_unc 12 112775647 T A 5.24E-06 0.157699846 1.48E-04 ENSMUSG00000072812 
Clostridiales_unc 15 73783540 A G 1.59E-06 0.157699846 8.42E-05 ENSMUSG00000072487 
Clostridiales_unc 15 73783540 A G 1.59E-06 0.157699846 8.42E-05 ENSMUSG00000072487 
Clostridiales_unc 15 73783540 A G 1.59E-06 0.157699846 8.42E-05 ENSMUSG00000072487 
Clostridiales_unc 2 181601302 T C 1.20E-05 0.162139377 2.25E-04 ENSMUSG00000038605 
Clostridiales_unc 2 181601302 T C 1.20E-05 0.162139377 2.25E-04 ENSMUSG00000002455 
Clostridiales_unc 2 181601302 T C 1.20E-05 0.162139377 2.25E-04 ENSMUSG00000002455 
Clostridiales_unc 3 87443666 C A 1.26E-05 0.162139377 2.31E-04 ENSMUSG00000048031 
Clostridiales_unc 6 144993723 A G 1.12E-05 0.162139377 2.17E-04 ENSMUSG00000030268 
Clostridiales_unc 8 110971625 T C 1.26E-05 0.162139377 2.30E-04 ENSMUSG00000015023 
Clostridiales_unc 8 110971625 T C 1.26E-05 0.162139377 2.30E-04 ENSMUSG00000031749 
Clostridiales_unc 8 110971625 T C 1.26E-05 0.162139377 2.30E-04 ENSMUSG00000031749 
Clostridiales_unc 19 10218949 C A 1.17E-05 0.162139377 2.22E-04 ENSMUSG00000036098 
Clostridiales_unc 17 34216100 T C 1.37E-05 0.167479682 2.41E-04 ENSMUSG00000024339 
Clostridiales_unc 17 34216100 T C 1.37E-05 0.167479682 2.41E-04 ENSMUSG00000024339 
Clostridiales_unc 17 34216100 T C 1.37E-05 0.167479682 2.41E-04 ENSMUSG00000081512 

Bacteroides 5 90490831 A G 1.27E-08 0.001556323 1.20E-05 ENSMUSG00000054932 
Bacteroides 5 90490846 T C 1.27E-08 0.001556323 1.20E-05 ENSMUSG00000054932 
Bacteroides 5 90491657 A C 8.67E-08 0.007083107 2.46E-05 ENSMUSG00000054932 
Bacteroides 8 120092803 T C 3.38E-07 0.020710124 4.27E-05 ENSMUSG00000089742 
Bacteroides 8 120092803 T C 3.38E-07 0.020710124 4.27E-05 ENSMUSG00000031823 
Bacteroides 8 120092803 T C 3.38E-07 0.020710124 4.27E-05 ENSMUSG00000031823 
Bacteroides 8 120092803 T C 3.38E-07 0.020710124 4.27E-05 ENSMUSG00000031823 
Bacteroides 8 120092803 T C 3.38E-07 0.020710124 4.27E-05 ENSMUSG00000092329 
Bacteroides 4 89692441 G A 4.73E-07 0.023185535 4.92E-05 ENSMUSG00000043753 
Bacteroides 4 89692441 G A 4.73E-07 0.023185535 4.92E-05 ENSMUSG00000043753 
Bacteroides 3 86138574 C A 6.90E-07 0.028185376 5.79E-05 ENSMUSG00000064984 
Bacteroides 3 86138574 C A 6.90E-07 0.028185376 5.79E-05 ENSMUSG00000064390 
Bacteroides 3 86138574 C A 6.90E-07 0.028185376 5.79E-05 ENSMUSG00000028081 
Bacteroides 13 33671503 T C 1.38E-06 0.048317787 7.89E-05 ENSMUSG00000047889 
Bacteroides 3 86138475 C T 1.77E-06 0.054226212 8.84E-05 ENSMUSG00000064984 
Bacteroides 3 86138475 C T 1.77E-06 0.054226212 8.84E-05 ENSMUSG00000064390 
Bacteroides 3 86138475 C T 1.77E-06 0.054226212 8.84E-05 ENSMUSG00000028081 
Bacteroides 3 86138625 C T 2.00E-06 0.054464494 9.36E-05 ENSMUSG00000064984 
Bacteroides 3 86138625 C T 2.00E-06 0.054464494 9.36E-05 ENSMUSG00000064390 
Bacteroides 3 86138625 C T 2.00E-06 0.054464494 9.36E-05 ENSMUSG00000028081 
Bacteroides 6 121222841 C T 3.03E-06 0.074262338 1.14E-04 ENSMUSG00000030137 
Bacteroides 6 121222841 C T 3.03E-06 0.074262338 1.14E-04 ENSMUSG00000086527 
Bacteroides 8 13142468 T C 3.56E-06 0.079320109 1.23E-04 ENSMUSG00000031446 
Bacteroides 8 13142468 T C 3.56E-06 0.079320109 1.23E-04 ENSMUSG00000031446 
Bacteroides 6 121221243 A G 4.19E-06 0.085577337 1.33E-04 ENSMUSG00000030137 
Bacteroides 6 121221243 A G 4.19E-06 0.085577337 1.33E-04 ENSMUSG00000086527 
Bacteroides 5 90491714 T C 5.90E-06 0.111233256 1.57E-04 ENSMUSG00000054932 
Bacteroides 5 141952954 T C 8.80E-06 0.154056712 1.92E-04 ENSMUSG00000039683 
Bacteroides 2 91674525 T G 9.96E-06 0.159308646 2.05E-04 ENSMUSG00000027247 
Bacteroides 2 91674525 T G 9.96E-06 0.159308646 2.05E-04 ENSMUSG00000027244 
Bacteroides 4 148006547 T C 1.04E-05 0.159308646 2.09E-04 ENSMUSG00000029016 
Bacteroides 4 148006547 T C 1.04E-05 0.159308646 2.09E-04 ENSMUSG00000029016 
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Table S7. Continued. 
Taxa chr ps allele1 allele0 p_lrt qvalues p_score EnsembleID 

Bacteroides 4 148006547 T C 1.04E-05 0.159308646 2.09E-04 ENSMUSG00000086806 
Bacteroides 4 148006547 T C 1.04E-05 0.159308646 2.09E-04 ENSMUSG00000041616 
Bacteroides 3 86139069 A G 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000064984 
Bacteroides 3 86139069 A G 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000064390 
Bacteroides 3 86139069 A G 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000028081 
Bacteroides 4 89688171 T C 1.18E-05 0.167849669 2.23E-04 ENSMUSG00000043753 
Bacteroides 4 89688171 T C 1.18E-05 0.167849669 2.23E-04 ENSMUSG00000043753 
Bacteroides 5 90519074 C A 2.01E-05 0.167849669 2.95E-04 ENSMUSG00000029369 
Bacteroides 5 90526381 A G 1.81E-05 0.167849669 2.79E-04 ENSMUSG00000029369 
Bacteroides 5 118265460 G A 2.09E-05 0.167849669 3.01E-04 ENSMUSG00000032840 
Bacteroides 5 118265460 G A 2.09E-05 0.167849669 3.01E-04 ENSMUSG00000095477 
Bacteroides 6 41313290 T G 2.26E-05 0.167849669 3.14E-04 ENSMUSG00000036938 
Bacteroides 6 41313298 C T 2.26E-05 0.167849669 3.14E-04 ENSMUSG00000036938 
Bacteroides 6 41313339 C T 2.26E-05 0.167849669 3.14E-04 ENSMUSG00000036938 
Bacteroides 6 128374511 T A 1.85E-05 0.167849669 2.83E-04 ENSMUSG00000001517 
Bacteroides 6 128374511 T A 1.85E-05 0.167849669 2.83E-04 ENSMUSG00000001517 
Bacteroides 6 128374511 T A 1.85E-05 0.167849669 2.83E-04 ENSMUSG00000079304 
Bacteroides 7 46072425 T C 2.11E-05 0.167849669 3.03E-04 ENSMUSG00000030835 
Bacteroides 7 46081380 T C 2.11E-05 0.167849669 3.03E-04 ENSMUSG00000030835 
Bacteroides 7 46081380 T C 2.11E-05 0.167849669 3.03E-04 ENSMUSG00000030835 
Bacteroides 8 111715660 G A 1.85E-05 0.167849669 2.82E-04 ENSMUSG00000031955 
Bacteroides 12 75308870 G A 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000046768 
Bacteroides 12 75308870 G A 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000046768 
Bacteroides 12 75308870 G A 1.90E-05 0.167849669 2.86E-04 ENSMUSG00000046768 
Bacteroides 12 75308874 C G 1.53E-05 0.167849669 2.56E-04 ENSMUSG00000046768 
Bacteroides 12 75308874 C G 1.53E-05 0.167849669 2.56E-04 ENSMUSG00000046768 
Bacteroides 12 75308874 C G 1.53E-05 0.167849669 2.56E-04 ENSMUSG00000046768 
Bacteroides 13 55403064 A G 1.46E-05 0.167849669 2.49E-04 ENSMUSG00000021490 
Bacteroides 14 32598040 C T 1.58E-05 0.167849669 2.60E-04 ENSMUSG00000041730 
Bacteroides 14 70604927 A G 1.47E-05 0.167849669 2.50E-04 ENSMUSG00000022099 
Bacteroides 4 129472127 T C 2.91E-05 0.17212018 3.60E-04 ENSMUSG00000040859 
Bacteroides 4 129472127 T C 2.91E-05 0.17212018 3.60E-04 ENSMUSG00000040859 
Bacteroides 5 139771573 G A 2.81E-05 0.17212018 3.53E-04 ENSMUSG00000029547 
Bacteroides 5 139771573 G A 2.81E-05 0.17212018 3.53E-04 ENSMUSG00000098574 
Bacteroides 6 41216082 T C 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000076478 
Bacteroides 6 41216085 T C 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000076478 
Bacteroides 6 41303204 G A 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000054106 
Bacteroides 6 41312455 G A 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000036938 
Bacteroides 6 41312456 T C 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000036938 
Bacteroides 6 41312497 T A 3.09E-05 0.17212018 3.72E-04 ENSMUSG00000036938 
Bacteroides 6 53816073 A T 3.02E-05 0.17212018 3.67E-04 ENSMUSG00000078169 
Bacteroides 6 53816073 A T 3.02E-05 0.17212018 3.67E-04 ENSMUSG00000043496 
Bacteroides 12 104780917 T C 3.07E-05 0.17212018 3.70E-04 ENSMUSG00000021097 
Bacteroides 19 4712684 A G 2.93E-05 0.17212018 3.61E-04 ENSMUSG00000067889 
Bacteroides 1 171237117 T C 3.89E-05 0.198745891 4.22E-04 ENSMUSG00000058715 
Bacteroides 1 171237117 T C 3.89E-05 0.198745891 4.22E-04 ENSMUSG00000013593 
Bacteroides 1 171237117 T C 3.89E-05 0.198745891 4.22E-04 ENSMUSG00000013593 
Bacteroides 1 171237117 T C 3.89E-05 0.198745891 4.22E-04 ENSMUSG00000013593 
Bacteroides 6 116692848 C G 3.92E-05 0.198745891 4.24E-04 ENSMUSG00000048108 
Bacteroides 6 116692848 C G 3.92E-05 0.198745891 4.24E-04 ENSMUSG00000048108 
Bacteroides 7 127375830 A G 4.06E-05 0.198745891 4.32E-04 ENSMUSG00000054381 
Bacteroides 9 72856998 A G 4.09E-05 0.198745891 4.34E-04 ENSMUSG00000036030 
Bacteroides 2 71209672 T C 4.27E-05 0.198745891 4.44E-04 ENSMUSG00000027012 
Bacteroides 6 48445226 A C 4.38E-05 0.198745891 4.51E-04 ENSMUSG00000068551 
Bacteroides 6 48445226 A C 4.38E-05 0.198745891 4.51E-04 ENSMUSG00000029797 
Bacteroides 6 48445226 A C 4.38E-05 0.198745891 4.51E-04 ENSMUSG00000068551 
Bacteroides 2 13010347 G T 4.40E-05 0.198745891 4.51E-04 ENSMUSG00000049630 
Bacteroides 13 69612885 T C 4.40E-05 0.198745891 4.52E-04 ENSMUSG00000021594 
Bacteroides 13 69612885 T C 4.40E-05 0.198745891 4.52E-04 ENSMUSG00000091133 
Bacteroides 13 69612885 T C 4.40E-05 0.198745891 4.52E-04 ENSMUSG00000021595 
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Table S7. Continued. 
Taxa chr ps allele1 allele0 p_lrt qvalues p_score EnsembleID 

Bacteroides 10 40349413 C A 4.46E-05 0.198745891 4.55E-04 ENSMUSG00000038491 
Bacteroides 10 40349413 C A 4.46E-05 0.198745891 4.55E-04 ENSMUSG00000038481 
Bacteroides 10 40349416 A C 4.46E-05 0.198745891 4.55E-04 ENSMUSG00000038491 
Bacteroides 10 40349416 A C 4.46E-05 0.198745891 4.55E-04 ENSMUSG00000038481 
Bacteroides 14 79182968 T C 4.46E-05 0.198745891 4.55E-04 ENSMUSG00000058997 

Desulfovibrionaceae_unc 6 41617399 G A 8.04E-07 0.137653188 6.20E-05 ENSMUSG00000029868 
Desulfovibrionaceae_unc 6 41617399 G A 8.04E-07 0.137653188 6.20E-05 ENSMUSG00000029869 
Desulfovibrionaceae_unc 6 41617399 G A 8.04E-07 0.137653188 6.20E-05 ENSMUSG00000029869 
Desulfovibrionaceae_unc 6 41617399 G A 8.04E-07 0.137653188 6.20E-05 ENSMUSG00000029869 
Desulfovibrionaceae_unc 4 116557950 A G 1.59E-06 0.137653188 8.42E-05 ENSMUSG00000034042 
Desulfovibrionaceae_unc 4 116557950 A G 1.59E-06 0.137653188 8.42E-05 ENSMUSG00000055900 
Desulfovibrionaceae_unc 4 116557950 A G 1.59E-06 0.137653188 8.42E-05 ENSMUSG00000034042 
Desulfovibrionaceae_unc 4 88807526 T C 1.69E-06 0.137653188 8.66E-05 ENSMUSG00000094648 
Desulfovibrionaceae_unc 4 88807526 T C 1.69E-06 0.137653188 8.66E-05 ENSMUSG00000070908 
Desulfovibrionaceae_unc 4 88807202 G T 3.60E-06 0.19206285 1.24E-04 ENSMUSG00000094648 
Desulfovibrionaceae_unc 4 88807202 G T 3.60E-06 0.19206285 1.24E-04 ENSMUSG00000070908 
Desulfovibrionaceae_unc 16 17209775 G C 3.93E-06 0.19206285 1.29E-04 ENSMUSG00000096434 
Desulfovibrionaceae_unc 16 17209775 G C 3.93E-06 0.19206285 1.29E-04 ENSMUSG00000071636 

Odoribacter 3 68695548 A G 7.79E-09 0.001924369 1.02E-05 ENSMUSG00000027776 
Odoribacter 3 68695502 T C 4.13E-07 0.033163867 4.64E-05 ENSMUSG00000027776 
Odoribacter 3 68695379 A G 5.37E-07 0.033163867 5.19E-05 ENSMUSG00000027776 
Odoribacter 3 68695382 T C 5.37E-07 0.033163867 5.19E-05 ENSMUSG00000027776 
Odoribacter 3 68695209 G C 8.41E-07 0.041550558 6.32E-05 ENSMUSG00000027776 
Odoribacter 3 68695333 T C 1.10E-06 0.045288956 7.11E-05 ENSMUSG00000027776 
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Table S8. Loci associated with microbial measurements in mouse and human mGWAS. 

Chr Bp Annotated 
gene 

Associated microbial 
measurements P-values1 Q-values2 Effect 

size (%)3 Missense? 

Tissue expressed4 
Brain   Gut 

mouse human   mouse human 

2 21367906 Gpr158 Clostridiales_unc 9.03E-06 0.158 27.2 - yes yes   yes - 

6 48445226 Sspo Bacteroides 4.38E-05 0.199 23.8 - yes NA   - NA 

6 113817441 Atp2b2 Phylogenetic diversity 1.31E-05 0.162 21.1 - yes yes   yes - 

6 144993723 Bcat1 Clostridiales_unc 1.12E-05 0.162 26.1 - yes yes   yes yes 

8 16358320 
Csmd1 Phylogenetic diversity 

1.09E-06 0.055 17.0 - yes yes   - - 

8 16358359 3.89E-06 0.122 13.8 - yes yes   - - 

12 75308870 
Rhoj Bacteroides 

1.90E-05 0.168 28.7 yes yes yes   - yes 

12 75308874 1.53E-05 0.168 24.2 yes yes yes   - yes 

12 75394205 Rhoj Phylogenetic diversity 5.70E-06 0.159 5.6 - yes yes   - yes 

12 104780917 Clmn Bacteroides 3.07E-05 0.172 28.5 - yes yes   yes yes 

13 69612885 Nsun2 Bacteroides 4.40E-05 0.199 27.5 - yes yes   - yes 
1 Likelihood ratio test p-values. 
2 SNPs with q-value < 0.2 were used to compare with human mGWAS gene set.  
3 ANOVA R2 values. Residuals after covariate regression (i.e. Genetic PC1-4 and Latitude) on box-cox transformed relative abundances of bacterial taxa were 
used.  
4 Tissue expression data came from the Human Protein Atlas Database for humans and MGI Gene Expression Database for mice. All expression detected in 
brain tissue and gut (i.e. small and large intestines) as evidence of gene expression. “-” indicates no evidence of expression. “NA” indicates expression not 
tested. 
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Table S9. Metadata of wild-caught individuals. 
ID Localities Latitude Longitude Sex Body 

length Weight BMI Repro. 
status Carbon Nitrogen ClimatePC1 ClimatePC2 BarcodeSequence 

MPR.108 FL 29.67445 -82.33093333 F 77 13 0.0022 adult -21.8 5.2 2.9706 1.4993 CGGACTCGTTAC 
MPR.110 FL 29.6233 -82.340333 F 90 23.5 0.0029 pregnant -21.8 7 3.0965 1.5137 TCTCGCACTGGA 
MPR.112 FL 29.778929 -82.416971 M 77 12.75 0.0022 adult -18.8 5.9 2.9989 1.5015 TTCTGGTCTTGT 
MPR.113 FL 29.78685 -82.495877 F 84 11.375 0.0016 adult -20 6.2 2.9989 1.5015 GTCCACTTGGAC 
MPR.114 FL 29.37283 -82.19892 F 84 15.5 0.0022 pregnant -22.2 8 3.1006 1.4647 GATTTAGAGGCT 
MPR.115 FL 29.45224 -82.3403 F 84 14 0.0020 adult -22.6 4.5 3.2059 1.4694 GTCAGCCGTTAA 
MPR.116 FL 29.39018 -82.1299 M 82 14.25 0.0021 adult -17.9 7.1 3.0286 1.3517 ACGGTTTCTGGA 
MPR.118 FL 29.10066 -82.14192 M 68 9.5 0.0021 adult -21.8 7.1 3.1336 1.1473 GCAGCCATATTG 
MPR.120 FL 29.7828 -82.3755 M 82.5 14 0.0021 adult -24.2 7.7 2.9989 1.5015 ATAGGTGTGCTA 
MPR.121 FL 29.65652 -82.5872 F 92 23 0.0027 pregnant -16.8 7.6 3.0527 1.3108 ACCTAGCTAGTG 
MPR.123 GA 34.0989 -83.3454 M 75.5 11 0.0019 adult -17.9 7.1 0.6944 2.8708 GTCCTGACACTG 
MPR.124 GA 34.10006 -83.59695 F 78 14.5 0.0024 pregnant -19.9 6.5 0.7207 2.9541 GGACTCAACTAA 
MPR.125 GA 34.09889 -83.34537 M 69 11 0.0023 adult -21.4 9.9 0.6944 2.8708 ATACGGGTTCGT 
MPR.126 GA 34.11877 -83.57092 M 80 18.5 0.0029 adult -14.8 7.3 0.7207 2.9541 CCTTTCACCTGT 
MPR.128 GA 33.87025 -83.28893 M 81 15.75 0.0024 adult -21.3 7.8 0.5581 2.6117 ATCAGCCAGCTC 
MPR.129 GA 33.83757 -83.35049 M 77 12.75 0.0022 adult -20.4 6.6 0.5868 2.6940 GCTCCACAACGT 
MPR.130 GA 33.94638 -83.38383 F 80 16.125 0.0025 adult -17.3 6.4 0.5868 2.6940 AAGGAGTGCGCA 
MPR.131 GA 33.88584 -83.48023 F 65 9 0.0021 pregnant -9.5 9.6 0.5868 2.6940 AGGGAAAGGATC 
MPR.132 GA 33.8437 -83.33744 F 75.5 11 0.0019 adult -18.1 7.8 0.5868 2.6940 ACGACGCATTTG 
MPR.133 GA 33.94639 -83.38384 F 89 21.375 0.0027 pregnant -15.1 7.8 0.5868 2.6940 CGTCACTCCAAG 
MPR.134 NH-VT 44.11202 -72.04543 F 83 19.125 0.0028 adult -18 8.3 -2.9415 2.0775 TTACACAAAGGC 
MPR.135 NH-VT 44.11212 -72.04551 F 93 21.375 0.0025 adult -15.5 7.5 -2.9415 2.0775 GTATAGTCCGTG 
MPR.137 NH-VT 43.99797 -72.10448 F 81 13.375 0.0020 adult -17.6 10.8 -2.8739 2.4498 TCGTAAGCCGTC 
MPR.138 NH-VT 43.97192 -72.08463 M 86 14.75 0.0020 adult -23.4 5.7 -2.8739 2.4498 TGACGCCTCCAA 
MPR.140 NH-VT 43.97281 -72.09393 M 74 14 0.0026 adult -17.8 6.3 -2.8739 2.4498 TTCTCGGTTCTC 
MPR.141 NH-VT 43.95075 -72.11753 M 86 19.5 0.0026 adult -19.5 11.8 -2.8739 2.4498 GCTACTGGTATG 
MPR.142 NH-VT 43.9609 -72.11585 F 94 23.75 0.0027 pregnant -19.9 7.6 -2.8739 2.4498 GAATCCTCACCG 
MPR.143 NH-VT 43.927907 -72.12301 M 81.5 15.5 0.0023 adult -14.4 11.3 -2.8739 2.4498 CCTGACACACAC 
MPR.144 NH-VT 44.12806 -72.04328 M 87.5 18.25 0.0024 adult -15.5 7.5 -2.9415 2.0775 CAGCGTTTAGCC 
MPR.145 NH-VT 43.95596 -72.11164 F 98 21 0.0022 adult -19.3 6.7 -2.8739 2.4498 GGTATGGCTACT 
MPR.146 PA 40.618763 -75.36362 F 86 13.125 0.0018 adult -19.9 8 -1.2138 3.0054 ACAATGTCACAG 
MPR.147 PA 40.50319 -75.3174 M 87 16 0.0021 adult -20.5 6.7 -1.2217 3.1057 GCCATAGTGTGT 
MPR.148 PA 40.45099 -75.40128 M 75 13.25 0.0024 adult -21.6 6.1 -1.2121 3.0214 GGTCCCGAAATT 
MPR.150 PA 40.59571 -75.65891 F 75 11.875 0.0021 adult -23.8 5.9 -1.2531 2.9697 TCTGCGAGTCTG 
MPR.151 PA 40.55189 -75.32455 M 78.5 15 0.0024 adult -23.2 7.1 -1.2217 3.1057 ATGTAGGCTTAG 
MPR.152 PA 40.53107 -75.34738 M 81 15 0.0023 adult -15.4 6.7 -1.2138 3.0054 TGCTTCCAATTC 
MPR.153 PA 40.500421 -76.103425 F 81.5 21.25 0.0032 pregnant -10.7 8.4 -1.3627 3.0875 GCCGAGATAATT 
MPR.154 PA 40.461968 -76.08789 F 82 17.25 0.0026 adult -19.9 6.3 -1.2776 2.9005 TCGAGTATCGAA 
MPR.155 PA 40.70747 -75.66738 M 78 14.5 0.0024 adult -19.9 7.6 -1.3751 3.1802 GCCCTATCTTCT 
MPR.156 PA 40.526708 -76.097258 F 96 21 0.0023 adult -17 6.8 -1.3627 3.0875 AGGTACGCAATT 
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Table S9. Metada of wild-caught individuals (continued). 

ID Localities Latitude Longitude Sex Body 
length Weight BMI Repro. 

status Carbon Nitrogen ClimatePC1 ClimatePC2 BarcodeSequence 

MPR.159 VA 37.74117 -77.57546 F 77 14.75 0.0025 adult -23.5 7.4 -0.5471 2.6809 GTCCCTATTATC 
MPR.161 VA 37.65535 -77.72927 F 80 15.25 0.0024 pregnant -24.1 8 -0.5269 2.6541 TGGGACATATCC 
MPR.162 VA 37.48763 -77.40208 M 86 17.25 0.0023 adult -19.5 6.5 -0.1458 2.5907 GAACGATCATGT 
MPR.163 VA 37.65501 -77.73977 M 78 15.125 0.0025 adult -22.8 5.9 -0.5269 2.6541 TTCAGACCAGCC 
MPR.164 VA 37.67885 -77.5166 M 91 18.25 0.0022 adult -20.3 6.9 -0.5471 2.6809 ACGCATCGCACT 
MPR.165 VA 37.55811 -77.48073 M 66 10.75 0.0025 adult -19.3 8.2 -0.3668 2.6924 CAGTAGCGATAT 
MPR.166 VA 37.76063 -77.48351 M 80 15 0.0023 adult -19 5.9 -0.4681 2.6642 TCCCTTGTCTCC 
MPR.167 VA 37.52756 -77.6492 F 80 13 0.0020 adult -14.7 9.6 -0.4886 2.7185 ACGAGACTGATT 
MPR.168 VA 37.85448 -77.26262 F 82 13.5 0.0020 pregnant NA NA -0.4758 2.7157 GCTGTACGGATT 
MPR.169 VA 37.55537 -77.66149 F 69 11 0.0023 adult -14.1 7.5 -0.4886 2.7185 ATCACCAGGTGT 
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Table S10. Principal components of climatic variables. 
  PC1 (69.2%) PC2 (22.1%) PC3 (4.6%) Prin4 (3.6%) 

bio1 0.27111 0.0579 0.11257 0.09989 
bio2 0.1859 -0.00256 -0.44368 0.7295 
bio3 0.27115 -0.06465 -0.04618 0.12554 
bio4 -0.27493 0.02479 -0.03135 -0.02992 
bio5 0.25218 0.159 0.19138 0.16051 
bio6 0.27079 0.05962 0.14904 0.03134 
bio7 -0.27357 -0.00493 -0.12247 0.03852 
bio8 0.06238 -0.36347 0.63004 0.23546 
bio9 0.25284 0.16393 -0.20573 -0.01738 
bio10 0.25949 0.12593 0.18248 0.141 
bio11 0.27311 0.03834 0.097 0.07757 
bio12 0.25318 0.10785 -0.00326 -0.38185 
bio13 0.25923 -0.12326 -0.14616 -0.20514 
bio14 -0.01549 0.48149 0.12471 0.04536 
bio15 0.21244 -0.2939 -0.18019 -0.14671 
bio16 0.25764 -0.13577 -0.10009 -0.24175 
bio17 -0.00357 0.46494 0.30991 -0.04143 
bio18 0.22948 -0.25794 0.06483 -0.17746 
bio19 0.16001 0.37484 -0.22778 -0.16795 
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Table S11. Metadata of lab reared individuals from the most northern and southern populations. 

ID Breeding ID Locality Sex Weight Age 
(days) Carbon Nitrogen BarcodeSequence 

FL01F1 F1(DL95x54) Florida_Lab F 16.6 146 -19.0 6.7 TTGGTCTCCTCT 
FL01F2 F1(DL95x54) Florida_Lab F 19 146 -19.0 6.7 CTGCATACTGAG 
FL01M1 F1(DL95x54) Florida_Lab M 23.6 146 -19.0 6.7 TACCTAGTGAGA 
FL01M2 F1(DL95x54) Florida_Lab M 21 146 -19.0 6.7 CGTTCTGGTGGT 
FL02F1 F1(DL105x71)3 Florida_Lab F 15.7 194 -19.0 6.7 GTCAATTAGTGG 
FL02F2 F1(DL105x71)1 Florida_Lab F 16.2 264 -19.0 6.7 AGTACGCAGTCT 
FL02M1 F1(DL105x71)2 Florida_Lab M 20.2 242 -19.0 6.7 CAGGGCCTTTGT 
FL02M2 F1(DL105x71) Florida_Lab M 23.5 194 -19.0 6.7 CGATGAATATCG 
FL03F1 F1(DL107x83) Florida_Lab F 17.5 194 -19.0 6.7 TTCCCGAAACGA 
FL03F2 F1(DL107x83)3 Florida_Lab F 20.5 265 -19.0 6.7 GAACTTTAGCGC 
FL03M1 F1(DL107x83)4 Florida_Lab M 25 194 -19.0 6.7 AGCAGCTATTGC 
FL03M2 F1(DL107x83)6 Florida_Lab M 27.2 194 -19.0 6.7 CTCGGATAGATC 
FL04F1 F1(DL58x59)5 Florida_Lab F 12.9 169 -19.0 6.7 TACTGAGCCTCG 
FL04F2 F1(DL58x59)7 Florida_Lab F 15.5 169 -19.0 6.7 AGAAGGCCTTAT 
FL04M1 F1(DL58x59) Florida_Lab M 20 148 -19.0 6.7 TCCTTAGAAGGC 
FL04M2 F1(DL58x59) Florida_Lab M 20.9 148 -19.0 6.7 GATGGACTTCAA 
FL05F1 F1(DL69x77)3 Florida_Lab F 11.9 126 -19.0 6.7 CATCGCGTTGAC 
FL05F2 F1(DL69x77)1 Florida_Lab F 11.8 126 -19.0 6.7 GCACATAGTCGT 
FL05M1 F1(DL69x77) Florida_Lab M 19.5 129 -19.0 6.7 GGAATTATCGGT 
FL05M2 F1(DL69x77) Florida_Lab M 15.8 129 -19.0 6.7 CATCAAGCATAG 
FL06F1 F1(DL52x49) Florida_Lab F 16.1 177 -19.0 6.7 CCTAGTAAGCTG 
FL06F2 F1(DL52x49) Florida_Lab F 12.5 100 -19.0 6.7 TTACCGACGAGT 
FL06M1 F1(DL52x49) Florida_Lab M 19.2 177 -19.0 6.7 GGCAAATACACT 
FL06M2 F1(DL52x49) Florida_Lab M 14.2 128 -19.0 6.7 GTCATGCTCCAG 
FL07F1 F1(DL80x85)5 Florida_Lab F 13.5 232 -19.0 6.7 TTACCTTACACC 
FL07F2 F1(DL80x85)3 Florida_Lab F 15.6 232 -19.0 6.7 TGACTAATGGCC 
FL07M1 F1(DL80x85) Florida_Lab M 15.4 148 -19.0 6.7 GCTTAGATGTAG 
FL07M2 F1(DL80x85) Florida_Lab M 16.9 148 -19.0 6.7 AAGACGTAGCGG 
FL08F1 F1(DL67x66)3 Florida_Lab F 18.5 266 -19.0 6.7 CACGTGACATGT 
FL08F2 F1(DL67x66)5 Florida_Lab F 22 266 -19.0 6.7 CACAGTTGAAGT 
FL08M1 F1(DL67x66) Florida_Lab M 21.1 205 -19.0 6.7 CTCTCTCACTTG 
FL08M2 F1(DL67x66)6 Florida_Lab M 21.5 205 -19.0 6.7 ATTGCAAGCAAC 
FL09F1 F1(DL81x82)1 Florida_Lab F 15 213 -19.0 6.7 ACCGGAGTAGGA 
FL09F2 F1(DL81x82)5 Florida_Lab F 13 146 -19.0 6.7 TGAGGACTACCT 
FL09M1 F1(DL81x82) Florida_Lab M 17.5 147 -19.0 6.7 CTAGGATCACTG 
FL09M2 F1(DL81x82)2 Florida_Lab M 20.1 213 -19.0 6.7 GATGACCCAAAT 
FL10F1 F1(DL97x73)5 Florida_Lab F 15.5 200 -19.0 6.7 TGACCGGCTGTT 
FL10F2 F1(DL97x73)1 Florida_Lab F 15 200 -19.0 6.7 GGAGGAGCAATA 
FL10M1 F1(DL97x73) Florida_Lab M 18.8 179 -19.0 6.7 CAATCGGCTTGC 
FL10M2 F1(DL97x73) Florida_Lab M 18.4 179 -19.0 6.7 AACACTCGATCG 
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Table S11. Metadata of lab reared individuals from the most northern and southern populations (continued).  

ID Breeding ID Locality Sex Weight Age 
(days) Carbon Nitrogen BarcodeSequence 

NY01F1 F1(MJS19x13)5 New_York_Lab F 17.8 235 -19.1 6.4 AGAGAGACAGGT 
NY01F2 F1(MJS19x13)3 New_York_Lab F 17.9 235 -19.1 6.4 TCGCCAGTGCAT 
NY01M1 F1(MJS19x13)8 New_York_Lab M 20.1 142 -19.1 6.4 TCAACCCGTGAA 
NY01M2 F1(MJS19x13)10 New_York_Lab M 21.5 142 -19.1 6.4 GTTTGAAACACG 
NY02F1 F1(MJS66x67)3 New_York_Lab F 13.5 166 -19.1 6.4 TCTAGCCTGGCA 
NY02F2 F1(MJS66x67)1 New_York_Lab F 16.8 166 -19.1 6.4 AATGCAATGCGT 
NY02M1 F1(MJS66x67) New_York_Lab M 21 140 -19.1 6.4 GCTCAGGACTCT 
NY02M2 F1(MJS66x67) New_York_Lab M 24.8 140 -19.1 6.4 CACTTTGGGTGC 
NY03F1 F1(MJS34x38)3 New_York_Lab F 17.9 236 -19.1 6.4 ATCAGAGCCCAT 
NY03F2 F1(MJS34x38)1 New_York_Lab F 22.1 236 -19.1 6.4 TCTGTAGAGCCA 
NY03M1 F1(MJS34x38) New_York_Lab M 20.1 144 -19.1 6.4 CGAATGAGTCAT 
NY03M2 F1(MJS34x38)2 New_York_Lab M 22 210 -19.1 6.4 CAACGCTAGAAT 
NY04F1 F1(MJS44x42)5 New_York_Lab F 16.4 165 -19.1 6.4 GACAACGAATCT 
NY04F2 F1(MJS44x42)9 New_York_Lab F 17.8 233 -19.1 6.4 TGCGGTTGACTC 
NY04M1 F1(MJS44x42) New_York_Lab M 22.6 142 -19.1 6.4 CCGACTCTAGGT 
NY04M2 F1(MJS44x42) New_York_Lab M 23.9 142 -19.1 6.4 ATCCTACGAGCA 
NY05F1 F1(MJS49x60) New_York_Lab F 17.5 139 -19.1 6.4 CACAGGATTACC 
NY05M1 F1(MJS49x60) New_York_Lab M 23.4 139 -19.1 6.4 TGAGAAGAAAGG 
NY05M2 F1(MJS49x60) New_York_Lab M 25.1 139 -19.1 6.4 TCGGATCTGTGA 
NY05M3 F1(MJS49x60) New_York_Lab M 21.9 139 -19.1 6.4 GCCGGTACTCTA 
NY06F1 F1(MJS105x104)3 New_York_Lab F 15 165 -19.1 6.4 TGTGTTACTCCT 
NY06F2 F1(MJS105x104)1 New_York_Lab F 16.5 165 -19.1 6.4 GGTACCTGCAAT 
NY06M1 F1(MJS105x104) New_York_Lab M 24.2 141 -19.1 6.4 CGATATCAGTAG 
NY06M2 F1(MJS105x104) New_York_Lab M 25.2 141 -19.1 6.4 CATAAGGGAGGC 
NY07F1 F1(MJS9x11)5 New_York_Lab F 20.1 154 -19.1 6.4 TAACCCGATAGA 
NY07F2 F1(MJS9x11)7 New_York_Lab F 20 154 -19.1 6.4 GTGTGCTAACGT 
NY07M1 F1(MJS9x11) New_York_Lab M 20.9 133 -19.1 6.4 TCGCCTATAAGG 
NY07M2 F1(MJS9x11) New_York_Lab M 24.8 180 -19.1 6.4 AGTGGCACTATC 
NY08F1 F1(MJS83x80) New_York_Lab F 13.8 203 -19.1 6.4 ATTGCTGGTCGA 
NY08F2 F1(MJS83x80)1 New_York_Lab F 15 226 -19.1 6.4 AAGAAGCCGGAC 
NY08M1 F1(MJS83x80) New_York_Lab M 17 130 -19.1 6.4 CTTGCGGCAATC 
NY08M2 F1(MJS83x80)4 New_York_Lab M 16.2 203 -19.1 6.4 TGAGGTTTGATG 
NY09F1 F1(MJS82x81)1 New_York_Lab F 21.1 226 -19.1 6.4 TCCGTCATGGGT 
NY09F2 F1(MJS82x81)7 New_York_Lab F 23.2 169 -19.1 6.4 AGATCTATGCAG 
NY09M1 F1(MJS82x81)4 New_York_Lab M 24.5 204 -19.1 6.4 ACGGGATACAGG 
NY09M2 F1(MJS82x81) New_York_Lab M 27 147 -19.1 6.4 AAGAGTCTCTAG 
NY10F1 F1(MJS92x91)5 New_York_Lab F 17 226 -19.1 6.4 GCGAGTTCCTGT 
NY10F2 F1(MJS92x91) New_York_Lab F 20.9 168 -19.1 6.4 TTCCGAATCGGC 
NY10M1 F1(MJS92x91)2 New_York_Lab M 24.2 204 -19.1 6.4 GCACAAGGCAAG 
NY10M2 F1(MJS92x91) New_York_Lab M 25.5 144 -19.1 6.4 CGGCAAACACTT 
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Figure S1. Dietary difference among wild and lab populations. No significant differences were observed among the populations 
(Kruskal-Wallis tests: δ13C ‰, p-value = 0.27 and δ15N ‰, p-value = 0.24).	
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Figure S2. There is no evidence of a significant association between genetic distance and geographic distance (Mantel test, Exome: 
Z=	1225.03, r = 0.12, P = 0.37). Figure adopted from Phifer-Rixey in review. 
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FigureS3. Correlations between obesity-associated composition (Log Firmicutes/Bacteroidetes ratio) and latitudes. Black dots are 
population average and gray dots are individual data points. (A) Figure modified from Suzuki and Worobey 2014. Significant positive 
correlation for population average (Rho = 0.77, P < 0.0001) and individual data points (Rho = 0.51, P < 0.0001) in healthy adult 
human populations. (B) Significant positive correlation for population average (Rho = 0.90, P = 0.037), but not for individual data 
points (Rho = 0.26, P = 0.11) in adult mouse populations. There are also weak trends of positive correlations between Log F/B ratio 
and Body weight (rho = 0.29, p=0.0693) and BMI (rho = 0.282, p = 0.0779) in wild mice. Error bars are SE.	
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P > 0.1 Spearman’s Rho 
P < 0.1 Wild 
P < 0.05 

Latitude BMI* 
Body 

weight* P < 0.01 
Alpha-diversity       
    Phylogenetic diversity 0.401 0.254 0.410 
Phylum Firmicutes 0.134 0.210 0.081 
    Genus Clostridiales_unc 0.078 0.145 0.101 
    Genus Lachnospiracea_unc 0.128 0.160 0.138 
    Genus Lactobacillus 0.047 0.155 0.031 
    Genus Oscillospira -0.069 0.290 0.033 
    Genus Ruminococcaceae_unc 0.081 0.086 0.116 
    Genus Ruminococcus -0.115 -0.144 -0.024 
Phylum Bacteroidetes -0.336 -0.160 -0.155 
    Genus Bacteroides -0.061 -0.169 -0.128 
    Genus Bacteroidales_unc 0.196 0.225 0.144 
    Genus Odoribacter 0.097 0.274 0.412 
    Genus Parabacteroides -0.203 -0.397 -0.180 
    Genus Prevotella 0.140 -0.390 -0.200 
    Genus Rikenellaceae_unc -0.036 0.256 0.228 
    Genus S24_7_unc -0.429 -0.099 -0.004 
Phylum Proteobacteria 0.443 -0.050 0.219 
    Genus Desulfovibrionaceae_unc 0.372 0.073 0.249 
    Genus Helicobacteraceae_unc 0.198 -0.055 0.151 
    Genus Helicobacter 0.374 -0.155 -0.207 
Phylum Deferribacteres 0.266 0.149 0.033 
    Genus Mucispirillum 0.266 0.149 0.033 

	
Figure S4. Correlations between microbial measurements and metadata (i.e. latitude, BMI, and 
body weight). * BMI and body weight are controlled for latitude by using the residuals of 
covariate regression. Spearman’s rho values are shown and the p-values are indicated by color. 
The genera are chosen based on average relative abundance of >1% in the wild samples. 
Pregnant females and juveniles are excluded and only adults (n=40) are included in the analyses.	
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Figure S5. The microbial community composition is more similar between wild and lab reared 
animals that share the same geographic origin compared to those that do not share the geographic 
origin (p = 0.029). The southern wild population was equally similar to the two lab reared 
populations (p = 0.44), but the northern wild population was significantly more similar to 
northern lab population compared to southern lab population (P=0.0014). P-values are Wilcoxon 
permutation test based on 9999 Monte-Carlo resampling. Error bars are SE.	
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Figure S6. Correlations between OTU counts on the same six samples between two lanes of 
Illumina MiSeq before and after filtering. Dotted lines show the expected regression between the 
two samples ran on different lanes of Illumina sequencing. (A) Run2 shows greater number of 
OTU counts compared to run1 despite rarefying to an even depth of 5000 reads. (B) Rare OTUs 
with relative abundance less than 8.0x10-6 were removed from the run2 OTU table to account for 
the lane bias.  	
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Abstract 

	
The maintenance of oxygen homeostasis in the gut is critical for the maintenance 

of a healthy gut microbiota. Variation in the partial pressure of oxygen in the gut predicts 
different abundances of anaerobic and aerobic bacteria, but how the atmospheric oxygen 
concentration affects the gut microbiota in natural populations remains unexplored. High 
altitude environments provide an opportunity to study the potential effects of atmospheric 
oxygen on the composition and function of the gut microbiota. Here, we tested the effects 
of altitude on the gut microbiota by characterizing the cecal microbial communities of 
wild house mice from two independent transects in Ecuador and Bolivia, where the 
elevation ranges from sea level to 3906m. First, we found that differences in altitude were 
associated with differences in the gut microbial community after controlling for the 
effects of body size, diet, reproductive status, and population. Second, obligate anaerobes 
tended to show positive correlations with altitude while all other microbes tended to show 
negative correlations with altitude.  These patterns were seen independently in both 
transects, consistent with the expected effects of atmospheric oxygen on the gut 
microbiota. Prevotella was the genus that was most enriched in high-altitude 
environments in both transects, consistent with observations in high-altitude populations 
of pikas, ruminants, and humans, and also consistent with laboratory mice exposed to 
hypoxic conditions. Lastly, the renin-angiotensin system, a recently proposed microbiota-
mediated pathway of blood pressure regulation, was the top predicted metagenomic 
pathway enriched in high altitudes in both transects. These results suggest that high 
altitude environments may affect the compositional and functional variation of the gut 
microbiota in wild mammals.    
 
5.1. Introduction 

 
The gut microbiota can affect the health (Knight et al., 2017) and fitness (Suzuki, 

2017) of animals. The maintenance of oxygen homeostasis in the gut is critical in 
maintaining a healthy gut microbiota (Zeitouni, Chotikatum, von Köckritz-Blickwede, & 
Naim, 2016). A healthy adult mammalian gut microbiota is generally dominated by 
anaerobes and few aerobes. Alteration of the gut microbial community can lead to 
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expansions of pathogenic aerobic bacteria (Byndloss et al., 2017; Rivera-Chávez et al., 
2016). Thus, identifying the factors that affect the composition and function of the gut 
microbiota has broad implications.  

The oxygen concentration in the gut is one of the key factors that affect the 
assembly of the gut microbial community. The first colonizers of the infant gut are often 
aerobes that consume oxygen, and later colonizers tend to be obligate anaerobes 
(Matamoros, Gras-Leguen, Le Vacon, Potel, & De La Cochetiere, 2013; Palmer, Bik, 
DiGiulio, Relman, & Brown, 2007). Spatial variation of gut microbial communities also 
exists within an individual’s gastrointestinal (GI) tract. For example, consistent with the 
decrease in oxygen levels from the mouth to anus (He et al., 1999), aerobes tend to 
dominate the upper GI tract and anaerobes tend to dominate the lower GI tract in mice 
(Gu et al., 2013; Suzuki & Nachman, 2016) and humans (Hayashi, Takahashi, Nishi, 
Sakamoto, & Benno, 2005). Within the lower GI tract, anaerobes dominate the luminal 
content and aerobes are enriched in the oxygen-rich mucus layer where the oxygen 
diffuses from epithelial cells as seen in mice, macaques, and humans (Espey 2013; 
Albenberg et al. 2014; Yasuda et al. 2015). Hypoxic exposure in laboratory mice can 
induce changes in the gut microbial composition, including an increase in obligate 
anaerobes suggesting that an oxygen deficit can provide a selective advantage to 
anaerobes over aerobes (Moreno-Indias et al., 2015). Although other factors are well-
known to influence the gut microbial composition in natural populations of mammals 
including diet (Wang et al., 2014; Wu et al., 2011), host genetics (Goodrich, Davenport, 
Waters, Clark, & Ley, 2016), body size (Ley, Turnbaugh, Klein, & Gordon, 2006; 
Nishida & Ochman, 2017), and reproductive status (Nuriel-Ohayon, Neuman, & Koren, 
2016), how atmospheric oxygen levels affect gut microbial composition has been less 
explored outside of laboratory settings.  

High altitude environments provide an opportunity to study the effects of 
atmospheric oxygen on the compositional and functional variation of the gut microbiota. 
The reduced partial pressure of oxygen at higher elevations causes a variety of 
physiological issues related to hypoxic stress in animals (Grindlay & Regensteiner, 1983; 
Storz, 2007). A few studies have characterized the gut microbiota from mammalian 
populations living at different altitudes, including work on pikas (H. Li, Li, Beasley, et al., 
2016; H. Li, Li, Yao, et al., 2016), ruminants (Zhang et al., 2016), macaques (Sun et al., 
2016), and humans (Lan et al., 2017; K. Li et al., 2016; L. Li & Zhao, 2015). In all of 
these studies, differences in altitude were associated with differences in the gut microbial 
composition. However, the observed patterns could also be explained by differences in 
diet, population structure, or culture, as these variables co-varied with altitude. 
Disentangling the effects of atmospheric oxygen and other co-variables on the gut 
microbiota remains a challenge.  

Two major beneficial functions of the gut microbiota in high altitude 
environments have been proposed; the gut microbiota-mediated energy harvest (Lan et 
al., 2017; K. Li et al., 2016; L. Li & Zhao, 2015; Zhang et al., 2016; Zhao et al., 2018) 
and blood pressure regulation (Lan et al., 2017; L. Li & Zhao, 2015). Many anaerobic gut 
bacteria produce short-chain fatty-acids (SCFAs) as end products of polysaccharide 
fermentation (Topping & Clifton, 2001). SCFAs are a major energy source for epithelial 
cells and provide about 10% of daily calories in humans (Bergman, 1990). At high 
altitudes, a greater abundance of SCFA-producing obligate anaerobes was reported (Lan 
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et al., 2017; K. Li et al., 2016; L. Li & Zhao, 2015; Zhang et al., 2016; Zhao et al., 2018). 
SCFAs are not only an important energy source, but they also act as signaling molecules 
by traveling through the bloodstream and binding to SCFA-receptors in various tissues 
(Samuel et al., 2008). Pluznick et al. (2014) proposed opposing roles of two SCFA-
receptors that decrease and increase blood pressure. For example, olfactory receptor 78 
(Olfr78) in the kidney can increase blood pressure through SCFA-mediated renin release, 
an enzyme that plays a central role in regulating blood pressure through the renin-
angiotensin system (J L Pluznick et al., 2009; Jennifer L Pluznick et al., 2013). These 
discoveries led some researchers to speculate that the gut microbiota may be involved in 
the regulation of blood pressure in high-altitude populations of humans (Lan et al., 2017; 
L. Li & Zhao, 2015). 

House mice provide an opportunity to study the effects of a high-altitude 
environment on the composition and function of the gut microbiota. First, house mice 
(Mus musculus) are predominantly a lowland species, but they have successfully 
colonized high-altitude environments in the last few hundred years with human settlers 
including at elevations over 4000m in Peru (Harland, 1958) and Bolivia (Storz et al., 
2007). The ability to study multiple altitudinal transects from sea level to over 4000m 
elevation within a single species provides an opportunity to look for parallel patterns in 
the gut microbiota in relation to altitude. Second, although the extent to which house 
mice have adapted to hypoxic environments remains unclear (Storz et al., 2007), there is 
evidence that lab mice kept in high-altitudes for 30 generations show differences in their 
physiology compared to mice from low-altitudes (A. Jochmans-Lemoine et al., 2015; 
Alexandra Jochmans-Lemoine, Shahare, Soliz, & Joseph, 2016). Lastly, house mice are 
good mammalian models (Phifer-Rixey & Nachman, 2015). Genomic and physiological 
research related to hypoxia and the microbiota in laboratory mice provides useful 
information for interpreting patterns observed in natural populations of wild mice.  
Here we characterized the cecal microbial community of natural populations of house 
mice across two altitudinal transects in South America to test the effects of atmospheric 
oxygen on the gut microbiota. First, we tested whether altitude correlates with overall 
differences in the gut microbiota independent of covariates. Second, we tested whether 
obligate anaerobes show positive correlations with altitude and whether aerobes show 
negative correlations with altitude. Third, we looked for parallel patterns in the gut 
microbiota across high-altitude mammals and laboratory mice under hypoxic exposure. 
Lastly, we identified predicted metagenomic pathways that correlate with altitude in both 
transects to generate hypotheses on the gut microbial functions in high-altitude 
environments. Overall, the results were consistent with the idea that atmospheric oxygen 
alters gut microbial composition. We also discuss potential beneficial effects of the gut 
microbiota in high-altitude environments. 
 
5.2. Material and Methods 
 
5.2.1. Sampling 

 
Ten populations of house mice (Mus musculus) were collected across two 

altitudinal transects in South America including a total of 92 individuals (Fig.1). The 
Ecuador transect included five populations; Portoviejo (n = 11, mean elev. = 32m), Santo 
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Domingo (n = 10, mean elev. = 416m), Nanegalito (n= 9, mean elev. = 1643m), Tumbaco 
(n = 11, mean elev. = 2598m), and Latacunga (n = 8, mean elev. = 2918m) (Fig.1A). The 
Bolivia-Brazil transect also included five populations; Porto Velho (n = 9, mean elev. = 
86m), Santa Cruz (n = 4, mean elev. = 320m), Cochabamba (n = 12, mean elev. 2615m), 
La Paz (n = 10, mean elev. 3435m), and Lake Titikaka (n = 8, mean elev. 3846m) (Fig. 
1B). Individuals were collected using Sherman live traps and each individual was 
separated at least 500m to avoid collecting close relatives except four sites in Ecuador 
transect where two to three individuals were collected from the same site (Table S1). All 
of the Ecuador samples were collected in Nov. – Dec. 2012. All of the Bolivia-Brazil 
samples were collected in Aug. – Sep. 2014 except the Porto Velho population which 
were collected in Sep. 2013.  

Cecal samples and external measurements including body weight and body mass 
index (i.e. BMI = (body weight / body length)2) were collected within 24 hours after 
capture. The cecal samples were stored in RNAlater solution at 4°C overnight, transferred 
to liquid nitrogen after 8-12 hours except the samples from Porto Velho where the cecal 
samples were directly stored in liquid nitrogen. All the samples were stored in deep 
freezer (-80°C) until sequencing. While different sample preservation methods are known 
to affect the microbial community composition (Choo, Leong, & Rogers, 2015), we 
decided to include the Porto Velho population to increase the power of the analyses and 
accounted for the effect of sample preservation statistically (see below). Carbon (δ13C) 
and nitrogen (δ15N) stable isotope ratios were analyzed from mouse hair to estimate diet 
following the protocol of Suzuki and Nachman (2016). Detailed information of individual 
measurements is summarized in Table S1. All procedures involving animals were 
reviewed and approved by the Institutional Animal Care and Use Committee at the 
University of Arizona (protocol 07-004) and the University of California Berkeley 
(protocol R361-0514). Animal collection permits were issued by the local governments 
where necessary. Museum specimens (skins and skulls) were prepared and have been 
deposited in the mammal collection of the Museum of Vertebrate Zoology at the 
University of California, Berkeley and the data were uploaded to a public database 
ARCTOS.  
 
5.2.2. DNA extraction and 16S rRNA gene sequencing 
 
 The distal portion of cecal samples including both luminal and mucosal samples 
were weighted equally (~200mg) in sterile condition. We used a protocol of DNA 
extraction described in Suzuki and Nachman (2016). Briefly, we added mechanical 
disruption step using sterile zirconia/silica beads (0.1mm, Research Products 
International Corp.) before step 4 (vortex and centrifugation) in the protocol from the 
QIAamp DNA stool Minikit (Qiagen). The samples were stored at -20°C before 
sequencing. The V4 region of the 16S rRNA gene was amplified, multiplexed, and 
sequenced for 16S amplicon sequencing on 150bp pair-end Illumina MiSeq at the Next 
Generation Sequencing Core Facility at Argonne National Laboratory. 
The PCR primers (515F and 806R) and the barcodes are described in (Caporaso et al. 
2012). 
 
5.2.3. Data analyses 
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All of the 16S rRNA data was analyzed in QIIME version 1.9.0 (Caporaso et al. 

2010). The forward reads were demultiplexed and quality-filtered using default 
parameters using split_libraries_fastq.py. Subsampled open-reference OTU picking 
approach (pick_open_reference_otus.py) was used with default parameters. UCLUST 
was used to generate 97% OTUs (Edgar 2010) and taxa were assigned based on SILVA 
database (release 128) (Quast et al. 2013). Singletons were removed. A phylogenetic tree 
was created using FastTree (Price, Dehal and Arkin 2009). The OTU table was rarefied to 
an even depth of 5,000 reads to maximize the sample size.  

Bray-Curtis dissimilarity was calculated and PCoA plots were generated including 
all individuals using jackknife_beta_diversity.py with default parameters. To identify 
variables that significantly affect the Bray-Curtis dissimilarity, we used ADONIS with 
9999 permutations. We calculated correlations between altitude and other variables in the 
metadata by using Spearman’s rho correlation. Population difference in diet stable isotope 
measurements were tested using ANOVA. P-values of ADONIS, Spearman’s correlation, 
and ANOVA were corrected for multiple testing using Bonferroni correction. To test 
whether the correlation between altitude and Bray-Curtis dissimilarity is independent of 
other covariates, we conducted model comparisons using linear mixed-effects model with 
“lmer” function in the package “lme4” in R (version 3.4.3). All of the variables were 
normalized using standard deviation. The first three principle components of Bray-Curtis 
dissimilarity, PC1 (8.4%), PC2 (6.2%), and PC3 (5.3%) were used as response variables. 
The full models included five fixed effects (i.e. altitude, body weight, BMI, carbon and 
nitrogen stable isotope diet measures) and three random effects (i.e. population, 
reproductive status, and sample storage methods). The full models were compared to 
models without altitude using Akaike information criterion with sample size correction 
(AICc) with the “AICc” function in the package “AICcmodavg”. We also used 
Likelihood ratio test to compare between full models and models without altitude with 
“lrtest” function in the package “lmtest”.  
 The overall alpha-diversity measurements (i.e. OTU counts, phylogenetic 
diversity, and simpson’s index) were calculated based on the rarefied OTU table using 
alpha_diversity.py. In addition, to identify bacterial phyla that show increase in alpha-
diversity in high-altitude environments, we calculated the phylogenetic diversity within 
each of the three dominant phyla (i.e. Firmicutes, Bacteroidetes, and Proteobacteria). 
Correlations between altitude and alpha-diversity measurements were based on 
Spearman’s rho correlation. To account for covariates, we conducted model comparisons 
using linear mixed-effects models with the same variables mentioned above except the 
response variables being the phylogenetic diversity.  

The relative abundances of bacterial phyla and genera were calculated based on 
the rarefied OTU table using summarize_taxa.py. We focused on bacterial taxa that have 
relative abundance of 0.1% or greater and tested the correlations between altitude and 
relative abundance of bacterial taxa within each transect independently using Spearman’s 
rho correlation. When the slopes between altitude and relative abundances of bacterial 
taxa were in the same direction in both transects, Fisher’s method of combining p-values 
corrected by Bonferroni correction were used to rank the bacterial taxa that correlated 
with altitude. Oxygen requirements of bacterial genera (i.e. obligate anaerobes, 
facultative anaerobes, aerotolerant anaerobes, microaerophiles, and obligate aerobes) 
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were assigned based on Bergey’s Manual of Systematics of Archaea and Bacteria 
(Whitman et al. 2015) and recent literature (Robertson et al. 2005; Hardham et al. 2008; 
Reunanen et al. 2015; Ouwerkerk et al. 2016). The oxygen requirements of bacterial 
genera were divided into two groups for statistical purposes, “obligate anaerobes” and 
“all other oxygen requirement types” as in (Albenberg et al. 2014). When the genera 
were unclassified, we used the oxygen requirements of the family. There were three 
instances where the family of the unclassified genera included both obligate anaerobes 
and all other oxygen requirement types. In those cases, we searched for all the recognized 
genera within the family and assigned oxygen requirement based on a majority rule (i.e. 
two out of the three genera showed the same oxygen requirements).  
 Lastly, to generate hypotheses of the function of gut microbiota in high-altitudes, 
we identified predicted metagenomic functions that are significantly correlated with 
altitude using PICRUSt (Langille et al. 2013). Rarefied OTU table with OTUs that are 
present in the reference database (Greengenes 13_5) were used as an input of PICRUSt. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances were assigned 
and collapsed by KEGG pathway hierarchy level 3. Correlations between relative 
abundances of KEGG pathway categories and altitude were calculated using Spearman’s 
rho correlation in both transects. Similar to the clinal tests of bacterial genera, when the 
slopes between altitude and relative abundances of KEGG pathway categories were in the 
same direction in both transects, Fisher’s method of combining p-values with Bonferroni 
correction were used to rank the bacterial taxa that correlated with altitude. 
 
 
5.3. Results 
 
5.3.1. Differences in altitude are associated with differences in the gut microbial 
composition. 
 

To understand the role of altitude affecting the variation of the gut microbiota, we 
characterized the microbial composition of cecal samples from 10 populations of house 
mice across two altitudinal gradients, Ecuador transect (Fig.1A) and Bolivia-Brazil 
transect (Fig.1B). First, we identified factors that significantly explain the differences in 
the gut microbial community using Bray-Curtis dissimilarity without controlling for 
covariates. Overall, we found Bray-Curtis dissimilarity was significantly explained by 
differences in altitude and populations using all samples after correcting for multiple 
testing (Fig.1C&D, Table S2). Body mass index (BMI) showed significant effects on 
Bray-Curtis dissimilarity in the Bolivia-Brazil transect, but not in the Ecuador transect 
(Table S2). Carbon and nitrogen stable isotope diet measurements, body weight, 
pregnancy, and sex showed no significant associations with Bray-Curtis dissimilarity 
(Table S2).  

The observed association between altitude and Bray-Curtis dissimilarity can be 
explained by many covariates because the metadata measured in this study were 
correlated with altitude (Table S3). For example, animals living in higher altitude tend to 
be heavier (rho = 0.34, p < 0.0001) and have greater BMI (rho = 0.33, p = 0.001) 
consistent with a trend reported in an altitudinal transect of house mice in Peru (Harland 
1958). Diet measurements based on carbon and nitrogen stable isotopes significantly 
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differ between transects and among populations (Fig. S1). There is a trend where carbon 
and nitrogen stable isotope measurements tend to correlate positively in Ecuador transect 
and negatively in Bolivia-Brazil transect, although the correlations are not significant 
(Fig. S1, Table S3).  

To test whether altitude is significantly associated with Bray-Curtis dissimilarity 
independent of other metadata we measured, we conducted model comparisons using 
linear mix-effects models. We used Bray-Curtis dissimilarity PC1, PC2, and PC3 as 
response variables. Altitude, body weight, BMI, carbon and nitrogen stable isotope 
measurements were used as fixed effects and population, pregnancy, and sample storage 
method were used as random effects. We found that the models without altitude were 
significantly worse than the full models based on AICc for Bray-Curtis dissimilarity PC1, 
PC2, and PC3 (Fig. S2). Especially with models with Bray-Curtis dissimilarity PC2 and 
PC3 as response variables, removing altitude significantly affected the full model based 
on likelihood ratio tests (p < 0.05). The results show that altitude has a significant effect 
on Bray-Curtis dissimilarity independent of other covariates including diet, body size, 
and populations. 

We next asked whether altitude correlates with alpha-diversity of the gut 
microbiota (Fig. 1E-H). Overall, alpha-diversity measurement using phylogenetic 
diversity showed a weak trend of positive correlation with altitude (Fig. 1E, rho = 0.19, p 
= 0.07). Although the trend of greater species richness at higher altitude was true using 
other alpha-diversity measurements, none of the correlations were significant after 
multiple testing (Table S4). To test whether alpha-diversity of individual phyla also show 
a trend of positive correlation with altitude, phylogenetic diversity was calculated within 
each of the three dominant phyla (Fig. 1E-H). Only the phylogenetic diversity of 
Bacteroidetes showed a significant positive correlation with altitude (Fig. 1G). This 
correlation was mostly driven by Bolivia-Brazil transect (rho = 0.45, p = 0.003) and not 
by the Ecuador transect (rho = 0.18, p = 0.22). Using a similar linear mixed-effects model 
comparison mentioned above, the correlation between phylogenetic diversity of 
Bacteroidetes and altitude remained significant after controlling for other covariates 
(likelihood ratio test p = 0.015).  

Together, the results suggest that differences in altitude were associated with 
differences in alpha- and beta-diversity of the gut microbial communities in natural 
populations of house mice. 
 
5.3.2. Oxygen requirements of the bacteria predict the correlations between 
bacterial genera and altitude.  
 
 To identify bacterial taxa that show repeated clinal patterns across altitudinal 
gradients, we focused on 10 phyla and 38 genera that had average relative abundances of 
0.1% or greater across all samples. On average, Firmicutes, Bacteroidetes, and 
Proteobacteria composed more than 94% of the total gut community (Fig. S3), a typical 
microbial composition of wild house mice (Linnenbrink et al. 2013; Wang et al. 2014; 
Weldon et al. 2015; Suzuki and Nachman 2016). None of the bacterial phyla showed 
significant correlations with altitude after correcting for multiple testing (Table S5). 
Cyanobacteria showed a trend of positive correlation in the Ecuador transect (rho = 0.29, 
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p = 0.04) and in the Bolivia-Brazil transect (rho = 0.31, p = 0.04) independently (Table 
S5).  
 To test the hypothesis that obligate anaerobes have advantage over all other 
oxygen requirement types in hypoxic environment, we identified bacterial genera that 
show repeated patterns of clinal variation with altitude in both transects and assigned 
oxygen requirements based on recent literature and Bergey’s Manual of Systematics of 
Archaea and Bacteria (Fig.2, Table S6). Among the 38 bacterial genera, 23 of them 
showed slopes in the same direction with altitude in both transects based on Spearman’s 
rho correlation (Table S6).  We were able to assign oxygen requirements to 17 out of the 
23 bacterial genera, and 15 of them showed correlations with altitude in the expected 
directions (Fig.2, sign test, p = 0.002). Even when we excluded the three unclassified 
genera that we cannot confidently call the oxygen requirements (see methods and Table 
S6), the pattern remained significant (sign test = 0.01). If we only limit to taxa that show 
Fisher’s combined p-value of less than 0.1, the correlations were all in the expected 
directions without exceptions (Fig.2). For example, Akkermansia, an aerotolerant mucin-
degrader that colonizes the mucus layer (Reunanen et al. 2015; Ouwerkerk et al. 2016), 
tend to be more abundant in lower altitudes compared higher altitudes. The results are 
consistent with the hypothesis that reduced atmospheric oxygen at high altitude 
environment provides advantage to obligate anaerobes over other oxygen requirement 
types, and vice versa.   
 
5.3.3. High altitude selects for greater relative abundance of Prevotella across 
multiple species of mammals 
 
 The top genus that significantly associated with high-altitude environment 
independently in both transects was the genus Prevotella (Fig.2, Table S6). In both 
Ecuador and Bolivia-Brazil transects, the relative abundance of Prevotella increased from 
2500m in elevation (Fig. 3A&B). Surprisingly, Li et al. (2016) observed a similar pattern 
in an altitudinal gradient of pika populations ranging from 1000m to 4331m in elevation 
(Fig. 3C). In pika cecal samples, the top correlation between altitude and dominant 
bacterial genera was also Prevotella and this was independent of soil- and plant-
associated microbial communities (Li et al. 2016c). Furthermore, the high-altitude 
adapted Yaks and Tibetan sheep show greater relative abundance of Prevotella compared 
to their lowland close relatives (Fig.3D and E). A similar association between Prevotella 
and high-altitude has been observed in humans in some studies (Li et al. 2016d; Lan et al. 
2017), but not in others (Li and Zhao 2015). For example, Li, Dan, et al. (2016) found 
that Tibetan populations living in high-altitudes were dominated by Prevotella compared 
to Han populations living in low-altitudes (Fig. 3D). When bacterial taxa were compared 
between Tibetan and Han populations living in the same altitude, Prevotella was the most 
enriched taxa in Tibetan populations (Li et al. 2016d). Together, the association between 
Prevotella and high altitude environment has been reported at least in house mice, pikas, 
cattle, sheep, and humans.  
The observation between Prevotella and high altitude environment can be explained by 
diet, climate, atmospheric oxygen, or any other variables that correlate with altitude. At 
least in house mice, diet is unlikely driving this pattern because the correlations between 
altitude and diet stable isotope measurements tend to be in the opposite directions among 



	

	 	 	105 

the two transects (Table S3). In contrast, we cannot exclude the possibility of climate 
driving the bacteria-altitude associations observed in the five mammalian systems 
because climate and altitude are generally tightly correlated (Grindlay and Regensteiner 
1983). However, a study using laboratory mouse model of sleep apnea provides a strong 
evidence that reduced atmospheric oxygen alone can cause an increase in Prevotella 
(Moreno-Indias et al. 2015) (Fig.3E). Moreno-Indias et al. (2015) compared the gut 
microbiota of laboratory mice in a common environment between intermittent hypoxia 
and normoxia treatments. They found 6 out of 23 genera significantly differed in their 
relative abundances between the two treatments including Paraprevotella and Prevotella 
that were enriched in intermittent hypoxia treatment relative to controls (Moreno-Indias 
et al. 2015). The results provide experimental evidence that the increase in Prevotella at 
high altitudes can be driven by lower atmospheric oxygen levels.  
 
5.3.4. Predicted metagenome functions suggest gut microbiota-mediated regulations 
of blood pressure  
 

To generate hypotheses on the functional role of the gut microbiota in host health 
and fitness in high altitude environment, we looked for predicted KEGG pathways that 
correlated with altitude in both transects using PICRUSt (Langille et al. 2013). Among 
the 273 KEGG pathways (level 3) that were identified in both transects, 183 of them 
showed slopes in the same direction with altitude in both transects. Nineteen out of the 
183 KEGG pathways showed significant Fisher’s combined p-values without correcting 
for multiple testing (raw p-value < 0.05) (Fig. 4). The top two KEGG pathways that 
showed positive correlations with altitude were “Renin-angiotensin system” (Ecuador; 
rho = 0.34, p = 0.02. Bolivia-Brazil; rho = 0.51, p = 0.0005. Fisher’s combined p-value = 
0.0001) and “hypertrophic cardiomyopathy” (Ecuador; rho = 0.20, p = 0.17. Bolivia-
Brazil; rho = 0.53, p = 0.0003, Fisher’s combined p-value = 0.0006) (Fig. 4). In contrast, 
the top KEGG pathway that negatively correlated with altitude was “Glycosphingolipid 
biosynthesis - lacto and neolacto series” (Ecuador; rho = -0.40, p = 0.004. Bolivia-Brazil; 
rho = -0.41, p = 0.006. Fisher’s combined p-value = 0.0003) (Fig. 4).  

After correcting for multiple testing (Bonferroni corrected alpha = 0.05/183 = 
0.0003), the only correlation that remained significant was the “renin-angiotensin 
system” that plays a major role in blood pressure homeostasis (Sparks et al. 2014). The 
significant positive correlation between altitude and “renin-angiotensin system” was 
driven by three predicted bacterial homologs that are present in diverse organisms 
including vertebrates and bacteria; angiotensin I converting enzyme (K01283), prolyl 
endopeptidase (K01322), and thimet oligopeptidase 1 (K01392) (Fig. S5). Computational 
and biochemical studies suggest that the homologous bacterial enzymes mentioned above 
may have similar functions in vertebrates (Rivière et al. 2007; Sugihara et al. 2007; 
Kaushik and Sowdhamini 2014). All three predicted KEGG orthologs showed positive 
correlations with altitude in both transects and two of them showed significant Fisher’s 
combined p-value (< 0.05) based on Spearman’s rho correlations (Fig. S4). Especially, 
angiotensin I converting enzyme showed the highest correlation with altitude in Bolivia-
Brazil transect (rho = 0.45, p = 0.003). The results generate a novel hypothesis how 
bacterial genes can be directly involved in blood pressure regulation via rein-angiotensin 
system.  



	

	 	 	106 

5.4. Discussion 
 

We tested whether variation in altitude have effects on variation in gut microbiota 
of wild house mice. First, we found altitudinal differences were associated with 
differences in alpha- and beta-diversity measurements of the gut microbiota. Beta-
diversity of the gut microbiota measured by Bray-Curtis dissimilarity was explained by 
differences altitude controlling for other covariates measured in this study including diet, 
body size, and populations. Alpha-diversity of the gut microbiota showed a weak positive 
correlation with altitude consistent with a previous study in humans (Lan et al. 2017). 
Especially, alpha-diversity of Bacteroidetes showed a significant correlation with altitude 
independent of covariates. Although altitude alone had significant effect on alpha- and 
beta-diversity of the gut microbiota statistically, the observed pattern can still be 
explained by other covariates such as climate. However, diet and host population 
structure are unlikely explanations of the pattern based on stable isotope measurements 
showing opposite correlations with altitude among the two transects (Table. S3, Fig.S1) 
and their colonization history (Storz et al. 2007). This finding is significant because 
correlation between altitude and the gut microbiota in humans is mostly explained by 
population differences including differences in diet, culture, and genetic background (Li 
and Zhao 2015; Li et al. 2016d; Lan et al. 2017).  
 To get around the issue of covariates, we took advantage of a study investigating 
the role of gut microbiota in sleep apnea where lower atmospheric oxygen exposure (i.e. 
intermittent hypoxia) lead to an enrichment of obligate anaerobes in the gut of laboratory 
mice compared to normoxic controls in a common environment (Moreno-Indias et al. 
2015). This observation allowed us to test a specific hypothesis regarding whether 
obligate anaerobes positively correlate with altitude and other oxygen requirement types 
(i.e. facultative anaerobes, aerotolerant anaerobes, microaerophiles, and obligate aerobes) 
negatively correlate with altitude in response to atmospheric oxygen. Overall, we found 
15 out of the 17 bacterial genera showing correlations with altitude in expected directions 
predicted by the hypothesis (Fig. 2). For example, strictly anaerobic bacteria showed 
positive correlations with altitude and microaerobes and aerotolerant bacteria showed 
negative correlations with altitude including Akkermansia that may even benefit from low 
levels of oxygen in the mucus layer (Reunanen et al. 2015; Ouwerkerk et al. 2016). The 
results suggest that obligate anaerobes may have greater competitive advantage at 
hypoxic condition compared to other oxygen requirement types as proposed by Moreno-
Indias et al. (2015). The reduced partial pressure of oxygen at high altitudes lowers 
oxygen levels in the blood and may cause insufficient supply of oxygen to epithelial cells 
(Zheng, Kelly and Colgan 2015), which can result in the increased niche of the anaerobes 
in the luminal contents and the reduced niche of the aerobes in the mucosal surfaces as 
observed in mice, macaques, and humans (Espey 2013; Albenberg et al. 2014; Yasuda et 
al. 2015). A similar mechanism of limiting the bioavailability of the oxygen in the gut 
preventing the expansions of pathogenic aerobic bacteria has been described (Rivera-
Chávez et al. 2016; Byndloss et al. 2017). Together, the observations suggest that the 
atmospheric oxygen level may affect the anaerobes and aerobes differently by directly 
influencing their oxygen niche (Fig. 5).  
 Lastly, we found that Prevotella was the top bacterial genera that positively 
correlated with altitude independently in two altitudinal transects of wild mice (Fig.3). 
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Prevotella is a saccharolytic anaerobe that major metabolic end products include acetic 
acids (Shah and Collins 1990). Interestingly, pikas (Li and Zhao 2015), ruminants (Zhang 
et al. 2016) and humans (Li et al. 2016d; Lan et al. 2017) living in high altitudes also 
show an enrichment of Prevotella. However, opposite trends between Prevotella and 
altitude has also been reported in a study of humans (Li and Zhao 2015) and macaques 
(Zhao et al. 2018). Further investigation of this relationship is necessary to understand 
the link. The strongest evidence of the increase in Prevotella due to low atmospheric 
oxygen comes from the hypoxic experiment in laboratory mice mentioned above where 
Prevotella was one of the few genera that showed increase in intermittent hypoxia 
exposure compared to normoxia controls (Moreno-Indias et al. 2015). Together, the 
repeated associations between Prevotella and oxygen availability across multiple 
mammalian species with different ecology support a possibility that atmospheric oxygen 
levels affecting certain members of the gut microbiota.  
 The high-altitude environment imposes challenges on hosts to survive and 
reproduce under thermoregulatory and hypoxic stress (Grindlay and Regensteiner 1983). 
Two major beneficial functions of the gut microbiota at high-altitude have been 
proposed. One is the role of the gut microbiota in increased energy harvest at high-
altitude by fermenting complex carbohydrates (Li and Zhao 2015; Li et al. 2016d; Zhang 
et al. 2016; Lan et al. 2017; Zhao et al. 2018). A causal role of gut microbiota in 
increased energy harvest has been demonstrated in lab mice (Bäckhed et al. 2004; 
Turnbaugh et al. 2006). Many anaerobic gut bacteria produce SCFAs as end products of 
polysaccharide fermentation and serve as an energy source of the host (den Besten et al. 
2013). Previous studies involving high-altitude mammals have supported this hypothesis 
by reporting direct and indirect evidence of greater production of SCFAs by anaerobic 
bacteria at higher altitudes (Li and Zhao 2015; Li et al. 2016d; Zhang et al. 2016; Lan et 
al. 2017; Zhao et al. 2018). Our results are also consistent with this hypothesis where we 
observed increase in obligate anaerobes with altitude such as Prevotella and unclassified 
genus of Lachnospiraceae. Both of them include species that produce SCFAs (Strobel 
1992; Biddle et al. 2013) and especially Prevotella-dominanted gut community are 
known to have increased capacity to ferment polysaccharides (Kovatcheva-Datchary et 
al. 2015) and increased production of SCFAs (Chen et al. 2017). Predicted metagenomic 
functions also provide support for this hypothesis where starch and sucrose metabolism 
positively correlated with altitude (Fig. 4). Greater reliance on anaerobic energy harvest 
by the gut microbiota at high-altitudes may be beneficial to the host to conserve oxygen. 
 Another hypothesis is the beneficial role of the gut microbiota in the regulation of 
blood pressure (Pluznick 2014; Yang and Zubcevic 2017). Pluznick et al. (2014) 
proposed microbiota-mediated decrease and increase in blood pressure by two SCFA-
receptors acting in opposite directions. For example, propionate (a type of SCFA) can act 
as a signaling molecule and cause a dose-dependent drop in blood pressure in mice 
(Pluznick et al. 2013) and similar vasorelaxation effects has been observed in rats 
(Nutting, Islam and Daugirdas 1991) and humans (Mortensen et al. 1990). In contrast, 
olfactory receptor 78 (Olfr78) in the kidney can increase the blood pressure by SCFA-
mediated renin release (Pluznick et al. 2009, 2013), an enzyme that converts 
angiotensinogen to angiotensin I in the renin-angiotensin system. Renin-angiotensin I is 
further converted by angiotensin I converting enzyme to have a downstream effect of 
increased blood pressure by vasoconstriction (Sparks et al. 2014). Our results support the 



	

	 	 	108 

involvement of the gut microbiota in blood pressure homeostasis in at least two 
mechanisms in the renin-angiotensin system (Fig. 5). The first mechanisms is through the 
activation of SCFA-receptors (Pluznick 2014) supported by the observation that high-
altitude populations has greater relative abundance of SCFA-producing anaerobic 
bacteria compared to low altitude populations as proposed in humans (Li and Zhao 2015; 
Lan et al. 2017). The second potential mechanism is through bacterial enzymes directly 
affecting the renin-angiotensin system supported by the positive correlation between 
altitude and predicted bacterial homologs in the renin-angiotensin pathway. Especially 
the bacterial angiotensin I converting enzyme homolog have been shown to convert 
mammalian angiotensin I to angiotensin II in vitro (Rivière et al. 2007).  
 It is still unclear whether the observed gut microbial shifts in altitude involve 
genetic adaptation of the host. For example, when high-altitude adapted populations were 
compared with low-altitude populations at the same elevation in humans and ruminants, 
there were significant differences in the gut microbiota between the two groups (Qiu et 
al. 2012; Wei et al. 2016). This suggests that the gut microbial composition is not simply 
responding to the atmospheric oxygen and host genotype or dietary factors can explain 
this observation. In mammals, initial exposure to high altitude tends to show an increase 
in blood pressure (e.g. acclimation) and native populations living at high altitude tend to 
show reduced blood pressure compared to low-altitude populations (e.g. genetic 
adaptation) (Hanna 1999; Storz et al. 2007). Whether high-altitude adapted hosts have 
different mechanism controlling the gut microbiota compared to low-altitude relatives 
remains an open question. Further investigation of the physiological and genomic 
characteristics between high and low altitude populations of house mice will help 
distinguish the plastic and adaptive response of the gut microbiota.  
 In summary, we found altitude having a significant effect on the gut microbial 
composition of natural populations of house mice. Convergent patterns observed in the 
gut microbial composition across multiple species of mammals and laboratory mouse 
models of sleep apnea suggest that reduced partial pressure of oxygen at high altitude 
environment provides an advantage for obligate anaerobes compared to other oxygen 
requirement types. The enrichment of obligate anaerobes, SCFA-producing bacteria, and 
predicted metagenomic functions related to renin-angiotensin system at high altitude 
environment support potential roles of the gut microbiota in greater energy harvest and 
regulation of blood pressure in mice living in high altitudes.   
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5.5.	Chapter	5	Figures	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 1. Effects of altitude on the gut microbiota of wild mice. Wild house mice were collected across two altitudinal gradients from 
Ecuador transect (n=49) (A) and Bolivia-Brazil transect (n=43) (B). Each bar represents an individual collected from a given elevation 
and color coded by populations. PCoA plot of Bray-Curtis dissimilarity colored by populations (ADONIS r2 = 0.18, p<0.0001) (C) 
and altitude (ADONIS r2 = 0.04, p<0.0001) (D). The colors of Fig.1C correspond to Fig.1A and 1B. Darker colors in Fig.1D 
correspond to higher altitude. A correlation between altitude and alpha-diversity measured by phylogenetic diversity (PD) (E). 
Correlation between altitude and PD of three dominant phyla; PD of Firmicutes (F), PD of Bacteroidetes (G), and PD of 
Proteobacteria (H). Only PD of Bacteroidetes significantly correlated with altitude among the dominant phyla (rho = 0.41, p < 
0.0001). Red and blue colors correspond to individuals from Ecuador transect and Bolivia-Brazil transect, respectively.    
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Figure 2. Correlations between altitude and bacterial genera. Bacterial genera were included in the list when (1) the correlation 
between altitude and relative abundance of genera was in the same direction in both transects based on Spearman's rho correlation, (2) 
average relative abundance >0.1% across all samples, and (3) at least named bacterial family was assigned to search for oxygen 
requirements. The brackets [ ] indicate recommended taxonomy. Red color indicates Ecuador transect and blue color indicate Bolivia-
Brazil transect. Filled patterns show obligate anaerobes and open pattern show aerobes (i.e. facultative anaerobes, aerotolerant 
anaerobes, microaerophiles, and obligate aerobes). Oxygen requirements were assigned to each genera based on Bergey's Manual of 
Systematics of Archaea and Bacteria and recent literature. Fisher’s combined p-values of the Spearman’s rho raw p-values are 
indicated: * p < 0.1, ** p < 0.05, *** p < 0.0001. After Bonferroni correction (alpha = 0.05/17 = 0.003), only the two Prevotella 
genera were significant.	
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Figure 3. Convergent associations between relative abundance of Prevotella and high-altitude environments in different species of 
mammals. Significant positive correlations were observed between altitude and relative abundance of Prevotella in wild house mice 
from Ecuador transect (A) and Bolivia-Brazil transect (B). A similar correlation between altitude and relative abundance of Prevotella 
was found in Pika (n=102) (Figure generated from data in Li et al. 2016a) (C). The relative abundance of Prevotella was higher in 
Yaks compared to cattle collected from a same farm (elev. 3000m) (D) and in Tibetan sheep (elev. 3000m) compared to sheep (elev. 
2200m) (E) (Figure generated from data in Zhang et al. 2016). The relative abundance of Prevotella was higher in Tibetans (3600-
4500m) living in high altitudes compared to Han (500-3600m) living in low altitudes (Figure generated from data in Li et al. 2016b) 
(F). In controlled lab settings, intermittent hypoxic exposure in laboratory mice resulted in higher relative abundance of Prevotella 
compared to controls (Figure generated from data in Moreno-Indias et al. 2015) (G). 
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Figure 4. Correlations between altitude and predicted metagenomic functions. Spearman’s correlation between altitude and 19 KEGG 
pathways (level 3) that show Fisher’s combined p-value < 0.05 are shown. After correcting for multiple testing (Bonferroni correction; 
alpha = 0.05/183 = 0.0003) only Renin-angiotensin system remained significant (Ecuador; rho = 0.34, p = 0.0159. Bolivia-Brazil; rho 
= 0.51, p-value = 0.005. Fisher’s combined p-value = 0.0001). Spearman’s rho correlation for Ecuador transect is shown in red, and 
Bolivia-Brazil transect is shown in blue. 
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Figure 5. Proposed mechanism of the microbiota-mediated regulation of blood pressure in response to atmospheric oxygen at high 
altitude. Anaerobes refer to obligate anaerobes and aerobes refer to all other oxygen requirements (i.e. facultative anaerobes, 
aerotolerant anaerobes, microaerophiles, and obligate aerobes).  
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5.6. Supplemental Information 
Table S1. Sample information (continued). 

ID Alt. 
(m) Lat. Long. Country Locality Sex Reproductive 

state 
Sample 
storage Weight BMI Carbon Nitrogen Climate 

PC1 
Climate 

PC2 

FMM54 10 -0.8461 -80.1649 Ecuador Manabi M na RNAlater 13.0 0.00219 -21.7 7.2 2.617 2.085 
FMM66 14 -0.9254 -80.4793 Ecuador Manabi F non-pregnant RNAlater 9.5 0.00152 -13.2 8.5 1.493 2.791 
FMM56 15 -0.8549 -80.1629 Ecuador Manabi F non-pregnant RNAlater 13.0 0.00144 -10.7 9 2.617 2.085 
FMM63 16 -0.8483 -80.1634 Ecuador Manabi M na RNAlater 7.5 0.00123 -21.8 4.6 2.617 2.085 
FMM61 16 -0.8503 -80.1640 Ecuador Manabi F pregnant RNAlater 13.5 0.00240 -24.7 6 2.617 2.085 
FMM64 16 -0.8503 -80.1640 Ecuador Manabi M na RNAlater 9.3 0.00178 -8.6 7.6 2.617 2.085 
FMM51 18 -0.8830 -80.1341 Ecuador Manabi M na RNAlater 14.0 0.00249 -11.8 8.7 2.617 2.085 
FMM55 33 -0.8567 -80.1646 Ecuador Manabi F non-pregnant RNAlater 11.0 0.00238 -13.7 21.1 2.617 2.085 
FMM60 43 -1.0554 -80.4901 Ecuador Manabi M na RNAlater 9.8 0.00164 -18.1 8.7 1.521 2.673 
FMM58 73 -1.0808 -80.5233 Ecuador Manabi F non-pregnant RNAlater 17.3 0.00208 -10.3 11.9 1.140 2.648 
FMM48 100 -1.0794 -80.5399 Ecuador Manabi M na RNAlater 11.0 0.00176 -16.2 8.4 1.140 2.648 
FMM94 320 -0.2439 -79.3369 Ecuador Santo_Domingo F non-pregnant RNAlater 4.0 0.00119 -15 7.9 5.310 -0.048 

FMM104 335 -0.2442 -79.3385 Ecuador Santo_Domingo M na RNAlater 9.5 0.00148 -18 7.7 5.310 -0.048 
FMM100 361 -0.2443 -79.3274 Ecuador Santo_Domingo F non-pregnant RNAlater 15.0 0.00185 -18.4 5.6 5.316 -0.451 
FMM92 369 -0.1249 -79.2584 Ecuador Santo_Domingo F pregnant RNAlater 25.0 0.00372 -22.1 8.7 6.104 -0.946 
FMM91 388 -0.1173 -79.2591 Ecuador Santo_Domingo M na RNAlater 9.8 0.00164 -15.8 9 6.104 -0.946 
FMM98 429 -0.2440 -79.2613 Ecuador Santo_Domingo F non-pregnant RNAlater 10.3 0.00093 -22.4 8 5.316 -0.451 
FMM88 465 -0.2068 -79.1809 Ecuador Santo_Domingo F pregnant RNAlater 9.0 0.00131 -21.1 8.2 5.316 -0.451 

FMM103 477 -0.1897 -79.3184 Ecuador Santo_Domingo M na RNAlater 13.5 0.00196 -20.1 7.5 5.316 -0.451 
FMM105 487 -0.2796 -79.2118 Ecuador Santo_Domingo M na RNAlater 12.8 0.00161 -14.7 7.6 5.316 -0.451 
FMM110 525 -0.3910 -79.2102 Ecuador Santo_Domingo M na RNAlater 7.0 0.00112 -11.9 6.6 4.944 -0.355 
FMM70 1377 no data no data Ecuador Pichincha_Nanegalito F pregnant RNAlater 20.0 0.00247 -16.8 6.4 no data no data 
FMM69 1470 -0.0330 -78.6814 Ecuador Pichincha_Nanegalito M na RNAlater 11.5 0.00171 -17.5 7 2.481 -2.858 
FMM67 1577 -0.0118 -78.6725 Ecuador Pichincha_Nanegalito M na RNAlater 13.5 0.00153 -20.9 8.6 2.481 -2.858 
FMM68 1577 -0.0118 -78.6681 Ecuador Pichincha_Nanegalito M na RNAlater 13.3 0.00147 -21.8 8.7 2.481 -2.858 
FMM75 1599 -0.0622 -78.6820 Ecuador Pichincha_Nanegalito F pregnant RNAlater 22.0 0.00266 -18.1 8.3 2.481 -2.858 
FMM84 1747 -0.0760 -78.6960 Ecuador Pichincha_Nanegalito M na RNAlater 12.3 0.00113 -14.9 8.6 2.481 -2.858 
FMM83 1774 -0.0649 -78.6893 Ecuador Pichincha_Nanegalito M na RNAlater 10.3 0.00127 -19.2 7 2.481 -2.858 
FMM79 1832 -0.0369 -78.6968 Ecuador Pichincha_Nanegalito F pregnant RNAlater - - -16.6 7.4 2.481 -2.858 
FMM81 1832 -0.0369 -78.6968 Ecuador Pichincha_Nanegalito M na RNAlater 4.0 0.00087 -17.1 7.3 2.481 -2.858 
FMM6 2363 -0.1975 -78.3941 Ecuador Pichincha_Tumbaco M na RNAlater 15.0 0.00213 -13 6.4 -0.662 -1.553 

FMM34 2381 -0.2116 -78.3870 Ecuador Pichincha_Tumbaco F pregnant RNAlater 13.0 0.00198 -15 6.8 -0.662 -1.553 
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Table S1. Sample information (continued). 

ID Alt. 
(m) Lat. Long. Country Locality Sex Reproductive 

state 
Sample 
storage 

Weig
ht BMI Carbon Nitrogen Climate 

PC1 
Climate 

PC2 

FMM16 2421 -0.8736 -78.6071 Ecuador Pichincha_Tumbaco F pregnant RNAlater 10.5 0.00177 -9.0 7.7 -1.970 -2.525 
FMM17 2421 -0.8736 -78.6071 Ecuador Pichincha_Tumbaco F pregnant RNAlater - - -8.8 7.8 -1.970 -2.525 
FMM35 2557 -0.1764 -78.3289 Ecuador Pichincha_Tumbaco M na RNAlater 17.0 0.00192 -16.2 9.0 -1.021 -5.760 
FMM9 2589 -0.2479 -78.3570 Ecuador Pichincha_Tumbaco F pregnant RNAlater 12.0 0.00192 -21.0 7.3 -0.662 -1.553 

FMM12 2614 -0.2482 -78.3552 Ecuador Pichincha_Tumbaco M na RNAlater 15.0 0.00306 -11.0 7.6 -0.662 -1.553 
FMM13 2653 -0.2415 -78.3350 Ecuador Pichincha_Tumbaco M na RNAlater 13.8 0.00204 -9.4 8.7 -0.662 -1.553 
FMM14 2653 -0.2528 -78.3387 Ecuador Pichincha_Tumbaco F non-pregnant RNAlater 13.3 0.00188 -10.8 8.3 -0.662 -1.553 
FMM33 2818 -0.8561 -78.6132 Ecuador Cotopaxi F non-pregnant RNAlater 13.5 0.00216 -16.7 6.3 -1.970 -2.525 
FMM25 2865 -0.8697 -78.6214 Ecuador Cotopaxi F non-pregnant RNAlater 11.0 0.00168 -12.4 8.6 -1.970 -2.525 
FMM24 2867 -0.8633 -78.6119 Ecuador Cotopaxi F pregnant RNAlater 13.5 0.00183 -9.5 9.6 -1.970 -2.525 
FMM15 2875 -0.8550 -78.6091 Ecuador Pichincha_Tumbaco M na RNAlater 13.5 0.00187 -10.5 7.6 -1.970 -2.525 
FMM30 2927 -0.8366 -78.6632 Ecuador Cotopaxi M na RNAlater 6.5 0.00141 -20.5 8.8 -1.970 -2.525 
FMM31 2951 -0.8268 -78.6670 Ecuador Cotopaxi M na RNAlater 21.5 0.00260 -20.2 7.8 -2.317 -3.380 
FMM18 2973 -0.8736 -78.6071 Ecuador Cotopaxi M na RNAlater 12.5 0.00177 -21.5 11.4 -1.970 -2.525 
FMM19 2973 -0.8736 -78.6071 Ecuador Cotopaxi F non-pregnant RNAlater 11.5 0.00171 -17.9 9.2 -1.970 -2.525 
FMM32 2973 -0.8736 -78.6071 Ecuador Cotopaxi M na RNAlater 14.0 0.00219 -17.0 8.2 -1.970 -2.525 
FMM38 3050 -0.4292 -78.4315 Ecuador Pichincha_Tumbaco F pregnant RNAlater 19.0 0.00276 -17.1 9.3 -0.938 -3.627 

FMM.270 72 -8.7779 -63.8415 Brazil Porto_Velho F pregnant Flash frozen 15.0 0.00163 -16.3 8.1 3.796 1.067 
FMM.271 77 -8.7645 -63.8398 Brazil Porto_Velho F non-pregnant Flash frozen 12.3 0.00162 -24.0 9.9 3.796 1.067 
FMM.269 83 -8.7825 -63.8457 Brazil Porto_Velho F pregnant Flash frozen 13.8 0.00166 -20.0 10.1 3.796 1.067 
FMM.279 86 -8.7763 -63.8004 Brazil Porto_Velho F pregnant Flash frozen 14.0 0.00158 -23.6 10.6 3.501 1.339 
FMM.277 88 -8.7828 -63.8520 Brazil Porto_Velho M na Flash frozen 7.0 0.00115 -16.9 8.4 3.796 1.067 
FMM.278 88 -8.7843 -63.8033 Brazil Porto_Velho F non-pregnant Flash frozen 13.0 0.00180 -16.2 7.7 3.501 1.339 
FMM.266 92 -8.7715 -63.8029 Brazil Porto_Velho F non-pregnant Flash frozen 12.5 0.00158 -18.4 9.4 3.501 1.339 
FMM.267 94 -8.7841 -63.8416 Brazil Porto_Velho M na Flash frozen 10.0 0.00145 -20.1 9.8 3.796 1.067 
FMM.268 97 -8.7716 -63.7976 Brazil Porto_Velho M na Flash frozen 12.3 0.00178 -20.0 9.5 3.501 1.339 
TAS595 281 -17.3280 -63.2565 Bolivia Santa_Cruz M na RNAlater 12.9 0.00187 -26.0 12.8 1.940 1.686 
TAS594 282 -17.3268 -63.2571 Bolivia Santa_Cruz F non-pregnant RNAlater 13.8 0.00191 - - 1.940 1.686 
TAS598 306 -17.3306 -63.2491 Bolivia Santa_Cruz F pregnant RNAlater 14.5 0.00181 -25.9 13.7 1.940 1.686 
TAS592 409 -17.7348 -63.1696 Bolivia Santa_Cruz F non-pregnant RNAlater 14.2 0.00192 -25.3 13.3 2.113 1.184 
TAS576 2530 -17.4705 -66.3413 Bolivia Cochabamba F pregnant RNAlater 25.5 0.00245 -10.6 12.8 -3.227 1.327 
TAS578 2542 -17.4371 -66.3341 Bolivia Cochabamba M na RNAlater 18.6 0.00215 -16.7 9.2 -3.227 1.327 
TAS579 2542 -17.4276 -66.3312 Bolivia Cochabamba F non-pregnant RNAlater 18.2 0.00215 -20.9 13.8 -2.653 3.072 
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Table S1. Sample information (continued). 

ID Alt. 
(m) Lat. Long. Country Locality Sex Reproductive 

state 
Sample 
storage Weight BMI Carbon Nitrogen Climate 

PC1 
Climate 

PC2 

TAS588 2551 -17.4365 -66.1618 Bolivia Cochabamba M na RNAlater 17.0 0.00197 -18.6 10.4 -2.834 2.159 
TAS580 2552 -17.3956 -66.3123 Bolivia Cochabamba M na RNAlater 18.2 0.00210 -16.9 11.1 -2.653 3.072 
TAS574 2569 -17.3911 -66.2303 Bolivia Cochabamba F pregnant RNAlater 15.2 0.00210 -12.7 9.6 -2.653 3.072 
TAS589 2571 -17.4464 -66.1680 Bolivia Cochabamba F non-pregnant RNAlater 17.8 0.00168 -10.9 16.1 -2.653 3.072 
TAS582 2575 -17.3795 -66.3066 Bolivia Cochabamba F non-pregnant RNAlater 15.6 0.00197 -15.2 12.3 -2.653 3.072 
TAS573 2615 -17.3738 -66.1528 Bolivia Cochabamba M na RNAlater 16.7 0.00185 -15.6 7.5 -2.834 2.159 
TAS587 2740 -17.5397 -66.0132 Bolivia Cochabamba M na RNAlater 17.1 0.00207 -10.9 8.8 -2.903 2.302 
TAS586 2783 -17.6170 -66.0169 Bolivia Cochabamba M na RNAlater 15.6 0.00201 -19.2 10.7 -2.903 2.302 
TAS585 2815 -17.6442 -65.9884 Bolivia Cochabamba M na RNAlater 11.8 0.00176 -21.1 9.1 -2.865 2.628 
TAS572 3011 -16.6281 -68.0517 Bolivia La_Paz F non-pregnant RNAlater 11.3 0.00177 -21.7 8.7 -4.102 0.365 
TAS554 3060 -16.6022 -68.0651 Bolivia La_Paz F non-pregnant RNAlater 9.3 0.00179 -21.9 16.0 -4.102 0.365 
TAS565 3097 -16.5892 -68.0691 Bolivia La_Paz M na RNAlater 24.3 0.00243 -20.2 10.7 -4.102 0.365 
TAS555 3276 -16.5742 -68.0786 Bolivia La_Paz M na RNAlater 17.8 0.00220 -20.3 8.2 -4.102 0.365 
TAS548 3388 -16.5391 -68.0710 Bolivia La_Paz F non-pregnant RNAlater 17.0 0.00227 -20.5 8.9 -4.102 0.365 
TAS571 3583 -16.5806 -68.1274 Bolivia La_Paz M na RNAlater 13.6 0.00164 -15.5 15.3 -4.102 0.365 
TAS570 3607 -16.5841 -68.1308 Bolivia La_Paz F non-pregnant RNAlater 16.3 0.00220 -17.4 7.6 -4.102 0.365 
TAS567 3728 -16.5842 -68.1513 Bolivia La_Paz M na RNAlater 19.0 0.00213 -22.4 10.4 -4.102 0.365 
TAS568 3731 -16.5880 -68.1521 Bolivia La_Paz F non-pregnant RNAlater 12.3 0.00202 -20.5 7.8 -4.102 0.365 
TAS611 3816 -16.2531 -68.5672 Bolivia Lake_Titikaka M na RNAlater 16.6 0.00188 -22.4 7.4 -4.545 -0.108 
TAS610 3835 -16.2021 -68.5888 Bolivia Lake_Titikaka F non-pregnant RNAlater 10.8 0.00165 -22.8 8.6 -4.545 -0.108 
TAS613 3835 -16.1836 -68.7684 Bolivia Lake_Titikaka M na RNAlater 17.5 0.00219 -25.4 5.4 -4.325 -0.051 
TAS601 3838 -16.1902 -68.6007 Bolivia Lake_Titikaka M na RNAlater 20.1 0.00238 -23.6 6.2 -4.545 -0.108 
TAS612 3839 -16.2757 -68.5511 Bolivia Lake_Titikaka M na RNAlater 10.9 0.00179 -21.8 9.6 -4.545 -0.108 
TAS600 3845 -16.3326 -68.8250 Bolivia Lake_Titikaka M na RNAlater 13.8 0.00191 -22.4 8.3 -4.325 -0.051 
TAS599 3855 -16.1716 -68.8284 Bolivia Lake_Titikaka F pregnant RNAlater 15.8 0.00209 -24.1 7.1 -4.325 -0.051 
TAS549 3866 -16.5477 -68.0251 Bolivia La_Paz M na RNAlater 14.6 0.00193 -21.1 8.8 -4.102 0.365 
TAS609 3906 -16.2200 -68.5830 Bolivia Lake_Titikaka F non-pregnant RNAlater 17.6 0.00215 -22.0 9.0 -4.545 -0.108 
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Table S2. Correlations between Bray-Curtis dissimilarity and predictor variables using ADONIS.  

Variablesa 
  All samples     Ecuador     Bolivia-Brazil 

n R2 p-valueb   n R2 p-value*   n R2 p-value* 

Altitude 92 0.038 <.0001   49 0.032 0.021   43 0.081 <.0001 

Body weight 90 0.017 0.021   47 0.025 0.192   43 0.035 0.022 

BMI 90 0.015 0.057   47 0.023 0.357   43 0.049 0.0002 

Diet (Carbon) 91 0.018 0.003   49 0.033 0.014   42 0.032 0.054 

Diet (Nitrogen) 91 0.013 0.135   49 0.017 0.817   42 0.027 0.232 

Population1 92 0.183 <.0001   49 0.116 0.003   43 0.194 <.0001 

Pregnancy2 45 0.020 0.721   23 0.046 0.409   22 0.042 0.694 

Sex 92 0.009 0.821   49 0.019 0.671   43 0.021 0.691 
a Altitude, Body weight, Body mass index (BMI), and Carbon and Nitrogen stable isotope diet measurements are continuous 
variables. Population (five populations for each altitudinal transect), Pregnancy (pregnant vs non-pregnant), and Sex (female vs 
male) are categorical variables.   

* Significant p-values after Bonferroni correction are bolded (alpha = 0.05/24 = 0.0021) 
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Table S3. Correlations between altitude and metadata. 
  All samples (n=92) Ecuador (n=49) Bolivia-Brasil (n=43) 
  rho p-value rho p-value rho p-value 

Body weight 0.3448 0.0009 0.2716 0.0648 0.243 0.1163 
BMI 0.3327 0.0014 0.1729 0.2451 0.4768 0.0012 

Carbon -0.1888 0.0731 0.0982 0.5021 -0.2875 0.0648 
Nitrogen 0.0314 0.7678 0.1392 0.3402 -0.3706 0.0157 

Raw p-values are shown. Significance after Bonferroni correction are bolded (alpha = 0.05/12 = 0.0042) 
 
 

Table S4. Correlations between altitude and alpha-diversity measurements. 

  
All samples   Ecuador   Bolivia-Brazil 

rho p-value*   rho p-value*   rho p-value* 
OTU counts 0.09 0.39   0.13 0.37   -0.12 0.44 

Phylogenetic diversity 0.19 0.07   0.12 0.42   0.14 0.37 

Simpson 0.23 0.03   0.11 0.46   0.21 0.18 

*Raw p-values are shown. None of the correlations are significant after Bonferroni correction (alpha = 0.05/9 = 0.006). 
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Table S5. Correlations between altitude and relative abundances of bacterial phyla.  

Phyla1 Average relative 
abudance 

  Ecuador   Bolivia-
Brazil   Fisher's combined        

p-value 2   rho p-
value   rho p-

value   

Firmicutes 0.44   0.13 0.36   0.17 0.29   0.34 

Bacteroidetes 0.33   -
0.06 0.69   0.14 0.36   - 

Proteobacteria 0.17   -
0.10 0.51   -

0.26 0.09   0.19 

Deferribacteres 0.04   -
0.15 0.30   -

0.12 0.46   0.41 

Unclassified Phylum 0.01   0.05 0.73   0.18 0.24   0.48 

Tenericutes 0.004   0.01 0.95   0.11 0.49   0.82 

Verrucomicrobia 0.003   -
0.05 0.73   0.15 0.35   - 

Fusobacteria 0.002   -
0.11 0.44   0.15 0.32   - 

Cyanobacteria 0.002   0.29 0.04   0.31 0.04   0.01 

Actinobacteria 0.001   0.03 0.83   0.26 0.10   0.28 
1 Bacterial phyla that has average relative abundance >0.1% across all samples were included. 
2 None of the combined p-values are significant after Bonferroni correction (alpha = 0.05/7 = 0.007).  
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Table S6. Correlations between altitude and the relative abundances of 23 bacterial genera with their oxygen requirements 
(continued). 

Bacterial genera that correlated with altitude1 Ecuador   Bolivia-Brazil Fisher's 
combined        
p-value 

Oxygen                
requirements2 References 

Phyla Family Genera rho p-
value   rho p-

value 

Bacteroidetes [Paraprevotellaceae] [Prevotella] 0.33 0.02   0.66 <.0001 <.0001 Obligate anaerobes Bergey's mannual 

Bacteroidetes Prevotellaceae Prevotella 0.43 0.002   0.54 0.0002 <.0001 Obligate anaerobes Bergey's mannual 

Proteobacteria Burkholderiales_unc Burkholderiales_unc 0.14 0.32   0.55 0.0001 0.0004 unclassified - 

Verrucomicrobia Verrucomicrobiaceae Akkermansia -
0.38 0.008   -

0.22 0.16 0.01 Oxygen tolerant Reunanen et al. 2015, 
Ouwerkerk et al. 2016 

Firmicutes Lachnospiraceae Lachnospiraceae_unc 0.19 0.18   0.30 0.05 0.05 Obligate anaerobes Bergey's mannual 

Proteobacteria Helicobacteraceae Helicobacteraceae_unc -
0.14 0.33   -

0.29 0.06 0.09 Microaerobes* Bergey's mannual 

Cyanobacteria YS2_unc YS2_unc 0.22 0.14   0.22 0.16 0.11 uncultured - 

Firmicutes Lactobacillaceae Lactobacillus -
0.18 0.20   -

0.23 0.14 0.13 Facultative anaerobes Bergey's mannual 

Firmicutes Ruminococcaceae Ruminococcaceae_unc -
0.20 0.18   -

0.18 0.26 0.19 Obligate anaerobes Bergey's mannual 

Proteobacteria Enterobacteriaceae Enterobacteriaceae_unc -
0.12 0.40   -

0.22 0.15 0.23 Facultative anaerobes Bergey's mannual 

Bacteroidetes Bacteroidales_unc Bacteroidales_unc -
0.08 0.59   -

0.22 0.15 0.30 unclassified - 

Deferribacteres Deferribacteraceae Mucispirillum -
0.15 0.30   -

0.12 0.46 0.41 Obliate anaerobes Robertson et al. 2005 

1 Bacterial genera were included in the list when (1) the correlation between altitude and relative abudance of taxa was in the same direction across the two mountains based on Spearman's rho 
correlation and (2) average relative abundance >0.1% across all samples. The brackets [ ] indicate recommended taxonomy. 

2 Oxygen reuqirements were assigned based on Bergey's Manual of Systematics of Archea and Bacteria and recent liteature. When the genera were unclassified, we used the oxygen 
requirements of the family. When the family of the unclassified genera included obligate anaerobes and all other oxygen requrement types, we searched for all the recognized genera within the 
family and assigned oxygen requirement based on majority rule (i.e. two out of the three genera showed the same oxygen requirements) in all such cases indicated by *.   
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Table S6. Correlations between altitude and the relative abundances of 23 bacterial genera with their oxygen requirements 
(continued). 

Bacterial genera that correlated with altitude1 Ecuador   Bolivia-Brazil Fisher's 
combined        
p-value 

Oxygen                
requirements2 References 

Phyla Family Genera rho p-
value   rho p-

value 

Firmicutes Clostridiales_unc Clostridiales_unc 0.10 0.48   0.15 0.34 0.46 unclassified - 

Tenericutes Anaeroplasmataceae Anaeroplasma 0.17 0.25   0.05 0.75 0.51 Obligate anaerobes Bergey's mannual 

Firmicutes Lachnospiraceae Dorea 0.09 0.54   0.13 0.42 0.57 Obligate anaerobes Bergey's mannual 

Proteobacteria Desulfovibrionaceae Desulfovibrionaceae_unc1 0.07 0.62   0.10 0.51 0.68 Obligate anaerobes* Bergey's mannual 

Firmicutes Lachnospiraceae Coprococcus 0.14 0.34   0.00 1.00 0.70 Obligate anaerobes Bergey's mannual 

Proteobacteria Desulfovibrionaceae Desulfovibrionaceae_unc2 0.08 0.59   0.08 0.60 0.72 Obligate anaerobes* Bergey's mannual 

Firmicutes Clostridiales_unc Clostridiales_unc -
0.10 0.49   -

0.05 0.73 0.73 unclassified - 

Bacteroidetes S24-7 S24-7_unc 0.08 0.58   0.06 0.70 0.77 uncultured - 

Bacteroidetes [Odoribacteraceae] Odoribacter 0.07 0.61   0.02 0.92 0.89 Obligate anaerobes Hardham et al. 2008 

Bacteroidetes Rikenellaceae Rikenellaceae_unc 0.03 0.86   0.04 0.81 0.95 Obligate anaerobes Bergey's mannual 

Bacteroidetes Rikenellaceae AF12 0.03 0.83   0.02 0.90 0.97 Obligate anaerobes Bergey's mannual 

1 Bacterial genera were included in the list when (1) the correlation between altitude and relative abudance of taxa was in the same direction across the two mountains based on Spearman's rho 
correlation and (2) average relative abundance >0.1% across all samples. The brackets [ ] indicate recommended taxonomy. 

2 Oxygen reuqirements were assigned based on Bergey's Manual of Systematics of Archea and Bacteria and recent liteature. When the genera were unclassified, we used the oxygen 
requirements of the family. When the family of the unclassified genera included obligate anaerobes and all other oxygen requrement types, we searched for all the recognized genera within 
the family and assigned oxygen requirement based on majority rule (i.e. two out of the three genera showed the same oxygen requirements) in all such cases indicated by *.   
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Figure S1. Box plots of carbon and nitrogen stable isotope diet measurements. Carbon isotope measurements differed by population 
in Ecuador transect (ANOVA p = 0.04) (A) and Bolivia-Brazil transect (ANOVA p < 0.0001). Nitrogen isotope measurements did not 
differ by population in Ecuador transect (ANOVA p = 0.4) (C), but did vary in Bolivia-Brazil transect (ANOVA p = 0.003) (D). The 
two transects significantly differ in their carbon (ANOVA p < 0.0001) and nitrogen (ANOVA p = 0.0009) stable isotope 
measurements. 
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Figure S2. Model comparisons using Linear Mixed-Effects models. The response variables were Bray-Curtis dissimilarity PC1 
(8.4%), PC2 (6.2%), and PC3 (5.3%). The full model included five fixed effects (altitude, body weight, BMI, carbon, and nitrogen) 
and three random effects (population, reproductive status, and sample storage method). The full models were compared to models 
without altitude using Akaike information criterion with sample size correction (AICc). Significance is based on likelihood ratio test 
p-values; * p < 0.05, ns p > 0.05.   
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Figure S3. Average relative abundance of bacterial phyla per population. Pop1-5 are in the order of low to high altitude in Ecuador 
transect (A) and Bolivia-Brazil transect (B). The colors correspond to bacterial phyla that showed average relative abundance greater 
than 0.1% across all samples. 
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Figure S4. Correlations between altitude and predicted KEGG orthologs of renin-angiotensin system (ko04614). Spearman’s 
correlation between altitude and three KEGG orthologs are shown for both Ecuador transect and Bolivia-Brazil transect. Spearman’s 
correlation with Fisher’s combined p-value < 0.05 are indicated by *. 
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Abstract 
 

Bergmann’s rule is the observation that animals at more extreme latitudes have a 
larger body mass compared with animals at lower latitudes, presumably reflecting 
thermoregulatory adaptation. Recent studies have demonstrated that the gut microbiota 
can provide greater energy extraction from diet by breaking down indigestible 
polysaccharides and producing short-chain fatty acids (SCFAs). The extent to which gut 
microbiota plays a role in adaptive body mass variation remains largely unexplored. 
Here, we collected wild house mice from three latitudinal transects across the Americas 
and tested the association between gut microbial variation and host body mass variation. 
We found that overall differences in the gut microbial community were significantly 
associated with differences in host body mass accounting for geographic distance in two 
out of the three transects. To test whether the link between the gut microbiota and body 
mass are driven by other environmental factors, we conducted a common garden 
experiment by rearing offspring of wild-caught mice in captivity. We identified several 
gut microbial measurements that associated with body mass in wild-caught mice that 
persisted in lab-reared mice including; (1) phylogenetic diversity and (2) relative 
abundances of three bacterial genera that have previously been associated with functions 
related to energy harvest in mouse models and humans. Lastly, to test whether the gut 
microbiota is involved in energy extraction, we measured the amounts of fecal SCFAs 
among five wild-derived inbred mice from high and low latitudes that differ in body 
mass. We found mice from colder environments are larger and tend to produce greater 
amounts of SCFAs without an increase in food consumption compared to mice from 
warmer environments. Together, the results raise the intriguing possibility that the gut 
microbiota may be playing a role in the pattern described by Bergmann’s rule, a 
fundamental pattern in evolutionary biology. 
 
 
6.1. Introduction 
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A major goal in evolutionary biology is to link individual processes to macro-
ecological and evolutionary patterns. Accumulating evidence suggests that the gut 
microbiota affects a variety of host phenotypes and thus an organisms’s fitness (McFall-
Ngai et al. 2013; Suzuki 2017). The beneficial role of the gut microbiota in host biology 
raises the interesting possibility that the gut microbiota may mediate environmental 
adaptations of their host. However, identifying the causal role of gut microbiotas in host 
adaptation remains a challenge.  

Climatic adaptation has been proposed to explain the geographic variation of 
human gut microbiota where an obesity-associated gut microbial composition tend to be 
more prevalent in colder environments (Suzuki and Worobey 2014). Studies in obesity 
research suggest that the gut microbiota can play a causal role in host body mass 
variation at least under certain dietary conditions (Bäckhed et al. 2004; Ley et al. 2005; 
Turnbaugh et al. 2006). Increased energy extraction through bacteria-dependent digestion 
of plant polysaccharides, activation of fat storage, and production of short-chain fatty 
acids (SCFAs) has been proposed to explain the link between microbiota and body mass 
(Bäckhed et al. 2004; Turnbaugh et al. 2006). Obese individuals of mice and humans are 
characterized by the higher ratio of relative abundances of two dominant bacterial phyla, 
Firmicutes and Bacteroidetes (F/B ratio) (Ley et al. 2006). Germ-free mice that received 
the obesity-associated microbiota (higher F/B ratio) show significant increase in energy 
extraction and concentrations of cecal SCFAs compared to controls (Turnbaugh et al. 
2006), a pattern also found in humans (Jumpertz et al. 2011). A significant positive 
correlation between F/B ratio and absolute latitude was found in a meta-analysis of 
human populations suggesting a possible role for the gut microbiota in mediating the 
differences in body mass (Suzuki and Worobey 2014). It is generally accepted that 
humans follow Bergmann’s rule, the observation that animals living in higher latitudes 
have a larger body mass compared to animals living in lower latitudes, presumably 
reflecting thermoregulatory adaptation (Bergmann 1847; Roberts 1953). 

Although the observation of human gut microbial patterns are consistent with the 
involvement of gut microbiota in climatic adaptation, factors affecting the gut microbiota 
and the causation of the microbiota-body mass relationship are unclear. For example, the 
F/B ratio is also associated with many other factors including diet (De Filippo et al. 
2010), age (Mariat et al. 2009), and inflammation (Hansen, Gulati and Sartor 2010). 
Thus, manipulative experiments are necessary to further investigate the role of gut 
microbiota in potentially adaptive body mass variation. However, manipulative 
experiments in human subjects are extremely difficult if not impossible. Laboratory 
mouse models are often used as a stand in for human subjects to infer the host-microbial 
interactions, but the results may not translate between species (Nguyen et al. 2015). 
Therefore, merely describing the microbial patterns in the field or in manipulative 
experiments in model organisms may not be sufficient to identify the driver and function 
of the microbiota in natural populations. A system that can combine both approaches is 
necessary. 

House mice (Mus musculus) provide a unique opportunity to study the role of gut 
microbiota in climatic adaptation by combining field observations and manipulative 
experiments in a single system. House mice have a global distribution in association with 
humans which encompasses a wide range of latitudes and climates (Guénet and 
Bonhomme 2003). Despite the recent colonization of house mice in the Americas (i.e. 
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probably in the past several hundred years), they show a clinal variation in body mass 
along the east coast of North America (Lynch 1992), a pattern expected by Bergmann’s 
rule. The population differences in body mass persist in a common environment after 
multiple generations (Lynch 1992), suggesting that body mass variation may reflect a 
genetic adaptation in response to thermoregulatory stress. Experimental evidence 
demonstrates that wild house mice kept in cold temperatures increase body weight and fat 
compared to controls in fewer than 10 generations (Barnett and Dickson 1989). The gut 
microbiota of wild house mice is also known to differ by geographic and genetic 
distances (Linnenbrink et al. 2013) and the alpha-diversity of the gut microbiota has been 
associated with differences in body weight (Weldon et al. 2015). Wild house mice can be 
easily kept in captivity to test hypotheses on their gut microbiota by conducting 
experiments (Wang et al. 2014, 2015) and classic laboratory mouse strains have been 
studied extensively as a mammalian model in gut microbial ecology and obesity research.  
 Here, we tested associations between gut microbiota variation and body mass 
variation in wild house mice collected from three latitudinal transects across the 
Americas by combining field observations and laboratory experiments. First, we tested 
whether differences in body mass significantly correlate with beta-diversity of the gut 
microbiota in natural populations. Next, we conducted a common garden experiment in 
the laboratory to identify microbial measurements that consistently associate with body 
mass variation in both wild and lab environments. Finally, we quantified fecal SCFAs 
from five wild-derived inbred lines representing differences in body mass from a range of 
thermal environments. Overall, the results support a potential role of gut microbiota in 
thermoregulatory adaptation. 
 
 
6.2. Methods  
 
6.2.1. Animal collection 
 
 A total of 162 individuals of wild house mice were collected from three latitudinal 
transects across the Americas (Fig.1A). The East-NA transect includes the same 
individuals from the five populations described in Chapter 4 collected in summer 2012. 
The West-NA transect includes five populations collected in summer 2012; (1) Arizona, 
(2) Southern Utah, (3) Northern Utah, and (4) Montana in the U.S. and (5) Edmonton in 
Canada. The SA transect includes seven populations collected between February and 
September 2013; (1) Porto Velho, (2) Brasilia, (3) Maringa, and (4) Uruguaiana in Brazil 
and (5) Tandil, (6) Gaiman, and (7) Ushuaia in Argentina. Each individual was separated 
by a minimum of 500m to avoid collecting close relatives except two sites in Edmonton 
and two sites in Ushuaia. Detailed sample information is provided in Table S1. Body 
weight, body mass index (i.e. BMI = body weight / body length squared), and cecal 
samples were collected within 24 hours after capture. Cecal samples were flash-frozen in 
the field using liquid nitrogen and stored in -80°C until DNA extraction. Following the 
protocol of Suzuki and Nachman (2016), carbon (δ13C) and nitrogen (δ15N) stable 
isotopes from mouse hair was analyzed to infer diet. We used WorldClim database 
(Hijmans et al. 2005) to download 19 climatic variables based on GPS localities using the 
R package “dismo”. Principle components were calculated in JMP 14.0 (SAS institute) 
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and the first two PC axes, climate PC1 (48.8%) and climate PC2 (21.8%) were used for 
the downstream analyses. All procedures involving animals were approved by the 
Institutional Animal Care and Use Committee at the University of Arizona (07-004) and 
the University of California Berkeley (R361-0514). Museum specimens (skins and 
skulls) and associated data have been deposited in the Museum of Vertebrate Zoology at 
the University of California, Berkeley and uploaded to a public database ARCTOS. 
 
6.2.2. Lab-reared animals and wild-derived inbred lines 
 
 Live animals were collected from five locations across the Americas; (1) Manaus, 
Amazonas, Brazil (BR), (2) Gainsville, Florida, USA (FL), (3) Tucson, Arizona, USA 
(AZ), (4) Saratoga Springs, New York, USA (NY) and (5) Edmonton, Alberta, Canada 
(EDM) (Fig.1A). Wild-caught animals were transferred and maintained in a standard lab 
environment; 23°C with 10 hours dark and 14 hour light cycles and Teklad Global food 
(18% Protein Rodent Diet) was fed ad libitum. Sib-sib mating was utilized to create 
multiple wild-derived inbred lines from multiple wild-caught parents within each 
population. For the common garden experiment, we collected body weight data and fresh 
fecal samples from a total of 120 individuals representing 40 individuals each from three 
populations; BR, FL, and NY. Four adult individuals (i.e. two males and two females) 
from 10 independent crosses of wild-caught founders were used to represent each 
population (Table S2). 
 
6.2.3. Quantification of fecal SCFAs and associated measurements 
 

We measured the concentration of fecal SCFAs from all five wild-derived inbred 
lines mentioned above. Five to seven age-matched male individuals from later generation 
(i.e. up to generation 14) per population were used for the experiment (Table S3). Each 
individual male represent an independent inbred line (i.e. descendants of different wild-
caught parents). Along with the collection of fresh fecal samples for SCFA 
quantification, body weight, weight of food intake, and weight of feces were measured in 
individuals between the age of 100-112 days. The amounts of food intake and defecation 
were measured every 24 hours for three consecutive days and each measurement was 
averaged. Both measurements were divided by body weight to account for body mass 
differences. The fresh fecal samples were immediately stored in -80°C. The frozen fecal 
samples were shipped to the West Coast Metabolomics Center at the University of 
California Davis for quantification of SCFAs, including acetate, propionate, and butyrate. 
Mass spectrometry was conducted on an Agilent 6890A Gas Chromatograph with an 
Agilent 5977A Mass Selective Detector. The method has been validated and explained in 
detail (Richardson 1989; Moreau et al. 2003). 
 
6.2.4. DNA extraction and 16S amplicon sequencing 
 

To characterize the gut microbiota, frozen cecal samples were used for the wild-
caught individuals and frozen fecal samples were used for lab-reared individuals. 
Although the sample types are different, we know that fecal samples represent individual 
differences in the cecal microbial community at least in wild house mice (Suzuki and 
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Nachman 2016). We followed the protocol of Suzuki and Nachman (2016) for the DNA 
extraction and 16S rRNA sequencing. Briefly, we used the QIAamp DNA stool Minikit 
(Qiagen) with a modified protocol adding a bead-beating step. The V4 region of the 16S 
rRNA gene was sequenced with 150bp paired-end Illumina MiSeq at the Next Generation 
Sequencing Core Facility at Argonne National Laboratory. The PCR primers (515F and 
806R) and the barcodes are described in Caporaso et al. (2012). 

 
6.2.5. Data analyses 
 
 The 16S rRNA data were demultiplexed and quality-filtered using default 
parameters in Qiime version 1.9.0 (Caporaso et al. 2010). A subsampled open-reference 
OTU picking approach was used with default parameters generating 97% OTUs. 
Singletons were removed. Bacterial taxonomy was assigned based on the SILVA 
database (release 128) (Quast et al. 2013) and phylogenetic trees were computed using 
FastTree (Price, Dehal and Arkin 2009). All samples were rarefied to 5,000 reads. Eight 
samples were excluded from all the downstream analyses due to the low number of reads 
(< 2000); FMM111, FMM112, FMM148, FMM274, BR07F1, BR08M1, FL08M1, and 
FL08M2.  
 Beta-diversity of the gut microbiota was calculated using Bray-Curtis 
dissimilarity (BCD) and PCoA plots were generated. Mantel tests were used to test 
correlations between BCD and seven predictor variables (i.e. geographic distance (km), 
climate PC1, climate PC2, body weight (g), BMI, δ13C diet, and δ15N diet) using all 
individuals combined and each transect separately. Similarly, Partial Mantel test was 
used to control the effect of geographic distance and test the correlation between BCD 
and rest of the six predictor variables. A Spearman’s rho correlation was used to test 
correlations between absolute latitude and metadata. Alpha-diversity was calculated using 
phylogenetic diversity (PD) (Faith 1992). Correlations between PD and body weight were 
calculated using a Spearman’s rho correlation for all wild-caught individuals, all lab-
reared individuals, and each transect separately. To identify bacterial genera that correlate 
with body mass variation, we looked for relative abundances of bacteria that show 
correlations with body weight in the same direction between wild-caught individuals and 
lab-reared individuals. We selected 25 bacterial genera in which the average relative 
abundances were greater than 0.1% across all samples and were present in both wild and 
lab samples. Correlations were based on Spearman’s rho correlation. Body weight, 
amount of food intake, amount of feces defecated, and concentrations of SCFAs were 
compared among five wild-derived inbred lines in a common environment using Kruskal-
Wallis test. Pairwise comparisons were preformed using Wilcoxon test.   
 
 
6.3. Results and discussion 
 
6.3.1. Geography and body mass are associated with the compositional variation in 
the gut microbiota 
 

To identify factors that correlate with beta-diversity of the gut microbiota, we first 
tested the association between BCD and seven predictor variables using all individuals 
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from three latitudinal transects across the Americas (Fig.1A, Table 1). We found 
geographic distance (Fig. 1B, Mantel r = 0.41, p < 0.0001), BMI (Fig. 1C, Mantel r = 
0.14, p = 0.002), and δ13C diet (Mantel r = 0.08, p = 0.03) correlated with BCD. Climate 
PCs, body weight, and δ15N diet did not show significant correlations with BCD. After 
controlling for multiple testing, only geographic distance and BMI remained significant.  

The association between body mass and the gut microbiota is interesting because 
the body weight and BMI show positive correlations with absolute latitude using all 
individuals (Table S4, Body weight: rho = 0.27m p = 0.0007, BMI: rho = 0.31, p < 
0.0001), a pattern consistent with Bergmann’s rule. For example, positive correlations 
between body weight and absolute latitude were observed in both East-NA (rho = 0.32, p 
= 0.025) and SA transects (rho = 0.26, p = 0.045) independently, although not in West-
NA transect (rho = -0.28, p = 0.06). A previous study has also observed a similar pattern 
among house mouse populations on the east coast of North America (Lynch 1992). 
However, the association between body mass and gut microbiota using all individuals is 
confounded by many factors. For example, body mass also differs between North and 
South America (Fig. 1B&C), where mice from North America are on average larger than 
mice from South America in terms of body weight (North mean ± SD = 16.1±3.9 and 
South mean ± SD = 13.5±3.7, Student’s t-test p < 0.0001) and BMI (North mean ± SD = 
0.0023±0.0003 and South mean ± SD = 0.0018±0.0003, Student’s t-test p < 0.0001). 
Thus, the overall association between body mass and BCD can potentially be explained 
by any environmental differences between North and South America.  

To test whether the link between BCD and body mass persists within each 
transect, we tested correlations between BCD and predictor variables in three transects 
independently (Table S5). We found the effects of geographic distance and body mass on 
BCD differs among transects. For example, within the East-NA transect, BMI showed the 
strongest correlation with BCD (Mantel r = 0.25, p = 0.002). Similarly, within the West-
NA transect, body weight (Mantel r = 0.21, p = 0.008) and geographic distance (Mantel r 
= 0.14, p = 0.004) showed the strongest correlations with BCD while within the SA 
transect, body mass measurements did not correlate with BCD and geographic distance 
(Mantel r = 0.35, p < 0.001) and climate PC1 (Mantel r = 0.39, p < 0.001) showed the 
strongest correlations with BCD (Table S5).  

Lastly, we ran Partial Mantel tests to ask whether the correlations between body 
mass and BCD remain significant after controlling for the effect of geographic distance 
within each transect (Table S6). The overall pattern remained the same. For example, 
only BMI (Partial Mantel r = 0.25, p < 0.001) and body weight (Partial Mantel r = 0.21, p 
= 0.005) remained significant after controlling for geographic distance within East-NA 
and West-NA transect, respectively. Similarly, only climate PC1 remained significant 
after controlling for geographic distance (Partial Mantel r = 0.18, p < 0.001) within SA 
transect. Together, the results suggest that differences in body mass measurements 
predict the differences in the gut microbial composition in the two North American 
transects, but not in the South American transect. 

 
6.3.2. Alpha-diversity of the gut microbiota positively correlate with body weight in 
wild-caught and lab-reared mice.  
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To further understand the link between body mass and gut microbiota, we asked 
whether alpha-diversity of the gut microbiota explain the variation in body mass using 
PD (Faith 1992) as observed in a previous study of wild house mice (Weldon et al. 2015). 
Similar to the result of beta-diversity, significant correlations between body weight and 
PD were observed in the East-NA transect (Fig.2A, rho = 0.46, p = 0.0008) and the West-
NA transect (Fig.2B rho = 0.52, p = 0.0002), but not in the SA transect (Fig.2C rho = -
0.03, p = 0.83). Although the SA transect did not show a significant correlation between 
body weight and PD, the correlation was robust when all wild-caught individuals were 
plotted together (Fig.2D, rho = 0.30, p = 0.0001). The positive correlation between body 
mass and alpha-diversity has been observed within species (Weldon et al. 2015) and 
between species (Godon et al. 2016; Nishida and Ochman 2017) of mammals. However, 
the mechanism of this relationship is unknown. Geography, climate, and diet are all 
possible explanations for the link between body mass and alpha-diversity in our field-
collected data because they are all correlated with alpha-diversity to a certain degree 
(Table S7).  

To test whether the link between body mass and alpha-diversity is independent of 
other variables such as geography, climate, diet, and environmental microbes, we 
conducted a common garden experiment. We collected live mice from three locations 
(i.e. NY, FL, and BR) and generated 40 animals from each location by crossing wild-
caught parents in a common lab environment (Fig.1A). We found population differences 
in body mass persisted in a common environment after one generation (Fig. S1) 
consistent with a previous study (Lynch 1992). Surprisingly, we found even a stronger 
positive correlation between body weight and PD in a common environment (Fig.2E, rho 
= 0.55, p < 0.0001) compared to the correlation observed in the field (Fig.2D). The 
results suggest that the association between body mass and alpha-diversity is independent 
of other covariates.  

The link between body mass and alpha-diversity can be explained by two main 
hypotheses. The first hypothesis is where changes in the alpha-diversity is a cause of 
greater body mass. For example, stability-diversity relationship (Tilman and Downing 
1994; Doak et al. 1998) has been used to explain the link between higher microbial 
diversity and greater need of fermentation for energy extraction (Lu et al. 2014; Suzuki 
and Nachman 2016) and thus affect the body mass. The second hypothesis is where the 
greater alpha-diversity in the gut microbiota is a consequence of larger body mass. For 
example, species-area relationship (Preston 1962) can explain the link where larger 
animals have greater “area” for microbes to colonize and thus the increase in rare OTUs 
may increase alpha-diversity measurements. Further investigation is necessary to 
understand the causality of the alpha-diversity and body mass relationship. 

 
6.3.3. Identification of gut bacterial genera that are associated with body mass in 
wild-caught and lab-reared animals 
 
 To identify specific bacterial taxa that correlate with body mass, we tested 
correlations between body weight and relative abundances of bacterial genera (Fig.3). We 
identified a total of 25 bacterial genera that had relative abundances greater than 0.1% 
that are present in both the wild and lab individuals. Among the 25 bacterial genera, 14 of 
them showed correlations with body weight (Fig. 3A). A positive correlation between 
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body weight and Mycoplasma remained significant after multiple testing. Similarly, eight 
out of 25 bacterial genera showed correlations with body weight in lab-reared mice that 
were born in a common environment (Fig. 3B). Prevotella, unclassified genus of YS2, 
Helicobacter showed significant positive correlations with body weight and an 
unclassified genus of Rikenellaceae showed a significant negative correlation with body 
weight in lab-reared mice.  

The relative abundances of three bacterial genera positively correlated with body 
weight in both wild-caught and lab-reared mice (Fig. 3). Interestingly, all three genera 
have been associated with energy extraction related functions. For example, Prevotella is 
known to breakdown “indigestible” polysaccharides and produce SCFAs (Kovatcheva-
Datchary et al. 2015), which is an important energy source for the mammalian host 
including humans (Bergman 1990). Recently, Prevotella-dominated communities have 
been shown to produce greater amount of SCFAs (Chen et al. 2017). The association 
between Helicobacter pylori and body mass has been reported in many studies and 
actively debated. For example, two recent meta-analyses in humans show contrasting 
results where H. pylori-positive patients show greater BMI in one study (Upala et al. 
2016) and H. pylori prevalence was inversely correlate with obesity prevalence in another 
(Lender et al. 2014). The endotoxin-producing family Desulfovibrionaceae was enriched 
in mouse models with impaired glucose tolerance and associated with calorie intake 
(Zhang et al. 2010). Together, links between the three genera and functions related to 
energy extraction have been reported at least in wild-caught mice, lab-reared mice, 
classic-mouse models, and humans. 
  
6.3.4. Larger mice living in colder environments produce greater amounts of SCFAs 
 
 The hypothesis that greater energy is extracted by the gut microbiota at higher-
latitudes has been proposed based on human populations where obesity-associated gut 
microbiota (i.e. higher F/B ratio) significantly increased with absolute latitude (Suzuki 
and Worobey 2014). Interestingly, mice from the SA-transect showed a consistent pattern 
with a significant positive correlation between F/B ratio and absolute latitude (rho = 0.26, 
p = 0.04, Fig. S2). In genetically obese mouse models, greater F/B ratio has been 
associated with increased SCFAs and energy extraction (Turnbaugh et al. 2006). 
Although the other two transects in wild mice (i.e. East-NA and West-NA) did not show 
significant correlations, a similar trend of greater F/B ratio in animals living in colder 
environments observed in humans and mice suggest the involvement of microbiota-
produced energy source (e.g. SCFAs) in host body mass variation.  

To test whether SCFAs are associated with adaptive differences in body mass, we 
measured amounts of fecal SCFAs in wild-derived inbred lines collected from five 
populations that vary in body mass; BR, AZ, FL, NY, and EDM (Fig. 1A&4A). We used 
5-7 male individuals per population and measured body weight, amount of food intake, 
amount of defecation, and amount of SCFAs at age between 100-112 days in a common 
environment (Table S3). First, body weight showed clinal variation where body weight 
tends to increase from low latitude populations to high latitude populations, a pattern 
consistent with Bergmann’s rule (Fig. 4A). The amounts of average food intake and 
defecation corrected for body weight did not differ among populations, but they showed a 
trend of negative correlations with latitude (Fig. 4B&C). Despite the trend of less food 
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intake and defecation in populations from colder environments, the total amount of fecal 
SCFAs was greatest in the two northern most populations among the five populations 
tested (Fig. 4D). This trend is consistent among all three major SCFAs produced by 
bacteria; acetate (Fig.4E), propionate (Fig.4F), and butyrate (Fig.4G). The greater amount 
of total SCFAs, acetate, and propionate observed in NY mice compared to FL mice is 
particularly interesting because the two populations are from the same East-NA transect 
that show clinal variation in body mass (Table S4) and alpha- and beta-diversity of the 
gut microbiota were best explained by body mass variation (Table S6&7). Furthermore, 
several host genes have been associated with the variation in the gut microbiota observed 
in the East-NA transect using the same individuals (Chapter 4).  
The results suggest that the gut microbiota of larger mice living in colder environments 
produce greater amounts of SCFAs without a relative increase in food consumption. 
Obesity and overweight individuals has been associated with the increased amounts of 
cecal and fecal SCFAs in mice (Turnbaugh et al. 2006; Murphy et al. 2010) and humans 
(Schwiertz et al. 2010; Fernandes et al. 2014; Rahat-Rozenbloom et al. 2014). 
Surgically-treated obese individuals show decrease in the concentrations of fecal SCFAs 
(Ppatil et al. 2012). These observations suggest that the gut microbiota in larger mice 
may have increased capacity to extract energy from diet. Together, the results support the 
possibility that the gut microbiota may play a role in adaptive body mass difference in 
natural populations of mammals. 
 
6.3.5. Conclusions 
 
 Overall, we found significant associations between gut microbiota variation and 
host body mass variation in wild house mice based on wild population samples and 
laboratory experiments. We identified candidate microbial measurements that associated 
with host body mass variation including alpha-diversity and three bacterial genera that 
show consistent associations in both field- and laboratory-environments. We also found 
greater concentrations of fecal SCFAs in larger mice living in higher-latitudes compared 
to smaller mice living in lower-latitudes without an increase in food consumption. The 
results suggest a beneficial function of the gut microbiota in colder environments by 
providing greater energy extraction. Together, the study suggests a potential role of the 
gut microbiota in thermoregulatory adaptation. 
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6.4. Chapter 6 Tables 
 

Table 1. Correlations between predictor variables and Bray-Curtis 
dissimilarity using Mantel test. 

Predictor variables 
All transects 

n Mantel r p-value 
Geographic distance 162 0.407 <0.0001 

Climate PC1 162 0.059 0.103 
Climate PC2 162 -0.009 0.734 
Body weight 159 0.071 0.117 

BMI 159 0.144 0.0016 
Carbon  156 0.083 0.034 

Nitrogen 156 0.038 0.462 
Significant correlations after Bonferroni correction within each transect are 
in bold (p = 0.05/7 = 0.007) 
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Table S2. Sample information of lab-reared individuals (n=120) (continued).  
SampleID Colony Sex Weight Carbon Nitrogen 
NY01F1 New_York_Lab F 17.8 -19.05 6.38 
NY01F2 New_York_Lab F 17.9 -19.05 6.38 
NY01M1 New_York_Lab M 20.1 -19.05 6.38 
NY01M2 New_York_Lab M 21.5 -19.05 6.38 
NY02F1 New_York_Lab F 13.5 -19.05 6.38 
NY02F2 New_York_Lab F 16.8 -19.05 6.38 
NY02M1 New_York_Lab M 21.0 -19.05 6.38 
NY02M2 New_York_Lab M 24.8 -19.05 6.38 
NY03F1 New_York_Lab F 17.9 -19.05 6.38 
NY03F2 New_York_Lab F 22.1 -19.05 6.38 
NY03M1 New_York_Lab M 20.1 -19.05 6.38 
NY03M2 New_York_Lab M 22.0 -19.05 6.38 
NY04F1 New_York_Lab F 16.4 -19.05 6.38 
NY04F2 New_York_Lab F 17.8 -19.05 6.38 
NY04M1 New_York_Lab M 22.6 -19.05 6.38 
NY04M2 New_York_Lab M 23.9 -19.05 6.38 
NY05F1 New_York_Lab F 17.5 -19.05 6.38 
NY05M1 New_York_Lab M 23.4 -19.05 6.38 
NY05M2 New_York_Lab M 25.1 -19.05 6.38 
NY05M3 New_York_Lab M 21.9 -19.05 6.38 
NY06F1 New_York_Lab F 15.0 -19.05 6.38 
NY06F2 New_York_Lab F 16.5 -19.05 6.38 
NY06M1 New_York_Lab M 24.2 -19.05 6.38 
NY06M2 New_York_Lab M 25.2 -19.05 6.38 
NY07F1 New_York_Lab F 20.1 -19.05 6.38 
NY07F2 New_York_Lab F 20.0 -19.05 6.38 
NY07M1 New_York_Lab M 20.9 -19.05 6.38 
NY07M2 New_York_Lab M 24.8 -19.05 6.38 
NY08F1 New_York_Lab F 13.8 -19.05 6.38 
NY08F2 New_York_Lab F 15.0 -19.05 6.38 
NY08M1 New_York_Lab M 17.0 -19.05 6.38 
NY08M2 New_York_Lab M 16.2 -19.05 6.38 
NY09F1 New_York_Lab F 21.1 -19.05 6.38 
NY09F2 New_York_Lab F 23.2 -19.05 6.38 
NY09M1 New_York_Lab M 24.5 -19.05 6.38 
NY09M2 New_York_Lab M 27.0 -19.05 6.38 
NY10F1 New_York_Lab F 17.0 -19.05 6.38 
NY10F2 New_York_Lab F 20.9 -19.05 6.38 
NY10M1 New_York_Lab M 24.2 -19.05 6.38 
NY10M2 New_York_Lab M 25.5 -19.05 6.38 
BR01F1 Brazil_Lab F 14.7 -18.91 6.20 
BR01F2 Brazil_Lab F 15.2 -18.91 6.20 
BR01M1 Brazil_Lab M 16.5 -18.91 6.20 
BR01M2 Brazil_Lab M 15.5 -18.91 6.20 
BR02F1 Brazil_Lab F 13.5 -18.91 6.20 
BR02F2 Brazil_Lab F 10.1 -18.91 6.20 
BR02F3 Brazil_Lab F 13.2 -18.91 6.20 
BR02M1 Brazil_Lab M 15.8 -18.91 6.20 
BR03F1 Brazil_Lab F 12.6 -18.91 6.20 
BR03F2 Brazil_Lab F 12.4 -18.91 6.20 
BR03M1 Brazil_Lab M 16.1 -18.91 6.20 
BR03M2 Brazil_Lab M 17.9 -18.91 6.20 
BR04F1 Brazil_Lab F 9.5 -18.91 6.20 
BR04F2 Brazil_Lab F 15.2 -18.91 6.20 
BR04M1 Brazil_Lab M 15.5 -18.91 6.20 
BR04M2 Brazil_Lab M 16.0 -18.91 6.20 
BR05F1 Brazil_Lab F 10.0 -18.91 6.20 
BR05F2 Brazil_Lab F 12.9 -18.91 6.20 
BR05F3 Brazil_Lab F 12.2 -18.91 6.20 
BR05M1 Brazil_Lab M 12.5 -18.91 6.20 
BR06F1 Brazil_Lab F 12.0 -18.91 6.20 
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Table S2. Continued. 
SampleID Colony Sex Weight Carbon Nitrogen 
BR06F2 Brazil_Lab F 12.9 -18.91 6.20 
BR06M1 Brazil_Lab M 15.5 -18.91 6.20 
BR06M2 Brazil_Lab M 15.1 -18.91 6.20 
BR07F1 Brazil_Lab F 13.1 -18.91 6.20 
BR07F2 Brazil_Lab F 10.5 -18.91 6.20 
BR07F3 Brazil_Lab F 10.1 -18.91 6.20 
BR07M1 Brazil_Lab M 14.2 -18.91 6.20 
BR08F1 Brazil_Lab F 12.1 -18.91 6.20 
BR08F2 Brazil_Lab F 13.3 -18.91 6.20 
BR08M1 Brazil_Lab M 17.5 -18.91 6.20 
BR08M2 Brazil_Lab M 12.5 -18.91 6.20 
BR09F1 Brazil_Lab F 12.6 -18.91 6.20 
BR09F2 Brazil_Lab F 13.0 -18.91 6.20 
BR09F3 Brazil_Lab F 14.0 -18.91 6.20 
BR09M1 Brazil_Lab M 16.4 -18.91 6.20 
BR10F1 Brazil_Lab F 11.8 -18.91 6.20 
BR10F2 Brazil_Lab F 9.5 -18.91 6.20 
BR10M1 Brazil_Lab M 15.6 -18.91 6.20 
BR10M2 Brazil_Lab M 15.0 -18.91 6.20 
FL01F1 Florida_Lab F 16.6 -18.98 6.68 
FL01F2 Florida_Lab F 19.0 -18.98 6.68 
FL01M1 Florida_Lab M 23.6 -18.98 6.68 
FL01M2 Florida_Lab M 21.0 -18.98 6.68 
FL02F1 Florida_Lab F 15.7 -18.98 6.68 
FL02F2 Florida_Lab F 16.2 -18.98 6.68 
FL02M1 Florida_Lab M 20.2 -18.98 6.68 
FL02M2 Florida_Lab M 23.5 -18.98 6.68 
FL03F1 Florida_Lab F 17.5 -18.98 6.68 
FL03F2 Florida_Lab F 20.5 -18.98 6.68 
FL03M1 Florida_Lab M 25.0 -18.98 6.68 
FL03M2 Florida_Lab M 27.2 -18.98 6.68 
FL04F1 Florida_Lab F 12.9 -18.98 6.68 
FL04F2 Florida_Lab F 15.5 -18.98 6.68 
FL04M1 Florida_Lab M 20.0 -18.98 6.68 
FL04M2 Florida_Lab M 20.9 -18.98 6.68 
FL05F1 Florida_Lab F 11.9 -18.98 6.68 
FL05F2 Florida_Lab F 11.8 -18.98 6.68 
FL05M1 Florida_Lab M 19.5 -18.98 6.68 
FL05M2 Florida_Lab M 15.8 -18.98 6.68 
FL06F1 Florida_Lab F 16.1 -18.98 6.68 
FL06F2 Florida_Lab F 12.5 -18.98 6.68 
FL06M1 Florida_Lab M 19.2 -18.98 6.68 
FL06M2 Florida_Lab M 14.2 -18.98 6.68 
FL07F1 Florida_Lab F 13.5 -18.98 6.68 
FL07F2 Florida_Lab F 15.6 -18.98 6.68 
FL07M1 Florida_Lab M 15.4 -18.98 6.68 
FL07M2 Florida_Lab M 16.9 -18.98 6.68 
FL08F1 Florida_Lab F 18.5 -18.98 6.68 
FL08F2 Florida_Lab F 22.0 -18.98 6.68 
FL08M1 Florida_Lab M 21.1 -18.98 6.68 
FL08M2 Florida_Lab M 21.5 -18.98 6.68 
FL09F1 Florida_Lab F 15.0 -18.98 6.68 
FL09F2 Florida_Lab F 13.0 -18.98 6.68 
FL09M1 Florida_Lab M 17.5 -18.98 6.68 
FL09M2 Florida_Lab M 20.1 -18.98 6.68 
FL10F1 Florida_Lab F 15.5 -18.98 6.68 
FL10F2 Florida_Lab F 15.0 -18.98 6.68 
FL10M1 Florida_Lab M 18.8 -18.98 6.68 
FL10M2 Florida_Lab M 18.4 -18.98 6.68 
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Table S3. Sampled picked for SCFA and energy intake, age 100 
- 112 day old animals. 

   Age (days) 
Colony Sex n Mean SD 

Edmonton M 5 106.6 3.8 
New York M 7 106.4 3.9 

Florida M 7 106.9 4.1 
Arizona M 6 105.0 4.3 
Brazil M 7 106.6 3.3 

	
	
	
Table S4. Correlations with absolute latitude and metadata 

Variables 
All samples   East-NA   West-NA   SA 

rho p-value   rho p-value   rho p-value   rho p-value 
Climate PC1 -0.91 <.0001   -0.97 <.0001   -0.87 <.0001   -0.98 <.0001 
Climate PC2 0.08 0.30   0.32 0.022   0.85 <.0001   0.12 0.34 
Body weight  0.27 0.0007   0.32 0.025   -0.28 0.061   0.26 0.045 

Body mass index (BMI) 0.31 <.0001   0.21 0.14   -0.17 0.26   0.18 0.15 
Diet (Carbon) -0.18 0.021   0.19 0.19   -0.37 0.0088   -0.21 0.11 

Diet (Nitrogen) -0.09 0.27   0.14 0.35   0.00 0.98   -0.01 0.95 
Significant correlations after Bonferroni correction within each transect are bolded (p = 0.05/6 = 0.008) 
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Table S5. Correlations between predictor variables and Bray-Curtis dissimilarity using Mantel test. 

Predictor variables 
All   East-NA   West-NA   SA 

n Mantel r p-value   n Mantel r p-value   n Mantel r p-value   n Mantel r p-value 

Geographic distance 162 0.407 0.0001   50 0.074 0.081   50 0.135 0.004   62 0.351 <0.001 

Climate PC1 162 0.059 0.103   50 0.104 0.066   47 0.146 0.017   62 0.388 <0.001 

Climate PC2 162 -0.009 0.734   50 0.132 0.039   47 0.116 0.013   62 0.031 0.47 

Body weight 159 0.071 0.117   50 0.098 0.132   47 0.206 0.008   62 0.090 0.226 

BMI 159 0.144 0.0016   50 0.248 0.002   47 0.123 0.151   62 0.064 0.392 

Carbon  156 0.083 0.034   49 0.138 0.047   45 0.126 0.051   62 -0.012 0.812 

Nitrogen 156 0.038 0.462   49 0.007 0.927   45 0.048 0.665   62 -0.027 0.684 

Significant correlations after Bonferroni correction within each transect are bolded (p = 0.05/7 = 0.007) 
	
	
Table S6. Correlations between predictor variables and Bray-Curtis dissimilarity using Partial Mantel test controlling for geographic distance. 

Predictor variables 
All   East-NA   West-NA   SA 

n Mantel r p-value   n Mantel r p-value   n Mantel r p-value   n Mantel r p-value 

Climate PC1 162 -0.057 0.933   50 0.100 0.07   47 0.051 0.242   62 0.180 <0.001 

Climate PC2 162 -0.056 0.979   50 0.111 0.041   47 0.024 0.371   62 -0.004 0.539 

Body weight 159 0.046 0.153   50 0.091 0.074   47 0.211 0.005   62 0.091 0.108 

BMI 159 0.037 0.201   50 0.245 <0.001   47 0.124 0.092   62 0.062 0.203 

Carbon  156 0.075 0.036   49 0.142 0.021   45 0.122 0.035   62 -0.010 0.532 

Nitrogen 156 0.011 0.378   49 0.000 0.494   45 0.060 0.26   62 0.005 0.41 

Significant correlations after Bonferroni correction within each transect are bolded (p = 0.05/7 = 0.007) 
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Table S7. Correlations between phylogenetic diversity (alpha-diversity) and metadata 

Variables 
All samples   East-NA   West-NA   SA 

rho p-value   rho p-value   rho p-value   rho p-value 
Latitude (absolute) -0.1666 0.0341   0.3323 0.0184   -0.1075 0.4573   -0.6014 <.0001 

Latitude 0.2659 0.0006   0.3323 0.0184   -0.1075 0.4573   0.6014 <.0001 
Climate PC1 0.0391 0.6214   -0.3721 0.0078   0.015 0.9177   0.6022 <.0001 
Climate PC2 0.0284 0.7202   -0.1515 0.2935   0.095 0.5117   0.1631 0.2052 
Body weight  0.3024 0.0001   0.4584 0.0008   0.5156 0.0002   -0.0271 0.8345 

Body mass index (BMI) 0.2549 0.0012   0.3329 0.0182   0.4332 0.0024   -0.0262 0.84 
Diet (Carbon) 0.1724 0.0298   0.187 0.1983   0.4106 0.0037   0.131 0.31 

Diet (Nitrogen) -0.0317 0.6917   -0.0231 0.8749   -0.0341 0.818   0.0636 0.6233 
Significant correlations after Bonferroni correction within each transect in bold (p = 0.05/6 = 0.008) 
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Figure S1. Population difference in body weight persists in a common environment. (A) Body 
weight differ among the wild populations (ANOVA p = 0.0015). (B) Body weight differ among 
lab-reared populations (ANOVA p < 0.0001). (C) Age does not differ among lab-reared 
populations (ANOVA p = 0.33). Pairwise significance is based on Student’s t-test: * p < 0.1, ** 
p < 0.05, *** p < 0.001.    
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Figure S2.  Correlations between log ratio of relative abundance of Firmicutes and Bacteroidetes (F/B ratio) and absolute latitude in 
humans and house mice. (A) In healthy adult humans, a significant positive correlation between log F/B ratio and absolute latitude 
was observed (rho = 0.51, p < 0.0001). (B) In wild house mice, positive slopes were observed between log F/B ratio and absolute 
latitude using all samples, SA transect, East-NA transect, but not West-NA transect. Only SA-transect showed a significant positive 
correlation using Spearman’s rho correlation (rho = 0.26, p = 0.04).  
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