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Learning with data from multiple domains is a longstanding topic in machine learn-

ing research. In recent years, deep neural networks (DNN) have shown remarkable perfor-

mance on different machine learning tasks. However, how to efficiently utilize deep neural

networks for learning with multiple domains is largely unexploited. A model aware of

the relationships between different domains can be trained to work on new domains with

fewer resources and achieve better performance. However, to identify and leverage the

transferable structure is challenging.
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In this dissertation, we propose novel methods which allow efficient learning across

multiple domains in several different scenarios. First, we address the problem of learning

across two image domains with deep neural networks. We propose two adaptive methods

which allow different images to fine-tune and reuse different residual blocks and convo-

lutional filters of the pre-trained model. Experimental results show that the proposed

SpotTune outperforms the standard fine-tuning on 12 out of 14 datasets. Second, we con-

sider the case that the target domain only has few examples per category which is referred

to as the cross-domain few-shot problem. We establish a new benchmark for cross-domain

few-shot learning and propose a multi-model selection algorithm which achieves an average

improvement of 2% compared with the state-of-the-art approach on the proposed bench-

mark. Third, we consider learning with multiple domains simultaneously. We propose a

multi-domain learning method based on depthwise separable convolution which achieves

the highest score on the Visual Decathlon Challenge and reduces the number of parame-

ters by 50% compared with the state-of-the-art approach. We further propose an efficient

multi-domain learning method for distributed training in sensor networks. The proposed

method can reduce the communication cost by up to 53% and energy consumption by up

to 67% without accuracy degradation compared with conventional approaches. Finally,

we address the problem of learning with multiple domains sequentially. We propose an

algorithm called mixed stochastic gradient descent (MEGA) which allows the model to

maintain the performance on old domains while being trained on a new domain. MEGA

achieves an average accuracy of 91.21±0.10% on Permuted MNIST, which is 2% better

than the previous state-of-the-art model. On Split CIFAR, the proposed MEGA achieves
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an average accuracy of 66.12±1.93%, which is about 5% better than the state-of-the-art

method.
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Chapter 1

Introduction

Deep learning has shown remarkable success in many computer vision tasks, but

current methods often rely on the assumption that the training data and the test data

are from the same domain [KSH12, HZRS16, HLvdMW17]. However, in practical appli-

cations, we often need to train models on a source domain which is different from the test

domain. There are several reasons for this practice. First, collecting sufficient amounts of

data for certain classes may be impossible in practice: for example, in dermatology, there

are a multitude of instances of rare diseases, or diseases that become rare for particular

types of skin [RHDC19, AS18, KOC+]. Second, although the source domain and the tar-

get domain are different, by leveraging the knowledge in the source domain, it is possible

to boost the performance or accelerate the learning on the target domain [PY+10]. We

introduce several different scenarios when it comes to realize the idea of learning across

multiple domains with deep neural networks.
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Learning across two domains

When there are two domains, transfer learning, where the goal is to transfer knowl-

edge from a related source domain, is commonly used to compensate for the lack of suffi-

cient training data in the target domain [PY+10, Ben12]. Transfer learning allows learning

across domains to overcome the domain shift between the training set and the test set.

Fine-tuning is arguably the most widely used approach for transfer learning when working

with deep learning models. It starts with a pre-trained model on the source task and

trains it further on the target task. For computer vision tasks, it is a common practice to

work with ImageNet pre-trained models for fine-tuning [KSL18]. Compared with training

from scratch, fine-tuning a pre-trained convolutional neural network on a target dataset

can significantly improve performance, while reducing the target labeled data require-

ments [GDDM14, YCBL14, TSG+16, KSL18].

Few-shot cross-domain learning

Another typical case in learning across two domains is that the target domain only

has few examples per category. Training deep neural networks for visual recognition typi-

cally requires a large amount of labelled examples [KSH12]. The generalization ability of

deep neural networks relies heavily on the size and variations of the dataset used for train-

ing. However, collecting sufficient amounts of data for certain classes may be impossible

in practice. In domains such as satellite imagery, there are instances of rare categories

such as airplane wreckage, which poses severe challenges for deep neural networks to learn

useful features for discrimination.

2



(a) Animals (b) Textures (c) Signs (d) Omniglot

(e) Digits (f) Aircraft (g) Flowers (h) Pedestrian

Figure 1.1: Image examples from different domains.

In contrast to deep neural networks, humans recognize new categories from a few

examples in certain circumstances, such as when categories exhibit predictable variations

across examples and have reasonable contrast from background in the image [LST15,

LSGT11]. However, even humans have trouble recognizing new categories that vary too

greatly between examples or differ from prior experience, such as for diagnosis in derma-

tology, radiology, or other fields [RHDC19]. Because there are many applications where

learning must work from few examples, and both machines and humans have difficulty

learning in these circumstances, finding new methods to tackle the problem remains a

challenging but desirable goal.

Learning across multiple domains simultaneously

The existing deep neural network models are powerful but mostly designed for deal-

ing with images from a specific visual domain (e.g. digits, animals, or flowers). This limits
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the applications of current approaches, as each time the network needs to be retrained

when new domains arrive. In sharp contrast to such deep neural network models, humans

can easily generalize to new domains based on the acquired knowledge [CG15, HTYN+15].

Previous works [BV17, RBV18a] show that images from different domains may have a uni-

versal structure that can be captured via a common parameterization. A natural question

then arises:

Can we build a single neural network that can deal with images across different domains

simultaneously?

The question motivates the field called multi-domain learning, where we target de-

signing a common feature extractor that can capture the universal structure in different

domains and reducing the overhead of adding new tasks to the model. With multi-domain

learning, the visual models are vested with the ability to work well on different domains

with minimal or no domain-specific parameters. Ideally, a single model should achieve

competitive performance across a variety of image domains as shown in Figure 1.1. This

is especially important if we want to deploy the trained deep neural networks on small

devices which have limited resources. If we train separate models for different domains, we

need to store a large number of models which are beyond the capability of the small devices.

Learning across multiple domains sequentially

A significant step towards artificial general intelligence (AGI) is to enable the learn-

ing agent to acquire the ability of remembering past experiences while being trained on
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a continuum of tasks. Current deep neural networks are capable of achieving remarkable

performance on a single task [GBCB16]. However when the network is retrained on a new

task, its performance drops drastically on previously trained tasks, a phenomenon which

is referred to as catastrophic forgetting [Rat90, Rob95, Fre99, KPR+17]. In stark contrast,

human cognitive system is capable of acquiring new knowledge without damaging previ-

ously learned experiences. It is thus of great importance to develop algorithms to allow

deep neural networks to achieve continual learning capability (i.e., avoiding catastrophic

forgetting) across multiple domains.

The problem of catastrophic forgetting motivates the field called lifelong learning

[KPR+17, PKP+19, TM95]. A central dilemma in lifelong learning is how to achieve a

balance between the performance on old tasks and the new task [KPR+17, Rob95]. Dur-

ing the process of learning the new task, the originally learned knowledge will typically be

disrupted, which leads to catastrophic forgetting. On the other hand, a learning algorithm

biasing towards old tasks will interfere with the learning of the new task. Several lines

of methods are proposed recently to address this issue. Examples include regularization

based methods [KPR+17, ZPG17], knowledge transfer based methods [RRD+16], episodic

memory based methods [LP+17, CRRE18, RCA+18]. Especially, episodic memory based

methods such as GEM [LP+17] and A-GEM [CRRE18] have shown remarkable perfor-

mance. In episodic memory based methods, a small episodic memory is used for storing

examples from old tasks to guide the optimization of the current task.
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Our contributions

In this dissertation, we consider learning with multiple domains with deep neural

networks in several different scenarios. We first consider the setting that there are one

source domain and one target domain. We pre-train the model on the source domain and

propose adaptive fine-tuning methods for transferring knowledge to the target domain.

Next, we consider a more challenging case that the target domain only has few examples.

We establish a new benchmark and propose the Incremental Multi-model Selection method

to enable the target domain to reuse knowledge from multiple source domains.

We then consider learning with multiple domains simultaneously. We propose Shar-

ingNet which can classify images from multiple different image domains. We generalize

this idea to sensor networks involving different types of sensor data and propose active

learning methods which allows efficient distributed training. Finally, we tackle the sit-

uation of learning with multiple domains sequentially and propose the Mixed Stochastic

Gradient algorithm to allow the model to learn new domains while maintaining perfor-

mance on old domains.

Learning across two domains

Adaptive transfer learning: In Chapter 4, we propose two adaptive fine-tuning

methods, SpotTune and AdaFilter, to learn a decision policy for input-dependent transfer

learning. As shown in Figure 1.2, we propose novel methods that decides, per training

example, which layers or filters of the pre-trained model should have their parameters fixed,

i.e., shared with the source task, and which layers or filters should be fine-tuned to improve
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Figure 1.2: Given a deep neural network pre-trained on a source task, we address the
question of where to fine-tune its parameters with examples of the target task.

the accuracy of the model in the target domain. The policy is sampled from a discrete

distribution parameterized by the output of a lightweight neural network, which decides

which layers of a pre-trained model should be fine-tuned or have their parameters frozen,

on a per instance basis. As these decision functions are discrete and non-differentiable,

In SpotTune we rely on a recent Gumbel Softmax sampling approach [MMT16, JGP16]

to train the policy network. At test time, the policy decides whether the features coming

out of a layer go into the next layer with the source pre-trained parameters or the fine-

tuned parameters. In AdaFilter, we employ the Straight Through Estimator to allow

differentiation through the discrete nodes.

We conduct extensive empirical evaluation of the proposed approaches, compar-

ing it with several competitive baselines. The proposed SpotTune outperforms standard

fine-tuning on 12 out of 14 datasets. Moreover, we show the effectiveness of SpotTune

compared to other state-of-the-art fine-tuning strategies. On the Visual Decathlon Chal-
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lenge [RBV17], which is a competitive benchmark for testing the performance of transfer

learning algorithms with a total of 10 datasets, the proposed approach achieves the high-

est score compared with the state-of-the-art methods. Similar experimental results also

demonstrate the competitive performance of the proposed AdaFilter approach.

Cross-domain few-shot learning: In Chapter 5, we further consider the case

that the target domain only has few examples per class. We refer to this setting as

cross-domain few-shot learning. We establish a new benchmark for cross-domain few-

shot learning (CD-FSL), consisting of images from a diversity of domains with varying

similarity to ImageNet, and lacking data for meta-learning. We extensively evaluate the

performance of current meta-learning methods and variants of fine-tuning. The results

show the following observations for CD-FSL: 1) meta-learning underperforms compared to

fine-tuning, 2) accuracy gain with additional data is increased for fine-tuning versus meta-

learning, 3) no individual fine-tuning method dominates performance versus the others

across the benchmark, and 4) a general positive correlation between accuracy and dataset

similarity to ImageNet exists. Finally, we propose Incremental Multi-model Selection, a

method which integrates multiple pretrained models for cross-domain few-shot learning,

and demonstrates best average performance on the new benchmark.

Learning across multiple domains

SharingNet: In Chapter 6, we propose a multi-domain learning approach based on

depthwise separable convolution which can classify images from different domains simul-

taneously. Depthwise separable convolution has been proved to be a powerful variation of
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standard convolution for many applications, such as image classification [Cho17], natural

language processing [KGC17] and embedded vision applications [HZC+17]. To the best

of our knowledge, this is the first work that explores depthwise separable convolution for

multi-domain learning. The proposed multi-domain learning model is compact and easily

extensible. To promote transfer learning between different domains we further introduce

a softmax gating mechanism. We evaluate our method on Visual Decathlon Challenge

[RBV17]. Our method beats the state-of-the-art models with only 50% of the parameters.

Efficient multi-domain learning in sensor networks: In Chapter 7, we extend

the idea of learning across multiple domains to the case of sensor networks. Training ML

models in heterogeneous mobile networks incurs a large communication cost due to the

necessity to deliver the local data to a central server. Inspired by active learning, which

is traditionally used to reduce the labeling cost for training ML models, we propose an

active sampling method to reduce the communication cost of learning in heterogeneous

mobile networks. Instead of sending all the local data, the proposed active sampling

method identifies and sends only informative data from each device to the central server.

Extensive experiments on four real datasets, both with numerical simulation and on a

networked mobile system, show that the proposed method can reduce the communication

cost by up to 53% and energy consumption by up to 67% without accuracy degradation

compared with the conventional approaches.

MEGA In Chapter 8, we propose a lifelong learning algorithm called MixEd

stochastic GrAdient (MEGA) which can learn on multiple domains sequentially. We first

present a unified view of episodic memory based lifelong learning methods including GEM
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[LP+17] and A-GEM [CRRE18] from an optimization’s perspective. Specifically, we cast

the problem of avoiding catastrophic forgetting in lifelong learning as an optimization

problem with composite objective. We approximately solve the optimization problem

using one-step stochastic gradient descent with the standard gradient replaced by the

proposed mixed stochastic gradient. The mixed stochastic gradient is derived from the

gradients computed on the data of the current task and an episodic memory which stores

a small subset of observed examples from old tasks [LP+17, CRRE18, RCA+18]. We show

that both GEM [LP+17] and A-GEM [CRRE18] are degenerate cases of MEGA which

consistently put the same emphasis on the current task, regardless of how the loss changes

over time. In contrast, based on our derivation, the direction of the proposed mixed

stochastic gradient balances the old tasks and the new task in an adaptive manner by con-

sidering the performance of the model on old tasks and on the new task. Therefore, the

proposed MEGA algorithm allows deep neural networks to learn new tasks while avoiding

catastrophic forgetting. Extensive experiments show the performance improvement of the

proposed approach compared with existing lifelong learning algorithms.
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Chapter 2

Preliminaries

2.1 Convolutional Neural Networks

Since the success on the ImageNet dataset [KSH12], deep neural networks has drawn

a huge amount of attention from academia, industry and media. Subsequent works show

that deep neural network models can achieve the state-of-the-art results on many real-

world tasks, such as computer vision [HZRS16], natural language processing [YHPC17]

and speech recognition [HDY+12]. Convolutional neural network (CNN) is a specialized

type of deep neural network that has been successfully applied in many areas, especially

in visual imagery [LBBH98].

Convolutional neural networks typically consist of multiple convolutional layers and

pooling layers. In convolutional layers, convolution operation is employed to extract the

features from the input. In each convolutional layer we have a set of filters. During the

forward pass, we slide each filter across the input and compute dot products between the
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filter and the local receptive field. The output of the convolutional layer is called activation

map that gives the response of each filter. Given an image I and a m × n filter F , an

element ai,j in the activation map can be computed as,

ai,j =
m∑
a=1

n∑
b=1

Ii+a−1,j+b−1 × Fa,b (2.1)

Convolutional layers have several properties which make them suitable for building

deep neural networks: sparse interactions, parameter sharing and equivariant representa-

tions [GBCB16]. Sparse interactions refer to the fact that the convolutional kernels only

apply on a small region of the input, thus the number of parameters can be greatly reduced.

Since the same convolutional filter is applied in different region the input, the parameters

are essentially shared in the convolution operation. The fact of parameter sharing further

leads to equivariant representations, which indicates that if the input changes, the output

changes in the same manner. A simple convolutional neural network is shown in Figure

2.1.

Figure 2.1: A simple illustration of convolutional neural networks.
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Convolutional neural networks extract the features from the input in a hierarchical

manner. As shown in Figure 2.2, the initial layers of convolutional neural networks are

used for extracting lower features such as edges and textures. The middle layers are used

for extracting features such as corners and contours. The top layers are used for actually

detecting the actual objects in the images. Thus a natural way to leverage convolutional

neural networks for transfer learning is to pre-train the network on a source domain and

adjust the trained weights on the target domain, which is also referred to as fine-tuning.

A widely used variant of fine-tuning is to share the initial layers of the pre-trained model

on the source domain with the target domain for extracting low-level features.

Figure 2.2: An illustration of using convolutional neural networks for feature extraction
[GBCB16].

2.2 Learning Scenarios

In this dissertation, we focus on learning across multiple domains with deep convo-

lutional neural networks. Especially, we consider learning across with two image domains,
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learning with multiple image domains , learning on a continuum of domains and cross-

domain few-shot learning.

Learning across two domains

We define a domain as a joint distribution P over input space X and label space

Y . The marginal distribution of X is denoted as PX . We use the pair (x, y) to denote a

sample x and the corresponding label y from the joint distribution P . For a deep neural

network fθ: X → Y with parameter θ, given a loss function `, typically the cross-entropy

loss for classification, the expected error of the network is defined as,

ε(fθ) = E(x,y)∼P [`(fθ(x), y)] (2.2)

Since the joint distribution is directly accessible, instead we minimize the following

empirical error,

ε̃(fθ) =
1

|Dtr|

|Dtr|∑
i=1

`(fθ(x), y) (2.3)

where Dtr is a training dataset. The empirical error is the average error over the

samples in the training set Dtr.

Suppose we have a source domain (Xs,Ys) and a target domain (Xt,Yt) with joint

distribution Ps and Pt respectively, and specially PXs 6= PXt . In transfer learning, the

model is first trained on the source domain, the trained model is then adjusted on the

target domain. Models trained on ImageNet [DDS+09] are shown to be transferred across

different vision-based tasks, such as objection detection [HGDG17] and semantic segmen-
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tation [GDDM14]. Empirical results also show that higher ImageNet accuracy leads to

higher overall object detection accuracy [HRS+17], which demonstrates the benefits of

transfer learning.

Learning with multiple domains simultaneously

Consider a set of image domains {D1, D2, ..., DT}, each domain Di consists of a triplet

{Xi, Yi, Pi}. Xi ∈ RCi×Hi×Wi is the input image space, Yi ∈ {1, 2, ..., Li} is the output label

space and Pi is the joint probability of (Xi, Yi). In multi-domain learning, our goal is to

design neural network architectures that can work well on all the domains simultaneously.

Let E(Di) be the domain-specific parameters for domain Di and C be the parameters that

are shared across all the domains. For x ∈ Xi, the output of the network can be calculated

as,

ŷ = (E(Di) ◦ C)(x) (2.4)

where ◦ is the operation that connects the domain-specific parameters and sharable pa-

rameters which depends on the specific neural network architecture. The average error of

the neural network across all the domains can be calculated as,

R =
1

T

T∑
i=1

E[`(y, (E(Di) ◦ C)(x)] (2.5)

There are multiple goals in multi-domain learning. First, one natural goal is to minimize

the average risk across different domains. Instead of training separate model for each

domain, it has been shown that by sharing a part of parameters across multiple domains,

15



we can achieve higher average test accuracy. One reason for the performance boost is that

by sharing part of the parameters, the issue of overfitting can be alleviated. Moreover,

by training the sharable parameters on some large datasets, we can extract transferable

features can be used for smaller datasets. Second goal is to minimize the size of the

domain-specific part E(Di). By reducing the domain-specific part, the model size can be

made as small as possible to enable it to be deployed on resource limited devices.

Learning with multiple domains sequentially

Learning with multiple domains sequentially, also called lifelong learning (LLL)

[RRD+16, KPR+17, LP+17, CRRE18] in this dissertation, considers the problem of learn-

ing a new domain without degrading performance on old domains, i.e., to avoid catas-

trophic forgetting [Fre99, KPR+17]. Suppose there are T tasks which are characterized

by T datasets: {D1, D2, .., DT}. Each dataset Dt consists of a list of triplets (xi, yi, t),

where yi is the label of i-th example xi, and t is a task descriptor that indicates which task

the example coming from. Similar to supervised learning, each dataset Dt is split into a

training set Dtr
t and a test set Dte

t .

In the learning protocol introduced in [CRRE18], the tasks are separated into DCV

= {D1, D2, ..., DTCV } and DEV = {DTCV +1, DTCV +2, ..., DT}. DCV is used for cross-

validation to search for hyperparameters. DEV is used for actual training and evaluation.

As pointed out in [CRRE18], some regularization-based lifelong learning algorithms, e.g.,

Elastic Weight Consolidation [KPR+17], are sensitive to the choice of the regularization

parameters. Introducing DCV can help find the best regularization parameter without
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exposing the actual training and evaluation data. While searching for the hyperparameters,

we can have multiple passes over the examples in DCV , the training is performed on DEV

with only a single pass over the examples [LP+17, CRRE18].

In lifelong learning, a given model fθ is trained sequentially on a series of tasks

{DTCV +1, DTCV +2, ..., DT}. When the model fθ is trained on task Dt, the goal is to

predict the labels of the examples in Dte
t by minimizing the empirical loss `t(w) on Dtr

t in

an online fashion without suffering accuracy drop on {Dte
TCV +1, Dte

TCV +2, ..., Dte
t }.

Cross-domain few-shot learning

Cross-domain few-shot learning is closely related to the standard few-shot learning

[SSZ17]. In cross-domain few-shot learning, we have a source domain (Xs,Ys) and a target

domain (Xt,Yt) with joint distribution Ps and Pt respectively, PXs 6= PXt , and Ys is disjoint

from Yt. The base classes data are sampled from the source domain and the novel classes

data are sampled from the target domain. During the training or meta-training stage, the

model fθ is trained (or meta-trained) on the base classes data. During testing (or meta-

testing) stage, the model is presented with a support set S = {xi, yi}K×Ni=1 consisting of N

examples from K novel classes. This configuration is referred to as “K-way N -shot” few-

shot learning, as the support set has K novel classes and each novel class has N training

examples. After the model is adapted to the support set, a query set from novel classes is

used to evaluate the model performance.
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Chapter 3

Learning with Two Domains:

Adaptive Block Fine-tuning

3.1 Introduction

The standard approach of transfer learning with deep neural networks is to slightly

adjust the pre-trained model on the target domain, also called fine-tuning. There are

several choices when it comes to realizing the idea of fine-tuning of deep neural networks

in practice. A natural approach is to optimize all the parameters of the deep neural

network using the target training data (after initializing them with the parameters of the

pre-trained model). However, if the target dataset is small and the number of parameters

is huge, fine-tuning the whole network may result in overfitting [YCBL14]. Alternatively,

the last few layers of the deep network can be fine-tuned while freezing the parameters of

the remaining initial layers to their pre-trained values [TSG+16, ARS+16]. This is driven
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by a combination of limited training data in the target task and the empirical evidence that

initial layers learn low-level features that can be directly shared across various computer

vision tasks. However, the number of initial layers to freeze during fine-tuning still remains

a manual design choice which can be inefficient to optimize for, especially for networks

with hundreds or thousands of layers. Further, it has been empirically observed that

current successful multi-path deep architectures such as ResNets [HZRS16] behave like

ensembles of shallow networks [VWB16]. It is not clear if restricting the fine-tuning to the

last contiguous layers is the best option, as the ensemble effect diminishes the assumption

that early or middle layers should be shared with common low-level or mid-level features.

Current methods also employ a global fine-tuning strategy, i.e., the same decision of

which parameters to freeze vs. fine-tune is taken for all the examples in the target task. The

assumption is that such a decision is optimal for the entire target data distribution, which

may not be true, particularly in the case of insufficient target training data. For example,

certain classes in the target task might have higher similarity with the source task, and

routing these target examples through the source pre-trained parameters (during inference)

might be a better choice in terms of accuracy. Ideally, we would like these decisions to be

made individually for each layer (i.e., whether to use pre-trained parameters or fine-tuned

parameters for that layer), per input example.

In this dissertation, we propose two adaptive fine-tuning methods, SpotTune and

AdaFilter, to automatically decide which residual block and which filters should be fine-

tuned. In this chapter, we propose SpotTune, an approach to learn a decision policy for

input-dependent fine-tuning. The policy is sampled from a discrete distribution param-
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eterized by the output of a lightweight neural network, which decides which layers of a

pre-trained model should be fine-tuned or have their parameters frozen, on a per instance

basis. As these decision functions are discrete and non-differentiable, we rely on a recent

Gumbel Softmax sampling approach [MMT16, JGP16] to train the policy network. At

test time, the policy decides whether the features coming out of a layer go into the next

layer with the source pre-trained parameters or the fine-tuned parameters.

We summarize our contributions of SpotTune as follows:

• We propose an input-dependent fine-tuning approach that automatically determines

which layers to fine-tune per target instance. This is in contrast to current fine-

tuning methods which are mostly ad-hoc in terms of determining where to fine-tune

in a deep neural network (e.g., fine-tuning last k layers).

• We also propose a global variant of our approach that constrains all the input ex-

amples to fine-tune the same set of k layers which can be distributed anywhere in

the network. This variant results in fewer parameters in the final model as the

corresponding set of pre-trained layers can be discarded.

• We conduct extensive empirical evaluation of the proposed approach, comparing

it with several competitive baselines. The proposed approach outperforms standard

fine-tuning on 12 out of 14 datasets. Moreover, we show the effectiveness of SpotTune

compared to other state-of-the-art fine-tuning strategies. On the Visual Decathlon

Challenge [RBV17], which is a competitive benchmark for testing the performance of

multi-domain learning algorithms with a total of 10 datasets, the proposed approach
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achieves the highest score compared with the state-of-the-art methods.

3.2 Related Work

Transfer Learning There is a long history of transfer learning and domain adapta-

tion methods in computer vision [Csu17, PY+10]. Early approaches have concentrated

on shallow classifiers, using techniques such as instance re-weighting [WQXY07, DPS06],

model adaptation [DTXM09], and feature g2012geodesic. Recently, transfer learning based

on deep neural networks has received significant attention in the community [GUA+16,

CHF+15, CBG13, KSW+18, GY17]. Fine-tuning a pre-trained network model such as

ImageNet on a new dataset is the most common strategy for knowledge transfer in the

context of deep learning. Methods have been proposed to fine-tune all network param-

eters [GDDM14], only the parameters of the last few layers [LCWJ15], or to just use

the pre-trained model as a fixed feature extractor with a classifier such as SVM on top

[SRASC14]. Kornblith et al. [KSL18] studied several of these options to address the

question of whether better ImageNet models transfer better. Yosinski et al. [YCBL14]

conducted a study on the impact of transferability of features from the bottom, middle,

or top of the network with early models, but it is not clear whether their conclusions hold

for modern multi-path architectures such as Residual Networks [HZRS16] or DenseNets

[HLvdMW17]. Yang et al. [YDH+18] have recently proposed to learn relational graphs

as transferable representations, instead of unary features. In a more recent work, Li et

al. [LGD18] investigated several regularization schemes that explicitly promote the similar-
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ity of the fine-tuned model with the original pre-trained model. In contrast, our proposed

SpotTune and AdaFilter adaptively fine-tune different layers and filters of the pre-trained

model which do not require the manual decision process.

Dynamic Routing The proposed SpotTune and AdaFilter are related to conditional

computation methods [BLC13, LD18, FCZ+17], which aim to dynamically route informa-

tion in neural networks with the goal of improving computational efficiency. Bengio et

al. [BBPP15] used sparse activation policies to selectively execute neural network units

on a per-example basis. Shazeer et al. [SMM+17] introduced a Sparsely-Gated Mixture-

of-Experts layer, where a trainable gating network determines a sparse combination of

sub-networks (experts) to use for each example. Wu, Nagarajan et al. proposed BlockDrop

[WNK+18], a method that uses reinforcement learning to dynamically select which layers

of a Residual Network to execute, exploiting the fact that ResNets are resilient to layer

dropping [VWB16]. Veit and Belongie [VB18] investigated the same idea using Gumbel

Softmax [JGP16] for on-the-fly selection of residual blocks. In SpotTune and AdaFilter,

the dynamic routing based on the Gumbel trick and Straight Through Estimator. Unlike

previous methods, our goal is to determine the parameters in a neural network that should

be frozen or fine-tuned during learning to improve accuracy, instead of dropping layers to

improve efficiency.

Multi-task Learning Multi-task learning [BV16, DZ17, Kok17, WHG17] aims at ex-

tracting different features from a single input to simultaneously perform classification,

object recognition, edge detection, etc. Various applications can be benefited from a

multi-task learning approach since the training signals can be reused among related tasks
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Figure 3.1: Illustration of the SpotTune method.

[Car97, ZSS+18]. In the multi-task setting, knowing which tasks or parameters are share-

able is a longstanding challenge [KGS11, KDI12, TO98, LKZ+17]. Early methods were

designed for shallow classification models [ZCY11, JVB09, PRWDI12], while more recent

approaches address the problem of “with whom” each task should share features using deep

neural networks [LKZ+17, MM18]. Cross-stitching networks [MSGH16] and Progressive

Networks [RRD+16] have been recently proposed to learn an optimal combination of shared

and task-specific representations for joint multi-task optimization and life-long learning,

respectively. These methods rely on per-layer inter-column adapters, which requires more

memory and leads to more computational cost.

3.3 SpotTune

Given a pre-trained network model on a source task (e.g., ImageNet pre-trained

model), and a set of training examples with associated labels in the target domain, our

goal is to create an adaptive fine-tuning strategy that decides, per training example, which
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layers of the pre-trained model should be fine-tuned (adapted to the target task) and which

layers should have their parameters frozen (shared with the source task) during training,

in order to improve the accuracy of the model in the target domain. To this end, we first

present an overview of our approach in Section 3.3.1. Then, we show how we learn our

adaptive fine-tuning policy using Gumbel Softmax sampling in Section 3.3.2. Finally, in

Section 3.3.3, we present a global policy variant of our proposed image-dependent fine-

tuning method, which constrains all the images to follow a single fine-tuning policy.

3.3.1 SpotTune Overview

Although our approach could be applied to different deep neural network archi-

tectures, in the following we focus on a Residual Network model (ResNet) [HZRS16].

Recently, it has been shown that ResNets behave as ensembles of shallow classifiers and

are resilient to residual block swapping [VWB16]. This is a desirable property for our

approach, as later we show that SpotTune dynamically swaps pre-trained and fine-tuned

blocks to improve performance.

Consider the l-th residual block in a pre-trained ResNet model:

xl = Fl(xl−1) + xl−1. (3.1)

In order to decide whether or not to fine-tune a residual block during training, we

freeze the original block Fl and create a new trainable block F̂l, which is initialized with

the parameters of Fl. With the additional block F̂l, the output of the l-th residual block
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in SpotTune is computed as below:

xl = Il(x)F̂l(xl−1) + (1− Il(x))Fl(xl−1) + xl−1
(3.2)

where Il(x) is a binary random variable that indicates whether the residual block should be

frozen or fine-tuned, conditioned on the input image. During training, given an input image

x, the frozen block Fl trained on the source task is left unchanged and the replicated block

F̂l, which is initialized from Fl, can be optimized towards the target dataset. Hence, the

given image x can either share the frozen block Fl, which allows the features computed

on the source task to be reused, or fine-tune the block F̂l, which allows x to use the

adapted features. Il(x) is sampled from a discrete distribution with two categories (freeze

or fine-tune), which is parameterized by the output of a lightweight policy network. More

specifically, if Il(x) = 0, then the l-th frozen block is re-used. Otherwise, if Il(x) = 1 the

l-th residual block is fine-tuned by optimizing F̂l.

Figure 3.1 illustrates the architecture of our proposed SpotTune method, which

allows each training image to have its own fine-tuning policy. During training, the pol-

icy network is jointly trained with the target classification task using Gumbel Softmax

sampling, as we will describe next. At test time, an input image is first fed into a policy

network, whose output is sampled to produce routing decisions on whether to pass the

image through the fine-tuned or pre-trained residual blocks. The image is then routed

through the corresponding residual blocks to produce the final classification prediction.

Note that the effective number of executed residual blocks is the same as the original
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pre-trained model. The only additional computational cost is incurred by the policy net-

work, which is designed to be lightweight (only a few residual blocks) in comparison to

the original pre-trained model.

3.3.2 Training with the Gumbel Softmax Policy

SpotTune makes decisions as to whether or not to freeze or fine-tune each residual

block per training example. However, the fact that the policy Il(x) is discrete makes the

network non-differentiable and therefore difficult to be optimized with backpropagation.

There are several ways that allow us to “back-propagate” through the discrete nodes

[BLC13]. In this work, we use a recently proposed Gumbel Softmax sampling approach

[MMT16, JGP16] to circumvent this problem.

The Gumbel-Max trick [MMT16] is a simple and effective way to draw samples

from a categorical distribution parameterized by {α1, α2, ..., αz}, where αi are scalars not

confined to the simplex, and z is the number of categories. In our work, we consider two

categories (freeze or fine-tune), so z = 2, and for each residual block, α1 and α2 are scalars

corresponding to the output of a policy network.

A random variable G is said to have a standard Gumbel distribution if G =

− log(− log(U)) with U sampled from a uniform distribution, i.e. U ∼ Unif [0, 1]. Based

on the Gumbel-Max trick [MMT16], we can draw samples from a discrete distribution

parameterized by αi in the following way: we first draw i.i.d samples Gi, ..., Gz from
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Gumbel(0, 1) and then generate the discrete sample as follows:

X = arg max
i

[logαi +Gi]. (3.3)

The arg max operation in Equation 3.3 is non-differentiable. However, we can use the

Gumbel Softmax distribution [MMT16, JGP16], which adopts softmax as a continuous

relaxation to arg max. We represent X as a one-hot vector where the index of the non-zero

entry of the vector is equal to X, and relax the one-hot encoding of X to a z-dimensional

real-valued vector Y using softmax:

Yi =
exp((logαi +Gi)/τ)∑z
j=1 exp((logαj +Gj)/τ)

for i = 1, .., z (3.4)

where τ is a temperature parameter, which controls the discreteness of the output vector Y .

When τ becomes closer to 0, the samples from the Gumbel Softmax distribution become

indistinguishable from the discrete distribution (i.e, almost the same as the one-hot vector).

Sampling our fine-tuning policy Il(x) from a Gumbel Softmax distribution param-

eterized by the output of a policy network allows us to backpropagate from the discrete

freeze/fine-tune decision samples to the policy network, as the Gumbel Softmax distri-

bution is smooth for τ > 0 and therefore has well-defined gradients with respect to the

parameters αi. By using a standard classification loss lc for the target task, the policy net-

work is jointly trained with the pre-trained model to find the optimal fine-tuning strategy

that maximizes the accuracy of the target task.
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Similar to [WNK+18], we generate all freeze/fine-tune decisions for all residual

blocks at once, instead of relying on features of intermediate layers of the pre-trained model

to obtain the fine-tuning policy. More specifically, suppose there are L residual blocks in

the pre-trained model. The output of the policy network is a two-dimensional matrix

β ∈ RL×2. Each row of β represents the logits of a Gumbel-Softmax Distribution with

two categories, i.e, βl,0 = logα1 and βl,1 = logα2. After obtaining β, we use the straight-

through version of the Gumbel-Softmax estimator [JGP16]. During the forward pass, we

sample the fine-tuning policy Il(x) using Equation 3.3 for the l-th residual block. During

the backward pass, we approximate the gradient of the discrete samples by computing the

gradient of the continuous softmax relaxation in Equation 3.4. This process is illustrated

in Figure 3.1.

3.3.3 Compact Global Policy Variant

In this section, we consider a simple extension of the image-specific fine-tuning pol-

icy, which constrains all the images to fine-tune the same k blocks that can be distributed

anywhere in the ResNet. This variant reduces both the memory footprint and computa-

tional costs, as k can be set to a small number so most blocks are shared with the source

task, and at test time the policy network is not needed.

Consider a pre-trained ResNet model with L residual blocks. For the l-th block,

we can obtain the number of images that use the fine-tuned block and the pre-trained

block based on the image-specific policy. We compute the fraction of images in the target

dataset that uses the fine-tuned block and denote it as vl ∈ [0, 1]. In order to constrain
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our method to fine-tune k blocks, we introduce the following loss:

lk = ((
L∑
l=1

vl)− k)2. (3.5)

Moreover, in order to achieve a deterministic policy, we add another loss le:

le =
L∑
l=1

−vl log vl. (3.6)

The additional loss le pushes vl to be exactly 0 or 1, so that a global policy can be obtained

for all the images. The final loss is defined below:

l = lc + λ1lk + λ2le, (3.7)

where lc is the classification loss, λ1 is the balance parameter for lk, and λ2 is the the balance

parameter for le. The additional losses push the policy network to learn a global policy for

all the images. As opposed to manually selecting k blocks to fine-tune, the global-k variant

learns the k blocks that can achieve the best accuracy on the target dataset. We leave

for future work the task of finding the optimal k, which could be achieved e.g., by using

reinforcement learning with a reward proportional to accuracy and inversely proportional

to the number of fine-tuned blocks.
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3.4 Experimental Setup

Datasets and metrics. We compare our SpotTune method with other fine-tuning and

regularization techniques on 5 public datasets, including three fine-grained classification

benchmarks: CUBS [WBW+11], Stanford Cars [KSDFF13] and Flowers [NZ08], and two

datasets with a large domain mismatch from ImageNet: Sketches [EHA12] and WikiArt

[SE15]. The statistics of these datasets are listed in Table 3.1. Performance is measured

by classification accuracy on the evaluation set.

We also report results on the datasets of the Visual Decathlon Challenge [RBV17],

which aims at evaluating visual recognition algorithms on images from multiple visual

domains. There are a total of 10 datasets as part of this challenge: (1) ImageNet,

(2) Aircraft, (3) CIFAR-100, (4) Describable textures, (5) Daimler pedestrian classifi-

cation, (6) German traffic signs, (7) UCF-101 Dynamic Images, (8) SVHN, (9) Omniglot,

and (10) Flowers. The images of the Visual Decathlon datasets are resized isotropically

to have a shorter side of 72 pixels, in order to alleviate the computational burden for

evaluation. Following [RBV17], the performance is measured by a single scalar score

S =
∑10

i=1 αimax{0, Emax
i −Ei}2, where Ei is the test error on domain Di, and Emax

i is the

error of a reasonable baseline algorithm. The coefficient αi is 1000(Emax
i )−2, so a perfect

classifier receives score 1000. The maximum score achieved across 10 domains is 10000.

Compared with average accuracy across all the 10 domains, the score S is a more reason-

able measurement for comparing different algorithms, since it considers the difficulty of

different domains, which is not captured by the average accuracy [RBV17].
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Table 3.1: Datasets used to evaluate SpotTune against other fine-tuning baselines.

Dataset Training Evaluation Classes
CUBS 5,994 5,794 200

Stanford Cars 8,144 8,041 196
Flowers 2,040 6,149 102
Sketch 16,000 4,000 250

WikiArt 42,129 10,628 195

In total, our experiments comprise 14 datasets, as the Flowers dataset is listed in

both sets described above. We note that for the experiments in Table 6.2, we use the full

resolution of the images, while those are resized in the Visual Decathlon experiments to

be consistent with other approaches.

Baselines. We compare SpotTune with the following fine-tuning and regularization tech-

niques:

• Standard Fine-tuning: This baseline fine-tunes all the parameters of the pre-

trained network on the target dataset [GDDM14, YCBL14].

• Feature Extractor: We use the pre-trained network as a feature extractor [SRASC14,

DJV+14] and only add the classification layer for each newly added dataset.

• Stochastic Fine-tuning: We randomly sample 50% of the blocks of the pre-trained

network to fine-tune.

• Fine-tuning last-k (k = 1, 2, 3): This baseline fine-tunes the last k residual blocks

of the pre-trained network on the target dataset [LCWJ15, TSG+16, ARS+16]. In

our experiments, we consider fine-tuning the last one (k = 1), last two (k = 2) and

the last three (k = 3) residual blocks.
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• Fine-tuning ResNet-101: We fine-tune all the parameters of a pre-trained ResNet-

101 model on the target dataset. SpotTune uses ResNet-50 instead (for the exper-

iments in Table 6.2), so this baseline is more computationally expensive and can

fine-tune twice as many residual blocks. We include it as the total number of pa-

rameters during training is similar to SpotTune, so it will verify any advantage is

not merely due to our having 2x residual blocks available.

• Random Policy: This baseline method adopts a random policy network that always

finetunes the last three layers and randomly decides whether to fine-tune or not for

each training sample for other layers.

• L2-SP [LGD18]: This is a recently proposed state-of-the-art regularization method

for fine-tuning. The authors recommend using an L2 penalty to allow the fine-tuned

network to have an explicit inductive bias towards the pre-trained model, sharing

similar motivation with our approach.

• Progressive Neural Networks [RRD+16]: This is a recent method which learns an

optimal combination of shared and task-specific representations for lifelong learning.

Different form the original work, which uses a random weight initialization, we use

an ImageNet pre-trained model as the frozen source network, since the former leads

to much worse performance for classification.

Regarding the methods that have reported results on the Visual Decathlon datasets,

the most related to our work are models trained from Scratch, Standard Fine-tuning, the

Feature Extractor baseline as described above, and Learning without Forgetting (LwF)
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Table 3.2: Results of SpotTune and baselines on CUBS, Stanford Cars, Flowers,
WikiArt and Sketches.

Model CUBS Stanford Cars Flowers WikiArt Sketches
Feature Extractor 74.07% 70.81% 85.67% 61.60% 75.50%

Standard Fine-tuning 81.86% 89.74% 93.67% 75.60% 79.58%
Stochastic Fine-tuning 81.03% 88.94% 92.95% 73.06% 78.30%

Fine-tuning last-3 81.54% 88.21% 89.03% 72.68 % 77.72%
Fine-tuning last-2 80.34% 85.36% 91.81% 70.82% 78.37%
Fine-tuning last-1 78.68% 81.73% 89.99% 68.96% 77.20%

Random Policy 81.63 % 88.57% 93.44% 73.82% 78.30%
Fine-tuning ResNet-101 82.13% 90.32% 94.21% 76.52% 78.92%

L2-SP 83.69% 91.08% 95.21% 75.38% 79.60%
Progressive Neural Nets 83.08 % 91.59% 95.55% 75.41% 79.71%

SpotTune (running fine-tuned blocks) 82.36% 92.04% 93.49% 67.27% 78.88%
SpotTune (Global-k) 83.48% 90.51% 96.60% 75.63% 80.02%

SpotTune 84.03 % 92.40% 96.34% 75.77% 80.20%

[LH17], which is a recently proposed technique that encourages the fine-tuned network to

retain the performance on ImageNet or previous tasks, while learning consecutive tasks.

Other methods include Piggyback [ML18], Residual Adapters and its variants [RBV17,

RBV18b], Deep Adaptation Networks (DAN) [RT17], and Batch Norm Adaptation (BN

Adapt) [BV17], which are explicitly designed to minimize the number of model parameters,

while our method sits at the other end of the spectrum, with a focus on accuracy instead of

parameter reduction. We also compare with training from scratch using Residual Adapters

(Scratch+), as well as the high-capacity version of Residual Adapters described in [RBV17],

which have a similar number of parameters as SpotTune.

Pre-trained model. For comparing SpotTune with fine-tuning baselines in Table 6.2, we

use ResNet-50 pre-trained on ImageNet, which starts with a convolutional layer followed

by 16 residual blocks. The residual blocks contain three convolutional layers and are

distributed into 4 segments (i.e, [3, 4, 6, 3]) with downsampling layers in between. We
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use the pre-trained model from Pytorch which has a classification accuracy of 75.15%

on ImageNet. For the Visual Decathlon Challenge, we use a ResNet-26 as described in

[RBV18b].

Policy network architecture. For the experiments with ResNet-50 (Table 6.2), we use

a ResNet with 4 blocks for the policy network. The channel size of each block is 64, 128,

256, 512, respectively. For the Visual Decathlon Challenge with ResNet-26, the policy

network consists of a ResNet with 3 blocks. The channel size of each block is 64, 128, 256,

respectively.

Implementations details. Our implementation is based on Pytorch. All models are

trained on 2 NVIDIA V100 GPUs. For comparing SpotTune with fine-tuning baselines,

we use SGD with momentum as the optimizer. The momentum rate is set to be 0.9,

the initial learning rate is 1e-2 and the batch size is 32. The initial learning rate of the

policy network is 1e-4. We train the network with a total of 40 epochs and the learning

rate decays twice at 15th and 30th epochs with a factor of 10. For the Visual Decathlon

Challenge, we also use SGD with momentum as the optimizer. The momentum rate is 0.9

and the initial learning rate is 0.1. The batch size is 128. The initial learning rate of the

policy network is 1e-2. We train the network with a total of 110 epochs and the learning

rate decays three times at 40th, 60th and 80th epochs with a factor of 10. We freeze the

first macro blocks (4 residual blocks) of the ResNet-26 and only apply the adaptive fine-

tuning for the rest of the residual blocks. This choice reduces the number of parameters

and has a regularization effect. The temperature of the Gumbel-Softmax distribution is
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set to 5 for all the experiments.

3.5 Results and Analysis

3.5.1 SpotTune vs. Fine-tuning Baselines

The results of SpotTune and the fine-tuning baselines are listed in Table 6.2.

Clearly, SpotTune yields consistently better results than other methods. Using the pre-

trained model on ImageNet as a feature extractor (with all parameters frozen) can reduce

the number of parameters when the model is applied to a new dataset, but it leads to bad

performance due to the domain shift. All the fine-tuning variants (Standard Fine-tuning,

Stochastic Fine-tuning, Fine-tuning last-k) achieve higher accuracy than the Feature Ex-

tractor baseline, as expected. Note that the results of Fine-tuning last-k show that man-

ually deciding the number of layers to fine-tune may lead to worse results than standard

fine-tuning. The Fine-tuned ResNet-101 has higher capacity and thus performs better than

the other fine-tuning variants. Although it has twice as many fine-tuned blocks and is sig-

nificantly more computationally expensive than SpotTune, it still performs worse than our

method in all datasets, except in WikiArt. We conjecture this is because WikiArt has

more training examples than the other datasets. To test this hypothesis, we evaluated

both models when 25% of the WikiArt training data is used. In this setting, SpotTune

achieves 61.24% accuracy compared to 60.20% of the fine-tuned ResNet-101. This gap

increases even more when 10% of the data is considered (49.59% vs. 47.05%).

By inducing the fine-tuned models to be close to the pre-trained model, L2-SP
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achieves better results than other fine-tuning variants, but it is inferior to SpotTune in

all datasets. However, we note that L2-SP is complementary to SpotTune and can be

combined with it to further improve results. Compared with Progressive Neural Networks,

SpotTune is faster, requires less memory, and achieves more accuracy by adaptively routing

computation per input example.

SpotTune is different from all the baselines in two aspects. On one hand, the fine-

tuning policy in SpotTune is specialized for each instance in the target dataset. This

implicitly takes the similarities between the images in the target dataset and the source

dataset into account. On the other hand, sharing layers with the source task without

parameter refinement reduces overfitting and promotes better re-use of features extracted

from the source task. We also consider three variants of SpotTune in the experiments. The

first one is SpotTune (running fine-tuned blocks) in which during testing all the images are

routed through the fine-tuned blocks. With this setting, the accuracy drops on all the

datasets. This suggests that certain images in the target data can benefit from reusing

Figure 3.2: Visualization of policies on CUBS, Flowers, WikiArt, Sketches and Stanford
Cars.
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some of the layers of the pre-trained network. The second variant is SpotTune (global-k)

in which we set k to 3 in the experiments. Generally, SpotTune (global-3) performs worse

than SpotTune, but is around 3 times more compact and, interestingly, is better than

Fine-tuning last-3. This suggests that it is beneficial to have an image-specific fine-tuning

strategy, and manually selecting the last k layers is not as effective as choosing the optimal

non-contiguous set of k layers for fine-tuning. The third variant is Random Policy where

we always fine-tune the last three layers and use a random policy network for other layers.

The results show that an optimized policy outperforms a random policy.

3.5.2 Visualization of Policies

To better understand the fine-tuning policies learned by the policy network, we

visualize them on CUBS, Flowers, WikiArt, Sketches, and Stanford Cars in Figure 3.2.

The polices are learned on a ResNet-50 which has 16 blocks. The tone of red of a block

indicates the number of images that were routed through the fine-tuned path of that block.

For example, a block with a dark tone of red and a 75% level of fine-tuning (as shown in the

scale depicted in the right of Figure 3.2) means 75% of the images in the test set use the

fine-tuned block and the remaining 25% images share the pre-trained ImageNet block. The

illustration shows that different datasets have very different fine-tuning policies. SpotTune

allows us to automatically identify the right policy for each dataset, as well as for each

training example, which would be infeasible through a manual approach.
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3.5.3 Visualization of Block Usage

Besides the learned policies for each residual block, we are also interested in the

number of fine-tuned blocks used by each dataset during testing. This can reveal the

difference of the distribution of each target dataset and can also shed light on how the

policy network works. In Figure 3.3, we show the distribution of the number of fine-tuned

blocks used by each target dataset. During testing, for each dataset we categorize the test

examples based on the number of fine-tuned blocks they use. For example, from Figure

3.3, we can see around 1000 images in the test set of the CUBS dataset use 7 fine-tuned

blocks.

We have the following two observations based on the results. First, for a specific

dataset, different images tend to use a different number of fine-tuned blocks. This again

validates our hypothesis that it is more accurate to have an image-specific fine-tuning policy

rather than a global fine-tuning policy for all images. Second, the distribution of fine-tuned

blocks usage differs significantly across different target datasets. This demonstrates that

based on the characteristics of the target dataset, standard fine-tuning (which optimizes

all the parameters of the pre-trained network towards the target task) may not be the

ideal choice when conducting transfer learning with convolutional networks.

3.5.4 Visual Decathlon Challenge

We show the results of SpotTune and the baselines on the Visual Decathlon Chal-

lenge in Table 3.3. Among all the baselines, SpotTune achieves the highest Visual De-
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Figure 3.3: Distribution of the number of fine-tuned blocks used by the test examples.
Different tasks and images require substantially different fine-tuning for best results, and

this can be automatically inferred by SpotTune.

cathlon score. Compared to standard fine-tuning, SpotTune has almost the same amount

of parameters and improves the score by a large margin (3612 vs 3096). Considering

the Visual Decathlon datasets, and the 5 datasets from our previous experiments, Spot-

Tune shows superior performance on 12 out of 14 datasets over standard fine-tuning.

Compared with other recently proposed methods on the Visual Decathlon Challenge

[ML18, RT17, RBV17, RBV18b, LH17], SpotTune sets the new state of the art for the

challenge by only exploiting the transferability of the features extracted from ImageNet,

without changing the network architecture. This is achieved without bells and whistles,

i.e., we believe the results could be even further improved with more careful parameter

tuning, and the use of other techniques such as data augmentation, including jittering

images at test time and averaging their predictions. Compared to standard fine-tuning,

our method uses 1.47x time in training (tested with 4 Titan Xp GPUs, batch size 96). At

test time, the additional cost is negligible (0.013s vs 0.015s per image).

In SpotTune (Global-k), we fine-tune 3 blocks of the pre-trained model for each

task which greatly reduces the number of parameters and still preserves a very competitive
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Table 3.3: Results of SpotTune and baselines on the Visual Decathlon Challenge. The
number of parameters is specified with respect to a ResNet-26 model as in [RBV17].

#par ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF Score
Scratch 10x 59.87 57.10 75.73 91.20 37.77 96.55 56.30 88.74 96.63 43.27 1625

Scratch+ [RBV17] 11x 59.67 59.59 76.08 92.45 39.63 96.90 56.66 88.74 96.78 44.17 1826
Feature Extractor 1x 59.67 23.31 63.11 80.33 55.53 68.18 73.69 58.79 43.54 26.80 544

Fine-tuning [RBV18b] 10x 60.32 61.87 82.12 92.82 55.53 99.42 81.41 89.12 96.55 51.20 3096
BN Adapt. [BV17] 1x 59.87 43.05 78.62 92.07 51.60 95.82 74.14 84.83 94.10 43.51 1353

LwF [LH17] 10x 59.87 61.15 82.23 92.34 58.83 97.57 83.05 88.08 96.10 50.04 2515
Series Res. adapt. [RBV17] 2x 60.32 61.87 81.22 93.88 57.13 99.27 81.67 89.62 96.57 50.12 3159

Parallel Res. adapt. [RBV18b] 2x 60.32 64.21 81.92 94.73 58.83 99.38 84.68 89.21 96.54 50.94 3412
Res. adapt. (large) [RBV17] 12x 67.00 67.69 84.69 94.28 59.41 97.43 84.86 89.92 96.59 52.39 3131
Res. adapt. decay [RBV17] 2x 59.67 61.87 81.20 93.88 57.13 97.57 81.67 89.62 96.13 50.12 2621

Res. adapt. finetune all [RBV17] 2x 59.23 63.73 81.31 93.30 57.02 97.47 83.43 89.82 96.17 50.28 2643
DAN [RT17] 2x 57.74 64.12 80.07 91.30 56.54 98.46 86.05 89.67 96.77 49.48 2851

PiggyBack [ML18] 1.28x 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 2838
SpotTune (Global-k) 4x 60.32 61.57 80.30 95.78 55.80 99.48 85.38 88.41 96.47 51.05 3401

SpotTune 11x 60.32 63.91 80.48 96.49 57.13 99.52 85.22 88.84 96.72 52.34 3612

score. Although we focus on accuracy instead of parameter reduction in our work, we note

that training our global-k variant with a multi-task loss on all 10 datasets, as well as model

compression techniques, could further reduce the number of parameters in our method.

We leave this research thread for future work.

3.6 Conclusion

In this chapter, we proposed an adaptive fine-tuning algorithm called SpotTune

which specializes the fine-tuning strategy for each training example of the target dataset.

We showed that our method outperforms the key most popular and widely used protocols

for fine-tuning on a variety of public benchmarks. We also evaluated SpotTune on the

Visual Decathlon challenge, achieving the new state of the art, as measured by the overall

score across the 10 datasets. In next chapter, we present the propose Adafilter which

targets at reusing or fine-tuning different convolutional filters of the pre-trained model.
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This chapter contains material from “SpotTune: Dynamic Transfer Learning via

Adaptive Fine-tuning”, by Yunhui Guo, Honghui Shi, Abhishek Kumar,Tajana Rosing,

Kristen Grauman, Rogerio Feris, which appears in IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2019. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

Learning with Two Domains:

Adaptive Filter Fine-tuning

4.1 Introduction

In last chapter, we present SpotTune which is a transfer learning method that

can automatically decide which residual blocks to fine-tune and freeze. In this chapter,

we further propose a deep transfer learning model, called AdaFilter, which automatically

selects reusable filters from the pre-trained model on a per-example basis. Convolutional

filters are basic feature extractors in a convolutional neural network. The convolutional

filters of the pretrained model can detect the presence of specific features or patterns that

are presented in the source domain data. Thus by transferring or fine-tuning the specific

pre-trained convolutional filters based on the target domain data, we can have a better

reuse of the pre-trained features by exploiting the domain similarity.
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In AdaFilter, our goal is to allow different examples in the target dataset fine-tune

or reuse different convolutional filters in the pre-trained model. This is achieved by using

a recurrent neural network (RNN) gate [GMH13], which is conditioned on the activations

of the previous layer, to layerwisely decide which filter should be reused and which filter

should be further fine-tuned for each example in the target dataset. The adaptive filter fine-

tuning scheme implicitly considers the similarity between the source domain and the target

domain. Moreover, AdaFilter mitigates the overfitting issue by reducing the number of

trainable parameters for each example in the target dataset via reusing pre-trained filters.

We experiment on 7 publicly available image classification datasets. The results show that

the proposed AdaFilter outperforms fine-tuning on all the datasets and achieves much

faster convergence speed.

The proposed AdaFilter is complementary to the previous works in Section 3.2

of the last chapter. For example, the works that are based on fine-tuning can utilize

AdaFilter to further improve the results. In AdaFilter, we allow different examples in the

target dataset to fine-tune different convolutional filters in the pre-trained model. The

examples in the target dataset which are similar to the source task can reuse more pre-

trained filters to achieve better knowledge transfer.

The contributions of AdaFilter can be summarized as follows,

• We propose AdaFilter, a deep transfer learning algorithm which aims to improve

the performance of the widely used fine-tuning method. We propose filter selection,

layer-wise recurrent gated network and gated batch normalization techniques to allow
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Figure 4.1: The overview of AdaFilter for deep transfer learning.

different images in the target dataset to fine-tune different convolutional filters in

the pre-trained model.

• We experiment with 7 publicly available datasets and the results show that the

proposed method can reduce the average classification error by 2.54% compared

with the standard fine-tuning.

• We also show that AdaFilter can consistently perform better than the standard

fine-tuning during the training process due to more efficient knowledge transfer.
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4.2 AdaFilter

In this dissertation, we propose a deep transfer learning method which finds the

convolutional filters in a pre-trained model that are reusable for each example in the

target dataset. Figure 4.1 shows the overview of the proposed approach. We first use a

filter selection method to achieve per-example fine-tuning scheme. We therefore leverage

a recurrent gated network which is conditioned on the activations of the previous layer to

layerwisely decide the fine-tuning policy for each example. Finally, we propose gated batch

normalization to consider the different statistics of the output channels produced by the

pre-trained layer and the fine-tuned layer.

4.2.1 Filter Selection

In convolutional neural network (CNN), convolutional filters are used for detecting

the presence of specific features or patterns in the original images. The filters in the initial

layers of CNN are used for detecting low level features such as edges or textures while the

filters at the end of the network are used for detecting shapes or objects [ZF14]. When

convolutional neural networks are used for transfer learning, the pre-trained filters can be

reused to detect similar patterns on the images in the target dataset. For those images

in the target dataset that are similar to the images in the source dataset, the pre-trained

filters should not be fine-tuned to prevent from being destructed.

The proposed filter selection method allows different images in the target dataset

to fine-tune different pre-trained convolutional filters. Consider the i-th layer in a convo-
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lutional neural network with input feature map xi ∈ Rni×wi×hi , where ni the number of

input channels, wi is the width of the feature map and hi is the height of the feature map.

Given xi, the convolutional filters in the layer i produce an output xi+1 ∈ Rni+1×wi+1×hi+1 .

This is achieved by applying ni+1 convolutional filter F ∈ Rni×k×k on the input feature

map. Each filter F ∈ Rni×k×k is applied on xi to generate one channel of the output. All

the ni+1 filters in the i-th convolutional layer can be stacked together as a 4D tensor.

We denote the 4D convolutional filters in the i-th layer as Fi. Given xi ∈ Rni×wi×hi ,

Fi(xi) is the output xi+1 ∈ Rni+1×wi+1×hi+1 . To allow different images to fine-tune different

filters, we initialize a new 4D convolutional filter Si from Fi and freeze Si during training.

We use a binary vector Gi(xi) ∈ {0, 1}ni+1 , called the fine-tuning policy, which is condi-

tioned on the input feature map xi to decide which filters should be reused and which

filters should be fine-tuned. With Gi(xi), the output of the layer i can be calculated as,

xi+1 = Gi(xi) ◦ Fi(xi) + (1−Gi(xi)) ◦ Si(xi) (4.1)

where ◦ is the Hadamard product. Each element of Gi(xi) ∈ {0, 1}ni+1 is multiplied

with the corresponding channel of Fi(xi) ∈ Rni+1×wi+1×hi+1 and Si(xi) ∈ Rni+1×wi+1×hi+1 .

Essentially, the fine-tuning policy Gi(xi) selects each channel of xi+1 either from the output

produced by the pre-trained layer Si (if the corresponding element is 0) or the fine-tuned

layer Fi (if the corresponding element is 1). Since Gi(xi) is conditioned on xi, different

examples in the target dataset can fine-tune different pre-trained convolutional filters in

each layer.
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Figure 4.2: The proposed recurrent gated network.

4.2.2 Layerwise Recurrent Gated Network

There are many possible choices to generate the fine-tuning policy Gi(xi). We adopt

a recurrent gated network to both consider the dependencies between different layers and

the model size. Figure 4.2 illustrates the proposed recurrent gated network which takes

activations from the previous layer as input and discretizes the output of sigmoid function

as the fine-tuning policy.

Recurrent neural network (RNN) [GMH13] is a powerful tool for modelling sequen-

tial data. The hidden states of the recurrent neural network can remember the correlations

between different timestamps. In order to apply the RNN gate, we need to map the input

feature map xi into a low-dimensional space. We first apply a global average pooling on

the input feature map xi and then use a 1× 1 convolution which translates the 3D input

feature map into a one-dimensional embedding vector. The embedding vector is used as

the input of the RNN gate to generate the layer-dependent fine-tune policy Gi(xi). We

translate the output of the RNN gate using a linear layer followed by a sigmoid func-

tion. To obtain the binary fine-tuned policy Gi(xi), we use a hard threshold function to

discretize the output of the sigmoid function.

The discreteness of Gi(xi) makes it hard to optimize the network using gradient-
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based algorithm. To mitigate this problem, we use the straight-through estimator which

is a widely used technique for training binarized neural network in the field of neural

network quantization [Guo18]. In the straight-through estimator, during the forward pass

we discretize the sigmoid function using a threshold and during backward we compute the

gradients with respect to the input of the sigmoid function,

Forward: xb =


1, sigmoid(x) ≥ 0.5,

0, otherwise

Backward:
∂E

∂x
=
∂E

∂xb

(4.2)

where E is the loss function. The adoption of the straight-through estimator allows us to

back-propagate through the discrete output and directly use gradient-based algorithms to

end-to-end optimize the network. In the experimental section, we use Long Short-Term

Memory (LSTM) [HS97] which has shown to be useful for different sequential tasks. We

also compare the proposed recurrent gated network with a CNN-based gated network. The

experimental results show that we can achieve higher classification accuracy by explicitly

modelling the cross-layer correlations.

4.2.3 Gated Batch Normalization

Batch normalization (BN) [IS15] layer is designed to alleviate the issue of internal

covariate shifting of training deep neural networks. In BN layer, we first standardize each

feature in a mini-batch, then scale and shift the standardized feature. Let Xp,n denote a
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mini-batch of data, where p is the batch size and n is the feature dimension. BN layer

normalizes a feature dimension xj as below,

x̂j =
xj − E[X.j]√
V ar[X.j]

(4.3)

yj = γjx̂j + βj (4.4)

The scale parameter γj and shift parameter βj are trained jointly with the network

parameters. In convolutional neural networks, we use BN layer after each convolutional

layer and apply batch normalization over each channel [IS15]. Each channel has its own

scale and shift parameters.

In the standard BN layer, we compute the mean and variance of a particular channel

across all the examples in the mini-batch. In AdaFilter, some examples in the mini-batch

use the channel produced by the pre-trained filter while the others use the channel produced

by the fine-tuned filter. The statistics of the channels produced by the pre-trained filters

and the fine-tuned filters are different due to domain shift. To consider this fact, we

maintain two BN layers, called Gated Batch normalization, which normalize the channels

produced by the pre-trained filters and the fine-tuned filters separately. To achieve this,

we apply the fine-tuning policy learned by the RNN gate on the output of the BN layers

to select the normalized channels,

xi+1 = Gi(xi) ◦BN1(xi+1) + (1−Gi(xi)) ◦BN2(xi+1) (4.5)
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where BN1 and BN2 denote the BN layer for the pre-trained filters and the fine-tuned

filters separately and ◦ is the Hadamard product. In this way, we can deal with the case

when the target dataset and the source dataset have very different domain distribution by

adjusting the corresponding shift and scale parameters.

4.2.4 Discussion

The design of the proposed AdaFilter mitigates two issues brought by the standard

fine-tuning. Since the fine-tuning policy is conditioned on the activations of the previous

layer, different images can fine-tune different pre-trained filters. The images in the target

dataset which are similar to the source dataset can reuse more filters from the pre-trained

model to allow better knowledge transfer. On the other hand, while the number of param-

eters compared with standard fine-tuning increase by a factor of 2.2x with AdaFilter, the

trainable parameters for a particular image are much fewer than the standard fine-tuning

due to the reuse of the pre-trained filters. This alleviates the issue of overfitting which is

critical if the target dataset is much smaller than the source dataset.

All the proposed modules are differentiable which allows us to use gradient-based

algorithm to end-to-end optimize the network. During test time, the effective number of

filters for a particular test example is equal to a standard fine-tuned model, thus AdaFilter

has similar test time compared with the standard fine-tuning.
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Table 4.1: Datasets used to evaluate AdaFilter against other fine-tuning baselines.

Dataset Training Evaluation Classes
Stanford Dogs 12000 8580 120

UCF-101 7629 1908 101
Aircraft 3334 3333 100

Caltech 256 - 30 7680 5120 256
Caltech 256 - 60 15360 5120 256

MIT Indoors 5360 1340 67
Omniglot 19476 6492 1623

Table 4.2: The results of AdaFilter and all the baselines.

Method Stanford-Dogs UCF-101 Aircraft Caltech256-30 Caltech256-60 MIT Indoors Omniglot
Standard Fine-tuning 77.47% 73.10% 52.59% 78.09% 82.25% 76.42% 87.06%

Fine-tuning half 79.61% 76.43% 53.61% 78.86% 82.55% 76.94% 87.29%
Random Policy 81.84% 75.15% 54.15% 79.90% 83.35% 76.71% 85.78%

L2-SP 79.69% 74.33% 56.52% 79.33% 82.89% 76.41% 86.92%
AdaFilter 82.44% 76.99% 55.41% 80.62% 84.31% 77.53% 87.46%

4.3 Experimental Settings

4.3.1 Datasets

We compare the proposed AdaFilter method with other fine-tuning and regular-

ization methods on 7 public image classification datasets coming from different domains:

Stanford dogs [KJYFF11], Aircraft [MRK+13], MIT Indoors [QT09], UCF-101 [BFG+16],

Omniglot [LST15], Caltech 256 - 30 and Caltech 256 - 60 [GHP07]. For Caltech 256 - x (x

= 30 or 60), there are x training examples for each class. The statistics of the datasets are

listed in Table 4.1. Performance is measured by classification accuracy on the evaluation

set.
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Baselines

We consider the following fine-tuning variants and regularization techniques for

fine-tuning in the experiments,

• Standard Fine-tuning: this is the standard fine-tuning method which fine-tunes all

the parameters of the pre-trained model.

• Fine-tuning half: only fine-tune second half of the layers of the pre-trained model

and freeze the first half of layers.

• Random Policy: use AdaFilter with a random fine-tuning policy. This shows the

effectiveness of fine-tuning policy learned by the recurrent gated network.

• L2-SP [LGD18]: this is a recently proposed regularization method for fine-tuning

which explicitly adds regularization terms in the loss function to encourage the fine-

tuned model to be similar to the pre-trained model.

4.3.2 Pretrained Model

To compare AdaFilter with each baseline. We use ResNet-50 which is pre-trained

on ImageNet. The ResNet-50 starts with a convolutional layer followed by 16 blocks with

residual connection. Each block contains three convolutional layers and are distributed

into 4 macro blocks (i.e, [3, 4, 6, 3]) with downsampling layers in between. The ResNet-

50 ends with an average pooling layer followed by a fully connected layer. For a fair
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Figure 4.3: The test accuracy curve of AdaFilter and the standard fine-tuning on
Stanford-Dogs, Caltech256-30, Caltech256-60 and MIT Indoors.

comparison with each baseline, we use the pre-trained model from Pytorch which has a

classification accuracy of 75.15% on ImageNet.

4.3.3 Implementation Details

Our implementation is based on Pytorch. All methods are trained on 2 NVIDIA

Titan Xp GPUs. We use SGD with momentum as the optimizer. The initial learning rate

is 0.01 for the classification network and the initial learning rate for the recurrent gated

network is 0.1. The momentum rate is 0.9 for both classification network and recurrent

gated network. The batch size is 64. We train the network with a total of 110 epochs.

The learning rate decays three times at the 30th, 60th and 90th epoch respectively.

4.4 Results and Analysis

4.4.1 AdaFilter vs Baselines

We show the results of AdaFilter and all the baselines in Table 4.2. AdaFilter

achieves the best results on 6 out of 7 datasets. It outperforms the standard fine-tuning
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on all the datasets. Compared with the standard fine-tuning, AdaFilter can reduce the

classification error by up to 5%. This validates our claim that by exploiting the idea of

per-example filter fine-tuning, we can greatly boost the performance of the standard fine-

tuning method by mitigating its drawbacks. While fine-tuning half of the layers generally

performs better than the standard fine-tuning, it still performs worse than AdaFilter since

it still applies the same fine-tuning policy for all the images which ignores the similarity

between the target task and the source task.

Compared with Random policy and L2-SP, AdaFilter obtains higher accuracy by

learning optimal fine-tuning policy for each image in the target dataset via the recurrent

gated network. The results reveal that by carefully choosing different fine-tuning for

different images in the target dataset, we can achieve better transfer learning results. With

AdaFilter, we can automatically specialize the fine-tuning policy for each test example

which cannot be done manually due to the huge search space.

Figure 4.4: The visualization of fine-tuning policies on Caltech256-30 and
Caltech256-60.
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4.4.2 Test Accuracy Curve

We show the test accuracy curve on four benchmark datasets in Figure 4.3. We

can clearly see that the proposed AdaFilter consistently achieves higher accuracy than

the standard fine-tune method across all the datasets. For example, after training for one

epoch, AdaFilter reaches a test accuracy of 71.96% on the Stanford Dogs dataset while

the standard fine-tuning method only achieves 54.69%. Similar behavior is also observed

on other datasets. The fact that AdaFilter can reach the same accuracy level as standard

fine-tuning with much fewer epochs is of great practical importance since it can reduce the

training time on new tasks.

4.4.3 Visualization of Policies

In this section, we show the fine-tuning policies learned by the recurrent gated

network on Caltech256-30 and Caltech256-60 in Figure 4.4. The x-axis denotes the layers

in the ResNet-50. The y-axis denotes the percentage of images in the evaluation set that use

the fine-tuned filters in the corresponding layer. As we can see, there is a strong tendency

for images to use the pre-trained filters in the initial layers while fine-tuning more filters at

the higher layers of the network. This is intuitive since the filters in the initial layers can

be reused on the target dataset to extract visual patterns (e.g., edges and corners). The

higher layers are mostly task-specific which need to be adjusted further for the target task

[LEN08]. We also note that the policy distribution is varied across different datasets, this

suggests that for different datasets it is preferable to design different fine-tuning strategies.
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Table 4.3: Comparison of Gated BN and the standard BN

Dataset Stanford-Dogs Aircraft Omniglot UCF-101 MIT Indoors Caltech-30 Caltech-60
Gated BN 82.44% 55.41% 87.46% 76.99% 77.53% 80.06% 84.31%

Standard BN 82.02% 54.33% 87.27% 76.02% 77.01% 79.84% 83.84%

4.4.4 Ablation Study

Gated BN vs Standard BN

In this section, an ablation study is performed to demonstrate the effectiveness of

the proposed gated batch normalization. We compare gated batch normalization (Gated

BN) against the standard batch normalization (Standard BN). In Gated BN, we normalize

the channels produced by the pre-trained filters and fine-tuned filters separately as in

Equation 4.5. In standard batch normalization, we use one batch normalization layer to

normalize each channel across a mini-batch,

xi+1 = BN(xi+1) (4.6)

Table 4.3 shows the results of the Gated BN and the standard BN on all the

datasets. Clearly, Gated BN can achieve higher accuracy by normalizing the channels

produced by the pre-trained filters and fine-tuned filters separately. This suggests that

although we can reuse the pre-trained filters on the target dataset, it is still important to

consider the difference of the domain distributions between the target task and the source

task.
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Table 4.4: Comparison of recurrent gated network and a CNN-based policy network.
The “RNN-based” means the recurrent gated network.

Dataset Stanford-Dogs Aircraft Omniglot UCF-101 MIT Indoors Caltech-30 Caltech-60
RNN-based 82.44% 55.41% 87.46% 76.99% 77.53% 80.06% 84.31%
CNN-based 83.05% 54.63% 87.04% 76.33% 77.46% 80.25% 83.41%

Recurrent Gated Network vs CNN-based Gated Network

In this section, we perform an ablation study to show the effectiveness of the pro-

posed recurrent gated network. We compare the recurrent gated network against a CNN-

based policy network. The CNN-based policy network is based on ResNet-18 which receives

images as input and predicts the fine-tuning policy for all the filters at once. In the CNN-

based model, the input image is directly used as the input for the CNN. The output of

the CNN is a list of fully connected layers (one for each output feature map in the original

backbone network) followed by sigmoid activation function. We show the results of the

recurrent gated network and CNN-based policy network in Table 4.4. Recurrent gated

network performs better than the CNN-based policy network on most of the datasets by

explicitly considering the dependency between layers. More importantly, predicting the

policy layerwisely and reusing the hidden states of the recurrent gated network can greatly

reduce the number of parameters. The lightweight design of the recurrent gated network

is also faster to train than the CNN-based alternative.
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4.5 Conclusion

In this chapter, we propose a deep transfer learning method, called AdaFilter,

which adaptively fine-tunes the convolutional filters in a pre-trained model. With the

proposed filter selection, recurrent gated network and gated batch normalization techniques,

AdaFilter allows different images in the target dataset to fine-tune different pre-trained

filters to enable better knowledge transfer. We validate our methods on seven publicly

available datasets and show that AdaFilter outperforms the standard fine-tuning on all

the datasets. The proposed method can also be extended to lifelong learning by modelling

the tasks sequentially. In next chapter, we consider a different scenario where the target

domain only has few examples per category which is much more challenging.

This chapter contains material from “AdaFilter: Adaptive Filter Fine-tuning for

Deep Transfer Learning”, by Yunhui Guo, Yandong Li, Liqiang Wang, Tajana Rosing,

which appears in The 34th AAAI Conference on Artificial Intelligence (AAAI), 2020. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Cross-domain Few-shot Learning

5.1 Introduction

In last chapter we consider learning across two domains where the target domain

may have a large number of examples. However, in real applications, it is often costly to

acquire labels for some categories. The problem of learning how to categorize classes with

very few training examples is referred to as “few-shot learning”, and has been the topic of

a large body of recent work [LFP06, RL16, VBL+16, FAL17, SSZ17, CLK+19, SYZ+18].

Few-shot learning is typically composed of the following two stages: meta-learning and

meta-testing. In the meta-learning stage, there is an abundance of base category classes

on which a system can be trained to learn well under conditions of few-examples within

that particular domain. In the meta-testing stage, a set of novel classes consisting of

very few examples per class is used to adapt and evaluate the trained model. However,

recent work [CLK+19] points out that meta-learning based few-shot learning algorithms
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underperform compared to traditional “pre-training and fine-tuning” when there exists a

large domain shift between base classes and novel classes. This is a major issue, as the

domain shift problem occurs commonly in practice: by the nature of the problem, it is hard

to collect data from the same domain for many few-shot classification tasks. This scenario

is referred to as cross-domain few-shot learning, to distinguish it from the conventional

few-shot learning setting.

Although benchmarks for conventional few-shot learning are well established, the

lack of standard cross-domain few-shot learning benchmarks hinder the development of

new few-shot learning algorithms. Therefore, to fill this gap, we propose the cross-domain

few-shot learning (CD-FSL) benchmark (Fig. 5.1). The proposed benchmark covers a vari-

ety of image domains with varying levels of similarity with ImageNet, including agriculture

(most similar), satellite (less similar), dermatology (even less similar), and radiological im-

ages (least similar). The performance of existing state-of-art meta-learning methods is

then evaluated on the proposed benchmark, where results reveal that these meta-learning

methods perform significantly worse than the standard “pre-training and fine-tuning” ap-

proach. Subsequently, variants of single model fine-tuning techniques are also evaluated,

where results demonstrate that no individual method dominates performance across the

benchmark, and the relative performance gain with increasing number of shots is greater

with transfer methods than compared to meta-learning. In addition, performance across

methods also positively correlates with dataset similarity to ImageNet. Further experi-

ments transferring knowledge from multiple pretrained models, all from disjoint domains

than the evaluation benchmark, demonstrates best performance.

60



In summary, the contributions of this section are itemized as follows:

• We establish a new benchmark for cross-domain few-shot learning, consisting of

images from a diversity of domains with varying similarity to ImageNet, and lacking

data for meta-learning.

• We extensively evaluate the performance of current meta-learning methods and vari-

ants of fine-tuning. The results show the following observations for CD-FSL: 1) meta-

learning underperforms compared to fine-tuning, 2) accuracy gain with additional

data is increased for fine-tuning versus meta-learning, 3) no individual fine-tuning

method dominates performance versus the others across the benchmark, and 4) a

general positive correlation between accuracy and dataset similarity to ImageNet

exists.

• We propose Incremental Multi-model Selection, a method which integrates multiple

pretrained models for cross-domain few-shot learning, and demonstrates best average

performance on the new benchmark.

5.2 Related Work

Few-shot learning [LST15, VBL+16, LSGT11] is an increasingly important topic in

machine learning. Current few-shot leaning algorithms can be roughly classified into two

threads. One thread includes meta-learning methods which aim to learn models that can
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be quickly adapted using a few examples [VBL+16, FAL17, SSZ17, SYZ+18, LMRS19].

MatchingNet [VBL+16] learns an embedding that can map an unlabelled example to its

label using a small number of labelled examples, while MAML [FAL17] aims at learning

good initialization parameters that can be quickly adapted to a new task. In ProtoNet

[SSZ17], the goal is to learn a metric space in which classification can be conducted by

calculating distances to prototype representations of each class. RelationNet [SYZ+18]

targets learning a deep distance metric to compare a small number of images. More

recently, MetaOpt [LMRS19] learns feature embeddings that can generalize well under a

linear classification rule for novel categories.

Another line of few-shot learning algorithms is based on the idea of reusing features

learned from the base classes for the novel classes, i.e., transfer learning [PY09]. Transfer

learning with deep neural networks is conducted mainly by fine-tuning, which adjusts a

pretrained model from a source task to a target task. Yosinski et al. [YCBL14] conducted

extensive experiments to investigate the transfer utility of pretrained deep neural networks.

In [KSL18], the authors investigated whether higher performing ImageNet models transfer

better to new tasks. Ge et al. [GY17] proposed a selective joint fine-tuning method for im-

proving the performance of models with a limited amount training data. In [GSK+19], the

authors proposed an adaptive fine-tuning scheme to decide which layers of the pretrained

network should be fine-tuned.

Few-shot Learning Benchmarks. Current few-shot learning research assumes

base classes and novel classes are from the same domain. The common benchmarks for

evaluation are miniImageNet [VBL+16], CUB [WBW+11], Omniglot [LSGT11], CIFAR-
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FS [BHTV18] and tieredImageNet [RTR+18]. In [TZD+19], the authors proposed Meta-

Dataset, which is a new benchmark for training and evaluating few-shot learning algo-

rithms. However, the included datasets are limited to natural images similar to previous

benchmarks. The evaluation also follows the standard setting, that is, both the base classes

and novel classes are from the same domain. Arguably, the current few-shot learning bench-

marks do not reflect the reality of few-shot learning applications where meta-learning data

in domain is commonly not available.

Figure 5.1: The cross-domain few-shot learning (CD-DSL) benchmark. ImageNet is
used for source training, and domains of varying dissimilarity from ImageNet are used for

target evaluation.

5.3 Proposed Benchmark

In this section, we introduce the proposed cross-domain few-shot learning bench-

mark. The proposed benchmark includes data from the CropDiseases [MHS16], EuroSAT

[HBDB19], ISIC2018 [TRK18, CRT+19], and ChestX [WPL+17] datasets, which covers
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plant disease images, satellite images, dermoscopic images of skin lesions, and X-ray im-

ages, respectively. The selected datasets reflect real-world use cases for few-shot learning

since collecting enough examples from above domains is often difficult, expensive, or in

some cases not possible. In addition, they demonstrate the following spectrum of readily

quantifiable domain shifts from ImageNet [DDS+09]: 1) CropDiseases images are most

similar as they include perspective color images of natural elements, but are more spe-

cialized than anything available in ImageNet, 2) EuroSAT images are less similar as they

have lost perspective distortion, but are still color images of natural scenes, 3) ISIC2018

images are even less similar as they have lost perspective distortion and no longer represent

natural scenes, and 4) ChestX images are the most dissimilar as they have lost perspective

distortion, all color, and do not represent natural scenes. Example images from ImageNet

and the proposed benchmark datasets are shown in Figure 5.1.

In practice, having a few-shot learning model trained on a source domain such as

ImageNet [DDS+09] that can generalize to domains such as these, is highly desirable, as

it enables effective learning for rare categories in new domains, which has previously not

been studied in detail.

5.4 Methods for Few-Shot Learning

In this section, we describe the existing prevailing few-shot learning algorithms that

will be evaluated on our proposed benchmark. We categorize existing few-shot learning

algorithms into meta-learning based methods and transfer learning based methods. For
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Table 5.1: The results of meta-learning methods on the proposed benchmark.

Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 22.40% ± 0.85% 23.61% ± 0.86% 22.12% ± 0.88% 36.74% ± 0.53% 45.72% ± 0.53% 54.58% ± 0.65%
MAML 23.48% ± 0.96% 27.53% ± 0.43% - 40.13% ± 0.58% 52.36% ± 0.57% -

ProtoNet 24.05% ± 1.01% 28.21% ± 1.15% 29.32% ± 1.12% 39.57% ± 0.57% 49.50% ± 0.55% 51.99% ± 0.52%
RelationNet 22.96% ± 0.88% 26.63% ± 0.92% 28.45% ± 1.20% 39.41% ± 0.58% 41.77% ± 0.49% 49.32% ± 0.51%

MetaOpt 22.53% ± 0.91% 25.53% ± 1.02% 29.35% ± 0.99% 36.28% ± 0.50% 49.42% ± 0.60% 54.80% ± 0.54%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 64.45% ± 0.63% 77.10% ± 0.57% 54.44% ± 0.67% 66.39% ± 0.78% 76.38% ± 0.67% 58.53% ± 0.73%
MAML 71.70% ± 0.72% 81.95% ± 0.55% - 78.05% ± 0.68% 89.75% ± 0.42% -

ProtoNet 73.29% ± 0.71% 82.27% ± 0.57% 80.48% ± 0.57% 79.72% ± 0.67% 88.15% ± 0.51% 90.81% ± 0.43%
RelationNet 61.31% ± 0.72% 74.43% ± 0.66% 74.91% ± 0.58% 68.99% ± 0.75% 80.45% ± 0.64% 85.08% ± 0.53%

MetaOpt 64.44% ± 0.73% 79.19% ± 0.62% 83.62% ± 0.58% 68.41% ± 0.73% 82.89% ± 0.54% 91.76% ± 0.38%

transfer learning methods, we also consider the effect of different type of classifiers. Finally,

we show that transferring from multiple models pretrained on different datasets from the

same source domain can generally boost performance.

5.4.1 Meta-learning Based Methods

Meta-learning [FAL17, RL16], or learning to learn, aims at learning task-agnostic

knowledge in order to efficiently learn on new tasks. Each task Ti is assumed to be drawn

from a fixed distribution, Ti ∼ P (T ). Specially, in few-shot learning, each task Ti is a small

dataset Di := {xj, yj}K×Nj=1 . Ps(T ) and Pt(T ) are used to denote the task distribution of the

source (base) classes data and target (novel) classes data respectively. During the meta-

training stage, the model is trained on T tasks {Ti}Ti=1 which are sampled independently

from Ps(T ). During the meta-testing stage, the model is expected to be quickly adapted

to a new task Tj ∼ Pt(T ).

Meta-learning methods differ in their way of learning the parameter of the ini-

tial model fθ on the base classes data. In MatchingNet [VBL+16], the goal is to learn
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a model fθ that can map an unlabelled example x̂ to its label ŷ using a small labelled

set Di := {xj, yj}K×Nj=1 as ŷ =
∑K×N

j=1 aθ(x̂, xj)yj, where aθ is an attention kernel which

leverages fθ to compute the distance between the unlabelled example x̂ and the labelled

example xj, and yj is the one-hot representation of the label. In contrast, MAML [FAL17]

aims at learning an initial parameter θ that can be quickly adapted to a new task. This is

achieved by updating the model parameter via a two-stage optimization process. ProtoNet

[SSZ17] represents each class k with the mean vector of embedded support examples as

ck = 1
N

∑N
j=1 fθ(xj). Classification is then conducted by calculating distance of the exam-

ple to the prototype representations of each class. In RelationNet [SYZ+18] the metric of

the nearest neighbor classifier is meta-learned using a Siamese Networks trained for opti-

mal comparison between query and support samples. More recently, MetaOpt [LMRS19]

employs convex base learners and aims at learning feature embeddings that generalize

well under a linear classification rule for novel categories. All the existing meta-learning

methods implicitly assume that Ps(T ) = Pt(T ) so the task-agnostic knowledge learned in

the meta-training stage can be leveraged for fast learning on novel classes. However, in

cross-domain few-shot learning Ps(T ) 6= Pt(T ) which poses severe challenges for current

meta-learning methods.

5.4.2 Transfer Learning Based Methods

An alternative way to tackle the problem of few-shot learning is based on transfer

learning, where an initial model fθ is trained on the base classes data in a standard

supervised learning way and reused on the novel classes. There are several options to realize
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Table 5.2: The results of different variants of single model fine-tuning on the proposed
benchmark.

Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 21.80% ± 1.03% 25.69% ± 0.95% 26.19% ± 0.94% 37.91% ± 1.39% 47.24% ± 1.50% 50.85% ± 1.37%
Fixed 25.35% ± 0.96% 30.83% ± 1.05% 36.04% ± 0.46% 43.56% ± 0.60% 52.78% ± 0.58% 57.34% ± 0.56%

Fine-tuning 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%
Ft Last-1 25.96% ± 0.46% 31.63% ± 0.49% 37.03% ± 0.50% 47.20% ± 0.45% 59.95% ± 0.45% 65.04% ± 0.47%
Ft Last-2 26.79% ± 0.59% 30.95% ± 0.61% 36.24% ± 0.62% 47.64% ± 0.44% 59.87% ± 0.35% 66.07% ± 0.45%
Ft Last-3 25.17% ± 0.56% 30.92% ± 0.89% 37.27% ± 0.64% 48.05% ± 0.55% 60.20% ± 0.33% 66.21% ± 0.52%

Transductive Ft 26.09% ± 0.96% 31.01% ± 0.59% 36.79% ± 0.53% 49.68% ± 0.36% 61.09% ± 0.44% 67.20% ± 0.59%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 58.00% ± 2.01% 68.93% ± 1.47% 71.65% ± 1.47% 69.68% ± 1.72% 83.41% ± 1.25% 86.56% ± 1.42%
Fixed 75.69% ± 0.66% 84.13% ± 0.52% 86.62% ± 0.47% 87.48% ± 0.58% 94.45% ± 0.36% 96.62% ± 0.25%

Fine-tuning 79.08% ± 0.61% 87.64% ± 0.47% 90.89% ± 0.36% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%
Ft Last-1 80.45% ± 0.54% 87.92% ± 0.44% 91.41% ± 0.46% 88.72% ± 0.53% 95.76% ± 0.65% 97.87% ± 0.48%
Ft Last-2 79.57% ± 0.51% 87.67% ± 0.46% 90.93% ± 0.45% 88.07% ± 0.56% 95.68% ± 0.76% 97.64% ± 0.59%
Ft Last-3 78.04% ± 0.77% 87.52% ± 0.53% 90.83% ± 0.42% 89.11% ± 0.47% 95.31% ± 0.85% 97.45% ± 0.46%

Transductive Ft 81.76% ± 0.48% 87.97% ± 0.42% 92.00% ± 0.56% 90.64% ± 0.54% 95.91% ± 0.72% 97.48% ± 0.56%

the idea of transfer learning for few-shot learning. Previous works on transfer learning for

few-shot learning [SSZ17, CLK+19] simply freeze the pretrained model and use it as a fixed

feature extractor. While it was pointed out that fine-tuning the pretrained model on the

novel classes data would lead to overfitting in the limited-data regime [SSZ17, SYZ+18],

our results show that the conclusion does not hold in cross-domain few-shot learning.

Single Model Methods

In this section, we extensively evaluate the following commonly variants of single

model fine-tuning:

• Fixed feature extractor (Fixed): simply leverage the pretrained model as a fixed

feature extractor.

• Fine-tuning : Fine-tuning adjusts the pretrained parameters on the new task with

standard supervised learning.
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Table 5.3: The results of varying the classifier for fine-tuning on the proposed
benchmark.

Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%
Mean-centroid 26.31% ± 0.42% 30.41% ± 0.46% 34.68% ± 0.46% 47.16% ± 0.54% 56.40% ± 0.53% 61.57% ± 0.66%

Cosine-similarity 26.95% ± 0.44% 32.07% ± 0.55% 34.76% ± 0.55% 48.01% ± 0.49% 58.13% ± 0.48% 62.03% ± 0.52%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 79.08% ± 0.61% 87.64% ± 0.47% 91.34% ± 0.37% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%
Mean-centroid 82.21% ± 0.49% 87.62% ± 0.34% 88.24% ± 0.29% 87.61% ± 0.47% 93.87% ± 0.68% 94.77% ± 0.34%

Cosine-similarity 81.37% ± 1.54% 86.83% ± 0.43% 88.83% ± 0.38% 89.15% ± 0.51% 93.96% ± 0.46% 94.27% ± 0.41%

• Fine-tuning last-k (Ft last-k): only the last k layers of the pretrained model are

optimized for the new task. In the paper, we consider Fine-tuning last-1, Fine-

tuning last-2, Fine-tuning last-3.

• Transductive fine-tuning (Transductive Ft): in transductive fine-tuning, the statistics

of the query images are used via batch normalization [NAS18].

In addition, we compare these single model transfer learning techniques against a

baseline of an embedding formed by a randomly initialized network to contrast against a

fixed feature vector that has no pre-training. All the variants of single model fine-tuning

are based on linear classifier but differ in their approach to fine-tune the single model

feature extractor.

Another line of work for few-shot learning uses a broader variety of classifiers for

transfer learning. For example, recent works show that mean-centroid classifier and cosine-

similarity based classifier are more effective than linear classifier for few-shot learning

[MVPC13, CLK+19]. Therefore we study these two variations as well.
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Mean-centroid classifier. The mean-centroid classifier is inspired from ProtoNet [SSZ17].

Given the pretrained model fθ and a support set S = {xi, yi}K×Ni=1 , where K is the number

of novel classes and N is the number of images per class. The class prototypes are com-

puted in the same way as in ProtoNet. Then the likelihood of an unlabelled example x̂

belongs to class k is computed as,

p(y = k|x̂) =
exp(−d(fθ, ck))∑K
l=1 exp(−d(fθ, cl))

(5.1)

where d() is a distance function. In the experiments, we use negative cosine similarity.

Other distance functions such as Euclidean distance can also be used. Different from

ProtoNet, fθ is pretrained on the base classes data in a standard supervised learning way.

Cosine-similarity based classifier. In cosine-similarity based classifier, instead of di-

rectly computing the class prototypes using the pretrained model, each class k is repre-

sented as a d-dimension weight vector wk which is initialized randomly. For each unlabeled

example x̂i, the cosine similarity to each weight vector is computed as ci,k = fθ(x̂i)
Twk

‖fθ(x̂i)‖‖wk‖
.

The predictive probability of the example x̂i belongs to class k is computed by normaliz-

ing the cosine similarity with a softmax function. Intuitively, the weight vector wk can be

thought as the prototype of class k.

Transfer from Multiple Pretrained Models

Traditional transfer learning methods for few-shot learning only consider using one

pretrained model for feature extraction. In this section, we propose a novel method that
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Table 5.4: The results of using all embeddings, and the proposed Incremental
Multi-model Selection (IMS-f) based on fine-tuned pretrained models on the proposed

benchmark.

Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 26.74% ± 0.42% 32.77% ± 0.47% 38.07% ± 0.50% 46.86% ± 0.60% 58.57% ± 0.59% 66.04% ± 0.56%
IMS-f 25.50% ± 0.45% 31.49% ± 0.47% 36.40% ± 0.50% 45.84% ± 0.62% 61.50% ± 0.58% 68.64% ± 0.53%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 81.29% ± 0.62% 89.90% ± 0.41% 92.76% ± 0.34% 90.82% ± 0.48% 96.64% ± 0.25% 98.14% ± 0.18%
IMS-f 83.56% ± 0.59% 91.22% ± 0.38% 93.85% ± 0.30% 90.66% ± 0.48% 97.18% ± 0.24% 98.43% ± 0.16%

Algorithm 1 Incremental Multi-model Selection. S is the support set. Assume there
is a library of C pretrained models {Mc}Cc=1. Each model has L layers and l is used to
denote one particular layer. Let CW (S, I) be a function which returns the average cross-
validation error given a dataset S and a set of layers I which are used to generate feature
vector.

First stage:
I1 = {}
for c = 1 → C do

min loss = -1
best l = None
for l = 1 → L do

if CW (S, {l}) < min loss then
best l = l
min loss = CW (S, {l})

end if
end for
Il = Il

⋃
best l

end for
Second stage:
I = {}
min loss = -1
for each l in I1 do

if CW (S, I
⋃
l) < min loss then

min loss = CW (S, I
⋃
l)

I = I
⋃
l

end if
end for
Concatenate the feature vectors generated by the layers in I and train a linear classifier.

utilizes multiple models pretrained on different source datasets from similar domains as

ImageNet, where all source datasets are still disjoint from the target datasets, for cross-

domain few-shot learning. The intuition is that by using models pretrained on different

datasets, we can obtain more diverse and richer visual features. Unlike previous works on

ensemble methods for few-shot learning [DSM19] that train diverse models on the same

70



source dataset, the proposed method requires no change to how models are trained and is

an off-the-shelf solution to leverage existing pretrained models for cross-domain few-shot

learning, without requiring access to the source datasets.

Assume we have a library of C pretrained models {Mc}Cc=1 which are trained on

various datasets in a standard way. We denote the layers of all pretrained models as a set

F . Given a support set S = {xi, yi}K×Ni=1 where (xi, yi) ∼ Pt, our goal is to find a subset I

of the layers to generate a feature vector for each example in order to achieve the lowest

test error. Mathematically,

arg min
I⊆F

(x,y)∼Pt`(fs(T ({l(x) : l ∈ I}), y) (5.2)

where ` is a loss function, T () is a function which combines a set of feature vectors, l is one

particular layer in the set I and fs is a linear classifier. Practically, for feature vectors l

coming from inner layers which are three-dimensional, we convert them to one-dimensional

vectors by using Global Average Pooling. Since Eq. 5.2 is intractable generally, we instead

adopt a two-stage greedy selection method, called Incremental Multi-model Selection, to

iteratively find the best subset of layers for a given support S.

In the first stage, for each pretrained model, we a train linear classifier on the

feature vector generated by each layer individually and select the corresponding layer

which achieves the lowest average error using five-fold cross-validation on the support

set S. Essentially, the goal of the first stage is to find the most effective layer of each

pretrained model given the task in order to reduce the search space and mitigate risk of
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overfitting. For convenience, we denote the layers selected in the first selection stage as set

I1. In the second stage, we greedily add the layers in I1 into the set I following a similar

cross-validation procedure. First, we add the layer in I1 into I which achieves the lowest

cross-validation error. Then we iterate over I1, and add each remaining layer into I if the

cross-validation error is reduced when the new layer is added. Finally, we concatenate the

feature vector generated by each layer in set I and train the final linear classifier. Please

see Algorithm 1 further details.

5.5 Evaluation Setup

For meta-learning methods, we meta-train all meta-learning methods on the base

classes of miniImageNet [VBL+16] and meta-test the trained models on each dataset of

the proposed benchmark. For transfer learning methods, we train the pretrained model

on base classes of miniImageNet. For transferring from multiple pretrained models, we

use a maximum of five pretrained models, trained on miniImagenet, CIFAR100 [K+09],

DTD [CMK+14], CUB [WBM+10], Caltech256 [GHP07], respectively. On all experiments

we consider 5-way 5-shot, 5-way 20-shot, 5-way 50-shot. For all cases, the test (query)

set has 15 images per class. All experiments are performed with ResNet-10 [HZRS16] for

fair comparison. For each evaluation, we use the same 600 randomly sampled few-shot

episodes (for consistency), and report the average accuracy and 95% confidence interval.

During the training (meta-training) stage, models used for transfer learning and

meta-learning models are both trained for 400 epochs with Adam optimizer. The learning
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rate is set to 0.001. During testing (meta-testing), both transfer learning methods and

those meta-learning methods that require adaptation on the support set of the test episodes

(MAML, RelationNet, etc.) use SGD with momentum. The learning rate is 0.01 and the

momentum rate is 0.9. All variants of fine-tuning methods are trained for 100 epochs.

In the training or meta-training stage, we apply standard data augmentation including

random crop, random flip, and color jitter.

5.6 Experimental Results

Results are discussed according to method categories as described in Section 5.4.

First, results from state-of-art meta-learning methods are presented in Section 5.6.1. Next,

transfer learning is evaluated and analyzed in Section 5.6.2, including single model transfer

in Section 5.6.2, followed by multi-model transfer in Section 5.6.2. Finally, a succinct best-

in-category comparison is presented in Section 5.6.3.

5.6.1 Meta-learning Based Results

Table 5.1 show the results on the proposed benchmark of meta-learning, for each

dataset, method, and shot level in the benchmark. Across all datasets and shot levels,

the average accuracies (and 95% confidence internals) are 50.21% (0.70) for MatchingNet,

38.75% (0.41) for MAML, 59.78% (0.70) for ProtoNet, 54.48% (0.71) for RelationNet, and

57.35% (0.68) for MetaOpt. The performance of MAML was impacted by its inability to

scale to larger shot levels due to memory overflow.
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What is immediately apparent from Table 5.1, is that performance in general

strongly positively correlates to the dataset’s similarity to ImageNet, confirming that the

benchmark’s intentional design allows us to investigate few-shot learning in a spectrum of

cross-domain difficulties.

5.6.2 Transfer Learning Based Results

Single model results

Table 5.2 show the results on the proposed benchmark of various single model

transfer learning methods. Across all datasets and shot levels, the average accuracies (and

95% confidence internals) are 53.99% (1.38) for random embedding, 64.24 (0.59) for fixed

feature embedding, 67.23% (0.46) for fine-tuning, 67.41% (0.49) for fine-tuning the last

1 layer, 67.26% (0.53) for fine-tuning the last 2 layers, 67.17% (0.58) for fine-tuning the

last 3 layers, and 68.14% (0.56) for transductive fine-tuning. From these results, several

observations can be made. The first observation is that, although meta-learning methods

have been previously shown to achieve higher performance than transfer learning in the

standard few-shot learning setting [VBL+16, CLK+19], in the cross-domain few-shot learn-

ing setting this situation is reversed: meta-learning methods significantly underperform

simple fine-tuning methods. In fact, MatchingNet performs worse than a randomly gen-

erated fixed embedding. A possible explanation is that meta-learning methods are fitting

the task distribution on the base class data, improving performance in that circumstance,

but hindering ability to generalize to another task distribution. The second observation is
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that, by leveraging the statistics of the test data, transductive fine-tuning achieves higher

results than the standard fine-tuning. This suggests that reliable estimates of statistics

are difficult to measure with only a few examples. The third observation is that the ac-

curacy of most methods on the benchmark continues to be dependent on how similar the

dataset is to ImageNet: CropDiseases commands the highest performance on average,

while EuroSAT follows in 2nd place, ISIC in 3rd, and ChestX in 4th. This further supports

the motivation behind benchmark design in targeting applications with increasing visual

domain dissimilarity to ImageNet.

Table 5.3 shows results from varying the classifier. While mean-centriod classifier

and cosine-similarity classifier are shown to be more efficient than simple linear classifier

in the conventional few-shot learning setting, our results show that mean-centroid and

cosine-similarity classifier only have a marginal advantage on ChestX and EuroSAT over

linear classifier in the 5-shot case (Table 5.3). As the shot increases, linear classifier

begins to dominate mean-centroid and cosine-similarity classifier. One plausible reason

is that both mean-centroid and cosine-similarity classifier conduct classification based on

unimodal class prototypes, when the number of examples increases, unimodal distribution

becomes less suitable to represent them, and multi-modal distribution is required.

We further analyze how layers are changed during transfer. We use θ to denote the

original pretrained parameters and θ̂ to denote the parameters after fine-tuning. Figure 5.2

shows the relative parameter change of the ResNet10 miniImageNet pretrained model as

|θ−θ̂|
|θ| , averaged over all parameters per layer, and 100 runs. Several interesting observations

can be made from these results. First, across all the datasets and all the shots, the first
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layer of the pretrained model changes most. This indicates that if the target domain is

different from the source domain, the lower layers of the pretrained models still need to

be adjusted. Second, while the datasets are drastically different, we observe that some

layers are consistently more transferable than other layers. One plausible explanation for

this phenomenon is the heterogeneous characteristic of layers in overparameterized deep

neural networks [ZBS19].

Figure 5.2: Relative change of pretrained network layers for single model transfer.

Figure 5.3: Histograms showing frequency of source model selection for each dataset in
the benchmark.

Table 5.5: Number of models’ effect on test accuracy.

# of models 2 3 4 5
ChestX 34.35% 36.29% 37.64% 37.89%

ISIC 59.4% 62.49% 65.07% 64.77%
EuroSAT 91.71% 93.49% 92.67% 93.00%

CropDiseases 98.43% 98.09% 98.05% 98.60%
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Transfer from Multiple Pretrained Models

The results of the proposed Incremental Muiti-model Selection are shown in Table

5.4. IMS-f fine-tunes each pretrained model before applying the model selection. We

include a baseline called all embeddings which concatenates the feature vectors generated

by all the layers from the fine-tuned models. Across all datasets and shot levels, the

average accuracies (and 95% confidence internals) are 68.22% (0.45) for all embeddings,

and 68.69% (0.44) for IMS-f. The results show that IMS-f generally improves upon all

embeddings which indicates the importance of selecting relevant pretrained models to the

target dataset. Model complexity also tends to decrease by over 20% compared to all

embeddings on average. We can also observe that it is beneficial to use multiple pretrained

models than using just one model. Compared with standard finetuning with a linear

classifier, the average improvement of IMS-f across all the shots on ChestX is 0.20%, on

ISIC is 0.69%, on EuroSAT is 3.52% and on CropDiseases is 1.27%.

In further analysis, we study the effect of the number of pretrained models for the

proposed multi-model selection method. We consider libraries consisting of two, three,

four, and all five pretrained models. The pretrained models are added into the library

in the order of ImageNet, CIFAR100, DTD, CUB, Caltech256. For each dataset, the

experiment is conducted on 5-way 50-shot with 600 episodes. The results are shown in

Table 5.5. As more pretrained models are added into the library, we can observe that

the test accuracy on ChestX and ISIC gradually improves which can be attributed to

the diverse features provided by different pretrained models. However, on EuroSAT and
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CropDiseases, only a marginal improvement can be observed. One possible reason is that

the features from ImageNet already captures the characteristics of the datasets and more

pretrained models does not provide additional information.

Finally, we visualize for each dataset which pretrained models are selected in the

proposed incremental multi-model selection. The experiments are conducted on 5-way

50-shot with all five pretrained models. For each dataset, we repeat the experiments for

600 episodes and calculate the frequency of each model being selected. The results are

shown in Figure 5.3. We observe the distribution of the frequency differs significantly

across datasets. This demonstrates that target datasets can benefit from features from

different pretrained models.

Figure 5.4: Top performing meta-learning, single model, and multi-model transfer
learning.
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5.6.3 Best-in-category Comparison

Figure 5.4 summarizes the comparison across best-in-category algorithms, accord-

ing to the average accuracy across all datasets and shot levels in the benchmark. The

degradation in performance suffered by meta-learning approaches is significantly greater

than the gain between single model and multi-model learning strategies, emphasizing the

risk of employing meta-learning strategies for few-shot learning when the application do-

main may sustain any degree of drift. In addition, the relative performance gain with

increasing number of shots is greater with transfer methods compared to meta-learning:

5.8% and 5.7% from 20-shot to 50-shot for single and multi-model transfer learning, re-

spectively, versus 1.8% for meta-learning. 5-shot to 20-shot was similar for all methods:

14.5%, 13.6%, 14.6%, for meta-learning, single model, and multi-model, respectively.

5.7 Conclusion

In this chapter, we formally introduce the problem of cross-domain few-shot learning

(CD-FSL) and establish the new CD-FSL benchmark, which covers several target domains

with varying similarity to the ImageNet source domain. We extensively analyze and eval-

uate existing meta-learning methods and variants of transfer learning. The results show

that meta-learning approaches significantly underperform in comparison to fine-tuning

methods. In addition, the relative performance gain with increasing data is greater with

transfer methods compared to meta-learning. Finally, we propose a multi-model selection

method to leverage multiple pretrained models from multiple source datasets with similar
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domains as ImageNet, and demonstrate that this method yields higher average perfor-

mance than any single model fine-tuning approach. In conclusion, due to its spectrum

of diversity and coverage, the proposed benchmark serves as a challenging platform to

guide research on cross-domain few-shot learning. In next chapter, we consider learning

multiple domains simultaneously with deep neural networks. In particular, we develop a

compact representation of deep neural networks to classify images from multiple domain

by exploring the universal structures in different domains.

This chapter contains material from “A Broader Study of Cross-Domain Few-Shot

Learning”, by Yunhui Guo, Noel C. F. Codella, Leonid Karlinsky, James V. Codella, John

R. Smith, Kate Saenko, Tajana Rosing, Rogerio Feris, which appears in The 16th European

Conference on Computer Vision (ECCV), 2020. The dissertation author was the primary

investigator and author of this paper.
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Chapter 6

Learning across Multiple Domains

Simultaneously

6.1 Introduction

Previous chapters consider problems of learning across two domains with deep neu-

ral networks. However, real-world applications may involve data from multiple domains.

There are two challenges in learning with multiple domains simultaneously with deep neu-

ral networks. The first one is to identify a common structure among different domains.

As shown in Fig 6.1, images from different domains are visually different, it is challenging

to design a single feature extractor for all domains. Another challenge is to add new tasks

to the model without introducing additional parameters. Existing neural network based

multi-domain learning approaches [BV17, RBV17, RBV18a, RT17] mostly focus on the

architecture design while ignoring the structural regularity hidden in different domains
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(a) Animals (b) Textures (c) Signs (d) Omniglot

(e) Digits (f) Aircraft (g) Flowers (h) Pedestrian

Figure 6.1: Image examples from different domains.

that leads to sub-optimal solutions.

In this dissertation, we propose a multi-domain learning approach based on depth-

wise separable convolution. Depthwise separable convolution has been proved to be a

powerful variation of standard convolution for many applications, such as image classifi-

cation [Cho17], natural language processing [KGC17] and embedded vision applications

[HZC+17]. To the best of our knowledge, this is the first work that explores depthwise

separable convolution for multi-domain learning. The proposed multi-domain learning

model is compact and easily extensible. To promote transfer learning between different

domains we further introduce a softmax gating mechanism. We evaluate our method

on Visual Decathlon Challenge [RBV17], a benchmark for testing multi-domain learning

models. Our method can beat the state-of-the-art models with only 50% of the parameters.

Summary and contributions: The contributions are summarized below:

• We propose a novel multi-domain learning approach by exploiting the structure reg-

ularity hidden in different domains. The proposed approach greatly reduces the
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number of parameters and can be easily adapted to work on new domains.

• The proposed approach is based on the assumption that images in different domains

share cross-channel correlations while having domain-specific spatial correlations.

We validate the assumption by analyzing the visual concepts captured by depthwise

separable convolution using network dissection [BZK+17].

• Our approach outperforms the state-of-the-art results on Visual Decathlon Challenge

with only half of the parameters.

6.2 Related Work

Different from multi-task learning, multi-domain learning aims at creating a sin-

gle neural network to perform image classification tasks in a variety of domains. [BV17]

showed that a single neural network can learn simultaneously several different visual do-

mains by using an instance normalization layer. [RBV17, RBV18a] proposed Residual

Adapters which is a universal parametric families of neural networks that contain special-

ized problem-specific models. [RT17] proposed a method called Deep Adaptation Networks

(DAN) that constrains newly learned filters for new domains to be linear combinations of

existing ones. Multi-domain learning can promote the application of deep learning based

vision models since it reduces engineers’ effort to train new models for images from differ-

ent domains. Our proposed multi-domain learning algorithm called SharingNet based on

the depthwise separable convolution which reduces the number of parameters of Residual

Adapters by 50%.
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Figure 6.2: ResNet-26 with depthwise separable convolution.

6.3 Background

Depthwise Pointwise

Figure 6.3: Standard convolution and depthwise separable convolution.

6.3.1 Depthwise Separable Convolution

Our proposed approach is based on depthwise separable convolution that factorizes

a standard 3 × 3 convolution into a 3 × 3 depthwise convolution and a 1 × 1 pointwise

convolution. While standard convolution performs the channel-wise and spatial-wise com-

putation in one step, depthwise separable convolution splits the computation into two

steps: depthwise convolution applies a single convolutional filter per each input channel

and pointwise convolution is used to create a linear combination of the output of the

depthwise convolution. The comparison of standard convolution and depthwise separable

convolution is shown in Fig. 6.3.

Consider applying a standard convolutional filter K of size W ×W ×M × N on
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an input feature map F of size Df ×Df ×M and produces an output feature map O is of

size Df ×Df ×N ,

Ok,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (6.1)

In depthwise separable convolution, we factorize above computation into two steps.

The first step applies a 3× 3 depthwise convolution K̂ to each input channel,

Ôk,l,m =
∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m (6.2)

The second step applies 1 × 1 pointwise convolution K̃ to combine the output of

depthwise convolution,

Ok,l,n =
∑
m

K̃m,n · Ôk−1,l−1,m (6.3)

Depthwise convolution and pointwise convolution have different roles in generating

new features: the former is used for capturing spatial correlations while the latter is used

for capturing channel-wise correlations.

Most the previous works [Cho17, HZC+17, SHZ+18] focus on the computational

aspect of depthwise separable convolution since it requires less parameters than standard

convolution and is more computationally effective. In [Cho17], the authors proposed the
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“Inception hypothesis” stating that mapping cross-channel correlations and spatial cor-

relations separately is more efficient than mapping them at once. In this chapter, we

provide further evidence to support this hypothesis in the setting of multi-domain learn-

ing. We validate the assumption that images from different domains share cross-channel

correlations but have domain-specific spatial correlations. Based on this idea, we develop

a highly efficient multi-domain learning method. We further analyze the visual concepts

captured by depthwise convolution and pointwise convolution based on network dissection

[BZK+17]. The visualization results show that while having less parameters depthwise

convolution captures more concepts than pointwise convolution.

6.4 Proposed Approach

6.4.1 Network Architecture

For the experiments, we use the same ResNet-26 architecture as in [RBV18a]. This

allows us to fairly compare the performance of the proposed approach with previous ones.

This original architecture has three macro residual blocks, each outputting 64, 128, 256

feature channels. Each macro block consists of 4 residual blocks. Each residual block has

two convolutional layers consisting of 3 × 3 convolutional filters. The network ends with

a global average pooling layer and a softmax layer for classification.

Different from [RBV18a], we replace each standard convolution in the ResNet-26

with depthwise separable convolution and increase the channel size. The modified network

architecture is shown in Fig. 6.2. This choice leads to a more compact model while still
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Figure 6.4: The proposed transfer learning approach for sharing spatial correlations.

maintaining enough network capacity. The original ResNet-26 has over 6M parameters

while our modified architecture has only half the amount of parameters. In the experiments

we found that the reduction of parameters does no harm to the performance of the model.

The use of depthwise separable convolution allows us to model cross-channel correlations

and spatial correlations separately. The idea behind our multi-domain learning method

is to leverage the different roles of cross-channel correlations and spatial correlations in

generating image features by sharing the pointwise convolution across different domains.

6.4.2 Learning Multiple Domains

For multi-domain learning, it is essential to have a set of universally sharable pa-

rameters that can generalize to unseen domains. To get a good starting set of parameters,

we first train the modified ResNet-26 on ImageNet. After we obtain a well-initialized

network, each time when a new domain arrives, we add a new output layer and finetune

the depth-wise convolutional filters. The pointwise convolutional filters are shared accross
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different domains. Since the statistics of the images from different domains are different,

we also allow domain-specific batch normalization parameters. During inference, we stack

the trained depthwise convolutional filters for all domains as a 4D tensor and the output

of domain d can be calculated as,

Ôk,l,m,d =
∑
i,j

K̂i,j,m,d · Fk+i−1,l+j−1,m,d (6.4)

The adoption of depthwise separable convolution provides a natural separation

for modeling cross-channel correlations and spatial correlations. Experimental evidence

[Cho17] suggests the decouple of cross-channel correlations and spatial correlations would

result in more useful features. We take one step further to develop a multi-domain domain

method based on the assumption that different domains share cross-channel correlations

but have domain-specific spatial correlations. Our method is based on two observations:

model efficiency and interpretability of hidden units in a deep neural network.

Model efficiency Table 6.1 shows the comparison of standard 3 × 3 convolution, 3 × 3

depthwise convolution (Dwise) and 1×1 pointwise convolution (Pwise). Clearly, standard

convolution has far more parameters than both depthwise convolution (×c2) and pointwise

convolution (×9). Typically, pointwise convolution has more parameters than depthwise

convolution. In the architecture shown in Fig 6.2, pointwise convolution accounts for 80%

of the parameters in the convolutional layers. The choice of sharing pointwise convolution

and adding depthwise convolution induces minimal additional parameters when dealing
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Table 6.1: Comparison of standard 3× 3 convolution, 3× 3 depthwise convolution
(Dwise) and 1× 1 pointwise convolution (Pwise).

Input Operator Output Parameters
c1 × h× w 3× 3 Conv2d c2 × h× w 3× 3× c1 × c2

c1 × h× w 3× 3 Dwise c1 × h× w 3× 3× c1

c1 × h× w 1× 1 Pwise c2 × h× w 1× 1× c1 × c2

with new domains. In the experiments we found that only by adding depthwise convolu-

tion leads to a network with limited number of free parameters which cannot handle some

large datasets. To increase the network capacity, we allow the last convolutional layer

to be specific for each domain. Based on this modification, each new domain averagely

introduces 0.3M additional parameters which is 10% of the modified ResNet-26.

Interpretability While depthwise convolution typical has less paramaters, by using the

technique of network dissection [BZK+17], we found it captures more visual concepts

than pointwise convolution. Meanwhile, the results in the same convolutional layer show

that depthwise convolution captures higher level concepts such as wheel and grass while

pointwise convolution can only detect dots or honeycombed. This observation suggests

that pointwise convolution can be generally shared between different image domains since

it is typically used for dealing with lower level features.

6.4.3 Soft Sharing of Trained Depthwise Filters

The multi-domain learning extension of depthwise separable convolution allows us

to share the channel-wise correlations among different domains. However, it still limits the
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level of transfer learning as there is no sharing between spatial correlations. To break the

limit, we introduce a novel transfer learning approach in the multi-domain setting to allow

the sharing of depthwise convolution. For each domain Dj, consider a network with L

depthwise separable convolutional layers S1, ..., SL, the input to the pointwise convolution

in layer l is defined as,

Ôl =
T∑
i=1

sliÔ
l
i, with

T∑
i=1

sli = 1 (6.5)

where Ôl
i is the output of the depthwise convolution of domain i in the layer l if we use

images in domain Dj as input. sli denotes a learned scale for the depthwise convolution

of domain i in the layer l. Figure 6.4 shows an example of proposed transfer learning

approach. The scales s1, ..., sT are the output of a softmax gate. The input to the softmax

gate is the convolutional feature map Xl−1 ∈ RC×H×W produced by the previous layer.

Similar to [VB17], we only consider global channel-wise features. In particular, we perform

global average pooling to compute channel-wise means,

Mc =
1

H ×W
H∑
i=1

W∑
j=1

Xc,i,j (6.6)

The output is a 3-dimensional tensor of size C × 1 × 1. To achieve a lightweight

design, we adopt a simple feedforward network consisting of two linear layers with ReLU

activations to apply a nonlinear transformation on the channel-wise means and feed the

output to the softmax gate. All the convolutional filters are freezed during transfer learn-

ing. The scales s1, ..., sT and the parameters of the feedforward networks are learnt jointly
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via backpropagation.

It is widely believed that early layers in a convolutional neural network are used

for detecting lower level features such as textures while later layers are used for detecting

parts or objects. Based on this observation, we partition the network into three regions

(early, middle, late) as shown in Figure 6.2 and consider different placement of the softmax

gate which allows us to compare a variety of sharing strategies.

6.5 Experiment

6.5.1 Datasets and evaluation metrics

We evaluate our approach on Visual Domain Decathlon Challenge [RBV17]. It

is a challenge to test the ability of visual recognition algorithms to cope with images

from different visual domains. There are a total of 10 datasets: (1) ImageNet (2)

CIFAR-100 (3) Aircraft (4) Daimler pedestrian classification (5) Describable

textures (6) German traffic signs (7) Omniglot (8) SVHN (9) UCF101 Dynamic

Images (10) VGG-Flowers. The detailed statistics of the datasets can be found at

http://www.robots.ox.ac.uk/ vgg/decathlon/.

The performance is measured in terms of a single scalar score S computed as follows,

S =
10∑
i=1

αimax{0, Emax
i − Ei}γi (6.7)
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where,

Ei =
1

Dtest
i

∑
(x,y)∈Dtest

i

1{y 6= (E(Di) ◦ C)(x)} (6.8)

Ei is the average test error of domain Di. E
max
i is the error of a reasonable base-

line algorithm. The exponent γi is set to be 2 for all domains. The coefficient αi is

1000(Emax
i )−γi then a perfect classifier receives 1000. The maximum score achieved across

10 domains is 10000.

6.5.2 Baselines

We consider the following baselines in the experiments,

1. Individual Network: The simplest baseline we consider is Individual Network.

We finetune the pretrained modified ResNet-26 on each domain which leads to 10

models altogether. This approach results in the largest model size since there is no

sharing between different domains.

2. Classifier Only: We freeze the feature extractor part of the pretrained modified

ResNet-26 on ImageNet and train domain-specific classifier layer for each domain.

3. Depthwise Sharing: Rather than sharing pointwise convolution, we consider an

alternative approach of multi-domain extension of depthwise separable convolution

which shares the depthwise convolution between different domains.

4. Residual Adapters: Residual Adapters [RBV17, RBV18a] are the state-of-the-art

approaches for multi-domain learning which include Serial Residual Adapter [RBV17]
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Table 6.2: Top-1 classification accuracy and the Visual Decathlon Challenge score (S) of
the proposed approach and baselines. #par is the number of parameters w.r.t. the

proposed approach.

Model #par ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF mean S

# images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

Serial Res. Adapt. 2× 59.67 61.87 81.20 93.88 57.13 97.57 81.67 89.62 96.13 50.12 76.89 2621

Parallel Res. Adapt. 2× 60.32 64.21 81.91 94.73 58.83 99.38 84.68 89.21 96.54 50.94 78.07 3412

DAN 2.17× 57.74 64.12 80.07 91.30 56.64 98.46 86.05 89.67 96.77 49.38 77.01 2851

Piggyback 1.28× 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2838

Individual Network 5× 63.99 65.71 78.26 88.29 52.19 98.76 83.17 90.04 96.84 48.35 76.56 2756

Classifier Only 0.6× 63.99 51.04 75.32 94.49 54.21 98.48 84.47 86.66 95.14 43.75 74.76 2446

Proposed Approach 1× 63.99 61.06 81.20 97.00 55.48 99.27 85.67 89.12 96.16 49.33 77.82 3507

Table 6.3: Top-1 classification accuracy and the Visual Decathlon Challenge score (S) of
different soft sharing strategies.

Model ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF mean S

# images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

early 63.99 58.69 81.01 95.44 55.75 98.75 84.90 88.80 96.18 48.86 77.23 3102

middle 63.99 59.11 80.93 95.33 54.74 98.71 85.42 88.93 96.09 48.91 77.21 3086

late 63.99 58.81 80.93 96.63 54.74 98.91 84.79 89.35 96.30 49.01 77.88 3303

and Parallel Residual Adapter [RBV18a].

5. Deep Adaptation Networks (DAN): In [RT17] the authors propose Deep Adap-

tation Networks (DAN) that constrains newly learned filters for new domains to be

linear combinations of existing ones via controller modules.

6. PiggyBack: In [ML18] the authors present PiggyBack for adding multiple tasks to

a single network by learning domain-specific binary masks. The main idea is derived

from network quantization [CHS+16, Guo18] and pruning.
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6.5.3 Implementation details

All networks were implemented using Pytorch and trained on 2 NVIDIA V100

GPUs. For the base network trained on ImageNet we use SGD with momentum as the

optimizer. We set the momentum rate to be 0.9, the initial learning rate to be 0.1 and use

a batch size of 256. We train the network with a total of 120 epochs and the learning rate

decays twice at 80th and 100th epoch with a factor of 10. To prevent overfitting, we use

a weight decay (L2 regularization) rate of 0.0001.

For the multi-domain extension of depthwise separable convolution, we keep the

same optimization settings as training the base network. We train the network with

a total of 100 epochs and the learning rate decays twice at 60th and 80th epoch by a

factor of 10. We apply weight decay (L2 regularization) to prevent overfitting. Since

the size of the datasets are highly unbalanced, we use different weight decay parameters

for different domains. Similar to [RBV18a], higher weight decay parameters are used for

smaller datasets. In particular, 0.002 for DTD, 0.0005 for Aircraft, CIFAR100, Daimler

pedestrain, Omniglot and UCF101, and 0.0003 for GTSTB, SVHN and VGG-Flowers.

For the Soft Sharing of Trained Depthwise Filters part, we train the network with

a total of 10 epochs and the learning rate decays once at the 5th epoch with a factor of

10. Other settings are kept the same as training multi-domain models.
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6.6 Results and Analysis

6.6.1 Quantitative Results

The results of the proposed approach and the baselines on Visual Decathlon Chal-

lenge are shown in Table 6.2. Our approach achieves the highest score among all the

methods while requiring the least amount of parameters. In particular, the proposed ap-

proach improves the current state-of-the-art approaches by 100 points with only 50% of

the parameters. The ResNet-26 with depthwise separable convolution surpasses the per-

formance of the original ResNet-26 by a large margin on ImageNet (63.99 vs 60.32). On

other smaller datasets, our approach still achieves better or comparable performance to

the baselines. The improvement can be attributed to the sharing of pointwise convolution

that has a regularization effect and allows the training signals in ImageNet to be reused

when training new domains.

Compared with other variations of the modified ResNet-26, our approach still

achieves the highest score. Our approach obtains a remarkable improvement (3507 vs

2756) with only 20% of the parameters compared with Individual Network. One reason

for the improvement is that the proposed approach is more robust to overfitting, especially

for some small datasets. While only training domain-specific classifier layers leads to the

smallest model, the score is about 1000 points lower than the proposed approach. Com-

pared with Depthwise Sharing, the assumption of sharing pointwise convolution leads to

a more compact and efficient model (3507 vs 3234). This validates our assumption that

it is preferable to share pointwise convolution rather than depthwise convolution in the
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Figure 6.5: A comparison of visual concepts identified by network dissection in
ResNet-26 with depthwise separable convolution trained on ImageNet and CIFAR100.

setting of mutli-domain learning. We provide more qualitative results in the next section

to support this claim.

6.6.2 Qualitative Results

This section presents our visualization results of deptwise convolution and point-

wise convolution based on network dissection [BZK+17]. Network dissection is a general

framework for quantifying the interpretability of deep neural networks by evaluating the

alignment between individual hidden units and a set of semantic concepts. The accuracy

of unit k in detecting concept c is denoted as IoUk,c. If the value of IoUk,c exceeds a thresh-

old then we consider the unit k as a detector for the concept c. The details of calculating
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Figure 6.6: Number of attributes captured by the hidden units of depthwise
convolution and pointwise convolution in the 18th, 20th and 22th convolutional layer.

IoUk,c is omited due to space limitation.

In the experiments, we use the individual networks trained on ImageNet and CI-

FAR100 as examples. We visualize the hidden units in the 18th, 20th, 22th convolutional

layers. Fig 6.5 shows the interpretability of units of the depthwise convolution and point-

wise convolution in the corresponding layer. The highest-IoU matches among hidden units

of each layer are shown. We observe that the hidden units in depthwise convolution detect

higher level concepts than the units in pointwise convolution. The units in the depthwise

convolution can capture part or object while the units in pointwise convolution can only

detect textures. Moreover, Fig 6.6 shows the number of attributes captured by the units

in depth convolution and pointwise convolution. The results demonstrate that depthwise

convolution consistently detects more attributes than pointwise convolution. These obser-

vations imply that pointwise convolution are mostly used for capturing low level features

which can be generally shared across different domains.

97



6.6.3 Soft Sharing of Trained Depthwise Filters

Table 6.3 shows the results of sharing of trained depthwise filters. Regardless

of the different placements of the softmax gate, the base approach without sharing still

achieves the highest score on Visual Decathlon Challenge. One possible reason is that

the datasets are from very different domains, sharing information between them may not

generally improve the performance. However, for some specific datasets, we still observe

some improvement. In particular, by sharing early layers we can obtain a slightly higher

accuracy on DTD and SVHN. Another observation is that sharing later layers leads to a

higher score than other alternatives. This implies that although images in different domain

may not share similar low level features, they can still be benefited from each other by

transfering information in later layers.

6.7 Conclusion

In this chapter, we present a multi-domain learning approach based on depthwise

separable convolution. The proposed approach is based on the assumption that images

from different domains share the same channel-wise correlation but have domain-specific

spatial-wise correlation. We evaluate our approach on Visual Decathlon Challenge and

achieve the highest score among the current approaches. We further visualize the concepts

detected by the hidden units in depthwise convolution and pointwise convolution. The re-

sults reveal that depthwise convolution captures more attributes and higher level concepts

than pointwise convolution. In next chapter, we extend the idea of learning with multiple
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domains to applications in distributed mobile networks.

This chapter contains material from “Depthwise Convolution is All You Need for

Learning Multiple Visual Domains”, by Yunhui Guo, Yandong Li, Liqiang Wang, Tajana

Rosing, which appears in The 33rd AAAI Conference on Artificial Intelligence (AAAI),

2019. The dissertation author was the primary investigator and author of this paper.

99



Chapter 7

Energy Efficient Learning with

Multiple Domains in Heterogeneous

Mobile Networks

7.1 Introduction

In last chapter we consider learning multiple image domains, in this chapter we

focus on learning in heterogeneous mobile networks which consist of data from different

domains collected from the mobile devices. In mobile networks, devices such as mobile

phones, tablets and mobile sensors are generating a huge amount of data each day, enabling

everything from remotely monitoring heart rate to tracking the location of smartphone

[AIM10, GBT+04]. The mobile devices can monitor changes of user behavior and collect

a large amount of data that can be used for downstream tasks such as human activity and
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image recognition [AIM10, RN04, MMR+16]. The richness of data generated by mobile

devices can potentially provide more information about the environment around us, but

only if we are able to develop efficient processing systems to analyse the data.

Machine learning (ML) algorithms have become a core component for building data

analytic systems [ABC+16, ZCF+]. Most ML algorithms are server-based and designed

for handling centralized data, that is, all the training examples are generated in one place

[MMR+16]. However, mobile networks are distributed in nature. Each device only gathers

a subset of the data and works collaboratively with a central server. Thus, learning in

mobile networks requires extensive data communication which is challenging for training

conventional ML algorithms. Mobile edge computing [PSBD19, MMR+16, PKP06] has

been proposed recently as an efficient way to learn ML models in mobile networks. The

core idea of mobile edge computing is to push the computation from the central server

to the mobile devices which can reduce the communication cost, energy consumption and

protect users’ privacy of learning in mobile networks [MMR+16, PSBD19].

Combining information from multiple heterogeneous mobile devices is a new re-

search direction for mobile edge computing [YYS18, TGK+19, AVHN19]. One character-

istic of learning with heterogeneous mobile devices is that the feature vectors, rather than

the examples, are distributed across devices [YYS18, TGK+19]. For example, for human

activity recognition, accelerometer is used to measure acceleration and gyroscope is used

to detect the orientation of the device. The data from these two devices form a single

feature vector that can be used to accurately predict user’s movements. In [AVHN19],

the authors introduced multi-mobile computing which integrates multiple heterogeneous
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mobile devices to build more complex mobile applications.

Most of the works on mobile edge computing, such as federated learning [MMR+16,

KMY+16] and distributed gradient algorithms [ZWD12, WTS+18], mainly focus on learn-

ing in homogeneous mobile networks where the devices have different subsets of the dataset

that share common feature space. In contrast, learning in heterogeneous mobile network

has the following key properties which make it a more challenging task and has only been

addressed by some recent works [TMK17, VGSR18, TGK+19].

• Distributed features: Conventional ML algorithms need access to the full feature

vectors to make predictions. However, in heterogeneous mobile network the feature

vectors are distributed across devices. To gather together the distributed features in

the central server incurs a large communication cost. This also introduces data from

multiple domains which is challenging for conventional ML algorithms. Excessive

data communication also dominates the energy consumption of the mobile devices

[Mad03, WCH+19] and leads to network congestion.

• Asymmetrical network bandwidth: Many telecom companies provide Internet

plans with much faster download speeds than upload speeds [BCL10]. For example,

AT&T top download and upload speeds can have as much as 5x difference. On the

other hand, the devices typically have high sampling rates (100 Hz or higher) and

deliver continuous data to the central server. The limited upload speed poses a chal-

lenge to communicate the local data which increases the network latency and power
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usage.

• Online update: The user behavior might change over time. It is thus important

to have an online update mechanism to adjust the trained ML model in the central

server with incoming data with minimal communication cost.

While learning in heterogeneous mobile networks is generally difficult, in this chap-

ter we leverage two key facts and propose an active sampling algorithm for training in

heterogeneous mobile networks to reduce the communication cost and energy consump-

tion. First, we observe that not all the data are equally important. For example, the

data that identify the transition from one activity to another are more informative. On

each round of the online update, instead of sending all the data to the central server, the

proposed active sampling method sends only the most informative data. Our key insight is

that these informative data can be chosen by using ideas from the active learning literature

[Set09]. Prior research on active learning mainly focuses on reducing the cost of acquiring

labels for specific ML applications [RC10, BGNK18, KGUD07, LG13]. In this work, we

show that active learning can be easily applied for reducing communication cost and en-

ergy consumption for learning in heterogeneous mobile networks with data from multiple

domains. We propose active sampling, which is inspired by uncertainty sampling in active

learning, to evaluate the informativeness of the data. By only sending the most informa-

tive data, we can greatly reduce the communication cost in harsh network conditions and

still allow the model to be adaptive.
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With the proposed active sampling method, the central server model cannot be

updated since it only receives a subset of the full feature vectors. To solve this problem, we

leverage the fact that the data from different devices within a region are highly correlated.

Thus the missing data can be accurately recovered with the available data from other

devices. More concretely, we model the missing data as a function of the received data

and labels from other devices. This allows the central server model to be updated only

based on a small set of informative data. Finally, we propose a lightweight load balancing

algorithm to enable each device to communicate roughly the same number of measurements

to prolong the lifetime of the overall system.

To summarize, our work makes three main contributions,

• To our knowledge this is the first attempt to systematically show that the idea of

active learning can be used to greatly reduce the communication cost and energy

consumption for training in heterogeneous mobile networks with data from multiple

domains.

• We propose active sampling methods for communication and energy efficient training

in heterogeneous mobile networks.

• We validate the proposed approaches on four real-world datasets by both numerical

simulation and practical deployment. The results show that we can achieve a reduc-

tion in communication cost (in bits) by up to 53% and in energy consumption by up

to 67% without accuracy loss compared with the conventional methods.
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7.2 Related Work

A fundamental problem in learning in distributed mobile networks is how to make

the right tradeoff between communication and computation [JC04, GBT+04, MMR+16,

WTS+18]. Based on the characteristics of the devices, previous work can be classified into

two categories: learning with a homogeneous set of devices [GBT+04, WTS+18, MMR+16]

and learning with a heterogeneous set of devices [CTS14, YYS18, BT89]. Conventional dis-

tributed gradient descent algorithms [ZWD12, WTS+18, DCM+12] and federated learning

[MMR+16] fall under the first category where the examples are distributed across devices.

The main communication cost in this setting comes from sending the model parameters

between devices and the central server [KMY+16]. The methods for reducing communi-

cation cost in homogeneous mobile networks can be classified into two threads. One is

model compression and quantization, which tries to reduce the communication cost by

compressing or quantizing the model parameters [KMY+16, LHM+17, Guo18]. Another

is from an algorithmic perspective, which focuses on developing communication efficient

optimization algorithms [SSZ14, JST+14].

In contrast, in heterogeneous mobile networks the feature vectors, rather than

the examples, are distributed across different devices [BT89, CTS14, YYS18, TGK+19].

The distributed features further increase the communication cost between devices and

the central server [BT89, CTS14]. In [YYS18], the authors assume the devices can

communicate with each other which is unrealistic in real-world mobile applications. In

[TMK17, TGK+19, VGSR18], the authors proposed to distribute the model in the central
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server onto the devices and conduct computation locally to reduce the dimension of the

data. However, these works mainly focus on inference rather than training in heteroge-

neous mobile networks.

Active learning has been widely applied in machine learning applications, ranging

from object categorization [KGUD07] to text classification [TK01]. However, there are only

a few works on exploiting active learning in distributed mobile networks. In [SNR06], the

authors propose a mobile path planning scheme based on active learning, which leverages

previous samples to guide the motion of the mobiles for further sampling. In [WNC06,

WMN04], the authors use active learning to achieve faster rate of convergence of field

estimation using wireless sensor networks.

In contrast to previous research, we address the problem of communication and en-

ergy efficient training in heterogeneous mobile networks with data from multiple domains.

With the proposed active sampling methods, we only send informative data from the de-

vices to the central server which can greatly reduce the communication cost and energy

consumption. The idea of the proposed algorithm is general and can be easily integrated

with the existing applications in distributed mobile networks.

7.3 Background

In this section, we formulate the problem of learning in heterogeneous mobile net-

works. Given a heterogeneous mobile network which consists of one central server C and

K mobile devices. The central server and the mobile devices are connected via wireless
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network. We consider an online learning setting where the examples arrive sequentially

{(x1,y1), (x2,y2), ..., (xT ,yT )}, where xt ∈ Rm is an m-dimensional feature vector and

yt is the one-hot representation of the ground-truth label. The maximum class index is

denoted as I. Consider learning a neural network fθ(x) with parameter θ for classification

in the central server. The prediction of the model can be computed as,

ŷ = softmax(z) =
exp(z)∑I
i=1 exp(zi)

(7.1)

where z = fθ(x). Denote the cross-entropy loss function as `, the loss of the example x

can be computed as,

`(ŷ; y) = −1

I

I∑
i=1

yi log ŷi (7.2)

where ŷi and yi is the i-th component of ŷ and y, respectively. In heterogeneous mobile

network, each device k contains a partial feature vector xk ∈ Rm1 . The data from all

K devices can be concatenated to form a single feature vector x, i.e., m =
∑K

k=1m1.

Typically, xk itself does not contain enough information to learn a predictive model locally,

which indicates that all the mobile devices need to send the local data to the central server

[TMK17, TGK+19, VGSR18]. The communication process thus incurs prohibitively large

communication and energy costs [TMK17, TGK+19].

Several methods such as hierarchical learning [TGK+19] and DDNN [TMK17] are

proposed recently to address the question that how to enable efficient learning of machine

learning models, especially neural networks, in heterogeneous mobile networks. The core
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idea of these approaches is to split or partition the original model fθ into multiple submod-

els. Suppose the central server C has a model fθc and each device k has a local model fθk .

The model on device k computes some statistics fθk(x
k) and send the result to the central

server. The central server aggregates the results from all the devices using an aggregate

function, such as concatenation. The output of the aggregate function is used as input

for fθc for classification. The reason that these approaches can reduce communication

and energy cost is that the dimension of fk(x
k) is much smaller than xk, it is thus more

communication efficient to send fk(x
k) rather than the original partial feature vector xk

to the central server.

The previous works such as [TMK17, TGK+19] mainly focus on inference in het-

erogeneous mobile works and cannot support training. To train neural networks in het-

erogeneous mobile works, the commonly used approach is to send the original local data

to the central server which incurs a large communication cost [TGK+19], this approach

is referred to as passive learning since the devices communicate with the central server

in each online update round. In this work, we propose an active sampling method which

allows the devices to actively decide which data to communicate to the central server in

each online update round. Different from [TMK17, TGK+19] which focus on inference

in heterogeneous mobile works, the proposed method selectively transfers data from the

devices to the central server to reduce the communication and energy cost for training in

heterogeneous mobile works.
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7.3.1 Computation Model for Mobile Devices

For modelling the mobile devices, we adopt a computation model which is also used

in [BB96, TBZH19] for validating federated learning. The number of CPU cycles of device

k to process one floating number is denoted as Ck. The CPU-cycle frequency of the device

k is fk. The CPU energy consumption of the device k for processing one floating number

can be computed as [BB96],

Ep =
αk
2
Ckf

2
k , (7.3)

where αk
2

is the effective capacitance coefficient of the device k.

7.3.2 Communication Model for Mobile Devices

We adopt a time-sharing multi-access protocol for the mobile devices similar to

[TBZH19]. The transmission rate of the equipment k can be computed as,

rk = B ln(1 +
hkpk
N0

) (7.4)

where B is the bandwidth, N0 is the background noise, pk is the transmission power, and

hk is the channel gain of peer-to-peer link between the device k and the central server.

Assume the fraction of communication time allocated to the device k is γk and the data

size is sk. Then the transmission rate of each device k can be computed as,
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Figure 7.1: The overview of the proposed active sampling approach for training in
heterogeneous mobile networks.

rk =
sk
γk

(7.5)

To transmit the data the energy consumption is,

Ec = γkpk (7.6)

where the power function is,

pk =
N0

hk
(e

sk/γk
B − 1) (7.7)
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7.4 Active Sampling in Heterogeneous Mobile Net-

works

7.4.1 Background of Active Learning

Label acquisition for unlabeled data is expensive since it requires the participation

of domain experts. One important topic in machine learning research is how to train an

accurate predictive model based on as few labeled examples as possible. Active learning

[Set09, Das11, KSF17], which reduces the labeling cost by querying the labels of the

most informative examples, has attracted a lot of attention recently. Assume we have a

dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)}. The set of the examples is denoted as Dx =

{x1,x2, ...,xn}. In active learning, we aim to learn a probabilistic model p(y|x; θ) using

as few labeled examples as possible. To achieve this, we start with a subset L ∈ D of

the dataset and a large pool of unlabeled example Ux = Dx \ Lx. We first train a model

M0 based on L. In each iteration of active learning, we pick an example x ∈ Ux which

can most improve the generalization ability of the current model. Then x is added to L

and its label is given by an oracle at a cost. The oracle is typically a human annotator.

We retrain the model again on L with the additional example x. The above process is

repeated until a predefined accuracy is met.

One way to evaluate the informativeness of the example is called uncertainty sam-

pling [Set09]. In uncertainty sampling, an active learner queries the label of the example

about which it is most uncertain how to label based on an acquisition function U(x; θ).
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Commonly used acquisition functions include:

• Entropy:

x∗ENT = arg max
x∈Ux

−
∑
i

p(yi|x; θ) log p(yi|x; θ) (7.8)

where yi ranges over all the possible labelings.

• Least confident:

x∗LC = 1− arg min
x∈Ux

p(y∗|x; θ) (7.9)

where y∗ = arg maxx∈Ux
p(y∗|x; θ) is the most likely labeling.

• Confidence margin:

x∗CM = 1− arg min
x∈Ux

[p(y∗|x; θ)− p(y∗∗|x; θ)] (7.10)

where y∗∗ is the second most likely labeling.

7.4.2 Proposed Approach

In the context of online learning, it is necessary to update the initial model in the

central server to address the dynamics of the environment. However, naively sending all

the local data to the central server incurs a large communication cost. In this work, we

propose a communication and energy efficient active sampling algorithm for training in

heterogeneous mobile networks. Suppose there are K devices, in the central server for each

device k we construct a model fθk . The output of all the models are concatenated via an
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aggregate function and are fed as input for a cloud specific model fθc . The weights of all

models in cloud is denoted as θ. On each device k, we construct a local model f̂θk with the

same architecture as fθk . On each round, the proposed algorithm identifies informative

samples based on f̂θk . This means only a subset of the devices need to communicate

with the central server. On the other hand, in order to be updated, the central server

models needs data from all the devices. For those devices which do not send data, we

synthesize their data in the central server based on the available data from other devices.

After the models are updated in the central server, the weights of model fθk is sent to

device k for synchronization. Finally, in order to prevent one device from dominating the

data communication, we propose a lightweight load balancing mechanism to promote each

device to communicate roughly the same which can increase the lifetime of the overall

system. The overview of the proposed architecture is shown in Figure 7.1.

Design of Acquisition function

We assume that there is an initial model M0 in the central server, we aim to update

M0 based on the data from all the devices. At each timestamp t, device k collects data

xkt . The data from all the devices are denoted as xt. The collection of data without xkt

is denoted as xt \ xkt . Our goal is to update the central server model with as few as com-

munication rounds as possible. To achieve this, we propose active sampling to measure

the informativeness of xkt based on the local model on each device. Instead of sending all

the local measurements to the central server, we only consider the informative ones. We

propose two acquisition functions, local uncertainty and delayed global uncertainty, for
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applying active sampling in heterogeneous mobile network.

Local Uncertainty. In local uncertainty (LU), we assume the devices are independent

with each other when evaluating the uncertainty locally, that is, the acquisition function

U(x; θ) only depends on xk and θk. On each round t, the central server sends the weight θk

to the corresponding device k. Device k updates the local model and evaluates the infor-

mativeness of xkt via an uncertainty function U(xkt ; θk) which can be the entropy function,

least confident function or confidence margin function. Device k sends xkt to the central

server only if the local uncertainty U(xkt ; θk) is above a given threshold γ. The indepen-

dence assumption leads to a great reduction in communication cost – the overhead is that

on each round the central server needs to send θk to each device k which is tolerable since

the dimension of θk is usually small.

Delayed Global Uncertainty. In delayed global uncertainty (DGU), at each timestamp

t, the central server sends the weights of all the models θ and xt−1 \ xt−1,k to device k.

Together with xkt , we form a new feature vector, denoted by [xkt ,xt−1 \xkt−1], which is xt−1

with xkt−1 replaced by xkt . In DGU, device k evaluates the informativeness of xt,k via the

function U([xkt ,xt−1 \ xkt−1]; θ). Compared with the true global uncertainty U(xt; θ), it is

called delayed global uncertainty since all the measurements have a lag of one timestamp

except xkt . The delayed global uncertainty can be seem as a better approximation to the

true global uncertainty, however it increases the downlink communication cost.
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The proposed active sampling approaches trade downlink communication cost for uplink

communication cost. Although on each round the central server needs to communicate

with the devices, the devices send data to the central server only if the data is informative.

Examples of informative data include readings that indicate the device is misbehaving or

the user activity is changing – both cases are only a small portion of the overall data

stream. Due to the fact that the download speed is typically 5x faster than the upload

speed, we can leverage the extra download bandwidth to reduce the upload congestion and

increase the battery life of the devices.

Analysis

We provide analysis of DGU based on generalized linear models and the smoothness

of the measurements.

Definition 7.4.1 The data of device k are smooth if there exists a constant ρk and,

‖xkt − xkt−1‖2 ≤ ρk (7.11)

Definition 7.4.2 A function f : Rm → Rn is said to be have Lipschitz constant C if for

all x ∈ Rm and y ∈ Rm, it satisfies,

‖f(x)− f(y)‖2 ≤ C‖x− y‖2 (7.12)

It can be shown that the softmax function used in the multinomial logistic regression

is Lipschitz with constant 1.
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Lemma 7.4.1 Suppose function f : Rm → Rn and g : Rl → Rm are Lipschitz function

with Lipschitz constant C1 and C2 respectively. Then the function h : f ◦ g : Rl → Rn is

Lipschitz with constant C3 ≤ C1C2

Theorem 7.4.2 In a distributed heterogeneous mobile network with K sensors, assume

the data of each device satisfy the smoothness requirements. We aim to update a generalized

linear model M(x; θ) online with delayed global uncertainty. Assume M(x; θ) is Lipschitz

with constant C1 and given an uncertainty function which is Lipschitz with constant C2, at

timestamp t the delayed global uncertainty of device k and true global uncertainty is related

as,

|U((xkt ,xt−1 \ xkt−1); θ)− U(xt; θ)| ≤ C1C2

K∑
i=1,i 6=k

||θi||2ρi (7.13)

The proof of theorem 7.4.2 follows from the smoothness of the data the Lipschitz property

of the models.

Synthesized measurements

With active sampling, only a subset of the devices send data to the central server.

However, the central server needs data from all the devices to update the model. We

leverage the fact that the data of nearby devices are closely related. For the missing data,

we predict their values using the available data from other devices.

On each round t, if the central server did not receive the data from device k, we
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use a model S(xkt |xjt , yt; β) with parameters β, typically a neural network, to predict the

missing data of device k with the measurement received from device j. Note that xkt is

not only modeled as a function of xjt , but is also conditioned on the label yt of the data.

The label information provides extra supervision for training the synthesized model S to

better recover the missing data. The choice of device j depends on the actual deployment

and characteristics of the datasets. For example, we can choose the device which has

the highest sampling rate, since it collects most fine-grained measurements. With the

synthesized measurements, we can update the central server model by only relying on a

small subset of informative local data.

Load balance

Excessive data communication is the main cause of the energy consumption in

mobile and sensor networks [Mad03, GBT+04]. It is thus critical to prevent one device

from dominating the data communication which can shorten the lifetime of the overall

system. To achieve this, we propose a lightweight load balancing mechanism to promote

each device to communicate the same number of bits during the online update. The

proposed load balancing mechanism adjusts the uncertainty of the data collected from a

particular device based on the number of times this device has communicated before.

Suppose there are K devices in the mobile network. In the central server we main-

tain a vector M ∈ RK which is initialized to be zeros. On each round t as the central

server receives data from device k, M [k] increases its stored value by 1. We normalize L

via a softmax function to obtain Mnorm. Mnorm[k] can be regarded as the proportion of
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Figure 7.2: Results of local prediction on the four datasets during the online update.

data sent from device k. Then the central server sends Lnorm[k] to device k. With local

uncertainty the informativeness of xkt is calculated as ( 1/K
Mnorm[k]

)λkU(xkt ; θk), where λk is

a hyperparameter which can be used to adjust the strength of the load balancing. Intu-

itively, if Mnorm[k] is greater than 1/K, which means that device k communicates more

bits than the average, we scale down the informativeness of xkt . With the proposed load

balancing mechanism, the communication cost is distributed evenly across all the devices.

7.5 Analysis and Experiments

In the section, we conduct several experiments based on numerical simulation and

practical deployment to address the following research questions that are aimed at under-

standing how the proposed active sampling works for distributed training in heterogeneous

mobile networks,

• Do we need measurement from all the devices to learn an accurate predictive model

in the central server?

• How does different active sampling methods perform for distributed training in het-
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Figure 7.3: Normalized communication cost and final test accuracy with local
uncertainty.

Figure 7.4: Normalized communication cost and final test accuracy of delayed global
uncertainty.

erogeneous mobile networks?

• How does the uncertainty evolve during the online update?

• How does the proposed load balance algorithm affect the communication cost of

individual devices?
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7.5.1 Datasets

We consider the following four real-world applications in heterogeneous mobile net-

works. The detailed statistics of the datasets are listed in table 7.1. All the datasets are

publicly available.

• MNIST [LBBH98]: In mobile networks, we may have multiple devices which record

different angles or parts of an object. To identify the object in the image, we need

to combine recordings from all the devices to form a single feature vector. We use

the MNIST dataset, which is the canonical dataset used for digit classification, as a

proof of concept. The MNIST dataset consists of hand-written digits from 0 to 9.

Each image has 784 dimensions. We assume there are 7 devices, and each records

122 dimensions of the original image. The task is to identify the digit in the image

in the test dataset by utilizing the recordings from all the 7 devices.

• PAMAP2 [RS12]: This is a physical activity recognition dataset which contains 18

different physical activities performed by 9 subjects. There are a total of 4 sensors,

3 inertial measurement units and a heart rate monitor. We consider the 5 main

activities {lying, sitting, standing, walking and running} and use the data from

subject 1 in the experiments.

• HAR [AGO+]: This is a recently introduced human activity recognition dataset.

It contains data collecting from 17 mobile sensors. There are a total of 30 sub-

ject performing 6 activities {walking, walking upstairs, walking downstairs, sitting,
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standing, laying}. For consistency, we use the first 7 sensors in the experiments. The

data partition is the same as in [AGO+].

• Google Glass (GLEAM) [RMHK15]: The GLEAM dataset consists of two hours

of high resolution sensor data collected using Google Glass. There are 6 sensors and

38 subjects. The subjects conduct 6 activities {eating, talking, drinking, walking,

going climbing stairs, computer work} in a controlled environment. We use the data

from the first subject as a case study. 40% of the examples are used as the training

set and the rest is used as the test set.

7.5.2 Evaluation Protocol

In the experiments, 10% of the training examples are used to train the initial model

M0 in the central server and the rest is used for online update. We run the online update

for a total of 1000 rounds. One each round, we use the proposed active sampling methods

to decide whether or not to send the corresponding data. The central server model is

updated every 50 rounds, also called a batch. The total number of batches is 200. We

consider the following three metrics for comparing different methods,

• Communication cost: the total number of bits communicated by all the devices. It

is the sum of the bits communicated by each individual device during the online

update.

• Test accuracy: the accuracy of model on the test dataset after the online update.
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• Energy consumption: the energy consumption of the all the devices during the on-

line update. The energy consumption consists of the energy consumption for both

computation and communication.

Table 7.1: Datasets statistics. TR: Number of training samples, TE: Number of test
samples, C: Number of classes, S: Number of devices, D: Dimension of the feature

vector.

Dataset TR TE C S D

MNIST [LBBH98] 60,000 10,000 10 7 784

PAMAP2 [RS12] 4,182 6,275 5 3 52

HAR [AGO+] 7,352 2,947 6 17 561

GLEAM [RMHK15] 8,265 12,399 6 6 18

7.5.3 Baselines

We consider the following baselines in the experiments,

• Local Prediction (LP): we only utilize the data on each device to predict the labels

of the test dataset. The total communication cost is minimal in this case, however

the accuracy suffers since we cannot use the information from all the devices.

• Passive Learning (PL): In PL, each device sends all the data to the central server

which incurs a large communication cost.

• Random Sampling (RS): We consider sending γ% (γ = 50) of the local data col-

lected by each device to the central server. On each round, we sample from a

Bernoulli(γ/100) and decide whether or not to send the measurement based on the

sampling output.
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Figure 7.5: Total communication rounds as a function of batch. We use local
uncertainty and least confident function with different thresholds (Th).

7.5.4 Implementation details

The neural network for each device consists of three layers with one layer for com-

puting the local probability. The cloud specific model consists of two layers. We adopt

Adam as the optimizer. The learning rate is set to be 0.01 and decays exponentially with

a factor of 0.9. We train the initial models for a total of 10 epochs. No regularization is

used in the experiments. All the models are implemented in Tensorflow [ABC+16].

We train the model S(xk|xj, y; β) for synthesizing measurements on the training

dataset using mean squared error. For simplicity, we use the measurements from device 1

to predict the measurements for all other devices. During the online update, if the data

of device 1 is missing, we impute the missing value with the historical average.

7.5.5 Numerical Results

Do we need measurement from all sensors to learn an accurate predictive model

in the central server? In Fig 7.2, we show the results of local predictions on the four

benchmarks. We make two observations based on the results. First, if we only train mod-

els locally using the data from one device, the models suffer great loss in accuracy. This
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is due to the fact that each device only captures a subset of the full feature vector which

cannot approximate the underlying distribution between the input and the label. This also

indicates the necessity to communicate the local data to a central server and train models

based on data from all the devices. Second, the accuracy consistently improves with more

and more incoming data. This implies the importance to adjust the trained model with

newly collected measurements.

How does different active sampling methods work for distributed training in

heterogeneous mobile networks? In Figure 7.3 - Figure 7.4, we show the results of the

proposed active sampling methods on the four datasets with different uncertainty func-

tions. For the bar plots, the total communication round is normalized against the passive

learning. The normalized communication cost and test accuracy is calculated after the on-

line update. The bars show the communication cost of different methods. Blue bars show

the results of the proposed methods with different thresholds (Th). The red line is the test

accuracy. First row: delayed global uncertainty with least confident function. Second row:

delayed global uncertainty with confidence margin function. Yellow bar: random sampling

(RS). The results were averaged over 5 runs.

Active Sampling vs. Passive Learning As shown in Figure 7.3 and Figure 7.4, we note

that, as expected, compared with passive learning the proposed active learning methods

can achieve the same test accuracy with much less communication cost. This is because

in each round the proposed active sampling methods only send informative data about
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Figure 7.6: A comparison of sensor measurements recording body acceleration and
chest acceleration shows a high correlation.

which the current central server model are most uncertain how to label. Thus the central

server model can be better adapted to the incoming user data with the proposed approach.

Thus we can greatly reduce the communication cost with the proposed approaches without

accuracy loss for training in heterogeneous mobile networks.

Active Sampling vs. Random Sampling The proposed active sampling methods

demonstrates a clear improvement over random sampling on the benchmarks in terms of

test accuracy. Unlike the proposed active sampling method, naive random sampling fails

to capture the important data and cannot identify the change points of user activities.

Acquisition Function Interestingly, we also observe that different acquisition functions

yield similar performance on different datasets. This implies that the proposed active

sampling methods are robust to the choices of acquisition functions, though the thresholds

need to be adjusted to balance the trade-off between communication cost and test accu-

racy. The insensitivity of proposed method to the choice of acquisition functions is of great
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Figure 7.7: The evolution of uncertainty during the online updates shows that only a
small portion of the measurements are informative.

Figure 7.8: Left: communication round of the selected sensors during the online update
without load balancing. Right: the results of applying the proposed load balancing

mechanism.

importance for practical applications since it reduces the time for searching the optimal

configurations. We omit the results of using entropy function due to the limitation of space.

LU vs. DGU Finally when we compare local uncertainty (LU) with delayed global
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uncertainty (DGU), we note that at the end of the online update, LU typically sends more

data to the central server than DGU which leads to a higher test accuracy. We conjecture

that this is because in DUG the data from other devices decrease the uncertainty of the

newly collected data which results in a lower upload communication cost and test accuracy

compared with LU. These results suggest that, we can select the methods based on the

actual network condition and the test accuracy requirement. If the download bandwidth

is high enough to communicate the sensor data from the central server to the local sensors,

DGU allows us to trade for the excessive download bandwidth for a lower upload commu-

nication cost. Otherwise, LU can achieve a better test accuracy with a slightly increase in

upload communication cost.

Total communication rounds vs. Batches In Figure 7.5 we show how the total

communication rounds change with respect to the online batch on different datasets with

local uncertainty and least confident function. It is clearly that the communication cost

of the passive learning grows much faster than the proposed methods. With the proposed

active sampling methods, the communication cost stops increasing when the local models

are confident about the predictions.

How does the uncertainty evolve during the online update? The previous results

show that only by sending the informative data on each device, we can still train an accu-

rate predictive model in the central server. In this section we investigate how uncertainty

evolves during the online update which allows us to gain fundamental insights on the pro-
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posed method. Figure 7.7 shows an example of how the uncertainty evolves on the ankle

accelerometer sensor of the PAMAP2 dataset using LU with entropy function. We first

note that the uncertainty of different data varies over a large range and only a small por-

tion of the measurements are highly informative. We also note the uncertainty has a cyclic

pattern which can be attributed to the transition of user activities. Our proposed method

can easily capture such transition and leverage the redundancy in the data to reduce the

communication cost. We further show the relation of two sensors in Figure 7.6. We can

see that the data are highly correlated and it is thus not necessary to communicate all the

local data to the central server.

How does the proposed load balancing algorithm affect the communication

cost of individual sensors? During the online update process, we observe that there is

an obvious imbalance of the data communication between different devices: some devices

communicate much more devices than other devices. To solve this problem, the proposed

load balance algorithm distributes the communication cost across different devices by

adjusting the informativeness of the data based on the received data in the central server.

We show the results of applying the proposed load balancing algorithm in Figure

7.8. We note that with the proposed algorithm, all the sensors deliver roughly the same

number of measurements at the end of the online update. This reduces the risk of depleting

the battery life of one or more sensors too quickly. Meanwhile, the proposed load balance

algorithm has no additional overhead and can be easily integrated within the active sam-

pling framework.
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7.5.6 Energy Saving Based on the Device Models

In this section, we analyze the energy saving of the proposed active sampling com-

pared with passive learning approach based on the device models. Suppose in each online

update round, device k needs to process n samples and each sample is represented with

32bits. For the passive learning approach, the energy needed to transfer n samples can be

computed as,

Ep =
32n

rk
pk (7.14)

For the active learning approach, suppose only 100w% of the samples are being

sent and the number of the weight parameters is s, the total energy for computation and

communication can be derived as,

Ea =
αks

2
Ckf

2
k +

32nw

rk
pk (7.15)

The energy saving of the active sampling approach can be computed as,

Es = (1− w)
32n

rk
pk −

αks

2
Ckf

2
k (7.16)

In summary, the energy saving of the proposed approach can be easily derived from the

CPU specification and the properties of the communication channel.

129



Figure 7.9: Left: deployment topology of the prototype network. Right: configuration
of each RPi 3B, which has a current sensor INA219 attached to it.

7.6 Practical Deployment

7.6.1 Setup

To demonstrate the benefits the proposed active sampling method for real-world

applications, we deploy a prototype network in our lab and measure the energy and com-

munication saving of the proposed active learning approach compared with the passive

learning approach. We consider a common topology setting in various Internet-of-Things

(IoT) or mobile applications such as Smart Home, Smart Building, etc. As shown in Fig-

ure 7.9, the prototype network locates in our 6m×10m lab, consisting of seven Raspberry

Pi 3B (RPi 3B) devices and one conventional laptop as a central server. All devices are

connected to a router and form a local heterogeneous mobile network. The number of used

local devices is more than twice of the setup used in [WTS+18] for validating federated

learning. The RPis communicate with the central server using the MQTT protocol which

is commonly used in IoT and mobile applications. The network bandwidth is controlled

by the wondershaper tool [won]. We experiment with communication bandwidths of 200,

700 and 5000 kbps, which correspond to typical bandwidths of constrained Bluetooth,
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Bluetooth, and WiFi, respectively. For energy measurement, we attach a high side current

sensor INA219 [ina] to each RPi 3B, as depicted in Figure 7.9. INA219 reports high side

voltage and DC current draw with 1% precision.

The experiments are conducted based on two applications, image classification and

human activity recognition with the MNIST dataset and the HAR dataset, respectively.

For image classification, we evenly distribute the feature vector on each device. For human

activity recognition, each device have the measurements of one particular sensor. The neu-

ral network architecture is consistent with the setup described in Section 7.5.4. We repeat

the online update round for ten epochs and compare the active sampling approach with

the passive learning approach in terms of energy consumption. For the active sampling

approach, we use LU for simplicity as it has been shown that LU can achieve similar accu-

racy as DGU in Section 7.5.5. Entropy is used as the acquisition function for calculating

the informativeness of the samples.

7.6.2 Results and Discussion

We compare the proposed active sampling approach and the passive learning ap-

proach in terms of the energy saving of all the devices and each individual device during

the online updates.

All energy saving The results of energy saving of all the devices are shown in Figure

7.10a and 7.11a. It is clear that the proposed active sampling approach can greatly reduce

the energy consumption of the system. For human activity recognition, the energy saving

is 67.68% , 21.55%, and 17.34% with a bandwidth of 200 kbps, 700 kbps and 5000 kbps,
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(a) (b)

Figure 7.10: Energy saving for human activity recognition. Left: The energy saving of
all devices. Right: the energy saving of each individual device.

(a) (b)

Figure 7.11: Energy saving for image classification. Left: The energy saving of all
devices. Right: the energy saving of each individual device.

respectively. For image classification, the energy saving is 58.01%, 36.37%, and 42.04%

with a bandwidth of 200 kbps, 700 kbps and 5000 kbps, respectively. Notably the proposed

active sampling approach achieves a large energy consumption reduction than the passive

learning approach under a low bandwidth (200 kbps). This is particularly important for

real-world mobile applications due to the network bandwidth is often limited. The pro-

posed active sampling approach thus enables energy efficient machine learning on mobile

devices or IoT devices.

Energy saving of each device We further show the energy saving of each individual

device in Figure 7.10b and Figure 7.11b. It can be seen that due to the heterogeneity of

the devices (since they have different features), different devices have different patterns
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Figure 7.12: Energy consumption breakdown of the passive learning approach and the
proposed active sampling approach.

of energy saving. Some devices even have a higher energy consumption with the active

sampling approach due to the additional computation. This indicates that not all the

devices are equally important for the task. With the proposed active sampling approach,

we can leverage this fact to reduce the data communication of the unimportant devices to

save the energy of the whole system.

Energy consumption breakdown To obtain a better understanding that why the pro-

posed approach can reduce the energy consumption of the devices, we show the energy

consumption breakdown of the proposed active sampling approach and the passive learning

approach in Figure 7.12 under different network conditions. For the passive learning ap-

proach, the energy consumption consists of sample query and data communication. For the

active sampling approach, the energy consumption consists of sample query, local weight

update and data communication. We can see that for both approaches, the energy con-
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sumed by sample query is negligible. The total energy consumption of local weight update

and data communication of the active sampling approach is usually less than the energy

consumption of the passive learning approach. Essentially, the proposed active sampling

approach trades computation for communication to reduce the energy consumption of the

whole system.

7.7 Conclusion

In this chapter, we propose an active sampling method for communication efficient

training in heterogeneous mobile networks involving data from multiple domains. Instead

of sending all the local data to the central server, the proposed method identifies and sends

only informative informative measurements. Experimental results show that the proposed

active sampling methods can reduce the communication cost by up to 53% and energy

consumption by up to 67% without accuracy degradation compared with the conventional

approaches. In next chapter we consider the case that the model is trained on multiple

domains sequentially which is also referred to as lifelong learning. The goal of learning with

multiple domains sequentially is to allow the model to acquire the ability of maintaining

the performance on old domains while learning a new domain.

This chapter contains material from “Active Sampling for Distributed Training

in Heterogeneous Sensor Networks”, by Yunhui Guo, Xiaofan Yu, Kamalika Chaudhuri,

Tajana Rosing, which appears in The 16th International Conference on Mobility, Sensing

and Networking (MSN), 2020. The dissertation author was the primary investigator and

134



author of this paper.
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Chapter 8

Learning across Multiple Domains

Sequentially

8.1 Introduction

Different from the last chapter, in this chapter we consider learning across multiple

domains sequentially which is also called lifelong learning [TM95, KPR+17, PKP+19]. A

central dilemma in lifelong learning is how to achieve a balance between the performance

on old tasks and the new task [KPR+17, Rob95, LKJ+17, SLKK17]. During the process

of learning the new task, the originally learned knowledge will typically be disrupted,

which leads to catastrophic forgetting. On the other hand, a learning algorithm biasing

towards old tasks will interfere with the learning of the new task. Several lines of meth-

ods are proposed recently to address this issue. Examples include regularization based

methods [KPR+17, ZPG17, CDAT18], knowledge transfer based methods [RRD+16] and
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episodic memory based methods [LP+17, CRRE18, RCA+18]. Especially, episodic memory

based methods such as Gradient Episodic Memory (GEM) [LP+17] and Averaged Gradient

Episodic Memory (A-GEM) [CRRE18] have shown remarkable performance. In episodic

memory based methods, a small episodic memory is used for storing examples from old

tasks to guide the optimization of the current task.

In this chapter, we present the first unified view of episodic memory based lifelong

learning methods, including GEM [LP+17] and A-GEM [CRRE18], from an optimization’s

perspective. Specifically, we cast the problem of avoiding catastrophic forgetting as an

optimization problem with composite objective. We approximately solve the optimization

problem using one-step stochastic gradient descent with the standard gradient replaced

by the proposed Mixed Stochastic Gradient (MEGA). We propose two different schemes,

called MEGA-I and MEGA-II, which can be used in different scenarios. We show that

both GEM [LP+17] and A-GEM [CRRE18] are degenerate cases of MEGA-I and MEGA-II

which consistently put the same emphasis on the current task, regardless of how the loss

changes over time. In contrast, based on our derivation, the direction of the gradients in

the proposed MEGA-I and MEGA-II balance old tasks and the new task in an adaptive

manner by considering the performance of the model in the learning process.

Our contributions are as follows. (1) We present the first unified view of current

episodic memory based lifelong learning methods including GEM [LP+17] and A-GEM

[CRRE18]. (2) From the presented unified view, we propose two different schemes, called

MEGA-I and MEGA-II, for lifelong learning problems. (3) We extensively evaluate the

proposed schemes on several lifelong learning benchmarks, and the results show that the
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proposed MEGA-I and MEGA-II significantly advance the state-of-the-art performance.

We show that the proposed MEGA-I and MEGA-II achieve comparable performance in the

existing setting for lifelong learning [CRRE18]. In particular, MEGA-II achieves an average

accuracy of 91.21±0.10% on Permuted MNIST, which is 2% better than the previous

state-of-the-art model. On Split CIFAR, our proposed MEGA-II achieves an average

accuracy of 66.12±1.93%, which is about 5% better than the state-of-the-art method. (4)

Finally, we show that the proposed MEGA-II outperforms MEGA-I when the number of

examples per task is limited. We also analyze the reason for the effectiveness of MEGA-II

over MEGA-I in this case.

8.2 Related Work

Several lifelong learning methods [DLAM+19, KMA+18] and evaluation protocols

[FG18, HKCK18] are proposed recently. We categorize the methods into different types

based on the methodology,

Regularization based approaches: EWC [KPR+17] adopted Fisher information matrix

to prevent important weights for old tasks from changing drastically. In PI [ZPG17],

the authors introduced intelligent synapses and endowed each individual synapse with a

local measure of “importance” to avoid old memories from being overwritten. RWALK

[CDAT18] utilized a KL-divergence based regularization for preserving knowledge of old

tasks. While in MAS [ABE+18] the importance measure for each parameter of the network

was computed based on how sensitive the predicted output function is to a change in
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this parameter. [AKT19] extended MAS for task-free continual learning. In [RBB18],

an approximation of the Hessian was employed to approximate the posterior after every

task. Uncertainties measures were also used to avoid catastrophic forgetting [EEDR19].

[FG19] proposed methods based on approximate Bayesian which recursively approximate

the posterior of the given data.

Knowledge transfer based methods: In PROG-NN [RRD+16], a new “column” with

lateral connections to previous hidden layers was added for each new task. In [LLSL19],

the authors proposed a method to leverage unlabeled data in the wild to avoid catas-

trophic forgetting using knowledge distillation. [ZCCY19] proposed orthogonal weights

modification (OWM) to enable networks to continually learn different mapping rules in a

context-dependent way.

Episodic memory based approaches: In episodic memory based lifelong learning meth-

ods, a small reference memory is used for storing information from old tasks. GEM [LP+17]

and A-GEM [CRRE18] rotated the current gradient when the angle between the current

gradient and the gradient computed on the reference memory is obtuse. MER [RCA+18]

is a recently proposed lifelong learning algorithm which employed a meta-learning training

strategy. In [ALGB19], a line of methods are proposed to select important samples to store

in the memory in order to reduce memory size. Instead of storing samples, in [FAML19]

the authors proposed Orthogonal Gradient Descent (OGD) which projects the gradients

on the new task onto a subspace in which the projected gradient will not affect the model’s

output on old tasks. [HJ18] proposed conceptor aided backprop which is a variant of the

back-propagation algorithm for avoiding catastrophic forgetting.
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Our proposed schemes aim to improve episodic memory based approaches and are

most related to [CRRE18]. Different from [CRRE18], the proposed schemes explicitly

consider the performance of the model on old tasks and the new task in the process of

rotating the current gradient. Our proposed schemes are also related to several multi-task

learning methods [SK18, KGC18, CBLR17]. In [SK18, KGC18], the authors aimed at

achieving a good balance between different tasks by learning to weigh the loss on each

task . In contrast, our schemes directly leverage loss information in the context of lifelong

learning for overcoming catastrophic forgetting. Compared with [CBLR17], instead of

using the gradient norm information, our schemes and [LP+17, CRRE18] focus on rotating

the direction of the current gradient.

8.3 Background

8.3.1 Gradient Episodic Memory (GEM)

Gradient Episodic Memory (GEM) [LP+17] addresses the lifelong learning problem

by utilizing a small episodic memory Mk for storing a subset of the examples from task

k. The episodic memory is populated by choosing examples uniformly at random for each

task. While training on task t, the loss on the episodic memory Mk can be computed

as `(wt;Mk) = 1
|Mk|

∑
(xi,yi)∈Mk

`(f(xi;wt), yi), where wt is the weight of model during the

training on task t. GEM ensures that each update on the t-th task will not increase the

loss on the episodic memory, that is,
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minimizew`(w;Dtr
t ) s.t. `(w;Mk) ≤ `(wt−1;Mk) ∀k < t (8.1)

To inspect the increase of loss on the episodic memory, GEM computes the gradient

g on the current task and the reference gradient gk on the episodic memory Mk. When

the angle between g and gk is obtuse, GEM projects the current gradient g to have a right

or acute angle with gk,

minimizegtrue
1

2
‖g − gtrue‖2

2 s.t. g>truegk ≥ 0 ∀k < t (8.2)

GEM solves above optimization problem via quadratic programming in the dual

space with v ∈ R(t−1)×1:

minimizevv
>G>Gv + g>Gv s.t. v ≥ 0 (8.3)

where G = −(g1, ..., gt−1) ∈ Rd×(t−1), g ∈ Rd×1, and d is the number of parameters

in the neural network. After obtaining the solution v∗, the gradient used for updating the

model can be computed as gtrue = Gv∗ + g.

A-GEM [CRRE18] improves the efficiency of GEM by preventing the average

episodic memory loss from increasing. In A-GEM, G is replaced by −gref which is the

gradient computed on a random subset of the examples from all old tasks. And v∗ is

replaced with a single scalar which can be computed in closed form as g>gref
g>refgref

.
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8.3.2 Evaluation Metrics

Average Accuracy and Forgetting Measure [CDAT18] are common used metrics for

evaluating performance of lifelong learning algorithms. In [CRRE18], the authors intro-

duce another metric, called Learning Curve Area (LCA), to assess the learning speed of

different lifelong learning algorithms. In this chapter, we further introduce a new evalua-

tion metric, called Long-term Remembering (LTR), to characterize the ability of lifelong

learning algorithms for remembering the performance of tasks trained in the far past.

Suppose there are Mk mini-batches in the training set of task Dk. Similar to

[CRRE18], we define ak,i,j as the accuracy on the test set of task Dj after the model is

trained on the i-th mini-batch of task Dk. Generally, suppose the model f(x; w) is trained

on a sequence of T tasks {D1, D2, ..., DT}. Average Accuracy and Forgetting Measure

after the model is trained on the task Dk are defined as

Ak =
1

k

k∑
j=1

ak,Mk,j Fk =
1

k − 1

k−1∑
j=1

fkj (8.4)

where fkj = maxl∈{1,2,..,k−1} al,Ml,j − ak,Mk,j. Clearly, AT is the average test accuracy and

FT assesses the degree of accuracy drop on old tasks after the model is trained on all the

T tasks. Learning Curve Area (LCA) [CRRE18] at β is defined as,

LCAβ =
1

β + 1

β∑
b=0

Zb (8.5)

where Zb = 1
T

∑T
k=1 ak,b,k. Intuitively, LCA measures the learning speed of different lifelong
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learning algorithms. A higher value of LCA indicates that the model learns quickly. We

refer the readers to [CRRE18] for more details about LCA.

8.4 A Unified View of Episodic Memory Based Life-

long Learning

In this section, we provide a unified view for better understanding several episodic

memory lifelong learning approach, including GEM [LP+17] and A-GEM [CRRE18]. GEM

[LP+17] and A-GEM [CRRE18] address the lifelong learning problem by utilizing a small

episodic memory Mk for storing a subset of the examples from task k. The episodic

memory is populated by choosing examples uniformly at random for each task. While

training on task t, the loss on the episodic memory Mk can be computed as `ref(wt;Mk)

= 1
|Mk|

∑
(xi,yi)∈Mk

`(f(xi;wt), yi), where wt is the weight of model during the training on

task t.

In GEM and A-GEM, the lifelong learning model is trained via mini-batch stochas-

tic gradient descent. We use wtk to denote the weight when the model is being trained on

the k-th mini-batch of task t. To establish the tradeoff between the performance on old

tasks and the t-th task, we consider the following optimization problem with composite

objective in each update step:

min
w
α1(wtk)`t(w) + α2(wtk)`ref(w) := Eξ,ζ

[
α1(wtk)`t(w; ξ) + α2(wtk)`ref(w; ζ)

]
, (8.6)
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where w ∈ Rd is the parameter of the model, ξ, ζ are random variables with finite support,

`t(w) is the expected training loss of the t-th task, `ref(w) is the expected loss calculated

on the data stored in the episodic memory, α1(w), α2(w) : Rd 7→ R+ are real-valued

mappings which control the relative importance of `t(w) and `ref(w) in each mini-batch.

Mathematically, we consider using the following update:

wtk+1 = arg min
w
α1(wtk) · `t(w; ξ) + α2(wtk) · `ref(w; ζ). (8.7)

The idea of GEM and A-GEM is to employ first-order methods (e.g., stochastic

gradient descent) to approximately solve the optimization problem (8.7), where one-step

stochastic gradient descent is performed with the initial point to be wtk:

wtk+1 ← wtk − η
(
α1(wtk)∇`t(wtk; ξtk) + α2(wtk)∇`ref(w

t
k; ζ

t
k)
)
, (8.8)

where η is the learning rate, ξtk and ζtk are random variables with finite support, ∇`t(wtk; ξtk)

and ∇`ref(w
t
k; ζ

t
k) are unbiased estimators of ∇`t(wtk) and ∇`ref(w

t
k) respectively. The

quantity α1(wtk)∇`t(wtk; ξtk) + α2(wtk)∇`ref(w
t
k; ζ

t
k) is referred to as the mixed stochastic

gradient.

In A-GEM, ∇`ref(w
t
k; ξ

t
k) is the reference gradient computed based on a random

subset from the episodic memory M of all past tasks, where M = ∪k<tMk. And α1(wtk)

and α2(wtk) can be written as,

α1(w
t
k) = 1, α2(w

t
k) = I〈∇`ref(wtk;ζtk),∇`t(wtk;ξtk)〉≤0 ×

(
− ∇`t(w

t
k; ξ

t
k)
>∇`ref(w

t
k; ζ

t
k)

∇`ref(w
t
k; ζ

t
k)
>∇`ref(w

t
k; ζ

t
k)

)
, (8.9)
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where Iu is the indicator function, which is 1 if u holds and otherwise 0.

In GEM, there are t − 1 reference gradients based on the previous t − 1 tasks

respectively. In this case, ∇`ref(w
t
k; ζ

t
k) = [g1, . . . , gt−1] ∈ Rd×(t−1) and α2(wtk) ∈ Rt−1,

where g1, . . . , gt−1 are reference gradients based on M1, . . . ,Mt−1 respectively. In GEM,

α1(wtk) = 1, α2(wtk) = v∗, (8.10)

where v∗ is the optimal solution for the quadratic programming problem (8.3.

As we can see from the formulation (8.9) and (8.10), both A-GEM and GEM set

α1(w) = 1 in the whole training process. It means that both A-GEM and GEM always

put the same emphasis on the current task, regardless of how the loss changes over time.

During the lifelong learning process, the current loss and the reference loss are changing

dynamically in each mini-batchs, and consistently choosing α1(w) = 1 may not capture a

good balance between current loss and the reference loss.

8.5 Mixed Stochastic Gradient

In this section, we introduce Mixed Stochastic Gradient (MEGA) to address the

limitations of GEM and A-GEM. We adopt the way of A-GEM for computing the reference

loss due to the better performance of A-GEM over GEM. Instead of consistently putting the

same emphasis on the current task, the proposed schemes allow adaptive balancing between

current task and old tasks. Specifically, MEGA-I and MEGA-II utilize the loss information
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Algorithm 2 MEGA, the proposed algorithm for lifelong learning. T is the number of
tasks. nt is the number of mini-batches of task t. M is the episodic memory. ξtk is the k-th
mini-batch of task t and ytk is the corresponding label. ζtk is a random mini-batch from the
episodic memory. wtk stands for the parameter after k-th mini-batch during the training
of t-th task. `t(w

t
k; ξ

t
k) is the training loss calculated on ξtk. `ref(w

t
k; ζ

t
k) is the reference loss

calculated on ζtk. α1 and α2 are defined in Equation 8.7.

1: M ← {}
2: for t← 1 to T do
3: for k ← 1 to nt do
4: if M 6= {} then
5: ζtk ← sample(M)
6: Option I (MEGA-I): choose α1 and α2 based on Equation 8.11.
7: Option II (MEGA-II): choose α1 and α2 based on Equation 8.15.
8: else
9: Set α1 = 1 and α2 = 0.
10: end if
11: Update wtk using Eq. 8.8.
12: M ←M

⋃
(ξtk, y

t
k)

13: Discard the samples added initially if M is full.
14: end for
15: end for

during training which is ignored by GEM and A-GEM. In Section 8.5.1, we propose MEGA-

I which utilizes loss information to balance the reference gradient and the current gradient.

In Section 8.5.2, we propose MEGA-II which considers the cosine similarities between the

update direction with the current gradient and the reference gradient.

8.5.1 MEGA-I

We introduce MEGA-I which is an adaptive loss-based approach to balance the

current task and old tasks by only leveraging loss information. We introduce a pre-defined
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sensitivity parameter ε similar to [CDK+06]. In the update of (8.8), we set


α1(w) = 1, α2(w) = `ref(w; ζ)/`t(w; ξ) if `t(w; ξ) > ε

α1(w) = 0, α2(w) = 1 if `t(w; ξ) ≤ ε,

(8.11)

Intuitively, if `t(w; ξ) is small, then the model performs well on the current task and

MEGA-I focuses on improving performance on the data stored in the episodic memory.

To this end, MEGA-I chooses α1(w) = 0, α2(w) = 1. Otherwise, when the current loss

is larger than ε, MEGA-I keeps the balance of the two terms of mixed stochastic gradient

according to `t(w; ξ) and `ref(w; ζ). Intuitively, if `t(w; ξ) is relatively larger than `ref(w; ζ),

then MEGA-I put less emphasis on the reference gradient and vice versa.

Compared with GEM and A-GEM update rule in (8.10) and (8.9), MEGA-I makes

an improvement to handle the case of overfitting on the current task (i.e., `t(w; ξ) ≤ ε),

and to dynamically change the relative importance of the current and reference gradient

according to the losses on the current task and previous tasks.

8.5.2 MEGA-II

The magnitude of MEGA-I’s mixed stochastic gradient depends on the magnitude

of the current gradient and the reference gradient, as well as the losses on the current task

and the episodic memory. Inspired by A-GEM, MEGA-II’s mixed gradient is obtained

from a rotation of the current gradient whose magnitude only depends on the current

gradient.
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The key idea of the MEGA-II is to first appropriately rotate the stochastic gradient

calculated on the current task (i.e., ∇`t(wtk; ξtk)) by an angle θtk, and then use the rotated

vector as the mixed stochastic gradient to conduct the update (8.8) in each mini-batch.

For simplicity, we omit the subscript k and superscript t later on unless specified.

We use gmix to denote the desired mixed stochastic gradient which has the same

magnitude as ∇`t(w; ξ). Specifically, we look for the mixed stochastic gradient gmix which

direction aligns well with both ∇`t(w; ξ) and ∇`ref(w; ζ). Similar to MEGA-I, we use the

loss-balancing scheme and desire to maximize

`t(w; ξ) · 〈gmix,∇`t(w; ξ)〉
‖gmix‖2 · ‖∇`t(w; ξ)‖2

+ `ref(w; ζ) · 〈gmix,∇`ref(w; ζ)〉
‖gmix‖2 · ‖∇`ref(w; ζ)‖2

, (8.12)

which is equivalent to find an angle θ such that

θ = arg max
β∈[0,π]

`t(w; ξ) cos(β) + `ref(w; ζ) cos(θ̃ − β). (8.13)

where θ̃ ∈ [0, π] is the angle between ∇`t(w; ξ) and ∇`ref(w; ζ), and β ∈ [0, π] is the angle

between gmix and ∇`t(w; ξ). The closed form of θ is θ = π
2
−α, where α = arctan

(
k+cos θ̃

sin θ̃

)
and k = `t(w; ξ)/`ref(w; ζ) if `ref(w; ζ) 6= 0 otherwise k = +∞. Here we give some discus-

sions of several special cases of Eq. (8.13).

• When `ref(w; ζ) = 0, then θ = 0, and in this case α1(w) = 1, α2(w) = 0 in (8.8),

the mixed stochastic gradient reduces to ∇`t(w; ξ). In the lifelong learning setting,

`ref(w; ζ) = 0 implies that there is almost no catastrophic forgetting, and hence we
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can update the model parameters exclusively for the current task by moving in the

direction of ∇`t(w; ξ).

• When `t(w; ξ) = 0, then θ = θ̃, and α1(w) = 0, α2(w) = ‖∇`t(w; ξ)‖2/‖∇`ref(w; ζ)‖2,

provided that ‖∇`ref(w; ζ)‖2 6= 0 (define 0/0=0). In this case, the direction of

the mixed stochastic gradient is the same as the stochastic gradient calculated on

the data in the episodic memory (i.e., `ref(w; ζ)). In the lifelong learning setting,

this update can help improve the performance on old tasks, i.e., avoid catastrophic

forgetting.

After we find the desired angle θ, we can calculate α1(w) and α2(w) in Eq. (8.8) as below.

For notation simplicity, we use g, ĝ, a, b to replace ∇`t(w; ξ), ∇`ref(w; ζ), α1(w),

α2(w) respectively. If g = ĝ, then a = 1, b = 0. Otherwise, the goal is to solve

ag>g + bg>ĝ = ‖g‖2
2 cos θ

ag>ĝ + b‖ĝ‖2
2 = ‖g‖‖ĝ‖ cos(θ̃ − θ)

(8.14)

The solution of (8.14) is

a =
1

‖g‖2
2‖ĝ‖2

2 − g>ĝ

[
‖ĝ‖2

2‖g‖2
2 cos θ − (g>ĝ)‖g‖2‖ĝ‖2 cos(θ̃ − θ)

]
b =

1

‖g‖2
2‖ĝ‖2

2 − g>ĝ

[
−(g>ĝ)‖g‖2

2 cos θ + ‖g‖3
2‖ĝ‖2 cos(θ̃ − θ)

] (8.15)

It is worth noting that different from GEM and A-GEM which always set α1(w) = 1,

the proposed MEGA-I and MEGA-II adaptively adjust α1 and α2 based on performance

of the model on the current task and the episodic memory. Please see Algorithm 2 for the
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summary of the algorithm.

8.6 Experiments

8.6.1 Datasets

In the experiments, we consider the following four conventional lifelong learning

benchmarks,

• Permuted MNIST [KPR+17]: this is a variant of standard MNIST dataset [LCB98]

of handwritten digits with 20 tasks. Each task has a fixed random permutation of

the input pixels which is applied to all the images of that task.

• Split CIFAR [ZPG17]: this dataset consists of 20 disjoint subsets of CIFAR-100

dataset [K+09], where each subset is formed by randomly sampling 5 classes without

replacement from the original 100 classes.

• Split CUB [CRRE18]: the CUB dataset [WBW+11] is split into 20 disjoint subsets

by randomly sampling 10 classes without replacement from the original 200 classes.

• Split AWA [CRRE18]: this dataset consists of 20 subsets of the AWA dataset

[LNH09]. Each subset is constructed by sampling 5 classes with replacement from

a total of 50 classes. Note that the same class can appear in different subsets. As

in [CRRE18], in order to guarantee that each training example only appears once in

the learning process, based on the occurrences in different subsets the training data

of each class is split into disjoint sets.
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We also include Many Permutations which is a variant of Permuted MNIST

to introduce more non-stationality into the learning process. In Many Permutations,

there are a total 100 tasks with 200 examples per task. The way to generate the tasks is

the same as in Permuted MNIST, that is, a fixed random permutation of input pixels

is applied to all the examples for a particular task.

8.6.2 Network Architectures

To be consistent with the previous works [LP+17, CRRE18], for Permuted MNIST

we adopt a standard fully-connected network with two hidden layers. Each layer has 256

units with ReLU activation. For Split CIFAR we use a reduced ResNet18. For Split

CUB and Split AWA, we use a standard ResNet18 [HZRS16].

8.6.3 Baselines and Experimental Settings

We compare the proposed MEGA with several state-of-the-art lifelong learning

methods,

• VAN: in VAN, a single network is trained continuously on a sequence of tasks in a

standard supervised learning manner.

• MULTI-TASK: in MULTI-TASK, a single network is trained on the shuffled data

from all the tasks with a single pass.

• Episodic memory based approach: GEM [LP+17] and A-GEM [CRRE18] are episodic

memory based approaches which modify the current gradient when its angle between
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the gradient computed on the episodic memory is obtuse. MER [RCA+18] is another

recently proposed episodic memory based approach which maintains an experience

replay style memory with reservoir sampling and employs a meta-learning style train-

ing strategy.

• Regularization-based approaches: EWC [KPR+17], PI [ZPG17], RWALK [CDAT18]

and MAS [ABE+18] are regularization-based approaches which prevent the impor-

tant weights of the old tasks from changing too much.

• Knowledge transfer based approach: in PROG-NN [RRD+16], a new “column” with

lateral connections with previous hidden layers is added for each new task. This

allows knowledge transfer between old tasks and the new task.

To be consistent with [CRRE18], for episodic memory based approaches, the episodic

memory size for each task is 250, 65, 50, and 100, and the batch size for computing the

gradients on the episodic memory (if needed) is 256, 1300, 128 and 128 for MNIST, CI-

FAR, CUB and AWA, respectively. To fill the episodic memory, the examples are chosen

uniformly at random for each task as in [CRRE18]. For each dataset, 17 tasks are used

for training and 3 tasks are used for hyperparameter search. For the baselines, we use the

best hyperparameters found by [CRRE18]. For the detailed hyperparameters, please see

Appendix G of [CRRE18]. For MER [RCA+18], we reuse the best hyperparameters found

in [RCA+18]. In MEGA-I, the ε is chosen from {10−5:1:−1} via the 3 validation tasks. For

MEGA-II, we reuse the hyperparameters from A-GEM [CRRE18]. All the experiments

are done on 8 NVIDIA TITAN RTX GPUs.
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Figure 8.1: Performance of lifelong learning models across different measures on
Permuted MNIST, Split CIFAR, Split CUB and Split AWA.

8.7 Results

8.7.1 MEGA VS Baselines

In Fig. 8.1 we show the results across different measures on all the benchmark

datasets. We have the following observations. First, MEGA-I and MEGA-II outperform

all baselines across the benchmarks, except that PROG-NN achieves a slightly higher ac-

curacy on Permuted MNIST. As we can see from the memory comparison, PROG-NN

is very memory inefficient since it allocates a new network for each task, thus the number

of parameters grows super-linearly with the number of tasks. This becomes problematic

when large networks are being used. For example, PROG-NN runs out of memory on

Split CUB and Split AWA which prevents it from scaling up to real-life problems. On

other datasets, MEGA-I and MEGA-II consistently perform better than all the baselines.
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From Fig. 8.2 we can see that on Split CUB, MEGA-I and MEGA-II even surpass the

multi-task baseline which is previously believed as an upper bound performance of lifelong

learning algorithms [CRRE18]. Second, MEGA-I and MEGA-II achieve the lowest Forget-

ting Measure across all the datasets which indicates their ability to overcome catastrophic

forgetting. Third, MEGA-I and MEGA-II also obtain a high LCA across all the datasets

which shows that MEGA-I and MEGA-II also learn quickly. The evolution of LCA in the

first ten mini-batches across all the datasets is shown in Fig. 8.3. Last, we can observe

that MEGA-I and MEGA-II achieve similar results in Fig. 8.1. For detailed results, please

refer to Table 8.1 and Table 8.2.

In Fig. 8.2 we show the evolution of average accuracy during the lifelong learning

process. As more tasks are added, while the average accuracy of the baselines gener-

ally drops due to catastrophic forgetting, MEGA-I and MEGA-II can maintain and even

improve its performance. In the next section, we will show that MEGA-II outperforms

MEGA-I when the number of examples is limited per task.

8.7.2 MEGA-II Outperforms Other Baselines and MEGA-I When

the Number of Examples is Limited

Inspired by few-shot learning [SSZ17, VBL+16, FAL17, GCK+19], in this section

we consider a more challenging setting for lifelong learning where each task only has a

limited number of examples.

We construct 20 tasks with X number of examples per task, where X = 200, 400
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Table 8.1: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of
different methods on Permuted MNIST and Split CIFAR. The results are averaged

across 5 runs with different random seeds.

Methods Permuted MNIST Split CIFAR

AT (%) FT LCA10 AT (%) FT LCA10

VAN 47.55±2.37 0.52±0.026 0.259±0.005 40.44±1.02 0.27±0.006 0.309±0.011

EWC 68.68±0.98 0.28±0.010 0.276±0.002 42.67±4.24 0.26±0.039 0.336±0.010

MAS 70.30±1.67 0.26±0.018 0.298±0.006 42.35±3.52 0.26±0.030 0.332±0.010

RWALK 85.60±0.71 0.08±0.007 0.319±0.003 42.11±3.69 0.27±0.032 0.334±0.012

MER - - - 37.27±1.68 0.03±0.030 0.051±0.101

PROG-NN 93.55±0.06 0.0±0.000 0.198±0.006 59.79±1.23 0.0±0.000 0.208±0.002

GEM 89.50±0.48 0.06±0.004 0.230±0.005 61.20±0.78 0.06±0.007 0.360±0.007

A-GEM 89.32±0.46 0.07±0.004 0.277±0.008 61.28±1.88 0.09±0.018 0.350±0.013

MEGA-I 91.10±0.08 0.05±0.001 0.281± 0.005 66.10±1.67 0.05±0.014 0.366±0.009

MEGA-II 91.21±0.10 0.05±0.001 0.283±0.004 66.12±1.94 0.06±0.015 0.375±0.012

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tasks

0.5

0.6

0.7

0.8

0.9

Av
g 

Ac
cu

ra
cy

(a) Permuted MNIST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tasks
0.4

0.5

0.6

Av
g 

Ac
cu

ra
cy

(b) Split CIFAR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tasks
0.4

0.5

0.6

0.7

0.8

Av
g 

Ac
cu

ra
cy

(c) Split CUB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tasks

0.3

0.4

0.5

0.6

A
vg

A
cc

ur
ac

y

(d) Split AWA

Figure 8.2: Evolution of average accuracy during the lifelong learning process.

and 600. The way to generate the tasks is the same as in Permuted MNIST, that is,

a fixed random permutation of input pixels is applied to all the examples for a particular

task. The running time is measured on one NVIDIA TITAN RTX GPU. The results
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Table 8.2: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of
different methods on Split CUB and Split AWA. The results are averaged across 10

runs with different random seeds.

Methods Split CUB Split AWA

AT (%) FT LCA10 AT (%) FT LCA10

VAN 53.89±2.00 0.13±0.020 0.292±0.008 30.35±2.81 0.04±0.013 0.214±0.008

EWC 53.56±1.67 0.14±0.024 0.292±0.009 33.43±3.07 0.08±0.021 0.257±0.011

MAS 54.12±1.72 0.13±0.013 0.293±0.008 33.83±2.99 0.08±0.022 0.257±0.011

RWALK 54.11±1.71 0.13±0.013 0.293±0.009 33.63±2.64 0.08±0.023 0.258±0.011

PI 55.04±3.05 0.12±0.026 0.292±0.010 33.86±2.77 0.08±0.022 0.259±0.011

A-GEM 61.82±3.72 0.08±0.021 0.302±0.011 44.95±2.97 0.05±0.014 0.287±0.012

MEGA-I 79.67±2.15 0.01±0.019 0.315±0.011 54.82±4.97 0.04±0.034 0.307±0.014

MEGA-II 80.58±1.94 0.01±0.017 0.311±0.010 54.28±4.84 0.05±0.040 0.305±0.015

(a) Perm* MNIST (b) Split CIFAR (c) Split CUB (d) Split AWA

Figure 8.3: LCA of first ten mini-batches on different datasets, where “Perm*” stands
for “Permutation”.

of average accuracy are shown in Fig. 8.4(a). We can see that MEGA-II outperforms

all the baseline and MEGA-I when the number of examples is limited. In Fig. 8.4(b),

we show the execution time for each method, the proposed MEGA-I and MEGA-II are

computational efficient compared with other methods. Compared with MER [RCA+18]

which achieves similar results to MEGA-I and MEGA-II, MEGA-I and MEGA-II is much

more time efficient since it does not rely on the meta-learning procedure.

We analyze the reason why MEGA-II outperforms MEGA-I when the number of

examples is small. In this case, it is difficult to learn well on the current task, so the
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(a) (b)

Figure 8.4: The average accuracy and execution time when the number of examples is
limited.

magnitude of the current loss and the current gradient’s norm are both large. MEGA-I

directly balances the reference gradient and the current gradient, and the mixed stochastic

gradient is dominated by the current gradient and it suffers from catastrophic forgetting.

In contrast, MEGA-II balances the cosine similarity between gradients. Even if the norm

of the current gradient is large, MEGA-II still allows adequate rotation of the direction of

the current gradient to be closer to that of the reference gradient to alleviate catastrophic

forgetting. We validate our claims by detailed analysis, which can be found in Section

8.7.3.

8.7.3 Detailed Analysis of MEGA-I and MEGA-II

In this section, we present a detailed analysis on the reason that why the MEGA-

II outperforms MEGA-I significantly when the number of examples is limited. Define

k1 = `t
`ref

, k2 = ‖∇`t(w;ξ)‖
‖∇`ref(w;ζ)‖ . We denote the angles between the mixed gradient gmix and the

current gradient ∇`t(w; ξ) calculated by MEGA-I and MEGA-II by θ1 and θ2 respectively.
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From the revious derivation, we know that

cos θ2 =
k1 + cos θ̃√

k2
1 + 2k1 cos θ̃ + 1

. (8.16)

Now we derive the closed form of cos θ1. For simplicity, we only consider the case where

`t(w; ξ) ≥ ε. By formula (8.11), we know that gmix = ∇`t(w; ξ) + `ref
`t
∇`ref(w; ζ). Define

gt = `t(w; ξ), gref = ∇`ref(w; ζ). By some algebra, we can show that

gmix =
`t
`ref

‖gref‖
(
k1k2

gt
‖gt‖

+
gref

‖gref‖

)
.

Hence, we have

cos θ1 =
g>mixgt
‖gmix‖‖gt‖

=
k1k2 + cos θ̃√

k2
1k

2
2 + 2k1k2 cos θ̃ + 1

. (8.17)

Comparing (8.17) and (8.16), and noting that the function f(k) = k+cos θ̃√
k2+2k cos θ̃+1

is a

monotonically increasing function with respect to k for k ≥ 0, we know that if k1k2 ≥ k1,

i.e., k2 ≥ 1, then cos θ1 ≥ cos θ2, which means θ1 ≤ θ2.

When the number of training examples is small, we empirically show that it is more

common that k2 > 1. This explains why MEGA-I’s update direction is dominated by the

current gradient’s direction while MEGA-II still allows adequate rotation. This property

helps MEGA-II obtain better performance than MEGA-I when the number of examples

is small.

We construct 20 tasks with X number of examples per task, where X = 200, 600

and 55000. The way to generate the tasks is the same as in Permuted MNIST, that is,
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(a) 200 Examples (b) 600 Examples (c) 55000 Examples

Figure 8.5: Count versus log(k2), where k2 = ‖gt‖
‖gref‖

. k2 ≥ 1 holds for a larger proportion
of all cases when the number of examples is smaller.

a fixed random permutation of input pixels is applied to all the examples for a particular

task. During the learning process, we record the norm of the gradient on the current task

and the norm of the gradient on the episodic memory in each mini-batch.

In Figure 8.5, we use histogram to show the distribution of log(k2) of MEGA-I. As

we can see, when the number of examples per task is smaller, k2 tends to be greater than

1 for a larger proportion. In particular, when the number of examples per task is 55000,

3.61% of all k2 are less than 1 and when the number of examples per task is 600, 3.15% of

all k2 are less than 1. Notably, when the number of examples per task is 200, only 1.05%

of all k2 are less than 1. As explained in the last paragraph, if k2 > 1, then θ1 ≤ θ2, which

means MEGA-II allows a more significant rotation of the current gradient. So MEGA-II

can offer better performance than MEGA-I, especially when the number of examples is

small.
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Figure 8.6: The average accuracy and execution time when the number of tasks is large.

8.7.4 MEGA-2 Outperforms Other Baseline and MEGA-1 When

the Number of Tasks is Large

In this section, we increase the number of tasks 30, 50 and 70. Each task have 200

examples and is constructed in a similar way to the Permuted MNIST. In Fig. 8.6, we

show the average accuracy and execution time for all the methods and all the cases. We

can see that the proposed MEGA-II outperforms all the baselines, except in the cases of

30 tasks. From the execution time comparison in Fig. 8.6(b), we can see that MEGA-

II is much more efficient than MER [RCA+18]. Note that MEGA-II also significantly

outperforms MEGA-I in this case.

8.7.5 Ablation Studies

In this section, we include detailed ablation studies to analyze the reason why the

proposed schemes can improve current episodic memory based lifelong learning methods.

For MEGA-I, we consider the setting that both α1(w) = 1 and α2(w) = 1 during the
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training process. This ablation study is to show the effectiveness of the adaptive loss

balancing scheme. For MEGA-II, we consider the setting that `t = `ref in Eq. 8.12 to verify

the effectiveness of the proposed gradient rotation scheme over A-GEM. The experimental

settings are the same as Section 8.6.3. The results are shown in Table 8.3.

Table 8.3: Comparison of MEGA-I, MEGA-I (α1(w) = 1, α2(w) = 1), MEGA-II,
MEGA-II (`t = `ref) and A-GEM.

Method Permuted MNIST Split CIFAR Split CUB Split AWA

AT (%) AT (%) AT (%) AT (%)

MEGA-I 91.10 ± 0.08 66.10 ± 1.67 79.67 ± 2.15 54.82 ± 4.97

MEGA-I (α1(w) = 1, α2(w) = 1) 90.66 ± 0.09 64.65 ± 1.98 79.44 ± 2.98 53.60 ± 5.21

MEGA-II 91.21 ± 0.10 66.12 ± 1.93 80.58 ± 1.94 54.28 ± 4.84

MEGA-II (`t = `ref) 91.15 ± 0.12 58.04 ± 1.89 68.60 ± 1.98 47.95 ± 4.54

A-GEM 89.32 ± 0.46 61.28 ± 1.88 61.82 ± 3.72 44.95 ± 2.97

In Table 8.3, we observe that MEGA-I achieves higher average accuracy than

MEGA-I (α1(w) = 1, α2(w) = 1) by considering an adaptive loss balancing scheme. We

also see that except on Split CIFAR, MEGA-II (`t = `ref) outperforms A-GEM on all

the datasets. This demonstrates the benefits of the proposed approach for rotating the

current gradient. By considering the loss information as in MEGA-II, we further improve

the results on all the datasets. This shows that both of the two components (the rotation

of the current gradient and loss balancing) contribute to the improvements of the proposed

schemes.

8.8 Conclusion

In this chapter, we present a algorithm called MEGA for learning multiple domains

with deep neural networks which achieves the state-of-the-art performance across all the
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benchmark datasets. In MEGA, we cast the lifelong learning problem as an optimization

problem with composite objective and solve it with the proposed mixed stochastic gra-

dient. Extensive experimental results show that the proposed MEGA achieves superior

results across all the considered metrics and establishes the new state-of-the-art on all the

datasets. The proposed method can learn multiple domains sequentially while maintaining

the performance on old domains.

This chapter contains material from “Improved Schemes for Episodic Memory based

Lifelong Learning Algorithm”, by Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana

Rosing, which appears in The 34th Conference on Neural Information Processing Systems

(NeurIPS), 2020. The dissertation author was the primary investigator and author of this

paper.
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Chapter 9

Summary and Future Work

9.1 Summary of the Dissertation

In this dissertation, we focus on learning across multiple domains using deep neural

networks. We first consider learning across two image domains as in the standard transfer

learning setting. Then we assume the target domain only has few examples per category,

also called cross-domain few-shot learning. Next, we consider problems beyond two do-

mains. One typical case is to learn multiple domains simultaneously to reduce the resource

requirements for storing separate models for different domains or to boost the classifica-

tion accuracy. Another one is to learn multiple domains sequentially while enabling the

model to maintain performance on old domains. Learning across multiple domains has

several benefits. First, the features extracted on the source domain can be transferred on

the target domain to accelerate the learning process. Second, by exploiting the relation

between different domains, we can train a single model that can be used for classifying
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images from different domains. Third, if the target domain only has few examples per

category, by transferring the features from the source domain, we can still achieve high

test accuracy on the target domain.

To address the issues of current methods for learning across multiple domains with

deep neural networks, we propose new approaches in different scenarios. For learning

across two images domains, we propose two adaptive fine-tuning methods called SpotTune

and AdaFilter to automatically decide which residual block and convolutional filter should

be fine-tuned and transferred. For cross-domain few-shot learning, we propose a new

benchmark which covers images ranging from medical images to satellite images. We

point out the issues of existing methods for few-shot learning and propose a new method

called incremental mult-model selection which achieves the highest average accuracy on the

benchmark. For learning across multiple domains, we first propose a multi-domain learning

method called SharingNet which can classify images from multiple domains simultaneously.

The proposed method leads to a small model size which allows the model to be deployed

on memory-limited devices. Next, we target at a practical application in heterogeneous

sensor networks. We propose a communication efficient distributed training framework for

multiple domains based on active learning. Finally, for learning with multiple domains

sequentially, we propose Mixed Stochastic Gradient which achieves the state-of-the-art

performance across several datasets. The considered cases in this dissertation cover a

wide range of real-world applications of learning with multiple domains and the proposed

approaches advance the state-of-the-art in all considered scenarios.

In conclusion, in this dissertation we demonstrate the importance and effectiveness
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of learning across multi-domain with deep neural networks. We hope that our work will

inspire researchers to investigate more in this direction.

9.2 Future Work

There are multiple directions for future work. One key aspect that is not considered

in this dissertation is learning multiple domains with unlabelled data. It is thus natural

to extend the cross-domain few-shot learning from standard supervised learning setting to

unsupervised learning, semi-supervised learning and self-supervised learning. The idea is

to explore the relationship between different domains with unlabelled data. Although it is

hard to collect labels for some categories, to obtain unlabelled data is easier. We can utilize

unlabelled data for few-shot learning classification to further improve the performance of

the model. By allowing unlabelled data, we can develop more practical few-shot learning

algorithms to address problems in real-world applications. Another key challenge is to

fully utilize the resources of mobile devices. One direction is to apply model compression

and quantization [Guo18] to multi-domain learning. One main purpose of multi-domain

learning is to reduce the model size for mobile application deployment. By leveraging

the idea of neural network quantization, we can further reduce the model size and enable

faster training and inference speed. Different from the standard model quantization, in

multi-domain learning during the quantization process we need to balance the performance

of the model across different domains, which needs better ways to extract and understand

the relationship between different domains. This poses challenges for current quantization
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methods and multi-domain learning methods.
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[KDI12] Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap
in multi-task learning. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, pages 1723–1730, 2012.

[KGC17] Lukasz Kaiser, Aidan N Gomez, and Francois Chollet. Depthwise
separable convolutions for neural machine translation. arXiv preprint
arXiv:1706.03059, 2017.

[KGC18] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7482–7491, 2018.

[KGS11] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to
share in multi-task feature learning. In ICML, 2011.

[KGUD07] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell.
Active learning with gaussian processes for object categorization. In 2007
IEEE 11th International Conference on Computer Vision, pages 1–8. IEEE,
2007.

[KJYFF11] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-
Fei. Novel dataset for fine-grained image categorization. In First Workshop
on Fine-Grained Visual Categorization, IEEE Conference on Computer Vi-
sion and Pattern Recognition, Colorado Springs, CO, June 2011.

[KMA+18] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and
Christopher Kanan. Measuring catastrophic forgetting in neural networks.
In Thirty-second AAAI conference on artificial intelligence, 2018.
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[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist
database. URL http://yann. lecun. com/exdb/mnist, 1998.

[LCWJ15] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning
transferable features with deep adaptation networks. In ICML, 2015.

[LD18] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution. In AAAI, 2018.

175



[LEN08] Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief
net model for visual area v2. In Advances in neural information processing
systems, pages 873–880, 2008.

[LFP06] Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object
categories. IEEE transactions on pattern analysis and machine intelligence,
28(4):594–611, 2006.

[LG13] Xin Li and Yuhong Guo. Adaptive active learning for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 859–866, 2013.

[LGD18] Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias
for transfer learning with convolutional networks. In ICML, 2018.

[LH17] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2017.

[LHM+17] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gra-
dient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887, 2017.

[LKJ+17] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-
Tak Zhang. Overcoming catastrophic forgetting by incremental moment
matching. In Advances in neural information processing systems, pages
4652–4662, 2017.

[LKZ+17] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and
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