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Abstract 

Coast Redwood Forests as Refugia for Bats Under Global Change 

by 

Chelsea Lynn Andreozzi 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 

Professor Adina Merenlender, Chair 

 

Anthropogenic climate change poses an existential threat to biodiversity that is 

compounded by habitat conversion, disease, and other disturbances. Understanding the 

ecological needs of sensitive species and identifying priority habitat is vital for wildlife 

conservation. However, there is growing recognition that the traditional conservation emphasis 

on protected areas is not sufficient to sustain biodiversity. We also need to understand the habitat 

value of working lands and incorporate these areas in conservation planning. My dissertation 

explores these themes through the lens of bats in the California coast redwood ecosystem. Bats 

are extremely sensitive to climate and habitat disturbance, making them useful indicators of 

ecosystem health. Coast redwood forests may provide critical habitat for bats under climate 

change because coastal effects on temperature and fog patterns buffer the coast from the extreme 

temperatures and drought experienced inland. Although 13 species of bats are found in coast 

redwood forests, bats are an especially elusive taxon and much about their basic ecology remains 

unknown. In addition to climate change, hibernating bat populations in North America are 

threatened by an emerging disease called white-nose syndrome. The disease has newly spread to 

the west coast, heightening the urgency to understand the ecology of western bat populations. 

I conducted research on the factors shaping habitat suitability for bats across the coast 

redwood ecosystem, the environmental drivers behind species activity, and how species activity 

patterns shift seasonally. In Chapter 1, a large landscape field study demonstrates that both 

working forests and protected areas provide valuable summer bat habitat, but species vary 

significantly in their sensitivity to microclimate and forest habitat conditions. In Chapter 2, I 

complement conventional, ground-level acoustic survey techniques with canopy-level 

monitoring. This comparison reveals that treetop deployment methods significantly increase the 

detection of tree-roosting and migratory species across all forest management types and all 

seasons, revealing new insights about niche partitioning and seasonal bat activity. In Chapter 3, 

the results of winter bat activity surveys were examined in relation to microclimate, and daytime 

maximum temperature was determined to be the variable that best explained variation in nightly 

probability of bat acoustic presence. The winter data also show that 11 bat species are detected in 

coast redwood forests during the winter, but species vary in their winter activity levels, which 

may have ramifications for population susceptibility to white-nose syndrome. In the final 

chapter, the implications for bat conservation of laws and policies regulating California 
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timberland are discussed, and ways to improve protections are recommended based on scientific 

understanding of species ecology.  

Taken together, the findings from this dissertation highlight the value of coastal forests as 

habitat for bat species threatened by climate change and emerging diseases. Species of special 

concern are present and active in coast redwood forests year-round. However, the presence of 

high-flying species was found to be systematically underestimated by ground-level survey 

methods, especially during the winter. Standard survey protocols may thus bias assessment of 

forest use and management impacts by primarily detecting species that make frequent use of 

understory habitat. The results of this research that includes year-round, canopy-level monitoring 

and advanced approaches to statistical analysis can be used to improve bat monitoring efforts and 

identify priority habitat to conserve bat species under global change.   
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For Edwin and Gwendolyn -- 

Because in thirty years,  

I hope you, too, can stand  

calmly at dusk 

at forest streams 

and watch bats fly.  
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Introduction 

 

    Anthropogenic climate change is expected to be a major driver of global biodiversity loss in 

the 21st century (Thomas et al., 2004), and there is mounting evidence that climate-related local 

extinctions and population losses are already widespread (Ceballos et al., 2017; Wiens, 2016). 

As scientists and natural resource managers collaborate to develop guidelines for climate change 

adaptation, one increasingly important conservation strategy is to identify and protect habitat that 

is predicted to be resilient to climate change (Anderson et al., 2014; Balantic et al., 2021; Carroll 

and Noss, 2021; Morelli et al., 2016; Schmitz et al., 2015; Thorne et al., 2020). Such areas, 

known as climate refugia, may support the persistence of vulnerable species by providing refuge 

from unfavorable regional climates (Dobrowski, 2011). Locations that may function as climate 

refugia are generally identified by several characteristics, including relatively low degree of 

projected climatic change, availability of diverse microclimates, and accessibility of favorable 

future climatic conditions (Michalak et al., 2020). One of the few regions of North America that 

are predicted to offer all of these refugial characteristics is the California Coastal Mountain 

region (Michalak et al., 2020), which includes the coast redwood ecosystem. 

    Coast redwood forests grow in a narrow range within approximately 50 km of the California 

coast, coinciding with the area known as the ‘fog belt’ (Johnstone and Dawson, 2010; Torregrosa 

et al., 2016). This current range is considered to be a relict of a more extensive historic 

distribution, which suggests that the areas where coast redwoods (Sequoia sempervirens) persist 

are already functioning as climate refugia (McLaughlin et al., 2017). Underlying this resilience is 

the vital freshwater subsidy provided by marine fog (Dawson, 1998). Coast redwood trees and 

many of the understory plants of this ecosystem are adapted to absorb fog water directly through 

leaf surfaces as well as roots, which enables the plants to withstand the dry summers typical of 

California’s Mediterranean climate (Burgess and Dawson, 2004; Limm et al., 2009). Fog 

moisture also reduces evapotranspiration and increases streamflow (Fischer et al., 2009; Hiatt et 

al., 2012; Sawaske and Freyberg, 2015). Additionally, coastal effects on air temperature can 

result in dramatically cooler summer temperatures and significant microclimate heterogeneity 

over short distances inland from the coast (Daly et al., 2008, 2002). Coastal habitat may thus 

buffer regional biodiversity from the impacts of the rising temperatures and longer dry periods 

that are projected for California (Williams et al., 2015). However, previous research on the 

relationship between fog and the redwood ecosystem has largely focused on the flora. Little is 

known about how fog affects terrestrial fauna species distribution and behavior.   

In this dissertation, I investigate the potential value of coast redwood forests as refugia 

for a diverse mammal taxon of high conservation concern, bats. At least thirteen species of 

insectivorous bats, including three California Species of Special Concern and seven additional 

“species at risk” (California Natural Diversity Database, 2021), inhabit coast redwood forests. 

Bats provide a valuable indicator for monitoring climate change impacts on ecosystems because 

of their sensitivity to environmental stresses, including their susceptibility to temperature, 

humidity, and precipitation patterns (Jones et al. 2009; Adams 2010; Adams and Hayes 2008). 

There is evidence that global bat populations are already being impacted by climate change 

(Adams, 2018; Sherwin et al., 2013), and species in drought-prone regions may be especially 

vulnerable (Adams and Hayes, 2008; Piccioli Cappelli et al., 2021). Consequently, the extreme 

drought episodes that are forecast to occur more frequently across western North America, 
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including California, may impact bat reproductive success and lead to significant regional 

population declines (Adams, 2010; Amorim et al., 2015; Williams et al., 2015).  

Another imminent threat to western bat populations is white-nose syndrome (WNS), a 

disease that takes hold during hibernation and has decimated eastern North American bat 

populations (Frick et al., 2010). The disease is caused by a fungal pathogen, Pseudogymnoascus 

destructans, which was first detected in New York in 2006. The pathogen causes bats to arouse 

more frequently during hibernation, depleting essential energy reserves at a time that they cannot 

successfully forage (Verant et al., 2014). This can cause mortality to affected bats, and it can also 

indirectly result in population declines by affecting reproductive success (Maslo et al., 2015). 

Certain species are more susceptible to WNS than others. In particular, three Myotis species have 

experienced mean declines of over 90% at affected hibernacula (Cheng et al., 2021), which has 

triggered the U.S. Fish & Wildlife Service to do species status assessments to consider whether 

these species qualify for additional protections under the Endangered Species Act. One of the 

species being reviewed is the little brown bat (Myotis lucifugus), a species found in coast 

redwood forests.  

In 2016, the first case of WNS was detected on the west coast in Washington, 

heightening the urgency to understand the susceptibility of western North American bat 

populations and the implications for bat conservation (Lorch et al., 2016). In 2019, the causative 

fungal pathogen was detected in California, and scientists and wildlife managers believe that it is 

only a matter of time before California bat populations also show symptoms of the disease. 

However, there is some hope that bats in the coast redwood ecosystem may be more resilient to 

WNS than inland populations. Studies in other coastal ecosystems that experience mild winters 

have found that bats are more active along the coast than elsewhere in their range (Falxa, 2007; 

Grider et al., 2016; Parker et al., 2020). This suggests that these populations are not hibernating 

and might therefore be less susceptible to WNS (Grider et al. 2016). If coast redwood forests 

function as climate refugia and the bat populations living there are less susceptible to WNS, then 

populations in this habitat could become critical source populations for species persistence.  

However, when evaluating the potential value of coast redwood forests as refugia for bats 

and other species, it is important to consider how this ecosystem still bears the scars of intense 

anthropogenic disturbance (Thornburgh et al., 2000). Of the 1.6 million acres of remaining coast 

redwood forest, 93% has been logged at least once and remnant old-growth persists in small, 

discontiguous patches (Burns et al., 2018; Cowan et al., 2017). Moreover, 35% of redwood forest 

continues to be managed by commercial timber companies (Burns et al., 2018). Forest condition 

and management practices will likely influence the capacity of the habitat to sustain biodiversity 

(Morelli et al., 2016). We need to better understand the habitat value of working forests. 

Working lands can provide vital accessory habitat and resources to wildlife, as well as connect 

otherwise isolated protected areas (Kremen and Merenlender, 2018). Working lands conservation 

might be particularly important for a mammal such as a bat which forages over long distances 

and seasonally shifts roosting habitat to meet thermoregulatory requirements. Because prior 

research has tended to focus on protected areas, especially mature forests, the influence of forest 

condition and management practices on bats in this ecosystem has been largely unexplored. My 

dissertation aims to address this gap by studying bat ecology across sites that reflect the diverse 

mosaic of public and private management types that compose the coast redwood ecosystem. In 

doing so, I hope to ultimately inform conservation planning for bats threatened by global 

change.  
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Dissertation Overview 

Chapter 1 uses a large landscape approach to study the factors shaping habitat suitability 

for bats in the coast redwood ecosystem during the summer. I surveyed bats at twenty study sites 

spanning diverse management contexts across Mendocino and Sonoma Counties to investigate 

how bat community composition and activity patterns relate to stand maturity and forest 

management. Because bats are highly sensitive to microclimate, field sites were chosen that 

represent the coastal gradient of fog-influenced climate. Conventional passive acoustic 

monitoring techniques were used to sample bat activity at riparian corridors and recorded bat 

passes were identified to species. I ultimately use generalized linear mixed models to relate 

species activity to key environmental variables, including forest canopy height, temperature, 

humidity, historical climatic moisture deficit, and stream channel area in order to understand the 

species-specific drivers of summer bat activity.  

Chapter 2 explores bat seasonal ecology and vertical niche partitioning at a subset of five 

sites from Chapter 1. Because acoustic monitoring is limited by detection range, conventional 

ground-based monitoring may fail to detect high-flying bat activity. This is especially true in the 

coast redwood ecosystem, which includes the tallest forests in the world. An earlier study found 

significant differences in species composition between ground-level and treetop (Kennedy et al., 

2014). However, this study included only two old-growth trees in one state park (Kennedy et al., 

2014), and it was unknown how these findings applied to other forests with different stand 

structure. I investigate this by monitoring for a full year with paired ground and treetop detectors 

in sites ranging from old-growth groves to commercial timber properties. Generalized additive 

models are used to examine how species activity varied by both detector location and Julian day. 

This study sheds light on seasonal presence and activity patterns, and this approach also reveals 

significant differences in habitat use that elude conventional monitoring.  

In Chapter 3, I expand on the work of Chapter 2 by examining the microclimatic 

conditions under which bats are detected during the winter. Understanding winter bat behavior in 

the coast redwoods can critically inform understanding of how susceptible coastal populations 

will be to the emerging threat of white-nose syndrome. I apply generalized linear mixed models 

to relate detected species presence to ambient temperature and humidity variables. I also explore 

how the predicted probability of detecting a species varies with daytime maximum temperature 

and detector placement. These results can help guide how winter bat surveys are conducted to 

optimize detection of target species presence.  

Scientific understanding of species’ ecological needs will not promote biodiversity 

conservation unless it is also translated into management actions and legal provisions. In the last 

chapter, I review the laws and policies that either directly or indirectly protect wildlife on public 

and privately owned timberland in California and point to shortcomings in the protection for 

forest bats and other species whose conservation status are not well understood. I also discuss 

ways in which regulations could be improved to support the conservation of sensitive bat 

populations while still being compatible with economic development and other public values.  
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Chapter 1:  

Influence of climate and forest management on summer bat activity in 

coastal forests 

 

Abstract 

  As biodiversity is increasingly threatened by climate change, it is critical to understand 

the factors shaping habitat suitability for sensitive species. Forest bats are a taxon of high 

conservation concern, and their sensitivity to climate and habitat disturbance makes them a 

useful bioindicator of ecosystem health. At least 13 species of insectivorous bats inhabit coast 

redwood forests, an ecosystem containing some of the world’s tallest and oldest trees that has 

also experienced widespread anthropogenic disturbance. However, the mechanisms behind bat 

distribution patterns in this ecosystem are largely unknown. I used passive acoustic monitors to 

investigate how microclimate and forest structure influence bat species activity across a large landscape. 

My 20 study sites span a coastal gradient of fog-influenced climate and forest management 

types, including working forests and protected areas. I predicted that bat activity would be higher 

closer to the coast, where temperatures are more stable and more moisture is available. I also predicted 

that bat activity would be higher in mature forests where roosting habitat is more available. Generalized 

linear mixed models were used to relate species activity to climate and forest habitat variables. Contrary 

to my hypotheses, summer bat activity for six species was positively associated with warmer nighttime 

temperature, and two species had lower rates of activity with higher humidity. This suggests that habitat 

suitability within the coast redwood ecosystem may be driven more by selection for optimal foraging 

conditions than refuge from warming temperatures and drought. Only three of the species examined were 

positively associated with canopy height, though that is likely because I studied bat activity based on 

echolocation calls and not roosting behavior. Twelve of the thirteen regionally present bat species were 

regularly detected in young, commercial timberland stands, signifying the importance of integrating 

working forests into conservation planning for bats.   

1. Introduction 

 As climate change existentially threatens global biodiversity, scientists and natural 

resource managers are striving to understand how species will be affected and how impacts 

might be mitigated (Cross et al., 2013; Schmitz et al., 2015; Thurman et al., 2021). Many species 

are already shifting their distributional ranges or phenological behaviors in response to climate 

change (Adams, 2018; Chen et al., 2011; Hitch and Leberg, 2007; Moreno-Rueda et al., 2012; 

Moritz et al., 2008; Stepanian and Wainwright, 2018). However, the ability of a species to 

remain within its climatic niche is highly dependent on its dispersal abilities, the velocity of 

climate change, and habitat connectivity (Keeley et al., 2018; Loarie et al., 2009; Robillard et al., 

2015). Populations that are unable to disperse to suitable habitat or otherwise adapt to tolerate 

changed conditions may face significant range contractions or extirpation (Freeman et al., 2018; 

Piccioli Cappelli et al., 2021; Román-Palacios and Wiens, 2020).  

One emerging conservation strategy is to identify and protect habitat with high natural 

resilience to climate change (Anderson et al., 2014; Balantic et al., 2021; Carroll and Noss, 2021; 

Morelli et al., 2016; Schmitz et al., 2015). Such areas, known as climate refugia, facilitate the 
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persistence of species, including both flora and fauna, by providing favorable local climate 

conditions that buffer against unfavorable regional climates and extreme weather events 

(Dobrowski, 2011). The capacity of an area to function as a refugium is associated with certain 

factors, including environmental stability, microclimate heterogeneity, size, and accessibility 

(Keppel et al., 2015). Additionally, human activities that modify habitat or ecosystem processes 

can affect refugial capacity (Rojas et al., 2021).  

Coast redwood forests may serve as important refugia for California biodiversity 

threatened by rising temperatures and longer dry periods. Coastal effects on air temperature 

buffer the coast redwood range against extreme weather events and contribute to a high degree of 

environmental stability year-round, while also creating microclimate heterogeneity over short 

distances from the coast (Daly et al., 2008). Fog drip also provides a vital freshwater resource for 

biota and reduces both evapotranspiration and streamflow decline (Hiatt et al., 2012; Fischer et 

al., 2009; Sawaske & Freyberg, 2015). Fog will likely play a key role in the resilience of 

California’s landscape to climate change; however, little is known about how fog affects 

terrestrial fauna species distribution and behavior.  

I investigated the habitat value of the coast redwood ecosystem for bats, a diverse 

mammal taxon that is recognized as a useful bioindicator (Jones et al., 2009; Russo et al., 2021). 

Global bat populations are increasingly impacted by climate change (Adams, 2018; Sherwin et 

al., 2013). Species in high-drought regions, including Western North America, may be especially 

at risk (Adams and Hayes, 2008; Piccioli Cappelli et al., 2021). In part this is because bats 

experience high rates of evaporative water loss even when roosting (Studier et al., 1970), and 

their reproductive success can decline dramatically when water sources drop below a critical 

threshold (Adams, 2010). Severe drought events may also affect the reproductive success of 

insectivorous bats by reducing prey resources (Amorim et al., 2015). There is evidence from 

other ecosystems that climate refugia may effectively protect bats from the impacts of climate 

change (Law et al., 2018; Loeb and Winters, 2013). However, even within sympatric bat 

communities, responses to climate change are expected to be highly species-specific (Linton and 

Macdonald, 2018), and it is imperative that we understand the factors driving habitat suitability 

for individual species. 

Forest structure and silviculture treatment are also known to affect bat activity in species-

specific ways (Dodd et al., 2012; Erasmy et al., 2021; Morris et al., 2010; Wright et al., 2021). 

Of the 1.6 million acres of remaining coast redwood forest, 93% has been logged at least once 

(Burns et al., 2018; Cowan et al., 2017). The relict old-growth is scattered across 20,000 patches, 

with half of the patches less than 30 acres in size (Burns et al., 2018). Furthermore, 35% of 

redwood forest continues to be managed by commercial timber companies, while an additional 

37% is owned by small private landowners and also considered unprotected (Burns et al., 2018). 

Most bat research in the coast redwood forests has focused on protected areas, especially mature 

forests, so the influence of forest condition and management practices on bats in this ecosystem 

is largely unknown. 

To address this gap, I used a large landscape study approach to investigate how forest 

structure and microclimate influence bat activity across the North Coast redwood forest 

ecosystem. I specifically examined how species presence and activity levels vary with: (i) 
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temperature and humidity patterns influenced by coastal fog, and (ii) stand maturity associated 

with forest management. I predicted that during the summer when regional temperatures are 

highest, bat activity would be higher in high-fog, coastal study sites because habitat with cooler 

temperatures and high humidity reduces evaporative water loss. I also hypothesized that bat 

activity would be higher in more mature forests because these areas offer more roosting habitat 

(Zielinski and Gellman, 1999a). Because bat activity has been found to be higher at larger 

streams in the redwood ecosystem (Seidman and Zabel, 2001), I also account for differences in 

stream area in my analysis. By elucidating the species-specific drivers of bat activity, I ultimately 

aim to inform conservation planning for bat populations threatened by global change. 

2. Methods 

2.1 Study Species 

At least thirteen species of bats, including three California Species of Special Concern 

and seven additional “species at risk” (California Natural Diversity Database, 2021), inhabit 

coast redwood ecosystems. All species present are insectivorous, though their ecology varies 

significantly, and species are differently adapted to foraging in cluttered, edge or open space 

habitat depending on their morphology (Denzinger and Schnitzler, 2013). At least ten of these 

species are known to roost in redwood basal hollows, which form over centuries of fire scarring 

and thus are only found in old growth trees (Armstrong, 2021; Fellers and Pierson, 2002; 

Mazurek and Zielinski, 2004; Zielinski and Gellman, 1999a). Bats also roost in other tree 

cavities and bark crevices, and at least two species roost in foliage (Kunz and Fenton, 2005).  

2.2 Study Area 

 To investigate across the two key environmental variables: fog-influenced climate and 

forest management type, I paired available spatially explicit data with ground-truthing to select 

twenty study sites in the North Coast redwood forest ecosystem. I first used ArcGIS to examine 

fog and low cloud cover (FLCC) digital maps derived from decadal satellite data for the 

California coast (Torregrosa et al., 2016). Fog intensity was calculated as mean FLCC hours per 

day averaged over nine summer seasons (Torregrosa et al., 2016). This layer was overlaid on a 

statewide vegetation data map (“Vegetation (fveg) - CAL FIRE FRAP [ds1327] GIS Dataset,” 

n.d.) that I masked for redwood habitat. I also added to the map property boundaries for 

California protected areas (CPAD 2016a, Green Info Network 2016) and the property boundaries 

of major forest landowners in the region. From this map, I identified both protected properties 

and working forest properties in high fog and low fog zones. I then added a stream layer that I 

used to identify specific riparian corridor locations as potential study sites for selected properties. 

 After identifying potential study sites, I reached out to the landowners or appropriate land 

managers to discuss my interest in conducting research on their property and request access 

permissions. For public landowners, there was typically an established application process for 

requesting research permits. For private landowners, there was often little precedent of 

independent conservation research on their land, and it was important to take steps to not only 

obtain entry permissions but to ensure a successful partnership throughout the study (Hilty and 

Merenlender, 2003). I provided all landowners with an overview of the study objectives and 
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study design. I asked for their feedback on the proposed monitoring locations and for advice on 

additional locations to consider. Both public and private land managers were interested in 

receiving research results, so I offered to share with each property manager species monitoring 

reports for their property, as well as ultimate study findings. In some cases, these species 

presence reports were especially valuable because no previous bat acoustic monitoring had been 

conducted on the property. All contacted landowners were receptive of my interest in researching 

bats on their properties. For those who had liability concerns, I sent documentation from my 

university providing proof of liability insurance coverage. Once contracts were signed or permits 

otherwise issued, I visited each study site to assess whether the quality of both the redwood 

habitat and the riparian corridor were in fact suitable for my study design. 

 I ultimately selected five study sites in Mendocino and Sonoma Counties that best 

spanned High Fog and Low Fog and Mature/Protected Forest and Young/Working Forest. These 

twenty sites represent different ownership types, ranging from public and private reserves to 

commercial timberland and one small family ownership (see Figure 1). It should be noted that I 

regarded three sites at the Jackson Demonstration State Forest as mature forest study sites 

because even though parts of the 48,652-acre property are actively managed for timber 

production, my study sites were located in areas with remnant old-growth trees. Each study site 

was located at least 5 km apart from its nearest neighbor and on an independent stream to ensure 

independent sampling of bat activity.  

 While the entire region is characterized by a Mediterranean climate, this study design 

enabled me to capture the significant microclimate heterogeneity that occurs within short 

distances of the coast. The climate of the highest-fog, coastal study sites is best represented by 

the thirty-year (1991-2020) normal weather data from the Fort Bragg 5 N weather station 

(39.51⁰N, 123.76⁰W), whereas the climate of the lowest-fog, inland study sites is represented by 

the Ukiah municipal airport weather station (39.13⁰N, 123.20⁰W) (National Centers for 

Environmental Information, U.S. Climate Normals). At Fort Bragg station, thirty-year normal 

maximum and minimum temperatures for June were 63.0⁰F and 47.3⁰F, respectively; for July, 

65.0⁰F and 49⁰F; and for August, 65.2⁰F and 49.7⁰F. In contrast, in Ukiah, thirty-year normal 

maximum and minimum temperatures for June were 85.5⁰F and 52.4⁰F, respectively; for July, 

94.0⁰F and 56.1⁰F; and for August, 93.5⁰F and 54.8⁰F.  
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Figure 1: Study area in northern California representing a gradient of fog-related climate and different 

forest management types, including mature, protected forests and young, working forests in both public 

and private ownership. 

 

2.3 Acoustic Sampling 

 I conducted acoustic surveys of bat activity during summer 2019 (June 24 – August 20) 

and summer 2020 (June 18 – August 14). I recorded bat calls using Song Meter SM2BAT 

384kHz (SM2) and SM4BAT (SM4) full-spectrum bat detectors with omnidirectional 

microphones (Wildlife Acoustics Inc., Maynard, MA). At each site, I deployed one passive 

acoustic monitor in the riparian corridor because, based on the results of my summer 2018 pilot 

season, I found that location to be optimal for detecting bats as they foraged and moved through 

the landscape. Placing the detectors at the riparian corridor of a perennial stream also helped me 

to standardize detector placement across study sites. In most cases, detector location was held 
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constant between site visits. In the few cases when location needed to be shifted, the field 

coordinates of each monitoring round were noted and used in later analyses of canopy height, 

THP area and stream area. 

 During each field season, I conducted an early and a late summer monitoring round at 

each site. I programmed detectors to record from 30 minutes before sunset until 30 minutes after 

sunrise. I rotated detectors between sites after a minimum of four nights, the survey length 

recommended by North American Bat Monitoring Protocol (Loeb et al., 2015). I visited each site 

for the early monitoring round then immediately started the late summer monitoring round. I 

ultimately recorded a total of 424 monitoring nights across the twenty sites. 

I deployed detectors according to the recommended settings for surveying for bat activity 

in a forest habitat. However, recommended settings varied slightly for each model of detector. 

SM2 detectors were set to have a gain of 10 dB, trigger window of 2 s, and maximum trigger 

length of 5 s. SM4 detectors were set to have a gain of 12 dB, minimum duration of 1.5 ms, 

minimum trigger frequency of 16 kHz, trigger window of 3 s, and maximum trigger length of 15 

s. Both detectors had a sample rate of 384 kHz, trigger level of 12 SNR, and division ratio of 8.  

Omnidirectional ultrasonic microphones were deployed near the stream channel, away 

from vegetation clutter and elevated at least 2 m above the ground using telescopic poles. For the 

SM2 detectors, an SMX-U1 microphone was positioned parallel to the stream. For the SM4 

detectors, an SMM-U2 microphone was positioned facing upward. Over the course of the study, 

I had a total of six SM2 detectors and six SM4 detectors, and I randomly assigned detectors to 

each site during each monitoring round to ameliorate any biases that may have occurred from the 

two different detector setups or individual detector functionality (Eric R. Britzke et al., 2013). I 

personally positioned and deployed all detectors to further minimize bias in acoustic sampling 

between sites.  

2.4 Acoustic Call Classification 

 I used SonoBat bat call analysis software (Arcata, CA) to classify bat passes recorded as 

individual wav files in the field to species. First, I used the SonoBat Batch Attributer 6.5 to scrub 

non-bat files. I then used SonoBat version 30 with the Northwest California regional classifier to 

auto-classify calls to species. SonoBat parameterizes call sequences and uses an ensemble 

consensus of redundant hierarchical decision algorithms to classify calls to species (Szewczak et 

al., 2011). An accepted species decision is only determined when a result meets or exceeds 

specific acceptance thresholds and other classification checks (Szewczak et al., 2011). Only call 

files which received an accepted species identification by the software were included in my 

analysis. Once bat calls were auto-classified to species, I used knowledge from my training in bat 

call analysis to manually vet these classified calls. Auto-classified identifications were either 

accepted or overruled with a manual species identification. For each species, I ultimately 

calculated the total number of confidently identified bat passes on each monitoring night at each 

site, and I used this as the measure of bat activity. 
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2.5 Climate Data Analysis 

 To understand the effect of microclimate on bat activity, I actively recorded the ambient 

temperature and humidity at each acoustic sampling site. I programmed Hygrochron iButton 

sensors to log temperature and relative humidity every 15 minutes. Sensors were hung from 

vegetation nearby each detector and shielded from sunlight by a plastic hood. I later analyzed 

daytime and nighttime trends in temperature and humidity at each site by calculating mean, 

maximum, minimum, standard deviation and coefficient of variation for each monitoring night. 

Nighttime was defined as the period from sunset to sunrise for each monitoring night. 

 I also considered the influence of historical climate on bat species presence and activity. I 

downloaded climate data from ClimateNA Version 7.01 (Wang et al., 2016). ClimateNA is a 

software application that extracts and downscales gridded (4 x 4km) monthly climate data from 

PRISM, and the software also calculates and derives climate variables (Daly et al., 2008; Wang 

et al., 2016). I used decadal normal data for 2011-2020, and I extracted Hargreave’s climatic 

moisture deficit (CMD) at each monitoring location coordinate. CMD is derived from monthly 

precipitation and monthly reference evaporation, and the annual CMD value is the sum of the 

monthly moisture deficits (Wang et al., 2016). The gradient of CMD values across my study area 

well-represented the regional climate differences between coastal and inland sites. 

2.6 Forest Maturity Analysis 

 I analyzed spatially explicit data in ArcGIS Pro 2.8.3 (ESRI, 2021) to assess forest 

maturity of each study site in terms of both canopy height and disturbance history. To calculate 

canopy height metrics, I used publicly available Lidar Point Cloud data downloaded from the 

USGS National Map 3D Elevation Program. LAS data was added to a map and clipped to a 500 

m buffer area around each monitoring field coordinates. I created a canopy height raster by first 

converting the LAS dataset filtered by first return and by ground return to rasters and then 

subtracting the ground return raster from first return raster. I used the “Con (Spatial Analyst)” 

tool to check the presence of large canopy height values (e.g., > 80 m) and identify outliers that 

indicated erroneous LiDAR points that needed to be filtered out. I then filtered for canopy height 

values in the actual range of trees at the study site by setting to null values that were < 2 m. This 

created the final canopy height raster from which I obtained statistics of mean, maximum and 

standard deviation in canopy height within 100m and 250m buffer distances of each monitoring 

location. 

 As an additional metric of forest maturity and of disturbance, I used spatially explicit 

Timber Harvesting Plan (THP) data to assess forest management history at each monitoring site. 

In California, before a private landowner can legally harvest timber on their property, they must 

submit a detailed THP prepared by a Registered Professional Forester to the California 

Department of Forestry and Fire Protection (CAL FIRE) (Duggan and Mueller, 2005). All THP 

records since 1997 are publicly available from CAL FIRE as spatially explicit data. I 

downloaded the data and filtered it to only include records of timber harvests completed as of 

12/31/2020. I used “Dissolve boundaries” to merge THP polygons so that areas which 

experienced repeated harvest would not be counted more than once. I clipped the THP layer to a 

500 m buffer around each monitoring field coordinate. From the attribute table of the resulting 
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polygon layer, I was able to obtain the total area within each buffer covered by THP record, from 

which I calculated the proportion of the buffer area covered by THP record.   

2.7 Stream Area Analysis 

 To account for differences in stream channel size that might influence bat activity or call 

detection, I calculated the stream surface area within a 50 m radius of each monitoring site. For 

each study site, I added one-meter resolution digital elevation model data (USGS, 2020) to a map 

in ArcGIS Pro. I created a new point layer for ‘monitoring point’ at the point in the stream 

closest to where the detector was deployed. I also created a point layer upstream for where the 

stream would start. Using the DEM and point layers, I applied a flow accumulation model to 

produce a raster that represented the relative height and width from the defined stream. I 

evaluated the resulting raster to identify the appropriate height cutoff for the stream channel 

based on the stream topography modeled in ArcGIS Pro and my knowledge from being on the 

ground at the study site. Height cutoffs ranged from 0.5 to 1.0 m. I then re-ran the model with the 

final height cutoff and a buffer distance of 50 m from the monitoring point. This created a raster 

layer representing the shape of the stream channel where monitoring took place. I then used the 

area of the raster as my measurement for surface area of the overall spatial extent of the stream 

channel at each study site.   

2.8 Species Activity Models 

I developed generalized linear mixed models for each species to examine the influence of 

all of the environmental variables (climate, forest maturity and stream area) on nightly bat activity. 

Bat activity for each species was measured as total confidently identified calls on a monitoring 

night (see 2.4 above). I developed negative binomial models with a log-link function because this 

distribution is appropriate for overdispersed count data (Zurr et al., 2013). All statistical and 

model analyses were conducted using R version 4.1.2 (R Core Team, 2021), and employed 

various packages detailed below.  

Before running my initial model, I used ‘cor( )’ function in R to check the Spearman 

correlation coefficients of all variables. A table of resulting correlation coefficients can be found 

in Supporting Information. I found THP record to be significantly collinear with all canopy 

height variables, with correlation coefficients ranging from -.69 to -.78. I therefore excluded 

THP disturbance from my GLMM analysis and retained canopy height. The various metrics for 

canopy height were all strongly correlated with each other as well, with correlation coefficients 

ranging from .68 to .93. I therefore decided to only include mean canopy height within a 100 m 

radius of the monitoring location in my models because this variable best represented the 

differences in forest maturity and management history across all sites. 

Daytime and nighttime microclimate data statistics were significantly correlated (see 

Supporting Information). After examining the correlation coefficients, I decided to only include 

minimum nighttime relative humidity and minimum nighttime temperature in my models. These 

two variables best represented the microclimate effects of interest while having an acceptable 

correlation coefficient of -.33.   
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I included study site (factor with 20 levels) and monitoring night as Julian day (factor 

with 62 levels) as random effects in all models. For fixed effects, I included year (factor with 2 

levels: 2019 and 2020), detector model (factor with 2 levels: SM2 and SM4), mean canopy 

height (continuous), minimum nighttime relative humidity (continuous), minimum nighttime 

temperature (continuous), climatic moisture deficit (continuous), and stream area (continuous). 

All continuous variables were standardized to a mean of 0 and standard deviation of 1. After 

observing trends in the residuals of my initial models, I transformed the stream area term by 

taking the square-root and found that this effectively corrected my model fit. I considered a 

variable to have a significant effect on bat species activity when the range of the 95% confidence 

interval did not contain 0 (Elsen et al., 2017; Muñoz-Sáez et al., 2021).  

 I performed the negative binomial GLMM analysis using function glmer.nb( ) from 

package ‘lme4’ (Bates et al., 2021). I used ‘sum contrasts’ to specify the model matrix for the 2-

level categorical variables of detector model and year, so that the effect of the first level is 

obtained by adding the model estimate, and the effect of the second level is obtained by 

subtracting the estimate. If there were any convergence warnings when I used glmer.nb( ) to run 

the initial model, then I used function lme4::allFit( ) with additional packages ‘dfoptim’ 

(Varadhan et al., 2020) and ‘optimx’ (Nash et al., 2021) to fit the initial model with alternative 

optimizers. With the exception of three species, I was able to select an optimizer for each species 

model so that the full model converged. All models and summary results can be found in 

Supporting Information. I omitted species model for Towsend’s big-eared bat (Corynorhinus 

townsendii), California myotis (Myotis californicus) and little brown bat (Myotis lucifugus) 

because I could not trust model estimates given the unresolved convergence warnings.  

I used the ‘DHARMa’ package (Hartig and Lohse, 2021) to confirm that all fitted models 

passed the checks for dispersion and residual diagnostics (see Supporting Information for 

residuals diagnostics plots). I also evaluated the variance inflation factor using the function vif( ) 

(Naimi et al., 2014) to confirm that there was low correlation between predictor variables. I am 

interested in the biological significance of all the independent environmental variables included 

on bat activity and therefore report the full model for each species rather than removing variables 

and testing for optimal model selection. 

3. Results 

3.1 Acoustic Data Across Species 

I identified a total of 121,379 bat calls to 13 species across 20 study sites and 407 

monitoring nights (Table 1). Of the total identified calls, 84.29% were classified as coming from 

two species with 42.37% (51,427 calls) identified as California myotis (Myotis californicus) and 

40.72% (49,430 calls) as Yuma myotis (Myotis yumanensis). Other species that were regularly 

detected included: little brown bat (Myotis lucifugus; 6,968 calls, 5.74%), long-legged myotis 

(Myotis volans; 4,366, 3.60%), big brown bat (Eptesicus fuscus; 3,406, 2.81%), silver-haired bat 

(Lasionycteris noctivagans; 2,267, 1.87%), fringed myotis (Myotis thysanodes; 1,259, 1.04%), 

and long-eared myotis (Myotis evotis; 992, 0.82%). Species detected more rarely included: 

Mexican free-tailed bat (Tadarida brasiliensis; 381, 0.31%), pallid bat (Antrozous pallidus; 187, 
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0.15%), and hoary bat (Lasiurus cinereus; 172, 0.14%). Only 11 calls (0.01%) were identified as 

Townsend’s big-eared bat (Corynorhinus townsendii).  

Table 1: Summary of total species detections over the entire study, including total calls identified, total 

nights detected, and the number of sites at which species was detected as present which were in protected 

forest and working forest sites. 

Species Species 

Code 

Calls 

Identified 

% of Total 

Calls 

Nights 

Detected 

% of Total 

Nights 

Protected 

Sites 

Working 

Sites 

Pallid Anpa 187 0.15% 58 14% 5 3 

Townsend’s 

big-eared 
Coto 11 0.01% 8 2% 3 0 

Big brown Epfu 3406 2.81% 274 67% 10 10 

Western red Labl 513 0.42% 110 27% 7 8 

Hoary Laci 172 0.14% 59 14% 5 5 

Silver-

haired 
Lano 2267 1.87% 216 53% 10 10 

California 

myotis 
Myca 51427 42.37% 400 98% 10 10 

Long-eared 

myotis 
Myev 992 0.82% 233 57% 10 10 

Little brown Mylu 6968 5.74% 210 52% 10 9 

Fringed 

myotis 
Myth 1259 1.04% 192 47% 9 9 

Long-legged 

myotis 
Myvo 4366 3.60% 236 58% 10 10 

Yuma 

myotis 
Myyu 49430 40.72% 372 91% 10 10 

Mexican 

free-tailed 
Tabr 381 0.31% 112 28% 7 10 

 

 

3.2 Site Characteristics  

I analyzed the habitat conditions at each monitoring point, including canopy height, THP 

record, climatic moisture deficit, and stream channel. The mean canopy height of protected 

forests ranged from 24.4 – 51.2 m, with a mean of 36.9 m. The maximum canopy height of 

protected forests within the 100 m buffer ranged from 63.8 – 94.1 m, with a mean of 77.6 m. The 

mean canopy height of working forests ranged from 20.8 – 36.0 m, with a mean of 26.0 m; and 

the maximum canopy height ranged from 49.9 – 74.5 m, with a mean of 59.8 m.  
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My analysis of forest management history based on Timber Harvesting Plan (THP) area 

calculations confirmed that there were differences in disturbance history at protected forest 

compared to working forest sites. Within the 500 m radius buffer of each monitoring location, 

the proportion of area covered by historical THP record at protected forests ranged from 0 – 

56.5%, with a mean of 10.2%. However, 8 out of 10 sites had a THP record of ≤ 7.7%, and 5 of 

those sites had a THP record of ≤ 1.1%. The two sites with a higher THP record were both part 

of the Jackson Demonstration State Forest: JDSF Caspar (21.0%) and JDSF Hare (56.5%). 

Working forests had a THP area record ranging from 35.0% - 88.4% of the buffer area, with a 

mean of 60.6%. 6 out of 10 sites had a THP record ≥ 50.0%. Although this variable was 

ultimately omitted from the statistical models, this analysis served as a helpful validation of the 

study design.   

Although climatic moisture deficit varied significantly between coastal and inland sites, 

the distribution was similar between protected forest and working forest treatment groups. At 

protected forests, climatic moisture deficit ranged from 434 – 704 mm, with a mean of 557 mm. 

At working forests, climatic moisture deficit ranged from 419 – 683 mm, with a mean of 522 

mm. Minimum nighttime humidity and minimum nighttime temperature also varied considerably 

between sites, as well as between monitoring rounds and even unique monitoring nights at each 

site, and comparisons of these statistical results and example plots of the raw data can be found 

in Supporting Information.  

 Stream channel area also varied significantly between sites, with a range of 449 – 2590 

m2. Although site variation was significant, the distribution of sizes was similar between 

protected forest and working forest treatment groups. In protected forests, the stream area ranged 

from 272 – 1336 m2, with a mean of 994 m2. In working forests, the stream area ranged from 674 

– 1814 m2, with a mean of 1110 m2.   

3.3. Species Activity Model Results 

 I used the habitat covariates for each field coordinates and each monitoring round in the 

GLMM analysis. After developing models relating species activity to the selected environmental 

covariates (mean canopy height, minimum nighttime relative humidity, minimum nighttime 

temperature, climatic moisture deficit, and stream area), I identified which variables had a 

significant effect (Pr(>|z|) < 0.05) on bat activity for each species (see table 2 and fig. 2). I found 

that the variable which had a significant effect on bat activity for the highest number of species 

was temperature. Six species were positively associated with temperature: big brown bat, 

western red bat, hoary bat, silver-haired bat, long-legged bat, and Mexican free-tailed bat. 

Conversely, two of these species were negatively associated with humidity: big brown bat, and 

western red bat. Three species were positively associated with climatic moisture deficit: pallid 

bat, fringed myotis, and Mexican free-tailed bat.  

 Canopy height had a significant positive effect on three species: pallid bat, long-eared 

myotis, and fringed myotis. Three species were positively associated with stream area: silver-

haired bat, long-legged bat, and Mexican free-tailed bat. 
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 Species also responded differently to fixed effects associated with the study design. I 

detected significantly higher activity in year 2 (2020) for four species: western red bat, hoary bat, 

silver-haired bat, and Mexican free-tailed bat. Using the SM4 model of detector revealed higher 

activity for three species: pallid bat, western red bat, long-legged bat; and lower activity for one 

species: silver-haired bat. 

Table 2: GLMM species model results including estimates and standard error only for fixed effects which 

had a significant effect (Pr(>|z|) < 0.05) on species activity. 

Species 

Species 

Code Covariate Estimate 

Std. 

Error 

Lower 

CI 

Upper 

CI Pr(>|z|) 

Pallid bat  Anpa  

Canopy 1.112 0.539 0.056 2.168 0.03909 

CMD 1.467 0.610 0.271 2.662 0.01619 

Detector -0.646 0.246 -1.128 -0.164 0.00868 
        

Big brown bat Epfu 
Humidity -0.629 0.124 -0.872 -0.386 3.92E-07 

Temperature 0.549 0.101 0.352 0.747 4.99E-08 

        

Western 

red bat  
Labl 

Humidity -0.666 0.181 -1.020 -0.312 0.00023 

Temperature 0.635 0.130 0.380 0.891 1.13E-06 

Year -0.459 0.137 -0.726 -0.191 0.00078 

Detector -0.340 0.142 -0.619 -0.061 0.01679 

        

Hoary bat Laci 
Temperature 0.681 0.176 0.336 1.025 0.00011 

Year -0.577 0.215 -0.999 -0.155 0.00732 

        

Silver-haired 

bat  
Lano 

Stream 0.883 0.321 0.254 1.512 0.00590 

Temperature 0.374 0.113 0.154 0.595 0.00089 

Year -0.236 0.106 -0.444 -0.028 0.02640 

        

Long-eared 

myotis 
Myev Canopy 0.722 0.334 0.067 1.376 0.03060 

        

Fringed myotis Myth 
Canopy 0.898 0.326 0.259 1.536 0.00585 

CMD 0.961 0.329 0.316 1.606 0.00349 

        

Long-legged 

myotis 
Myvo 

Stream 1.114 0.352 0.423 1.804 0.00157 

Temperature 0.250 0.081 0.092 0.408 0.00194 

Detector -0.744 0.103 -0.945 -0.542 4.36E-13 

        

Mexican 

free-tailed bat 
Tabr 

Stream 1.124 0.286 0.563 1.685 0.00009 

CMD 0.629 0.303 0.034 1.223 0.03811 

Temperature 0.347 0.129 0.094 0.600 0.00725 

Year -0.437 0.134 -0.699 -0.174 0.00111 
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Figure 2: Generalized linear mixed model results for the influence of climate and forest 

management variables on bat activity, with error bars representing 95% confidence intervals for 

model estimates and only significant effects (Pr(>|z|) < 0.05) shown for each species model. 

3.4 Species Activity Across Habitat Type 

Species presence varied between sites (see Table 1). Six species were found at all twenty 

study sites on at least one monitoring night, including big brown bat, silver-haired bat, California 

myotis, long-eared myotis, long-legged myotis, and Yuma myotis. For most species, there was 

no difference in detected species presence between mature/protected forest sites and 

young/working forest sites. The important exception was Townsend’s big-eared bat, which was 
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detected at three mature/protected forest sites and not detected at any of the young/working 

forest sites. 

To visualize differences in species activity between habitat groups, I calculated mean 

species activity across all monitoring nights for each study site, and I used boxplots to visualize 

differences between mature/protected and young/working forests (fig. 3).  

 

 

Figure 3: I averaged nightly species activity for each site across all monitoring nights and used boxplots 

to visualize how these results compared between mature and young forest sites. 
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4. Discussion 

 My findings illustrate that bats respond in species-specific ways to climate and forest 

habitat variables. Earlier bat studies in the redwood ecosystem often focused on total bat activity 

because it was not possible to classify acoustic calls or guano sampling to species (Seidman and 

Zabel, 2001; Zielinski and Gellman, 1999a). This aggregation obscures critical differences in 

species sensitivity to climate change and habitat disturbance. Advancements in acoustic 

monitoring technology have enabled me and other researchers to better investigate the ecology of 

individual species and assess the drivers of habitat suitability to inform conservation planning. 

Contrary to my prediction that summer bat activity would be higher at high-fog coastal 

sites, GLMM results revealed that bat activity was generally higher under drier and warmer 

microclimate conditions associated with inland sites. Six species were positively associated with 

warmer nighttime temperature and two of these species were also negatively associated with 

higher relative humidity. This finding coincides with studies in other habitats that show that 

insectivorous bat activity increases with increasing temperature (Bender and Hartman, 2015; 

Brooks et al., 2017) and that bats spend more time in nightly torpor when humidity increases 

(Fjelldal et al., 2021). It may be that activity is driven more by selection for optimal foraging 

conditions with greater prey availability or when thermoregulation costs are lower (Brooks et al., 

2017). 

 I also modeled the influence of historical climate in terms of climatic moisture deficit 

derived from downscaled climate data (Wang et al., 2016). Three species: pallid bat, fringed-bat, 

and Mexican free-tailed bat, were found to be associated with higher climatic moisture deficit. 

This was surprising given my hypothesis that bats would select for more coastal habitat as a 

refuge from the high temperatures and drought stress that is present inland. However, it is 

important to note that I restricted my study area to the coast redwood ecosystem. Redwood forest 

only persists in a narrow range within 50 km of the California coast that meets a small climatic 

envelope, characterized by cool and humid marine conditions (Dawson, 1998; Johnstone and 

Dawson, 2010). Therefore, this lack of association between climatic moisture deficit and bat 

activity for most species may suggest that even the most inland edge offers sufficient freshwater 

resources and may function as an important climate refuge compared with other habitat types. 

Further study of the influence of climatic moisture deficit on California bats should examine this 

in different forest types.  

Another surprising finding was that the majority of species did not show a significant 

relationship with canopy height. The species which did (pallid bat, long-eared myotis, and 

fringed myotis) are all known to roost in basal hollows in the redwood ecosystem (Armstrong, 

2021). However, at least seven other species are also known to use basal hollows as roosts 

(Armstrong, 2021), and all of these species, except for Townsend’s big-eared bat, were also 

detected in younger forest stands. Although basal hollows and other high quality roosting habitat 

are strongly associated with more mature forests, it can also be found in remnant old growth and 

legacy trees in younger forest stands (Mazurek and Zielinski, 2004; Zielinski and Gellman, 

1999a). The lack of an association that I found between these tree-roosting species and canopy 

height may suggest bats are finding suitable roosting sites in a few remaining legacy trees, 

second-growth trees (Evelyn et al., 2004), or human structures.  
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However, it is important to note that I studied bat activity based on echolocation 

behavior, not roosting ecology. Bats have been observed to forage long distances only to return 

elsewhere to roost (Fellers and Pierson, 2002). Consequently, although my study demonstrates 

that working lands provide important foraging habitat, more mature tree stands may be vital for 

roosting habitat (Gellman and Zielinski, 1996; Mazurek and Zielinski, 2004; Zielinski and 

Gellman, 1999). Also, this study only investigated summer bat activity, and there might be 

additional seasonal differences in bat habitat use. Furthermore, at least one sensitive species did 

show a significant dependence on protected forest habitat. Townsend’s big-eared bat was the 

most rarely detected species in my study, and all detections were on three protected forest 

properties, suggesting that protected forest habitat might be particularly essential for conserving 

this species in the redwood ecosystem.  

Although the influence of stream was not a primary focus of my study, I found that my 

results agreed with other research findings that higher bat activity is detected at larger streams 

(Seidman and Zabel, 2001). However, this relationship was only significant for three species 

(silver-haired bat, long-legged bat, and Mexican free-tailed bat). This relationship might be 

driven by greater insect prey availability at larger streams or greater bat movement through 

larger stream corridors, or it might reflect differences in detection range because acoustic 

technology can detect ultrasonic calls at greater distances in more open habitat (Parsons, 1996; 

Patriquin et al., 2003). This could particularly explain the effect of stream area on Mexican free-

tailed bat because canopy tends to be more open overhead of larger stream areas, and this species 

is known to fly above the redwood forest canopy (Kennedy et al., 2014). The lack of a significant 

relationship between stream area and the activity level of other species might be because the 

width of stream channels included in my study were all above the threshold used to classify 

‘small’ streams by a previous study of stream size effect on redwood forest bat activity (Seidman 

and Zabel, 2001). If I had included smaller streams, than I might have found that stream area had 

a more significant effect on bat activity.  

Differences in ultrasonic detector model did not have a significant effect on activity for 

most species. The species which were detected significantly more frequently by the newer 

detector model, SM4, included pallid bat, western red bat, and long-legged bat. Interestingly, 

silver-haired bat was detected more frequently by the older detector model. The SM2 detector 

model’s microphone was deployed parallel to the stream channel. It is possible that this 

orientation was more effective at detecting identifiable calls of this species, which is known to 

use the riparian corridors for both migration and other movement through the redwood 

ecosystem (Weller and Stricker, 2012a). However, other species (hoary bat and western red bat) 

are known to have similar movement patterns, and I found no significant relationship between 

detector model and activity for these species.  

Year also had an effect on a subset of species. The species for which I detected 

significantly higher activity in my summer 2020 field season (western red bat, hoary bat, silver-

haired bat, and Mexican free-tailed bat) are all known to migrate through the redwood ecosystem 

during the spring and fall. The start and finish of the summer 2020 field season was shifted one 

week earlier than summer 2019 and did not overlap with known migration periods, so it is 

unlikely that detection differences were an artifact of changes in monitoring schedule between 
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the two field seasons. Rather, this suggests that there might be interannual variation in migratory 

species activity in this ecosystem.  

Ten species were detected as present on at least 8 out of 10 of my working forest study 

sites, and seven of these species were present at every working forest study site. This finding 

signifies the importance of integrating working forests into conservation planning for bats. These 

working forest lands may offer considerable conservation value by providing vital accessory 

habitat and resources to wildlife, as well as connecting otherwise isolated protected areas 

(Kremen and Merenlender, 2018). Working lands might be particularly important for a mammal 

such as a bat which forages over long distances and seasonally shifts roosting habitat to meet 

thermoregulatory requirements (Evelyn et al., 2004; Weller and Stricker, 2012b). My findings 

demonstrate that bats are present and highly active throughout this forest ecosystem. 

Consequently, bat conservation cannot only focus on remnant protected areas. Protecting legacy 

old growth trees and cultivating mature characteristics in second-growth forest will be 

indispensable for ensuring that suitable roosts remain available across working forest landscapes.  

In summary, my research elucidated some of the species-specific drivers influencing bat 

activity patterns across a large forest ecosystem. Although my study demonstrates that both 

protected forests and working forests provide important habitat to bats, certain species are more 

sensitive to different management types and more reliant on mature habitat for species 

conservation. Also, I found that while both inland and coastal sites functioned as important bat 

habitat, higher bat activity in the redwood ecosystem was associated with higher temperature. 

Additional research is necessary to investigate how that finding might relate to prey availability 

or thermoregulatory costs. Moreover, the temperature metric used in this study was minimum 

nighttime temperature. Further research should examine the influence of other microclimate 

variables, such as maximum daytime temperature. Finally, this study provides a baseline 

understanding of the influence of climate and forest management on bat activity, and future 

research should evaluate whether these relationships hold as climate change increasingly stresses 

the redwood ecosystem. 
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Chapter 2:  

Forest canopy acoustic surveys reveal year-round bat activity 

Abstract 

 Biodiversity conservation requires innovative ways to study the ecology of forest species 

that are often elusive and their response to forest management and environmental change. Forest 

bats are one taxon of high conservation concern that is especially cryptic. This holds true in the 

tall redwood forests of coastal California, where much about bat populations’ seasonal 

movements and activity patterns is unknown. Remaining active in the winter may help these 

populations stave off white-nose syndrome, a wildlife disease threatening bats elsewhere. To 

detect bat activity, I installed year-round passive acoustic monitoring stations at five forest 

properties, including old-growth groves and working forests. Acoustic monitoring is limited by 

detection range, so I installed monitors simultaneously at the top of redwood trees and nearby at 

ground-level to investigate differences in vertical habitat use and seasonal activity patterns that 

may be missed by conventional survey methods. I used generalized additive models to examine 

how species activity at each detector location varied by Julian day. Treetop deployment methods 

significantly increased detection of tree-roosting and migratory species across all forest 

management types and all seasons. Furthermore, standard ground-based surveys primarily 

detected clutter-adapted Myotis species, which may limit understanding of how forest 

management practices differentially impact bat species. Applying innovative year-round canopy-

level survey and advanced statistical modeling approaches revealed new insights about niche 

partitioning and seasonal bat activity in this ecosystem. These approaches could be applied to 

other monitoring studies to better understand how elusive species use forest habitat.  

 

1 Introduction 

Effective conservation planning requires an understanding of species ecology and how 

populations respond to management actions and environmental change (Hulme, 2005). Large-

scale population monitoring is increasingly important as species ranges shift and populations 

collapse as a result of climate change and other global threats (Jetz et al., 2019; Newbold et al., 

2018; Pimm et al., 2014). By understanding when and where sensitive species are present, 

measures can be taken to promote their conservation (Kunz et al., 2007). Conversely, failure to 

detect species or accurately assess population vulnerability may result in inappropriate 

management actions and missed conservation opportunities. Efforts have been made to 

standardize monitoring approaches and create shared repositories for species abundance and 

distribution data so that local findings can also contribute to regional understanding of species 

conservation status (“Global Biodiversity Information Facility (GBIF)”; Loeb et al., 2015; Sauer 

et al., 2013; Walters et al., 2012). 

Bats are one taxon of high conservation concern that has historically eluded ecological 

monitoring. Much about the basic ecology and species-specific habitat needs of bats remains 

poorly understood because of their cryptic nature as volant, nocturnal mammals (O’Shea and 

Bogan, 2003). Obtaining accurate assessments of bat species distribution and abundance has 
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recently become a high conservation priority in North America, where many bat populations 

have been devastated by a fungal disease called white-nose syndrome (WNS) (Bombaci et al., 

2021; Frick et al., 2015). WNS has decimated eastern North American hibernating bat 

populations since 2006 and continues to spread across the continent (Cheng et al., 2021; Foley et 

al., 2011). As evidence of the severity of this threat, one of the species that was commonly found 

throughout the United States until the emergence of WNS, the little brown bat (Myotis 

lucifugus), is now at high risk of regional extinction in affected areas (Frick et al., 2010). At 

hibernacula with WNS establishment, little brown bat colonies have experienced mean declines 

of 98%, and other species, such as the big brown bat (Eptesicus fuscus), were also recently found 

to be more impacted by WNS than previously realized (Cheng et al., 2021). In order to 

understand the impacts of WNS on bat populations, we need to accurately assess population 

trends both before and after infections occur (Deeley et al., 2021). 

Forest bats are especially elusive in part because they do not form large hibernacula colonies 

or maternity roosts, so their populations cannot be monitored by traditional colony surveys (Loeb 

et al., 2015). Instead, species roost in foliage or under tree bark or form inconspicuous colonies 

in tree cavities (Fellers and Pierson, 2002; Kunz and Fenton, 2005; Zielinski and Gellman, 

1999a). Additionally, many forest bat species regularly switch roosts or seasonally migrate 

(Kühnert et al., 2016; Russo et al., 2005; Weller and Stricker, 2012). Forest bat populations 

might be less susceptible to the spread of WNS than in other habitat types precisely because they 

do not roost in large winter colonies where the fungal pathogen rapidly spreads between 

individual bats (Flory et al., 2012; Langwig et al., 2012).  However, the challenges of locating 

and systematically monitoring dispersed populations have hampered efforts to determine range 

distributions, migration patterns and  baseline population estimates (Bogan et al., 2003; Carter et 

al., 2003).  

 Passive acoustic monitoring has emerged as an important non-invasive tool for 

investigating temporal and spatial patterns in bat species presence and activity in relation to 

environmental variables (Bombaci et al., 2021; Frey-Ehrenbold et al., 2013; Froidevaux et al., 

2018). Acoustic files are recorded in the field and software can later be used to classify calls to 

species. Passive acoustic monitoring has proven to be invaluable for studying habitat selection 

and impacts of forest management on bats (Bender et al., 2015; Jung et al., 2012; Klingbeil and 

Willig, 2009; Patriquin and Barclay, 2003). However, the effectiveness of passive acoustic 

monitoring is contingent on the focal species and survey methods (Adams et al., 2012; E. R. 

Britzke et al., 2013; Duff and Morrell, 2007; Loeb et al., 2019; Meyer et al., 2011). Rarer species 

generally require more sampling nights before they are detected as present in a habitat (Meyer et 

al., 2011). During the summer, the precise timing and duration of a survey period can 

significantly affect which species are detected in a habitat due to species-specific changes in 

activity during the maternity season (Loeb et al., 2019). Also, some acoustic detector models are 

able to detect bat calls at greater distances and higher quality than others (Adams et al., 2012). 

Differences in species call structure and foraging ecology can also bias understanding of 

bat community assemblage and habitat use. For example, high-intensity, low frequency 

echolocation calls have greater range than low-intensity, broadband calls, and thus can be 

detected at further distances (Neuweiler, 1983). Similarly, species which emit more distinctive 

echolocation calls are more likely to be accurately identified, whereas species whose call 

characteristics overlap with sympatric species, such as the Myotis genus, might be misclassified 

or only studied as part of an acoustic guild (Jones et al., 2000; Walters et al., 2012). This 
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grouping may be necessary in some regions due to classification limitations, but such approaches 

mask important nuances in species ecology, including how syntopic species partition resources 

by foraging in different habitat (Denzinger and Schnitzler, 2013; Saunders and Barclay, 1992).  

Bat species occupy landscapes very differently depending on their morphology and 

foraging style. Smaller, agile species are generally adapted to foraging in cluttered vegetation, 

whereas larger, less maneuverable species are restricted to open space or edge habitat (Fenton, 

1990). Survey efforts therefore need to be strategized to sample different habitat depending on 

the species of interest (Duff and Morrell, 2007). Research has revealed that bat communities also 

partition vertical space, with different species selecting for different strata of forest habitat (Jung 

et al., 2012; Kalcounis et al., 1999; Müller et al., 2013; Plank et al., 2012). However, because 

acoustic detectors have limited range, conventional ground-based survey methods are biased 

toward detecting species that occupy lower habitat (Menzel et al., 2005). 

Understanding how species activity varies across vertical habitat might be especially 

important in a forest as tall the coast redwoods (Sequoia sempervirens), where much about bat 

populations’ seasonal movements and activity patterns is unknown. California’s coast redwoods 

are the world’s tallest forests, and old-growth trees regularly exceed heights of 90 m (Sillett et 

al., 2015). The only prior study to investigate how bat activity varied from ground to treetop in a 

redwood forest detected two migratory bat species (western red bat, Lasiurus blossevillii; and 

Mexican free-tailed bat, Tadarida brasiliensis) at one site, which were not previously 

documented to occur in redwood forests (Kennedy et al., 2014). However, these species have 

since been detected in this ecosystem using ground-based monitoring methods. It is possible that 

technological advancements in acoustic monitoring equipment have increased capacity to detect 

these species and thus mitigated this species detection bias. Additionally, this earlier study was 

conducted only at one old-growth site (Kennedy et al., 2014). Old-growth habitat is not 

representative of the majority of the redwood ecosystem, 93% of which has been logged at least 

once (Burns et al., 2018; Cowan et al., 2017), so it is important to test how species detections and 

abundance in mature, protected habitat may differ from shorter and denser timberland stands.  

Migratory bat species are believed to move through the coast redwood ecosystem during 

the spring and fall; however, their precise movements and activity patterns are unknown (Weller 

et al., 2016). Capture records suggest that male silver-haired bats might be resident in coast 

redwoods year-round, while females may migrate in the spring and fall (Weller and Stricker, 

2012a). However, much of the evidence of tree-roosting species migration patterns is based on 

museum records (Cryan, 2003) or stable isotope analysis of bat hair (Cryan et al., 2014; Weller 

and Stricker, 2012). These are useful methods for inferring seasonal movements of long-distance 

migrants at a coarse scale, but different approaches are needed to understand finer scale activity 

patterns and behavior.  

It has historically been assumed that tree bats that migrate to coastal ecosystems with 

warm winter temperatures remain active year-round (Lacki et al., 2007). Capture records show 

that silver-haired bats are indeed significantly more active than other resident species during the 

winter (Weller and Stricker, 2012). However, the first direct evidence of migration patterns from 

hoary bats tagged with GPS trackers and recaptured in the redwood ecosystem indicates that 

hoary bats may hibernate more than previously believed. Understanding winter activity patterns 

of coastal populations is important because hibernating bats are more susceptible to mortality 
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from WNS, whereas bats that are normally active and foraging during the winter might be more 

resilient to disease (Grider et al., 2016).  

Here I develop a novel approach to surveying bats across tall forest habitat that combines 

canopy-level and ground-level acoustic surveys with generalized additive models (GAMs) in 

order to explore seasonal bat activity and vertical niche partitioning for 13 forest bat species. 

Paired canopy-level and ground-level monitoring enables me to examine if vertical niche 

partitioning is observed in both mature forest stands which harbor taller trees as well as in young 

working forests. Also, canopy-level detectors may improve detection of bat activity during 

migration seasons, when migratory bats are believed to move rapidly through the ecosystem 

(Cryan, 2003; Weller and Stricker, 2012). Applying unconventional approaches to study bat 

activity can help identify the limitations of standard monitoring methods, as well as shed light on 

elusive species ecology.  

 

2 Materials and Methods 

2.1 Study species 

Thirteen species of bats are found in coast redwood forests. This includes three migratory 

tree bats (hoary bat, Lasiurus cinereus; western red bat, Lasiurus blossevillii; and silver-haired 

bat, Lasionycteris noctivagans), as well as an additional migrant (Mexican free-tailed bat; 

Tadarida brasiliensis). There are also six species of the Myotis genus, as well as big-brown bats, 

pallid bats (Antrozous pallidus), and Townsend’s big-eared bats. Ten of these species are known 

to roost in redwood basal hollows, and there is evidence that they continue to roost in this habitat 

during the winter (Armstrong, 2021; Mazurek and Zielinski, 2004; Zielinski and Gellman, 

1999a). Six of the thirteen species present in the redwood ecosystem have been elsewhere 

identified with WNS symptoms, and three additional species have been found to carry the 

causative fungal pathogen (“White-Nose Syndrome,” 2022). The fungal pathogen was first 

detected in northern California in 2019 (CDFW, 2019), heightening urgency to understand bat 

seasonal ecology before local populations become infected. 

 

2.2 Study Area 

Redwood forests grow in a narrow range within 50 km of the California coast, where 

climate is heavily influenced by frequent marine fog and other coastal effects (Johnstone and 

Dawson, 2010; Torregrosa et al., 2016). Consequently, summers are cool and moist, and winters 

are mild and wet. Temperature and precipitation of my study area is represented by the thirty-

year (1991-2020) normal weather data from the Fort Bragg 5 N weather station (39.51⁰N, 

123.76⁰W). Even during December, the coldest winter month, minimum temperature is normally 

above 4⁰C and mean temperature is normally above 7⁰C. The hottest month is August, when 

maximum temperature is normally still below 19⁰C and mean temperature is normally 14⁰C. The 

majority of rainfall occurs between October – April and averages 1100 mm annually (National 

Centers for Environmental Information, U.S. Climate Normals). 

Study sites were selected in Mendocino and Sonoma Counties of Northern California. 

This is considered to be part of the central redwood region (Save-the-Redwoods League and 
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Noss, 2013). In these forests, redwoods generally co-occur with Douglas-fir (Pseudotsuga 

menziesii), tanoak (Lithocarpus densiflorus), madrone (Arbutus menziesii), bay laurel 

(Umbellularia californica), and other hardwood trees; and the shrub layer may be dense with 

huckleberry (Vaccinium spp.) and salal (Gaultheria shallon) (Save-the-Redwoods League and 

Noss, 2013). The ground is often carpeted with redwood oxalis (Oxalis oregana) and a variety of 

ferns. There is very little remaining old-growth redwood habitat (Burns et al., 2018). Therefore, 

it is critical to investigate species ecology in second-growth forests, including sites which 

continue to be actively logged (Mooney and Dawson, 2015).  

 

2.3 Site selection  

To survey across diverse management types, I selected five study sites under different 

ownerships including old-growth protected forests and young working forests. These sites 

represented a subset of the full landscape study sites included in Chapter 1 (see Fig. 1) (see 

Chapter 1 for more details on land access).  

The northernmost site, Angelo Coast Range Reserve (hereafter “Angelo”), is managed by 

the University of California Natural Reserve System as an ecological reserve for research with 

some limited recreation. My study site was located in an old-growth redwood stand along the 

South Fork Eel River. Upslope from this site was a mixed conifer-deciduous forest, dominated 

by Douglas fir, canyon live oak (Quercus chrysolepis), and interior live oak (Quercus wislizenii) 

trees, along with tanoak, madrone, bay laurel, and black oak (Quercus kelloggii) (Polis et al., 

2004). Downslope from the redwood stand, riparian tree species, dominated by white alder 

(Alnus rhombifolia), lined sections of the river. Meadow and chapparal habitat were also present 

on the property. 

The other study properties were more homogeneous redwood dominant or co-dominant 

forest. The southernmost site, Armstrong Redwoods State Natural Reserve (“Armstrong”), is 

managed by the California State Parks. It is an old-growth redwood forest with many 

conservation protections in place, though it is also heavily used for public recreation, including 

hiking and camping. The monitoring location was along Fife Creek, which had substantial water 

flowing during the winter but was dry at the end of the summer. This is the only stream site that 

was not perennial during the survey period.  

A third study site, “Caspar”, was selected near the western end of Jackson Demonstration 

State Forest (JDSF) along North Fork Caspar Creek. The United States Forest Service (USFS) 

and California Department of Forestry and Fire Protection (CAL FIRE) jointly manage JDSF. 

Although most of the 48,652 acre property has been previously logged, my study site is located 

in a second-growth stand that has mature characteristics (California Department of Forestry and 

Fire Protection, 2016). The property is primarily managed for research and forest management 

demonstration purposes, and fulfilling this mandate includes harvesting timber according to 

diverse silviculture treatments (California Department of Forestry and Fire Protection, 2016). 

The final two study sites were both commercial timber properties. These were owned by 

two different companies: Lyme Redwood Forest Company (Lyme) and Mendocino Redwood 

Company (MRC). One property was located at Lyme’s Ten Mile River property at North Fork 

Redwood Creek (“Lyme”). The MRC property was located along Mallo Pass Creek (“Mallo 
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Pass”). Although the forest structure at both sites was dominated by dense, young redwood trees, 

the microclimate and habitat differed significantly between the two sites. Mallo Pass was 

significantly more coastal than Lyme and experienced much higher fog frequency. The habitat 

had noticeably more fog drip throughout the year, whereas the habitat at Lyme experienced 

relatively little fog input and vegetation was consequently much drier. 

 

Figure 1: Northern California study sites represented diverse redwood forest management types, including 

old-growth protected areas and young working forests. Chapter 2 study sites represent a subset of the 

study sites surveyed across in Chapter 1. 

 

2.4 Equipment setup 

For my acoustic monitoring instruments, I used Song Meter SM2BAT 384 kHz (SM2) 

and SM4BAT (SM4) full-spectrum bat detectors (Wildlife Acoustics Inc., Maynard, MA). SM2 

detectors used an SMX-U1 microphone, and SM4 detectors used an SMM-U2 microphone. Both 

microphone models are omnidirectional and weatherproof, and they were the recommended 
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versions for the corresponding detector models. Although both detectors had a sample rate of 

384 kHz, recommended acoustic settings varied slightly for each model of detector. SM2 

detectors were deployed as follows: gain = 10 dB, trigger window = 2 s, maximum trigger length 

= 5 s, trigger level = 12 SNR, division ratio = 8. For SM4 detectors: gain = 12 dB, minimum 

duration = 1.5 ms, minimum trigger frequency = 16 kHz, trigger window = 3 s, maximum trigger 

length = 15 s., trigger level = 12 SNR, division ratio = 8.  

Because detectors would need to run unattended between monthly site visits, I calculated 

power requirements for each detector model, and then I constructed external power setups that 

would also fit the physical specifications of my weatherproof cases. SM2 units each had three 6 

V 12 Ah sealed lead acid batteries connected in parallel. The newer SM4 detector units were 

more power efficient and only needed two 6 V 12 Ah batteries. This design enabled me to record 

from sunset to sunrise at least every second night. Photos of acoustic detector set up and field 

deployment methods can be found in Supporting Information. 

 

2.5 Acoustic sampling 

 Acoustic monitors were deployed at fixed locations in October 2019 and monitored bat 

activity until October 2020. At each site, I positioned one detector at ground-level and one 

detector at treetop. To minimize detection bias from using different monitoring equipment, the 

same model of detector (SM2 or SM4) was used at paired ground and treetop locations at each 

site. Furthermore, each model of detector was used at an old-growth site and at a commercial 

timber site. 

 Each ground-level detector was deployed at the edge of the riparian corridor. Riparian 

corridors are optimal habitat to survey for forest bats because bats access streams to drink and 

forage, and streams serve as important movement corridors. Also, because the interior of the 

forest is cluttered environment, the riparian corridor is the most open environment at ground-

level. Siting the detector at the forest edge was thus the best option for sampling bats with 

different foraging styles (narrow-space, edge-space, and open-space) with only one detector. To 

reduce echoes that may affect call quality, microphones were sited at least 2 m from vegetation 

and elevated 3-4 m above the ground using telescopic poles. SMX-U1 microphones were 

positioned parallel to the stream and angled slightly below horizontal, and SMM-U2 microphone 

were positioned with the microphone surface facing upward. 

 Each treetop detector was installed at the top of the highest redwood tree in close vicinity 

of the riparian corridor. Project installation was accomplished with the aid of a professional 

canopy researcher who used advanced climbing techniques to rig each tree and securely hang the 

equipment at treetop using nylon webbing. Treetop microphones were attached to telescopic 

poles, and each of these poles was extended horizontally from the tree and tied parallel along a 

branch. This set up allowed me to sample open-air fly space and reduce call interference from 

vegetation clutter.  

Although I positioned the equipment at treetop at each site, the actual height of the 

microphone varied between sites because the forest habitats were of different heights. Height 

was measured from treetop by dropping the weighted end of a tape measurer until an observer at 
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ground level confirmed that the end had reached the forest floor. Microphone height ranged as 

follows: Armstrong, 78 m; Angelo, 60.5 m; Caspar, 49.5 m; Lyme, 38 m; and Mallo Pass, 33 m.  

During project installation, a pulley was also attached to the tree with webbing, and a 

discreet cord was left running from the pulley to ground level. At each site visit, I used this 

narrow cord to pull my climbing rope into the tree and then anchored the rope at ground level. 

Then I used single-rope techniques with ascenders to climb the tree. These are recommended 

techniques for conducting canopy research without harming trees.  

 I made monthly site visits to recharge the batteries and retrieve SD cards with acoustic 

detector data (Fig. 2). These regular field visits were also necessary to ensure that equipment was 

functioning. There were a number of issues with both ground and treetop microphones ceasing to 

function or losing sensitivity, which seemed to be due to moisture entering the microphones. 

When this occurred, equipment needed to be replaced. Monitoring nights when a detector 

malfunctioned were omitted from the analysis. 

From June 18 to August 16, 2020, I rotated the ground detectors to allow additional sites 

to be monitored during the summer season for another study.  A wildfire burned my study site at 

Armstrong soon after my last field site visit in August 2020. As a result, data from August 16 

until the study ended in early October was lost for this site. 

 

Figure 2: Monthly maintenance of equipment included retrieving acoustic data and changing batteries. 

 

2.6 Call classification 

 I processed acoustic data using SonoBat bat call analysis software (SonoBat; Arcata, 

CA). Non-bat files were first scrubbed using SonoBat Batch Attributer. I then applied SonoBat 

with the Northwest California regional classifier to auto-classify calls to species based on 

parameterized call sequences (Szewczak et al., 2011). SonoBat provides an accepted species 

decision when a result passes specific acceptance thresholds and other classification checks 

(Szewczak et al., 2011). Species autoclassification software is an extremely powerful tool that 

enables bat researchers to process large datasets such as this. However, this tool should be paired 

with manual vetting to check for misclassifications, and it is especially important to visually 

review call files that received an unexpected classification (Loeb et al., 2015).  
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I reviewed the data in SonoBat and placed particular emphasis on vetting migratory 

species (hoary bat, western red bat, silver-haired bat, and Mexican free-tailed bat) since they 

were the target species of interest for this study. For each monthly monitoring round, I also 

carefully vetted a sample of calls for every classified species to confirm species presence at each 

detector location. While reviewing call data, I doublechecked for evidence of monitoring nights 

when acoustic equipment malfunctioned so that these nights could be omitted from future 

analysis.  

2.7 Comparison of paired detectors 

After vetting acoustic data, I batched call classification results to csv files that I analyzed 

using R statistical analysis software (R Core Team, 2021). For each species, I calculated “bat 

activity” as the total number of confidently identified bat passes per monitoring night at each 

detector location. I used R to calculate basic site statistics and compare total species detections at 

paired detectors. For the paired comparison analysis, I filtered the full dataset to only include 

data from nights when both paired detectors were functional and recording. In some cases, one of 

the paired detectors did not detect bat activity, despite being functional and on the same 

monitoring schedule, so the total monitoring nights may still be different from its pair after 

filtering. For each detector location, I calculated ‘species presence,’ defined as the total number 

of monitoring nights during which at least one call was confidently identified, and ‘species 

activity’ results, defined in this case as the total number of identified calls. To better investigate 

how bat community assemblage shifted between ground and treetop and across sites, I 

standardized across total detections by computing the proportion of each species’ calls relative to 

total calls at that detector location, and I compared these proportions between detector locations 

and species.  

 

2.8 Species activity models 

I used generalized additive models (GAMs) to examine species activity in relation to 

study site and detector position over the 12-month study period. GAMs are more flexible than 

linear models because they can model nonlinear trends by applying a smoothing function in the 

form of a spline (Hastie, 1992). In this case, I needed to account for the non-independence of 

monitoring nights, as well as the nonlinear temporal trends that influence species presence and 

activity. An additional advantage of using GAMs over conventional paired analyses is that I was 

able to model the full study data, instead of only the nights when both paired detectors were 

functional. 

I performed the analysis using function gam( ) from package ‘mgcv’ (Wood, 2021) in R 

version 4.1.2 (R core team, 2021). Model terms included the interaction of study site (“site”; 5-

level factor) and detector position (“location”, 2-level factor: Ground and Treetop), and an 

additional smoothing function fit over monitoring night represented as Julian day. This smooth 

term was fit with a cyclic cubic regression spline (bs = “cc”) so that the ends of the spline were 

connected, as is appropriate for year-round monitoring data when the end of the year by Julian 

date (December 31 = ‘365’) is followed by the beginning of the new year (January 1 = ‘1’).  All 
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species models used a negative binomial distribution with a log-link function, and I set the basis 

dimension ‘k’ to 25. I used ‘sum contrasts’ to specify the model matrix for the 2-level categorical 

variables of detector position, so that the effect of the first level (‘Ground’) was obtained by 

adding the model estimate, and the effect of the second level (‘Treetop’) was obtained by 

subtracting the estimate. After running each species model, I used function gam.check( ) to 

produce residual plots, check model convergence and test adequacy of the basis model choices 

(“gam.check function - RDocumentation,” n.d.). The species activity models for the three least 

common species: Townsend’s big-eared bat, pallid bat, and long-legged myotis, did not produce 

model convergence and were omitted. 

For models which converged, I applied analysis of variance (ANOVA) to fitted species 

activity models to test whether model terms (Site, Location, and Site:Location interaction) were 

significant. This was computed using function anova( ) from package ‘car’ (Fox et al., 2021). I 

determined whether a model term was significant based on whether the ANOVA result had a p-

value < 0.05.  

Finally, I used function predict.gam( ) to generate new model predictions for each fitted 

species model (Wood, 2021). I then applied function ggplot( ) from package ‘ggplot2’ (Wickham 

et al., 2021) with geom_smooth_ci( ) from package ‘tidymv’ (Coretta et al., 2022) to plot model 

predictions as fitted splines with 95-percent confidence intervals alongside actual detection 

activity indicated by point data. I visually compared the fitted splines for each study site to 

examine how species detections compared between ground and treetop. I also examined each 

spline to identify temporal trends in species activity, including significant peaks in species 

activity that might indicate migration activity or other notable seasonal patterns.  

 

3 Results 

3.1 Summary of acoustic data 

 1,413 monitoring nights were recorded across the ten detector locations, with total 

functional monitoring nights for each of the ten detector locations ranging from 93 to 206 nights. 

104,596 calls were attributed to individual species by the combination of SonoBat software 

classification and manual vetting, with confidently identified calls per site ranging from 4,629 to 

29,220 calls. Total number of confidently identified calls per detector location are shown in 

Table 1.  
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Table 1: Only calls confidently identified by SonoBat autoclassification and manual vetting were used in 

GAM analysis, and data was further filtered so that only nights when both paired detectors were 

functional and simultaneously recording were included in paired comparison analysis. 

Site Mic Hgt (m) Location 
Total 

Nights 

Confident ID 

Calls 

Filtered 

Nights 

Filtered 

Calls 

Angelo 60.5 Ground 128 11,575 102 10,501 

  Treetop 192 11,534 104 5,324 

Armstrong 78 Ground 133 4,629 83 4,054 

  Treetop 93 5,342 83 3,940 

Caspar 49.5 Ground 150 9,101 102 6,280 

  Treetop 112 6,842 106 6,549 

Lyme 38 Ground 130 6,799 128 6,763 

  Treetop 206 5,765 136 3,777 

MalloPass 33 Ground 114 29,220 99 27,159 

  Treetop 155 13,789 99 11,784 

  Total 1,413 104,596 1,042 86,131 

 

 

3.2 Comparison of paired detector results 

Species presence and species activity results reveal significant differences between paired 

canopy and ground-level detectors at all study sites.  For example, in Fig. 3 and Fig. 4, migratory 

species, including hoary bats, silver-haired bats, and Mexican free-tailed bats, comprised the 

majority of calls at treetop, while Myotis species comprised the majority of detections at ground-

level. This pattern held at the highest site, Armstrong (mic height = 78 m), and the lowest site, 

Mallo Pass (mic height = 33 m), as well as the other study sites. Comparison of proportion of 

each species’ calls relative to all calls at the detection location further confirmed this trend. 

Hoary bats, silver-haired bats, and Mexican free-tailed bats comprised a much greater proportion 

of total detected calls at treetop than at ground-level at all sites (Table 2 and Fig. 5; see 

Supporting Info for full table and additional site and species plots).  

Comparison of proportional calls also revealed differences in community assemblage 

between sites. At Armstrong, Mexican free-tailed bats comprised the majority of calls at treetop 

(74.9%). At Caspar, silver-haired bats comprised a higher proportion of treetop calls (48.0%) 

than at other sites (≤ 30.1%). Hoary bats were detected significantly more frequently at treetop 

than ground-level, but they composed a relatively low proportion of treetop calls at all study sites 

(≤ 10.8%). The California myotis comprised the vast majority of all ground-level calls at three 

sites (Caspar, 77.9%; Lyme, 82.1%; and Mallo Pass, 69.8%). No one species accounted for such 

a high proportion of calls at Angelo or Armstrong, though the little brown bat comprised 35.4% 

of calls at ground-level at Angelo, and the fringed myotis comprised 39.3% of the calls at 

ground-level at Armstrong (Table 2 and Fig. 5).  
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Figure 3: Paired comparison of species presence and activity results at Armstrong, with red bars = 

‘Ground’ detections and blue bars = ‘Treetop’ detections. Myotis species are detected more frequently at 

‘Ground’ and migratory tree bats (western red, ‘Labl’; hoary, ‘Laci’; silver-haired, ‘Lano’; Mexican free-

tailed, ‘Tabr’) are detected more frequently at ‘Treetop.’ 
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Figure 4: Paired comparison of species presence and activity results at Mallo Pass, with red bars = 

‘Ground’ detections and blue bars = ‘Treetop’ detections. The same pattern observed at Armstrong also 

holds at this much shorter forest: Myotis species are detected more frequently at ‘Ground’ and migratory 

tree bats (western red, ‘Labl’; hoary, ‘Laci’; silver-haired, ‘Lano’; Mexican free-tailed, ‘Tabr’) are 

detected more frequently at ‘Treetop.’ 
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Table 2: Proportion of each species' calls relative to all calls identified at detector location, with results 

omitted for rarely detected species (Townsend’s big-eared bat, pallid bat, and long-legged myotis). 

Species 
Angelo Armstrong Caspar Lyme Mallo Pass 

G T G T G T G T G T 

Big brown bat 3.0% 0.2% 8.5% 1.4% 0.8% 3.4% 1.8% 5.1% 0.6% 4.3% 

Western red bat 3.5% 2.5% 0.3% 0.3% 0.1% 0.0% 0.1% 1.0% 0.2% 1.4% 

Hoary bat 1.4% 10.8% 0.5% 7.1% 0.4% 7.7% 0.1% 4.7% 0.1% 2.8% 

Silver-haired bat 6.7% 30.1% 1.9% 11.5% 0.9% 48.0% 3.1% 22.1% 0.3% 10.2% 

California myotis 9.2% 3.3% 27.5% 3.1% 77.9% 20.5% 82.1% 31.3% 69.8% 17.4% 

Long-eared myotis 2.1% 0.4% 1.5% 0% 0% 0.1% 5.2% 2.1% 0.1% 0.1% 

Little brown bat 35.4% 2.4% 0.3% 0.2% 0.1% 0.3% 0.1% 1.0% 0.1% 0.2% 

Fringed myotis 1.0% 0.6% 39.3% 0.5% 0.1% 0.1% 3.0% 2.8% 0.3% 0.2% 

Yuma myotis 25.0% 0.6% 14.0% 0.7% 19.5% 1.6% 2.2% 3.5% 28.0% 8.3% 

Mexican free-tailed bat 11.7% 48.9% 2.0% 74.9% 0.1% 18.3% 0.9% 26.2% 0.4% 55.0% 
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Figure 5: Species calls calculated as proportion of total calls at each of the ten detector sites, with results 

presented for hoary bat (Laci), silver-haired bat (Lano), California myotis (Myca), little brown bat 

(Mylu), Yuma myotis (Myyu), and Mexican free-tailed bat (Tabr). 
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3.3 Species activity model results 

The ANOVA results from this multi-site, year-round canopy study revealed significant 

differences in bat activity between ground-level and treetop (Table 3). The activity of 6 species: 

hoary bats, silver-haired bats, California myotis, fringed myotis, Yuma myotis, and Mexican 

free-tailed bats, varied significantly (p-value < 0.05) between study sites (5-level factor), detector 

location (‘Ground’ or ‘Treetop’), and site:location interaction (10-level factor). However, as is 

clearly demonstrated by the plots of model predictions (Fig. 6-8), the direction of the location 

effect on species activity varied depending on the species.  

Table 3: ANOVA was applied to fitted species activity models to test whether group means were 

different for model terms. P-values < 0.05 are reported below and non-significant p-values are 

indicated as 'n.s.' 

Species Site Location Site:Location 

Big brown bat 7.11E-09 n.s. 6.15E-11 

Western red bat < 2e-16 n.s. 0.00138 

Hoary bat < 2e-16 < 2e-16 < 2e-16 

Silver-haired bat < 2e-16 < 2e-16 3.96E-15 

California myotis < 2e-16 < 2e-16 8.90E-06 

Long-eared myotis 0.0013 n.s. n.s 

Little brown bat 0.00178 n.s. n.s 

Fringed myotis 1.94E-11 4.01E-11 1.75E-11 

Yuma myotis < 2e-16 < 2e-16 1.97E-06 

Mexican free-tailed 

bat 
< 2e-16 < 2e-16 < 2e-16 

 

Hoary bats (Fig. 6), silver-haired bats (Fig. 7), and Mexican free-tailed bats (Supporting 

Info) were detected more frequently at treetop relative to ground-level at all study sites, 

including old-growth stands and working forests. This pattern generally held throughout the year 

as illustrated by the former spline above the latter (Figs. 6 and 7). The primary exception was a 

brief period in late spring when Mexican free-tailed bats detections were higher at ground-level 

than treetop at Angelo (Supporting Info). Hoary bats and silver-haired bats generally showed 

significant peaks in activity in the spring and fall, though this varied slightly by site. Some sites 

only showed a peak during one season and there was no clear evidence of a peak in activity for 

hoary bats or silver-haired bats at Armstrong. Mexican free-tailed bat activity varied 

significantly by site, with activity at some sites peaking in known migration seasons, fall and 

spring, while other sites peaked during summer and winter (Supporting Info). Although activity 

levels varied across seasons, these three species were all detected throughout the year, including 

in the winter, as indicated by both the predicted splines and the plotted activity data points. 
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In contrast, California myotis, fringed myotis, and Yuma myotis were detected more 

frequently at ground-level than treetop throughout the year (Fig. 8). These three species and 

other Myotis species showed strong summer peaks in activity, and most activity occurred 

between March – November, as indicated by both the predicted splines and the plotted activity 

data points. However, most species were also detected during the winter (December – February) 

on at least one monitoring night, and this winter activity appeared to be more frequent at 

Armstrong than other sites. 

The activity of two species: big brown bat and western red bat, varied significantly (p-

value < 0.05) between study sites and site:location interaction. This significant interaction effect 

can be visualized from model prediction plots (Supporting Info). The treetop and ground-level 

splines for big brown bats and western red bats were not consistently shifted in either direction; 

at some sites there was higher species activity at treetop and at others there was higher activity at 

ground-level. Similar to hoary bats and silver-haired bats, western red bats generally showed 

significant peaks in activity in the spring and fall, though this varied slightly by site. During the 

winter, western red bats were still detected on multiple monitoring nights at Angelo, Lyme, and 

Mallo Pass. Big brown bat activity generally occurred between spring-fall and peaked during the 

summer, similar to Myotis species. However, limited winter activity was detected at ground-level 

at Angelo, Armstrong, Mallo Pass, and at treetop at Caspar.  

For the final two species activity models, long-eared myotis and little brown bat, the only 

significant model term was Site. Average activity did not vary significantly between canopy and 

ground level. Similar to other Myotis species, activity generally peaked during the summer and 

winter activity was extremely limited, though the long-eared myotis was also detected on 

multiple nights in February at Armstrong. Data points reveal that little brown bats were detected 

in exceptionally high numbers during the summer at Angelo, though this trend is not fully 

reflected in the Angelo ground detector spline.    

For each of these ten species activity model, full ANOVA results, model summary, and 

gam.check( ) results with residual diagnostics plots can be found in Supporting Information. 
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Figure 6: Hoary bat (Laci) model 

predictions with 95-percent 

confidence interval plotted alongside 

actual activity data (+). Red = ground 

and blue = treetop. 
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Figure 7: Silver-haired bat (Lano) 

model predictions with 95-percent 

confidence interval plotted alongside 

actual activity data (+). Red = ground 

and blue = treetop. 
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Figure 8: California myotis (Myca), little brown bat (Mylu), and Yuma myotis (Myyu) model predictions 

with 95-percent confidence interval plotted alongside actual activity data (+) for neighboring sites Angelo 

and Lyme. Red = ground and blue = treetop. 
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4. Discussion  

Niche partitioning and forest management implications  

Results from this multi-site, year-round canopy study show that vertical niche 

partitioning occurred across working forests as well as old-growth sites. Consistent with the 

earlier study of bat activity across the vertical gradient of a redwood forest, Myotis species 

comprised the majority of calls at ground-level while non-Myotis comprised the majority of calls 

higher in the forest canopy (Kennedy et al., 2014). Similar results have been found using canopy 

studies in other forest habitat; open-space and edge-space adapted species are detected 

significantly more frequently higher in the forest canopy, while clutter-adapted species are 

detected more frequently closer to the ground (Kalcounis et al., 1999; Menzel et al., 2005). 

There were a lot of nights when hoary bats, silver-haired bats, and Mexican free-tailed 

bats were detected at treetop that the species was not detected at ground-level. As a result, 

conventional monitoring methods may underrepresent the value of redwood habitat for these 

species. This is an important reminder for bat conservation that non-detection does not mean 

absence. Given that standard survey methods in tall habitat are limited by acoustic detection 

range being less than the height of the habitat, especially for bats which emit quieter calls, forest 

managers should be mindful that high-flying, elusive species may be present even if they are 

undetected and manage for biodiversity accordingly. 

Interestingly, this clear vertical niche partitioning did not hold across all sites for western 

red bats and big brown bats. This finding was initially surprising because the previous redwood 

canopy survey of bat activity detected western red bats, an edge-space adapted species, only at 

treetop, so I expected to similarly detect more calls for this species at treetop than ground-level 

(Kennedy et al., 2014). Likewise, studies in other forest habitat have found that big brown bats, 

an open-space adapted species, are also more active above the tree canopy (Menzel et al., 2005). 

Closer inspection revealed that big brown bats were detected more frequently at ground-level at 

the old-growth sites Angelo and Armstrong, and at other sites this species was detected more 

frequently at treetop. Western red bats were detected slightly more frequently at ground-level at 

Angelo, and relatively equally at ground-level and treetop at Armstrong.  

The habitat structure of old-growth forests is significantly less dense and cluttered than 

working forests. Additionally, Angelo has a significantly wider and more open riparian corridor 

than the other sites. These site-level differences suggest that western red bats and big brown bats 

may be able to exploit lower forest habitat better at old-growth sites and in large riparian areas, 

whereas they may avoid cluttered habitat in younger forests by flying closer to treetop. This 

explanation for site-level differences is supported by other studies that have found that species 

adapted to edge-space and open-space foraging are less active in cluttered forest (Loeb, 2020). 

Species niche partitioning in redwood forests may thus vary significantly depending on forest 

management’s influence on habitat structure, and this is the first study in redwood forests to 

incorporate vertical habitat gradient when studying this management influence on bats. 

Not only were Myotis species more prevalent at ground-level, but the vast majority of 

calls at ground-level at three of the sites pertained to one species, California myotis. At old-

growth sites, Angelo and Armstrong, calls detected at ground-level were still predominantly 

Myotis species, but no single species accounted for the majority of the calls. Given that 

conventional monitoring approaches survey at ground-level, understanding of bat activity in 
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redwood forests is highly biased to these frequently detected species that are often only classified 

to the genus level. (Walters et al., 2012). By distinguishing the species, it is clear that California 

myotis, a generalist and clutter-adapted species, were far more common than all other species in 

working forest sites and the other Myotis species accounted for a greater proportion of calls at 

old-growth sites.  

 

Seasonal activity patterns at regional and site-level 

These results also support other study findings that many species of bats are active to 

some degree in redwood forest habitat year-round (Weller and Stricker, 2012; Zielinski and 

Gellman, 1999). However, whereas other studies attained this finding from capture methods 

(Weller and Stricker, 2012) and guano sampling of roosts (Gellman and Zielinski, 1996), my 

results demonstrate that acoustic surveys can be an effective non-invasive tool for studying 

seasonal activity patterns. Additionally, whereas mist net surveys in redwood forests had 

previously highlighted that silver-haired bats are more active than other species during the winter 

(Weller and Stricker, 2012), my study revealed that other migratory species, including hoary bats 

and Mexican free-tailed bats, are significantly active throughout the winter as well. But this 

activity may be overlooked because it largely occurs above the range of conventional survey 

methods. Consequently, this may lead natural resource managers and others concerned with bat 

conservation to underestimate the value of redwood forests as winter habitat for sensitive bat 

species. 

Applying generalized additive models to multi-site monitoring studies can also inform 

understanding of site-level differences in species ecology across a larger landscape. Hoary bats, 

silver-haired bats, western red bats, and Mexican free-tailed bats are all migratory species and 

generally assumed to pass through the redwood ecosystem in the fall and spring. Although my 

results did suggest strong peaks in activity corresponding to migration events at most sites, hoary 

bat activity at my most southern site, Armstrong, appeared surprisingly consistent over the entire 

study. Our understanding of winter activity at Armstrong at treetop is unfortunately limited 

because that microphone was broken at this site from December 11, 2019 until February 19, 

2020. However, species detections in early December and late February suggest hoary bats may 

be present in this habitat year-round. 

Other species, including big brown bats and several Myotis species also showed signs of 

winter activity, especially at Armstrong. Evidence of winter activity has important implications 

because bats that are normally active and foraging during the winter might be more resilient to 

WNS than hibernating populations (Grider et al., 2016). More research should be done to 

understand winter activity patterns, including to what extent species are successfully foraging 

opposed to only becoming active to drink water or switch roosts.  

 

Conclusions and future research directions 

My study results demonstrate that incorporating innovative methods such as multi-site, 

year-round canopy studies and generalized additive model statistical approaches can provide 

important insights into enhancing understanding of forest bat ecology. These approaches can be 
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effectively applied to biodiversity monitoring for other taxa as well to better under species 

ecology across sites and seasons and to inform conservation planning. 

There is still much to be learned about species distribution patterns on both a regional and 

finer scale. For example, long-eared myotis and little brown bat activity varied significantly 

across sites but not between canopy and ground level. The significance of this effect for little 

brown bats appeared to be driven primarily by high detections at the old growth site in Angelo 

Coast Range Reserve and relatively low numbers of detections at the other sites. As detailed in 

my description of study sites, Angelo was the property with by far the most heterogeneous 

habitat. It is possible that little brown bat activity is influenced by habitat effects that are not 

present at the more homogeneous redwood habitat sites. Long-eared myotis were detected 

relatively infrequently at all sites, though detections were slightly higher at neighboring sites 

Angelo and Lyme than the other three study sites. Given that little brown bat populations have 

been especially devastated by WNS, and long-eared myotis and four other species found in 

redwood habitat are also susceptible to the disease, additional surveys should be done to 

understand patterns driving species distribution across this region and understand baseline 

populations before they are affected (Cheng et al., 2021; “White-Nose Syndrome,” 2021). 

Some observed peaks in species activity did not coincide with migration behavior, 

including a peak in summer activity for many Myotis species. Other studies have also detected 

species-specific changes in activity patterns during the summer (Loeb et al., 2019). Further work 

on food availability and maternity season behavior may help explain changes in peak activity.  

Also, this study largely focused on monitoring near riparian corridors because that is the 

habitat where bats are most active in this ecosystem. Expanding the number of detectors to allow 

for sampling in the uplands away from riparian habitat could reveal important differences in 

species assemblage between riparian and upland areas. For example, the sites which had a high 

number of Yuma myotis calls all had large, perennial stream corridors. This was expected 

because this species is known to be associated with open water and to forage extensively in 

stream areas (Braun et al., 2015). It would be interesting to examine how other species presence 

and activity patterns are influenced by proximity to streams and whether this also influences 

species comparisons between treetop and ground detectors. This expansion would further extend 

our understanding of bat activity across the entire redwood forest landscape but would require 

long-term monitoring at a fine spatial scale to accommodate low detection rates away from 

freshwater sources. Future research should also consider how acoustic presence and activity data 

can be used to derive estimates of abundance to better understand how species’ populations 

change seasonally in the ecosystem and across field sites.   
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Chapter 3:  

Microclimatic drivers of winter bat activity in coastal forests 

 

Abstract 

Bats represent one of the most diverse mammal assemblages on earth, but due to their 

cryptic nature little is known about many species even in well-studied areas such as North 

America. Bats face myriad long-term threats including habitat loss, wind energy development, 

and climate change, but the most immediate threat for North American bats is the fungal disease 

white-nose syndrome (WNS), which has led to die offs throughout the northeast and is spreading 

west. Bat ecology, especially winter activity and roosting behavior, influences species 

susceptibility to WNS. If bats are normally active during the winter, then these populations may 

be more resilient to mortality from WNS than hibernating populations. Therefore, to predict and 

mitigate future WNS disease impacts we need to determine how overwintering behavior for both 

migratory and resident species varies in relation to environmental conditions. This study 

investigated the environmental conditions under which winter bat activity was detected in a coast 

redwood forest ecosystem with mild winter temperatures. Generalized linear mixed models were 

used to relate acoustic detection probability for eight species found in coast redwood forests of 

California to daytime and nighttime temperature and relative humidity. Because different species 

are active at different levels of tall forest habitat (Chapter 2), I also examined the effect of 

acoustic detector placement (treetop or ground-level). The results indicate that daytime 

maximum temperature was the microclimate variable that best explained variation in nightly 

probability of bat acoustic presence. The species detected most frequently during the winter 

included California myotis, which was detected on 43% of ground-detector nights, and Mexican 

free-tailed bat, which was detected on 49% of treetop-detector nights. Nine other species were 

also detected as active between December through February, suggesting that coastal California 

may provide important winter habitat and possibly a WNS disease refugia for both migratory and 

resident species.   

 

Introduction 

  Globally, 80% of the 1236 known bat species reviewed by the International Union for 

the Conservation of Nature (IUCN) require conservation or research attention, including 18% 

listed as threatened, 15% listed as data-deficient and over 50% of species classified as having 

unknown or decreasing population trends (Frick et al., 2020). This dearth of knowledge is 

especially troubling given the severe disease-induced population declines of several North 

American bat species, especially the little brown bat (Myotis lucifugus) which was once 

ubiquitous and is now considered endangered (Frick et al., 2010; “The IUCN Red List of 

Threatened Species,” 2022).  

White-nose syndrome (WNS), a wildlife disease caused by the fungal pathogen 

Pseudogymnoascus destructans, affects North American hibernating bat populations by altering 

their physiology so that they awake more frequently from winter torpor (Reeder et al., 2012). 

Although bats normally arouse periodically during the winter, this increased arousal in cold 
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climates causes bats to expend additional energy, and mortality occurs when bats deplete their fat 

reserves to the point of starvation (Verant et al., 2014). Even if bats survive the winter, the stress 

of the disease may impact their reproductivity and indirectly result in population declines (Maslo 

et al., 2015). Although the devastation of WNS was initially limited to the northeastern United 

States where it was first detected in 2006, it has spread west, and models predict that it will 

ultimately affect 80% of counties of the contiguous U.S. (O’Regan et al., 2015). The detection of 

the pathogen on the west coast of the U.S. in 2016 has accelerated the urgency to understand 

how the disease will impact western North American bat populations (Lorch et al., 2016).  

In order to predict and mitigate future disease impacts, we need to better understand the 

winter ecology of western bats. Little is known about western bat overwintering locations or 

their winter activity patterns because they do not form large hibernacula colonies like their 

eastern counterparts but rather roost individually or in small groups (Weller et al., 2018). An 

extensive review of winter bat survey records from 11 western states found that 95% of 

aggregations of Myotis species were composed of ≤ 10 individuals (Weller et al., 2018). It is 

possible that this dispersion will confer resilience to western bat populations because the 

pathogen will not spread as easily as it does between bats that are socially gregarious or 

hibernate in large groups (Langwig et al., 2012). However, this also complicates both local and 

continental efforts to monitor the impacts of disease on populations (Cheng et al., 2021). Forest 

bats are especially hard to survey because they generally roost inconspicuously in trees instead of 

caves or human structures, and they frequently switch roosts (Fellers and Pierson, 2002; Kunz 

and Fenton, 2005; Zielinski and Gellman, 1999). This means that forest bat population trends 

cannot be monitored using standard roost survey methods, and they may be vulnerable to habitat 

loss and disturbance associated with timber harvests or forest conversion.  

Coastal habitat with mild climates may be an important refuge for North American bat 

populations because there is evidence that healthy bats in these areas are more active during the 

winter than inland populations of the same species (Falxa, 2007; Grider et al., 2016; Parker et al., 

2020). Bats in climatically mild and relatively stable areas may survive the winter through a 

combination of remaining active to opportunistically forage and using torpor to conserve 

resources when foraging is not feasible or energetically cost-effective (Turbill and Geiser, 2008). 

Some migratory species, such as hoary bats (Lasiurus cinereus), migrate longitudinally to coastal 

forest regions, but it is unknown to what extent they stay active in winter habitat after migration 

(Cryan et al., 2014). For example, there is evidence that at least some individuals of this foliage-

roosting species hibernate more than previously believed (Marín et al., 2021; Weller et al., 

2016). Because the fungal pathogen P. destructans grows at higher rates under relatively warm 

and humid winter conditions (Verant et al., 2012), this could conversely result in disease impacts 

being more severe for hibernating bats in mild winter areas (Langwig et al., 2012). Determining 

how overwintering behavior for both migratory and resident species varies in relation to 

environmental conditions is thus critical for assessing population susceptibility to WNS.  

The primary objective of this study was to evaluate the environmental conditions that are 

conducive to detecting winter bat activity in order to inform efforts to monitor cryptic bat 

populations. More specifically, I investigated the relationship between microclimate and 

insectivorous bat activity in coast redwood forests of California during December through 

February. Generalized linear mixed models are used to explore how temperature and humidity 

variables influenced nightly probability of detection, and how detection probability was 

additionally influenced by locating detectors at treetop versus ground-level. I hypothesized that 
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nightly detection probability would be positively associated with temperature variables and 

negatively associated with relative humidity because bats would be more active under warmer 

and drier conditions when flight is less energetically costly and prey more likely to be available 

than when the weather is cold and wet. Based on previous comparisons of treetop versus ground-

level detector placement (Chapter 2), I conducted analysis for both survey locations across five 

study sites. California coast redwood forests experience mild winter temperatures, and while six 

susceptible species and three additional species that carry the fungal pathogen are known to 

occur in these forests, there is no evidence of infection to date (“White-Nose Syndrome,” 2022). 

Understanding the normal winter activity patterns of bat populations before the arrival of a novel 

disease can be applied to help scientists and natural resource managers to anticipate the relative 

susceptibility of diverse species and to proactively identify habitat important for species 

conservation.  

 

2 Materials and Methods 

2.1 Study sites 

 I studied winter bat activity at five coast redwood forest sites in Mendocino and Sonoma 

Counties of Northern California (Figure 1). The study area is characterized by mild but wet 

winters, with 55% of annual precipitation (43.16 in annually) normally occurring between 

December through February (National Centers for Environmental Information, U.S. Climate 

Normals). December is normally the coldest month of the year, with a mean minimum 

temperature of 4.3 ⁰C and a mean maximum temperature of 10.8 ⁰C (National Centers for 

Environmental Information, U.S. Climate Normals). Study sites were selected to be 

representative of the mosaic of diverse forest management types of the redwood ecosystem, 

including two commercial timber properties (“Lyme” and “Mallo Pass”), Jackson Demonstration 

State Forest (“Caspar”), one state park (“Armstrong”) and a University of California natural 

reserve (“Angelo”). The most coastal study site (Mallo Pass) was located approximately 2 km 

from the coast, and the most inland study site (Angelo) was located approximately 15 km from 

the coast. Each study site was located next to a stream channel to standardize detector placement 

across sites and to maximize the probability of detecting bat activity because forest bat activity is 

generally found to be highest along large stream corridors (Seidman and Zabel, 2001). 
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Figure 1: Five redwood forest study sites located between 2 to 15 km of the coast were selected to 

represent diverse management types of the Northern California coast redwood ecosystem. Map shows 

historical average temperature (in ⁰C) for the month of December based on the WorldClim version 2.1 

climate data for 1970-2000 at 30 second (~1 km2) spatial resolution (Fick and Hijmans, 2017). 

 

2.2 Field data collection 

 I monitored winter bat activity at fixed locations from December 1, 2019 to February 29, 

2020 using Wildlife Acoustics Song Meter SM2BAT 384 kHz (SM2) and SM4BAT (SM4) full-

spectrum bat detectors with omnidirectional microphones (Wildlife Acoustics Inc., Maynard, 

MA). Coast redwood forests are the tallest forests in the world, with mature trees regularly 

exceeding heights of 90 m (Sillett et al., 2015). Consequently, canopy-level bat activity in this 

habitat is regularly beyond the range of ground-based ultrasonic detectors (Agranat, 2014; 

Kennedy et al., 2014). Therefore, at each site, one detector was placed at ground-level at the 

edge of the riparian corridor and another detector was placed at the top of the highest nearby tree. 

The same model of detector (SM2 or SM4) was used at paired ground and treetop locations at 

each site. The microphones of ground-level detectors were sited at least 2 m from vegetation and 

elevated 3-4 m above the ground on telescopic poles. The microphones of treetop detectors were 
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attached to telescopic poles and extended horizontally from the tree along a branch to sample 

open-air fly space. Treetop microphone height was measured by dropping the weighted end of a 

tape measurer to an observer at ground-level and ranged as follows: Armstrong, 78 m; Angelo, 

60.5 m; Caspar, 49.5 m; Lyme, 38 m; and Mallo Pass, 33 m. 

 Each model of detector was deployed using the recommended settings for that model in 

California forest habitat. For SM2 detectors: gain = 10 dB, trigger window = 2 s, maximum 

trigger length = 5 s, trigger level = 12 SNR, division ratio = 8. For SM4 detectors: gain = 12 dB, 

minimum duration = 1.5 ms, minimum trigger frequency = 16 kHz, trigger window = 3 s, 

maximum trigger length = 15 s., trigger level = 12 SNR, division ratio = 8. SM2 detectors were 

powered by three 6 V 12 Ah lead-acid batteries set in parallel, and the newer model SM4 

detectors were powered by two 6 V 12 Ah lead-acid batteries set in parallel. These setups were 

sufficient for the detectors to record from sunset to sunrise every other night before the batteries 

needed to be recharged during monthly site visits. During each site visit, I also collected the 

acoustic data and reviewed the data to check equipment functionality. There were some issues 

with microphones ceasing to function or losing sensitivity, which seemed to be due to moisture 

entering the microphones. Monitoring nights when a detector malfunctioned were omitted from 

the analysis. I counted each full night that a detector was functional as a “detector night.” 

 To relate bat activity to weather and microclimate, I monitored ambient temperature and 

relative humidity at each study site using iButton Hygrochron DS1923 sensors (Maxim 

Integrated Products Inc, San Jose, CA). A sensor was hung from vegetation near each ground-

based detector and shielded from precipitation and sunlight by a plastic hood. The sensors 

sample temperature and humidity every 30 minutes.  

 

2.3 Species presence identification  

 To determine bat species presence for each detector night, I used SonoBat bat call 

analysis software (Arcata, CA) to identify recorded bat passes to species. I first filtered out non-

bat and poor-quality call files using the SonoBat Batch Attributer 6.5. I then auto-classified calls 

to species using SonoBat with the Northwest California regional classifier. I manually vetted the 

data by visually reviewing auto-classified call files for each detector night and confirming that 

there was at least one confidently identified call for each species that SonoBat had identified. If 

at least one call was confidently identified, then I counted the species as “present” on that 

monitoring night at that detector location. I considered acoustic detection of species presence to 

be evidence that the species was active on that monitoring night.  

 After determining whether each species was detected as “present” or “not detected” on 

each detector night, I calculated the proportion of nights that each species was present at each of 

the ten detector locations, as well as across all ground-detector nights and across all treetop-

detector nights. I plotted both proportions of total nights and ranges across study sites to compare 

winter bat activity by species, as well as to examine how much this varied across sites and 

detector location. 
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2.4 Weather and climate data analysis 

 I analyzed iButton data recorded in the field to characterize the daily and nightly 

temperature and relative humidity for each study site. Because iButtons needed to be briefly 

handled during each monthly field visit to collect data and this may affect the first temperature 

reading, I omitted the first data point for each monitoring round. I used R statistical analysis 

software (R Core Team, 2021) with package ‘suncalc’ to calculate sunset and sunrise times for 

each detector night based on the latitudinal and longitudinal coordinates of the field site. I 

filtered data to begin at sunrise of the first monitoring night date (12/1/2019) and end at sunrise 

following the last monitoring night (2/29/2020). If iButton data was logged at or after sunrise and 

before sunset, then it was considered ‘daytime.’ If it was logged at or after sunset and before 

sunrise then it was considered ‘nighttime.’ I then calculated the following statistics for both 

temperature and relative humidity at each study site for each monitoring night date: minimum, 

maximum, and mean values for both ‘daytime’ and ‘nighttime.’ Even though the iButton sensors 

were shielded beneath a plastic hood, some logged relative humidity values were above 100%, 

erroneous values that result from the sensor being exposed to a wet environment. To correct this 

error, I adjusted these relative humidity values to be 100.  

After calculating the ‘daytime’ and ‘nighttime’ temperature and relative humidity 

statistics for each detector night, I combined this data with the bat species detection data. 

Because microclimate was only logged at ground-level at each field site, the same microclimate 

data was paired with both the ground and treetop bat detection data. I also plotted the daytime 

maximum temperature, nighttime maximum temperature, and nighttime minimum relative 

humidity by Julian date to observe temporal trends in microclimate conditions and how this 

varied across the study sites. Daily maximum temperature values from the GridMET dataset 

(Abatzoglou, 2013) were retrieved to provide historical meteorological data. Specifically, I used 

the period from January 1, 2010 until December 31, 2020 for each of the five study site 

coordinates and filtered the data to only include winter months (January, February, and 

December).  

2.5 Species presence models 

I developed species-specific generalized linear mixed models (GLMMs) for eight species 

to relate microclimate explanatory variables to nightly detection of bat species presence. I 

omitted species models for the three most rarely detected species: little brown bat (present on 4 

detector nights), pallid bat (4 detector nights), and long-eared bat (7 detector nights) because 

there were too few detections for the models to converge. I used binomial distribution models 

with a logit-link function because this is appropriate for a binary outcome of nightly presence or 

non-detection. All statistical and model analyses were conducted using R version 4.1.2 (R Core 

Team, 2021).   

To test my hypothesis that bats were more likely to be active on nights when relative 

humidity was lower, indicating drier weather, I included the explanatory variable nighttime 

minimum relative humidity (‘Night.Min.Humid’) as the relative humidity variable of interest. To 

test my hypotheses that bats were more likely to be active on warmer nights and on nights 

following warmer daytime conditions, I tested both nighttime maximum temperature 

(‘Night.Max.Temp’) and daytime maximum temperature (‘Day.Max.Temp’). However, before 

running statistical models, I used ‘cor( )’ function in R to check the Spearman correlation 

coefficients of potential explanatory variables and found that daytime and nighttime temperature 
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statistics were highly correlated with a correlation coefficient of .84 (see Supporting Information 

for correlation table). I therefore included these variables in separate models. I included detector 

location (‘Location’, factor with 2 levels: ‘ground’ and ‘treetop’) as a fixed effect and study site 

(‘Site’, factor with 5 levels) as a random effect in all models. I examined the following candidate 

models for each species: 

Null: Presence ~ (1|Site) 

Location: Presence ~ Location + (1|Site) 

RH: Presence ~ Night.Min.Humid + Location + (1|Site) 

Day: Presence ~ Day.Max.Temp + Location + (1|Site) 

Night: Presence ~ Night.Max.Temp + Location + (1|Site) 

Day + RH: Presence ~ Night.Min.Humid + Day.Max.Temp + Location + (1|Site) 

Night + RH: Presence ~ Night.Min.Humid + Night.Max.Temp + Location + (1|Site) 

Day x RH: Presence ~ Night.Min.Humid + Day.Max.Temp + 

Night.Min.Humid x Day.Max.Temp + Location + (1|Site) 

Night x RH: Presence ~ Night.Min.Humid + Night.Max.Temp + 

Night.Min.Humid x Night.Max.Temp + Location + (1|Site) 

The ‘glmer’ function was used from package lme4 (Bates et al., 2021) and continuous 

variables were first standardized to a mean of 0 and standard deviation of 1. To test model fit, I 

first ran the full models that included the interaction of the humidity variable with the daytime or 

nighttime temperature variable. If there were any convergence warnings when I used glmer( ) to 

run the initial models, then I used function lme4::allFit( ) with additional packages dfoptim 

(Varadhan et al., 2020) and optimx (Nash et al., 2021) to fit the models with alternative 

optimizers. Seven species models were fit without convergence issues using the default glmer( ) 

settings. The model for western red bat initially had model convergence issues, but this was 

resolved by setting the optimizer to “bobyqa.” I tested fitted models for dispersion and residual 

diagnostics by using the DHARMa package (Hartig and Lohse, 2021) (see Supporting 

Information for residual diagnostics plots).   

After confirming that there were no convergence issues with the full fitted models, I used 

function ‘model.sel’ from package MuMIN to perform model selection. I ranked models by AIC 

corrected for small sample size (AICc) to assess which models best explained nightly variation in 

bat presence and reported all models with ∆AICc ≤ 2 as top models (Burnham and Anderson, 

2002). I reported maximized log-likelihood, number of estimable parameters, and Akaike 

weights of top models, as well as model estimates of variables that had a significant effect for the 

best model for each species.  

To predict when these species are most likely to be active during the winter, I used the 

‘predict.merMod’ function to examine the effect of daytime maximum temperature (strongest 

explanatory variable from the GLMM analysis) on probability of species detection for both 

ground and treetop detector locations. To generate new data values, I used the range of daytime 
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maximum temperatures observed: 4.1⁰C to 21.8⁰C and also included the mean observed daytime 

maximum temperature (10.2⁰C). For the fitted model object, I used the model Presence ~ 

Day.Max.Temp + Location + (1|Site). Because the predict function is unable to return the 

standard error for the predicted values of models including random effects, I used function 

‘bootMER’ to apply a bootstrapping approach and derive a 95% confidence interval from 

simulated predictions. I plotted the predicted probability of species presence in relation to 

daytime maximum temperature to visually examine how probabilities varied by species and 

detector location. As an additional method to compare winter detections across species, I plotted 

species-specific probability of detection under mean observed daytime maximum temperature. 

Finally, I identified the range of daytime maximum temperatures at which species were 

predicted to have at least a 50% probability of detection at either ground-level or treetop and 

examined how often these temperatures normally occur across the study area based on the 

historical meteorological data. This data was filtered and combined for all five sites (4,965 total 

winter days) to calculate how often maximum temperature was greater than or equal to 

temperature values from 11 ⁰C to 22 ⁰C. I plotted the result as the average number of days per 

winter at which the maximum temperature occurs at or above each threshold value.  

 

3 Results 

3.1 Species presence results  

 This field study resulted in a total of 315 detector nights at ten locations and the total 

functional detector nights at each of the other detector locations ranged from 26 to 45 nights 

(Table 1), with the exception of Armstrong at treetop (nights = 10) and Angelo at ground-level 

(nights = 13) which experienced significant equipment failures. 4,762 bat calls were classified to 

the following 11 species: pallid bat (Antrozous pallidus), big brown bat (Eptesicus fuscus), 

western red bat (Lasiurus blossevillii), hoary bat (Lasiurus cinereus), silver-haired bat 

(Lasionycteris noctivagans), California myotis (Myotis californicus), long-eared myotis (Myotis 

evotis), little brown bat (Myotis lucifugus), fringed myotis (Myotis thysanodes), Yuma myotis 

(Myotis yumanensis), and Mexican free-tailed bat (Tadarida brasiliensis). The only species 

known to occur in this study area during other seasons that were not detected during this winter 

study were Townsend’s big-eared bat (Corynorhinus townsendii) and long-legged myotis 

(Myotis volans).  
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Table 1: Summary of detector nights and total confidently identified calls identified to species by study 

site and detector location. 

Site 
Treetop Mic 

Hgt (m) 

Detector 

Location 

Detector 

Nights 

Confident ID 

Calls 

Mean 

Calls/Night 

Angelo 60.5 Ground 13 69 5.3 

  Treetop 43 491 11.4 

Armstrong 78 Ground 45 296 6.6 

  Treetop 10 1,174 117.4 

Caspar 49.5 Ground 38 52 1.4 

  Treetop 26 206 7.9 

Lyme 38 Ground 31 11 0.4 

  Treetop 45 724 16.1 

MalloPass 33 Ground 28 438 15.6 

  Treetop 36 1,301 36.1 

 

 As shown in figure 2, the proportion of nights for which bat activity was detected varied 

by species, study site and detector location.  For example, the species detected most frequently 

by ground-level detectors was California myotis. It was detected on 43% of total ground-detector 

nights across the entire study, and on 31% of total treetop-detector nights. However, the 

proportion of ground-detector nights that the species was identified ranged from 16% to 64% 

across the five study sites, and the proportion of treetop-detector nights ranged from 5% to 64%. 

The species detected most frequently at treetop was the Mexican free-tailed bat. It was detected 

on 49% of treetop-detector nights across the entire study (detection at individual sites ranging 

from 33% to 90% of treetop-detector nights). However, it was only detected on 17% of ground-

detector nights (range of 3 – 46%). Similarly, the hoary bat was detected on 46% of treetop-

detector nights (range of 11 – 90%) but only 12% of ground-detector nights (range of 3 – 46%); 

and the silver-haired bat was detected on 24% of treetop-detector nights (range of 2 – 40%) but 

only 8% of ground-detector nights (range of 0 – 100%). Another species which was detected 

more frequently at treetop than ground-level was the western red bat; it was detected on 9% of 

treetop-detector night and 4% of ground-detector nights.  

Five species were detected more frequently at treetop, and six species were detected more 

frequently at ground-level. The most rarely detected species included pallid bat, long-eared 

myotis, and little brown bat. The little brown bat was detected as present on a single night at 

treetop at four of the five study sites, and it was not detected at all at ground-level. Conversely, 

the long-eared myotis and pallid bat were detected only at ground-level. 
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Figure 2: Red bars show the proportion of nights the species was detected across all ground-detector 

nights and blue bars show the proportion of nights detected across all treetop-detector nights. Error bars 

show the range in proportion of nights detected across the five study sites.  

 

3.2. Microclimate data results 

 Maximum daytime temperature ranged from 2.6⁰C to 21.8⁰C, with a mean of 10.2⁰C 

across the five study sites. Maximum nighttime temperature ranged from 2.6⁰C to 14.1⁰C, with a 

mean of 8.6⁰C. Minimum nighttime relative humidity ranged from 69.4% to 100%, with a mean 

of 98.5% relative humidity. January was the wettest month, with minimum nighttime humidity at 

100% on all nights across the five study sites (Figure 3). As demonstrated by figure 3, similar 

temporal trends in microclimate were observed across the five study sites, though greater 

variation between sites in relative humidity and maximum daytime temperature statistics was 

observed in February. It is evident from the February data the most inland site, Angelo, 

experienced a higher maximum daytime temperature and lower minimum nighttime relative 

humidity than the other sites. The most coastal study site, Mallo Pass, continued to have a 

minimum nighttime relative humidity of 100% on most nights during February. 
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Figure 3: Plots show daily temperature and relative humidity statistics calculated from iButton data 

logged from December 2019 to February 2020 at the five study sites: Angelo (red), Armstrong (yellow), 

Caspar (green), Lyme (blue) and Mallo Pass (purple). 100% RH was observed across all sites in January. 
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3.4. Species presence model results 

 Model selection results showed daytime maximum temperature was a better predictor of 

nightly variation in bat presence than nighttime maximum temperature (Table 2). The top model 

for six of the eight species included daytime maximum temperature as the only microclimate 

explanatory variable. The top model for big brown bat included both daytime maximum 

temperature and relative humidity. The top model for Yuma myotis included the interaction of 

daytime maximum temperature and relative humidity.  

 

Table 2: Top generalized linear mixed models ranked by AICc for each species nightly probability of 

presence. Explanatory variables included: daytime maximum temperature (Day), nighttime maximum 

temperature (Night), nighttime minimum relative humidity (RH), and the interaction between temperature 

variable and relative humidity. All models also included detector location (ground or treetop) as a fixed 

effect and study site as a random effect. 

Species Model K logLik AICc delta weight 

Big brown bat Day + RH 5 -78.83 167.85 0 0.446 

  Day + RH + Day x RH 6 -78.73 169.73 1.88 0.174 

  Night 4 -80.81 169.75 1.902 0.172 

Western red bat Day 4 -74.43 156.99 0 0.399 

  Day + RH + Day x RH 6 -72.43 157.13 0.139 0.372 

  Day + RH 5 -74.39 158.97 1.976 0.149 

Hoary bat Day 4 -117.8 243.73 0 0.5 

  Day + RH 5 -117.21 244.61 0.883 0.321 

Silver-haired bat Day 4 -109.82 227.77 0 0.638 

  Day + RH 5 -109.77 229.73 1.958 0.24 

California myotis Day 4 -182.99 374.11 0 0.577 

  Day + RH 5 -182.91 376.02 1.916 0.221 

Fringed myotis Day 4 -70.06 148.25 0 0.45 

  Day + RH 5 -70 150.19 1.939 0.171 

Yuma myotis Day + RH + Day x RH 6 -102.27 216.81 0 0.759 

Mexican free-tailed bat Day 4 -134.44 277.02 0 0.623 

 

Daytime maximum temperature had a positive significant effect (Pr(>|z|) < 0.05) on 

probability of presence for all eight species (Table 3; Figure 4). Probability of presence of big 

brown bat was positively associated with relative humidity. Probability of presence of Yuma 

myotis was positively associated with the interaction of daytime maximum temperature and 

relative humidity. Location also had a significant effect on the probability of nightly detection 

for four species. Hoary bat, silver-haired bat, and Mexican free-tailed bat were detected 

significantly more frequently at treetop, whereas fringed myotis were detected significantly more 

frequently at ground-level (Figure 5).  
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Table 3: GLMM model results from each species' best model for nightly presence as shown in Table 2 

and only including estimates and standard error for fixed effects which had a significant effect (Pr(>|z|) < 

0.05) on species presence. Explanatory variables that had a significant effect included: maximum daytime 

temperature (Day), relative humidity (RH), the interaction Day x RH, and detector location (Location).  

Species Variable Coefficient SE z value Pr(>|z|) 

Big brown bat Day 1.27 0.35 3.67 < .001  
RH 1.03 0.51 2.00 0.045 

Western red bat Day 0.58 0.21 2.80 0.005 

Hoary bat Day 1.26 0.21 5.98 < .001  
Location -1.24 0.21 -5.91 < .001 

Silver-haired bat Day 1.08 0.20 5.49 < .001  
Location -0.80 0.20 -4.10 < .001 

California myotis Day 0.69 0.16 4.39 < .001 

Fringed myotis Day 0.79 0.32 2.50 0.01  
Location 0.60 0.29 2.05 0.04 

Yuma myotis Day 0.63 0.27 2.32 0.02  
Day x RH 0.96 0.41 2.35 0.02 

Mexican free-tailed bat Day 1.29 0.20 6.43 < .001  
Location -1.28 0.18 -6.99 < .001 
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Figure 4: Plots showing how predicted probability of species detection is positively associated with 

daytime maximum temperature for all species when detector is (A) at ground-level and (B) when detector 

is at treetop with 95% confidence intervals. 
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Figure 5: Plots comparing how predicted probability of presence varies for ground detectors (blue line) 

and treetop detectors (red line) for the four species for which detector location had a significant effect: A) 

hoary bat (Laci), B) silver-haired bat (Lano), C) Mexican free-tailed bat (Tabr), and D) fringed myotis 

(Myth). 

 

Probability of detecting a species at 10.2⁰C, the mean winter daytime maximum 

temperature observed across the study sites, varied by species and detector location (Figure 6). 

California myotis was predicted to have a probability of presence of .36 (95% CI = .19-.57) at 

ground-level and .28 (95% CI = .13-.48) at treetop. Mexican free-tailed bat was predicted to have 

a probability of presence of .06 (95% CI = .03-.11) at ground-level and .47 (95% CI = .34-.58) at 

treetop. Hoary bat was predicted to have a probability of .04 (95% CI = .01-.07) at ground-level, 

compared to .31 (95% CI = .22-.41) at treetop; and silver-haired bat was predicted to have a 

probability of .04 (95% CI = .02-.08) at ground-level, compared to .19 (95% CI = .12-.26) at 

treetop. Big brown bat, western red bat, fringed myotis and Yuma myotis were all predicted to 

have a ≤ .08 probability of presence at either location at mean winter temperature.  
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Figure 6: Plot of predicted probability of detection with 95% confidence interval for each species under 

mean observed winter daytime maximum temperature. 

The maximum daytime temperature at which species were predicted to have a 50% 

probability of detection ranged from approximately 11 ⁰C (Mexican free-tailed bat at treetop) to 

approximately 22 ⁰C (Yuma myotis at ground-level), with most species not detected at ground-

level unless the temperature was at least 16 ⁰C (Figure 4). Based on the historical meteorological 

data (2010-2020), maximum daytime temperature has exceeded 16 ⁰C on an average of 24 days 

per winter, and maximum daytime temperature has exceeded 22 ⁰C on an average of 2 days per 

winter (Figure 7). The western red bat was predicted to have significantly less than 50% 

probability of being detected even at the highest observed daytime maximum temperature.  
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Figure 7: Plot of average number of days per winter at which maximum temperature historically exceeded 

temperature threshold values across the five study site locations from 2010-2020. Labels indicate the 

approximate temperature thresholds at which a 50% probability of detection at ground-level is predicted 

for the following species: California myotis (Myca), Mexican free-tailed bat (Tabr), silver-haired bat 

(Lano), big brown bat (Epfu), and Yuma myotis (Myyu).  

 

Discussion 

 Acoustic monitoring confirmed that at least 11 of the 13 species known to occur in the 

coast redwood ecosystem are present during the winter season. This included five species known 

to be elsewhere affected by WNS: big brown bat, fringed myotis, little brown bat, long-eared bat, 

and Yuma myotis, as well as two additional species known to carry the fungal pathogen: 

Mexican free-tailed bat and silver-haired bat (“White-Nose Syndrome,” 2022). By monitoring 

bat activity from  December-February, I was able to show that these species are active along the 

northern California coast during months that they are generally not detected at inland habitat 

(Johnson et al., 2017; Schwab, 2014). This extends other research findings that coastal 

populations are able to take advantage of milder environmental conditions to sustain higher 

activity during the winter than inland populations of the same species (Falxa, 2007; Grider et al., 

2016).  

All species had a significantly greater probability of detection at higher temperatures. 

This agrees with other studies that have found ambient temperature to be positively associated 

with winter bat activity (Klüg-Baerwald et al., 2016; Parker et al., 2020). Other researchers have 

found that even in colder areas where insect prey is not available during the winter, bat arousal is 

triggered by warmer temperatures when it is less energetically costly to be active, and the 

threshold for this activity varies by species (Klüg-Baerwald et al., 2016). Interestingly, maximum 

daytime temperature was a better predictor of winter bat activity than maximum nighttime 

temperature. This may suggest that the mechanism driving bat arousal and subsequent flight 

activity is daytime environmental conditions more so than the conditions that bats experience 
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when flying after sunset. However, these two variables were highly correlated, and more 

research is needed to investigate the precise environmental and physiological conditions 

underlying bat arousal from winter torpor.  

Regardless of the precise mechanism triggering bat activity, my findings suggest that 

scientists and natural resource managers can optimize winter bat surveys to detect species 

presence by strategizing acoustic monitoring to be on nights following warmer daytime 

temperatures. However, most species are not predicted to be detected by conventional ground-

level monitoring until maximum daytime temperature is at least 17 ⁰C (Figure 4). This 

temperature threshold is typically reached or exceeded on only 18 days per winter in this study 

area (Figure 7). Several species are not likely to be detected at ground-level until maximum 

daytime temperature is at least 20 ⁰C, which has historically occurred on fewer than 10 days per 

winter. This means that even though many of these species were also detected at lower 

temperatures over the course of the field study, they have a low probability of being detected on 

an individual night during the winter unless acoustic monitoring is conducted following these 

relatively rare warm days. 

Model results revealed that relative humidity had a significant effect on big brown bat, 

and the interaction of relative humidity and maximum daytime temperature had a significant 

effect on Yuma myotis. However, the direction of this effect was contrary to my hypothesis that 

bats would be less active and less likely to be detected under wetter conditions. Instead, these 

species were positively associated with relative humidity. One explanation for this is that these 

species are selecting to hibernate in habitat with higher relative humidity to reduce water loss 

during torpor. An alternative explanation for this positive association is that relative humidity is 

higher closer to the coast where the influence of marine fog is more intense than inland sites 

even within the coast redwood ecosystem (Torregrosa et al., 2016). In addition to fog increasing 

ambient humidity closer to the coast, other coastal effects on air temperature also contribute to a 

generally milder and more stable environment, and big brown bats and Yuma myotis may be 

more active in this milder coastal habitat. Future research to explore this association with relative 

humidity should include more study sites to mitigate the possibility that there are confounding 

site-level effects driving the presence of these species. Also, future research should untangle the 

influence of relative humidity from precipitation because it is possible that more species have a 

positive association with humidity, but that this relationship is obscured by rain events. Rain may 

suppress bat activity due to either the increased thermoregulatory costs of being wet or because 

rain drops interfere with bat perception of echolocation calls (Geipel et al., 2019; Voigt et al., 

2011)   

 Detector placement had a significant effect in four of the eight species models, with three 

species having a higher probability of detection at treetop and one species having a higher 

probability of detection at ground-level. Notably, the three species that models revealed to be 

more frequently detected at treetop were migratory species: hoary bat, Mexican free-tailed bat, 

and silver-haired bat. These species are known to have significant migration events through the 

study area during the spring and fall migration seasons (see Chapter 2). At some study sites, 

these species were detected on ≥ 90% of winter monitoring nights (Figure 1). This high 

frequency of detection suggests that at least some individuals of these migratory populations may 

overwinter in the study area and remain active. However, their winter presence in this ecosystem 

may be underestimated because previous winter monitoring has primarily been conducted using 

standard ground-level acoustic surveys, guano sampling of tree cavities, or mist netting from the 
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forest floor (Gellman and Zielinski, 1996; Weller and Stricker, 2012; but see Kennedy et al., 

2014;). Also, the little brown bat was exclusively detected at treetop, though it was too rarely 

detected to be modeled. Although the logistics of monitoring at treetop may not be feasible for 

conventional surveying, my finding of higher detections at treetop for these species is a pertinent 

reminder that standard ground-based monitoring may not capture all species that are active in a 

forest habitat on a survey night. Additional survey nights may be necessary to detect high-flying 

and other elusive species.    

Another key finding of my study was that the most frequently detected species was 

California myotis. Although this species is ubiquitous in the ecosystem, it is notable how much 

more frequently this species was detected as present compared to Yuma myotis, a similarly sized 

myotis species that is commonly detected at these study sites during other seasons. During my 

summer study in the coast redwood ecosystem, 42% of total identified calls were classified as 

California myotis and 41% of calls were classified as Yuma myotis (see Chapter 1). However, 

California myotis was detected on 43% of total ground-detector nights during the winter, 

whereas Yuma myotis was only detected on 16% of ground-detector nights. Modeling 

probability of detection suggests that this difference is even more pronounced at colder 

temperatures (Figure 4). At mean observed daytime maximum temperature, California myotis is 

predicted to have a 36% probability of detected presence, whereas Yuma myotis is predicted to 

have an 8% probability (Figure 6).  

Because California myotis and Yuma myotis emit similar high frequency echolocation 

calls, these two species are often combined into one species group in acoustic studies that rely on 

autoclassification software to reduce the probability of misidentification (Johnson et al., 2017; 

Schwab, 2014). My results suggest that this grouping obscures critical differences in species 

ecology. California myotis continues to be frequently detected in the coast redwood ecosystem 

during the winter, suggesting that this may be a species which uses shallow torpor in order to 

take advantage of warmer temperatures to rewarm passively and possibly forage (Turbill and 

Geiser, 2008). In contrast, Yuma myotis is rarely detected indicating that this species is also 

overwintering in the ecosystem but spends long periods in torpor. This has important 

conservation implications because Yuma myotis is a species which has been documented 

elsewhere in North America with symptoms of white-nose syndrome. Big brown bat, fringed 

myotis, and little brown bat are other WNS-susceptible species which I detected as present in the 

redwood ecosystem during the winter but rarely active.  

The propensity of California myotis to be active during the winter, even at relatively low 

temperatures, may confer greater resilience to white-nose syndrome than these other species. 

Studies in areas where little brown bat populations have been severely impacted by white-nose 

syndrome have found that the decline of this formerly abundant species led to other species 

shifting their spatial and temporal niche partitioning (Jachowski et al., 2014) or broadening their 

diet (Morningstar et al., 2019). However, it is unknown whether this competitive release will 

lead to population growth of other species, especially since bat populations also are vulnerable to 

climate change and anthropogenic disturbance (Jachowski et al., 2014). Further research should 

be done to understand the baseline foraging ecology of all of these species in order to detect 

whether this changes in the future, as this may be a helpful way to monitor future impacts of 

disease on cryptic bat communities. Importantly, future monitoring of bat overwintering habitat 

should also sample insect abundance because the availability of prey will likely be a key factor in 

the resilience of affected bat populations to mortality from WNS, especially for species which 
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are not normally active during the winter. Protecting coastal forest habitat where bats are active 

and able to forage during the winter may be an effective conservation strategy to not only 

support local bat populations but have wider implications for the conservation of species that are 

severely declining across North America. 
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Chapter 4:  

Managing working forests for wildlife conservation: Policy insights 

from bats in California redwood forests 

 
 Many of the world’s species need large landscape conservation. Achieving this goal is 

increasingly difficult as people transform earth’s surface by converting habitat into agricultural 

and other types of development.1 With 83% of the earth surface influenced by human use2 and 

the climate changing at an unprecedented rate it is not surprising we are in the midst of the 6th 

mass global extinction event.3 To protect migratory and wide-ranging species individual 

protected areas are often not big enough to prevent extirpation or to withstand extreme weather 

events. Creating new, large reserves is no longer feasible in most countries because small habitat 

fragments are all that remain. Conservation planners have shifted the focus to ecological 

networks comprised of protected areas connected by corridors.4 Large scale land conservation 

initiatives at the US state and federal level call for protecting 30% of the land, freshwater, and 

ocean environments by 2030 (referred to as ‘30x30’), with the focus on ecological networks to 

protect biodiversity and build resilience as well as provide increased access to open space for 

those that need it. While these plans acknowledge the importance of working lands to meet these 

goals there is little emphasis on what is required for working lands for conservation and the 

importance of investing in land stewardship.  

 While ecological networks remain vital for species conservation, protected areas will not 

serve their intended purpose if they are surrounded by inhospitable land uses that have spillover 

effects into protected habitats. Rapid climate change is also forcing many species to shift their 

distributions out of existing parks in pursuit of suitable climate types. Working lands provide 

important open space and can work for conservation while sustainably providing human 

resources. Working lands for conservation can contribute to large landscape conservation by 

providing habitats and resources for some species and by facilitating dispersal and climate 

change adaptation for others. At the same time, maintaining diversified working lands can aid in 

sustainable production of food, fiber, fuel, and timber and increase landscape-scale resilience to 

extreme events, including pest and disease outbreaks that are on the rise with climate change.  

Approximately one quarter of the world’s forests (1.2 billion hectares out of 4.06 billion 

hectares) are listed globally for the production of wood and non-wood forest products.5 

 
1 Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V. and Woolmer, G., 2002. The human 

footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which 

suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), pp.891-904. 
2 Id. 
3 Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated modern 

human–induced species losses: Entering the sixth mass extinction. Science Advances.  
4 Hilty, J., Worboys, G.L., Keeley, A., Woodley, S., Lausche, B., Locke, H., Carr, M., Pulsford, I., Pittock, J., 

White, J.W. and Theobald, D.M., 2020. Guidelines for conserving connectivity through ecological networks and 

corridors. Best practice protected area guidelines series, (30). 
5 FAO. 2020. Global Forest Resources Assessment 2020: Main report. Rome. 
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However, only 1.11 billion hectares are estimated to be primary forest,6 revealing that the 

world’s forests are regenerating from a history of human disturbance. In the California coast 

redwood ecosystem, one of the most iconic forests of the world, 93% of currently existing 

redwood forest has been logged at least once, and 35% continues to be managed by industrial 

timber companies.7,8 Hence, the way working forests are managed will determine the long-term 

persistence of forest-dwelling species.  

Here I provide insights from forest-dwelling bats in California’s coast redwood 

forests as a case study for where gaps exist in legal protections for wide-ranging wildlife 

reliant on working forests. There is an urgent need to understand how law and policy serves, or 

fails to serve, as an effective tool for supporting wildlife conservation across working forest 

lands in order to meet the goals of 30x30 and other large landscape conservation initiatives 

designed to stave off extinction and protect ecosystems from climate impacts. Identifying 

existing oversights and conflicts between forestry and animal conservation is a crucial first step 

to improving legal protections and strategizing management to better support biodiversity 

conservation. While some endangered species such as the spotted owl9 have influenced timber 

harvest planning most forest species are not accounted for in even sustainable timber harvest 

efforts. Bats, for example, range across vast areas of forests; many are migratory, and population 

decline is concerning especially with the immediate spread of a fatal disease, white-nose 

syndrome, and increasing drought conditions associated with climate change. Exploring what is 

known about bat conservation reveals where forest and wildlife regulations could be improved to 

make working forests work for conservation – a necessary step for large landscape conservation 

to be successful.  

 Taking a case study approach allows me to apply my understanding of forest bat ecology 

to assess the implications of different forest management regulations and thus identify what 

opportunities may exist to increase protections for sensitive species in the face of rising threats. 

Here I explore these questions by reviewing the laws and policies that either directly or indirectly 

protect wildlife on public and privately owned timberland in the coast redwood ecosystem. This 

includes protections that are afforded all wildlife under principles of public trust, as well as extra 

protections that are reserved for those species which state or federal laws have declared special. I 

take a closer look at two examples of how bats have been previously considered in relation to 

forest management protection. Finally, I recommend changes that could be made to make 

working forests work more effectively for bat conservation.  

 

 

 
6 Id. 
7 Burns, E.E., Campbell, R., Cowan, P.D., 2018. State of Redwoods Conservation Report. Save the Redwoods 

League. 
8 Cowan, P., Burns, E.E., Campbell, R., 2017. A GIS approach to identifying the distribution and structure of coast 

redwood across its range. 
9 Marcot, B.G., 1997. Of Spotted Owls, Old Growth, and New Policies: A History Since the Interagency Scientific 

Committee Report. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 



 

87 

 

Background: bats and redwood forests 

 At least thirteen species of bats inhabit coast redwood forests, and recent concerns about 

the vulnerability of California bat populations are bringing these cryptic creatures into the 

limelight. California bat populations are increasingly at risk from white-nose syndrome (WNS), a 

wildlife disease that has decimated North American bat populations and pushed several 

vulnerable species toward the brink of regional extinctions.10,11,12 Since its initial detection in 

New York in 2006, WNS has been spreading west, and in 2018, the fungal pathogen was 

detected for the first time in California. This has raised alarm about what the future holds for 

California bats. Six of the species found in coast redwood forests have elsewhere been identified 

with WNS symptoms, including the little brown bat (Myotis lucifugus), a once ubiquitous species 

which is now being reviewed by the U.S. Fish and Wildlife Service for listing under the 

Endangered Species Act.13 Three additional species have been found to carry the causative 

fungal pathogen,14 and even if they are not susceptible, may contribute to the spread of the 

pathogen in the ecosystem.  

Bats are also threatened by climate change. Bats have high rates of evaporative water 

loss,15 and their reproductive success can decline dramatically when local water sources drop 

below a critical threshold.16 Consequently, the higher temperatures and longer dry periods that 

are forecasted for California may lead to significant population declines.17,18 Historically, the 

coast redwoods have been buffered from the temperature extremes that other parts of the state 

experience. Coastal effects create a highly stable environment year-round19 and fog rolling in 

 
10 Lorch, J. M. et al. First Detection of Bat White-Nose Syndrome in Western North America. mSphere 1, e00148-

16 (2016). 
11 White-Nose Syndrome. Available at: https://www.whitenosesyndrome.org/static-page/bats-affected-by-wns. 
12 Hoyt, J.R., Kilpatrick, A.M. & Langwig, K.E. Ecology and impacts of white-nose syndrome on bats. Nat Rev 

Microbiol 19, 196–210 (2021). https://doi.org/10.1038/s41579-020-00493-5 
13 https://www.batcon.org/article/protecting-endangered-species/ 
14 White-Nose Syndrome. Available at: https://www.whitenosesyndrome.org/static-page/bats-affected-by-wns. 
15 Adams, R.A. Bat reproduction declines when conditions mimic climate change projections for western North 

America. Ecology 91: 2437–2445 (2010). 
16 Adams, R.A., Hayes, M.A. Water Availability and Successful Lactation by Bats as Related to Climate Change in 

Arid Regions of Western North America. Journal of Animal Ecology 77 (6): 1115–21 (2008). 
17 Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012-2014: GLOBAL 

WARMING AND CALIFORNIA DROUGHT. Geophysical Research Letters 42, 6819–6828 (2015). 
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from the ocean provides a valuable freshwater resource to the ecosystem.20,21,22,23 Therefore, 

coast redwoods might serve as a critical climate refugia. It is thus especially critical that we 

understand the habitat value of the redwood ecosystem for California bat populations as a whole.  

Conserving bats is especially challenging because, as the only volant mammals, bats 

regularly cross property boundaries. Furthermore, bats are far ranging in both their nightly 

foraging, and for some species, their seasonal migrations. Even individuals of the same species 

may have different roosting requirements depending on their sex and the stage of their life 

cycle.24,25,26 As a result, bats rely on extensive habitat, and their varying seasonal ecology needs 

generally cannot be met on one property.  

The coast redwood ecosystem has experienced a long history of intensive logging, and 

only 110,000 acres of old-growth forest remains.27 The other 95% of the habitat has been logged 

at least once, and while the heydays of the California timber industry may have passed, 77% of 

redwood forest is still privately owned and not protected.28 This has resulted in a fragmented 

ecosystem under a mosaic of different ownerships. Each of these ownerships is guided by 

different principles and subject to different regulations depending on the management type. 

These differences affect the habitat value of redwood forest and can have significant 

ramifications for the conservation of wildlife in the ecosystem. 

 

Wildlife as a public resource 

 In the United States, both federal and state courts have long held that wildlife resources 

are held in trust by government for the benefit of present and future citizens.29 U.S. wildlife 

policies date back to colonial America, when diminishing wildlife populations created a need for 
 

20 Hiatt, C., D. Fernandez, and C. Potter. 2012. Measurements of Fog Water Deposition on the California Central 

Coast. Atmospheric and Climate Sciences 2 (4): 525–31. 
21 Fischer, D.T., C.J. Still, C.M. Ebert, S.A. Baguskas, and A.P. Williams. 2016. Fog Drip Maintains Dry Season 

Ecological Function in a California Coastal Pine Forest. Ecosphere 7 (6). 
22 Sawaske, S.R., and D.L. Freyberg. 2015. Fog, Fog Drip, and Streamflow in the Santa Cruz Mountain of the 

California Coast Range. Ecohydrology 8 (4): 695–713. 
23 Dawson, T.E., 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117, 

476–485. 
24 Weller, T. J. and C.A. Stricker. Northern California redwood forests provide important seasonal habitat for 

migrant bats. 2012. In: Standiford, Richard B.; Weller, Theodore J.; Piirto, Douglas D.; Stuart, John D., tech. coords. 

Proceedings of coast redwood forests in a Changing California: A symposium for scientists and managers. Gen. 

Tech. Rep. PSW GTR-238. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S.  Department of 

Agriculture. pp. 447-457 238, 447–457. 
25 Gellman, S., and W. Zielinski. 1996. Use by bats of oldgrowth redwood hollows on the north coast of California. 

Journal of Mammalogy, 77: 255–265. 
26 Adams, R.A., and M.A. Hayes. 2008. Water Availability and Successful Lactation by Bats as Related to Climate 

Change in Arid Regions of Western North America. Journal of Animal Ecology 77 (6): 1115–21. 
27 "https://www.savetheredwoods.org/redwoods/coast-redwoods/"  
28 Id. 
29 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (770); Ex Parte Maier (1894) 103 Cal. 476, 483 
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regulations limiting methods of harvest and how many animals could be taken.30 The first federal 

U.S. court case to establish that wildlife were public resources, held by the state in trust for the 

people, was Martin v. Waddell (1842).31 The U.S. Supreme Court drew upon British law, in 

which the king held game animals in trust for the people, to conclude that the plaintiff did not 

have the right to exclude other people from taking oysters from a riparian area.32  

Subsequent court cases eventually applied the same principles to nonaquatic wildlife 

species. For example, in the landmark case State v. Rodman (1894), the Minnesota Supreme 

Court ruled that a person does not have a right to take or kill deer or other wild game except as 

authorized by state laws.33 In this case, the Court stated that "the ownership of wild animals, so 

far as they are capable of ownership, is in the state, not as proprietor, but in its sovereign 

capacity, as the representative, and for the benefit, of all its people in common."34 A key 

justification for this police power of that state was the principle that "the preservation of such 

animals as are adapted to consumption as food, or to any other useful purpose, is a matter of 

public interest”35 and thus the state was entrusted to “enact such laws as will best preserve such 

game, and secure its beneficial use in the future to the citizens."36 It is evident from this language 

that the focus of wildlife regulation in this case continued to be on consumable or otherwise 

“useful” animals.  

For much of the next century, the focus of wildlife regulation continued to be on fish and 

game species or other economically valuable animals. However, these same principles were 

ultimately extended to all wildlife species. In Betchart v. Department of Fish and Game (1984), 

the court stated in the first sentence of its ruling that “the state has a duty to protect and preserve 

wildlife.”37 The court referenced Fish and Game Code section 1801 and declared that it was 

“state's policy to conserve and maintain wildlife for citizens' use and enjoyment, for their 

intrinsic and ecological values, and for aesthetic, educational and nonappropriative uses.”38 The 

court’s reference of the non-appropriative public value of wildlife signifies how by this time both 

legislation and case law had evolved to encompass non-game species within state protections. 

While Fish and Game Code section 1801 defined the policies and objectives of the state 

 
30 North American Wildlife Policy and Law (2018); edited by Bruce D. Leopold, Winifred B. Kessler, James L. 

Cummins. Page 27 
31 Id. 
32 Martin v. Waddell, 41 U.S. 367 (1842) 
33 State v. Rodman, 58 Minn. 393 (1894) 
34 Id. 
35 Id. 
36 Id. 
37 Betchart v. Department of Fish Game, 158 Cal.App.3d 1104, 1106 (Cal. Ct. App. 1984)   
38 Betchart v. Department of Fish Game, 158 Cal.App.3d 1104, 1106 (Cal. Ct. App. 1984); Fish and Game Code 

Section 1801, subds. (a), (b), (c), (d) 
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regarding protection of wildlife, it is section 1802 that defined the jurisdiction of the California 

Department of Fish and Game (DFG)39 as “trustee for fish and wildlife resources.”40  

Although DFG was responsible for maintaining and conserving all wildlife, bat 

conservation remained largely out of the agency’s radar until 1986, when zoology professor Dan 

Williams reviewed the status of all mammals in California.41 Williams designated 36 species as 

“Mammals of Special Concern,” including seven California bat species. DFG responded by 

calling a meeting with Williams and several California bat researchers, and this led to the first 

state-funded research project for bats.42 Subsequent efforts were made to monitor for bats on 

public land, including at federal and state parks, and to include information on bats in public 

education.43 

However, despite over thirty years of efforts to raise attention to the vulnerability of 

California bat populations, including surveys indicating serious species declines,44 California bat 

species still elude standardized public regulations. For example, California Department of Fish 

and Wildlife (CDFW) provides public information on survey protocols for monitoring for many 

sensitive species, 45 but CDFW does not have standardized protocols for surveying bats. One 

reason for this is that it is inherently difficult to standardize best practices for surveying this 

diverse taxon. California has 25 native species, and these species have different behaviors and 

habitats, so survey protocols need to vary by species and project.46 This lack of state agency 

guidance on surveying protocols suggests one of the challenges that CDFW is having in fulfilling 

its duties as a trustee agency when it comes to advising on how human actions might impact bats. 

CDFW’s public recommendations regarding bats have instead focused on what to do if 

someone encounters a bat in their home and how to report a sick or dead bat.47 This reflects an 

additional challenge to the protection of bats in the form of negative stigmas as pests roosting in 

buildings and carriers of rabies. These perceptions of bats as nuisances and threats lower the 

estimation of their public value. Recently, public efforts to counter these stereotypes have gained 

traction and CDFW is part of this effort by recognizing bats as “vital to maintaining a healthy 

ecosystem” on the agency website.48 However, the value of bats has largely been based on the 

argument that bats provide important ecosystem services, such as insect control.49 Recent 

scientific studies have sought to quantify the ecosystem service value that bats provide by 

 
39 DFG’s name changed to California Department of Fish and Wildlife (CDFW) effective January 1, 2013 to reflect 

the department’s responsibilities to all wildlife species, not just its traditional responsibilities to game species. 

https://cdfgnews.wordpress.com/2012/12/31/department-name-change-effective-tomorrow/  
40 Fish and Game Code Section 1802 
41 (https://www.batcon.org/article/vbat-conservation-in-california/) 
42 (https://www.batcon.org/article/vbat-conservation-in-california/) 
43 Id. 
44 Id. 
45 https://wildlife.ca.gov/Conservation/Survey-Protocols#377281285-mammals 
46 Personal communication with CDFW personnel. May 7, 2020. 
47 Id. 
48 https://wildlife.ca.gov/Conservation/Mammals/Bats/Report-Colony 
49 Id. 
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suppressing insect pests which would otherwise damage agricultural crops.50 However, this 

ecosystem service justification for protecting bats carries less weight in the context of the 

redwood forest ecosystem because redwood trees already are naturally resistant to insect pests 

because of their thick bark that contains tannins, chemical substances which are toxic to most 

insects.51  

Given these challenges, what has determining that all wildlife species are protected in the 

public trust translated to in practice for California forest bats? It really depends on the 

management regime. Public trust considerations are built into the Forest Practice Act, the Forest 

Practice Rules, the California Environmental Quality Act, as well as other state and federal 

statutes protecting wildlife.52 In management types, such as California state parks, where the 

public mandate to protect natural resources takes precedence, these considerations hold more 

weight. In other management types, such as commercial timber properties, where conservation of 

wildlife must be weighed more critically against economic development and feasibility 

standards, bat conservation might be relegated to a back seat. In the context of working forests, 

where do laws protecting bats and other wildlife have teeth, and where are they only bluffing? 

 

The Forest Practice Act and Forest Practice Rules 

 For much of the history of the United States, the California timber industry faced few 

environmental regulations. The forest resources of the country seemed inexhaustible, and there 

was little understanding of how far the impacts of logging operations reached. A Board of 

Forestry was first established in California in 1885 and a state forester was appointed in 1905, 

but the original focus of these entities was fire protection.53 In 1945, the first California Forest 

Practices Act was enacted, and this resulted in the creation of four Forest District Boards which 

were each given the authority to establish forestry regulations for their district.54 However, these 

boards were primarily composed of timber industry representatives, and thus were effectively 

self-regulating.55  

This system began to change after a series of studies were conducted by California Senate 

committees between 1957-1967 that identified timber harvesting and related activities as a major 

threat to state watershed resources, and it was concluded that a “relatively simple elevation in the 

 
50 https://www.sciencedirect.com/science/article/abs/pii/S0167880920302486; 

https://pubmed.ncbi.nlm.nih.gov/21449963/ Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. 

Ecosystem services provided by bats. Ann N Y Acad Sci. 2011 Mar;1223:1-38. doi: 10.1111/j.1749-

6632.2011.06004.x. PMID: 21449963. 
51 https://www.nps.gov/parkhistory/online_books/shirley/sec6.htm 
52 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005. (774) 
53 Valachovic, Y., L. Quinn-Davidson and R. Standiford. 2015. Can the California Forest Practice Rules adapt to 

address conifer encroachment? In Standiford, Richard B.; Purcell, Kathryn L., tech. cords. 2015. Proceedings of the 

seventh California oak symposium: managing oak woodlands in a dynamic world. Gen. Tech. Rep. PSW-GTR-251. 

Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 579 p. 
54 Id. 
55 Id. 



 

92 

 

overall standards of forest practices would go far toward minimizing these long-term 

consequences.”56 These studies were closely followed by a court case that was instrumental in 

pushing the State Board of Forestry to reform. In Bayside Timber v. Board of Supervisors (1971), 

the Court held that the existing Forest Practice Act was unconstitutional because it delegated 

legislative power to individuals who had a financial interest in the industry that they were 

regulating.57 It was additionally declared in this court case that “few, if any, industries adversely 

affect the rights of others, and the public generally, as do timber and logging operations.”58 The 

California timber industry would no longer be permitted to proceed without significantly more 

safeguards to protect the state’s environment and other public resources. 

  The Z’berg-Nejedly Forest Practice Act of 1973 (FPA) which emerged from this 

litigation radically changed how private forests were managed in California. The new FPA 

overhauled the existing Board and created a new structure with nine members appointed by the 

California Governor, of which five seats were held by members of the public with no direct 

financial interest in the timber industry.59 The FPA has two purposes: to manage forest resources 

for “maximum sustained production of high-quality timber products,” and to protect natural 

resources and related values for the public.60 

 The Forest Practice Act and Forest Practice Rules together now serve as the certified 

regulatory program under the California Environmental Quality Act (CEQA) and therefore all 

timber harvest plans are reviewed under the FPA to meet CEQA compliance. In Natural 

Resources Defense Council, Inc v. Arcata National Corp. (1976), the court ruled that the 

California Department of Forestry’s (CDF) approval of a THP amounted to a project under 

CEQA and was therefore subject to the requirements of CEQA as well as the FPRs.61 The court 

determined that THPs were the “functional equivalent” of the Environmental Impact Report 

(EIR) process under CEQA, and were thus eligible to file the THP as effectively an abbreviated 

EIR for timber operations instead of a “full scale EIR.”62 The implications of this were realized 

in a couple of later court cases. 

To accomplish these new goals, a new regulatory framework was also enacted. The 

Board of Forestry was made responsible for defining and implementing the goals of the FPA by 

establishing regulations known as the Forest Practice Rules (FPRs).63 The FPRs established 

standards by which to evaluate whether site-specific forest practices are meeting the goals of the 

 
56 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (2).; Assembly Subcommittee on Forest Practices and Watershed Management, 

Man’s Effect Upon the California Watershed, 1965-1967  
57 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (2).; Bayside Timber v. Board of Supervisors (1971) 20 Cal. App. 3d 1. 
58 Bayside Timber v. Board of Supervisors (1971) 20 Cal. App. 3d 1. 
59 CA Pub. Res. Code § 731 
60 CA Pub Res Code § 4513  
61 Natural Resources Defense Council, Inc. v. Arcata National Corporation (1976) 59 Cal. App. 3d 959 
62 Natural Resources Defense Council, Inc. v. Arcata National Corporation (1976) 59 Cal. App. 3d 959; CA PRC § 

21080.5 
63 CA Pub Res Code §§ 4551-4555 
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FPA.64 Central to this regulation is the submission of Timber Harvesting Plans (THPs). Before a 

private landowner can legally harvest timber on their property, they must submit a detailed THP 

prepared by a Registered Professional Forester (RPF).65 The California Department of Forestry 

and Fire Protection (CAL FIRE), which works under the direction of the Board of Forestry, 

reviews these THPs for compliance with the FPA and the FPRs and decides whether to approve 

the proposed logging plan or to require modifications. There are specific standards in Article 9 of 

the FPRs that pertain to wildlife protection. For example, because dead trees are known to serve 

as valuable wildlife habitat, the FPRs generally require that all snags are retained within the plan 

area, though exceptions are made for hazard reduction purposes or insect and disease control.66 If 

CAL FIRE finds that a THP fails to meet all wildlife protection measures stipulated in the FPRs, 

then it is obligated to disapprove a plan.67 

 Although timber regulation is primarily overseen by CAL FIRE, other state agencies also 

advise in the review process.68 For example, the California Department of Fish and Wildlife 

(CDFW), formerly known as the Department of Fish and Game, is a key player in this process. 

CDFW serves as a designated trustee agency for the protection of the state’s wildlife resources. 

Under the FPRs, forest management is required to maintain functional wildlife habitat in 

sufficient condition for the existing wildlife community and to provide for habitat connectivity.69 

Additional restrictions exist for specific species.70 CDFW can provide its expertise to assist CAL 

FIRE in evaluating whether the proposed timber operations are complying with these 

requirements.71  

 However, there is a critical distinction between CAL FIRE’s role as the lead agency and 

the other agencies as advisors. Other agencies, such as CDFW, may make recommendations on 

THPs, but only the Director of CAL FIRE can deny a THP approval if the RPF refuses to 

incorporate these recommendations.72 Members of the review team do have the option to “non-

concur” in the approval recommendation, which does not overturn the decision but does require 

the CAL FIRE chairperson to defend the challenged recommendation in writing.73 The ability of 

CAL FIRE to override decisions about fisheries, wildlife, and water quality that are entrusted to 

other more qualified agencies significantly limits the power of other agencies to advise on forest 

management and is a major criticism of the FPRs.74  

Furthermore, other agencies are not required, nor do they have the organizational 

capacity, to participate in the review of every THP. CAL FIRE reviews between 500 to 1,400 

 
64 CA Pub Res Code § 4552 
65 CA Pub Res Code § 4581 
66 14 CCR § 939.1 
67 14 CCR §§ 897(c), 898.1 
68 14 CCR § 1037.5 
69 14 CCR § 897(1)(B-C) 
70 14 CCR §§ 895.1, 919.3, 939.3, 959.3 
71 14 CCR § 1037.5(b) 
72 14 CCR § 1037.5(f)(2) 
73 14 CCR § 1037.5(e) 
74 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (121). 
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THPs every year.75 Historically, most of these never received a pre-harvest site inspection from a 

representative of CDFW or another trustee agency.76 For example, one CDFW staff person 

reported that the target for on-site review in the North Coast district used to be only 10% of 

THPs.77 However, CDFW’s capacity to review THP’s has increased significantly since 

Assembly Bill No. 1492 was passed in 2012, and this percentage now appears to be much 

higher.78 AB 1492 established the Timber Regulation and Forest Restoration Fund in the State 

Treasury and imposed a 1% tax on the retail sale of lumber.79 The bill also stipulated that 

$1,500,000 from this new fund would be appropriated to CDFW to fund their review of THPs, 

instead of the funding coming out of the general fund, though it is unclear from the current 

statute whether that original amount is accurate.80  

Although more THPs are receiving on-site inspection from both CAL FIRE and advising 

agencies, this has not resolved concerns about the agencies’ capacity to conduct a review of 

environmental impacts because the scope of activity that needs to be reviewed is still enormous.  

For example, CAL FIRE may only have one day to inspect a 200-acre THP site.81 Yet, 99 

percent of submitted THPs will receive CAL FIRE approval with little challenge to their 

proposed plan and its evaluation of potential environmental impacts.82 If there is a tree important 

for wildlife habitat on the property and leaving the tree standing is not a risk to human safety, 

then the THP review team can generally persuade the landowner to not log the tree.83 However, 

this depends on the review team knowing that this potentially important resource was present, 

which might not be possible if they only have the capacity to do a cursory review.84 Given that 

neither CAL FIRE nor the other trustee agencies have the capacity to review all of these THPs 

with a fine tooth comb, the FPA may not be meeting the expectations set forth by  CEQA.   

Additionally, while the THP process is not exempted from the mitigation and monitoring 

program requirements of CEQA, the fulfillment of these obligations receives considerable 

agency discretion. CAL FIRE has fulfilled these requirements though the forest practice 

inspection and enforcement process outlined under the FPA.85 The FPA stipulates that forest 

inspections are to occur “as needed,” 86 but there are no mandatory inspections during the active 

period of timber operations. The FPA does mandate that CAL FIRE inspects the site within six 

months after the timber owner has filed a report that operations are completed,87 but at that point, 

 
75 https://www.fire.ca.gov/programs/resource-management/forest-practice/ 
76 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (116). 
77 Personal communication with agency personnel. May 7, 2021. 
78 Personal communication with agency personnel. May 10, 2021. 
79 CA PRC §§ 4629.3, 4629.5  
80 CA PRC §§ 4629.6(c) 
81 Personal communication with agency personnel. May 7, 2021. 
82 https://wildcalifornia.org/how-a-timber-harvest-plan-works 
83 Personal communication with agency personnel. May 4, 2021. 
84 Personal communication with agency personnel. May 7, 2021. 
85 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (466). 
86 PRC § 4604(a)(1)-(4) 
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any damage from the timber operations is already done and cannot be undone.88 This is in 

contrast to CEQA’s requirement that “the reporting or monitoring program shall be designed to 

ensure compliance during project implementation,”89 which presents lingering concerns about 

the adequacy of FPA measures for complying with CEQA’s environmental protection standards.   

 

Cumulative impact evaluation 

CEQA requires that cumulative impacts be considered in evaluating the environmental 

impact of a proposed project,90 but prior to 1991, consideration of cumulative effects was not 

incorporated in CAL FIRE’s review of THPs.91 CAL FIRE originally contended that minimizing 

the effects on each individual timber harvest plan was sufficient to address cumulative effects at 

the level of the larger landscape.92 However, it is now better understood that cumulative impacts 

are more than the sum of their parts. Environmental impacts may be synergistic, or the 

accumulation of effects may push the ecosystem past a critical threshold, with severe 

consequences for biological diversity and ecosystem integrity. In Californians for Native Salmon 

and Steelhead v. Department of Forestry (1990),93 the court noted that “the cumulative impact of 

past, present, and future logging activities is ‘a substantive criterion for the evaluation of the 

environmental impact’ of a proposed timber harvest.”94 This case was resolved by the Board of 

Forestry adopting the CEQA definition of cumulative impacts in the FPRs, and stipulating that 

“Individual THPs shall be considered in the context of the larger forest and planning watershed 

in which they are located, so that biological diversity and watershed integrity are maintained 

within larger planning units and adverse cumulative impacts…are reduced.”95   

 Requiring cumulative impact analysis might be especially important for assessing the 

adverse impacts of timber operations on forest bats. For example, the loss of roosting trees or 

valuable foraging habitat at the level of one THP might not account as a significant impact at the 

level of an individual THP. However, many of these private timber companies manage vast 

contiguous tracts of land or there might be other THPs in the area currently, historically, or 

projected in the future. The cumulative impacts of all of this activity might amount to a much 

greater threat to the viability of bat populations in the local area. Efforts to protect water quality 

and other aspects of the health of the watershed using cumulative impact analysis are also 

beneficial to bats because many species rely on aquatic insects as their primary prey source. 

 
88 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (466-467). 
89 PRC § 21081.6(a)(1) 
90 14 C.C.R. §§ 898, 15130, 15355  
91 Duggan, Sharon, and Tara Mueller. Guide to the California Forest Practice Act and Related Laws. Point Arena, 

CA: Solano Press Books, 2005 (239). 
92 Environmental Protection Information Center (EPIC) v. Johnson (1985) 170 Cal. App. 3d 
93 Californians for Native Salmon and Steelhead v. Department of Forestry (1990) 221 Cal. App. 3d 1419 
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95 14 C.C.R. § 897(b)(2) 
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However, the effectiveness of impact evaluation depends on understanding the ecological 

relationships. For example, there is a lot of emphasis in FPRs on late seral habitat, especially 

remnant old growth.96 There is much less discussion of how to review the impacts of additional 

disturbance on habitat that is younger but already providing important habitat value to bats and 

other wildlife species. For example, Chapter 1 results demonstrated that young, working forests 

provide habitat for at least 12 of the 13 bat species present in the coast redwood ecosystem, and 

seven of those species were present at every working forest site that was surveyed. It is still 

unknown to what extent these bats are roosting at these immature forest sites opposed to ranging 

into this habitat to forage. Regardless, by focusing on late seral habitat, THP review is 

disregarding the function of younger habitat for bat ecological needs and may therefore 

underestimate the impacts of new disturbance on the wildlife communities present.  

This oversight is also concerning in the context of how bats have different seasonal 

requirements and frequently shift roosts. Bats might not be on site at the time that a survey is 

conducted, but they may still depend on the habitat for seasonal aspects of their ecology. For 

example, Chapter 2 examination of bat seasonal activity patterns revealed significant peaks in the 

activity of four migratory species (hoary bats, Mexican free-tailed bats, silver-haired bats and 

western red bats) during the fall and spring across all forest management types. However, these 

four species are challenging to detect in redwood forests using standard, ground-level acoustic 

monitoring (Chapter 2), so their presence on a landscape might be undetected or vastly 

underestimated even if bat surveys are conducted. In fact, Chapter 3 results suggest that at least 

three of these migratory species are overwintering in coast redwood forests more than previously 

documented, and coastal habitat may be increasingly crucial to the resilience of bat populations 

threatened by emerging white-nose syndrome disease. Even if bats do not overwinter or 

otherwise roost for extensive periods of time at the site, the habitat might be a critical stopover 

site during migration periods. If this habitat value is not understood, then its loss will not be 

accounted for in cumulative impact evaluation, and impacts will not be adequately mitigated.  

 

Obligation to consider adverse impacts to all species 

 The application of CEQA to the regulation of private timber harvesting has also been 

instrumental in requiring that THPs consider the potential adverse impacts to all plant and animal 

species that may be affected by the project. Certain situations qualify as a “mandatory finding of 

significance.”97 These include findings that a project may “substantially reduce the habitat of a 

fish or wildlife species,” “threaten to eliminate a plant or animal community,” or “substantially 

reduce the number or restrict the range of an ‘endangered,’ ‘rare,’ or ‘threatened’ species.”98 

Under CEQA, “endangered” species are ones whose survival are in immediate jeopardy; “rare” 

and “threatened” species are ones that exist in such small numbers as to be at risk of 

endangerment if their environment worsens or is otherwise likely to become endangered within 

the foreseeable future.99 These definitions are more expansive than the qualifications for 
 

96 14 C.C.R. §§ 919.16, 939.16, 959.16 
97 CEQA § 15065  
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‘endangered,’ ‘rare,’ and ‘threatened’ under the federal and state endangered species acts which I 

will discuss later. Threats to species which are not formally listed under the federal and state 

endangered species acts may thus also qualify as mandatory findings of significance under 

CEQA, provided that there is “substantial evidence” that the species is at risk.100 

 How impactful is a mandatory finding of significance for wildlife? The answer seems to 

be that it depends on the species in question and on the larger context. At the least, a mandatory 

finding of significance forces the plan submitter and CAL FIRE to identify and analyze the 

impacts of the proposed THP on species and habitat, and CEQA requires feasible mitigation of 

significant adverse impacts.101 However, we enter a gray area when complete mitigation of the 

impacts is not deemed feasible. CAL FIRE may approve a THP that will have significant 

unmitigated impacts by adopting a “statement of overriding considerations.”102 This means that 

the agency has decided that the benefits of the plan being approved outweigh the unmitigated 

impacts on species and habitat.103 Notably, CAL FIRE can only decline to require full mitigation 

of significant impacts if the species is not listed by the federal Endangered Species Act (ESA) or 

the California Endangered Species Act (CESA).104 If there will be significant impacts on a 

species that is listed under ESA or CESA, incidental take of these species must first be 

authorized by the applicable federal or state wildlife agency, not by CAL FIRE, and issuing that 

incidental take permit is subject to the mitigations requirements of those laws.105  

  Three bat species found in coast redwood forests are classified by CDFW as “species of 

special concern” and seven additional species are included on CDFW’s “special animals list.”106 

These bat species should qualify for protections under CEQA in the event of a finding of 

significant impact. However, CEQA is rarely triggered for forest bats because these species tend 

to roost solitarily or in small groups, not in the large colonies that may be found under bridges. 

CEQA is intended to prevent population impacts on a species, not to protect individual animals. 

It is therefore not sufficient for a wildlife reviewer to find that a bat roost will be impacted by 

timber operations for that roost to qualify for protections under CEQA.107 The number of bats in 

the roost, the specific species, and most important, whether there is evidence that the roost is 

important for a maternity colony, would influence whether a finding of significant impact is 

ultimately found.108  
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It is significant to note that even if mitigation measures are not required under CEQA, the 

wildlife reviewer can often still provide guidance to the landowner and persuade them to 

voluntarily leave the roost tree standing.109 However, the value of leaving the tree standing might 

be limited if the surrounding habitat is altered or otherwise disturbed. One reason for this is that 

bats are extremely sensitive to the microclimate of their roosting environment and removing the 

surrounding trees might result in the protected tree ceasing to function as a viable roost. 

 

Federal and State Endangered Species Acts 

 The federal Endangered Species Act (ESA) is widely considered to be one of the most 

powerful environmental laws in existence.110 If you are looking for where the teeth are in 

wildlife protection, this is the body to check. The ESA was enacted because Congress was 

concerned that the value of endangered species was “incalculable” and therefore the protection 

of species from extinction should be afforded “first priority” by federal agencies over the 

agencies’ primary missions.111 This requirement is why CAL FIRE cannot adopt “overriding 

considerations” to avoid requiring full mitigation in a situation that would adversely impact an 

endangered species protected by the ESA.112 If an agency action, including approval of a THP, 

will significantly harm or harass a species listed under the ESA, then the action cannot proceed 

without approval from the USFW in the form of an Incidental Take Permit (ITP). An ITP can 

only be issued if it will not jeopardize the continued existence of a species, and all of the impacts 

of an authorized take must be “minimized and fully mitigated,”113 at least “to the maximum 

extent practicable.”114  

 The California Endangered Species Act (CESA) is modeled after ESA, but there are a 

few critical distinctions to note. One way in that CESA offers stronger environmental protections 

than ESA is that all impacts of the authorized take must not only not jeopardize the species and 

be minimized, impacts must also be “fully mitigated.”115 However, it is unclear how fully 

mitigated is defined here because there is also a feasibility standard for what mitigation measures 

may be required.116 When issuing an incidental take permit, the CDFW director must set the 

permit conditions based on what is “legally, technologically, economically and biologically 

practicable.”117 
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Another difference between the federal and state laws is that under the federal ESA, it is 

not necessary to establish that direct harm will affect individuals of a listed species in order to 

qualify as a “take.” Harm in the form of habitat modification that would impair the species’ 

ability to breed, shelter or otherwise fulfill its requirements for survival also qualifies.118 CESA, 

on the other hand, does not explicitly apply the take prohibition to the indirect effects of habitat 

modification.119 As an example of the ramifications related to this, according to the California 

Fish and Game Code, public agencies are recommended to not approve projects that would 

impair the essential habitat of a protected species.120 However, this is framed as being “the policy 

of the state,” rather than holding the force of law, and this recommendation is also subject to 

whether there are “reasonable and productive alternatives” available that are still consistent with 

the goals of the project being reviewed.121 The agencies may allow projects to proceed despite 

unmitigated significant environmental impacts based upon “economic, social, or other” 

factors.122,123   

This lack of direct protection of habitat under CESA is problematic for a species such as 

a bat which has highly sensitive roost requirements. Even if a bat species is listed under CESA 

and even if its roosting habitat is known, it might not be protected from the adverse impacts of 

timber projects. For example, according to a Cal Trans biologist, when there is a project by their 

agency that requires trees to be removed that potentially have tree roosting bats, the protocol is to 

remove the tree in stages.124 First, the limbs of the tree will be removed one night. Then, the tree 

will be removed the next day. The theory is that the limb removal will sufficiently disturb the 

bats that they will roost somewhere else the next night and not be harmed when the tree is cut 

down.125 A biologist for a water district described the same 2-day period protocol as being 

recommended when they write best management practices for tree removals.126 They also 

recommend that removal trees occur outside of bat maternity roosting season and months of 

winter torpor.127 However, they stipulate that if that is unavoidable then trees should just be 

removed when no rain is occurring or forecast and when daytime temperatures are at least 50⁰F 

to facilitate the bats moving from the roost.128 Such measures are presumed to protect the bats 

from direct harm and therefore are not subjected to additional mitigation, even though the loss of 

roost has made the bats vulnerable to predation and other risks of harm.   

 Furthermore, despite the powerful protections that both ESA and CESA provide special 

species, the scope of the protections for biodiversity conservation are limited by the endangered 

species listing processes. One point on which CESA does offer stronger environmental 
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protections than the federal ESA is the provisions that it extends to species that do not qualify for 

the highest level of listing. CESA candidate species which have not yet been approved for listing 

are subject to take provisions.129 Under the federal ESA, species do not qualify for take 

provisions until they have been formally listed. This is problematic because USFWS holds a list 

of candidate species for which there is “sufficient information on biological vulnerability and 

threats to support issuance of a proposed rule to list,” but ESA listing is precluded by a lack of 

agency resources to complete the full listing proposal.130 

Another nuance to consider is that species listing as “endangered” or “threatened” is 

based on scientific and commercial data of current species population and assessment of threats 

to population viability. One implication of this is that in order for a species to be listed, there 

must be sufficient available evidence to justify a listing determination.131 This population 

assessment can be a difficult standard to meet for species such as forest bats, whose nocturnal 

activity patterns make them especially cryptic. Many species of bats roost in large colonies in 

caves and buildings. That is not the case for the bat populations of the coast redwoods, which 

tend to roost individually or in small groups. Some species do roost in identifiable basal hollows 

in the trees or utilize human structures, such as bridges, on the forest property. But tree-roosting 

species, including hoary bat, western red bat and silver-haired bat, roost underneath sloughing 

bark, in crevices in the tree trunk or in the foliage itself. Their roosts are almost impossible to 

identify on the landscape, which makes it difficult to conduct a population assessment or to even 

recognize the impact that timber operations might have on unidentified bat roosts.  

Wildlife monitoring for many species includes capture or camera trapping methods that 

can be used to estimate abundance on the landscape. Although mist netting is technically a 

capture method too, bats can easily elude capture by flying over or around the nets, so it is not a 

reliable method for assessing population or even identifying all bat species present at a site. 

Acoustic monitoring is much more effective at detecting species presence, and passive acoustic 

monitors can be left a site for multiple nights to collect much more data than most capture 

studies. However, acoustic data can only be used to identify species and cannot distinguish 

between individuals. Ten bats passing by is indistinguishable from the same bat passing by ten 

times. Also, some bat species emit quieter calls than others, including Townsend’s big-eared bat. 

Acoustic monitors routinely fail to detect these species when they are present in the habitat. Bat 

survey protocols are thus limited in their power to assess species abundance. Even if bat 

monitoring provides evidence that populations are declining on the landscape, it might be 

difficult to substantiate this against the strong opposition of the timber industry and other 

interests that do not want to see bat species listed. 
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Natural Community Conservation Plans  

California’s Natural Community Conservation Planning (NCCP) program provides an 

alternative route for landowners to obtain CDFW authorization for take of listed species and 

species which might be listed in the future by voluntarily cooperating with agencies to develop 

early and broad-based planning for development projects and their impacts on wildlife.132 

Developing an NCCP agreement is substantially more involved than the CESA ITP application 

process, but it comes with multiple advantages. At the foremost, there are regulatory assurances 

that if actions approved by the NCCP agreement later result in the take of a listed species, there 

will not be further restrictions on development. For example, if an unlisted species covered by 

the NCCP is later listed under CESA, planned logging operations can proceed without requiring 

new ITP authorizations because incidental take was already authorized at the time of plan 

approval.133 Such regulatory assurances can be highly beneficial for landowners that need long-

term certainty of their investments. NCCP thus serves as an important tool to reconcile 

biodiversity conservation with economic development.134 

Whereas incidental take permits issued under ESA and CESA only focus on individual 

species, the NCCP program “promotes multispecies and multihabitat management and 

conservation” and “promotes the conservation of broad-based natural communities and species 

diversity.”135 Furthermore, while incidental take permits only apply to species listed under ESA 

and CESA, an NCPP agreement can cover non-listed species.136  The effectiveness of this 

approach for conservation depends on how well the entities making the plan, including the 

landowner, the regulating agencies, and their advisors, understand the ecological relationships at 

the site. To facilitate this, NCCP agreements must establish a process for the inclusion of 

independent scientific input to assist the department and plan participants in developing the 

plan.137 The plan must also include a monitoring program that integrates adaptive management 

strategies and that is periodically reviewed to ensure that the plan is conserving covered species 

and ecosystems as intended.138 Given the scope of these requirements, these agreements are 

therefore more appropriate for large landowners with contiguous holdings and substantial 

development interests, and there are several timber companies in the coast redwood ecosystem 

that meet that description. 

 One large timber company called Mendocino Redwoods Company (MRC) enacted a 

NCCP agreement in 2003. In keeping with NCCP planning agreement requirements, an 

independent scientific advisory committee reviewed the proposed plan, and their 

recommendations are kept publicly available. One detail that I found striking is that the 

committee recognized that no mitigation measures for bats were included in the NCCP proposal 

nor were any plans made to monitor for bats on the property, even though several sensitive bat 
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species were known to occur on adjacent lands.139 This omission was recognized but no change 

was recommended.  

The pallid bat was later included in 2017 in Mendocino Redwood Company’s Habitat 

Conservation Plan, which is the federal equivalent of an NCCP. It is the only bat species included in 

the list of “threatened, endangered, and sensitive species known to occur on MRC 

forestlands.”140 However, I included three of MRC’s properties in my own research study, and 

by using acoustic monitoring methods, I routinely detected other species considered to be 

sensitive by CBWG’s “special animals list.”141 It is possible that these species were not detected 

using the earlier non-acoustic survey methods. This is another example of how bats are being 

omitted from wildlife protections simply because the interested parties and the public cannot 

advocate to conserve a resource if they lack evidence that it is present, let alone endangered.  

 However, there is increasing recognition from private landowners and the public that bats 

are both a valued part of healthy ecosystems, and also a threatened public resource. The fact that 

the little brown bat, a formerly ubiquitous species, has been so decimated in the past decade by a 

wildlife disease that it is now being considered for listing under the federal ESA is a wake-up 

call for landowners who have never had to consider bats.142 The impacts of white-nose syndrome 

appear to be inevitably spreading west, with the pathogen first detected in California in July 

2019.143 Although no bats with the symptoms have been yet reported, CDFW noted that similar 

surveillance results have preceded white-nose syndrome occurrence in bat populations elsewhere 

by one to three years.144 If these species do ultimately become listed by ESA or CESA, this will 

have consequences in the form of extra costs and administrative hurdles for timber operations. 

This creates a timely opportunity to encourage timber owners to take advantage of the NCCP for 

the reasons that it was designed for: “protecting California’s natural diversity while reducing 

conflicts between protection of the state’s wildlife heritage and reasonable use of natural 

resources for economic development.”145 

 

The case of Townsend’s big-eared bat 

The Center of Biological Diversity had submitted a petition to the Fish and Game 

Commission in November 2012 to list Townsend’s as threatened or endangered pursuant to 

CESA. CDFW reviewed the best scientific information available and ultimately decided in June 

2016 that listing was not warranted. There had been some quantitative data suggesting massive 

declines of Townsend’s at certain colonies where they had previously been found, but when 

CDFW reviewed the distribution across the state, it seemed from the available data, of which the 
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quantitative data was mostly coming from public lands, that the species was still well-distributed 

across the state, so listing was not warranted at that time.146  

Nevertheless, when Townsend’s was being considered for listing, the agencies and timber 

industry began to get a look at what shape CESA-listing protections for bats might take. During 

the years in which Townsend’s status was being reviewed, measures for the species were 

beginning to be preemptively incorporated in THPs.147 One issue that came up in the redwood 

forest ecosystem is that timber owners would contend that they did not need to consider 

environmental impacts to Townsend’s because their THP area did not constitute likely roosting 

habitat. They argued that “a vast majority of the reporting sighting and various roost sites [of this 

species] are not found within the forested landscape.”148 Of course, one reason that Townsend’s 

presence was not being documented in forests, especially on private timber properties, is that no 

one was being required to survey for them. Townsend’s are an especially cryptic bat because 

they emit quieter calls than other species. However, I know from own acoustic monitoring 

surveys that Townsend’s are present in redwood habitat (Chapter 1) even though I have never 

identified a Townsend’s roost.  

The timber companies also noted in their THP that there were no trees with “extremely 

large (cavernous) basal cavities” known to occur in the THP area.149 As a result, they argued that 

the proposed THPs activities would not cause CESA “take” and “since there are no known 

feasible ways to even determine if such an event were to occur, we have chosen not to speculate 

further per CEQA.”150 However, the CAL FIRE wildlife reviewer pushed back on this 

assessment in the review comments because “there is no published literature that provides 

minimum dimensions of trees that can be utilized as maternity roosts or hibernacula.”151 The 

timber companies were citing a 2004 study that was not intended to provide criteria for what tree 

size qualifies as a potential Townsend’s roost.152 In fact, the author of the study communicated to 

the agency wildlife reviewer that “it is grossly inappropriate to use the data from my small, 

anecdotal, and observational General Note to suggest any sort of minimum dbh for potential 

roosts for any type of Townsend’s big-eared bat.”153 This highlights the challenge of protecting 

even listed species from adverse environmental impacts when there is a lack of data on the 

species’ habitat and ecological needs or understanding of how timber operations and other 

human activities impact these. These data gaps will need to be filled before sensitive bat 

populations can be effectively protected even under ESA or CESA. 
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Once CDFW decided that Townsend’s did not warrant listing, all of the provisions for 

assessing and mitigating impact that had begun to be developed were dissolved.154 The THPs 

that had included provisions for Townsend’s under the circumstance that it was listed did not 

need to fulfill those provisions. No further surveying for sensitive bat species has been required. 

 

Concluding recommendations 

When it comes to working forest lands in California, measures encoded in the Forest 

Practice Act, Forest Practice Rules, and CEQA provide some protection for wildlife, but as 

discussed, few direct protections exist for species such as bats. This is especially true for forest 

bat populations that do not roost in the large colonies found elsewhere, and thus might not 

qualify for protections under CEQA even if these species are being significantly impacted by the 

cumulative effects of many roost trees being logged without meaningful mitigation to provide for 

the persistence of the populations. If these species are ultimately listed under ESA or CESA, 

there will be new requirements to survey for bats on timber properties, but the recent history of 

when Townsend’s big-eared bat was considered for listing suggests that this process will not be 

easy for public agencies or private landowners. We need to revise forest management policy so 

that wildlife conservation is more compatible with economic development and other public values. 

 Improvements are needed to the Forest Practice Act to meet the intentions of CEQA and 

protect species across working forests. Current policy emphasizes protections for species already 

listed under endangered species acts. We need to be more proactive about protecting sensitive 

species before they reach the brink of population collapse and are unable to recover. However, 

we cannot effectively advocate for and protect species if we do not even know that they are 

present in the habitat. A key first step for reforming the Forest Practice Act is requiring that 

surveys are conducted for sensitive species such as bats before timber harvesting occurs. As 

illustrated by my dissertation research (Chapters 1-3), acoustic monitoring offers a non-invasive 

sampling approach to collect enormous amounts of data on bat species presence and activity 

patterns. Furthermore, tremendous efforts have recently been made to standardize best practices 

for monitoring North American bats, providing a helpful reference guide for conducting bat 

surveys across large landscapes.155 Although there are limitations to acoustic surveys, such as the 

inability to directly assess population abundance and the challenges of detecting quieter or 

higher-flying species, acoustic monitoring can nevertheless provide a beneficial understanding of 

species presence and population trends. Requiring this level of monitoring for non-listed species 

is especially justified for forest bats given both the challenges to accurately assessing the 
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population status of cryptic species and the known severity of threats, such as white-nose 

syndrome, already decimating North American bat populations.156 

 We need to not only have standardized methods for detecting species presence before 

timber harvesting occurs but also require standardized surveys afterwards to assess short and 

long-term impacts on species populations. These surveys should be reviewed by CDFW and 

CAL FIRE, and the records should be made publicly available. Not only would this inform 

future management of the surveyed property but developing this population assessment record 

would improve agency and general scientific understanding of how timber management affects 

bats on a larger scale. This could shed much needed light on the extent to which cumulative 

impacts of roosting or foraging habitat loss are impacting local and regional populations. 

 Importantly, bat surveys must be species-specific. Earlier research and monitoring studies 

in the redwood ecosystem often aggregated species because it was not possible to confidently 

identify calls to species, and this is still common practice in many places for the Myotis genus.157 

However, Chapter 1 findings demonstrate that species in this ecosystem vary in their sensitivity 

to both habitat disturbance and microclimate. For example, three species (pallid bat, long-eared 

myotis, and fringed myotis) were significantly positively associated with canopy height, which 

was used as a proxy for forest maturity. Townsend’s big-eared bat was only detected at mature 

forests sites, indicating this species may be especially sensitive to working forest habitat 

conditions. Other species may be better adapted to working forests because of their morphology 

or foraging style. This includes the California myotis, which is the species which was by far the 

most ubiquitous species at working forest sites in my year-round study of bat activity (Chapter 

2). If Myotis species and other acoustic guilds are not studied at the individual species level, then 

natural resource managers may fail to detect the species-specific impacts of forest management 

practices on local and regional bat populations.  

Another reason why it is important to monitor species-specific impacts is that Chapter 3 

findings of winter activity patterns suggest that species will also be differentially susceptible to 

emerging disease, and white-nose syndrome is projected to spread to this region in the near 

future.158 For example, the California myotis was the species most frequently detected as active 

in this ecosystem during the winter (Chapter 3). In contrast, the Yuma myotis, a species that was 

detected approximately as frequently as the California myotis during the summer (Chapter 1), 

was rarely detected as active during the winter. This difference in winter behavior has critical 

implications because Yuma myotis is known to be elsewhere affected by white-nose syndrome. 

These two species emit similar echolocation calls and are therefore often combined into one 
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species group in acoustic studies that rely on autoclassification software.159 This may seem like a 

prudent approach to reduce the probability of species misidentification, but given the differences 

in species’ susceptibility to emerging threats of climate change and disease, it is essential that 

scientists and natural resource managers take advantage of advancements in acoustic technology 

and classification software to monitor population changes at the individual species level. 

 Given that bats have distinct seasonal ecology requirements and occupy different 

landscapes at different times of the year, consideration must be given to the timing of surveys. 

The limited attention that has been given to protecting forest bat roosting habitat has mostly 

focused on summer maternity roosts. Protecting maternity roosts is absolutely essential for 

population persistence, but we must also identify and protect habitat that is critical for other 

aspects of species’ ecology. For example, male and female silver-haired bats sexually segregate 

for most of the year, but there is evidence that female silver-haired bats migrate to redwood 

forests to overwinter and mate.160 Redwood habitat is also known to provide important stopover 

and winter habitat for other sensitive tree bat species such as hoary bats.161 If we only survey 

redwood habitat during the summer, then we would underestimate the importance of the habitat 

for these species and may overlook how forest management affects these populations. 

 This more comprehensive understanding of sensitive species and their ecological needs 

should also be incorporated into natural community conservation plans and habitat conservation 

plans. NCCPs and HCPs can be powerful tools for reconciling biodiversity conservation with 

economic development goals. However, their effectiveness for conservation is contingent on 

what species are included and how well ecological relationships are understood. In the example 

of previous incidences of these plans being implemented in redwood forests, the timber company 

did not include any bat species in its 2003 NCCP and the only species that was included in the 

2017 HCP was the pallid bat. This species generally roosts in large basal hollows in the redwood 

forest, and it forages by gleaning prey from the ground, which is unusual for bats in this 

ecosystem. Bats have species-specific foraging and roosting needs, and species respond 

differently to silvicultural treatments.162 Therefore, including one bat species in the plan does not 

sufficiently cover the habitat needs of species with different ecological niches. On the other 

hand, there is evidence that some forest bat species might serve as umbrella species and targeting 

conservation efforts around these species might also protect species with overlapping niches.163 
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Incorporating monitoring for umbrella species alongside the most vulnerable species would 

extend the scope of NCCPs and HCPs to the larger natural community.  

 At the moment there is significant social and political momentum to mitigate the 

unprecedented impacts of climate change and other global threats to biodiversity through large-

scale conservation planning. This has been exemplified by the 30x30 movements that are 

occurring at global, national, and state scales.164,165 Integrating working landscapes will be key to 

meeting these goals. However, it is evident that for working lands to work for conservation then 

we need to resolve existing oversights and conflicts between land management and animal 

conservation. I have identified some of these gaps in protection in the context of bats in 

California redwood forests, and I have offered recommendations for how state and federal policy 

could be improved to better protect sensitive species. Such changes will require new efforts on 

the part of policymakers, agencies, and private landowners. However, given the enormity of the 

challenges that species are facing globally and in our local forests, such efforts seem a necessary 

price to pay to uphold the public trust and conserve biodiversity for the future.  

  

 
164 Dinerstein, E., Vynne, C., Sala, E., Joshi, A.R., Fernando, S., Lovejoy, T.E., Mayorga, J., Olson, D., Asner, G.P., 

Baillie, J.E.M., Burgess, N.D., Burkart, K., Noss, R.F., Zhang, Y.P., Baccini, A., Birch, T., Hahn, N., Joppa, L.N., 

Wikramanayake, E., 2019. A Global Deal For Nature: Guiding principles, milestones, and targets. Science 

Advances.  
165 Bill Text - AB-3030 Resource conservation: land and ocean conservation goals. [WWW Document], n.d. URL 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB3030 (accessed 1.19.22). 
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Conclusion 

     

My dissertation findings reveal details on the habitat value of coast redwood forests for 

13 bat species threatened by climate change and emerging disease. Importantly, I was able to 

take advantage of recent advances in ultrasonic detection equipment and call classification 

software to identify recorded bat calls to species. This enabled me to study species-specific 

responses to environmental conditions, as well as examine species seasonal ecology and bat 

community niche partitioning. This species-level understanding can critically inform 

vulnerability assessments and conservation planning for target species. Furthermore, by 

examining species ecology across multiple forest management types, my research addressed gaps 

that were left by historical research tendencies to focus on protected areas, especially old-growth 

groves. My results demonstrated that young, working forests also serve as critical habitat for 

sensitive bat populations, and managing these forests for bats may thus be as important as 

managing in mature, protected areas. 

In Chapter 1, I used a large landscape approach to study how bat species distribution and 

activity patterns relate to two key environmental factors: fog-dominated climate and forest 

maturity. I recorded bat acoustic activity over 407 summer monitoring nights at 20 sites that 

were selected to represent the spectrum of forest management types and the coastal gradient of 

fog-influenced climate. Temperature and relative humidity were actively logged at monitoring 

sites, and historical climatic moisture deficit data was obtained from the software application 

ClimateNA (Wang et al., 2016). To characterize forest habitat, I derived mean forest canopy 

height and stream channel area at the monitoring sites from remotely sensed data using ArcGIS. I 

developed generalized linear mixed models to relate species activity to these climate and habitat 

variables, and my findings demonstrated that the drivers influencing bat activity across the coast 

redwood landscape were species-specific. In particular, several species were significantly 

positively associated with forest canopy height, suggesting that these species may be more reliant 

than others on mature habitat. However, it is important to note that I studied bat activity based on 

echolocation behavior, and bats may forage long distances and return elsewhere to roost. 

Consequently, although my study demonstrates that working lands provide important foraging 

habitat, other studies have found that many species roost primarily in mature habitat features, 

such as old-growth basal hollows, and this difference in habitat value between mature and 

younger forests should not be discounted (Gellman and Zielinski, 1996; Mazurek and Zielinski, 

2004; Zielinski and Gellman, 1999). 

Another key finding of the Chapter 1 study was that while both inland and coastal sites 

functioned as important bat habitat, higher bat activity in the redwood ecosystem was associated 

with higher temperature. This was contrary to my hypothesis that bat activity would be higher 

closer to the coast, where temperatures are more stable and more moisture is available. One 

explanation for this is that habitat suitability is driven more by selection for optimal foraging 

conditions (Brooks et al., 2017). Future research should sample insect abundance across the 

study area to investigate how the positive association between bats and temperature relates to 

prey availability versus thermoregulatory costs. Also, it is possible that there was not a stronger 

association between bats and more coastal sites because the entire study area is functioning to 

buffer bats from the temperature extremes and drought stress experienced inland. A future 

research direction would be to study the influence of climate on California bats across an even 
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larger scale, including study sites outside of the coast redwood range. Future research should also 

evaluate whether these relationships hold as climate change increasingly stresses the redwood 

ecosystem, especially if coastal fog decreases in the future (Johnstone and Dawson, 2010).  

In Chapter 2, I conducted a year-round study at five sites, including both old-growth 

groves and young timberland, to examine bat seasonal ecology and vertical niche partitioning. 

By placing acoustic monitors at both ground and treetop, I discovered that treetop deployment 

methods significantly increased the detection of tree-roosting and migratory species across all 

forest management types and all seasons. This was a surprising finding for two reasons. The first 

is that while a previous study had observed significant changes in community composition across 

the vertical gradient of old-growth groves (Kennedy et al., 2014), I had not expected this finding 

to extend to much shorter younger forests. Also, I had expected differences between ground and 

treetop detections to primarily occur during the fall and spring migration seasons, when species 

are believed to move rapidly through the coast redwood ecosystem (Cryan, 2003; Weller and 

Stricker, 2012). Indeed, applying generalized additive models did illustrate strong seasonal peaks 

for these species during known migration periods, but treetop deployment methods also detected 

unexpectedly higher levels of migratory species activity across the year. Ground-level detectors 

frequently failed to detect migratory species presence on nights when species calls were detected 

in high volume at treetop. Instead, standard acoustic survey methods primarily detected clutter-

adapted Myotis species. This bias may limit understanding of how forest management practices 

differentially impact bat species and underestimate the value of coast redwood habitat for tree-

roosting and migratory species.    

Using generalized additive models to examine seasonal activity patterns also revealed 

peaks in species activity that did not coincide with migration behavior, including a peak in 

summer activity for many Myotis species. Other studies have also detected species-specific 

changes in activity patterns during the summer (Loeb et al., 2019), but the drivers behind these 

changes should be explored further. Future research could investigate how fluctuations in insect 

prey availability or maternity season behavior may relate to activity peaks.   

The findings included in Chapter 2 point to significant winter bat activity, but this 

activity may have been overlooked or underestimated by previous research because many species 

were primarily detected at treetop. Following up on this finding, Chapter 3 provides a deeper 

dive into the microclimatic conditions under which bats are detected during the winter. I 

developed species-specific generalized linear mixed models to relate ambient temperature and 

humidity variables to nightly detection of bat species presence. I included the location of the 

detector (ground or treetop) as an additional fixed effect. The modeling results indicated that 

maximum daytime temperature was a better predictor of winter bat activity than maximum 

nighttime temperature, which may suggest that the mechanism driving bat arousal and 

subsequent flight activity is daytime environmental conditions more so than the conditions that 

bats experience when flying at night. Future research should investigate the precise 

environmental and physiological conditions underlying bat arousal from winter torpor. 

Regardless of the mechanism, my findings of the daytime temperature thresholds at which 

different species are predicted to be active during the winter can be applied to help optimize 

survey efforts to detect target species.  

Perhaps most importantly, the research in Chapter 3 was able to extend findings from 

other ecosystems that coastal populations are able to take advantage of milder environmental 

conditions to sustain higher activity during the winter than inland populations of the same 
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species (Falxa, 2007; Grider et al., 2016). This has important implications because bats that are 

active during the winter are more resilient to white-nose syndrome than hibernating bats. My 

findings showed that there were tremendous differences in the propensity of species to be 

detected during the winter. This stark contrast was apparent between two species which were 

similarly ubiquitous during summer monitoring, the California myotis and the Yuma myotis, 

which suggests that differences in detection probability reflect real differences in overwintering 

strategies. Species that are detected frequently may use shallow torpor, instead of hibernating, in 

order to take advantage of warmer temperatures to rewarm passively and possibly forage (Turbill 

and Geiser, 2008). Whether and to what extent bats in the coast redwood ecosystem are able to 

successfully forage during the winter remains unknown, and this is a critical direction for future 

research. If bats are able to successfully forage during the winter, then even populations which 

normally hibernate may be resilient to mortality from white-nose syndrome. If that is the case, 

then the coast redwood ecosystem may be a priority habitat for bat conservation.  

In Chapter 4, a review of the laws and policies regulating California timberland 

management for wildlife is provided to assess to what extent regulations are effective in 

protecting sensitive bat species. I then discuss ways in which regulations could be improved to 

make working lands management more compatible with biodiversity conservation. Measures 

encoded in the Forest Practice Act, Forest Practice Rules, and California Environmental Quality 

Act provide some protection for wildlife, but few direct protections exist for species which are 

not listed under the state or federal Endangered Species Act. Furthermore, even if forest bats 

should qualify for additional protections, their cryptic nature makes it hard to assess species 

population status. We need to start by at least requiring forest managers to assess species 

presence on the landscape. Also, current survey and mitigation measures for bats focus on 

summer maternity roosts, and we need to also consider their vulnerability to forest management 

during other seasons. This dissertation research provides evidence that coast redwood forests are 

serving as critical habitat to bats throughout the year and protecting winter habitat may be 

especially important once white-nose syndrome reaches California bat populations. Three North 

American bat species are currently being reviewed for possible listing under the federal 

Endangered Species Act, including one species that is found in the coast redwood ecosystem. 

However, it would be better for both working forest management and bat conservation if we 

could resolve conflicts in managing for multiple public values before species reach the point of 

population collapse. To do so, we must continue to find new ways to integrate diverse land 

ownerships into future conservation planning.  
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Influence of climate and forest management on summer bat activity in coastal forests 
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Appendix S7: Residual diagnostics for GLMM species activity model results. 
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Appendix S1: Spearman’s rank correlation results between microclimate variables. 

 

Spearman's rank correlation (rho) correlation results between all examined microclimate variables, 

including daytime and nighttime statistics for humidity and temperature. Microclimate variables 

were significantly correlated so we selected only two variables, minimum nighttime humidity and 

minimum nighttime temperature, which minimized correlation to an acceptable level (-0.33) while 

representing the microclimate variables of interest.   



 

115 

 

 

Spearman's rank correlation (rho) correlation results for selected variables minimum nighttime 

humidity and minimum nighttime temperature.  
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Appendix S2: Spearman’s rank correlation results between all model variables. 

 

Spearman's rank correlation (rho) correlation results between all examined habitat variables.  

All metrics of canopy height (mean and maximum canopy height, within 100m and 250m radius 

of monitoring location) were significantly correlated with Timber Harvesting Plan record 

(proportion of area within 500m radius of monitoring location covered by any THP recorded 

since 1997). We selected Canopy_Mean_100 as the variable which minimized this correlation. 

However, we found that the correlation between this and the THP variable still caused model 

convergence issues. We therefore decided to omit the THP variable and only include mean 

canopy height within a 100 m radius of the monitoring location in our model because this 

variable best represented the differences in forest maturity and management history across all 

sites.   

Although Climatic Moisture Deficit (CMD) had a similar level of correlation with minimum 

nighttime humidity (-0.67), this did not cause convergence issues, so we retained both variables 

in the model. 

 

  



 

117 

 

Appendix S3: Results of canopy height analysis with example rasters. 

 

 

 

Figure 1: Plots comparing canopy height statistics (maximum, minimum and standard deviation) 

between sites based on results of raster analysis of LiDAR data in ArcGIS Pro. Sites are ordered 

by increasing values of 100m radius buffer results. Measurements are all in meters. 
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Figure 2: Examples of how canopy height within 100 m and 250 m radius of monitoring location 

were calculated from LiDAR data using ArcGIS Pro. Note how height < 2.0 m is filtered out to 

exclude bare earth or stream, as well as vegetation that is not trees. Histograms show how mean 

canopy height of sites might be similar even when distribution of canopy height is different. 
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Appendix S4: Results of stream area analysis with example rasters. 

Site Height Cutoff Stream Corridor Area 

Angelo 2019 1 2590 

Angelo 2020 0.75 2011 

Armstrong 1 1440 

JDSF_Caspar 0.5 1071 

JDSF_Hare 1 1042 

JDSF_James 1 582 

Lyme_NF10Mile 1 1720 

Lyme_Pudding 0.5 837 

Lyme_Redwood 0.5 674 

Lyme_SF10Mile 1 1257 

Mailliard Ranch 1 1083 

Mailliard SNR 1 881 

McApin (Richardson Reserve) 1 449 

MontgomeryWoods 0.75 1126 

MRC_Albion 0.75 1228 

MRC_MalloPass 2020 0.5 796 

MRC_MalloPass 2019 0.5 888 

MRC_Masonite 0.5 899 

RussianGulch 0.5 502 

TCF Big River New 1 1671 

TCF_BigRiver Original 1 1957 

TCF_Salmon Creek 0.5 790 

VanDamme 0.5 549 

 

Table shows results of stream area analysis conducted using ArcGIS Pro. We ultimately 

calculated the stream area within a 50 m radius of each monitoring location. 

For each study site, we added one-meter resolution digital elevation model data (USGS, 2020) to 

a map in ArcGIS Pro. We created a new point layer for ‘monitoring point’ at the point in the 

stream closest to where the detector was deployed. We also created a point layer upstream for 

where the stream would start. Using the DEM and point layers, we applied a flow accumulation 

model to produce rasters within various buffer distances (30m, 50m, and 100m) of the 

monitoring point that represented the relative height and width from the defined stream. We 

evaluated the resulting rasters to identify the appropriate height cutoff for the stream channel 

based on the stream topography modeled in ArcGIS Pro and our knowledge from being on the 

ground at the study site. Height cutoffs ranged from 0.5 to 1.0 m.  

We then re-ran the model with the final height cutoff and a buffer distance of 50 m from the 

monitoring point. This created a monitoring zone raster representing the desired stream channel 

and an associated attribute table with the raster area calculated. We used this area value as our 

measurement for stream area.   
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The following figures show examples of how stream area was calculated in ArcGIS Pro. 

 

Figure 3: MRC Albion stream area. This is an example of a relatively straightforward stream 

where changing the height cutoff had minimal impact on the stream area raster. Buffer distances 

of 30m, 50m and 100m were viewed to assess changes in stream topography before the final 

buffer distance of 50m was decided on for use in the models.  

 

Figure 4: Angelo 2019 monitoring location. Different height cutoff values were viewed to 

determine the best value for representing the stream area based on bank topography.  



 

121 

 

 

Figure 5: Angelo 2020 monitoring location. The 2020 monitoring location was shifted upstream 

from the original monitoring location and habitat covariates were also calculated for these 

monitoring coordinates.  

 

Figure 6: In some cases, issues occurred in the initial analysis of stream area due to errors in the 

downloaded Digital Elevation Model data. This was generally due to a road crossing or another 

anomaly causing the DEM value at that point to be calculated to be higher than actual. To correct 

this for the flow accumulation model, we created polygons to act as “breaches,” converted these 

features to rasters, and reclassified the rasters to have a value of 0. This value was substituted for 

the original DEM value at those points, and the resulting modified DEM raster was used in the 

analysis of stream error.   
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Figure 7: JDSF Caspar is another example of a site which required modification of the DEM 

raster due to road crossings causing errors in the flow accumulation model. The model flowed 

correctly once "breaches" were applied in the correct locations. Difference height cutoffs were 

also viewed before settling on a lower height cutoff value (0.5 m) as best representing the stream 

area.  
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Appendix S5: Plots comparing microclimate between sites and monitoring rounds. 

 

 

Figure 8: Example of differences in relative humidity and temperature between coastal and 

inland sites using data logged at JDSF James and JDSF Hare during the same monitoring dates. 

Note y-axes are on different scales. More variability between site microclimate is expressed by 

minimum humidity than other humidity statistics so this value for nighttime (sunset to sunrise) 

was used in our statistical models.  
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Figure 9: Example of how humidity and temperature vary at a site between similar Julian 

monitoring periods of different years and even between individual monitoring nights. Note y-

axes of 2019 and 2020 data are on different scales. 
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Figure 10: Boxplots comparing relative humidity statistics of sites for each monitoring round. 

Boxplot points indicate means and whiskers show minimum and maximum relative humidity of 

that monitoring round. 
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Figure 11: Boxplots comparing temperature statistics of sites for each monitoring round. Boxplot 

points indicate means and whiskers show minimum and maximum temperature of that 

monitoring round. 
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Appendix S6: GLMM species activity model summary results. 

Antrozous pallidus (Anpa) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.8819)  ( log ) 

Formula: Anpa ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

   439.2    483.3   -208.6    417.2      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8711 -0.2050 -0.0804 -0.0443  7.9112  

 

Random effects: 

 Groups Name        Variance  Std.Dev.  

 Julian (Intercept) 2.439e-07 0.0004939 

 Site.x (Intercept) 3.885e+00 1.9709552 

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        -3.7914     0.8677  -4.370 1.24e-05 *** 

s.Canopy_MEAN_100   1.1119     0.5389   2.063  0.03909 *   

s.sqrtStream        0.7465     0.5377   1.388  0.16504     

s.CMD               1.4667     0.6100   2.405  0.01619 *   

s.Night.MinHumid   -0.1445     0.2049  -0.705  0.48080     

s.Night.MinTemp     0.2140     0.2103   1.017  0.30894     

Year1               0.1032     0.1684   0.613  0.53984     

Model1             -0.6457     0.2460  -2.624  0.00868 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10 -0.219                                           

s.sqrtStrem  0.056  0.147                                    

s.CMD       -0.477  0.096  0.080                             

s.Nght.MnHm  0.015  0.249  0.189  0.163                      

s.Nght.MnTm -0.042 -0.184 -0.006 -0.121 -0.138               

Year1        0.062 -0.220 -0.063 -0.006 -0.052 -0.039        

Model1      -0.045  0.121 -0.198 -0.051 -0.148  0.012 -0.490 
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Eptesicus fuscus (Epfu) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.741)  ( log ) 

Formula: Epfu ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

  2100.8   2144.9  -1039.4   2078.8      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8369 -0.6226 -0.3588  0.2630  5.4287  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Julian (Intercept) 0.1933   0.4396   

 Site.x (Intercept) 0.6077   0.7796   

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        1.22820    0.20297   6.051 1.44e-09 *** 

s.Canopy_MEAN_100  0.27341    0.19046   1.436    0.151     

s.sqrtStream      -0.30918    0.19334  -1.599    0.110     

s.CMD              0.09753    0.20099   0.485    0.628     

s.Night.MinHumid  -0.62903    0.12400  -5.073 3.92e-07 *** 

s.Night.MinTemp    0.54929    0.10076   5.452 4.99e-08 *** 

Year1              0.05643    0.09423   0.599    0.549     

Model1            -0.12633    0.10189  -1.240    0.215     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10  0.003                                           

s.sqrtStrem  0.073  0.214                                    

s.CMD       -0.051 -0.020  0.027                             

s.Nght.MnHm  0.022  0.075  0.171  0.342                      

s.Nght.MnTm -0.053 -0.145 -0.043 -0.253 -0.171               

Year1        0.043 -0.077 -0.086 -0.088 -0.150  0.146        

Model1      -0.063  0.065  0.047 -0.017  0.055  0.010 -0.511 
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Lasiurus blossevillii (Labl) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.9042)  ( log ) 

Formula: Labl ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

 

     AIC      BIC   logLik deviance df.resid  

   807.8    851.9   -392.9    785.8      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8944 -0.4132 -0.2100 -0.0790  8.7227  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Julian (Intercept) 0.1061   0.3257   

 Site.x (Intercept) 2.3642   1.5376   

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        -1.7169     0.4209  -4.079 4.51e-05 *** 

s.Canopy_MEAN_100   0.1479     0.3819   0.387 0.698622     

s.sqrtStream        0.3202     0.3752   0.853 0.393401     

s.CMD               0.5852     0.3935   1.487 0.137015     

s.Night.MinHumid   -0.6658     0.1807  -3.684 0.000230 *** 

s.Night.MinTemp     0.6351     0.1304   4.868 1.13e-06 *** 

Year1              -0.4589     0.1365  -3.361 0.000777 *** 

Model1             -0.3400     0.1422  -2.391 0.016787 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10 -0.033                                           

s.sqrtStrem -0.002  0.239                                    

s.CMD       -0.179 -0.003  0.025                             

s.Nght.MnHm  0.049  0.086  0.128  0.267                      

s.Nght.MnTm -0.087 -0.104  0.040 -0.162 -0.219               

Year1        0.097 -0.051 -0.122 -0.061 -0.266 -0.002        

Model1       0.020  0.049 -0.066 -0.042  0.037 -0.113 -0.419 
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Lasiurus cinereus (Laci) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.5187)  ( log ) 

Formula: Laci ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

   456.2    500.3   -217.1    434.2      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.6925 -0.2644 -0.1015 -0.0490  5.5759  

 

Random effects: 

 Groups Name        Variance  Std.Dev.  

 Julian (Intercept) 2.696e-08 0.0001642 

 Site.x (Intercept) 6.889e+00 2.6246755 

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)       -3.67174    0.91929  -3.994 6.49e-05 *** 

s.Canopy_MEAN_100  0.09781    0.69948   0.140 0.888799     

s.sqrtStream       0.80954    0.66166   1.223 0.221146     

s.CMD              1.08417    0.70482   1.538 0.123996     

s.Night.MinHumid   0.26259    0.26271   1.000 0.317525     

s.Night.MinTemp    0.68081    0.17583   3.872 0.000108 *** 

Year1             -0.57718    0.21520  -2.682 0.007316 **  

Model1            -0.23881    0.20389  -1.171 0.241490     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10 -0.148                                           

s.sqrtStrem -0.225  0.361                                    

s.CMD       -0.311  0.071  0.113                             

s.Nght.MnHm -0.138  0.058  0.191  0.268                      

s.Nght.MnTm -0.070 -0.092  0.063 -0.099 -0.182               

Year1        0.193  0.010 -0.207 -0.085 -0.234 -0.108        

Model1      -0.052  0.030 -0.021  0.007  0.049 -0.025 -0.541 
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Lasionycteris noctivagans (Lano) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.8884)  ( log ) 

Formula: Lano ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

 

     AIC      BIC   logLik deviance df.resid  

  1725.5   1769.6   -851.7   1703.5      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9194 -0.5821 -0.3824  0.2500  4.4264  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Julian (Intercept) 0.5443   0.7378   

 Site.x (Intercept) 1.9359   1.3914   

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        0.42899    0.34226   1.253 0.210059     

s.Canopy_MEAN_100 -0.33799    0.32667  -1.035 0.300839     

s.sqrtStream       0.88298    0.32071   2.753 0.005901 **  

s.CMD              0.31592    0.32589   0.969 0.332353     

s.Night.MinHumid   0.17943    0.15474   1.160 0.246244     

s.Night.MinTemp    0.37443    0.11268   3.323 0.000891 *** 

Year1             -0.23587    0.10624  -2.220 0.026402 *   

Model1             0.08781    0.10276   0.855 0.392815     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10  0.028                                           

s.sqrtStrem  0.045  0.320                                    

s.CMD       -0.064 -0.031  0.060                             

s.Nght.MnHm -0.028  0.077  0.149  0.249                      

s.Nght.MnTm -0.041 -0.113 -0.026 -0.158 -0.154               

Year1        0.047 -0.022 -0.232 -0.105 -0.249  0.129        

Model1      -0.039  0.016  0.065  0.051  0.083 -0.045 -0.526 

  



 

132 

 

Myotis evotis (Myev) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(2.0437)  ( log ) 

Formula: Myev ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

  1405.4   1449.5   -691.7   1383.4      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.2380 -0.6262 -0.3830  0.3848  7.7496  

 

Random effects: 

 Groups Name        Variance  Std.Dev.  

 Julian (Intercept) 2.325e-08 0.0001525 

 Site.x (Intercept) 1.755e+00 1.3247494 

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)   

(Intercept)        0.05519    0.30872   0.179   0.8581   

s.Canopy_MEAN_100  0.72180    0.33386   2.162   0.0306 * 

s.sqrtStream      -0.04181    0.27886  -0.150   0.8808   

s.CMD              0.27746    0.30193   0.919   0.3581   

s.Night.MinHumid   0.05300    0.09021   0.588   0.5569   

s.Night.MinTemp    0.11914    0.06657   1.790   0.0735 . 

Year1             -0.03222    0.07859  -0.410   0.6818   

Model1            -0.09077    0.08912  -1.018   0.3085   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10 -0.029                                           

s.sqrtStrem  0.066  0.344                                    

s.CMD       -0.078  0.003  0.018                             

s.Nght.MnHm -0.017  0.151  0.104  0.166                      

s.Nght.MnTm  0.006 -0.157  0.025 -0.111 -0.114               

Year1        0.036 -0.120 -0.115 -0.004 -0.117 -0.024        

Model1      -0.048  0.173 -0.029  0.001  0.018  0.010 -0.639 
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Myotis thysanodes (Myth) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.6181)  ( log ) 

Formula: Myth ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

  1301.4   1345.5   -639.7   1279.4      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.2187 -0.5652 -0.2964  0.2355  7.3864  

 

Random effects: 

 Groups Name        Variance  Std.Dev.  

 Julian (Intercept) 5.640e-08 0.0002375 

 Site.x (Intercept) 2.013e+00 1.4186595 

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)    

(Intercept)       -0.39474    0.34394  -1.148  0.25109    

s.Canopy_MEAN_100  0.89767    0.32569   2.756  0.00585 ** 

s.sqrtStream       0.47499    0.33133   1.434  0.15169    

s.CMD              0.96084    0.32893   2.921  0.00349 ** 

s.Night.MinHumid  -0.12720    0.09411  -1.352  0.17652    

s.Night.MinTemp    0.12713    0.07891   1.611  0.10715    

Year1             -0.12107    0.08596  -1.408  0.15900    

Model1             0.18344    0.09890   1.855  0.06363 .  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10 -0.065                                           

s.sqrtStrem -0.008  0.469                                    

s.CMD       -0.123 -0.014  0.054                             

s.Nght.MnHm -0.008  0.201  0.175  0.140                      

s.Nght.MnTm -0.006 -0.120 -0.038 -0.105 -0.132               

Year1        0.060 -0.226 -0.211  0.018 -0.049 -0.076        

Model1      -0.078  0.186 -0.025 -0.043 -0.096  0.147 -0.607 
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Myotis volans (Myvo) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.2578)  ( log ) 

Formula: Myvo ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

  1755.1   1799.2   -866.6   1733.1      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.1165 -0.5955 -0.3138  0.3822  6.0908  

 

Random effects: 

 Groups Name        Variance  Std.Dev.  

 Julian (Intercept) 1.003e-08 0.0001002 

 Site.x (Intercept) 2.748e+00 1.6575737 

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        0.58864    0.38172   1.542  0.12306     

s.Canopy_MEAN_100  0.43331    0.38277   1.132  0.25762     

s.sqrtStream       1.11351    0.35217   3.162  0.00157 **  

s.CMD              0.20181    0.37222   0.542  0.58769     

s.Night.MinHumid  -0.10747    0.11407  -0.942  0.34609     

s.Night.MinTemp    0.24976    0.08058   3.100  0.00194 **  

Year1              0.15645    0.08911   1.756  0.07915 .   

Model1            -0.74372    0.10267  -7.244 4.36e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10  0.011                                           

s.sqrtStrem  0.037  0.455                                    

s.CMD       -0.062 -0.055  0.007                             

s.Nght.MnHm -0.008  0.207  0.144  0.152                      

s.Nght.MnTm -0.002 -0.134  0.044 -0.103 -0.143               

Year1        0.014 -0.153 -0.186 -0.039 -0.197 -0.016        

Model1       0.000  0.077 -0.031 -0.003  0.022  0.126 -0.607 
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Myotis yumanensis (Myyu) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.1051)  ( log ) 

Formula: Myyu ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

 

     AIC      BIC   logLik deviance df.resid  

  4198.9   4242.9  -2088.4   4176.9      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0378 -0.7222 -0.2090  0.3978  4.8511  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Julian (Intercept) 0.1707   0.4131   

 Site.x (Intercept) 2.7359   1.6541   

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)        4.07638    0.37969  10.736   <2e-16 *** 

s.Canopy_MEAN_100  0.57129    0.46099   1.239   0.2152     

s.sqrtStream       0.21762    0.33204   0.655   0.5122     

s.CMD             -0.45259    0.36804  -1.230   0.2188     

s.Night.MinHumid  -0.17027    0.10578  -1.610   0.1075     

s.Night.MinTemp    0.03960    0.07511   0.527   0.5981     

Year1              0.15368    0.08152   1.885   0.0594 .   

Model1             0.01423    0.09044   0.157   0.8750     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10  0.014                                           

s.sqrtStrem  0.077  0.270                                    

s.CMD       -0.051 -0.110  0.014                             

s.Nght.MnHm -0.010  0.051  0.080  0.153                      

s.Nght.MnTm -0.003 -0.073 -0.013 -0.085 -0.145               

Year1        0.020 -0.260 -0.146  0.010 -0.179  0.080        

Model1      -0.027  0.251 -0.007 -0.034  0.022 -0.016 -0.631 
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Tadarida brasiliensis (Tabr) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.7069)  ( log ) 

Formula: Tabr ~ s.Canopy_MEAN_100 + s.sqrtStream + s.CMD + s.Night.MinHumid +   

    s.Night.MinTemp + Year + Model + (1 | Site.x) + (1 | Julian) 

   Data: ModelData 

Control: ctrl 

 

     AIC      BIC   logLik deviance df.resid  

   789.8    833.9   -383.9    767.8      396  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.7696 -0.4719 -0.2801 -0.1436  7.7239  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Julian (Intercept) 0.0438   0.2093   

 Site.x (Intercept) 1.2271   1.1077   

Number of obs: 407, groups:  Julian, 62; Site.x, 20 

 

Fixed effects: 

                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)       -1.37575    0.30640  -4.490 7.12e-06 *** 

s.Canopy_MEAN_100 -0.21882    0.29079  -0.752  0.45176     

s.sqrtStream       1.12394    0.28619   3.927 8.59e-05 *** 

s.CMD              0.62885    0.30326   2.074  0.03811 *   

s.Night.MinHumid   0.03649    0.16857   0.216  0.82862     

s.Night.MinTemp    0.34691    0.12919   2.685  0.00725 **  

Year1             -0.43687    0.13396  -3.261  0.00111 **  

Model1             0.11963    0.14099   0.848  0.39618     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s.C_ME s.sqrS s.CMD  s.N.MH s.N.MT Year1  

s.C_MEAN_10  0.074                                           

s.sqrtStrem -0.126  0.179                                    

s.CMD       -0.192 -0.088  0.155                             

s.Nght.MnHm -0.035  0.027  0.200  0.340                      

s.Nght.MnTm -0.088 -0.103  0.030 -0.157 -0.116               

Year1        0.154  0.026 -0.236 -0.102 -0.212 -0.094        

Model1      -0.039  0.022 -0.020  0.012  0.077 -0.018 -0.482 
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Appendix S7: Residual diagnostics for GLMM species activity model results. 

 

Antrozous pallidus (Anpa) 
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Eptesicus fuscus (Epfu) 
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Lasiurus blossevillii (Labl) 
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Lasiurus cinereus (Laci) 
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Lasioncyteris noctivagans (Lano) 
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Myotis evotis (Myev) 
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Myotis thysanodes (Myth) 
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Myotis volans (Myvo) 
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Myotis yumanensis (Myyu) 
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Tadarida brasiliensis (Tabr) 
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Appendix S1: Plots of species presence and activity data by site. 

Acoustic data from all detector locations was first auto-classified using SonoBat call 

classification software then manually vetted to species. The resulting ‘confidently identified call’ 

data was used to calculate species presence and activity. Species presence is calculated as the 

total number of nights that at least one call was identified. Activity is the total number of 

identified calls.  

In all of the following plots, red bars represent ‘ground’ detector locations and 

blue bars represent ‘treetop’ detector locations. 
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Appendix S2: Species calls as proportion of total calls at detector location 

I calculated the total number of calls at each of the ten detector locations, then I computed the 

proportion of each species calls relative to all calls identified at that detector location. The result 

is presented in the following table and plots. 

 Angelo Armstrong Caspar Lyme Mallo Pass 

Species G T G T G T G T G T 

Anpa 0.3% 0.1% 1.5% 0.2% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 

Coto 0.0% 0.0% 1.8% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 

Epfu 3.0% 0.2% 8.5% 1.4% 0.8% 3.4% 1.8% 5.1% 0.6% 4.3% 

Labl 3.5% 2.5% 0.3% 0.3% 0.1% 0.0% 0.1% 1.0% 0.2% 1.4% 

Laci 1.4% 10.8% 0.5% 7.1% 0.4% 7.7% 0.1% 4.7% 0.1% 2.8% 

Lano 6.7% 30.1% 1.9% 11.5% 0.9% 48.0% 3.1% 22.1% 0.3% 10.2% 

Myca 9.2% 3.3% 27.5% 3.1% 77.9% 20.5% 82.1% 31.3% 69.8% 17.4% 

Myev 2.1% 0.4% 1.5% 0.0% 0.0% 0.1% 5.2% 2.1% 0.1% 0.1% 

Mylu 35.4% 2.4% 0.3% 0.2% 0.1% 0.3% 0.1% 1.0% 0.1% 0.2% 

Myth 1.0% 0.6% 39.3% 0.5% 0.1% 0.1% 3.0% 2.8% 0.3% 0.2% 

Myvo 0.7% 0.1% 0.9% 0.0% 0.0% 0.0% 1.4% 0.3% 0.1% 0.1% 

Myyu 25.0% 0.6% 14.0% 0.7% 19.5% 1.6% 2.2% 3.5% 28.0% 8.3% 

Tabr 11.7% 48.9% 2.0% 74.9% 0.1% 18.3% 0.9% 26.2% 0.4% 55.0% 

 

 

In all of the following plots, red bars represent ‘ground’ detector 

locations and blue bars represent ‘treetop’ detector locations. 
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Appendix S3: GAM species activity model prediction plots 

After fitting each GAM species activity model in R, I used function predict.gam( ) to generate new 

model predictions. I then plotted model predictions as fitted splines with 95-percent confidence 

intervals alongside actual detection activity indicated by point data. 
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Appendix S4: ANOVA results for GAM species activity models. 

For each species model that converged, I applied analysis of variance (ANOVA) to test whether 

model terms (Site, Location, and Site:Location interaction) were significant. This was computed 

using function anova( ) from package ‘car.’ The output is presented below with significant model 

terms (p-value < 0.05) indicated in red font. 

 

Family: Negative Binomial(0.394)  

Link function: log  

 

Formula: 

Epfu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq  p-value 

Site           4 43.784 7.11e-09 

Location       1  2.024    0.155 

Site:Location  4 53.678 6.15e-11 

 

Approximate significance of smooth terms: 

                                             edf Ref.df  Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground      4.366 22.000  57.730  < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     2.061 23.000   7.482  0.01171 

s(Julian):SiteByLocationArmstrong_Ground   5.511 22.000  55.876  < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  2.793 22.000  14.636  0.00062 

s(Julian):SiteByLocationCaspar_Ground      5.488 23.000  25.230 5.35e-05 

s(Julian):SiteByLocationCaspar_Treetop     3.883 22.000  46.148  < 2e-16 

s(Julian):SiteByLocationLyme_Ground        4.722 23.000  29.683 3.64e-06 

s(Julian):SiteByLocationLyme_Treetop       5.692 23.000  50.287  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   3.835 23.000  12.520  0.00600 

s(Julian):SiteByLocationMalloPass_Treetop  5.135 23.000 108.567  < 2e-16 
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Family: Negative Binomial(0.938)  

Link function: log  

 

Formula: 

Labl ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4  84.97 < 2e-16 

Location       1   0.27 0.60364 

Site:Location  4  17.75 0.00138 

 

Approximate significance of smooth terms: 

                                                edf    Ref.df  Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground     8.868e+00 2.200e+01 137.185  < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop    1.056e+01 2.300e+01  83.881  < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground  4.867e+00 2.200e+01  12.138   0.0195 

s(Julian):SiteByLocationArmstrong_Treetop 4.194e+00 2.200e+01   8.744   0.0540 

s(Julian):SiteByLocationCaspar_Ground     1.828e+00 1.400e+01   2.410   0.2600 

s(Julian):SiteByLocationCaspar_Treetop    9.535e-04 2.200e+01   0.001   0.5900 

s(Julian):SiteByLocationLyme_Ground       1.073e-03 2.300e+01   0.001   0.5716 

s(Julian):SiteByLocationLyme_Treetop      5.256e+00 2.300e+01  27.601 1.21e-05 

s(Julian):SiteByLocationMalloPass_Ground  4.418e+00 2.300e+01  33.761  < 2e-16 

s(Julian):SiteByLocationMalloPass_Treetop 6.015e+00 2.300e+01 103.972  < 2e-16 
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Family: Negative Binomial(0.495)  

Link function: log  

 

Formula: 

Laci ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4 113.30  <2e-16 

Location       1 215.36  <2e-16 

Site:Location  4  84.58  <2e-16 

 

Approximate significance of smooth terms: 

                                              edf  Ref.df Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground      2.2138 22.0000  8.693  0.00748 

s(Julian):SiteByLocationAngelo_Treetop    11.5617 23.0000 97.311  < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground   1.1772 22.0000  2.359  0.11685 

s(Julian):SiteByLocationArmstrong_Treetop  0.4713 22.0000  0.571  0.29028 

s(Julian):SiteByLocationCaspar_Ground      5.5926 23.0000 17.472  0.00250 

s(Julian):SiteByLocationCaspar_Treetop     5.1388 22.0000 26.919 1.83e-05 

s(Julian):SiteByLocationLyme_Ground        2.1445 23.0000  7.216  0.01645 

s(Julian):SiteByLocationLyme_Treetop       6.8583 23.0000 42.960  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   2.8367 23.0000 16.369  0.00024 

s(Julian):SiteByLocationMalloPass_Treetop  5.8432 23.0000 32.513 3.52e-06 
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Family: Negative Binomial(0.502)  

Link function: log  

 

Formula: 

Lano ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq  p-value 

Site           4 141.98  < 2e-16 

Location       1 280.04  < 2e-16 

Site:Location  4  73.59 3.96e-15 

 

Approximate significance of smooth terms: 

                                                edf    Ref.df  Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground     6.198e+00 2.200e+01  36.150 2.08e-06 

s(Julian):SiteByLocationAngelo_Treetop    1.095e+01 2.300e+01 138.307  < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground  5.533e+00 2.200e+01  37.997  < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop 2.213e+00 2.200e+01   7.850    0.013 

s(Julian):SiteByLocationCaspar_Ground     2.979e-03 2.300e+01   0.001    0.825 

s(Julian):SiteByLocationCaspar_Treetop    4.973e+00 2.200e+01 135.605  < 2e-16 

s(Julian):SiteByLocationLyme_Ground       6.986e+00 2.300e+01  57.069  < 2e-16 

s(Julian):SiteByLocationLyme_Treetop      8.065e+00 2.300e+01 127.937  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground  5.355e-04 2.300e+01   0.000    0.675 

s(Julian):SiteByLocationMalloPass_Treetop 4.782e+00 2.300e+01  76.352  < 2e-16  
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Family: Negative Binomial(0.835)  

Link function: log  

 

Formula: 

Myca ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4 541.57 < 2e-16 

Location       1 226.31 < 2e-16 

Site:Location  4  28.72 8.9e-06 

 

Approximate significance of smooth terms: 

                                             edf Ref.df Chi.sq p-value 

s(Julian):SiteByLocationAngelo_Ground      6.452 22.000  41.50  <2e-16 

s(Julian):SiteByLocationAngelo_Treetop     6.895 23.000 112.79  <2e-16 

s(Julian):SiteByLocationArmstrong_Ground   9.538 22.000  99.54  <2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  6.454 22.000  42.18  <2e-16 

s(Julian):SiteByLocationCaspar_Ground     12.698 23.000 289.56  <2e-16 

s(Julian):SiteByLocationCaspar_Treetop    12.644 22.000 119.93  <2e-16 

s(Julian):SiteByLocationLyme_Ground        7.291 23.000 193.34  <2e-16 

s(Julian):SiteByLocationLyme_Treetop      15.007 23.000 222.69  <2e-16 

s(Julian):SiteByLocationMalloPass_Ground   5.609 23.000 136.23  <2e-16 

s(Julian):SiteByLocationMalloPass_Treetop 11.824 23.000 142.75  <2e-16 
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Family: Negative Binomial(7.454)  

Link function: log  

 

Formula: 

Myev ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4 17.892  0.0013 

Location       1  0.122  0.7265 

Site:Location  4  4.908  0.2969 

 

Approximate significance of smooth terms: 

                                                edf    Ref.df  Chi.sq p-value 

s(Julian):SiteByLocationAngelo_Ground      9.861683 22.000000 112.227 < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     3.001695 23.000000  13.525 0.00132 

s(Julian):SiteByLocationArmstrong_Ground   9.983409 22.000000  58.457 < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  1.516746 16.000000   0.988 0.51066 

s(Julian):SiteByLocationCaspar_Ground      0.002608 23.000000   0.002 0.54385 

s(Julian):SiteByLocationCaspar_Treetop     1.592154 22.000000   2.997 0.12824 

s(Julian):SiteByLocationLyme_Ground        9.200876 23.000000 205.462 < 2e-16 

s(Julian):SiteByLocationLyme_Treetop       4.890580 23.000000  54.854 < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   1.850878 23.000000   4.925 0.04705 

s(Julian):SiteByLocationMalloPass_Treetop  2.359304 23.000000   8.705 0.00884 
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Family: Negative Binomial(0.954)  

Link function: log  

 

Formula: 

Mylu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4 17.189 0.00178 

Location       1  0.019 0.89159 

Site:Location  4  7.735 0.10178 

 

Approximate significance of smooth terms: 

                                             edf Ref.df  Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground      8.641 22.000 279.960  < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     5.050 23.000  85.100  < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground   3.883 22.000  12.562 0.006633 

s(Julian):SiteByLocationArmstrong_Treetop  2.488 22.000   7.972 0.016387 

s(Julian):SiteByLocationCaspar_Ground      2.455 23.000   6.554 0.035204 

s(Julian):SiteByLocationCaspar_Treetop     2.749 22.000  10.434 0.006346 

s(Julian):SiteByLocationLyme_Ground        2.114 23.000   5.485 0.045929 

s(Julian):SiteByLocationLyme_Treetop       7.284 23.000  46.598  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   5.256 22.000  12.862 0.018935 

s(Julian):SiteByLocationMalloPass_Treetop  3.360 23.000  16.314 0.000459 
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Family: Negative Binomial(1.909)  

Link function: log  

 

Formula: 

Myth ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq  p-value 

Site           4  56.07 1.94e-11 

Location       1  43.61 4.01e-11 

Site:Location  4  56.28 1.75e-11 

 

Approximate significance of smooth terms: 

                                              edf  Ref.df  Chi.sq p-value 

s(Julian):SiteByLocationAngelo_Ground      8.9789 22.0000  52.528 < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     8.1791 23.0000  42.729 < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground  12.0239 22.0000 346.168 < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  3.7153 22.0000   8.230 0.04737 

s(Julian):SiteByLocationCaspar_Ground      2.8523 23.0000   8.161 0.02206 

s(Julian):SiteByLocationCaspar_Treetop     0.1581 22.0000   0.165 0.34525 

s(Julian):SiteByLocationLyme_Ground        4.3904 23.0000  78.361 < 2e-16 

s(Julian):SiteByLocationLyme_Treetop       6.9207 23.0000  51.650 < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   3.8169 23.0000  10.756 0.01421 

s(Julian):SiteByLocationMalloPass_Treetop  2.5482 23.0000  13.856 0.00058 
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Family: Negative Binomial(0.951)  

Link function: log  

 

Formula: 

Myyu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq  p-value 

Site           4 455.32  < 2e-16 

Location       1  84.86  < 2e-16 

Site:Location  4  31.93 1.97e-06 

 

Approximate significance of smooth terms: 

                                                edf    Ref.df Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground     12.697502 22.000000 322.19  < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     4.170296 23.000000  22.40 4.87e-05 

s(Julian):SiteByLocationArmstrong_Ground   8.324374 22.000000 181.58  < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  0.001452 22.000000   0.00    0.959 

s(Julian):SiteByLocationCaspar_Ground      8.360795 23.000000 180.21  < 2e-16 

s(Julian):SiteByLocationCaspar_Treetop     7.959832 22.000000  62.18  < 2e-16 

s(Julian):SiteByLocationLyme_Ground        7.207267 23.000000  49.61  < 2e-16 

s(Julian):SiteByLocationLyme_Treetop      12.526689 23.000000  82.75  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   6.684637 23.000000 188.66  < 2e-16 

s(Julian):SiteByLocationMalloPass_Treetop 13.476777 23.000000 189.40  < 2e-16 
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Family: Negative Binomial(0.627)  

Link function: log  

 

Formula: 

Tabr ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  

    Site * Location 

 

Parametric Terms: 

              df Chi.sq p-value 

Site           4  311.5  <2e-16 

Location       1  297.1  <2e-16 

Site:Location  4  157.2  <2e-16 

 

Approximate significance of smooth terms: 

                                                edf    Ref.df  Chi.sq  p-value 

s(Julian):SiteByLocationAngelo_Ground      8.588468 22.000000  64.341  < 2e-16 

s(Julian):SiteByLocationAngelo_Treetop     8.046312 23.000000 170.799  < 2e-16 

s(Julian):SiteByLocationArmstrong_Ground   4.642589 22.000000  38.342  < 2e-16 

s(Julian):SiteByLocationArmstrong_Treetop  9.246812 22.000000  60.093  < 2e-16 

s(Julian):SiteByLocationCaspar_Ground      0.003856 23.000000   0.002    0.563 

s(Julian):SiteByLocationCaspar_Treetop     4.172467 22.000000  98.421  < 2e-16 

s(Julian):SiteByLocationLyme_Ground        3.398507 23.000000  29.778  < 2e-16 

s(Julian):SiteByLocationLyme_Treetop      10.081585 23.000000 200.980  < 2e-16 

s(Julian):SiteByLocationMalloPass_Ground   5.987727 23.000000  31.810 4.26e-06 

s(Julian):SiteByLocationMalloPass_Treetop  4.714715 23.000000  64.136  < 2e-16 
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Appendix S5: GAM species activity model summary results. 

I used generalized additive models (GAMs) to examine species activity in relation to study site 

and detector position over the 12-month study period. Summary results for all thirteen species 

models, including the three which did not converge, is included below. 

 

Family: Negative Binomial(0.715)  
Link function: log  
 
Formula: 
Anpa ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                  Estimate Std. Error z value Pr(>|z|) 
(Intercept)         -35.18  634119.16       0        1 
Site1                32.01  634119.16       0        1 
Site2                32.81  634119.16       0        1 
Site3              -108.60 2536476.66       0        1 
Site4                30.02  634119.16       0        1 
Location1           -13.18  634119.16       0        1 
Site1:Location1      13.53  634119.16       0        1 
Site2:Location1      13.26  634119.16       0        1 
Site3:Location1     -60.57 2536476.66       0        1 
Site4:Location1      13.11  634119.16       0        1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     3.302e+00     22 24.504 7.33e-06 *** 
s(Julian):SiteByLocationAngelo_Treetop    2.096e+00     23  5.295   0.0489 *   
s(Julian):SiteByLocationArmstrong_Ground  5.838e+00     22 55.250  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop 3.658e-05     22  0.000   0.8046     
s(Julian):SiteByLocationCaspar_Ground     1.526e+00     22  0.926   0.5349     
s(Julian):SiteByLocationCaspar_Treetop    1.175e-11     23  0.000   1.0000     
s(Julian):SiteByLocationLyme_Ground       1.985e+00     23  2.997   0.1944     
s(Julian):SiteByLocationLyme_Treetop      2.329e+00     23  4.867   0.0828 .   
s(Julian):SiteByLocationMalloPass_Ground  1.869e+00     22  1.372   0.4959     
s(Julian):SiteByLocationMalloPass_Treetop 1.888e+00     16  3.115   0.1807     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.365   Deviance explained = 64.3% 
-REML = 258.47  Scale est. = 1         n = 1413  
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Family: Negative Binomial(2.212)  
Link function: log  
 
Formula: 
Coto ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                  Estimate Std. Error z value Pr(>|z|) 
(Intercept)         -84.65  547941.60       0        1 
Site1                78.40  547941.60       0        1 
Site2                60.32  547941.60       0        1 
Site3                31.13 2191766.33       0        1 
Site4              -248.32  547941.92       0        1 
Location1            53.85  547941.60       0        1 
Site1:Location1     -51.06  547941.60       0        1 
Site2:Location1     -52.63  547941.60       0        1 
Site3:Location1    -102.34 2191766.33       0        1 
Site4:Location1     262.11  547941.92       0        1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df Chi.sq p-value     
s(Julian):SiteByLocationAngelo_Ground     3.339e-05     22  0.000   0.561     
s(Julian):SiteByLocationAngelo_Treetop    2.567e+00     23  4.825   0.112     
s(Julian):SiteByLocationArmstrong_Ground  2.557e+00     13 26.805 9.8e-07 *** 
s(Julian):SiteByLocationArmstrong_Treetop 1.709e+00     16  1.229   0.487     
s(Julian):SiteByLocationCaspar_Ground     1.033e-11     23  0.000   1.000     
s(Julian):SiteByLocationCaspar_Treetop    1.747e+00     22  2.312   0.251     
s(Julian):SiteByLocationLyme_Ground       4.092e+00     20  4.506   0.350     
s(Julian):SiteByLocationLyme_Treetop      1.592e+00     23  1.493   0.385     
s(Julian):SiteByLocationMalloPass_Ground  2.294e+00     22  3.520   0.187     
s(Julian):SiteByLocationMalloPass_Treetop 7.432e-01     23  1.017   0.244     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.732   Deviance explained = 83.8% 
-REML = 127.52  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.394)  
Link function: log  
 
Formula: 
Epfu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.65415    0.08073  -8.102 5.38e-16 *** 
Site1           -0.54018    0.15948  -3.387 0.000706 *** 
Site2            0.63651    0.14668   4.340 1.43e-05 *** 
Site3           -0.46810    0.19740  -2.371 0.017728 *   
Site4           -0.19271    0.16102  -1.197 0.231364     
Location1        0.11486    0.08073   1.423 0.154836     
Site1:Location1  0.83565    0.15948   5.240 1.61e-07 *** 
Site2:Location1  0.39682    0.14668   2.705 0.006823 **  
Site3:Location1 -1.08700    0.19740  -5.506 3.66e-08 *** 
Site4:Location1 -0.35670    0.16102  -2.215 0.026740 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                            edf Ref.df  Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     4.366     22  57.730  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop    2.061     23   7.482  0.01171 *   
s(Julian):SiteByLocationArmstrong_Ground  5.511     22  55.876  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop 2.793     22  14.636  0.00062 *** 
s(Julian):SiteByLocationCaspar_Ground     5.488     23  25.230 5.35e-05 *** 
s(Julian):SiteByLocationCaspar_Treetop    3.883     22  46.148  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Ground       4.722     23  29.683 3.64e-06 *** 
s(Julian):SiteByLocationLyme_Treetop      5.692     23  50.287  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground  3.835     23  12.520  0.00600 **  
s(Julian):SiteByLocationMalloPass_Treetop 5.135     23 108.567  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.287   Deviance explained = 50.2% 
-REML = 1659.4  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.938)  
Link function: log  
 
Formula: 
Labl ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)       -7.133      9.252  -0.771    0.441 
Site1              6.842      9.253   0.739    0.460 
Site2              3.439      9.274   0.371    0.711 
Site3            -20.149     37.003  -0.545    0.586 
Site4              4.377      9.255   0.473    0.636 
Location1         -4.804      9.252  -0.519    0.604 
Site1:Location1    5.302      9.253   0.573    0.567 
Site2:Location1    4.329      9.274   0.467    0.641 
Site3:Location1  -18.453     37.003  -0.499    0.618 
Site4:Location1    4.079      9.255   0.441    0.659 
 
Approximate significance of smooth terms: 
                                                edf Ref.df  Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     8.868e+00     22 137.185  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop    1.056e+01     23  83.881  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground  4.867e+00     22  12.138   0.0195 *   
s(Julian):SiteByLocationArmstrong_Treetop 4.194e+00     22   8.744   0.0540 .   
s(Julian):SiteByLocationCaspar_Ground     1.828e+00     14   2.410   0.2600     
s(Julian):SiteByLocationCaspar_Treetop    9.535e-04     22   0.001   0.5900     
s(Julian):SiteByLocationLyme_Ground       1.073e-03     23   0.001   0.5716     
s(Julian):SiteByLocationLyme_Treetop      5.256e+00     23  27.601 1.21e-05 *** 
s(Julian):SiteByLocationMalloPass_Ground  4.418e+00     23  33.761  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Treetop 6.015e+00     23 103.972  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.522   Deviance explained =   75% 
-REML = 968.56  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.495)  

Link function: log  
 
Formula: 
Laci ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)     -0.50019    0.08764  -5.708 1.15e-08 *** 
Site1            1.20731    0.11527  10.474  < 2e-16 *** 
Site2            0.33586    0.14279   2.352   0.0187 *   
Site3           -0.06154    0.16625  -0.370   0.7112     
Site4           -1.29663    0.23648  -5.483 4.18e-08 *** 
Location1       -1.28606    0.08764 -14.675  < 2e-16 *** 
Site1:Location1  0.99967    0.11527   8.673  < 2e-16 *** 
Site2:Location1 -0.14174    0.14279  -0.993   0.3209     
Site3:Location1 -0.40381    0.16625  -2.429   0.0151 *   
Site4:Location1 -0.23790    0.23648  -1.006   0.3144     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                              edf Ref.df Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground      2.2138     22  8.693  0.00748 **  
s(Julian):SiteByLocationAngelo_Treetop    11.5617     23 97.311  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground   1.1772     22  2.359  0.11685     
s(Julian):SiteByLocationArmstrong_Treetop  0.4713     22  0.571  0.29028     
s(Julian):SiteByLocationCaspar_Ground      5.5926     23 17.472  0.00250 **  
s(Julian):SiteByLocationCaspar_Treetop     5.1388     22 26.919 1.83e-05 *** 
s(Julian):SiteByLocationLyme_Ground        2.1445     23  7.216  0.01645 *   
s(Julian):SiteByLocationLyme_Treetop       6.8583     23 42.960  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground   2.8367     23 16.369  0.00024 *** 
s(Julian):SiteByLocationMalloPass_Treetop  5.8432     23 32.513 3.52e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.418   Deviance explained = 51.9% 
-REML = 1987.5  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.502)  
Link function: log  
 
Formula: 
Lano ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      0.68925    0.06215  11.091  < 2e-16 *** 
Site1            1.13635    0.09729  11.680  < 2e-16 *** 
Site2           -0.50217    0.14497  -3.464 0.000532 *** 
Site3            0.14704    0.11150   1.319 0.187242     
Site4           -0.77354    0.15430  -5.013 5.36e-07 *** 
Location1       -1.03998    0.06215 -16.734  < 2e-16 *** 
Site1:Location1  0.70537    0.09729   7.250 4.17e-13 *** 
Site2:Location1 -0.33101    0.14497  -2.283 0.022416 *   
Site3:Location1 -0.53029    0.11150  -4.756 1.97e-06 *** 
Site4:Location1  0.07939    0.15430   0.514 0.606910     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df  Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     6.198e+00     22  36.150 2.08e-06 *** 
s(Julian):SiteByLocationAngelo_Treetop    1.095e+01     23 138.307  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground  5.533e+00     22  37.997  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop 2.213e+00     22   7.850    0.013 *   
s(Julian):SiteByLocationCaspar_Ground     2.979e-03     23   0.001    0.825     
s(Julian):SiteByLocationCaspar_Treetop    4.973e+00     22 135.605  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Ground       6.986e+00     23  57.069  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      8.065e+00     23 127.937  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground  5.355e-04     23   0.000    0.675     
s(Julian):SiteByLocationMalloPass_Treetop 4.782e+00     23  76.352  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.363   Deviance explained = 56.6% 
-REML = 3076.4  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.835)  
Link function: log  
 
Formula: 
Myca ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      1.65812    0.06593  25.149  < 2e-16 *** 
Site1           -1.17052    0.11317 -10.343  < 2e-16 *** 
Site2           -1.20869    0.18747  -6.447 1.14e-10 *** 
Site3            0.35357    0.15042   2.351  0.01875 *   
Site4            0.20756    0.09050   2.294  0.02181 *   
Location1        0.99185    0.06593  15.044  < 2e-16 *** 
Site1:Location1  0.28555    0.11317   2.523  0.01163 *   
Site2:Location1  0.19204    0.18747   1.024  0.30565     
Site3:Location1 -0.37049    0.15042  -2.463  0.01378 *   
Site4:Location1 -0.28579    0.09050  -3.158  0.00159 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                             edf Ref.df Chi.sq p-value     
s(Julian):SiteByLocationAngelo_Ground      6.452     22  41.50  <2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop     6.895     23 112.79  <2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground   9.538     22  99.54  <2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop  6.454     22  42.18  <2e-16 *** 
s(Julian):SiteByLocationCaspar_Ground     12.698     23 289.56  <2e-16 *** 
s(Julian):SiteByLocationCaspar_Treetop    12.644     22 119.93  <2e-16 *** 
s(Julian):SiteByLocationLyme_Ground        7.291     23 193.34  <2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      15.007     23 222.69  <2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground   5.609     23 136.23  <2e-16 *** 
s(Julian):SiteByLocationMalloPass_Treetop 11.824     23 142.75  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.689   Deviance explained = 71.8% 
-REML = 4364.4  Scale est. = 1         n = 1413 
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Family: Negative Binomial(7.454)  
Link function: log  
 
Formula: 
Myev ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|) 
(Intercept)       -15.18      38.28  -0.397    0.692 
Site1              13.40      38.28   0.350    0.726 
Site2             -51.67     153.10  -0.337    0.736 
Site3              11.67      38.28   0.305    0.760 
Site4              13.21      38.28   0.345    0.730 
Location1          13.39      38.28   0.350    0.727 
Site1:Location1   -12.93      38.28  -0.338    0.736 
Site2:Location1    52.18     153.10   0.341    0.733 
Site3:Location1   -13.50      38.28  -0.353    0.724 
Site4:Location1   -13.11      38.28  -0.342    0.732 
 
Approximate significance of smooth terms: 
                                               edf Ref.df  Chi.sq p-value     
s(Julian):SiteByLocationAngelo_Ground     9.861683     22 112.227 < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop    3.001695     23  13.525 0.00132 **  
s(Julian):SiteByLocationArmstrong_Ground  9.983409     22  58.457 < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop 1.516746     16   0.988 0.51066     
s(Julian):SiteByLocationCaspar_Ground     0.002608     23   0.002 0.54385     
s(Julian):SiteByLocationCaspar_Treetop    1.592154     22   2.997 0.12824     
s(Julian):SiteByLocationLyme_Ground       9.200876     23 205.462 < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      4.890580     23  54.854 < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground  1.850878     23   4.925 0.04705 *   
s(Julian):SiteByLocationMalloPass_Treetop 2.359304     23   8.705 0.00884 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.763   Deviance explained = 75.7% 
-REML = 923.29  Scale est. = 1         n = 1413 
 
 
 
 
 
 
 
 
 
 
 



 

185 

 

Family: Negative Binomial(0.954)  
Link function: log  
 
Formula: 
Mylu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -3.6164     0.8971  -4.031 5.55e-05 *** 
Site1             2.4352     0.9408   2.588  0.00964 **  
Site2             0.5738     0.9740   0.589  0.55575     
Site3            -3.1891     3.2302  -0.987  0.32352     
Site4             0.6883     0.9352   0.736  0.46172     
Location1         0.1223     0.8971   0.136  0.89159     
Site1:Location1   0.6800     0.9408   0.723  0.46981     
Site2:Location1  -0.4231     0.9740  -0.434  0.66400     
Site3:Location1   2.6850     3.2302   0.831  0.40586     
Site4:Location1  -0.3850     0.9352  -0.412  0.68054     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                            edf Ref.df  Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     8.641     22 279.960  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop    5.050     23  85.100  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground  3.883     22  12.562 0.006633 **  
s(Julian):SiteByLocationArmstrong_Treetop 2.488     22   7.972 0.016387 *   
s(Julian):SiteByLocationCaspar_Ground     2.455     23   6.554 0.035204 *   
s(Julian):SiteByLocationCaspar_Treetop    2.749     22  10.434 0.006346 **  
s(Julian):SiteByLocationLyme_Ground       2.114     23   5.485 0.045929 *   
s(Julian):SiteByLocationLyme_Treetop      7.284     23  46.598  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground  5.256     22  12.862 0.018935 *   
s(Julian):SiteByLocationMalloPass_Treetop 3.360     23  16.314 0.000459 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.484   Deviance explained = 89.5% 
-REML = 903.77  Scale est. = 1         n = 1413 
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Family: Negative Binomial(1.909)  
Link function: log  
 
Formula: 
Myth ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -1.3313     0.1341  -9.926  < 2e-16 *** 
Site1            -0.7119     0.4508  -1.579 0.114264     
Site2             1.0765     0.2221   4.848 1.25e-06 *** 
Site3            -1.0389     0.2131  -4.875 1.09e-06 *** 
Site4             0.5282     0.1762   2.997 0.002723 **  
Location1         0.8857     0.1341   6.604 4.01e-11 *** 
Site1:Location1   0.3067     0.4508   0.680 0.496205     
Site2:Location1   1.2224     0.2221   5.505 3.69e-08 *** 
Site3:Location1  -0.8434     0.2131  -3.958 7.56e-05 *** 
Site4:Location1  -0.5934     0.1762  -3.367 0.000759 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                              edf Ref.df  Chi.sq p-value     
s(Julian):SiteByLocationAngelo_Ground      8.9789     22  52.528 < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop     8.1791     23  42.729 < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground  12.0239     22 346.168 < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop  3.7153     22   8.230 0.04737 *   
s(Julian):SiteByLocationCaspar_Ground      2.8523     23   8.161 0.02206 *   
s(Julian):SiteByLocationCaspar_Treetop     0.1581     22   0.165 0.34525     
s(Julian):SiteByLocationLyme_Ground        4.3904     23  78.361 < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop       6.9207     23  51.650 < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground   3.8169     23  10.756 0.01421 *   
s(Julian):SiteByLocationMalloPass_Treetop  2.5482     23  13.856 0.00058 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =   0.57   Deviance explained = 80.4% 
-REML = 1393.3  Scale est. = 1         n = 1413 
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Family: Negative Binomial(1.304)  
Link function: log  
 
Formula: 
Myvo ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                  Estimate Std. Error z value Pr(>|z|) 
(Intercept)         -28.48  634119.16       0        1 
Site1                25.50  634119.16       0        1 
Site2               -29.86  634119.17       0        1 
Site3               -43.42 2536476.64       0        1 
Site4                23.90  634119.16       0        1 
Location1            24.05  634119.16       0        1 
Site1:Location1     -23.13  634119.16       0        1 
Site2:Location1      30.67  634119.17       0        1 
Site3:Location1      36.83 2536476.64       0        1 
Site4:Location1     -22.37  634119.16       0        1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     6.394e+00     22 62.582  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop    1.676e+00     23  3.386 0.105520     
s(Julian):SiteByLocationArmstrong_Ground  3.920e+00     22 20.729 0.000101 *** 
s(Julian):SiteByLocationArmstrong_Treetop 1.534e+00     14  0.830 0.565926     
s(Julian):SiteByLocationCaspar_Ground     3.822e+00     23  8.249 0.056400 .   
s(Julian):SiteByLocationCaspar_Treetop    1.175e-11     22  0.000 1.000000     
s(Julian):SiteByLocationLyme_Ground       8.092e+00     23 51.758  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      3.656e+00     23 10.380 0.014990 *   
s(Julian):SiteByLocationMalloPass_Ground  3.506e+00     23 18.748 0.000161 *** 
s(Julian):SiteByLocationMalloPass_Treetop 2.882e+00     23  8.905 0.015305 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.407   Deviance explained = 70.6% 
-REML =  472.9  Scale est. = 1         n = 1413 
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Family: Negative Binomial(0.951)  
Link function: log  
 
Formula: 
Myyu ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -0.3236     0.1265  -2.558 0.010513 *   
Site1            -1.2599     0.3371  -3.738 0.000186 *** 
Site2            -0.3414     0.1830  -1.866 0.062104 .   
Site3            -0.1011     0.3301  -0.306 0.759315     
Site4            -0.8935     0.2075  -4.305 1.67e-05 *** 
Location1         1.1653     0.1265   9.212  < 2e-16 *** 
Site1:Location1   0.3260     0.3371   0.967 0.333429     
Site2:Location1  -0.6990     0.1830  -3.819 0.000134 *** 
Site3:Location1   0.7878     0.3301   2.386 0.017010 *   
Site4:Location1  -0.5817     0.2075  -2.803 0.005065 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground     12.697502     22 322.19  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop     4.170296     23  22.40 4.87e-05 *** 
s(Julian):SiteByLocationArmstrong_Ground   8.324374     22 181.58  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop  0.001452     22   0.00    0.959     
s(Julian):SiteByLocationCaspar_Ground      8.360795     23 180.21  < 2e-16 *** 
s(Julian):SiteByLocationCaspar_Treetop     7.959832     22  62.18  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Ground        7.207267     23  49.61  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      12.526689     23  82.75  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground   6.684637     23 188.66  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Treetop 13.476777     23 189.40  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.655   Deviance explained = 82.2% 
-REML =   2515  Scale est. = 1         n = 1413 
 
 
 
 
 
 
 
 
 



 

189 

 

Family: Negative Binomial(0.627)  
Link function: log  
 
Formula: 
Tabr ~ s(Julian, by = SiteByLocation, k = 25, bs = "cc") +  
    Site * Location 
 
Parametric coefficients: 
                Estimate Std. Error z value Pr(>|z|)     
(Intercept)       0.6146     0.1020   6.027 1.67e-09 *** 
Site1             1.5994     0.1253  12.763  < 2e-16 *** 
Site2             0.6668     0.1604   4.158 3.21e-05 *** 
Site3            -1.2236     0.1847  -6.626 3.45e-11 *** 
Site4            -0.9670     0.1537  -6.293 3.12e-10 *** 
Location1        -1.7578     0.1020 -17.235  < 2e-16 *** 
Site1:Location1   1.4273     0.1253  11.389  < 2e-16 *** 
Site2:Location1  -0.2402     0.1604  -1.498 0.134226     
Site3:Location1  -0.5644     0.1847  -3.057 0.002239 **  
Site4:Location1   0.5481     0.1537   3.567 0.000361 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                                                edf Ref.df  Chi.sq  p-value     
s(Julian):SiteByLocationAngelo_Ground      8.588468     22  64.341  < 2e-16 *** 
s(Julian):SiteByLocationAngelo_Treetop     8.046312     23 170.799  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Ground   4.642589     22  38.342  < 2e-16 *** 
s(Julian):SiteByLocationArmstrong_Treetop  9.246812     22  60.093  < 2e-16 *** 
s(Julian):SiteByLocationCaspar_Ground      0.003856     23   0.002    0.563     
s(Julian):SiteByLocationCaspar_Treetop     4.172467     22  98.421  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Ground        3.398507     23  29.778  < 2e-16 *** 
s(Julian):SiteByLocationLyme_Treetop      10.081585     23 200.980  < 2e-16 *** 
s(Julian):SiteByLocationMalloPass_Ground   5.987727     23  31.810 4.26e-06 *** 
s(Julian):SiteByLocationMalloPass_Treetop  4.714715     23  64.136  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.239   Deviance explained =   69% 
-REML = 3466.4  Scale est. = 1         n = 1413 
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Appendix S6: Residual diagnostics for GAM species activity model results. 

 

After running each species model, I used function gam.check( ) to produce residual plots, check 

model convergence and test adequacy of the basis model choices.  

Warnings for models that failed to converge (Anpa, Coto, and Myvo) are indicated in red font. 

Note: residual plots are not included below for failed models. 

 

Antrozous pallidus (Anpa) 

> gam.check(fit.25.cc.Anpa) 

 

Method: REML   Optimizer: outer newton 

step failed after 19 iterations. 

Gradient range [-0.006789881,0.009205579] 

(score 258.4728 & scale 1). 

Hessian positive definite, eigenvalue range [5.87446e-12,7.582081]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 
indicate that k is too low, especially if edf is close to k'. 
 
                                                k'      edf k-index p-value 

s(Julian):SiteByLocationAngelo_Ground     2.30e+01 3.30e+00    0.88    0.16 

s(Julian):SiteByLocationAngelo_Treetop    2.30e+01 2.10e+00    0.88    0.13 

s(Julian):SiteByLocationArmstrong_Ground  2.30e+01 5.84e+00    0.88    0.16 

s(Julian):SiteByLocationArmstrong_Treetop 2.30e+01 3.66e-05    0.88    0.15 

s(Julian):SiteByLocationCaspar_Ground     2.30e+01 1.53e+00    0.88    0.16 

s(Julian):SiteByLocationCaspar_Treetop    2.30e+01 1.18e-11    0.88    0.14 

s(Julian):SiteByLocationLyme_Ground       2.30e+01 1.98e+00    0.88    0.14 

s(Julian):SiteByLocationLyme_Treetop      2.30e+01 2.33e+00    0.88    0.17 

s(Julian):SiteByLocationMalloPass_Ground  2.30e+01 1.87e+00    0.88    0.10 

s(Julian):SiteByLocationMalloPass_Treetop 2.30e+01 1.89e+00    0.88    0.12 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Corynorhinus townsendii (Coto) 

> gam.check(fit.25.cc.Coto) 

 

Method: REML   Optimizer: outer newton 

step failed after 29 iterations. 

Gradient range [-0.0005148279,0.00189028] 

(score 127.5232 & scale 1). 

Hessian positive definite, eigenvalue range [5.151424e-12,1.927648]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value   

s(Julian):SiteByLocationAngelo_Ground     2.30e+01 3.34e-05    0.91   0.065 . 

s(Julian):SiteByLocationAngelo_Treetop    2.30e+01 2.57e+00    0.91   0.075 . 

s(Julian):SiteByLocationArmstrong_Ground  2.30e+01 2.56e+00    0.91   0.090 . 

s(Julian):SiteByLocationArmstrong_Treetop 2.30e+01 1.71e+00    0.91   0.100 . 

s(Julian):SiteByLocationCaspar_Ground     2.30e+01 1.03e-11    0.91   0.070 . 

s(Julian):SiteByLocationCaspar_Treetop    2.30e+01 1.75e+00    0.91   0.065 . 

s(Julian):SiteByLocationLyme_Ground       2.30e+01 4.09e+00    0.91   0.060 . 

s(Julian):SiteByLocationLyme_Treetop      2.30e+01 1.59e+00    0.91   0.080 . 

s(Julian):SiteByLocationMalloPass_Ground  2.30e+01 2.29e+00    0.91   0.105   

s(Julian):SiteByLocationMalloPass_Treetop 2.30e+01 7.43e-01    0.91   0.045 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Eptesicus fuscus (Epfu) 

> gam.check(fit.25.cc.Epfu) 

 

Method: REML   Optimizer: outer newton 

full convergence after 5 iterations. 

Gradient range [-1.281372e-08,1.360445e-11] 

(score 1659.358 & scale 1). 

Hessian positive definite, eigenvalue range [0.698204,143.3231]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                             k'   edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     23.00  4.37    0.68  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    23.00  2.06    0.68  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  23.00  5.51    0.68  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 23.00  2.79    0.68  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     23.00  5.49    0.68  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    23.00  3.88    0.68  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       23.00  4.72    0.68  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      23.00  5.69    0.68  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  23.00  3.83    0.68  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 23.00  5.13    0.68  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Lasiurus blossevillii (Labl) 

> gam.check(fit.25.cc.Labl) 

 

Method: REML   Optimizer: outer newton 

full convergence after 10 iterations. 

Gradient range [-0.00022622,1.397688e-09] 

(score 968.5594 & scale 1). 

Hessian positive definite, eigenvalue range [0.0002156066,54.89457]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     2.30e+01 8.87e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    2.30e+01 1.06e+01    0.82  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  2.30e+01 4.87e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 2.30e+01 4.19e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     2.30e+01 1.83e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    2.30e+01 9.54e-04    0.82   0.010 **  

s(Julian):SiteByLocationLyme_Ground       2.30e+01 1.07e-03    0.82  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      2.30e+01 5.26e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  2.30e+01 4.42e+00    0.82  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 2.30e+01 6.02e+00    0.82   0.005 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Lasiurus cinereus (Laci) 

> gam.check(fit.25.cc.Laci) 

 

Method: REML   Optimizer: outer newton 

full convergence after 6 iterations. 

Gradient range [-0.0003993598,8.1899e-10] 

(score 1987.527 & scale 1). 

Hessian positive definite, eigenvalue range [0.03095558,186.8653]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 
indicate that k is too low, especially if edf is close to k'. 

 

                                              k'    edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     23.000  2.214    0.64  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    23.000 11.562    0.64  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  23.000  1.177    0.64  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 23.000  0.471    0.64  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     23.000  5.593    0.64  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    23.000  5.139    0.64  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       23.000  2.145    0.64  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      23.000  6.858    0.64  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  23.000  2.837    0.64  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 23.000  5.843    0.64  <2e-16  

***Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Lasionycteris noctivagans (Lano) 

> gam.check(fit.25.cc.Lano) 

 

Method: REML   Optimizer: outer newton 

full convergence after 9 iterations. 

Gradient range [-0.001103668,0.000385779] 

(score 3076.425 & scale 1). 

Hessian positive definite, eigenvalue range [0.0001486743,299.3374]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     2.30e+01 6.20e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    2.30e+01 1.09e+01    0.57  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  2.30e+01 5.53e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 2.30e+01 2.21e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     2.30e+01 2.98e-03    0.57  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    2.30e+01 4.97e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       2.30e+01 6.99e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      2.30e+01 8.06e+00    0.57  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  2.30e+01 5.36e-04    0.57  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 2.30e+01 4.78e+00    0.57  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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204 

 

Myotis californicus (Myca) 

> gam.check(fit.25.cc.Myca) 

 

Method: REML   Optimizer: outer newton 

full convergence after 4 iterations. 

Gradient range [-2.891326e-07,8.657498e-07] 

(score 4364.364 & scale 1). 

Hessian positive definite, eigenvalue range [1.210011,393.8608]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                             k'   edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     23.00  6.45    0.74  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    23.00  6.89    0.74  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  23.00  9.54    0.74  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 23.00  6.45    0.74  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     23.00 12.70    0.74  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    23.00 12.64    0.74  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       23.00  7.29    0.74  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      23.00 15.01    0.74  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  23.00  5.61    0.74  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 23.00 11.82    0.74  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Myotis evotis (Myev) 

 

> gam.check(fit.25.cc.Myev) 

 

Method: REML   Optimizer: outer newton 

full convergence after 8 iterations. 

Gradient range [-0.0004735501,5.12133e-10] 

(score 923.2934 & scale 1). 

Hessian positive definite, eigenvalue range [0.0004739931,7.014055]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value 

s(Julian):SiteByLocationAngelo_Ground     23.00000  9.86168    0.92    0.49 

s(Julian):SiteByLocationAngelo_Treetop    23.00000  3.00170    0.92    0.48 

s(Julian):SiteByLocationArmstrong_Ground  23.00000  9.98341    0.92    0.47 

s(Julian):SiteByLocationArmstrong_Treetop 23.00000  1.51675    0.92    0.47 

s(Julian):SiteByLocationCaspar_Ground     23.00000  0.00261    0.92    0.43 

s(Julian):SiteByLocationCaspar_Treetop    23.00000  1.59215    0.92    0.42 

s(Julian):SiteByLocationLyme_Ground       23.00000  9.20088    0.92    0.49 

s(Julian):SiteByLocationLyme_Treetop      23.00000  4.89058    0.92    0.42 

s(Julian):SiteByLocationMalloPass_Ground  23.00000  1.85088    0.92    0.48 

s(Julian):SiteByLocationMalloPass_Treetop 23.00000  2.35930    0.92    0.47 

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Myotis lucifugus (Mylu) 

 

> gam.check(fit.25.cc.Mylu) 

 

Method: REML   Optimizer: outer newton 

full convergence after 4 iterations. 

Gradient range [-6.192254e-09,0.0001566008] 

(score 903.7667 & scale 1). 

Hessian positive definite, eigenvalue range [0.33782,50.28221]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                             k'   edf k-index p-value 

s(Julian):SiteByLocationAngelo_Ground     23.00  8.64    0.86    0.14 

s(Julian):SiteByLocationAngelo_Treetop    23.00  5.05    0.86    0.14 

s(Julian):SiteByLocationArmstrong_Ground  23.00  3.88    0.86    0.15 

s(Julian):SiteByLocationArmstrong_Treetop 23.00  2.49    0.86    0.16 

s(Julian):SiteByLocationCaspar_Ground     23.00  2.45    0.86    0.16 

s(Julian):SiteByLocationCaspar_Treetop    23.00  2.75    0.86    0.12 

s(Julian):SiteByLocationLyme_Ground       23.00  2.11    0.86    0.12 

s(Julian):SiteByLocationLyme_Treetop      23.00  7.28    0.86    0.13 

s(Julian):SiteByLocationMalloPass_Ground  23.00  5.26    0.86    0.12 

s(Julian):SiteByLocationMalloPass_Treetop 23.00  3.36    0.86    0.16 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Myotis thysanodes (Myth) 

 

> gam.check(fit.25.cc.Myth) 

 

Method: REML   Optimizer: outer newton 

full convergence after 6 iterations. 

Gradient range [-0.001449224,1.185958e-10] 

(score 1393.265 & scale 1). 

Hessian positive definite, eigenvalue range [0.004406225,52.78181]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                              k'    edf k-index p-value 

s(Julian):SiteByLocationAngelo_Ground     23.000  8.979    0.92    0.82 

s(Julian):SiteByLocationAngelo_Treetop    23.000  8.179    0.92    0.84 

s(Julian):SiteByLocationArmstrong_Ground  23.000 12.024    0.92    0.86 

s(Julian):SiteByLocationArmstrong_Treetop 23.000  3.715    0.92    0.85 

s(Julian):SiteByLocationCaspar_Ground     23.000  2.852    0.92    0.86 

s(Julian):SiteByLocationCaspar_Treetop    23.000  0.158    0.92    0.86 

s(Julian):SiteByLocationLyme_Ground       23.000  4.390    0.92    0.82 

s(Julian):SiteByLocationLyme_Treetop      23.000  6.921    0.92    0.84 

s(Julian):SiteByLocationMalloPass_Ground  23.000  3.817    0.92    0.80 

s(Julian):SiteByLocationMalloPass_Treetop 23.000  2.548    0.92    0.88 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Myotis volans (Myvo) 

 

> gam.check(fit.25.cc.Myvo) 

 

Method: REML   Optimizer: outer newton 

step failed after 54 iterations. 

Gradient range [-0.01019194,0.004415907] 

(score 472.9029 & scale 1). 

Hessian positive definite, eigenvalue range [5.870886e-12,15.54822]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value 

s(Julian):SiteByLocationAngelo_Ground     2.30e+01 6.39e+00    0.95    0.86 

s(Julian):SiteByLocationAngelo_Treetop    2.30e+01 1.68e+00    0.95    0.85 

s(Julian):SiteByLocationArmstrong_Ground  2.30e+01 3.92e+00    0.95    0.87 

s(Julian):SiteByLocationArmstrong_Treetop 2.30e+01 1.53e+00    0.95    0.81 

s(Julian):SiteByLocationCaspar_Ground     2.30e+01 3.82e+00    0.95    0.88 

s(Julian):SiteByLocationCaspar_Treetop    2.30e+01 1.18e-11    0.95    0.88 

s(Julian):SiteByLocationLyme_Ground       2.30e+01 8.09e+00    0.95    0.86 

s(Julian):SiteByLocationLyme_Treetop      2.30e+01 3.66e+00    0.95    0.88 

s(Julian):SiteByLocationMalloPass_Ground  2.30e+01 3.51e+00    0.95    0.86 

s(Julian):SiteByLocationMalloPass_Treetop 2.30e+01 2.88e+00    0.95    0.84 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Myotis yumanensis (Myyu) 

 

> gam.check(fit.25.cc.Myyu) 

 

Method: REML   Optimizer: outer newton 

full convergence after 8 iterations. 

Gradient range [-0.0006639888,0.0001503166] 

(score 2514.951 & scale 1). 

Hessian positive definite, eigenvalue range [0.0006635186,162.6086]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     23.00000 12.69750    0.81  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    23.00000  4.17030    0.81  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  23.00000  8.32437    0.81  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 23.00000  0.00145    0.81   0.015 *   

s(Julian):SiteByLocationCaspar_Ground     23.00000  8.36079    0.81   0.015 *   

s(Julian):SiteByLocationCaspar_Treetop    23.00000  7.95983    0.81  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       23.00000  7.20727    0.81   0.015 *   

s(Julian):SiteByLocationLyme_Treetop      23.00000 12.52669    0.81   0.005 **  

s(Julian):SiteByLocationMalloPass_Ground  23.00000  6.68464    0.81   0.005 **  

s(Julian):SiteByLocationMalloPass_Treetop 23.00000 13.47678    0.81  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Tadarida brasiliensis (Tabr) 

 

> gam.check(fit.25.cc.Tabr) 

 

Method: REML   Optimizer: outer newton 

full convergence after 8 iterations. 

Gradient range [-0.0007536965,5.918643e-11] 

(score 3466.436 & scale 1). 

Hessian positive definite, eigenvalue range [0.0007544173,357.6889]. 

Model rank =  240 / 240  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

                                                k'      edf k-index p-value     

s(Julian):SiteByLocationAngelo_Ground     23.00000  8.58847    0.65  <2e-16 *** 

s(Julian):SiteByLocationAngelo_Treetop    23.00000  8.04631    0.65  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Ground  23.00000  4.64259    0.65  <2e-16 *** 

s(Julian):SiteByLocationArmstrong_Treetop 23.00000  9.24681    0.65  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Ground     23.00000  0.00386    0.65  <2e-16 *** 

s(Julian):SiteByLocationCaspar_Treetop    23.00000  4.17247    0.65  <2e-16 *** 

s(Julian):SiteByLocationLyme_Ground       23.00000  3.39851    0.65  <2e-16 *** 

s(Julian):SiteByLocationLyme_Treetop      23.00000 10.08158    0.65  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Ground  23.00000  5.98773    0.65  <2e-16 *** 

s(Julian):SiteByLocationMalloPass_Treetop 23.00000  4.71471    0.65  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix S7: Photos of acoustic deployment set up. 

 

 

Figure 1: Conventional ground level acoustic monitoring. 

 

 

Figure 2: Annotated photos of paired treetop and ground-level detector set up. Arrows indicate 

the position of microphones. 
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Figure 3: Microphone was attached to a telescopic pole and extended out from branch at treetop. 

 

           

Figure 4: Measuring microphone height. 
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Figure 5: Monthly maintenance of monitoring equipment included retrieving SD cards and 

changing batteries. 

 

 

Figure 6: SM2 detectors in weatherproof cases for ground and treetop. 
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Figure 7: SM2 detector internal view. 

 

 

Figure 8: SM4 detector set up for treetop detectors. 
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Appendix S1: Spearman’s rank correlation results between microclimate variables. 

  

Night.Min
Humid 

Night.Max
Temp 

Night.Min
Temp 

Night.Mean
Temp 

Day.Max
Temp 

Day.Min
Temp 

Day.Mean
Temp 

Night.MinHumid 1.000 -0.091 0.213 0.137 -0.308 0.251 -0.090 

Night.MaxTemp -0.091 1.000 0.735 0.858 0.841 0.690 0.910 

Night.MinTemp 0.213 0.735 1.000 0.964 0.455 0.721 0.661 

Night.MeanTemp 0.137 0.858 0.964 1.000 0.580 0.754 0.767 

Day.MaxTemp -0.308 0.841 0.455 0.580 1.000 0.469 0.871 

Day.MinTemp 0.251 0.690 0.721 0.754 0.469 1.000 0.810 

Day.MeanTemp -0.090 0.910 0.661 0.767 0.871 0.810 1.000 
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Appendix S2: GLMM species presence model summary results for daytime temperature 

model. 

 

To predict the probability of species presence in relation to only daytime maximum temperature, 

I used the model: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site). Following are the 

model summary results for each of the 8 species modeled. 

 

Eptesicus fuscus (Epfu) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Epfu.Full 

 

     AIC      BIC   logLik deviance df.resid  

   171.6    186.6    -81.8    163.6      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.7935 -0.3250 -0.1898 -0.1167  7.0782  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 1.037    1.018    

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)        -2.98726    0.56133  -5.322 1.03e-07 *** 

scale(Day.MaxTemp)  0.83045    0.24821   3.346 0.000821 *** 

Location1           0.05298    0.21880   0.242 0.808686     

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.307        

Location1   -0.032  0.046 
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Lasiurus blossevillii (Labl) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Labl.Full 

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05)) 

 

     AIC      BIC   logLik deviance df.resid  

   156.9    171.9    -74.4    148.9      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.5343 -0.3116 -0.1826 -0.0864  6.2292  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 1.879    1.371    

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -3.3716     0.7788  -4.329  1.5e-05 *** 

scale(Day.MaxTemp)   0.5750     0.2054   2.799  0.00512 **  

Location1           -0.4825     0.2609  -1.850  0.06434 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.115        

Location1    0.104 -0.232  
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Lasiurus cinereus (Laci) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Laci.Full 

 

     AIC      BIC   logLik deviance df.resid  

   243.6    258.6   -117.8    235.6      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-5.0483 -0.4046 -0.2258 -0.0930  5.9625  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 0.07132  0.2671   

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -1.9153     0.2476  -7.735 1.03e-14 *** 

scale(Day.MaxTemp)   1.2576     0.2104   5.977 2.28e-09 *** 

Location1           -1.2419     0.2100  -5.913 3.36e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.395        

Location1    0.495 -0.269  
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Lasionycteris noctivagans (Lano) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Lano.Full 

 

     AIC      BIC   logLik deviance df.resid  

   227.6    242.7   -109.8    219.6      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4653 -0.4113 -0.2583 -0.1379  6.5964  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 4e-14    2e-07    

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -2.1646     0.2190  -9.885  < 2e-16 *** 

scale(Day.MaxTemp)   1.0837     0.1974   5.490 4.02e-08 *** 

Location1           -0.8005     0.1954  -4.097 4.18e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.489        

Location1    0.469 -0.209 

optimizer (Nelder_Mead) convergence code: 0 (OK) 

boundary (singular) fit: see ?isSingular 
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Myotis californicus (Myca) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Myca.Full 

 

     AIC      BIC   logLik deviance df.resid  

     374      389     -183      366      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3186 -0.7151 -0.3837  0.8588  5.9065  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 0.8066   0.8981   

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -0.7186     0.4265  -1.685    0.092 .   

scale(Day.MaxTemp)   0.6934     0.1578   4.393 1.12e-05 *** 

Location1            0.1873     0.1354   1.383    0.167     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.103        

Location1   -0.025  0.040 
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Myotis thysanodes (Myth) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Myth.Full 

 

     AIC      BIC   logLik deviance df.resid  

   148.1    163.1    -70.1    140.1      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.1464 -0.2538 -0.1202 -0.0419  7.0680  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 4.449    2.109    

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)    

(Intercept)         -3.9618     1.2304  -3.220  0.00128 ** 

scale(Day.MaxTemp)   0.7870     0.3153   2.496  0.01255 *  

Location1            0.5972     0.2914   2.050  0.04040 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.264        

Location1   -0.154  0.237 
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Myotis yumanensis (Myyu) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Myyu.Full 

 

     AIC      BIC   logLik deviance df.resid  

   220.8    235.8   -106.4    212.8      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4332 -0.3468 -0.2550 -0.1098  5.1093  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 2.325    1.525    

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -2.5349     0.7499  -3.380 0.000724 *** 

scale(Day.MaxTemp)   0.5878     0.2364   2.487 0.012886 *   

Location1            0.1527     0.1858   0.822 0.410954     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.167        

Location1   -0.043  0.057 
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Tadarida brasiliensis (Tabr) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: Presence ~ scale(Day.MaxTemp) + Location + (1 | Site) 

   Data: Tabr.Full 

 

     AIC      BIC   logLik deviance df.resid  

   276.9    291.9   -134.4    268.9      311  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.4378 -0.4668 -0.2472  0.5249  5.1027  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 Site   (Intercept) 0.1166   0.3415   

Number of obs: 315, groups:  Site, 5 

 

Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)         -1.2798     0.2352  -5.442 5.27e-08 *** 

scale(Day.MaxTemp)   1.2917     0.2009   6.430 1.28e-10 *** 

Location1           -1.2778     0.1829  -6.985 2.85e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) s(D.MT 

scl(Dy.MxT) -0.262        

Location1    0.342 -0.349 
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Appendix S3: Predicted probability of detection for daytime temperature model results. 

 

The following plots show the predicted probability of detecting each species in relation to 

maximum daytime temperature based on the GLMM models used in Appendix S2. 

 

 

In all of the following plots, red lines and 95% confidence intervals represent 

‘ground’ detector locations and blue represent ‘treetop’ detector locations. 
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