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We present rigorous, nonperturbative, purely numerical solutions of the Rayleigh equations for the scattering of
p- and s-polarized light from a two-dimensional randomly rough perfectly conducting surface. The solutions are
used to calculate the reflectivity of the surface, the mean differential reflection coefficients, and the full angular
distribution of the intensity of the scattered field. These results are compared with previously published rigorous
numerical solutions of the Stratton–Chu equations, and very good agreement is found. © 2014 Optical Society of
America

OCIS codes: (240.0240) Optics at surfaces; (240.5770) Roughness; (240.6680) Surface plasmons; (290.5880)
Scattering, rough surfaces.
http://dx.doi.org/10.1364/JOSAA.31.001126

1. INTRODUCTION
A randomly rough perfectly conducting surface can serve as a
simpler testing ground for new computational approaches to
rough surface scattering calculations than a randomly rough
dielectric or metallic surface. At the same time it can serve as
a simple model for a randomly rough metallic surface in the
infrared and longer wavelength regions of the electromagnetic
spectrum.

Although there have been several numerical calculations of
the scattering of light from a two-dimensional randomly rough
perfectly conducting surface by one approximate approach or
another [1–6], there have been few exact solutions of the in-
tegral equations by numerical methods [7–11]. This is due
largely to the fact that such calculations are still computation-
ally intensive.

In the past, nonperturbative purely numerical solutions of
the one-dimensional reduced Rayleigh equations (RREs) for
various one-dimensional, randomly rough surface geometries
[12,13] have proven rather useful for the study and prediction
of several rough surface scattering phenomena [14–17].

In this paper we present rigorous, nonperturbative, purely
numerical solutions of the Rayleigh equations for the scatter-
ing of p- and s-polarized light from a two-dimensional ran-
domly rough perfectly conducting surface. The solutions
are used to calculate the reflectivity of the surface for incident
light of both polarizations, the mean differential reflection co-
efficients, and the full angular distribution of the intensity of
the scattered field.

One motivation for our undertaking of these calculations is
that the integral equations that have to be solved are simpler
than those that are obtained from the Stratton–Chu formula
[18] for the magnetic field in the vacuum region, which
underlie the calculations carried out in [7–10]. The rigorous

numerical solution of RREs in recent work by the present
authors [19–22] has been shown to be an effective approach
to the calculation of various properties of light scattered from
two-dimensional randomly rough penetrable surfaces. We an-
ticipated that this would also be the case in the scattering of
light from a perfectly conducting surface. A secondmotivation
for this work is that it provides an opportunity to assess the
degree of roughness of a two-dimensional randomly rough
perfectly conducting surface up to which numerical solutions
of the Rayleigh equations can produce reliable results. This is
done by comparing the results of Rayleigh-based calculations
to the results of rigorous calculations such as those of [10].
Additionally, the degree to which the results conserve energy
is investigated.

2. RAYLEIGH EQUATIONS
The physical system we consider in this work consists of vac-
uum in the region x3 > ζ�x∥�, where x∥ � �x1; x2; 0�, and a per-
fect conductor in the region x3 < ζ�x∥� (Fig. 1). The surface
profile function ζ�x∥� is assumed to be a single-valued function
of x∥ that is at least once differentiable with respect to x1 and
x2 and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by

hζ�x∥�ζ�x0∥�i � δ2W�jx∥ − x0∥j�: (1)

Here, δ � hζ2�x∥�i1∕2 is the root-mean-square (rms) height of
the surface, and W�jx∥ − x0∥j� is the normalized surface height
autocorrelation function of the surface profile. The correla-
tion functions to be considered in this paper will be of
Gaussian form, given by
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W�jx∥j� � exp�−x2∥∕a2�; (2)

where a is the correlation length. The angle brackets, here and
in all that follows, denote an average over an ensemble of real-
izations of the surface profile function. Each realization of the
surface profile function with these properties is generated nu-
merically by a two-dimensional version of the Fourier filtering
method [23,24].

The surface x3 � ζ�x∥� is illuminated from the vacuum by
an electromagnetic field in the form of a plane wave of angular
frequency ω. The total electric field in the vacuum region is
the sum of the incident field and the scattered field,

E�x; t� � �E�xjω�inc � E�xjω�sc� exp�−iωt�; (3)

where

E�xjω�inc � E0�k∥� exp�ik∥ · x∥ − iα0�k∥�x3�; (4a)

E�xjω�sc �
Z

d2q∥
�2π�2 A�q∥� × exp�iq∥ · x∥ � iα0�q∥�x3�: (4b)

In these equations, k∥ � �k1; k2; 0�, c is the speed of light in
vacuum, α0�k∥� � ��ω∕c�2 − k2∥�1∕2, with Re α0�k∥� > 0 and
Im α0�k∥� > 0, and the amplitudes E0�k∥� and A�q∥� are given
by

E0�k∥� � −
c
ω
�k̂∥α0�k∥� � x̂3k∥�E0p�k∥� � �x̂3 × k̂∥�E0s�k∥�;

(5)

and

A�q∥� �
c
ω
�q̂∥α0�q∥� − x̂3q∥�Ap�q∥� � �x̂3 × q̂∥�As�q∥�: (6)

The subscripts p and s denote the p-polarized and s-polarized
components of the incident and scattered fields with respect
to the planes of incidence and scattering, respectively. A caret
over a vector denotes that it is a unit vector.

The boundary conditions at the surface x3 � ζ�x∥� require
the vanishing of the tangential component of the electric field,

n × �E�xjω�inc � E�xjω�sc�jx3�ζ�x∥� � 0; (7)

where

n � �−ζ1�x∥�;−ζ2�x∥�; 1�; (8)

with ζμ�x∥� � ∂ζ�x∥�∕∂xμ (μ � 1, 2), is a vector normal to the
surface x3 � ζ�x∥� at each point of it, directed into the vac-
uum. Equation (7) is a vector equation, which consists of
the three equations

fn × �E�xjω�inc � E�xjω�sc�jx3�ζ�x∥�g1 � 0; (9a)

fn × �E�xjω�inc � E�xjω�sc�jx3�ζ�x∥�g2 � 0; (9b)

fn × �E�xjω�inc � E�xjω�sc�jx3�ζ�x∥�g3 � 0: (9c)

Because n · fn × �E�xjω�inc � E�xjω�sc�g � 0, only two of the
three Eqs. (9) are independent. We choose them to be Eqs. (9a)
and (9b). Written out explicitly these two equations become

��
c
ω
α0�k∥�k̂2 �

c
ω
k∥ζ2�x∥�

�
E0p�k∥�

− k̂1E0s�k∥�
�
exp�ik∥ · x∥ − iα0�k∥�ζ�x∥��

�
Z

d2q∥
�2π�2

��
−
c
ω
α0�q∥�q̂2 �

c
ω
q∥ζ2�x∥�

�
Ap�q∥�

− q̂1As�q∥�
�
exp�iq∥ · x∥ � iα0�q∥�ζ�x∥�� � 0 (10a)

and

��
−
c
ω
α0�k∥�k̂1 −

c
ω
k∥ζ1�x∥�

�
E0p�k∥�

− k̂1E0s�k∥�
�
exp�ik∥ · x∥ − iα0�k∥�ζ�x∥��

�
Z

d2q∥
�2π�2

��
c
ω
α0�q∥�q̂1 −

c
ω
q∥ζ1�x∥�

�
Ap�q∥�

− q̂2As�q∥�
�
exp�iq∥ · x∥ � iα0�q∥�ζ�x∥�� � 0: (10b)

It is convenient at this point to introduce the Fourier
representation

exp�iγζ�x∥�� �
Z

d2Q∥

�2π�2 I�γjQ∥� exp�iQ∥ · x∥�; (11)

so that (μ � 1, 2)

ζμ�x∥� exp�iγζ�x∥�� �
Z

d2Q∥

�2π�2
Qμ

γ
I�γjQ∥� exp�iQ∥ · x∥�: (12)

For calculating I�γjQ∥� we need the inverse to Eq. (11)

I�γjQ∥� �
Z

d2x∥ exp�−iQ∥ · x∥� exp�iγζ�x∥��: (13)

In terms of this function, Eqs. (10) take the forms

Fig. 1. Scattering geometry used in this paper.
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I�−α0�k∥�jp∥ − k∥�
�
c
ω

�ω∕c�2k̂2 − p∥k∥p̂2
α0�k∥�

E0p�k∥� − k̂1E0s�k∥�
�

�
Z

d2q∥
�2π�2 I�α0�q∥�jp∥ − q∥�

×
�
−
c
ω

�ω∕c�2q̂2 − p∥q∥p̂2
α0�q∥�

Ap�q∥� − q̂1As�q∥�
�
� 0; (14a)

I�−α0�k∥�jp∥ − k∥�
�
c
ω

−�ω∕c�2k̂1 � p∥k∥p̂1
α0�k∥�

E0p�k∥� − k̂2E0s�k∥�
�

�
Z

d2q∥
�2π�2 I�α0�q∥�jp∥ − q∥�

×
�
c
ω

�ω∕c�2q̂1 − p∥q∥p̂1
α0�q∥�

Ap�q∥� − q̂2As�q∥�
�
� 0; (14b)

where p∥ is an arbitrary wave vector with p∥ � �p1; p2; 0�, and
p̂i is the ith component of the vector p̂ � p∕jpj.

A more convenient set of equations can be obtained from
Eq. (14). We multiply Eq. (14a) by p̂2, and Eq. (14b) by −p̂1,
and add the resulting equations. In this way we obtain the
equation

I�−α0�k∥�jp∥ − k∥�

×
�
c
ω

�ω∕c�2p̂∥ · k̂∥ − p∥k∥
α0�k∥�

E0p�k∥� � �p̂∥ × k̂∥�3E0s�k∥�
�

�
Z

d2q∥
�2π�2 I�α0�q∥�jp∥ − q∥�

×
�
c
ω

−�ω∕c�2�p̂∥ · q̂∥� � p∥q∥
α0�q∥�

Ap�q∥�

� �p̂∥ × q̂∥�3As�q∥�
�
� 0: (15a)

We next multiply Eq. (14a) by −p̂1, and Eq. (14b) by −p̂2, and
add the resulting equations. In this way we obtain the equation

I�−α0�k∥�jp∥ − k∥�
�
−
ω

c

�p∥ × k∥�3
α0�k∥�

E0p�k∥� � �p̂∥ · k̂∥�E0s�k∥�
�

�
Z

d2q∥
�2π�2 I�α0�q∥�jp∥ − q∥�

�
ω

c

�p∥ × q∥�3
α0�q∥�

Ap�q∥�

� �p̂∥ · q̂∥�As�q∥�
�
� 0: (15b)

Equations (15) imply linear relationships between Aα�q∥�
and E0s�k∥� (α; β � p; s), which we write as

Aα�q∥� �
X
β

Rαβ�q∥jk∥�E0β�k∥�: (16)

Upon substituting these relations into Eqs. (15) we find that
the matrix of scattering coefficients R�q∥jk∥� satisfies the ma-
trix integral equation

Z
d2q∥
�2π�2 M�p∥jq∥�R�q∥jk∥� � −N�p∥jk∥�; (17)

where

R�q∥jk∥� �
�
Rpp�q∥jk∥� Rps�q∥jk∥�
Rsp�q∥jk∥� Rss�q∥jk∥�

�
; (18)

M�p∥jq∥� � I�α0�q∥jp∥ − q∥�

×

0
BBB@

c
ω

p∥q∥ − �ω∕c�2�p̂∥ · q̂∥�
α0�q∥�

�p̂∥ × q̂∥�3
ω

c

�p̂∥ × q̂∥�3
α0�q∥�

p̂∥ · q̂∥

1
CCCA; (19a)

and

N�p∥jk∥� � I�−α0�k∥�jp∥ − k∥�

×

0
BBB@
−
c
ω

p∥k∥ − �ω∕c�2�p̂∥ · k̂∥�
α0�k∥�

�p̂∥ × k̂∥�3

−
ω

c
�p̂∥ × k̂∥�3
α0�k∥�

p̂∥ · k̂∥

1
CCCA: (19b)

3. REFLECTIVITY AND THE MEAN
DIFFERENTIAL REFLECTION COEFFICIENT
The scattering amplitudes fRαβ�q∥jk∥�g play a central role in
the present theory because the mean differential reflection co-
efficient can be expressed in terms of these amplitudes. The
differential reflection coefficient (∂R∕∂Ωs) is defined such that
(∂R∕∂Ωs) dΩs is the fraction of the total time-averaged flux
incident on the surface that is scattered into the element of
solid angle dΩs about the scattering direction �θs;ϕs�. As
we are studying the scattering of light from a randomly rough
surface, it is the average of this function over the ensemble of
realizations of the surface profile function that we need to cal-
culate. The contribution to the mean differential reflection co-
efficient when incident light of polarization β and wave vector
k∥ is scattered into light of polarization α and wave vector q∥,
denoted by h∂Rαβ∕∂Ωsi, is

�
∂Rαβ

∂Ωs

�
� 1

S

�
ω

2πc

�
2 cos2 θs
cos θ0

hjRαβ�q∥jk∥�j2i: (20)

Here S is the area of the plane x3 � 0 covered by the rough
surface. The parallel components of the wave vectors k∥ �
�k1; k2; 0� and q∥ � �q1; q2; 0� are defined in terms of the polar
and azimuthal angles of incidence �θ0;ϕ0� and scattering
�θs;ϕs�, respectively, by k∥ � �ω∕c� sin θ0�cos ϕ0; sin ϕ0; 0�
and q∥ � �ω∕c� sin θs�cos ϕs; sin ϕs; 0�.

If we write the scattering amplitude Rαβ�q∥jk∥� as the sum
of its mean value and its fluctuation about this mean value,

Rαβ�q∥jk∥� � hRαβ�q∥jk∥�i � �Rαβ�q∥jk∥� − hRαβ�q∥jk∥�i�; (21)

each of these two terms makes its own contribution to the
mean differential reflection coefficient (20), which we write
now in the form

�
∂Rαβ

∂Ωs

�
�

�
∂Rαβ

∂Ωs

�
coh

�
�
∂Rαβ

∂Ωs

�
incoh

; (22)

where the first term on the right-hand side is the contribution
from the light scattered coherently (specularly), while the
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second is the contribution from the light scattered incoher-
ently (diffusely). These contributions are given by

�
∂Rαβ

∂Ωs

�
coh

� 1
S

�
ω

2πc

�
2 cos2 θs
cos θ0

jhRαβ�q∥jk∥�ij2; (23)

�
∂Rαβ

∂Ωs

�
incoh

� 1
S

�
ω

2πc

�
2 cos2 θs
cos θ0

× �hjRαβ�q∥jk∥�j2i − jhRαβ�q∥jk∥�ij2�: (24)

The mean value of the scattering amplitude Rαβ�q∥jk∥� can
be written in the form

hRαβ�q∥jk∥�i � �2π�2δ�q∥ − k∥�δαβRα�k∥�: (25)

The factor �2π�2δ�q∥ − k∥� in this expression is due to the as-
sumed stationarity of the surface profile function, the
Kronecker symbol δαβ is due to the conservation of angular
momentum in the scattering process, and the result that
the factor Rα�k∥� depends on the wave vector k∥ only through
its magnitude is due to the restoration of isotropy by the aver-
aging process. When Eq. (25) is substituted into Eq. (23), the
latter becomes

�
∂Rαβ

∂Ωs

�
coh

� δ�θs − θ0�
sin θ0

δ�ϕs − ϕ0�δαβjRα�k∥�j2: (26)

In obtaining this result we have used the relations

�2π�2δ�0� � S; (27)

δ�q∥ − k∥� �
�
c
ω

�
2 δ�θs − θ0�δ�ϕs − ϕ0�

sin θ0 cos θ0
; (28)

and

k∥ � �ω∕c� sin θ0; q∥ � �ω∕c� sin θs: (29)

Upon integrating Eq. (26) over all solid angles in the upper
hemisphere (dΩs � sin θsdθsdϕs) we obtain the reflectivity
Rα�θ0� of the surface for incident light of α polarization,

Rα�θ0� � jRα��ω∕c� sin θ0�j2: (30)

From Eqs. (25) and (27) we find that

Rα�k∥� �
1
S
hRαα�k∥jk∥�i: (31)

Equations (29)–(31) are the basis for the calculation of the
reflectivity of the randomly rough surface. Equation (24) is
the basis for the calculation of the contribution to the mean
differential reflection coefficient from the light scattered
incoherently.

4. ENERGY CONSERVATION AND ITS
CONSEQUENCES
In scattering from a perfectly conducting surface the total
time-averaged scattered flux must equal the total time-
averaged incident flux. We recall the definition of the mean

differential reflection coefficient h∂Rαβ∕∂Ωsi, namely that
h∂Rαβ∕∂ΩsidΩs is the fraction of the incident flux of β polari-
zation that is scattered into light of α polarization in the
element of solid angle dΩs about the scattering direction
�θs;ϕs�. Consequently, the energy conservation condition,
or unitarity [U�θ0;ϕ0�], can be expressed in terms of the mean
differential reflection coefficient as (β � p; s)

Uβ�θ0;ϕ0� � P
α�p;s

R
dΩs

�
∂Rαβ
∂Ωs

�
� 1; �32�

where the integral is to be taken over the upper hemisphere.
Equation (32) is useful in assessing the quality of the sim-

ulation results, in particular in making certain that the discre-
tization is sufficient, and that the integration interval in q∥ in
Eq. (17) is large enough. However, we emphasize that Eq. (32)
is only a necessary condition, and its satisfaction does not
guarantee that the simulation results are correct. In the follow-
ing section, we will also make use of the contribution to
Uβ�θ0;ϕ0� that comes from light that has been scattered inco-
herently by the surface. This contribution is defined as
(β � p; s)

U incoh
β �θ0;ϕ0� �

X
α�p;s

Z
dΩs

�
∂Rαβ

∂Ωs

�
incoh

; (33)

and it signifies the fraction of the incident power flux that was
scattered incoherently by the surface into any scattering
direction.

5. SOLUTION OF THE RAYLEIGH
EQUATIONS
Equations (17)–(19) were solved by the method described in
detail in [25]. A realization of the surface profile function was
generated on a grid ofNx × Nx points within a square region of
the x1x2 plane of edge L. In evaluating the q∥ integral in
Eqs. (17), the infinite limits of integration were replaced by
finite limits jq∥j < Q∕2, and the integration was carried out
by a two-dimensional version of the extended midpoint rule
[26, p. 161] applied to a grid in the q1q2 plane that is deter-
mined by the Nyquist sampling theorem [26, p. 605] and the
properties of the discrete Fourier transform [25]. The function
I�γjQ∥� was evaluated by expanding the integrand in Eq. (13)
in powers of ζ�x∥� and calculating the Fourier transform of
ζn�x∥� by the fast Fourier transform [25]. The resulting matrix
equations were solved by LU factorization.

These calculations were carried out for a large number
Np of realizations of the surface profile function ζ�x∥� for
an incident field of p or s polarization. For each realization
the scattering amplitude Rαβ�q∥jk∥� and its squared modu-
lus jRαβ�q∥jk∥�j2 were obtained. An arithmetic average of
the Np results for these quantities yielded the mean values
hRαβ�q∥jk∥�i and hjRαβ�q∥jk∥�j2i entering Eqs. (31) and (24)
for the reflectivity and mean differential reflection coefficient,
respectively.

6. RESULTS
The purpose of this section is to present some examples of
numerical results that can be obtained by the formalism just
introduced and to discuss their quality and how they compare
to results obtained by other methods.
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Calculations were carried out for two-dimensional ran-
domly rough perfectly conducting surfaces defined by an iso-
tropic Gaussian height distribution of rms height δ � λ∕10 and
an isotropic Gaussian correlation function of lateral correla-
tion length a � 3λ∕5. The incident light consisted of a p- or
s-polarized plane wave of wavelength λ (in vacuum) and
well-defined angles of incidence �θ0;ϕ0�. In these calculations,
it was assumed that the surfaces covered a region of the x1x2
plane of area L2 � 15λ × 15λ. Realizations of the surface pro-
file function were generated [23,24] in this region on a grid of
Nx × Nx � 321 × 321 points. With these spatial parameters,
the corresponding momentum space parameters used in
the simulations were Δq � 2π∕L for the discretization inter-
vals in momentum space, and the largest momentum value
that can be resolved is given by Q � Δq⌊Nx∕2⌋, where ⌊ · ⌋
denotes the floor function [26]. In the simulations, we used
Q � 10.7ω∕c, and for the expansions of the integrands of the
I�γjQ∥� integrals, we used the first n � 20 terms. With these
parameters, solving the Rayleigh equation for one surface
realization required about 12 GB of memory and took approx-
imately 18 min on a machine with two six-core AMD Opteron
2.1 GHz processors. The majority of this time was spent solv-
ing the linear set of equations (by the LU-factorization
method), which was done by the optimized and high-
performance numerical parallel library ScaLAPACK [27]
and Intel MKL [28].

Figure 2 presents, for angles of incidence �θ0;ϕ0� �
�0°; 45°�, the angular distributions of the mean differential
reflection coefficients that result from the incoherent compo-
nent of the scattered light. Results obtained for 5000 realiza-
tions of the surface profile function were averaged to obtain
these figures. The incident light was p polarized when produc-
ing Figs. 2(a)–2(c), while it was s polarized for Figs. 2(d)–2(e).
In Figs. 2(a) and 2(d) the polarization of the scattered light is
not recorded; in Figs. 2(b) and 2(e) only scattered p-polarized
light is recorded, while only s-polarized light is recorded in
Figs. 2(c) and 2(f). The most noticeable features of Fig. 2 are
observed for the copolarized or cross-polarized scattering
configurations where the scattered intensity distributions
show “dipole-like” patterns. In particular, in copolarized
scattering [Figs. 2(b) and 2(f)], the maximum of the angular
intensity distribution is oriented along the plane of incidence
[29], while in the cross-polarized scattering configuration
[Figs. 2(c) and 2(e)], the maximum intensity is found in a
direction that is perpendicular to this plane. The reason for
this behavior can be explained by noting that the main con-
tribution to the scattered intensity, for the roughness param-
eters assumed here, comes from single scattering processes
that for copolarization (cross polarization) is zero for the
out-of-plane (in-plane) scattering [10,11].

When the polarization of the scattered light is not recorded
[Figs. 2(a) and 2(d)], in contrast to when it is, the resulting
intensity distributions have much less dependence on the
azimuthal angle of scattering ϕs. However, there is some
dependence on ϕs, and a close inspection of Figs. 2(a) and
2(d) reveals that the equi-intensity lines have elongated
shapes (ellipse-like) with the long axis being in the direction
of the incident electric field. It should be noted that many of
the characteristics of Fig. 2 are similar to what has been re-
cently reported in numerical studies of related scattering
geometries using either similar or different numerical

approaches for their study. Here we mention light scattering
from potentially strongly rough perfectly conducting surfaces
[10,19], light scattering from penetrable rough surfaces of in
principle any degree of roughness [11,19,24], and, finally,
weakly rough surfaces that are part of a clean surface or film
geometry [20,21,25].

An example of the angular dependence of the incoherent
component of the mean differential reflection coefficients
for non-normal incidence and the same scattering system is
given in Fig. 3, where it was assumed that �θ0;ϕ0� �
�22°; 45°�. In this figure, the meaning of the various subfigures
is the same as those of Fig. 2. The first observation to be made
from Fig. 3 is that the scattered intensity is now predominantly
in forward scattering directions, ϕs − ϕ0 ∈ �−90°; 90°�, and only
a small fraction of the incident light is scattered in other di-
rections. Also for non-normal incidence, we find that the
maxima of the copolarized intensity distributions are oriented
along the plane of incidence. For cross polarization, on the
other hand, the “wings” of the “dipole-like” intensity patterns

(a)

(b) (e)

(c) (f)

(d)

Fig. 2. Angular dependence of the incoherent component of the
mean differential reflection coefficients for angles of incidence
�θ0;ϕ0� � �0°; 45°� and various combinations of the polarizations of
the incident and scattered light. The results were obtained by numeri-
cally solving the Rayleigh equations [Eq. (17)]. The surface roughness
had both a Gaussian height distribution and height–height correlation
function, as defined by Eqs. (1) and (2), with δ � λ∕10 and a � 3λ∕5,
where λ is the wavelength of the incident radiation (in vacuum). An
ensemble of 5000 surface realizations was used to produce these re-
sults. Both edges of the surfaces were L � 15λ, and the surface was
discretized at 321 × 321 points.
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are pushed toward the forward scattering directions, but still
show local minima in the plane of incidence. We note that as
the local slopes of the surfaces increase, it is expected that the
fraction of incident intensity that is scattered into the forward
directions (ϕs − ϕ0 ∈ �−90°; 90°�) will decrease, and the scat-
tering into the backscattering directions (ϕs − ϕ0∉ �−90°; 90°�)
will increase, while, at the same time, the wings of the
“dipole-like” angular intensity patterns observed for the cross-
polarized scattering will gradually shift toward the backscat-
tering directions [10,16,24]. An additional observation worth
making from Figs. 3(a) and 3(d) is that the positions of the
maxima of the incoherent component of the mean differential
reflection coefficients are not coinciding with the specular
directions (indicated by white dots in Figs. 2 and 3). In
particular, for the roughness parameters assumed here, it is
found that the polar angles of scattering for the these maxima,
θ�s , are smaller than those of the specular direction; that
is, θ�s < θ0.

In neither of the simulation results presented in Figs. 2 and
3 was the enhanced backscattering phenomenon [16,22,30,31]
observed; see also Figs. 6 and 7. However, for the roughness
parameters assumed in producing the results shown in these
figures, this is not to be expected [16,30,31].

It should be noted that since the statistical properties of the
surfaces are isotropic, the quantity h∂Rαβ∕∂Ωsiwill only have a
trivial dependence on the azimuthal angles of incidence ϕ0,
and, therefore, the value ϕ0 � 45° assumed in the simulations

is somewhat arbitrary. By trivial, we here mean features that
can be compensated for by a simple rotation of the resulting
angular intensity distributions.

In Fig. 4 we present the reflectivity,Rα�θ0� [see Eq. (30)], as
a function of the polar angle of incidence θ0 of the α-polarized
incident light. The roughness parameters assumed in produc-
ing the results of Fig. 4 are identical to those assumed in pro-
ducing the results of Fig. 2. Figure 4 shows that in the case of
s-polarized incident light, the reflectivityRs�θ0� is a monoton-
ically increasing function of the polar angle of incidence θ0.
On the other hand, when the incident light is p polarized,
the corresponding reflectivity satisfies Rp�θ0� ≤ Rs�θ0�; for
the smallest polar angles of incidence (θ0 ≤ 30°), the two re-
flectivities are equal, while for larger angles of incidence,
Rp�θ0� is the smaller of the two. The results in Fig. 4 show
that Rp�θ0� goes through a maximum around θ0 ∼ 65°, and a
minimum around θ0 ∼ 88°. The decrease of Rp�θ0� with angle
of incidence we believe is analogous to the pseudo-Brewster
(or quasi-Brewster) effect, which has been observed in the re-
flectivity of lossy metal surfaces in p polarization [32,33].

Since we are dealing with perfectly conducting surfaces, all
electromagnetic power flux incident on a surface will be re-
flected. As explained in Section 4, the conservation of energy
implies Uβ�θ0;ϕ0�≡ 1 [see Eq. (32)]. This condition should in
principle be satisfied for any angles of incidence and any state
of polarization of the incident beam, including the linear polar-
izations β � p; s. By numerically performing the Ωs integrals
(or corresponding integrals over q∥) of the mean differential
reflection coefficients obtained numerically, Uβ�θ0;ϕ0� can be
calculated [Eq. (32)].

In this way, the numbers given in Table 1 were obtained
from the results presented in Figs. 2 and 3. The results of
Table 1 demonstrate that energy conservation is satisfied to
within a fraction of a percent for all the simulation data re-
ported. This testifies to the correctness, self-consistency, and
quality of the simulation results.

The energy conservation condition [Eq. (32)] is also useful
for probing the range of roughness parameters for which the
Rayleigh equations, or more correctly, our implementation
and solutions of them, are adequate for a consistent

(a)

(b)

(c)

(e)

(d)

(f)

Fig. 3. Same as Fig. 2, but now for the angles of incidence
�θ0;ϕ0� � �22°; 45°�.

Fig. 4. Reflectivity, Rα�θ0�, as defined in Eq. (30), as a function of
polar angle of incidence θ0 and for given polarization α of the incident
light. The roughness parameters assumed in obtaining these results
are identical to those assumed in producing the results of Fig. 2,
but the Rayleigh equation has here been solved for a set of 13 slightly
different surface lengths, in order to achieve the desired resolution in
the angles close to 90°.
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description of the scattering processes involved. Since the
Rayleigh equations are derived under the assumption of the
Rayleigh hypothesis [34], this may indirectly also be a test
of the validity of this hypothesis. It is outside the scope of this
paper to systematically study these issues, and readers inter-
ested in this topic are referred elsewhere [35,36]. However, for
the purpose of this paper, in Fig. 5 we present the dependence
of U�θ0;ϕ0� � �Up�θ0;ϕ0� � Us�θ0;ϕ0��∕2 on the lateral corre-
lation length a, or, equivalently, the rms slope s of the surface,
for given angles of incidence �θ0;ϕ0� � �0°; 45°�, a rms rough-
ness of δ � λ∕10, and with the remaining parameters being
similar to those used to produce the results of Fig. 2.

When both the surface height distribution and the lateral
correlation function are Gaussian, as assumed here, the
rms slope is given by s �

			
2

p
δ∕a [16,23]. The reason that we

present U�θ0;ϕ0�, and not Up and Us separately, is only to im-
prove the statistics. The inset in Fig. 5 indicates that the en-
ergy is conserved to within 1%, or better, for a rms slope of
s ≈ 2∕3, or smaller (at least for δ � λ∕10 assumed here). More-
over, from the same figure energy is conserved to within 10−5,

or better, for s ≤ 0.28 (a ≥ λ∕5), again assuming δ � λ∕10. We
note that in [35] it was shown that in the �δ; a�-parameter re-
gion, for which s ≤ 0.28, energy was conserved with an error
smaller than 10−4, or better, if δwas not too large. However, as
δ∕λ became larger than about 0.15, the condition U ≡ 1
seemed to not be satisfied, i.e., had an error greater than 10−2,
for any correlation length. This lack of energy conservation
was interpreted in [35] not as an indication that the Rayleigh
equations themselves are not valid, but instead it was believed
to be caused by inaccuracies in the evaluation of the I�γjQ∥�
integrals by the expansion method used to calculate them (see
[35] for details).

Finally, we will present a comparison of mean differential
reflection coefficients either obtained by solving the Rayleigh
equations by the methods presented in this paper, or obtained
from the Green’s function surface integral approach of [10]
that is based on the Stratton–Chu formula [18]. An attractive
practical advantage of the former approach over the latter is
that when we apply the former, it requires about 25 times less
memory than the latter [25]. While the Rayleigh equation ap-
proach is expected to be fairly accurate only for surfaces of
small local slopes since it assumes the Rayleigh hypothesis
[17,34–36], the Green’s function surface integral approach is
rigorous and should therefore in principle be valid for any sur-
face roughness. In Figs. 6 and 7, we compare results obtained
when these two approaches are applied to the same scattering
system (whose properties are defined in the caption of
Fig. 2). In particular, what is compared is the polar angular

Table 1. Values for Uβ�θ0;ϕ0� and U incoh
β �θ0; ϕ0�

as Defined by Eqs. (32) and (33) for the

Simulation Results Presented in Figs. 2 and 3

�θ0;ϕ0� β Uβ�θ0;ϕ0� U incoh
β �θ0;ϕ0�

(0°, 45°) p 1.00001 0.80879
s 1.00001 0.80885

(22°, 45°) p 1.00002 0.74208
s 1.00002 0.74063

Fig. 5. Unitarity, U�θ0;ϕ0� � �Up�θ0;ϕ0� � Us�θ0;ϕ0��∕2, as a func-
tion of the correlation length a, or, equivalently, the rms slope s of
the surface, for the angles of incidence �θ0;ϕ0� � �0°; 45°�. Since
the surfaces used to produce these results had both Gaussian height
distributions and Gaussian correlation functions, the rms slope of the
surfaces is given by s �

			
2

p
δ∕a [16,23]. The inset depicts a semi-

logarithmic scale jU − 1j as a function of correlation length in order
to better identify the deviation of U from unity. In the simulations per-
formed to produce the data presented in this figure, we kept the rms
height of the surface fixed at δ � λ∕10 while varying its transverse
correlation length a. For each set of roughness parameters the results
were averaged over an ensemble consisting of 20 surface realizations,
which was sufficient to produce converged results. The remaining
parameters used in obtaining these results are given in the caption
of Fig. 2.
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Fig. 6. Comparison of the results for the incoherent component of
the mean differential reflection coefficient as obtained by numerically
solving the Rayleigh equations (lines) and those resulting from apply-
ing the (rigorous) Green’s function surface integral method [10] (open
symbols) to the same scattering system. Both the co- and cross-
polarized components of the mean differential reflection coefficients
coming from the light that has been scattered incoherently by the sur-
face are presented, but only their in-plane (left panel) and out-of-plane
(right panel) dependencies are shown. The incident light was p polar-
ized, and the remaining roughness parameters were identical to those
assumed in producing the results of Fig. 2. The curves corresponding
to the Rayleigh equation approach were actually obtained by making
appropriate cuts through the corresponding angular intensity distribu-
tions of Fig. 2. When applying the Green’s function surface integral
approach, the simulation parameters were identical to those used
in the Rayleigh approach (see caption of Fig. 2) with the following
exceptions: the spatial discretization interval was Δx � 2λ∕17, the in-
cident beam had a finite size of full width w � 4λ, and the number of
surface realizations used was Np � 10 000.
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dependence of the co- and cross-polarized incoherent compo-
nents of the mean differential reflection coefficients in the
plane of incidence (in-plane) or in a plane perpendicular to
it (out-of-plane). Figures 6 and 7 show excellent agreement
between the results obtained by the two approaches. We have
also verified that similar agreement exists for the other param-
eters of the incident beam used in producing Figs. 2 and 3, but
these results are not shown here.

7. CONCLUSIONS
In conclusion, we have presented the Rayleigh equations for
the scattering of light from a two-dimensional, randomly
rough, perfectly conducting surface, and solved them nonper-
turbatively and purely numerically to obtain the scattered
light. In particular, for a selection of angles of incidence,
we reported the full angular distribution for the co- and
cross-polarized incoherent components of the mean differen-
tial reflection coefficients of the scattered light for either p or
s polarization of the incident plane waves. The fraction of the
incident light that was scattered incoherently and coherently
by the randomly rough surface was calculated and reported.
The simulation results that were obtained by a purely numeri-
cal solution of the Rayleigh equations were, for the same sur-
face parameters, found to give very good agreement with the
results obtained by the more computationally costly, but fully
rigorous, Green’s function surface integral method. The qual-
ity of the simulation results was quantified by investigating
energy conservation (unitarity). For the main results reported,
energy conservation was found to be satisfied with an error
smaller than 10−4, or better. We also investigated the energy
conservation for surfaces of increasing rms slopes, and it was
found that the error was smaller than 0.1% (1%) for slopes
smaller than about 0.47 (0.71) (at least for the roughness
parameters that we assumed in the simulations). In addition
to indicating a formally correct numerical solution of the Ray-
leigh equations, such results also testify to the usefulness of
purely numerical, and therefore nonperturbative, solutions of
such equations.
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